vfs_bio.c revision 53577
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 53577 1999-11-22 10:33:55Z phk $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/sysctl.h>
34#include <sys/proc.h>
35#include <sys/kthread.h>
36#include <sys/vnode.h>
37#include <sys/vmmeter.h>
38#include <sys/lock.h>
39#include <vm/vm.h>
40#include <vm/vm_param.h>
41#include <vm/vm_kern.h>
42#include <vm/vm_pageout.h>
43#include <vm/vm_page.h>
44#include <vm/vm_object.h>
45#include <vm/vm_extern.h>
46#include <vm/vm_map.h>
47#include <sys/buf.h>
48#include <sys/mount.h>
49#include <sys/malloc.h>
50#include <sys/resourcevar.h>
51#include <sys/conf.h>
52
53static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
54
55struct	bio_ops bioops;		/* I/O operation notification */
56
57struct buf *buf;		/* buffer header pool */
58struct swqueue bswlist;
59
60static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
61		vm_offset_t to);
62static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
63		vm_offset_t to);
64static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
65			       int pageno, vm_page_t m);
66static void vfs_clean_pages(struct buf * bp);
67static void vfs_setdirty(struct buf *bp);
68static void vfs_vmio_release(struct buf *bp);
69static int flushbufqueues(void);
70
71static int bd_request;
72
73static void buf_daemon __P((void));
74/*
75 * bogus page -- for I/O to/from partially complete buffers
76 * this is a temporary solution to the problem, but it is not
77 * really that bad.  it would be better to split the buffer
78 * for input in the case of buffers partially already in memory,
79 * but the code is intricate enough already.
80 */
81vm_page_t bogus_page;
82int runningbufspace;
83int vmiodirenable = FALSE;
84int buf_maxio = DFLTPHYS;
85static vm_offset_t bogus_offset;
86
87static int bufspace, maxbufspace, vmiospace,
88	bufmallocspace, maxbufmallocspace, hibufspace;
89static int maxbdrun;
90static int needsbuffer;
91static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
92static int numfreebuffers, lofreebuffers, hifreebuffers;
93static int getnewbufcalls;
94static int getnewbufrestarts;
95static int kvafreespace;
96
97SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
98	&numdirtybuffers, 0, "");
99SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
100	&lodirtybuffers, 0, "");
101SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
102	&hidirtybuffers, 0, "");
103SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
104	&numfreebuffers, 0, "");
105SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
106	&lofreebuffers, 0, "");
107SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
108	&hifreebuffers, 0, "");
109SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
110	&runningbufspace, 0, "");
111SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
112	&maxbufspace, 0, "");
113SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
114	&hibufspace, 0, "");
115SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
116	&bufspace, 0, "");
117SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
118	&maxbdrun, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
120	&vmiospace, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
122	&maxbufmallocspace, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
124	&bufmallocspace, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
126	&kvafreespace, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
128	&getnewbufcalls, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
130	&getnewbufrestarts, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
132	&vmiodirenable, 0, "");
133
134
135static int bufhashmask;
136static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
137struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
138char *buf_wmesg = BUF_WMESG;
139
140extern int vm_swap_size;
141
142#define BUF_MAXUSE		24
143
144#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
145#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
146#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
147#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
148#define VFS_BIO_NEED_KVASPACE	0x10	/* wait for buffer_map space, emerg  */
149
150/*
151 * Buffer hash table code.  Note that the logical block scans linearly, which
152 * gives us some L1 cache locality.
153 */
154
155static __inline
156struct bufhashhdr *
157bufhash(struct vnode *vnp, daddr_t bn)
158{
159	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
160}
161
162/*
163 *	kvaspacewakeup:
164 *
165 *	Called when kva space is potential available for recovery or when
166 *	kva space is recovered in the buffer_map.  This function wakes up
167 *	anyone waiting for buffer_map kva space.  Even though the buffer_map
168 *	is larger then maxbufspace, this situation will typically occur
169 *	when the buffer_map gets fragmented.
170 */
171
172static __inline void
173kvaspacewakeup(void)
174{
175	/*
176	 * If someone is waiting for KVA space, wake them up.  Even
177	 * though we haven't freed the kva space yet, the waiting
178	 * process will be able to now.
179	 */
180	if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
181		needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
182		wakeup(&needsbuffer);
183	}
184}
185
186/*
187 *	numdirtywakeup:
188 *
189 *	If someone is blocked due to there being too many dirty buffers,
190 *	and numdirtybuffers is now reasonable, wake them up.
191 */
192
193static __inline void
194numdirtywakeup(void)
195{
196	if (numdirtybuffers < hidirtybuffers) {
197		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
198			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
199			wakeup(&needsbuffer);
200		}
201	}
202}
203
204/*
205 *	bufspacewakeup:
206 *
207 *	Called when buffer space is potentially available for recovery or when
208 *	buffer space is recovered.  getnewbuf() will block on this flag when
209 *	it is unable to free sufficient buffer space.  Buffer space becomes
210 *	recoverable when bp's get placed back in the queues.
211 */
212
213static __inline void
214bufspacewakeup(void)
215{
216	/*
217	 * If someone is waiting for BUF space, wake them up.  Even
218	 * though we haven't freed the kva space yet, the waiting
219	 * process will be able to now.
220	 */
221	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
222		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
223		wakeup(&needsbuffer);
224	}
225}
226
227/*
228 *	bufcountwakeup:
229 *
230 *	Called when a buffer has been added to one of the free queues to
231 *	account for the buffer and to wakeup anyone waiting for free buffers.
232 *	This typically occurs when large amounts of metadata are being handled
233 *	by the buffer cache ( else buffer space runs out first, usually ).
234 */
235
236static __inline void
237bufcountwakeup(void)
238{
239	++numfreebuffers;
240	if (needsbuffer) {
241		needsbuffer &= ~VFS_BIO_NEED_ANY;
242		if (numfreebuffers >= hifreebuffers)
243			needsbuffer &= ~VFS_BIO_NEED_FREE;
244		wakeup(&needsbuffer);
245	}
246}
247
248/*
249 *	vfs_buf_test_cache:
250 *
251 *	Called when a buffer is extended.  This function clears the B_CACHE
252 *	bit if the newly extended portion of the buffer does not contain
253 *	valid data.
254 */
255static __inline__
256void
257vfs_buf_test_cache(struct buf *bp,
258		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
259		  vm_page_t m)
260{
261	if (bp->b_flags & B_CACHE) {
262		int base = (foff + off) & PAGE_MASK;
263		if (vm_page_is_valid(m, base, size) == 0)
264			bp->b_flags &= ~B_CACHE;
265	}
266}
267
268static __inline__
269void
270bd_wakeup(int dirtybuflevel)
271{
272	if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
273		bd_request = 1;
274		wakeup(&bd_request);
275	}
276}
277
278
279/*
280 * Initialize buffer headers and related structures.
281 */
282
283caddr_t
284bufhashinit(caddr_t vaddr)
285{
286	/* first, make a null hash table */
287	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
288		;
289	bufhashtbl = (void *)vaddr;
290	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
291	--bufhashmask;
292	return(vaddr);
293}
294
295void
296bufinit(void)
297{
298	struct buf *bp;
299	int i;
300
301	TAILQ_INIT(&bswlist);
302	LIST_INIT(&invalhash);
303	simple_lock_init(&buftimelock);
304
305	for (i = 0; i <= bufhashmask; i++)
306		LIST_INIT(&bufhashtbl[i]);
307
308	/* next, make a null set of free lists */
309	for (i = 0; i < BUFFER_QUEUES; i++)
310		TAILQ_INIT(&bufqueues[i]);
311
312	/* finally, initialize each buffer header and stick on empty q */
313	for (i = 0; i < nbuf; i++) {
314		bp = &buf[i];
315		bzero(bp, sizeof *bp);
316		bp->b_flags = B_INVAL;	/* we're just an empty header */
317		bp->b_dev = NODEV;
318		bp->b_rcred = NOCRED;
319		bp->b_wcred = NOCRED;
320		bp->b_qindex = QUEUE_EMPTY;
321		bp->b_xflags = 0;
322		LIST_INIT(&bp->b_dep);
323		BUF_LOCKINIT(bp);
324		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
325		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
326	}
327
328	/*
329	 * maxbufspace is currently calculated to be maximally efficient
330	 * when the filesystem block size is DFLTBSIZE or DFLTBSIZE*2
331	 * (4K or 8K).  To reduce the number of stall points our calculation
332	 * is based on DFLTBSIZE which should reduce the chances of actually
333	 * running out of buffer headers.  The maxbufspace calculation is also
334	 * based on DFLTBSIZE (4K) instead of BKVASIZE (8K) in order to
335	 * reduce the chance that a KVA allocation will fail due to
336	 * fragmentation.  While this does not usually create a stall,
337	 * the KVA map allocation/free functions are O(N) rather then O(1)
338	 * so running them constantly would result in inefficient O(N*M)
339	 * buffer cache operation.
340	 */
341	maxbufspace = (nbuf + 8) * DFLTBSIZE;
342	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 5);
343/*
344 * Limit the amount of malloc memory since it is wired permanently into
345 * the kernel space.  Even though this is accounted for in the buffer
346 * allocation, we don't want the malloced region to grow uncontrolled.
347 * The malloc scheme improves memory utilization significantly on average
348 * (small) directories.
349 */
350	maxbufmallocspace = hibufspace / 20;
351
352/*
353 * Reduce the chance of a deadlock occuring by limiting the number
354 * of delayed-write dirty buffers we allow to stack up.
355 */
356	lodirtybuffers = nbuf / 7 + 10;
357	hidirtybuffers = nbuf / 4 + 20;
358	numdirtybuffers = 0;
359/*
360 * To support extreme low-memory systems, make sure hidirtybuffers cannot
361 * eat up all available buffer space.  This occurs when our minimum cannot
362 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
363 * BKVASIZE'd (8K) buffers.  We also reduce buf_maxio in this case (used
364 * by the clustering code) in an attempt to further reduce the load on
365 * the buffer cache.
366 */
367	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
368		lodirtybuffers >>= 1;
369		hidirtybuffers >>= 1;
370		buf_maxio >>= 1;
371	}
372	if (lodirtybuffers < 2) {
373		lodirtybuffers = 2;
374		hidirtybuffers = 4;
375	}
376
377	/*
378	 * Temporary, BKVASIZE may be manipulated soon, make sure we don't
379	 * do something illegal. XXX
380	 */
381#if BKVASIZE < MAXBSIZE
382	if (buf_maxio < BKVASIZE * 2)
383		buf_maxio = BKVASIZE * 2;
384#else
385	if (buf_maxio < MAXBSIZE)
386		buf_maxio = MAXBSIZE;
387#endif
388
389/*
390 * Try to keep the number of free buffers in the specified range,
391 * and give the syncer access to an emergency reserve.
392 */
393	lofreebuffers = nbuf / 18 + 5;
394	hifreebuffers = 2 * lofreebuffers;
395	numfreebuffers = nbuf;
396
397/*
398 * Maximum number of async ops initiated per buf_daemon loop.  This is
399 * somewhat of a hack at the moment, we really need to limit ourselves
400 * based on the number of bytes of I/O in-transit that were initiated
401 * from buf_daemon.
402 */
403	if ((maxbdrun = nswbuf / 4) < 4)
404		maxbdrun = 4;
405
406	kvafreespace = 0;
407
408	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
409	bogus_page = vm_page_alloc(kernel_object,
410			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
411			VM_ALLOC_NORMAL);
412	cnt.v_wire_count++;
413
414}
415
416/*
417 * Free the kva allocation for a buffer
418 * Must be called only at splbio or higher,
419 *  as this is the only locking for buffer_map.
420 */
421static void
422bfreekva(struct buf * bp)
423{
424	if (bp->b_kvasize) {
425		vm_map_delete(buffer_map,
426		    (vm_offset_t) bp->b_kvabase,
427		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
428		);
429		bp->b_kvasize = 0;
430		kvaspacewakeup();
431	}
432}
433
434/*
435 *	bremfree:
436 *
437 *	Remove the buffer from the appropriate free list.
438 */
439void
440bremfree(struct buf * bp)
441{
442	int s = splbio();
443	int old_qindex = bp->b_qindex;
444
445	if (bp->b_qindex != QUEUE_NONE) {
446		if (bp->b_qindex == QUEUE_EMPTYKVA) {
447			kvafreespace -= bp->b_kvasize;
448		}
449		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
450		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
451		bp->b_qindex = QUEUE_NONE;
452		runningbufspace += bp->b_bufsize;
453	} else {
454#if !defined(MAX_PERF)
455		if (BUF_REFCNT(bp) <= 1)
456			panic("bremfree: removing a buffer not on a queue");
457#endif
458	}
459
460	/*
461	 * Fixup numfreebuffers count.  If the buffer is invalid or not
462	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
463	 * the buffer was free and we must decrement numfreebuffers.
464	 */
465	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
466		switch(old_qindex) {
467		case QUEUE_DIRTY:
468		case QUEUE_CLEAN:
469		case QUEUE_EMPTY:
470		case QUEUE_EMPTYKVA:
471			--numfreebuffers;
472			break;
473		default:
474			break;
475		}
476	}
477	splx(s);
478}
479
480
481/*
482 * Get a buffer with the specified data.  Look in the cache first.  We
483 * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
484 * is set, the buffer is valid and we do not have to do anything ( see
485 * getblk() ).
486 */
487int
488bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
489    struct buf ** bpp)
490{
491	struct buf *bp;
492
493	bp = getblk(vp, blkno, size, 0, 0);
494	*bpp = bp;
495
496	/* if not found in cache, do some I/O */
497	if ((bp->b_flags & B_CACHE) == 0) {
498		if (curproc != NULL)
499			curproc->p_stats->p_ru.ru_inblock++;
500		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
501		bp->b_flags |= B_READ;
502		bp->b_flags &= ~(B_ERROR | B_INVAL);
503		if (bp->b_rcred == NOCRED) {
504			if (cred != NOCRED)
505				crhold(cred);
506			bp->b_rcred = cred;
507		}
508		vfs_busy_pages(bp, 0);
509		VOP_STRATEGY(vp, bp);
510		return (biowait(bp));
511	}
512	return (0);
513}
514
515/*
516 * Operates like bread, but also starts asynchronous I/O on
517 * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
518 * to initiating I/O . If B_CACHE is set, the buffer is valid
519 * and we do not have to do anything.
520 */
521int
522breadn(struct vnode * vp, daddr_t blkno, int size,
523    daddr_t * rablkno, int *rabsize,
524    int cnt, struct ucred * cred, struct buf ** bpp)
525{
526	struct buf *bp, *rabp;
527	int i;
528	int rv = 0, readwait = 0;
529
530	*bpp = bp = getblk(vp, blkno, size, 0, 0);
531
532	/* if not found in cache, do some I/O */
533	if ((bp->b_flags & B_CACHE) == 0) {
534		if (curproc != NULL)
535			curproc->p_stats->p_ru.ru_inblock++;
536		bp->b_flags |= B_READ;
537		bp->b_flags &= ~(B_ERROR | B_INVAL);
538		if (bp->b_rcred == NOCRED) {
539			if (cred != NOCRED)
540				crhold(cred);
541			bp->b_rcred = cred;
542		}
543		vfs_busy_pages(bp, 0);
544		VOP_STRATEGY(vp, bp);
545		++readwait;
546	}
547
548	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
549		if (inmem(vp, *rablkno))
550			continue;
551		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
552
553		if ((rabp->b_flags & B_CACHE) == 0) {
554			if (curproc != NULL)
555				curproc->p_stats->p_ru.ru_inblock++;
556			rabp->b_flags |= B_READ | B_ASYNC;
557			rabp->b_flags &= ~(B_ERROR | B_INVAL);
558			if (rabp->b_rcred == NOCRED) {
559				if (cred != NOCRED)
560					crhold(cred);
561				rabp->b_rcred = cred;
562			}
563			vfs_busy_pages(rabp, 0);
564			BUF_KERNPROC(rabp);
565			VOP_STRATEGY(vp, rabp);
566		} else {
567			brelse(rabp);
568		}
569	}
570
571	if (readwait) {
572		rv = biowait(bp);
573	}
574	return (rv);
575}
576
577/*
578 * Write, release buffer on completion.  (Done by iodone
579 * if async).  Do not bother writing anything if the buffer
580 * is invalid.
581 *
582 * Note that we set B_CACHE here, indicating that buffer is
583 * fully valid and thus cacheable.  This is true even of NFS
584 * now so we set it generally.  This could be set either here
585 * or in biodone() since the I/O is synchronous.  We put it
586 * here.
587 */
588int
589bwrite(struct buf * bp)
590{
591	int oldflags, s;
592	struct vnode *vp;
593	struct mount *mp;
594
595	if (bp->b_flags & B_INVAL) {
596		brelse(bp);
597		return (0);
598	}
599
600	oldflags = bp->b_flags;
601
602#if !defined(MAX_PERF)
603	if (BUF_REFCNT(bp) == 0)
604		panic("bwrite: buffer is not busy???");
605#endif
606	s = splbio();
607	bundirty(bp);
608
609	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
610	bp->b_flags |= B_WRITEINPROG | B_CACHE;
611
612	bp->b_vp->v_numoutput++;
613	vfs_busy_pages(bp, 1);
614	if (curproc != NULL)
615		curproc->p_stats->p_ru.ru_oublock++;
616	splx(s);
617	if (oldflags & B_ASYNC)
618		BUF_KERNPROC(bp);
619	VOP_STRATEGY(bp->b_vp, bp);
620
621	/*
622	 * Collect statistics on synchronous and asynchronous writes.
623	 * Writes to block devices are charged to their associated
624	 * filesystem (if any).
625	 */
626	if ((vp = bp->b_vp) != NULL) {
627		if (vn_isdisk(vp))
628			mp = vp->v_specmountpoint;
629		else
630			mp = vp->v_mount;
631		if (mp != NULL) {
632			if ((oldflags & B_ASYNC) == 0)
633				mp->mnt_stat.f_syncwrites++;
634			else
635				mp->mnt_stat.f_asyncwrites++;
636		}
637	}
638
639	if ((oldflags & B_ASYNC) == 0) {
640		int rtval = biowait(bp);
641		brelse(bp);
642		return (rtval);
643	}
644
645	return (0);
646}
647
648/*
649 * Delayed write. (Buffer is marked dirty).  Do not bother writing
650 * anything if the buffer is marked invalid.
651 *
652 * Note that since the buffer must be completely valid, we can safely
653 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
654 * biodone() in order to prevent getblk from writing the buffer
655 * out synchronously.
656 */
657void
658bdwrite(struct buf * bp)
659{
660#if !defined(MAX_PERF)
661	if (BUF_REFCNT(bp) == 0)
662		panic("bdwrite: buffer is not busy");
663#endif
664
665	if (bp->b_flags & B_INVAL) {
666		brelse(bp);
667		return;
668	}
669	bdirty(bp);
670
671	/*
672	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
673	 * true even of NFS now.
674	 */
675	bp->b_flags |= B_CACHE;
676
677	/*
678	 * This bmap keeps the system from needing to do the bmap later,
679	 * perhaps when the system is attempting to do a sync.  Since it
680	 * is likely that the indirect block -- or whatever other datastructure
681	 * that the filesystem needs is still in memory now, it is a good
682	 * thing to do this.  Note also, that if the pageout daemon is
683	 * requesting a sync -- there might not be enough memory to do
684	 * the bmap then...  So, this is important to do.
685	 */
686	if (bp->b_lblkno == bp->b_blkno) {
687		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
688	}
689
690	/*
691	 * Set the *dirty* buffer range based upon the VM system dirty pages.
692	 */
693	vfs_setdirty(bp);
694
695	/*
696	 * We need to do this here to satisfy the vnode_pager and the
697	 * pageout daemon, so that it thinks that the pages have been
698	 * "cleaned".  Note that since the pages are in a delayed write
699	 * buffer -- the VFS layer "will" see that the pages get written
700	 * out on the next sync, or perhaps the cluster will be completed.
701	 */
702	vfs_clean_pages(bp);
703	bqrelse(bp);
704
705	/*
706	 * Wakeup the buffer flushing daemon if we have saturated the
707	 * buffer cache.
708	 */
709
710	bd_wakeup(hidirtybuffers);
711
712	/*
713	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
714	 * due to the softdep code.
715	 */
716}
717
718/*
719 *	bdirty:
720 *
721 *	Turn buffer into delayed write request.  We must clear B_READ and
722 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
723 *	itself to properly update it in the dirty/clean lists.  We mark it
724 *	B_DONE to ensure that any asynchronization of the buffer properly
725 *	clears B_DONE ( else a panic will occur later ).
726 *
727 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
728 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
729 *	should only be called if the buffer is known-good.
730 *
731 *	Since the buffer is not on a queue, we do not update the numfreebuffers
732 *	count.
733 *
734 *	Must be called at splbio().
735 *	The buffer must be on QUEUE_NONE.
736 */
737void
738bdirty(bp)
739	struct buf *bp;
740{
741	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
742	bp->b_flags &= ~(B_READ|B_RELBUF);
743
744	if ((bp->b_flags & B_DELWRI) == 0) {
745		bp->b_flags |= B_DONE | B_DELWRI;
746		reassignbuf(bp, bp->b_vp);
747		++numdirtybuffers;
748		bd_wakeup(hidirtybuffers);
749	}
750}
751
752/*
753 *	bundirty:
754 *
755 *	Clear B_DELWRI for buffer.
756 *
757 *	Since the buffer is not on a queue, we do not update the numfreebuffers
758 *	count.
759 *
760 *	Must be called at splbio().
761 *	The buffer must be on QUEUE_NONE.
762 */
763
764void
765bundirty(bp)
766	struct buf *bp;
767{
768	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
769
770	if (bp->b_flags & B_DELWRI) {
771		bp->b_flags &= ~B_DELWRI;
772		reassignbuf(bp, bp->b_vp);
773		--numdirtybuffers;
774		numdirtywakeup();
775	}
776}
777
778/*
779 *	bawrite:
780 *
781 *	Asynchronous write.  Start output on a buffer, but do not wait for
782 *	it to complete.  The buffer is released when the output completes.
783 *
784 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
785 *	B_INVAL buffers.  Not us.
786 */
787void
788bawrite(struct buf * bp)
789{
790	bp->b_flags |= B_ASYNC;
791	(void) VOP_BWRITE(bp->b_vp, bp);
792}
793
794/*
795 *	bowrite:
796 *
797 *	Ordered write.  Start output on a buffer, and flag it so that the
798 *	device will write it in the order it was queued.  The buffer is
799 *	released when the output completes.  bwrite() ( or the VOP routine
800 *	anyway ) is responsible for handling B_INVAL buffers.
801 */
802int
803bowrite(struct buf * bp)
804{
805	bp->b_flags |= B_ORDERED | B_ASYNC;
806	return (VOP_BWRITE(bp->b_vp, bp));
807}
808
809/*
810 *	bwillwrite:
811 *
812 *	Called prior to the locking of any vnodes when we are expecting to
813 *	write.  We do not want to starve the buffer cache with too many
814 *	dirty buffers so we block here.  By blocking prior to the locking
815 *	of any vnodes we attempt to avoid the situation where a locked vnode
816 *	prevents the various system daemons from flushing related buffers.
817 */
818
819void
820bwillwrite(void)
821{
822	int twenty = (hidirtybuffers - lodirtybuffers) / 5;
823
824	if (numdirtybuffers > hidirtybuffers + twenty) {
825		int s;
826
827		s = splbio();
828		while (numdirtybuffers > hidirtybuffers) {
829			bd_wakeup(hidirtybuffers);
830			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
831			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
832		}
833		splx(s);
834	}
835}
836
837/*
838 *	brelse:
839 *
840 *	Release a busy buffer and, if requested, free its resources.  The
841 *	buffer will be stashed in the appropriate bufqueue[] allowing it
842 *	to be accessed later as a cache entity or reused for other purposes.
843 */
844void
845brelse(struct buf * bp)
846{
847	int s;
848	int kvawakeup = 0;
849
850	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
851
852	s = splbio();
853
854	if (bp->b_flags & B_LOCKED)
855		bp->b_flags &= ~B_ERROR;
856
857	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
858		/*
859		 * Failed write, redirty.  Must clear B_ERROR to prevent
860		 * pages from being scrapped.  If B_INVAL is set then
861		 * this case is not run and the next case is run to
862		 * destroy the buffer.  B_INVAL can occur if the buffer
863		 * is outside the range supported by the underlying device.
864		 */
865		bp->b_flags &= ~B_ERROR;
866		bdirty(bp);
867	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
868	    (bp->b_bufsize <= 0)) {
869		/*
870		 * Either a failed I/O or we were asked to free or not
871		 * cache the buffer.
872		 */
873		bp->b_flags |= B_INVAL;
874		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
875			(*bioops.io_deallocate)(bp);
876		if (bp->b_flags & B_DELWRI) {
877			--numdirtybuffers;
878			numdirtywakeup();
879		}
880		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
881		if ((bp->b_flags & B_VMIO) == 0) {
882			if (bp->b_bufsize)
883				allocbuf(bp, 0);
884			if (bp->b_vp)
885				brelvp(bp);
886		}
887	}
888
889	/*
890	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
891	 * is called with B_DELWRI set, the underlying pages may wind up
892	 * getting freed causing a previous write (bdwrite()) to get 'lost'
893	 * because pages associated with a B_DELWRI bp are marked clean.
894	 *
895	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
896	 * if B_DELWRI is set.
897	 */
898
899	if (bp->b_flags & B_DELWRI)
900		bp->b_flags &= ~B_RELBUF;
901
902	/*
903	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
904	 * constituted, not even NFS buffers now.  Two flags effect this.  If
905	 * B_INVAL, the struct buf is invalidated but the VM object is kept
906	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
907	 *
908	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
909	 * invalidated.  B_ERROR cannot be set for a failed write unless the
910	 * buffer is also B_INVAL because it hits the re-dirtying code above.
911	 *
912	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
913	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
914	 * the commit state and we cannot afford to lose the buffer.
915	 */
916	if ((bp->b_flags & B_VMIO)
917	    && !(bp->b_vp->v_tag == VT_NFS &&
918		 !vn_isdisk(bp->b_vp) &&
919		 (bp->b_flags & B_DELWRI))
920	    ) {
921
922		int i, j, resid;
923		vm_page_t m;
924		off_t foff;
925		vm_pindex_t poff;
926		vm_object_t obj;
927		struct vnode *vp;
928
929		vp = bp->b_vp;
930
931		/*
932		 * Get the base offset and length of the buffer.  Note that
933		 * for block sizes that are less then PAGE_SIZE, the b_data
934		 * base of the buffer does not represent exactly b_offset and
935		 * neither b_offset nor b_size are necessarily page aligned.
936		 * Instead, the starting position of b_offset is:
937		 *
938		 * 	b_data + (b_offset & PAGE_MASK)
939		 *
940		 * block sizes less then DEV_BSIZE (usually 512) are not
941		 * supported due to the page granularity bits (m->valid,
942		 * m->dirty, etc...).
943		 *
944		 * See man buf(9) for more information
945		 */
946
947		resid = bp->b_bufsize;
948		foff = bp->b_offset;
949
950		for (i = 0; i < bp->b_npages; i++) {
951			m = bp->b_pages[i];
952			vm_page_flag_clear(m, PG_ZERO);
953			if (m == bogus_page) {
954
955				obj = (vm_object_t) vp->v_object;
956				poff = OFF_TO_IDX(bp->b_offset);
957
958				for (j = i; j < bp->b_npages; j++) {
959					m = bp->b_pages[j];
960					if (m == bogus_page) {
961						m = vm_page_lookup(obj, poff + j);
962#if !defined(MAX_PERF)
963						if (!m) {
964							panic("brelse: page missing\n");
965						}
966#endif
967						bp->b_pages[j] = m;
968					}
969				}
970
971				if ((bp->b_flags & B_INVAL) == 0) {
972					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
973				}
974			}
975			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
976				int poffset = foff & PAGE_MASK;
977				int presid = resid > (PAGE_SIZE - poffset) ?
978					(PAGE_SIZE - poffset) : resid;
979
980				KASSERT(presid >= 0, ("brelse: extra page"));
981				vm_page_set_invalid(m, poffset, presid);
982			}
983			resid -= PAGE_SIZE - (foff & PAGE_MASK);
984			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
985		}
986
987		if (bp->b_flags & (B_INVAL | B_RELBUF))
988			vfs_vmio_release(bp);
989
990	} else if (bp->b_flags & B_VMIO) {
991
992		if (bp->b_flags & (B_INVAL | B_RELBUF))
993			vfs_vmio_release(bp);
994
995	}
996
997#if !defined(MAX_PERF)
998	if (bp->b_qindex != QUEUE_NONE)
999		panic("brelse: free buffer onto another queue???");
1000#endif
1001	if (BUF_REFCNT(bp) > 1) {
1002		/* Temporary panic to verify exclusive locking */
1003		/* This panic goes away when we allow shared refs */
1004		panic("brelse: multiple refs");
1005		/* do not release to free list */
1006		BUF_UNLOCK(bp);
1007		splx(s);
1008		return;
1009	}
1010
1011	/* enqueue */
1012
1013	/* buffers with no memory */
1014	if (bp->b_bufsize == 0) {
1015		bp->b_flags |= B_INVAL;
1016		if (bp->b_kvasize) {
1017			bp->b_qindex = QUEUE_EMPTYKVA;
1018			kvawakeup = 1;
1019		} else {
1020			bp->b_qindex = QUEUE_EMPTY;
1021		}
1022		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1023		LIST_REMOVE(bp, b_hash);
1024		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1025		bp->b_dev = NODEV;
1026		kvafreespace += bp->b_kvasize;
1027	/* buffers with junk contents */
1028	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1029		bp->b_flags |= B_INVAL;
1030		bp->b_qindex = QUEUE_CLEAN;
1031		if (bp->b_kvasize)
1032			kvawakeup = 1;
1033		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1034		LIST_REMOVE(bp, b_hash);
1035		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1036		bp->b_dev = NODEV;
1037
1038	/* buffers that are locked */
1039	} else if (bp->b_flags & B_LOCKED) {
1040		bp->b_qindex = QUEUE_LOCKED;
1041		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1042
1043	/* remaining buffers */
1044	} else {
1045		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1046		case B_DELWRI | B_AGE:
1047		    bp->b_qindex = QUEUE_DIRTY;
1048		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1049		    break;
1050		case B_DELWRI:
1051		    bp->b_qindex = QUEUE_DIRTY;
1052		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1053		    break;
1054		case B_AGE:
1055		    bp->b_qindex = QUEUE_CLEAN;
1056		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1057		    if (bp->b_kvasize)
1058			    kvawakeup = 1;
1059		    break;
1060		default:
1061		    bp->b_qindex = QUEUE_CLEAN;
1062		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1063		    if (bp->b_kvasize)
1064			    kvawakeup = 1;
1065		    break;
1066		}
1067	}
1068
1069	/*
1070	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1071	 * on the correct queue.
1072	 */
1073	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1074		bp->b_flags &= ~B_DELWRI;
1075		--numdirtybuffers;
1076		numdirtywakeup();
1077	}
1078
1079	runningbufspace -= bp->b_bufsize;
1080
1081	/*
1082	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1083	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1084	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1085	 * if B_INVAL is set ).
1086	 */
1087
1088	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1089		bufcountwakeup();
1090
1091	/*
1092	 * Something we can maybe free.
1093	 */
1094
1095	if (bp->b_bufsize)
1096		bufspacewakeup();
1097	if (kvawakeup)
1098		kvaspacewakeup();
1099
1100	/* unlock */
1101	BUF_UNLOCK(bp);
1102	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1103	splx(s);
1104}
1105
1106/*
1107 * Release a buffer back to the appropriate queue but do not try to free
1108 * it.
1109 *
1110 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1111 * biodone() to requeue an async I/O on completion.  It is also used when
1112 * known good buffers need to be requeued but we think we may need the data
1113 * again soon.
1114 */
1115void
1116bqrelse(struct buf * bp)
1117{
1118	int s;
1119
1120	s = splbio();
1121
1122	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1123
1124#if !defined(MAX_PERF)
1125	if (bp->b_qindex != QUEUE_NONE)
1126		panic("bqrelse: free buffer onto another queue???");
1127#endif
1128	if (BUF_REFCNT(bp) > 1) {
1129		/* do not release to free list */
1130		panic("bqrelse: multiple refs");
1131		BUF_UNLOCK(bp);
1132		splx(s);
1133		return;
1134	}
1135	if (bp->b_flags & B_LOCKED) {
1136		bp->b_flags &= ~B_ERROR;
1137		bp->b_qindex = QUEUE_LOCKED;
1138		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1139		/* buffers with stale but valid contents */
1140	} else if (bp->b_flags & B_DELWRI) {
1141		bp->b_qindex = QUEUE_DIRTY;
1142		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1143	} else {
1144		bp->b_qindex = QUEUE_CLEAN;
1145		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1146	}
1147
1148	runningbufspace -= bp->b_bufsize;
1149
1150	if ((bp->b_flags & B_LOCKED) == 0 &&
1151	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1152		bufcountwakeup();
1153	}
1154
1155	/*
1156	 * Something we can maybe wakeup
1157	 */
1158	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1159		bufspacewakeup();
1160
1161	/* unlock */
1162	BUF_UNLOCK(bp);
1163	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1164	splx(s);
1165}
1166
1167static void
1168vfs_vmio_release(bp)
1169	struct buf *bp;
1170{
1171	int i, s;
1172	vm_page_t m;
1173
1174	s = splvm();
1175	for (i = 0; i < bp->b_npages; i++) {
1176		m = bp->b_pages[i];
1177		bp->b_pages[i] = NULL;
1178		/*
1179		 * In order to keep page LRU ordering consistent, put
1180		 * everything on the inactive queue.
1181		 */
1182		vm_page_unwire(m, 0);
1183		/*
1184		 * We don't mess with busy pages, it is
1185		 * the responsibility of the process that
1186		 * busied the pages to deal with them.
1187		 */
1188		if ((m->flags & PG_BUSY) || (m->busy != 0))
1189			continue;
1190
1191		if (m->wire_count == 0) {
1192			vm_page_flag_clear(m, PG_ZERO);
1193			/*
1194			 * Might as well free the page if we can and it has
1195			 * no valid data.
1196			 */
1197			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1198				vm_page_busy(m);
1199				vm_page_protect(m, VM_PROT_NONE);
1200				vm_page_free(m);
1201			}
1202		}
1203	}
1204	bufspace -= bp->b_bufsize;
1205	vmiospace -= bp->b_bufsize;
1206	runningbufspace -= bp->b_bufsize;
1207	splx(s);
1208	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1209	if (bp->b_bufsize)
1210		bufspacewakeup();
1211	bp->b_npages = 0;
1212	bp->b_bufsize = 0;
1213	bp->b_flags &= ~B_VMIO;
1214	if (bp->b_vp)
1215		brelvp(bp);
1216}
1217
1218/*
1219 * Check to see if a block is currently memory resident.
1220 */
1221struct buf *
1222gbincore(struct vnode * vp, daddr_t blkno)
1223{
1224	struct buf *bp;
1225	struct bufhashhdr *bh;
1226
1227	bh = bufhash(vp, blkno);
1228
1229	/* Search hash chain */
1230	LIST_FOREACH(bp, bh, b_hash) {
1231		/* hit */
1232		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1233		    (bp->b_flags & B_INVAL) == 0) {
1234			break;
1235		}
1236	}
1237	return (bp);
1238}
1239
1240/*
1241 *	vfs_bio_awrite:
1242 *
1243 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1244 *	This is much better then the old way of writing only one buffer at
1245 *	a time.  Note that we may not be presented with the buffers in the
1246 *	correct order, so we search for the cluster in both directions.
1247 */
1248int
1249vfs_bio_awrite(struct buf * bp)
1250{
1251	int i;
1252	int j;
1253	daddr_t lblkno = bp->b_lblkno;
1254	struct vnode *vp = bp->b_vp;
1255	int s;
1256	int ncl;
1257	struct buf *bpa;
1258	int nwritten;
1259	int size;
1260	int maxcl;
1261
1262	s = splbio();
1263	/*
1264	 * right now we support clustered writing only to regular files.  If
1265	 * we find a clusterable block we could be in the middle of a cluster
1266	 * rather then at the beginning.
1267	 */
1268	if ((vp->v_type == VREG) &&
1269	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1270	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1271
1272		size = vp->v_mount->mnt_stat.f_iosize;
1273		maxcl = MAXPHYS / size;
1274
1275		for (i = 1; i < maxcl; i++) {
1276			if ((bpa = gbincore(vp, lblkno + i)) &&
1277			    BUF_REFCNT(bpa) == 0 &&
1278			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1279			    (B_DELWRI | B_CLUSTEROK)) &&
1280			    (bpa->b_bufsize == size)) {
1281				if ((bpa->b_blkno == bpa->b_lblkno) ||
1282				    (bpa->b_blkno !=
1283				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1284					break;
1285			} else {
1286				break;
1287			}
1288		}
1289		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1290			if ((bpa = gbincore(vp, lblkno - j)) &&
1291			    BUF_REFCNT(bpa) == 0 &&
1292			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1293			    (B_DELWRI | B_CLUSTEROK)) &&
1294			    (bpa->b_bufsize == size)) {
1295				if ((bpa->b_blkno == bpa->b_lblkno) ||
1296				    (bpa->b_blkno !=
1297				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1298					break;
1299			} else {
1300				break;
1301			}
1302		}
1303		--j;
1304		ncl = i + j;
1305		/*
1306		 * this is a possible cluster write
1307		 */
1308		if (ncl != 1) {
1309			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1310			splx(s);
1311			return nwritten;
1312		}
1313	}
1314
1315	BUF_LOCK(bp, LK_EXCLUSIVE);
1316	bremfree(bp);
1317	bp->b_flags |= B_ASYNC;
1318
1319	splx(s);
1320	/*
1321	 * default (old) behavior, writing out only one block
1322	 *
1323	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1324	 */
1325	nwritten = bp->b_bufsize;
1326	(void) VOP_BWRITE(bp->b_vp, bp);
1327
1328	return nwritten;
1329}
1330
1331/*
1332 *	getnewbuf:
1333 *
1334 *	Find and initialize a new buffer header, freeing up existing buffers
1335 *	in the bufqueues as necessary.  The new buffer is returned locked.
1336 *
1337 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1338 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1339 *
1340 *	We block if:
1341 *		We have insufficient buffer headers
1342 *		We have insufficient buffer space
1343 *		buffer_map is too fragmented ( space reservation fails )
1344 *		If we have to flush dirty buffers ( but we try to avoid this )
1345 *
1346 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1347 *	Instead we ask the buf daemon to do it for us.  We attempt to
1348 *	avoid piecemeal wakeups of the pageout daemon.
1349 */
1350
1351static struct buf *
1352getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1353{
1354	struct buf *bp;
1355	struct buf *nbp;
1356	struct buf *dbp;
1357	int outofspace;
1358	int nqindex;
1359	int defrag = 0;
1360
1361	++getnewbufcalls;
1362	--getnewbufrestarts;
1363restart:
1364	++getnewbufrestarts;
1365
1366	/*
1367	 * Calculate whether we are out of buffer space.  This state is
1368	 * recalculated on every restart.  If we are out of space, we
1369	 * have to turn off defragmentation.  Setting defrag to -1 when
1370	 * outofspace is positive means "defrag while freeing buffers".
1371	 * The looping conditional will be muffed up if defrag is left
1372	 * positive when outofspace is positive.
1373	 */
1374
1375	dbp = NULL;
1376	outofspace = 0;
1377	if (bufspace >= hibufspace) {
1378		if ((curproc && (curproc->p_flag & P_BUFEXHAUST) == 0) ||
1379		    bufspace >= maxbufspace) {
1380			outofspace = 1;
1381			if (defrag > 0)
1382				defrag = -1;
1383		}
1384	}
1385
1386	/*
1387	 * defrag state is semi-persistant.  1 means we are flagged for
1388	 * defragging.  -1 means we actually defragged something.
1389	 */
1390	/* nop */
1391
1392	/*
1393	 * Setup for scan.  If we do not have enough free buffers,
1394	 * we setup a degenerate case that immediately fails.  Note
1395	 * that if we are specially marked process, we are allowed to
1396	 * dip into our reserves.
1397	 *
1398	 * Normally we want to find an EMPTYKVA buffer.  That is, a
1399	 * buffer with kva already allocated.  If there are no EMPTYKVA
1400	 * buffers we back up to the truely EMPTY buffers.  When defragging
1401	 * we do not bother backing up since we have to locate buffers with
1402	 * kva to defrag.  If we are out of space we skip both EMPTY and
1403	 * EMPTYKVA and dig right into the CLEAN queue.
1404	 *
1405	 * In this manner we avoid scanning unnecessary buffers.  It is very
1406	 * important for us to do this because the buffer cache is almost
1407	 * constantly out of space or in need of defragmentation.
1408	 */
1409
1410	if (curproc && (curproc->p_flag & P_BUFEXHAUST) == 0 &&
1411	    numfreebuffers < lofreebuffers) {
1412		nqindex = QUEUE_CLEAN;
1413		nbp = NULL;
1414	} else {
1415		nqindex = QUEUE_EMPTYKVA;
1416		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1417		if (nbp == NULL) {
1418			if (defrag <= 0) {
1419				nqindex = QUEUE_EMPTY;
1420				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1421			}
1422		}
1423		if (outofspace || nbp == NULL) {
1424			nqindex = QUEUE_CLEAN;
1425			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1426		}
1427	}
1428
1429	/*
1430	 * Run scan, possibly freeing data and/or kva mappings on the fly
1431	 * depending.
1432	 */
1433
1434	while ((bp = nbp) != NULL) {
1435		int qindex = nqindex;
1436
1437		/*
1438		 * Calculate next bp ( we can only use it if we do not block
1439		 * or do other fancy things ).
1440		 */
1441		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1442			switch(qindex) {
1443			case QUEUE_EMPTY:
1444				nqindex = QUEUE_EMPTYKVA;
1445				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1446					break;
1447				/* fall through */
1448			case QUEUE_EMPTYKVA:
1449				nqindex = QUEUE_CLEAN;
1450				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1451					break;
1452				/* fall through */
1453			case QUEUE_CLEAN:
1454				/*
1455				 * nbp is NULL.
1456				 */
1457				break;
1458			}
1459		}
1460
1461		/*
1462		 * Sanity Checks
1463		 */
1464		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1465
1466		/*
1467		 * Note: we no longer distinguish between VMIO and non-VMIO
1468		 * buffers.
1469		 */
1470
1471		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1472
1473		/*
1474		 * If we are defragging and the buffer isn't useful for fixing
1475		 * that problem we continue.  If we are out of space and the
1476		 * buffer isn't useful for fixing that problem we continue.
1477		 */
1478
1479		if (defrag > 0 && bp->b_kvasize == 0)
1480			continue;
1481		if (outofspace > 0 && bp->b_bufsize == 0)
1482			continue;
1483
1484		/*
1485		 * Start freeing the bp.  This is somewhat involved.  nbp
1486		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1487		 */
1488
1489		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1490			panic("getnewbuf: locked buf");
1491		bremfree(bp);
1492
1493		if (qindex == QUEUE_CLEAN) {
1494			if (bp->b_flags & B_VMIO) {
1495				bp->b_flags &= ~B_ASYNC;
1496				vfs_vmio_release(bp);
1497			}
1498			if (bp->b_vp)
1499				brelvp(bp);
1500		}
1501
1502		/*
1503		 * NOTE:  nbp is now entirely invalid.  We can only restart
1504		 * the scan from this point on.
1505		 *
1506		 * Get the rest of the buffer freed up.  b_kva* is still
1507		 * valid after this operation.
1508		 */
1509
1510		if (bp->b_rcred != NOCRED) {
1511			crfree(bp->b_rcred);
1512			bp->b_rcred = NOCRED;
1513		}
1514		if (bp->b_wcred != NOCRED) {
1515			crfree(bp->b_wcred);
1516			bp->b_wcred = NOCRED;
1517		}
1518		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1519			(*bioops.io_deallocate)(bp);
1520		LIST_REMOVE(bp, b_hash);
1521		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1522
1523		if (bp->b_bufsize)
1524			allocbuf(bp, 0);
1525
1526		bp->b_flags = 0;
1527		bp->b_dev = NODEV;
1528		bp->b_vp = NULL;
1529		bp->b_blkno = bp->b_lblkno = 0;
1530		bp->b_offset = NOOFFSET;
1531		bp->b_iodone = 0;
1532		bp->b_error = 0;
1533		bp->b_resid = 0;
1534		bp->b_bcount = 0;
1535		bp->b_npages = 0;
1536		bp->b_dirtyoff = bp->b_dirtyend = 0;
1537
1538		LIST_INIT(&bp->b_dep);
1539
1540		/*
1541		 * Ok, now that we have a free buffer, if we are defragging
1542		 * we have to recover the kvaspace.  If we are out of space
1543		 * we have to free the buffer (which we just did), but we
1544		 * do not have to recover kva space unless we hit a defrag
1545		 * hicup.  Being able to avoid freeing the kva space leads
1546		 * to a significant reduction in overhead.
1547		 */
1548
1549		if (defrag > 0) {
1550			defrag = -1;
1551			bp->b_flags |= B_INVAL;
1552			bfreekva(bp);
1553			brelse(bp);
1554			goto restart;
1555		}
1556
1557		if (outofspace > 0) {
1558			outofspace = -1;
1559			bp->b_flags |= B_INVAL;
1560			if (defrag < 0)
1561				bfreekva(bp);
1562			brelse(bp);
1563			goto restart;
1564		}
1565
1566		/*
1567		 * We are done
1568		 */
1569		break;
1570	}
1571
1572	/*
1573	 * If we exhausted our list, sleep as appropriate.  We may have to
1574	 * wakeup various daemons and write out some dirty buffers.
1575	 *
1576	 * Generally we are sleeping due to insufficient buffer space.
1577	 */
1578
1579	if (bp == NULL) {
1580		int flags;
1581		char *waitmsg;
1582
1583		if (defrag > 0) {
1584			flags = VFS_BIO_NEED_KVASPACE;
1585			waitmsg = "nbufkv";
1586		} else if (outofspace > 0) {
1587			waitmsg = "nbufbs";
1588			flags = VFS_BIO_NEED_BUFSPACE;
1589		} else {
1590			waitmsg = "newbuf";
1591			flags = VFS_BIO_NEED_ANY;
1592		}
1593
1594		/* XXX */
1595
1596		(void) speedup_syncer();
1597		needsbuffer |= flags;
1598		while (needsbuffer & flags) {
1599			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1600			    waitmsg, slptimeo))
1601				return (NULL);
1602		}
1603	} else {
1604		/*
1605		 * We finally have a valid bp.  We aren't quite out of the
1606		 * woods, we still have to reserve kva space.
1607		 */
1608		vm_offset_t addr = 0;
1609
1610		maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1611
1612		if (maxsize != bp->b_kvasize) {
1613			bfreekva(bp);
1614
1615			if (vm_map_findspace(buffer_map,
1616				vm_map_min(buffer_map), maxsize, &addr)) {
1617				/*
1618				 * Uh oh.  Buffer map is to fragmented.  Try
1619				 * to defragment.
1620				 */
1621				if (defrag <= 0) {
1622					defrag = 1;
1623					bp->b_flags |= B_INVAL;
1624					brelse(bp);
1625					goto restart;
1626				}
1627				/*
1628				 * Uh oh.  We couldn't seem to defragment
1629				 */
1630				panic("getnewbuf: unreachable code reached");
1631			}
1632		}
1633		if (addr) {
1634			vm_map_insert(buffer_map, NULL, 0,
1635				addr, addr + maxsize,
1636				VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1637
1638			bp->b_kvabase = (caddr_t) addr;
1639			bp->b_kvasize = maxsize;
1640		}
1641		bp->b_data = bp->b_kvabase;
1642	}
1643	return(bp);
1644}
1645
1646/*
1647 *	waitfreebuffers:
1648 *
1649 *	Wait for sufficient free buffers.  Only called from normal processes.
1650 */
1651
1652static void
1653waitfreebuffers(int slpflag, int slptimeo)
1654{
1655	while (numfreebuffers < hifreebuffers) {
1656		if (numfreebuffers >= hifreebuffers)
1657			break;
1658		needsbuffer |= VFS_BIO_NEED_FREE;
1659		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1660			break;
1661	}
1662}
1663
1664/*
1665 *	buf_daemon:
1666 *
1667 *	buffer flushing daemon.  Buffers are normally flushed by the
1668 *	update daemon but if it cannot keep up this process starts to
1669 *	take the load in an attempt to prevent getnewbuf() from blocking.
1670 */
1671
1672static struct proc *bufdaemonproc;
1673static int bd_interval;
1674static int bd_flushto;
1675
1676static struct kproc_desc buf_kp = {
1677	"bufdaemon",
1678	buf_daemon,
1679	&bufdaemonproc
1680};
1681SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1682
1683static void
1684buf_daemon()
1685{
1686	int s;
1687	/*
1688	 * This process is allowed to take the buffer cache to the limit
1689	 */
1690	curproc->p_flag |= P_BUFEXHAUST;
1691	s = splbio();
1692
1693	bd_interval = 5 * hz;	/* dynamically adjusted */
1694	bd_flushto = hidirtybuffers;	/* dynamically adjusted */
1695
1696	while (TRUE) {
1697		bd_request = 0;
1698
1699		/*
1700		 * Do the flush.  Limit the number of buffers we flush in one
1701		 * go.  The failure condition occurs when processes are writing
1702		 * buffers faster then we can dispose of them.  In this case
1703		 * we may be flushing so often that the previous set of flushes
1704		 * have not had time to complete, causing us to run out of
1705		 * physical buffers and block.
1706		 */
1707		{
1708			int runcount = maxbdrun;
1709
1710			while (numdirtybuffers > bd_flushto && runcount) {
1711				--runcount;
1712				if (flushbufqueues() == 0)
1713					break;
1714			}
1715		}
1716
1717		/*
1718		 * If nobody is requesting anything we sleep
1719		 */
1720		if (bd_request == 0)
1721			tsleep(&bd_request, PVM, "psleep", bd_interval);
1722
1723		/*
1724		 * We calculate how much to add or subtract from bd_flushto
1725		 * and bd_interval based on how far off we are from the
1726		 * optimal number of dirty buffers, which is 20% below the
1727		 * hidirtybuffers mark.  We cannot use hidirtybuffers straight
1728		 * because being right on the mark will cause getnewbuf()
1729		 * to oscillate our wakeup.
1730		 *
1731		 * The larger the error in either direction, the more we adjust
1732		 * bd_flushto and bd_interval.  The time interval is adjusted
1733		 * by 2 seconds per whole-buffer-range of error.  This is an
1734		 * exponential convergence algorithm, with large errors
1735		 * producing large changes and small errors producing small
1736		 * changes.
1737		 */
1738
1739		{
1740			int brange = hidirtybuffers - lodirtybuffers;
1741			int middb = hidirtybuffers - brange / 5;
1742			int deltabuf = middb - numdirtybuffers;
1743
1744			bd_flushto += deltabuf / 20;
1745			bd_interval += deltabuf * (2 * hz) / (brange * 1);
1746		}
1747		if (bd_flushto < lodirtybuffers)
1748			bd_flushto = lodirtybuffers;
1749		if (bd_flushto > hidirtybuffers)
1750			bd_flushto = hidirtybuffers;
1751		if (bd_interval < hz / 10)
1752			bd_interval = hz / 10;
1753		if (bd_interval > 5 * hz)
1754			bd_interval = 5 * hz;
1755	}
1756}
1757
1758/*
1759 *	flushbufqueues:
1760 *
1761 *	Try to flush a buffer in the dirty queue.  We must be careful to
1762 *	free up B_INVAL buffers instead of write them, which NFS is
1763 *	particularly sensitive to.
1764 */
1765
1766static int
1767flushbufqueues(void)
1768{
1769	struct buf *bp;
1770	int r = 0;
1771
1772	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1773
1774	while (bp) {
1775		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1776		if ((bp->b_flags & B_DELWRI) != 0) {
1777			if (bp->b_flags & B_INVAL) {
1778				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1779					panic("flushbufqueues: locked buf");
1780				bremfree(bp);
1781				brelse(bp);
1782				++r;
1783				break;
1784			}
1785			vfs_bio_awrite(bp);
1786			++r;
1787			break;
1788		}
1789		bp = TAILQ_NEXT(bp, b_freelist);
1790	}
1791	return(r);
1792}
1793
1794/*
1795 * Check to see if a block is currently memory resident.
1796 */
1797struct buf *
1798incore(struct vnode * vp, daddr_t blkno)
1799{
1800	struct buf *bp;
1801
1802	int s = splbio();
1803	bp = gbincore(vp, blkno);
1804	splx(s);
1805	return (bp);
1806}
1807
1808/*
1809 * Returns true if no I/O is needed to access the
1810 * associated VM object.  This is like incore except
1811 * it also hunts around in the VM system for the data.
1812 */
1813
1814int
1815inmem(struct vnode * vp, daddr_t blkno)
1816{
1817	vm_object_t obj;
1818	vm_offset_t toff, tinc, size;
1819	vm_page_t m;
1820	vm_ooffset_t off;
1821
1822	if (incore(vp, blkno))
1823		return 1;
1824	if (vp->v_mount == NULL)
1825		return 0;
1826	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1827		return 0;
1828
1829	obj = vp->v_object;
1830	size = PAGE_SIZE;
1831	if (size > vp->v_mount->mnt_stat.f_iosize)
1832		size = vp->v_mount->mnt_stat.f_iosize;
1833	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1834
1835	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1836		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1837		if (!m)
1838			return 0;
1839		tinc = size;
1840		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1841			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1842		if (vm_page_is_valid(m,
1843		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1844			return 0;
1845	}
1846	return 1;
1847}
1848
1849/*
1850 *	vfs_setdirty:
1851 *
1852 *	Sets the dirty range for a buffer based on the status of the dirty
1853 *	bits in the pages comprising the buffer.
1854 *
1855 *	The range is limited to the size of the buffer.
1856 *
1857 *	This routine is primarily used by NFS, but is generalized for the
1858 *	B_VMIO case.
1859 */
1860static void
1861vfs_setdirty(struct buf *bp)
1862{
1863	int i;
1864	vm_object_t object;
1865
1866	/*
1867	 * Degenerate case - empty buffer
1868	 */
1869
1870	if (bp->b_bufsize == 0)
1871		return;
1872
1873	/*
1874	 * We qualify the scan for modified pages on whether the
1875	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1876	 * is not cleared simply by protecting pages off.
1877	 */
1878
1879	if ((bp->b_flags & B_VMIO) == 0)
1880		return;
1881
1882	object = bp->b_pages[0]->object;
1883
1884	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1885		printf("Warning: object %p writeable but not mightbedirty\n", object);
1886	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1887		printf("Warning: object %p mightbedirty but not writeable\n", object);
1888
1889	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1890		vm_offset_t boffset;
1891		vm_offset_t eoffset;
1892
1893		/*
1894		 * test the pages to see if they have been modified directly
1895		 * by users through the VM system.
1896		 */
1897		for (i = 0; i < bp->b_npages; i++) {
1898			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1899			vm_page_test_dirty(bp->b_pages[i]);
1900		}
1901
1902		/*
1903		 * Calculate the encompassing dirty range, boffset and eoffset,
1904		 * (eoffset - boffset) bytes.
1905		 */
1906
1907		for (i = 0; i < bp->b_npages; i++) {
1908			if (bp->b_pages[i]->dirty)
1909				break;
1910		}
1911		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1912
1913		for (i = bp->b_npages - 1; i >= 0; --i) {
1914			if (bp->b_pages[i]->dirty) {
1915				break;
1916			}
1917		}
1918		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1919
1920		/*
1921		 * Fit it to the buffer.
1922		 */
1923
1924		if (eoffset > bp->b_bcount)
1925			eoffset = bp->b_bcount;
1926
1927		/*
1928		 * If we have a good dirty range, merge with the existing
1929		 * dirty range.
1930		 */
1931
1932		if (boffset < eoffset) {
1933			if (bp->b_dirtyoff > boffset)
1934				bp->b_dirtyoff = boffset;
1935			if (bp->b_dirtyend < eoffset)
1936				bp->b_dirtyend = eoffset;
1937		}
1938	}
1939}
1940
1941/*
1942 *	getblk:
1943 *
1944 *	Get a block given a specified block and offset into a file/device.
1945 *	The buffers B_DONE bit will be cleared on return, making it almost
1946 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
1947 *	return.  The caller should clear B_INVAL prior to initiating a
1948 *	READ.
1949 *
1950 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
1951 *	an existing buffer.
1952 *
1953 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
1954 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
1955 *	and then cleared based on the backing VM.  If the previous buffer is
1956 *	non-0-sized but invalid, B_CACHE will be cleared.
1957 *
1958 *	If getblk() must create a new buffer, the new buffer is returned with
1959 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
1960 *	case it is returned with B_INVAL clear and B_CACHE set based on the
1961 *	backing VM.
1962 *
1963 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
1964 *	B_CACHE bit is clear.
1965 *
1966 *	What this means, basically, is that the caller should use B_CACHE to
1967 *	determine whether the buffer is fully valid or not and should clear
1968 *	B_INVAL prior to issuing a read.  If the caller intends to validate
1969 *	the buffer by loading its data area with something, the caller needs
1970 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
1971 *	the caller should set B_CACHE ( as an optimization ), else the caller
1972 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
1973 *	a write attempt or if it was a successfull read.  If the caller
1974 *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
1975 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
1976 */
1977struct buf *
1978getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1979{
1980	struct buf *bp;
1981	int s;
1982	struct bufhashhdr *bh;
1983
1984#if !defined(MAX_PERF)
1985	if (size > MAXBSIZE)
1986		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1987#endif
1988
1989	s = splbio();
1990loop:
1991	/*
1992	 * Block if we are low on buffers.   Certain processes are allowed
1993	 * to completely exhaust the buffer cache.
1994         *
1995         * If this check ever becomes a bottleneck it may be better to
1996         * move it into the else, when gbincore() fails.  At the moment
1997         * it isn't a problem.
1998         */
1999	if (!curproc || (curproc->p_flag & P_BUFEXHAUST)) {
2000		if (numfreebuffers == 0) {
2001			if (!curproc)
2002				return NULL;
2003			needsbuffer |= VFS_BIO_NEED_ANY;
2004			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
2005			    slptimeo);
2006		}
2007	} else if (numfreebuffers < lofreebuffers) {
2008		waitfreebuffers(slpflag, slptimeo);
2009	}
2010
2011	if ((bp = gbincore(vp, blkno))) {
2012		/*
2013		 * Buffer is in-core.  If the buffer is not busy, it must
2014		 * be on a queue.
2015		 */
2016
2017		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2018			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2019			    "getblk", slpflag, slptimeo) == ENOLCK)
2020				goto loop;
2021			splx(s);
2022			return (struct buf *) NULL;
2023		}
2024
2025		/*
2026		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2027		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2028		 * and for a VMIO buffer B_CACHE is adjusted according to the
2029		 * backing VM cache.
2030		 */
2031		if (bp->b_flags & B_INVAL)
2032			bp->b_flags &= ~B_CACHE;
2033		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2034			bp->b_flags |= B_CACHE;
2035		bremfree(bp);
2036
2037		/*
2038		 * check for size inconsistancies for non-VMIO case.
2039		 */
2040
2041		if (bp->b_bcount != size) {
2042			if ((bp->b_flags & B_VMIO) == 0 ||
2043			    (size > bp->b_kvasize)) {
2044				if (bp->b_flags & B_DELWRI) {
2045					bp->b_flags |= B_NOCACHE;
2046					VOP_BWRITE(bp->b_vp, bp);
2047				} else {
2048					if ((bp->b_flags & B_VMIO) &&
2049					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2050						bp->b_flags |= B_RELBUF;
2051						brelse(bp);
2052					} else {
2053						bp->b_flags |= B_NOCACHE;
2054						VOP_BWRITE(bp->b_vp, bp);
2055					}
2056				}
2057				goto loop;
2058			}
2059		}
2060
2061		/*
2062		 * If the size is inconsistant in the VMIO case, we can resize
2063		 * the buffer.  This might lead to B_CACHE getting set or
2064		 * cleared.  If the size has not changed, B_CACHE remains
2065		 * unchanged from its previous state.
2066		 */
2067
2068		if (bp->b_bcount != size)
2069			allocbuf(bp, size);
2070
2071		KASSERT(bp->b_offset != NOOFFSET,
2072		    ("getblk: no buffer offset"));
2073
2074		/*
2075		 * A buffer with B_DELWRI set and B_CACHE clear must
2076		 * be committed before we can return the buffer in
2077		 * order to prevent the caller from issuing a read
2078		 * ( due to B_CACHE not being set ) and overwriting
2079		 * it.
2080		 *
2081		 * Most callers, including NFS and FFS, need this to
2082		 * operate properly either because they assume they
2083		 * can issue a read if B_CACHE is not set, or because
2084		 * ( for example ) an uncached B_DELWRI might loop due
2085		 * to softupdates re-dirtying the buffer.  In the latter
2086		 * case, B_CACHE is set after the first write completes,
2087		 * preventing further loops.
2088		 */
2089
2090		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2091			VOP_BWRITE(bp->b_vp, bp);
2092			goto loop;
2093		}
2094
2095		splx(s);
2096		bp->b_flags &= ~B_DONE;
2097	} else {
2098		/*
2099		 * Buffer is not in-core, create new buffer.  The buffer
2100		 * returned by getnewbuf() is locked.  Note that the returned
2101		 * buffer is also considered valid (not marked B_INVAL).
2102		 */
2103		int bsize, maxsize, vmio;
2104		off_t offset;
2105
2106		if (vn_isdisk(vp))
2107			bsize = DEV_BSIZE;
2108		else if (vp->v_mountedhere)
2109			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2110		else if (vp->v_mount)
2111			bsize = vp->v_mount->mnt_stat.f_iosize;
2112		else
2113			bsize = size;
2114
2115		offset = (off_t)blkno * bsize;
2116		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
2117		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2118		maxsize = imax(maxsize, bsize);
2119
2120		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2121			if (slpflag || slptimeo) {
2122				splx(s);
2123				return NULL;
2124			}
2125			goto loop;
2126		}
2127
2128		/*
2129		 * This code is used to make sure that a buffer is not
2130		 * created while the getnewbuf routine is blocked.
2131		 * This can be a problem whether the vnode is locked or not.
2132		 * If the buffer is created out from under us, we have to
2133		 * throw away the one we just created.  There is now window
2134		 * race because we are safely running at splbio() from the
2135		 * point of the duplicate buffer creation through to here,
2136		 * and we've locked the buffer.
2137		 */
2138		if (gbincore(vp, blkno)) {
2139			bp->b_flags |= B_INVAL;
2140			brelse(bp);
2141			goto loop;
2142		}
2143
2144		/*
2145		 * Insert the buffer into the hash, so that it can
2146		 * be found by incore.
2147		 */
2148		bp->b_blkno = bp->b_lblkno = blkno;
2149		bp->b_offset = offset;
2150
2151		bgetvp(vp, bp);
2152		LIST_REMOVE(bp, b_hash);
2153		bh = bufhash(vp, blkno);
2154		LIST_INSERT_HEAD(bh, bp, b_hash);
2155
2156		/*
2157		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2158		 * buffer size starts out as 0, B_CACHE will be set by
2159		 * allocbuf() for the VMIO case prior to it testing the
2160		 * backing store for validity.
2161		 */
2162
2163		if (vmio) {
2164			bp->b_flags |= B_VMIO;
2165#if defined(VFS_BIO_DEBUG)
2166			if (vp->v_type != VREG && vp->v_type != VBLK)
2167				printf("getblk: vmioing file type %d???\n", vp->v_type);
2168#endif
2169		} else {
2170			bp->b_flags &= ~B_VMIO;
2171		}
2172
2173		allocbuf(bp, size);
2174
2175		splx(s);
2176		bp->b_flags &= ~B_DONE;
2177	}
2178	return (bp);
2179}
2180
2181/*
2182 * Get an empty, disassociated buffer of given size.  The buffer is initially
2183 * set to B_INVAL.
2184 */
2185struct buf *
2186geteblk(int size)
2187{
2188	struct buf *bp;
2189	int s;
2190
2191	s = splbio();
2192	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
2193	splx(s);
2194	allocbuf(bp, size);
2195	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2196	return (bp);
2197}
2198
2199
2200/*
2201 * This code constitutes the buffer memory from either anonymous system
2202 * memory (in the case of non-VMIO operations) or from an associated
2203 * VM object (in the case of VMIO operations).  This code is able to
2204 * resize a buffer up or down.
2205 *
2206 * Note that this code is tricky, and has many complications to resolve
2207 * deadlock or inconsistant data situations.  Tread lightly!!!
2208 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2209 * the caller.  Calling this code willy nilly can result in the loss of data.
2210 *
2211 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2212 * B_CACHE for the non-VMIO case.
2213 */
2214
2215int
2216allocbuf(struct buf *bp, int size)
2217{
2218	int newbsize, mbsize;
2219	int i;
2220
2221#if !defined(MAX_PERF)
2222	if (BUF_REFCNT(bp) == 0)
2223		panic("allocbuf: buffer not busy");
2224
2225	if (bp->b_kvasize < size)
2226		panic("allocbuf: buffer too small");
2227#endif
2228
2229	if ((bp->b_flags & B_VMIO) == 0) {
2230		caddr_t origbuf;
2231		int origbufsize;
2232		/*
2233		 * Just get anonymous memory from the kernel.  Don't
2234		 * mess with B_CACHE.
2235		 */
2236		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2237#if !defined(NO_B_MALLOC)
2238		if (bp->b_flags & B_MALLOC)
2239			newbsize = mbsize;
2240		else
2241#endif
2242			newbsize = round_page(size);
2243
2244		if (newbsize < bp->b_bufsize) {
2245#if !defined(NO_B_MALLOC)
2246			/*
2247			 * malloced buffers are not shrunk
2248			 */
2249			if (bp->b_flags & B_MALLOC) {
2250				if (newbsize) {
2251					bp->b_bcount = size;
2252				} else {
2253					free(bp->b_data, M_BIOBUF);
2254					bufspace -= bp->b_bufsize;
2255					bufmallocspace -= bp->b_bufsize;
2256					runningbufspace -= bp->b_bufsize;
2257					if (bp->b_bufsize)
2258						bufspacewakeup();
2259					bp->b_data = bp->b_kvabase;
2260					bp->b_bufsize = 0;
2261					bp->b_bcount = 0;
2262					bp->b_flags &= ~B_MALLOC;
2263				}
2264				return 1;
2265			}
2266#endif
2267			vm_hold_free_pages(
2268			    bp,
2269			    (vm_offset_t) bp->b_data + newbsize,
2270			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2271		} else if (newbsize > bp->b_bufsize) {
2272#if !defined(NO_B_MALLOC)
2273			/*
2274			 * We only use malloced memory on the first allocation.
2275			 * and revert to page-allocated memory when the buffer
2276			 * grows.
2277			 */
2278			if ( (bufmallocspace < maxbufmallocspace) &&
2279				(bp->b_bufsize == 0) &&
2280				(mbsize <= PAGE_SIZE/2)) {
2281
2282				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2283				bp->b_bufsize = mbsize;
2284				bp->b_bcount = size;
2285				bp->b_flags |= B_MALLOC;
2286				bufspace += mbsize;
2287				bufmallocspace += mbsize;
2288				runningbufspace += bp->b_bufsize;
2289				return 1;
2290			}
2291#endif
2292			origbuf = NULL;
2293			origbufsize = 0;
2294#if !defined(NO_B_MALLOC)
2295			/*
2296			 * If the buffer is growing on its other-than-first allocation,
2297			 * then we revert to the page-allocation scheme.
2298			 */
2299			if (bp->b_flags & B_MALLOC) {
2300				origbuf = bp->b_data;
2301				origbufsize = bp->b_bufsize;
2302				bp->b_data = bp->b_kvabase;
2303				bufspace -= bp->b_bufsize;
2304				bufmallocspace -= bp->b_bufsize;
2305				runningbufspace -= bp->b_bufsize;
2306				if (bp->b_bufsize)
2307					bufspacewakeup();
2308				bp->b_bufsize = 0;
2309				bp->b_flags &= ~B_MALLOC;
2310				newbsize = round_page(newbsize);
2311			}
2312#endif
2313			vm_hold_load_pages(
2314			    bp,
2315			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2316			    (vm_offset_t) bp->b_data + newbsize);
2317#if !defined(NO_B_MALLOC)
2318			if (origbuf) {
2319				bcopy(origbuf, bp->b_data, origbufsize);
2320				free(origbuf, M_BIOBUF);
2321			}
2322#endif
2323		}
2324	} else {
2325		vm_page_t m;
2326		int desiredpages;
2327
2328		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2329		desiredpages = (size == 0) ? 0 :
2330			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2331
2332#if !defined(NO_B_MALLOC)
2333		if (bp->b_flags & B_MALLOC)
2334			panic("allocbuf: VMIO buffer can't be malloced");
2335#endif
2336		/*
2337		 * Set B_CACHE initially if buffer is 0 length or will become
2338		 * 0-length.
2339		 */
2340		if (size == 0 || bp->b_bufsize == 0)
2341			bp->b_flags |= B_CACHE;
2342
2343		if (newbsize < bp->b_bufsize) {
2344			/*
2345			 * DEV_BSIZE aligned new buffer size is less then the
2346			 * DEV_BSIZE aligned existing buffer size.  Figure out
2347			 * if we have to remove any pages.
2348			 */
2349			if (desiredpages < bp->b_npages) {
2350				for (i = desiredpages; i < bp->b_npages; i++) {
2351					/*
2352					 * the page is not freed here -- it
2353					 * is the responsibility of
2354					 * vnode_pager_setsize
2355					 */
2356					m = bp->b_pages[i];
2357					KASSERT(m != bogus_page,
2358					    ("allocbuf: bogus page found"));
2359					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2360						;
2361
2362					bp->b_pages[i] = NULL;
2363					vm_page_unwire(m, 0);
2364				}
2365				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2366				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2367				bp->b_npages = desiredpages;
2368			}
2369		} else if (size > bp->b_bcount) {
2370			/*
2371			 * We are growing the buffer, possibly in a
2372			 * byte-granular fashion.
2373			 */
2374			struct vnode *vp;
2375			vm_object_t obj;
2376			vm_offset_t toff;
2377			vm_offset_t tinc;
2378
2379			/*
2380			 * Step 1, bring in the VM pages from the object,
2381			 * allocating them if necessary.  We must clear
2382			 * B_CACHE if these pages are not valid for the
2383			 * range covered by the buffer.
2384			 */
2385
2386			vp = bp->b_vp;
2387			obj = vp->v_object;
2388
2389			while (bp->b_npages < desiredpages) {
2390				vm_page_t m;
2391				vm_pindex_t pi;
2392
2393				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2394				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2395					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
2396					if (m == NULL) {
2397						VM_WAIT;
2398						vm_pageout_deficit += desiredpages - bp->b_npages;
2399					} else {
2400						vm_page_wire(m);
2401						vm_page_wakeup(m);
2402						bp->b_flags &= ~B_CACHE;
2403						bp->b_pages[bp->b_npages] = m;
2404						++bp->b_npages;
2405					}
2406					continue;
2407				}
2408
2409				/*
2410				 * We found a page.  If we have to sleep on it,
2411				 * retry because it might have gotten freed out
2412				 * from under us.
2413				 *
2414				 * We can only test PG_BUSY here.  Blocking on
2415				 * m->busy might lead to a deadlock:
2416				 *
2417				 *  vm_fault->getpages->cluster_read->allocbuf
2418				 *
2419				 */
2420
2421				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2422					continue;
2423
2424				/*
2425				 * We have a good page.  Should we wakeup the
2426				 * page daemon?
2427				 */
2428				if ((curproc != pageproc) &&
2429				    ((m->queue - m->pc) == PQ_CACHE) &&
2430				    ((cnt.v_free_count + cnt.v_cache_count) <
2431					(cnt.v_free_min + cnt.v_cache_min))) {
2432					pagedaemon_wakeup();
2433				}
2434				vm_page_flag_clear(m, PG_ZERO);
2435				vm_page_wire(m);
2436				bp->b_pages[bp->b_npages] = m;
2437				++bp->b_npages;
2438			}
2439
2440			/*
2441			 * Step 2.  We've loaded the pages into the buffer,
2442			 * we have to figure out if we can still have B_CACHE
2443			 * set.  Note that B_CACHE is set according to the
2444			 * byte-granular range ( bcount and size ), new the
2445			 * aligned range ( newbsize ).
2446			 *
2447			 * The VM test is against m->valid, which is DEV_BSIZE
2448			 * aligned.  Needless to say, the validity of the data
2449			 * needs to also be DEV_BSIZE aligned.  Note that this
2450			 * fails with NFS if the server or some other client
2451			 * extends the file's EOF.  If our buffer is resized,
2452			 * B_CACHE may remain set! XXX
2453			 */
2454
2455			toff = bp->b_bcount;
2456			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2457
2458			while ((bp->b_flags & B_CACHE) && toff < size) {
2459				vm_pindex_t pi;
2460
2461				if (tinc > (size - toff))
2462					tinc = size - toff;
2463
2464				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2465				    PAGE_SHIFT;
2466
2467				vfs_buf_test_cache(
2468				    bp,
2469				    bp->b_offset,
2470				    toff,
2471				    tinc,
2472				    bp->b_pages[pi]
2473				);
2474				toff += tinc;
2475				tinc = PAGE_SIZE;
2476			}
2477
2478			/*
2479			 * Step 3, fixup the KVM pmap.  Remember that
2480			 * bp->b_data is relative to bp->b_offset, but
2481			 * bp->b_offset may be offset into the first page.
2482			 */
2483
2484			bp->b_data = (caddr_t)
2485			    trunc_page((vm_offset_t)bp->b_data);
2486			pmap_qenter(
2487			    (vm_offset_t)bp->b_data,
2488			    bp->b_pages,
2489			    bp->b_npages
2490			);
2491			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2492			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2493		}
2494	}
2495	if (bp->b_flags & B_VMIO)
2496		vmiospace += (newbsize - bp->b_bufsize);
2497	bufspace += (newbsize - bp->b_bufsize);
2498	runningbufspace += (newbsize - bp->b_bufsize);
2499	if (newbsize < bp->b_bufsize)
2500		bufspacewakeup();
2501	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2502	bp->b_bcount = size;		/* requested buffer size	*/
2503	return 1;
2504}
2505
2506/*
2507 *	biowait:
2508 *
2509 *	Wait for buffer I/O completion, returning error status.  The buffer
2510 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2511 *	error and cleared.
2512 */
2513int
2514biowait(register struct buf * bp)
2515{
2516	int s;
2517
2518	s = splbio();
2519	while ((bp->b_flags & B_DONE) == 0) {
2520#if defined(NO_SCHEDULE_MODS)
2521		tsleep(bp, PRIBIO, "biowait", 0);
2522#else
2523		if (bp->b_flags & B_READ)
2524			tsleep(bp, PRIBIO, "biord", 0);
2525		else
2526			tsleep(bp, PRIBIO, "biowr", 0);
2527#endif
2528	}
2529	splx(s);
2530	if (bp->b_flags & B_EINTR) {
2531		bp->b_flags &= ~B_EINTR;
2532		return (EINTR);
2533	}
2534	if (bp->b_flags & B_ERROR) {
2535		return (bp->b_error ? bp->b_error : EIO);
2536	} else {
2537		return (0);
2538	}
2539}
2540
2541/*
2542 *	biodone:
2543 *
2544 *	Finish I/O on a buffer, optionally calling a completion function.
2545 *	This is usually called from an interrupt so process blocking is
2546 *	not allowed.
2547 *
2548 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2549 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2550 *	assuming B_INVAL is clear.
2551 *
2552 *	For the VMIO case, we set B_CACHE if the op was a read and no
2553 *	read error occured, or if the op was a write.  B_CACHE is never
2554 *	set if the buffer is invalid or otherwise uncacheable.
2555 *
2556 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2557 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2558 *	in the biodone routine.
2559 */
2560void
2561biodone(register struct buf * bp)
2562{
2563	int s;
2564
2565	s = splbio();
2566
2567	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2568	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2569
2570	bp->b_flags |= B_DONE;
2571
2572	if (bp->b_flags & B_FREEBUF) {
2573		brelse(bp);
2574		splx(s);
2575		return;
2576	}
2577
2578	if ((bp->b_flags & B_READ) == 0) {
2579		vwakeup(bp);
2580	}
2581
2582	/* call optional completion function if requested */
2583	if (bp->b_flags & B_CALL) {
2584		bp->b_flags &= ~B_CALL;
2585		(*bp->b_iodone) (bp);
2586		splx(s);
2587		return;
2588	}
2589	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2590		(*bioops.io_complete)(bp);
2591
2592	if (bp->b_flags & B_VMIO) {
2593		int i, resid;
2594		vm_ooffset_t foff;
2595		vm_page_t m;
2596		vm_object_t obj;
2597		int iosize;
2598		struct vnode *vp = bp->b_vp;
2599
2600		obj = vp->v_object;
2601
2602#if defined(VFS_BIO_DEBUG)
2603		if (vp->v_usecount == 0) {
2604			panic("biodone: zero vnode ref count");
2605		}
2606
2607		if (vp->v_object == NULL) {
2608			panic("biodone: missing VM object");
2609		}
2610
2611		if ((vp->v_flag & VOBJBUF) == 0) {
2612			panic("biodone: vnode is not setup for merged cache");
2613		}
2614#endif
2615
2616		foff = bp->b_offset;
2617		KASSERT(bp->b_offset != NOOFFSET,
2618		    ("biodone: no buffer offset"));
2619
2620#if !defined(MAX_PERF)
2621		if (!obj) {
2622			panic("biodone: no object");
2623		}
2624#endif
2625#if defined(VFS_BIO_DEBUG)
2626		if (obj->paging_in_progress < bp->b_npages) {
2627			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2628			    obj->paging_in_progress, bp->b_npages);
2629		}
2630#endif
2631
2632		/*
2633		 * Set B_CACHE if the op was a normal read and no error
2634		 * occured.  B_CACHE is set for writes in the b*write()
2635		 * routines.
2636		 */
2637		iosize = bp->b_bcount - bp->b_resid;
2638		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2639			bp->b_flags |= B_CACHE;
2640		}
2641
2642		for (i = 0; i < bp->b_npages; i++) {
2643			int bogusflag = 0;
2644			m = bp->b_pages[i];
2645			if (m == bogus_page) {
2646				bogusflag = 1;
2647				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2648				if (!m) {
2649#if defined(VFS_BIO_DEBUG)
2650					printf("biodone: page disappeared\n");
2651#endif
2652					vm_object_pip_subtract(obj, 1);
2653					bp->b_flags &= ~B_CACHE;
2654					continue;
2655				}
2656				bp->b_pages[i] = m;
2657				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2658			}
2659#if defined(VFS_BIO_DEBUG)
2660			if (OFF_TO_IDX(foff) != m->pindex) {
2661				printf(
2662"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2663				    (unsigned long)foff, m->pindex);
2664			}
2665#endif
2666			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2667			if (resid > iosize)
2668				resid = iosize;
2669
2670			/*
2671			 * In the write case, the valid and clean bits are
2672			 * already changed correctly ( see bdwrite() ), so we
2673			 * only need to do this here in the read case.
2674			 */
2675			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2676				vfs_page_set_valid(bp, foff, i, m);
2677			}
2678			vm_page_flag_clear(m, PG_ZERO);
2679
2680			/*
2681			 * when debugging new filesystems or buffer I/O methods, this
2682			 * is the most common error that pops up.  if you see this, you
2683			 * have not set the page busy flag correctly!!!
2684			 */
2685			if (m->busy == 0) {
2686#if !defined(MAX_PERF)
2687				printf("biodone: page busy < 0, "
2688				    "pindex: %d, foff: 0x(%x,%x), "
2689				    "resid: %d, index: %d\n",
2690				    (int) m->pindex, (int)(foff >> 32),
2691						(int) foff & 0xffffffff, resid, i);
2692#endif
2693				if (!vn_isdisk(vp))
2694#if !defined(MAX_PERF)
2695					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2696					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2697					    (int) bp->b_lblkno,
2698					    bp->b_flags, bp->b_npages);
2699				else
2700					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2701					    (int) bp->b_lblkno,
2702					    bp->b_flags, bp->b_npages);
2703				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2704				    m->valid, m->dirty, m->wire_count);
2705#endif
2706				panic("biodone: page busy < 0\n");
2707			}
2708			vm_page_io_finish(m);
2709			vm_object_pip_subtract(obj, 1);
2710			foff += resid;
2711			iosize -= resid;
2712		}
2713		if (obj)
2714			vm_object_pip_wakeupn(obj, 0);
2715	}
2716	/*
2717	 * For asynchronous completions, release the buffer now. The brelse
2718	 * will do a wakeup there if necessary - so no need to do a wakeup
2719	 * here in the async case. The sync case always needs to do a wakeup.
2720	 */
2721
2722	if (bp->b_flags & B_ASYNC) {
2723		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2724			brelse(bp);
2725		else
2726			bqrelse(bp);
2727	} else {
2728		wakeup(bp);
2729	}
2730	splx(s);
2731}
2732
2733/*
2734 * This routine is called in lieu of iodone in the case of
2735 * incomplete I/O.  This keeps the busy status for pages
2736 * consistant.
2737 */
2738void
2739vfs_unbusy_pages(struct buf * bp)
2740{
2741	int i;
2742
2743	if (bp->b_flags & B_VMIO) {
2744		struct vnode *vp = bp->b_vp;
2745		vm_object_t obj = vp->v_object;
2746
2747		for (i = 0; i < bp->b_npages; i++) {
2748			vm_page_t m = bp->b_pages[i];
2749
2750			if (m == bogus_page) {
2751				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2752#if !defined(MAX_PERF)
2753				if (!m) {
2754					panic("vfs_unbusy_pages: page missing\n");
2755				}
2756#endif
2757				bp->b_pages[i] = m;
2758				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2759			}
2760			vm_object_pip_subtract(obj, 1);
2761			vm_page_flag_clear(m, PG_ZERO);
2762			vm_page_io_finish(m);
2763		}
2764		vm_object_pip_wakeupn(obj, 0);
2765	}
2766}
2767
2768/*
2769 * vfs_page_set_valid:
2770 *
2771 *	Set the valid bits in a page based on the supplied offset.   The
2772 *	range is restricted to the buffer's size.
2773 *
2774 *	This routine is typically called after a read completes.
2775 */
2776static void
2777vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2778{
2779	vm_ooffset_t soff, eoff;
2780
2781	/*
2782	 * Start and end offsets in buffer.  eoff - soff may not cross a
2783	 * page boundry or cross the end of the buffer.  The end of the
2784	 * buffer, in this case, is our file EOF, not the allocation size
2785	 * of the buffer.
2786	 */
2787	soff = off;
2788	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2789	if (eoff > bp->b_offset + bp->b_bcount)
2790		eoff = bp->b_offset + bp->b_bcount;
2791
2792	/*
2793	 * Set valid range.  This is typically the entire buffer and thus the
2794	 * entire page.
2795	 */
2796	if (eoff > soff) {
2797		vm_page_set_validclean(
2798		    m,
2799		   (vm_offset_t) (soff & PAGE_MASK),
2800		   (vm_offset_t) (eoff - soff)
2801		);
2802	}
2803}
2804
2805/*
2806 * This routine is called before a device strategy routine.
2807 * It is used to tell the VM system that paging I/O is in
2808 * progress, and treat the pages associated with the buffer
2809 * almost as being PG_BUSY.  Also the object paging_in_progress
2810 * flag is handled to make sure that the object doesn't become
2811 * inconsistant.
2812 *
2813 * Since I/O has not been initiated yet, certain buffer flags
2814 * such as B_ERROR or B_INVAL may be in an inconsistant state
2815 * and should be ignored.
2816 */
2817void
2818vfs_busy_pages(struct buf * bp, int clear_modify)
2819{
2820	int i, bogus;
2821
2822	if (bp->b_flags & B_VMIO) {
2823		struct vnode *vp = bp->b_vp;
2824		vm_object_t obj = vp->v_object;
2825		vm_ooffset_t foff;
2826
2827		foff = bp->b_offset;
2828		KASSERT(bp->b_offset != NOOFFSET,
2829		    ("vfs_busy_pages: no buffer offset"));
2830		vfs_setdirty(bp);
2831
2832retry:
2833		for (i = 0; i < bp->b_npages; i++) {
2834			vm_page_t m = bp->b_pages[i];
2835			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2836				goto retry;
2837		}
2838
2839		bogus = 0;
2840		for (i = 0; i < bp->b_npages; i++) {
2841			vm_page_t m = bp->b_pages[i];
2842
2843			vm_page_flag_clear(m, PG_ZERO);
2844			if ((bp->b_flags & B_CLUSTER) == 0) {
2845				vm_object_pip_add(obj, 1);
2846				vm_page_io_start(m);
2847			}
2848
2849			/*
2850			 * When readying a buffer for a read ( i.e
2851			 * clear_modify == 0 ), it is important to do
2852			 * bogus_page replacement for valid pages in
2853			 * partially instantiated buffers.  Partially
2854			 * instantiated buffers can, in turn, occur when
2855			 * reconstituting a buffer from its VM backing store
2856			 * base.  We only have to do this if B_CACHE is
2857			 * clear ( which causes the I/O to occur in the
2858			 * first place ).  The replacement prevents the read
2859			 * I/O from overwriting potentially dirty VM-backed
2860			 * pages.  XXX bogus page replacement is, uh, bogus.
2861			 * It may not work properly with small-block devices.
2862			 * We need to find a better way.
2863			 */
2864
2865			vm_page_protect(m, VM_PROT_NONE);
2866			if (clear_modify)
2867				vfs_page_set_valid(bp, foff, i, m);
2868			else if (m->valid == VM_PAGE_BITS_ALL &&
2869				(bp->b_flags & B_CACHE) == 0) {
2870				bp->b_pages[i] = bogus_page;
2871				bogus++;
2872			}
2873			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2874		}
2875		if (bogus)
2876			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2877	}
2878}
2879
2880/*
2881 * Tell the VM system that the pages associated with this buffer
2882 * are clean.  This is used for delayed writes where the data is
2883 * going to go to disk eventually without additional VM intevention.
2884 *
2885 * Note that while we only really need to clean through to b_bcount, we
2886 * just go ahead and clean through to b_bufsize.
2887 */
2888static void
2889vfs_clean_pages(struct buf * bp)
2890{
2891	int i;
2892
2893	if (bp->b_flags & B_VMIO) {
2894		vm_ooffset_t foff;
2895
2896		foff = bp->b_offset;
2897		KASSERT(bp->b_offset != NOOFFSET,
2898		    ("vfs_clean_pages: no buffer offset"));
2899		for (i = 0; i < bp->b_npages; i++) {
2900			vm_page_t m = bp->b_pages[i];
2901			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2902			vm_ooffset_t eoff = noff;
2903
2904			if (eoff > bp->b_offset + bp->b_bufsize)
2905				eoff = bp->b_offset + bp->b_bufsize;
2906			vfs_page_set_valid(bp, foff, i, m);
2907			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2908			foff = noff;
2909		}
2910	}
2911}
2912
2913/*
2914 *	vfs_bio_set_validclean:
2915 *
2916 *	Set the range within the buffer to valid and clean.  The range is
2917 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
2918 *	itself may be offset from the beginning of the first page.
2919 */
2920
2921void
2922vfs_bio_set_validclean(struct buf *bp, int base, int size)
2923{
2924	if (bp->b_flags & B_VMIO) {
2925		int i;
2926		int n;
2927
2928		/*
2929		 * Fixup base to be relative to beginning of first page.
2930		 * Set initial n to be the maximum number of bytes in the
2931		 * first page that can be validated.
2932		 */
2933
2934		base += (bp->b_offset & PAGE_MASK);
2935		n = PAGE_SIZE - (base & PAGE_MASK);
2936
2937		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
2938			vm_page_t m = bp->b_pages[i];
2939
2940			if (n > size)
2941				n = size;
2942
2943			vm_page_set_validclean(m, base & PAGE_MASK, n);
2944			base += n;
2945			size -= n;
2946			n = PAGE_SIZE;
2947		}
2948	}
2949}
2950
2951/*
2952 *	vfs_bio_clrbuf:
2953 *
2954 *	clear a buffer.  This routine essentially fakes an I/O, so we need
2955 *	to clear B_ERROR and B_INVAL.
2956 *
2957 *	Note that while we only theoretically need to clear through b_bcount,
2958 *	we go ahead and clear through b_bufsize.
2959 */
2960
2961void
2962vfs_bio_clrbuf(struct buf *bp) {
2963	int i, mask = 0;
2964	caddr_t sa, ea;
2965	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2966		bp->b_flags &= ~(B_INVAL|B_ERROR);
2967		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2968		    (bp->b_offset & PAGE_MASK) == 0) {
2969			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2970			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2971			    ((bp->b_pages[0]->valid & mask) != mask)) {
2972				bzero(bp->b_data, bp->b_bufsize);
2973			}
2974			bp->b_pages[0]->valid |= mask;
2975			bp->b_resid = 0;
2976			return;
2977		}
2978		ea = sa = bp->b_data;
2979		for(i=0;i<bp->b_npages;i++,sa=ea) {
2980			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
2981			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2982			ea = (caddr_t)(vm_offset_t)ulmin(
2983			    (u_long)(vm_offset_t)ea,
2984			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
2985			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2986			if ((bp->b_pages[i]->valid & mask) == mask)
2987				continue;
2988			if ((bp->b_pages[i]->valid & mask) == 0) {
2989				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2990					bzero(sa, ea - sa);
2991				}
2992			} else {
2993				for (; sa < ea; sa += DEV_BSIZE, j++) {
2994					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2995						(bp->b_pages[i]->valid & (1<<j)) == 0)
2996						bzero(sa, DEV_BSIZE);
2997				}
2998			}
2999			bp->b_pages[i]->valid |= mask;
3000			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3001		}
3002		bp->b_resid = 0;
3003	} else {
3004		clrbuf(bp);
3005	}
3006}
3007
3008/*
3009 * vm_hold_load_pages and vm_hold_unload pages get pages into
3010 * a buffers address space.  The pages are anonymous and are
3011 * not associated with a file object.
3012 */
3013void
3014vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3015{
3016	vm_offset_t pg;
3017	vm_page_t p;
3018	int index;
3019
3020	to = round_page(to);
3021	from = round_page(from);
3022	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3023
3024	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3025
3026tryagain:
3027
3028		p = vm_page_alloc(kernel_object,
3029			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3030		    VM_ALLOC_NORMAL);
3031		if (!p) {
3032			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3033			VM_WAIT;
3034			goto tryagain;
3035		}
3036		vm_page_wire(p);
3037		p->valid = VM_PAGE_BITS_ALL;
3038		vm_page_flag_clear(p, PG_ZERO);
3039		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3040		bp->b_pages[index] = p;
3041		vm_page_wakeup(p);
3042	}
3043	bp->b_npages = index;
3044}
3045
3046void
3047vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3048{
3049	vm_offset_t pg;
3050	vm_page_t p;
3051	int index, newnpages;
3052
3053	from = round_page(from);
3054	to = round_page(to);
3055	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3056
3057	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3058		p = bp->b_pages[index];
3059		if (p && (index < bp->b_npages)) {
3060#if !defined(MAX_PERF)
3061			if (p->busy) {
3062				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3063					bp->b_blkno, bp->b_lblkno);
3064			}
3065#endif
3066			bp->b_pages[index] = NULL;
3067			pmap_kremove(pg);
3068			vm_page_busy(p);
3069			vm_page_unwire(p, 0);
3070			vm_page_free(p);
3071		}
3072	}
3073	bp->b_npages = newnpages;
3074}
3075
3076
3077#include "opt_ddb.h"
3078#ifdef DDB
3079#include <ddb/ddb.h>
3080
3081DB_SHOW_COMMAND(buffer, db_show_buffer)
3082{
3083	/* get args */
3084	struct buf *bp = (struct buf *)addr;
3085
3086	if (!have_addr) {
3087		db_printf("usage: show buffer <addr>\n");
3088		return;
3089	}
3090
3091	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3092	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3093		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3094		  "b_blkno = %d, b_pblkno = %d\n",
3095		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3096		  major(bp->b_dev), minor(bp->b_dev),
3097		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3098	if (bp->b_npages) {
3099		int i;
3100		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3101		for (i = 0; i < bp->b_npages; i++) {
3102			vm_page_t m;
3103			m = bp->b_pages[i];
3104			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3105			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3106			if ((i + 1) < bp->b_npages)
3107				db_printf(",");
3108		}
3109		db_printf("\n");
3110	}
3111}
3112#endif /* DDB */
3113