vfs_bio.c revision 52652
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 52652 1999-10-30 09:31:52Z phk $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#include <sys/param.h>
31#include <sys/systm.h>
32#include <sys/kernel.h>
33#include <sys/sysctl.h>
34#include <sys/proc.h>
35#include <sys/kthread.h>
36#include <sys/vnode.h>
37#include <sys/vmmeter.h>
38#include <sys/lock.h>
39#include <vm/vm.h>
40#include <vm/vm_param.h>
41#include <vm/vm_kern.h>
42#include <vm/vm_pageout.h>
43#include <vm/vm_page.h>
44#include <vm/vm_object.h>
45#include <vm/vm_extern.h>
46#include <vm/vm_map.h>
47#include <sys/buf.h>
48#include <sys/mount.h>
49#include <sys/malloc.h>
50#include <sys/resourcevar.h>
51#include <sys/conf.h>
52
53static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
54
55struct	bio_ops bioops;		/* I/O operation notification */
56
57struct buf *buf;		/* buffer header pool */
58struct swqueue bswlist;
59
60static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
61		vm_offset_t to);
62static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
63		vm_offset_t to);
64static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
65			       int pageno, vm_page_t m);
66static void vfs_clean_pages(struct buf * bp);
67static void vfs_setdirty(struct buf *bp);
68static void vfs_vmio_release(struct buf *bp);
69static int flushbufqueues(void);
70
71static int bd_request;
72
73static void buf_daemon __P((void));
74/*
75 * bogus page -- for I/O to/from partially complete buffers
76 * this is a temporary solution to the problem, but it is not
77 * really that bad.  it would be better to split the buffer
78 * for input in the case of buffers partially already in memory,
79 * but the code is intricate enough already.
80 */
81vm_page_t bogus_page;
82int runningbufspace;
83int vmiodirenable = FALSE;
84int buf_maxio = DFLTPHYS;
85static vm_offset_t bogus_offset;
86
87static int bufspace, maxbufspace, vmiospace,
88	bufmallocspace, maxbufmallocspace, hibufspace;
89static int maxbdrun;
90static int needsbuffer;
91static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
92static int numfreebuffers, lofreebuffers, hifreebuffers;
93static int getnewbufcalls;
94static int getnewbufrestarts;
95static int kvafreespace;
96
97SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
98	&numdirtybuffers, 0, "");
99SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
100	&lodirtybuffers, 0, "");
101SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
102	&hidirtybuffers, 0, "");
103SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
104	&numfreebuffers, 0, "");
105SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
106	&lofreebuffers, 0, "");
107SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
108	&hifreebuffers, 0, "");
109SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
110	&runningbufspace, 0, "");
111SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
112	&maxbufspace, 0, "");
113SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
114	&hibufspace, 0, "");
115SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
116	&bufspace, 0, "");
117SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
118	&maxbdrun, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
120	&vmiospace, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
122	&maxbufmallocspace, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
124	&bufmallocspace, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
126	&kvafreespace, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
128	&getnewbufcalls, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
130	&getnewbufrestarts, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
132	&vmiodirenable, 0, "");
133
134
135static int bufhashmask;
136static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
137struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
138char *buf_wmesg = BUF_WMESG;
139
140extern int vm_swap_size;
141
142#define BUF_MAXUSE		24
143
144#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
145#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
146#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
147#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
148#define VFS_BIO_NEED_KVASPACE	0x10	/* wait for buffer_map space, emerg  */
149
150/*
151 * Buffer hash table code.  Note that the logical block scans linearly, which
152 * gives us some L1 cache locality.
153 */
154
155static __inline
156struct bufhashhdr *
157bufhash(struct vnode *vnp, daddr_t bn)
158{
159	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
160}
161
162/*
163 *	kvaspacewakeup:
164 *
165 *	Called when kva space is potential available for recovery or when
166 *	kva space is recovered in the buffer_map.  This function wakes up
167 *	anyone waiting for buffer_map kva space.  Even though the buffer_map
168 *	is larger then maxbufspace, this situation will typically occur
169 *	when the buffer_map gets fragmented.
170 */
171
172static __inline void
173kvaspacewakeup(void)
174{
175	/*
176	 * If someone is waiting for KVA space, wake them up.  Even
177	 * though we haven't freed the kva space yet, the waiting
178	 * process will be able to now.
179	 */
180	if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
181		needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
182		wakeup(&needsbuffer);
183	}
184}
185
186/*
187 *	numdirtywakeup:
188 *
189 *	If someone is blocked due to there being too many dirty buffers,
190 *	and numdirtybuffers is now reasonable, wake them up.
191 */
192
193static __inline void
194numdirtywakeup(void)
195{
196	if (numdirtybuffers < hidirtybuffers) {
197		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
198			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
199			wakeup(&needsbuffer);
200		}
201	}
202}
203
204/*
205 *	bufspacewakeup:
206 *
207 *	Called when buffer space is potentially available for recovery or when
208 *	buffer space is recovered.  getnewbuf() will block on this flag when
209 *	it is unable to free sufficient buffer space.  Buffer space becomes
210 *	recoverable when bp's get placed back in the queues.
211 */
212
213static __inline void
214bufspacewakeup(void)
215{
216	/*
217	 * If someone is waiting for BUF space, wake them up.  Even
218	 * though we haven't freed the kva space yet, the waiting
219	 * process will be able to now.
220	 */
221	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
222		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
223		wakeup(&needsbuffer);
224	}
225}
226
227/*
228 *	bufcountwakeup:
229 *
230 *	Called when a buffer has been added to one of the free queues to
231 *	account for the buffer and to wakeup anyone waiting for free buffers.
232 *	This typically occurs when large amounts of metadata are being handled
233 *	by the buffer cache ( else buffer space runs out first, usually ).
234 */
235
236static __inline void
237bufcountwakeup(void)
238{
239	++numfreebuffers;
240	if (needsbuffer) {
241		needsbuffer &= ~VFS_BIO_NEED_ANY;
242		if (numfreebuffers >= hifreebuffers)
243			needsbuffer &= ~VFS_BIO_NEED_FREE;
244		wakeup(&needsbuffer);
245	}
246}
247
248/*
249 *	vfs_buf_test_cache:
250 *
251 *	Called when a buffer is extended.  This function clears the B_CACHE
252 *	bit if the newly extended portion of the buffer does not contain
253 *	valid data.
254 */
255static __inline__
256void
257vfs_buf_test_cache(struct buf *bp,
258		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
259		  vm_page_t m)
260{
261	if (bp->b_flags & B_CACHE) {
262		int base = (foff + off) & PAGE_MASK;
263		if (vm_page_is_valid(m, base, size) == 0)
264			bp->b_flags &= ~B_CACHE;
265	}
266}
267
268static __inline__
269void
270bd_wakeup(int dirtybuflevel)
271{
272	if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
273		bd_request = 1;
274		wakeup(&bd_request);
275	}
276}
277
278
279/*
280 * Initialize buffer headers and related structures.
281 */
282
283caddr_t
284bufhashinit(caddr_t vaddr)
285{
286	/* first, make a null hash table */
287	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
288		;
289	bufhashtbl = (void *)vaddr;
290	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
291	--bufhashmask;
292	return(vaddr);
293}
294
295void
296bufinit(void)
297{
298	struct buf *bp;
299	int i;
300
301	TAILQ_INIT(&bswlist);
302	LIST_INIT(&invalhash);
303	simple_lock_init(&buftimelock);
304
305	for (i = 0; i <= bufhashmask; i++)
306		LIST_INIT(&bufhashtbl[i]);
307
308	/* next, make a null set of free lists */
309	for (i = 0; i < BUFFER_QUEUES; i++)
310		TAILQ_INIT(&bufqueues[i]);
311
312	/* finally, initialize each buffer header and stick on empty q */
313	for (i = 0; i < nbuf; i++) {
314		bp = &buf[i];
315		bzero(bp, sizeof *bp);
316		bp->b_flags = B_INVAL;	/* we're just an empty header */
317		bp->b_dev = NODEV;
318		bp->b_rcred = NOCRED;
319		bp->b_wcred = NOCRED;
320		bp->b_qindex = QUEUE_EMPTY;
321		bp->b_xflags = 0;
322		LIST_INIT(&bp->b_dep);
323		BUF_LOCKINIT(bp);
324		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
325		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
326	}
327
328	/*
329	 * maxbufspace is currently calculated to be maximally efficient
330	 * when the filesystem block size is DFLTBSIZE or DFLTBSIZE*2
331	 * (4K or 8K).  To reduce the number of stall points our calculation
332	 * is based on DFLTBSIZE which should reduce the chances of actually
333	 * running out of buffer headers.  The maxbufspace calculation is also
334	 * based on DFLTBSIZE (4K) instead of BKVASIZE (8K) in order to
335	 * reduce the chance that a KVA allocation will fail due to
336	 * fragmentation.  While this does not usually create a stall,
337	 * the KVA map allocation/free functions are O(N) rather then O(1)
338	 * so running them constantly would result in inefficient O(N*M)
339	 * buffer cache operation.
340	 */
341	maxbufspace = (nbuf + 8) * DFLTBSIZE;
342	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 5);
343/*
344 * Limit the amount of malloc memory since it is wired permanently into
345 * the kernel space.  Even though this is accounted for in the buffer
346 * allocation, we don't want the malloced region to grow uncontrolled.
347 * The malloc scheme improves memory utilization significantly on average
348 * (small) directories.
349 */
350	maxbufmallocspace = hibufspace / 20;
351
352/*
353 * Reduce the chance of a deadlock occuring by limiting the number
354 * of delayed-write dirty buffers we allow to stack up.
355 */
356	lodirtybuffers = nbuf / 7 + 10;
357	hidirtybuffers = nbuf / 4 + 20;
358	numdirtybuffers = 0;
359/*
360 * To support extreme low-memory systems, make sure hidirtybuffers cannot
361 * eat up all available buffer space.  This occurs when our minimum cannot
362 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
363 * BKVASIZE'd (8K) buffers.  We also reduce buf_maxio in this case (used
364 * by the clustering code) in an attempt to further reduce the load on
365 * the buffer cache.
366 */
367	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
368		lodirtybuffers >>= 1;
369		hidirtybuffers >>= 1;
370		buf_maxio >>= 1;
371	}
372	if (lodirtybuffers < 2) {
373		lodirtybuffers = 2;
374		hidirtybuffers = 4;
375	}
376
377	/*
378	 * Temporary, BKVASIZE may be manipulated soon, make sure we don't
379	 * do something illegal. XXX
380	 */
381#if BKVASIZE < MAXBSIZE
382	if (buf_maxio < BKVASIZE * 2)
383		buf_maxio = BKVASIZE * 2;
384#else
385	if (buf_maxio < MAXBSIZE)
386		buf_maxio = MAXBSIZE;
387#endif
388
389/*
390 * Try to keep the number of free buffers in the specified range,
391 * and give the syncer access to an emergency reserve.
392 */
393	lofreebuffers = nbuf / 18 + 5;
394	hifreebuffers = 2 * lofreebuffers;
395	numfreebuffers = nbuf;
396
397/*
398 * Maximum number of async ops initiated per buf_daemon loop.  This is
399 * somewhat of a hack at the moment, we really need to limit ourselves
400 * based on the number of bytes of I/O in-transit that were initiated
401 * from buf_daemon.
402 */
403	if ((maxbdrun = nswbuf / 4) < 4)
404		maxbdrun = 4;
405
406	kvafreespace = 0;
407
408	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
409	bogus_page = vm_page_alloc(kernel_object,
410			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
411			VM_ALLOC_NORMAL);
412	cnt.v_wire_count++;
413
414}
415
416/*
417 * Free the kva allocation for a buffer
418 * Must be called only at splbio or higher,
419 *  as this is the only locking for buffer_map.
420 */
421static void
422bfreekva(struct buf * bp)
423{
424	if (bp->b_kvasize) {
425		vm_map_delete(buffer_map,
426		    (vm_offset_t) bp->b_kvabase,
427		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
428		);
429		bp->b_kvasize = 0;
430		kvaspacewakeup();
431	}
432}
433
434/*
435 *	bremfree:
436 *
437 *	Remove the buffer from the appropriate free list.
438 */
439void
440bremfree(struct buf * bp)
441{
442	int s = splbio();
443	int old_qindex = bp->b_qindex;
444
445	if (bp->b_qindex != QUEUE_NONE) {
446		if (bp->b_qindex == QUEUE_EMPTYKVA) {
447			kvafreespace -= bp->b_kvasize;
448		}
449		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
450		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
451		bp->b_qindex = QUEUE_NONE;
452		runningbufspace += bp->b_bufsize;
453	} else {
454#if !defined(MAX_PERF)
455		if (BUF_REFCNT(bp) <= 1)
456			panic("bremfree: removing a buffer not on a queue");
457#endif
458	}
459
460	/*
461	 * Fixup numfreebuffers count.  If the buffer is invalid or not
462	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
463	 * the buffer was free and we must decrement numfreebuffers.
464	 */
465	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
466		switch(old_qindex) {
467		case QUEUE_DIRTY:
468		case QUEUE_CLEAN:
469		case QUEUE_EMPTY:
470		case QUEUE_EMPTYKVA:
471			--numfreebuffers;
472			break;
473		default:
474			break;
475		}
476	}
477	splx(s);
478}
479
480
481/*
482 * Get a buffer with the specified data.  Look in the cache first.  We
483 * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
484 * is set, the buffer is valid and we do not have to do anything ( see
485 * getblk() ).
486 */
487int
488bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
489    struct buf ** bpp)
490{
491	struct buf *bp;
492
493	bp = getblk(vp, blkno, size, 0, 0);
494	*bpp = bp;
495
496	/* if not found in cache, do some I/O */
497	if ((bp->b_flags & B_CACHE) == 0) {
498		if (curproc != NULL)
499			curproc->p_stats->p_ru.ru_inblock++;
500		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
501		bp->b_flags |= B_READ;
502		bp->b_flags &= ~(B_ERROR | B_INVAL);
503		if (bp->b_rcred == NOCRED) {
504			if (cred != NOCRED)
505				crhold(cred);
506			bp->b_rcred = cred;
507		}
508		vfs_busy_pages(bp, 0);
509		VOP_STRATEGY(vp, bp);
510		return (biowait(bp));
511	}
512	return (0);
513}
514
515/*
516 * Operates like bread, but also starts asynchronous I/O on
517 * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
518 * to initiating I/O . If B_CACHE is set, the buffer is valid
519 * and we do not have to do anything.
520 */
521int
522breadn(struct vnode * vp, daddr_t blkno, int size,
523    daddr_t * rablkno, int *rabsize,
524    int cnt, struct ucred * cred, struct buf ** bpp)
525{
526	struct buf *bp, *rabp;
527	int i;
528	int rv = 0, readwait = 0;
529
530	*bpp = bp = getblk(vp, blkno, size, 0, 0);
531
532	/* if not found in cache, do some I/O */
533	if ((bp->b_flags & B_CACHE) == 0) {
534		if (curproc != NULL)
535			curproc->p_stats->p_ru.ru_inblock++;
536		bp->b_flags |= B_READ;
537		bp->b_flags &= ~(B_ERROR | B_INVAL);
538		if (bp->b_rcred == NOCRED) {
539			if (cred != NOCRED)
540				crhold(cred);
541			bp->b_rcred = cred;
542		}
543		vfs_busy_pages(bp, 0);
544		VOP_STRATEGY(vp, bp);
545		++readwait;
546	}
547
548	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
549		if (inmem(vp, *rablkno))
550			continue;
551		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
552
553		if ((rabp->b_flags & B_CACHE) == 0) {
554			if (curproc != NULL)
555				curproc->p_stats->p_ru.ru_inblock++;
556			rabp->b_flags |= B_READ | B_ASYNC;
557			rabp->b_flags &= ~(B_ERROR | B_INVAL);
558			if (rabp->b_rcred == NOCRED) {
559				if (cred != NOCRED)
560					crhold(cred);
561				rabp->b_rcred = cred;
562			}
563			vfs_busy_pages(rabp, 0);
564			BUF_KERNPROC(rabp);
565			VOP_STRATEGY(vp, rabp);
566		} else {
567			brelse(rabp);
568		}
569	}
570
571	if (readwait) {
572		rv = biowait(bp);
573	}
574	return (rv);
575}
576
577/*
578 * Write, release buffer on completion.  (Done by iodone
579 * if async).  Do not bother writing anything if the buffer
580 * is invalid.
581 *
582 * Note that we set B_CACHE here, indicating that buffer is
583 * fully valid and thus cacheable.  This is true even of NFS
584 * now so we set it generally.  This could be set either here
585 * or in biodone() since the I/O is synchronous.  We put it
586 * here.
587 */
588int
589bwrite(struct buf * bp)
590{
591	int oldflags, s;
592	struct vnode *vp;
593	struct mount *mp;
594
595	if (bp->b_flags & B_INVAL) {
596		brelse(bp);
597		return (0);
598	}
599
600	oldflags = bp->b_flags;
601
602#if !defined(MAX_PERF)
603	if (BUF_REFCNT(bp) == 0)
604		panic("bwrite: buffer is not busy???");
605#endif
606	s = splbio();
607	bundirty(bp);
608
609	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
610	bp->b_flags |= B_WRITEINPROG | B_CACHE;
611
612	bp->b_vp->v_numoutput++;
613	vfs_busy_pages(bp, 1);
614	if (curproc != NULL)
615		curproc->p_stats->p_ru.ru_oublock++;
616	splx(s);
617	if (oldflags & B_ASYNC)
618		BUF_KERNPROC(bp);
619	VOP_STRATEGY(bp->b_vp, bp);
620
621	/*
622	 * Collect statistics on synchronous and asynchronous writes.
623	 * Writes to block devices are charged to their associated
624	 * filesystem (if any).
625	 */
626	if ((vp = bp->b_vp) != NULL) {
627		if (vp->v_type == VBLK)
628			mp = vp->v_specmountpoint;
629		else
630			mp = vp->v_mount;
631		if (mp != NULL) {
632			if ((oldflags & B_ASYNC) == 0)
633				mp->mnt_stat.f_syncwrites++;
634			else
635				mp->mnt_stat.f_asyncwrites++;
636		}
637	}
638
639	if ((oldflags & B_ASYNC) == 0) {
640		int rtval = biowait(bp);
641		brelse(bp);
642		return (rtval);
643	}
644
645	return (0);
646}
647
648/*
649 * Delayed write. (Buffer is marked dirty).  Do not bother writing
650 * anything if the buffer is marked invalid.
651 *
652 * Note that since the buffer must be completely valid, we can safely
653 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
654 * biodone() in order to prevent getblk from writing the buffer
655 * out synchronously.
656 */
657void
658bdwrite(struct buf * bp)
659{
660#if !defined(MAX_PERF)
661	if (BUF_REFCNT(bp) == 0)
662		panic("bdwrite: buffer is not busy");
663#endif
664
665	if (bp->b_flags & B_INVAL) {
666		brelse(bp);
667		return;
668	}
669	bdirty(bp);
670
671	/*
672	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
673	 * true even of NFS now.
674	 */
675	bp->b_flags |= B_CACHE;
676
677	/*
678	 * This bmap keeps the system from needing to do the bmap later,
679	 * perhaps when the system is attempting to do a sync.  Since it
680	 * is likely that the indirect block -- or whatever other datastructure
681	 * that the filesystem needs is still in memory now, it is a good
682	 * thing to do this.  Note also, that if the pageout daemon is
683	 * requesting a sync -- there might not be enough memory to do
684	 * the bmap then...  So, this is important to do.
685	 */
686	if (bp->b_lblkno == bp->b_blkno) {
687		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
688	}
689
690	/*
691	 * Set the *dirty* buffer range based upon the VM system dirty pages.
692	 */
693	vfs_setdirty(bp);
694
695	/*
696	 * We need to do this here to satisfy the vnode_pager and the
697	 * pageout daemon, so that it thinks that the pages have been
698	 * "cleaned".  Note that since the pages are in a delayed write
699	 * buffer -- the VFS layer "will" see that the pages get written
700	 * out on the next sync, or perhaps the cluster will be completed.
701	 */
702	vfs_clean_pages(bp);
703	bqrelse(bp);
704
705	/*
706	 * Wakeup the buffer flushing daemon if we have saturated the
707	 * buffer cache.
708	 */
709
710	bd_wakeup(hidirtybuffers);
711
712	/*
713	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
714	 * due to the softdep code.
715	 */
716}
717
718/*
719 *	bdirty:
720 *
721 *	Turn buffer into delayed write request.  We must clear B_READ and
722 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
723 *	itself to properly update it in the dirty/clean lists.  We mark it
724 *	B_DONE to ensure that any asynchronization of the buffer properly
725 *	clears B_DONE ( else a panic will occur later ).
726 *
727 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
728 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
729 *	should only be called if the buffer is known-good.
730 *
731 *	Since the buffer is not on a queue, we do not update the numfreebuffers
732 *	count.
733 *
734 *	Must be called at splbio().
735 *	The buffer must be on QUEUE_NONE.
736 */
737void
738bdirty(bp)
739	struct buf *bp;
740{
741	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
742	bp->b_flags &= ~(B_READ|B_RELBUF);
743
744	if ((bp->b_flags & B_DELWRI) == 0) {
745		bp->b_flags |= B_DONE | B_DELWRI;
746		reassignbuf(bp, bp->b_vp);
747		++numdirtybuffers;
748		bd_wakeup(hidirtybuffers);
749	}
750}
751
752/*
753 *	bundirty:
754 *
755 *	Clear B_DELWRI for buffer.
756 *
757 *	Since the buffer is not on a queue, we do not update the numfreebuffers
758 *	count.
759 *
760 *	Must be called at splbio().
761 *	The buffer must be on QUEUE_NONE.
762 */
763
764void
765bundirty(bp)
766	struct buf *bp;
767{
768	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
769
770	if (bp->b_flags & B_DELWRI) {
771		bp->b_flags &= ~B_DELWRI;
772		reassignbuf(bp, bp->b_vp);
773		--numdirtybuffers;
774		numdirtywakeup();
775	}
776}
777
778/*
779 *	bawrite:
780 *
781 *	Asynchronous write.  Start output on a buffer, but do not wait for
782 *	it to complete.  The buffer is released when the output completes.
783 *
784 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
785 *	B_INVAL buffers.  Not us.
786 */
787void
788bawrite(struct buf * bp)
789{
790	bp->b_flags |= B_ASYNC;
791	(void) VOP_BWRITE(bp->b_vp, bp);
792}
793
794/*
795 *	bowrite:
796 *
797 *	Ordered write.  Start output on a buffer, and flag it so that the
798 *	device will write it in the order it was queued.  The buffer is
799 *	released when the output completes.  bwrite() ( or the VOP routine
800 *	anyway ) is responsible for handling B_INVAL buffers.
801 */
802int
803bowrite(struct buf * bp)
804{
805	bp->b_flags |= B_ORDERED | B_ASYNC;
806	return (VOP_BWRITE(bp->b_vp, bp));
807}
808
809/*
810 *	bwillwrite:
811 *
812 *	Called prior to the locking of any vnodes when we are expecting to
813 *	write.  We do not want to starve the buffer cache with too many
814 *	dirty buffers so we block here.  By blocking prior to the locking
815 *	of any vnodes we attempt to avoid the situation where a locked vnode
816 *	prevents the various system daemons from flushing related buffers.
817 */
818
819void
820bwillwrite(void)
821{
822	int twenty = (hidirtybuffers - lodirtybuffers) / 5;
823
824	if (numdirtybuffers > hidirtybuffers + twenty) {
825		int s;
826
827		s = splbio();
828		while (numdirtybuffers > hidirtybuffers) {
829			bd_wakeup(hidirtybuffers);
830			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
831			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
832		}
833		splx(s);
834	}
835}
836
837/*
838 *	brelse:
839 *
840 *	Release a busy buffer and, if requested, free its resources.  The
841 *	buffer will be stashed in the appropriate bufqueue[] allowing it
842 *	to be accessed later as a cache entity or reused for other purposes.
843 */
844void
845brelse(struct buf * bp)
846{
847	int s;
848	int kvawakeup = 0;
849
850	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
851
852	s = splbio();
853
854	if (bp->b_flags & B_LOCKED)
855		bp->b_flags &= ~B_ERROR;
856
857	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
858		/*
859		 * Failed write, redirty.  Must clear B_ERROR to prevent
860		 * pages from being scrapped.  If B_INVAL is set then
861		 * this case is not run and the next case is run to
862		 * destroy the buffer.  B_INVAL can occur if the buffer
863		 * is outside the range supported by the underlying device.
864		 */
865		bp->b_flags &= ~B_ERROR;
866		bdirty(bp);
867	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
868	    (bp->b_bufsize <= 0)) {
869		/*
870		 * Either a failed I/O or we were asked to free or not
871		 * cache the buffer.
872		 */
873		bp->b_flags |= B_INVAL;
874		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
875			(*bioops.io_deallocate)(bp);
876		if (bp->b_flags & B_DELWRI) {
877			--numdirtybuffers;
878			numdirtywakeup();
879		}
880		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
881		if ((bp->b_flags & B_VMIO) == 0) {
882			if (bp->b_bufsize)
883				allocbuf(bp, 0);
884			if (bp->b_vp)
885				brelvp(bp);
886		}
887	}
888
889	/*
890	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
891	 * is called with B_DELWRI set, the underlying pages may wind up
892	 * getting freed causing a previous write (bdwrite()) to get 'lost'
893	 * because pages associated with a B_DELWRI bp are marked clean.
894	 *
895	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
896	 * if B_DELWRI is set.
897	 */
898
899	if (bp->b_flags & B_DELWRI)
900		bp->b_flags &= ~B_RELBUF;
901
902	/*
903	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
904	 * constituted, not even NFS buffers now.  Two flags effect this.  If
905	 * B_INVAL, the struct buf is invalidated but the VM object is kept
906	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
907	 *
908	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
909	 * invalidated.  B_ERROR cannot be set for a failed write unless the
910	 * buffer is also B_INVAL because it hits the re-dirtying code above.
911	 *
912	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
913	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
914	 * the commit state and we cannot afford to lose the buffer.
915	 */
916	if ((bp->b_flags & B_VMIO)
917	    && !(bp->b_vp->v_tag == VT_NFS &&
918		 bp->b_vp->v_type != VBLK &&
919		 (bp->b_flags & B_DELWRI))
920	    ) {
921
922		int i, j, resid;
923		vm_page_t m;
924		off_t foff;
925		vm_pindex_t poff;
926		vm_object_t obj;
927		struct vnode *vp;
928
929		vp = bp->b_vp;
930
931		/*
932		 * Get the base offset and length of the buffer.  Note that
933		 * for block sizes that are less then PAGE_SIZE, the b_data
934		 * base of the buffer does not represent exactly b_offset and
935		 * neither b_offset nor b_size are necessarily page aligned.
936		 * Instead, the starting position of b_offset is:
937		 *
938		 * 	b_data + (b_offset & PAGE_MASK)
939		 *
940		 * block sizes less then DEV_BSIZE (usually 512) are not
941		 * supported due to the page granularity bits (m->valid,
942		 * m->dirty, etc...).
943		 *
944		 * See man buf(9) for more information
945		 */
946
947		resid = bp->b_bufsize;
948		foff = bp->b_offset;
949
950		for (i = 0; i < bp->b_npages; i++) {
951			m = bp->b_pages[i];
952			vm_page_flag_clear(m, PG_ZERO);
953			if (m == bogus_page) {
954
955				obj = (vm_object_t) vp->v_object;
956				poff = OFF_TO_IDX(bp->b_offset);
957
958				for (j = i; j < bp->b_npages; j++) {
959					m = bp->b_pages[j];
960					if (m == bogus_page) {
961						m = vm_page_lookup(obj, poff + j);
962#if !defined(MAX_PERF)
963						if (!m) {
964							panic("brelse: page missing\n");
965						}
966#endif
967						bp->b_pages[j] = m;
968					}
969				}
970
971				if ((bp->b_flags & B_INVAL) == 0) {
972					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
973				}
974			}
975			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
976				int poffset = foff & PAGE_MASK;
977				int presid = resid > (PAGE_SIZE - poffset) ?
978					(PAGE_SIZE - poffset) : resid;
979
980				KASSERT(presid >= 0, ("brelse: extra page"));
981				vm_page_set_invalid(m, poffset, presid);
982			}
983			resid -= PAGE_SIZE - (foff & PAGE_MASK);
984			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
985		}
986
987		if (bp->b_flags & (B_INVAL | B_RELBUF))
988			vfs_vmio_release(bp);
989
990	} else if (bp->b_flags & B_VMIO) {
991
992		if (bp->b_flags & (B_INVAL | B_RELBUF))
993			vfs_vmio_release(bp);
994
995	}
996
997#if !defined(MAX_PERF)
998	if (bp->b_qindex != QUEUE_NONE)
999		panic("brelse: free buffer onto another queue???");
1000#endif
1001	if (BUF_REFCNT(bp) > 1) {
1002		/* Temporary panic to verify exclusive locking */
1003		/* This panic goes away when we allow shared refs */
1004		panic("brelse: multiple refs");
1005		/* do not release to free list */
1006		BUF_UNLOCK(bp);
1007		splx(s);
1008		return;
1009	}
1010
1011	/* enqueue */
1012
1013	/* buffers with no memory */
1014	if (bp->b_bufsize == 0) {
1015		bp->b_flags |= B_INVAL;
1016		if (bp->b_kvasize) {
1017			bp->b_qindex = QUEUE_EMPTYKVA;
1018			kvawakeup = 1;
1019		} else {
1020			bp->b_qindex = QUEUE_EMPTY;
1021		}
1022		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1023		LIST_REMOVE(bp, b_hash);
1024		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1025		bp->b_dev = NODEV;
1026		kvafreespace += bp->b_kvasize;
1027	/* buffers with junk contents */
1028	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1029		bp->b_flags |= B_INVAL;
1030		bp->b_qindex = QUEUE_CLEAN;
1031		if (bp->b_kvasize)
1032			kvawakeup = 1;
1033		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1034		LIST_REMOVE(bp, b_hash);
1035		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1036		bp->b_dev = NODEV;
1037
1038	/* buffers that are locked */
1039	} else if (bp->b_flags & B_LOCKED) {
1040		bp->b_qindex = QUEUE_LOCKED;
1041		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1042
1043	/* remaining buffers */
1044	} else {
1045		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1046		case B_DELWRI | B_AGE:
1047		    bp->b_qindex = QUEUE_DIRTY;
1048		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1049		    break;
1050		case B_DELWRI:
1051		    bp->b_qindex = QUEUE_DIRTY;
1052		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1053		    break;
1054		case B_AGE:
1055		    bp->b_qindex = QUEUE_CLEAN;
1056		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1057		    if (bp->b_kvasize)
1058			    kvawakeup = 1;
1059		    break;
1060		default:
1061		    bp->b_qindex = QUEUE_CLEAN;
1062		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1063		    if (bp->b_kvasize)
1064			    kvawakeup = 1;
1065		    break;
1066		}
1067	}
1068
1069	/*
1070	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1071	 * on the correct queue.
1072	 */
1073	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1074		bp->b_flags &= ~B_DELWRI;
1075		--numdirtybuffers;
1076		numdirtywakeup();
1077	}
1078
1079	runningbufspace -= bp->b_bufsize;
1080
1081	/*
1082	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1083	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1084	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1085	 * if B_INVAL is set ).
1086	 */
1087
1088	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1089		bufcountwakeup();
1090
1091	/*
1092	 * Something we can maybe free.
1093	 */
1094
1095	if (bp->b_bufsize)
1096		bufspacewakeup();
1097	if (kvawakeup)
1098		kvaspacewakeup();
1099
1100	/* unlock */
1101	BUF_UNLOCK(bp);
1102	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1103	splx(s);
1104}
1105
1106/*
1107 * Release a buffer back to the appropriate queue but do not try to free
1108 * it.
1109 *
1110 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1111 * biodone() to requeue an async I/O on completion.  It is also used when
1112 * known good buffers need to be requeued but we think we may need the data
1113 * again soon.
1114 */
1115void
1116bqrelse(struct buf * bp)
1117{
1118	int s;
1119
1120	s = splbio();
1121
1122	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1123
1124#if !defined(MAX_PERF)
1125	if (bp->b_qindex != QUEUE_NONE)
1126		panic("bqrelse: free buffer onto another queue???");
1127#endif
1128	if (BUF_REFCNT(bp) > 1) {
1129		/* do not release to free list */
1130		panic("bqrelse: multiple refs");
1131		BUF_UNLOCK(bp);
1132		splx(s);
1133		return;
1134	}
1135	if (bp->b_flags & B_LOCKED) {
1136		bp->b_flags &= ~B_ERROR;
1137		bp->b_qindex = QUEUE_LOCKED;
1138		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1139		/* buffers with stale but valid contents */
1140	} else if (bp->b_flags & B_DELWRI) {
1141		bp->b_qindex = QUEUE_DIRTY;
1142		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1143	} else {
1144		bp->b_qindex = QUEUE_CLEAN;
1145		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1146	}
1147
1148	runningbufspace -= bp->b_bufsize;
1149
1150	if ((bp->b_flags & B_LOCKED) == 0 &&
1151	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1152		bufcountwakeup();
1153	}
1154
1155	/*
1156	 * Something we can maybe wakeup
1157	 */
1158	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1159		bufspacewakeup();
1160
1161	/* unlock */
1162	BUF_UNLOCK(bp);
1163	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1164	splx(s);
1165}
1166
1167static void
1168vfs_vmio_release(bp)
1169	struct buf *bp;
1170{
1171	int i, s;
1172	vm_page_t m;
1173
1174	s = splvm();
1175	for (i = 0; i < bp->b_npages; i++) {
1176		m = bp->b_pages[i];
1177		bp->b_pages[i] = NULL;
1178		/*
1179		 * In order to keep page LRU ordering consistent, put
1180		 * everything on the inactive queue.
1181		 */
1182		vm_page_unwire(m, 0);
1183		/*
1184		 * We don't mess with busy pages, it is
1185		 * the responsibility of the process that
1186		 * busied the pages to deal with them.
1187		 */
1188		if ((m->flags & PG_BUSY) || (m->busy != 0))
1189			continue;
1190
1191		if (m->wire_count == 0) {
1192			vm_page_flag_clear(m, PG_ZERO);
1193			/*
1194			 * Might as well free the page if we can and it has
1195			 * no valid data.
1196			 */
1197			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1198				vm_page_busy(m);
1199				vm_page_protect(m, VM_PROT_NONE);
1200				vm_page_free(m);
1201			}
1202		}
1203	}
1204	bufspace -= bp->b_bufsize;
1205	vmiospace -= bp->b_bufsize;
1206	runningbufspace -= bp->b_bufsize;
1207	splx(s);
1208	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1209	if (bp->b_bufsize)
1210		bufspacewakeup();
1211	bp->b_npages = 0;
1212	bp->b_bufsize = 0;
1213	bp->b_flags &= ~B_VMIO;
1214	if (bp->b_vp)
1215		brelvp(bp);
1216}
1217
1218/*
1219 * Check to see if a block is currently memory resident.
1220 */
1221struct buf *
1222gbincore(struct vnode * vp, daddr_t blkno)
1223{
1224	struct buf *bp;
1225	struct bufhashhdr *bh;
1226
1227	bh = bufhash(vp, blkno);
1228	bp = bh->lh_first;
1229
1230	/* Search hash chain */
1231	while (bp != NULL) {
1232		/* hit */
1233		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1234		    (bp->b_flags & B_INVAL) == 0) {
1235			break;
1236		}
1237		bp = bp->b_hash.le_next;
1238	}
1239	return (bp);
1240}
1241
1242/*
1243 *	vfs_bio_awrite:
1244 *
1245 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1246 *	This is much better then the old way of writing only one buffer at
1247 *	a time.  Note that we may not be presented with the buffers in the
1248 *	correct order, so we search for the cluster in both directions.
1249 */
1250int
1251vfs_bio_awrite(struct buf * bp)
1252{
1253	int i;
1254	int j;
1255	daddr_t lblkno = bp->b_lblkno;
1256	struct vnode *vp = bp->b_vp;
1257	int s;
1258	int ncl;
1259	struct buf *bpa;
1260	int nwritten;
1261	int size;
1262	int maxcl;
1263
1264	s = splbio();
1265	/*
1266	 * right now we support clustered writing only to regular files.  If
1267	 * we find a clusterable block we could be in the middle of a cluster
1268	 * rather then at the beginning.
1269	 */
1270	if ((vp->v_type == VREG) &&
1271	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1272	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1273
1274		size = vp->v_mount->mnt_stat.f_iosize;
1275		maxcl = MAXPHYS / size;
1276
1277		for (i = 1; i < maxcl; i++) {
1278			if ((bpa = gbincore(vp, lblkno + i)) &&
1279			    BUF_REFCNT(bpa) == 0 &&
1280			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1281			    (B_DELWRI | B_CLUSTEROK)) &&
1282			    (bpa->b_bufsize == size)) {
1283				if ((bpa->b_blkno == bpa->b_lblkno) ||
1284				    (bpa->b_blkno !=
1285				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1286					break;
1287			} else {
1288				break;
1289			}
1290		}
1291		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1292			if ((bpa = gbincore(vp, lblkno - j)) &&
1293			    BUF_REFCNT(bpa) == 0 &&
1294			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1295			    (B_DELWRI | B_CLUSTEROK)) &&
1296			    (bpa->b_bufsize == size)) {
1297				if ((bpa->b_blkno == bpa->b_lblkno) ||
1298				    (bpa->b_blkno !=
1299				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1300					break;
1301			} else {
1302				break;
1303			}
1304		}
1305		--j;
1306		ncl = i + j;
1307		/*
1308		 * this is a possible cluster write
1309		 */
1310		if (ncl != 1) {
1311			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1312			splx(s);
1313			return nwritten;
1314		}
1315	}
1316
1317	BUF_LOCK(bp, LK_EXCLUSIVE);
1318	bremfree(bp);
1319	bp->b_flags |= B_ASYNC;
1320
1321	splx(s);
1322	/*
1323	 * default (old) behavior, writing out only one block
1324	 *
1325	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1326	 */
1327	nwritten = bp->b_bufsize;
1328	(void) VOP_BWRITE(bp->b_vp, bp);
1329
1330	return nwritten;
1331}
1332
1333/*
1334 *	getnewbuf:
1335 *
1336 *	Find and initialize a new buffer header, freeing up existing buffers
1337 *	in the bufqueues as necessary.  The new buffer is returned locked.
1338 *
1339 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1340 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1341 *
1342 *	We block if:
1343 *		We have insufficient buffer headers
1344 *		We have insufficient buffer space
1345 *		buffer_map is too fragmented ( space reservation fails )
1346 *		If we have to flush dirty buffers ( but we try to avoid this )
1347 *
1348 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1349 *	Instead we ask the buf daemon to do it for us.  We attempt to
1350 *	avoid piecemeal wakeups of the pageout daemon.
1351 */
1352
1353static struct buf *
1354getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1355{
1356	struct buf *bp;
1357	struct buf *nbp;
1358	struct buf *dbp;
1359	int outofspace;
1360	int nqindex;
1361	int defrag = 0;
1362
1363	++getnewbufcalls;
1364	--getnewbufrestarts;
1365restart:
1366	++getnewbufrestarts;
1367
1368	/*
1369	 * Calculate whether we are out of buffer space.  This state is
1370	 * recalculated on every restart.  If we are out of space, we
1371	 * have to turn off defragmentation.  Setting defrag to -1 when
1372	 * outofspace is positive means "defrag while freeing buffers".
1373	 * The looping conditional will be muffed up if defrag is left
1374	 * positive when outofspace is positive.
1375	 */
1376
1377	dbp = NULL;
1378	outofspace = 0;
1379	if (bufspace >= hibufspace) {
1380		if ((curproc && (curproc->p_flag & P_BUFEXHAUST) == 0) ||
1381		    bufspace >= maxbufspace) {
1382			outofspace = 1;
1383			if (defrag > 0)
1384				defrag = -1;
1385		}
1386	}
1387
1388	/*
1389	 * defrag state is semi-persistant.  1 means we are flagged for
1390	 * defragging.  -1 means we actually defragged something.
1391	 */
1392	/* nop */
1393
1394	/*
1395	 * Setup for scan.  If we do not have enough free buffers,
1396	 * we setup a degenerate case that immediately fails.  Note
1397	 * that if we are specially marked process, we are allowed to
1398	 * dip into our reserves.
1399	 *
1400	 * Normally we want to find an EMPTYKVA buffer.  That is, a
1401	 * buffer with kva already allocated.  If there are no EMPTYKVA
1402	 * buffers we back up to the truely EMPTY buffers.  When defragging
1403	 * we do not bother backing up since we have to locate buffers with
1404	 * kva to defrag.  If we are out of space we skip both EMPTY and
1405	 * EMPTYKVA and dig right into the CLEAN queue.
1406	 *
1407	 * In this manner we avoid scanning unnecessary buffers.  It is very
1408	 * important for us to do this because the buffer cache is almost
1409	 * constantly out of space or in need of defragmentation.
1410	 */
1411
1412	if (curproc && (curproc->p_flag & P_BUFEXHAUST) == 0 &&
1413	    numfreebuffers < lofreebuffers) {
1414		nqindex = QUEUE_CLEAN;
1415		nbp = NULL;
1416	} else {
1417		nqindex = QUEUE_EMPTYKVA;
1418		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1419		if (nbp == NULL) {
1420			if (defrag <= 0) {
1421				nqindex = QUEUE_EMPTY;
1422				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1423			}
1424		}
1425		if (outofspace || nbp == NULL) {
1426			nqindex = QUEUE_CLEAN;
1427			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1428		}
1429	}
1430
1431	/*
1432	 * Run scan, possibly freeing data and/or kva mappings on the fly
1433	 * depending.
1434	 */
1435
1436	while ((bp = nbp) != NULL) {
1437		int qindex = nqindex;
1438
1439		/*
1440		 * Calculate next bp ( we can only use it if we do not block
1441		 * or do other fancy things ).
1442		 */
1443		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1444			switch(qindex) {
1445			case QUEUE_EMPTY:
1446				nqindex = QUEUE_EMPTYKVA;
1447				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1448					break;
1449				/* fall through */
1450			case QUEUE_EMPTYKVA:
1451				nqindex = QUEUE_CLEAN;
1452				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1453					break;
1454				/* fall through */
1455			case QUEUE_CLEAN:
1456				/*
1457				 * nbp is NULL.
1458				 */
1459				break;
1460			}
1461		}
1462
1463		/*
1464		 * Sanity Checks
1465		 */
1466		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1467
1468		/*
1469		 * Note: we no longer distinguish between VMIO and non-VMIO
1470		 * buffers.
1471		 */
1472
1473		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1474
1475		/*
1476		 * If we are defragging and the buffer isn't useful for fixing
1477		 * that problem we continue.  If we are out of space and the
1478		 * buffer isn't useful for fixing that problem we continue.
1479		 */
1480
1481		if (defrag > 0 && bp->b_kvasize == 0)
1482			continue;
1483		if (outofspace > 0 && bp->b_bufsize == 0)
1484			continue;
1485
1486		/*
1487		 * Start freeing the bp.  This is somewhat involved.  nbp
1488		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1489		 */
1490
1491		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1492			panic("getnewbuf: locked buf");
1493		bremfree(bp);
1494
1495		if (qindex == QUEUE_CLEAN) {
1496			if (bp->b_flags & B_VMIO) {
1497				bp->b_flags &= ~B_ASYNC;
1498				vfs_vmio_release(bp);
1499			}
1500			if (bp->b_vp)
1501				brelvp(bp);
1502		}
1503
1504		/*
1505		 * NOTE:  nbp is now entirely invalid.  We can only restart
1506		 * the scan from this point on.
1507		 *
1508		 * Get the rest of the buffer freed up.  b_kva* is still
1509		 * valid after this operation.
1510		 */
1511
1512		if (bp->b_rcred != NOCRED) {
1513			crfree(bp->b_rcred);
1514			bp->b_rcred = NOCRED;
1515		}
1516		if (bp->b_wcred != NOCRED) {
1517			crfree(bp->b_wcred);
1518			bp->b_wcred = NOCRED;
1519		}
1520		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1521			(*bioops.io_deallocate)(bp);
1522		LIST_REMOVE(bp, b_hash);
1523		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1524
1525		if (bp->b_bufsize)
1526			allocbuf(bp, 0);
1527
1528		bp->b_flags = 0;
1529		bp->b_dev = NODEV;
1530		bp->b_vp = NULL;
1531		bp->b_blkno = bp->b_lblkno = 0;
1532		bp->b_offset = NOOFFSET;
1533		bp->b_iodone = 0;
1534		bp->b_error = 0;
1535		bp->b_resid = 0;
1536		bp->b_bcount = 0;
1537		bp->b_npages = 0;
1538		bp->b_dirtyoff = bp->b_dirtyend = 0;
1539
1540		LIST_INIT(&bp->b_dep);
1541
1542		/*
1543		 * Ok, now that we have a free buffer, if we are defragging
1544		 * we have to recover the kvaspace.  If we are out of space
1545		 * we have to free the buffer (which we just did), but we
1546		 * do not have to recover kva space unless we hit a defrag
1547		 * hicup.  Being able to avoid freeing the kva space leads
1548		 * to a significant reduction in overhead.
1549		 */
1550
1551		if (defrag > 0) {
1552			defrag = -1;
1553			bp->b_flags |= B_INVAL;
1554			bfreekva(bp);
1555			brelse(bp);
1556			goto restart;
1557		}
1558
1559		if (outofspace > 0) {
1560			outofspace = -1;
1561			bp->b_flags |= B_INVAL;
1562			if (defrag < 0)
1563				bfreekva(bp);
1564			brelse(bp);
1565			goto restart;
1566		}
1567
1568		/*
1569		 * We are done
1570		 */
1571		break;
1572	}
1573
1574	/*
1575	 * If we exhausted our list, sleep as appropriate.  We may have to
1576	 * wakeup various daemons and write out some dirty buffers.
1577	 *
1578	 * Generally we are sleeping due to insufficient buffer space.
1579	 */
1580
1581	if (bp == NULL) {
1582		int flags;
1583		char *waitmsg;
1584
1585		if (defrag > 0) {
1586			flags = VFS_BIO_NEED_KVASPACE;
1587			waitmsg = "nbufkv";
1588		} else if (outofspace > 0) {
1589			waitmsg = "nbufbs";
1590			flags = VFS_BIO_NEED_BUFSPACE;
1591		} else {
1592			waitmsg = "newbuf";
1593			flags = VFS_BIO_NEED_ANY;
1594		}
1595
1596		/* XXX */
1597
1598		(void) speedup_syncer();
1599		needsbuffer |= flags;
1600		while (needsbuffer & flags) {
1601			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1602			    waitmsg, slptimeo))
1603				return (NULL);
1604		}
1605	} else {
1606		/*
1607		 * We finally have a valid bp.  We aren't quite out of the
1608		 * woods, we still have to reserve kva space.
1609		 */
1610		vm_offset_t addr = 0;
1611
1612		maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1613
1614		if (maxsize != bp->b_kvasize) {
1615			bfreekva(bp);
1616
1617			if (vm_map_findspace(buffer_map,
1618				vm_map_min(buffer_map), maxsize, &addr)) {
1619				/*
1620				 * Uh oh.  Buffer map is to fragmented.  Try
1621				 * to defragment.
1622				 */
1623				if (defrag <= 0) {
1624					defrag = 1;
1625					bp->b_flags |= B_INVAL;
1626					brelse(bp);
1627					goto restart;
1628				}
1629				/*
1630				 * Uh oh.  We couldn't seem to defragment
1631				 */
1632				panic("getnewbuf: unreachable code reached");
1633			}
1634		}
1635		if (addr) {
1636			vm_map_insert(buffer_map, NULL, 0,
1637				addr, addr + maxsize,
1638				VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1639
1640			bp->b_kvabase = (caddr_t) addr;
1641			bp->b_kvasize = maxsize;
1642		}
1643		bp->b_data = bp->b_kvabase;
1644	}
1645	return(bp);
1646}
1647
1648/*
1649 *	waitfreebuffers:
1650 *
1651 *	Wait for sufficient free buffers.  Only called from normal processes.
1652 */
1653
1654static void
1655waitfreebuffers(int slpflag, int slptimeo)
1656{
1657	while (numfreebuffers < hifreebuffers) {
1658		if (numfreebuffers >= hifreebuffers)
1659			break;
1660		needsbuffer |= VFS_BIO_NEED_FREE;
1661		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1662			break;
1663	}
1664}
1665
1666/*
1667 *	buf_daemon:
1668 *
1669 *	buffer flushing daemon.  Buffers are normally flushed by the
1670 *	update daemon but if it cannot keep up this process starts to
1671 *	take the load in an attempt to prevent getnewbuf() from blocking.
1672 */
1673
1674static struct proc *bufdaemonproc;
1675static int bd_interval;
1676static int bd_flushto;
1677
1678static struct kproc_desc buf_kp = {
1679	"bufdaemon",
1680	buf_daemon,
1681	&bufdaemonproc
1682};
1683SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1684
1685static void
1686buf_daemon()
1687{
1688	int s;
1689	/*
1690	 * This process is allowed to take the buffer cache to the limit
1691	 */
1692	curproc->p_flag |= P_BUFEXHAUST;
1693	s = splbio();
1694
1695	bd_interval = 5 * hz;	/* dynamically adjusted */
1696	bd_flushto = hidirtybuffers;	/* dynamically adjusted */
1697
1698	while (TRUE) {
1699		bd_request = 0;
1700
1701		/*
1702		 * Do the flush.  Limit the number of buffers we flush in one
1703		 * go.  The failure condition occurs when processes are writing
1704		 * buffers faster then we can dispose of them.  In this case
1705		 * we may be flushing so often that the previous set of flushes
1706		 * have not had time to complete, causing us to run out of
1707		 * physical buffers and block.
1708		 */
1709		{
1710			int runcount = maxbdrun;
1711
1712			while (numdirtybuffers > bd_flushto && runcount) {
1713				--runcount;
1714				if (flushbufqueues() == 0)
1715					break;
1716			}
1717		}
1718
1719		/*
1720		 * If nobody is requesting anything we sleep
1721		 */
1722		if (bd_request == 0)
1723			tsleep(&bd_request, PVM, "psleep", bd_interval);
1724
1725		/*
1726		 * We calculate how much to add or subtract from bd_flushto
1727		 * and bd_interval based on how far off we are from the
1728		 * optimal number of dirty buffers, which is 20% below the
1729		 * hidirtybuffers mark.  We cannot use hidirtybuffers straight
1730		 * because being right on the mark will cause getnewbuf()
1731		 * to oscillate our wakeup.
1732		 *
1733		 * The larger the error in either direction, the more we adjust
1734		 * bd_flushto and bd_interval.  The time interval is adjusted
1735		 * by 2 seconds per whole-buffer-range of error.  This is an
1736		 * exponential convergence algorithm, with large errors
1737		 * producing large changes and small errors producing small
1738		 * changes.
1739		 */
1740
1741		{
1742			int brange = hidirtybuffers - lodirtybuffers;
1743			int middb = hidirtybuffers - brange / 5;
1744			int deltabuf = middb - numdirtybuffers;
1745
1746			bd_flushto += deltabuf / 20;
1747			bd_interval += deltabuf * (2 * hz) / (brange * 1);
1748		}
1749		if (bd_flushto < lodirtybuffers)
1750			bd_flushto = lodirtybuffers;
1751		if (bd_flushto > hidirtybuffers)
1752			bd_flushto = hidirtybuffers;
1753		if (bd_interval < hz / 10)
1754			bd_interval = hz / 10;
1755		if (bd_interval > 5 * hz)
1756			bd_interval = 5 * hz;
1757	}
1758}
1759
1760/*
1761 *	flushbufqueues:
1762 *
1763 *	Try to flush a buffer in the dirty queue.  We must be careful to
1764 *	free up B_INVAL buffers instead of write them, which NFS is
1765 *	particularly sensitive to.
1766 */
1767
1768static int
1769flushbufqueues(void)
1770{
1771	struct buf *bp;
1772	int r = 0;
1773
1774	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1775
1776	while (bp) {
1777		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1778		if ((bp->b_flags & B_DELWRI) != 0) {
1779			if (bp->b_flags & B_INVAL) {
1780				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1781					panic("flushbufqueues: locked buf");
1782				bremfree(bp);
1783				brelse(bp);
1784				++r;
1785				break;
1786			}
1787			vfs_bio_awrite(bp);
1788			++r;
1789			break;
1790		}
1791		bp = TAILQ_NEXT(bp, b_freelist);
1792	}
1793	return(r);
1794}
1795
1796/*
1797 * Check to see if a block is currently memory resident.
1798 */
1799struct buf *
1800incore(struct vnode * vp, daddr_t blkno)
1801{
1802	struct buf *bp;
1803
1804	int s = splbio();
1805	bp = gbincore(vp, blkno);
1806	splx(s);
1807	return (bp);
1808}
1809
1810/*
1811 * Returns true if no I/O is needed to access the
1812 * associated VM object.  This is like incore except
1813 * it also hunts around in the VM system for the data.
1814 */
1815
1816int
1817inmem(struct vnode * vp, daddr_t blkno)
1818{
1819	vm_object_t obj;
1820	vm_offset_t toff, tinc, size;
1821	vm_page_t m;
1822	vm_ooffset_t off;
1823
1824	if (incore(vp, blkno))
1825		return 1;
1826	if (vp->v_mount == NULL)
1827		return 0;
1828	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1829		return 0;
1830
1831	obj = vp->v_object;
1832	size = PAGE_SIZE;
1833	if (size > vp->v_mount->mnt_stat.f_iosize)
1834		size = vp->v_mount->mnt_stat.f_iosize;
1835	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1836
1837	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1838		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1839		if (!m)
1840			return 0;
1841		tinc = size;
1842		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1843			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1844		if (vm_page_is_valid(m,
1845		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1846			return 0;
1847	}
1848	return 1;
1849}
1850
1851/*
1852 *	vfs_setdirty:
1853 *
1854 *	Sets the dirty range for a buffer based on the status of the dirty
1855 *	bits in the pages comprising the buffer.
1856 *
1857 *	The range is limited to the size of the buffer.
1858 *
1859 *	This routine is primarily used by NFS, but is generalized for the
1860 *	B_VMIO case.
1861 */
1862static void
1863vfs_setdirty(struct buf *bp)
1864{
1865	int i;
1866	vm_object_t object;
1867
1868	/*
1869	 * Degenerate case - empty buffer
1870	 */
1871
1872	if (bp->b_bufsize == 0)
1873		return;
1874
1875	/*
1876	 * We qualify the scan for modified pages on whether the
1877	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1878	 * is not cleared simply by protecting pages off.
1879	 */
1880
1881	if ((bp->b_flags & B_VMIO) == 0)
1882		return;
1883
1884	object = bp->b_pages[0]->object;
1885
1886	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1887		printf("Warning: object %p writeable but not mightbedirty\n", object);
1888	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1889		printf("Warning: object %p mightbedirty but not writeable\n", object);
1890
1891	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1892		vm_offset_t boffset;
1893		vm_offset_t eoffset;
1894
1895		/*
1896		 * test the pages to see if they have been modified directly
1897		 * by users through the VM system.
1898		 */
1899		for (i = 0; i < bp->b_npages; i++) {
1900			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1901			vm_page_test_dirty(bp->b_pages[i]);
1902		}
1903
1904		/*
1905		 * Calculate the encompassing dirty range, boffset and eoffset,
1906		 * (eoffset - boffset) bytes.
1907		 */
1908
1909		for (i = 0; i < bp->b_npages; i++) {
1910			if (bp->b_pages[i]->dirty)
1911				break;
1912		}
1913		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1914
1915		for (i = bp->b_npages - 1; i >= 0; --i) {
1916			if (bp->b_pages[i]->dirty) {
1917				break;
1918			}
1919		}
1920		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1921
1922		/*
1923		 * Fit it to the buffer.
1924		 */
1925
1926		if (eoffset > bp->b_bcount)
1927			eoffset = bp->b_bcount;
1928
1929		/*
1930		 * If we have a good dirty range, merge with the existing
1931		 * dirty range.
1932		 */
1933
1934		if (boffset < eoffset) {
1935			if (bp->b_dirtyoff > boffset)
1936				bp->b_dirtyoff = boffset;
1937			if (bp->b_dirtyend < eoffset)
1938				bp->b_dirtyend = eoffset;
1939		}
1940	}
1941}
1942
1943/*
1944 *	getblk:
1945 *
1946 *	Get a block given a specified block and offset into a file/device.
1947 *	The buffers B_DONE bit will be cleared on return, making it almost
1948 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
1949 *	return.  The caller should clear B_INVAL prior to initiating a
1950 *	READ.
1951 *
1952 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
1953 *	an existing buffer.
1954 *
1955 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
1956 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
1957 *	and then cleared based on the backing VM.  If the previous buffer is
1958 *	non-0-sized but invalid, B_CACHE will be cleared.
1959 *
1960 *	If getblk() must create a new buffer, the new buffer is returned with
1961 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
1962 *	case it is returned with B_INVAL clear and B_CACHE set based on the
1963 *	backing VM.
1964 *
1965 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
1966 *	B_CACHE bit is clear.
1967 *
1968 *	What this means, basically, is that the caller should use B_CACHE to
1969 *	determine whether the buffer is fully valid or not and should clear
1970 *	B_INVAL prior to issuing a read.  If the caller intends to validate
1971 *	the buffer by loading its data area with something, the caller needs
1972 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
1973 *	the caller should set B_CACHE ( as an optimization ), else the caller
1974 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
1975 *	a write attempt or if it was a successfull read.  If the caller
1976 *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
1977 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
1978 */
1979struct buf *
1980getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1981{
1982	struct buf *bp;
1983	int s;
1984	struct bufhashhdr *bh;
1985
1986#if !defined(MAX_PERF)
1987	if (size > MAXBSIZE)
1988		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1989#endif
1990
1991	s = splbio();
1992loop:
1993	/*
1994	 * Block if we are low on buffers.   Certain processes are allowed
1995	 * to completely exhaust the buffer cache.
1996         *
1997         * If this check ever becomes a bottleneck it may be better to
1998         * move it into the else, when gbincore() fails.  At the moment
1999         * it isn't a problem.
2000         */
2001	if (!curproc || (curproc->p_flag & P_BUFEXHAUST)) {
2002		if (numfreebuffers == 0) {
2003			if (!curproc)
2004				return NULL;
2005			needsbuffer |= VFS_BIO_NEED_ANY;
2006			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
2007			    slptimeo);
2008		}
2009	} else if (numfreebuffers < lofreebuffers) {
2010		waitfreebuffers(slpflag, slptimeo);
2011	}
2012
2013	if ((bp = gbincore(vp, blkno))) {
2014		/*
2015		 * Buffer is in-core.  If the buffer is not busy, it must
2016		 * be on a queue.
2017		 */
2018
2019		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2020			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2021			    "getblk", slpflag, slptimeo) == ENOLCK)
2022				goto loop;
2023			splx(s);
2024			return (struct buf *) NULL;
2025		}
2026
2027		/*
2028		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2029		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2030		 * and for a VMIO buffer B_CACHE is adjusted according to the
2031		 * backing VM cache.
2032		 */
2033		if (bp->b_flags & B_INVAL)
2034			bp->b_flags &= ~B_CACHE;
2035		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2036			bp->b_flags |= B_CACHE;
2037		bremfree(bp);
2038
2039		/*
2040		 * check for size inconsistancies for non-VMIO case.
2041		 */
2042
2043		if (bp->b_bcount != size) {
2044			if ((bp->b_flags & B_VMIO) == 0 ||
2045			    (size > bp->b_kvasize)) {
2046				if (bp->b_flags & B_DELWRI) {
2047					bp->b_flags |= B_NOCACHE;
2048					VOP_BWRITE(bp->b_vp, bp);
2049				} else {
2050					if ((bp->b_flags & B_VMIO) &&
2051					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2052						bp->b_flags |= B_RELBUF;
2053						brelse(bp);
2054					} else {
2055						bp->b_flags |= B_NOCACHE;
2056						VOP_BWRITE(bp->b_vp, bp);
2057					}
2058				}
2059				goto loop;
2060			}
2061		}
2062
2063		/*
2064		 * If the size is inconsistant in the VMIO case, we can resize
2065		 * the buffer.  This might lead to B_CACHE getting set or
2066		 * cleared.  If the size has not changed, B_CACHE remains
2067		 * unchanged from its previous state.
2068		 */
2069
2070		if (bp->b_bcount != size)
2071			allocbuf(bp, size);
2072
2073		KASSERT(bp->b_offset != NOOFFSET,
2074		    ("getblk: no buffer offset"));
2075
2076		/*
2077		 * A buffer with B_DELWRI set and B_CACHE clear must
2078		 * be committed before we can return the buffer in
2079		 * order to prevent the caller from issuing a read
2080		 * ( due to B_CACHE not being set ) and overwriting
2081		 * it.
2082		 *
2083		 * Most callers, including NFS and FFS, need this to
2084		 * operate properly either because they assume they
2085		 * can issue a read if B_CACHE is not set, or because
2086		 * ( for example ) an uncached B_DELWRI might loop due
2087		 * to softupdates re-dirtying the buffer.  In the latter
2088		 * case, B_CACHE is set after the first write completes,
2089		 * preventing further loops.
2090		 */
2091
2092		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2093			VOP_BWRITE(bp->b_vp, bp);
2094			goto loop;
2095		}
2096
2097		splx(s);
2098		bp->b_flags &= ~B_DONE;
2099	} else {
2100		/*
2101		 * Buffer is not in-core, create new buffer.  The buffer
2102		 * returned by getnewbuf() is locked.  Note that the returned
2103		 * buffer is also considered valid (not marked B_INVAL).
2104		 */
2105		int bsize, maxsize, vmio;
2106		off_t offset;
2107
2108		if (vp->v_type == VBLK)
2109			bsize = DEV_BSIZE;
2110		else if (vp->v_mountedhere)
2111			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2112		else if (vp->v_mount)
2113			bsize = vp->v_mount->mnt_stat.f_iosize;
2114		else
2115			bsize = size;
2116
2117		offset = (off_t)blkno * bsize;
2118		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
2119		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2120		maxsize = imax(maxsize, bsize);
2121
2122		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2123			if (slpflag || slptimeo) {
2124				splx(s);
2125				return NULL;
2126			}
2127			goto loop;
2128		}
2129
2130		/*
2131		 * This code is used to make sure that a buffer is not
2132		 * created while the getnewbuf routine is blocked.
2133		 * This can be a problem whether the vnode is locked or not.
2134		 * If the buffer is created out from under us, we have to
2135		 * throw away the one we just created.  There is now window
2136		 * race because we are safely running at splbio() from the
2137		 * point of the duplicate buffer creation through to here,
2138		 * and we've locked the buffer.
2139		 */
2140		if (gbincore(vp, blkno)) {
2141			bp->b_flags |= B_INVAL;
2142			brelse(bp);
2143			goto loop;
2144		}
2145
2146		/*
2147		 * Insert the buffer into the hash, so that it can
2148		 * be found by incore.
2149		 */
2150		bp->b_blkno = bp->b_lblkno = blkno;
2151		bp->b_offset = offset;
2152
2153		bgetvp(vp, bp);
2154		LIST_REMOVE(bp, b_hash);
2155		bh = bufhash(vp, blkno);
2156		LIST_INSERT_HEAD(bh, bp, b_hash);
2157
2158		/*
2159		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2160		 * buffer size starts out as 0, B_CACHE will be set by
2161		 * allocbuf() for the VMIO case prior to it testing the
2162		 * backing store for validity.
2163		 */
2164
2165		if (vmio) {
2166			bp->b_flags |= B_VMIO;
2167#if defined(VFS_BIO_DEBUG)
2168			if (vp->v_type != VREG && vp->v_type != VBLK)
2169				printf("getblk: vmioing file type %d???\n", vp->v_type);
2170#endif
2171		} else {
2172			bp->b_flags &= ~B_VMIO;
2173		}
2174
2175		allocbuf(bp, size);
2176
2177		splx(s);
2178		bp->b_flags &= ~B_DONE;
2179	}
2180	return (bp);
2181}
2182
2183/*
2184 * Get an empty, disassociated buffer of given size.  The buffer is initially
2185 * set to B_INVAL.
2186 */
2187struct buf *
2188geteblk(int size)
2189{
2190	struct buf *bp;
2191	int s;
2192
2193	s = splbio();
2194	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
2195	splx(s);
2196	allocbuf(bp, size);
2197	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2198	return (bp);
2199}
2200
2201
2202/*
2203 * This code constitutes the buffer memory from either anonymous system
2204 * memory (in the case of non-VMIO operations) or from an associated
2205 * VM object (in the case of VMIO operations).  This code is able to
2206 * resize a buffer up or down.
2207 *
2208 * Note that this code is tricky, and has many complications to resolve
2209 * deadlock or inconsistant data situations.  Tread lightly!!!
2210 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2211 * the caller.  Calling this code willy nilly can result in the loss of data.
2212 *
2213 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2214 * B_CACHE for the non-VMIO case.
2215 */
2216
2217int
2218allocbuf(struct buf *bp, int size)
2219{
2220	int newbsize, mbsize;
2221	int i;
2222
2223#if !defined(MAX_PERF)
2224	if (BUF_REFCNT(bp) == 0)
2225		panic("allocbuf: buffer not busy");
2226
2227	if (bp->b_kvasize < size)
2228		panic("allocbuf: buffer too small");
2229#endif
2230
2231	if ((bp->b_flags & B_VMIO) == 0) {
2232		caddr_t origbuf;
2233		int origbufsize;
2234		/*
2235		 * Just get anonymous memory from the kernel.  Don't
2236		 * mess with B_CACHE.
2237		 */
2238		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2239#if !defined(NO_B_MALLOC)
2240		if (bp->b_flags & B_MALLOC)
2241			newbsize = mbsize;
2242		else
2243#endif
2244			newbsize = round_page(size);
2245
2246		if (newbsize < bp->b_bufsize) {
2247#if !defined(NO_B_MALLOC)
2248			/*
2249			 * malloced buffers are not shrunk
2250			 */
2251			if (bp->b_flags & B_MALLOC) {
2252				if (newbsize) {
2253					bp->b_bcount = size;
2254				} else {
2255					free(bp->b_data, M_BIOBUF);
2256					bufspace -= bp->b_bufsize;
2257					bufmallocspace -= bp->b_bufsize;
2258					runningbufspace -= bp->b_bufsize;
2259					if (bp->b_bufsize)
2260						bufspacewakeup();
2261					bp->b_data = bp->b_kvabase;
2262					bp->b_bufsize = 0;
2263					bp->b_bcount = 0;
2264					bp->b_flags &= ~B_MALLOC;
2265				}
2266				return 1;
2267			}
2268#endif
2269			vm_hold_free_pages(
2270			    bp,
2271			    (vm_offset_t) bp->b_data + newbsize,
2272			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2273		} else if (newbsize > bp->b_bufsize) {
2274#if !defined(NO_B_MALLOC)
2275			/*
2276			 * We only use malloced memory on the first allocation.
2277			 * and revert to page-allocated memory when the buffer
2278			 * grows.
2279			 */
2280			if ( (bufmallocspace < maxbufmallocspace) &&
2281				(bp->b_bufsize == 0) &&
2282				(mbsize <= PAGE_SIZE/2)) {
2283
2284				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2285				bp->b_bufsize = mbsize;
2286				bp->b_bcount = size;
2287				bp->b_flags |= B_MALLOC;
2288				bufspace += mbsize;
2289				bufmallocspace += mbsize;
2290				runningbufspace += bp->b_bufsize;
2291				return 1;
2292			}
2293#endif
2294			origbuf = NULL;
2295			origbufsize = 0;
2296#if !defined(NO_B_MALLOC)
2297			/*
2298			 * If the buffer is growing on its other-than-first allocation,
2299			 * then we revert to the page-allocation scheme.
2300			 */
2301			if (bp->b_flags & B_MALLOC) {
2302				origbuf = bp->b_data;
2303				origbufsize = bp->b_bufsize;
2304				bp->b_data = bp->b_kvabase;
2305				bufspace -= bp->b_bufsize;
2306				bufmallocspace -= bp->b_bufsize;
2307				runningbufspace -= bp->b_bufsize;
2308				if (bp->b_bufsize)
2309					bufspacewakeup();
2310				bp->b_bufsize = 0;
2311				bp->b_flags &= ~B_MALLOC;
2312				newbsize = round_page(newbsize);
2313			}
2314#endif
2315			vm_hold_load_pages(
2316			    bp,
2317			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2318			    (vm_offset_t) bp->b_data + newbsize);
2319#if !defined(NO_B_MALLOC)
2320			if (origbuf) {
2321				bcopy(origbuf, bp->b_data, origbufsize);
2322				free(origbuf, M_BIOBUF);
2323			}
2324#endif
2325		}
2326	} else {
2327		vm_page_t m;
2328		int desiredpages;
2329
2330		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2331		desiredpages = (size == 0) ? 0 :
2332			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2333
2334#if !defined(NO_B_MALLOC)
2335		if (bp->b_flags & B_MALLOC)
2336			panic("allocbuf: VMIO buffer can't be malloced");
2337#endif
2338		/*
2339		 * Set B_CACHE initially if buffer is 0 length or will become
2340		 * 0-length.
2341		 */
2342		if (size == 0 || bp->b_bufsize == 0)
2343			bp->b_flags |= B_CACHE;
2344
2345		if (newbsize < bp->b_bufsize) {
2346			/*
2347			 * DEV_BSIZE aligned new buffer size is less then the
2348			 * DEV_BSIZE aligned existing buffer size.  Figure out
2349			 * if we have to remove any pages.
2350			 */
2351			if (desiredpages < bp->b_npages) {
2352				for (i = desiredpages; i < bp->b_npages; i++) {
2353					/*
2354					 * the page is not freed here -- it
2355					 * is the responsibility of
2356					 * vnode_pager_setsize
2357					 */
2358					m = bp->b_pages[i];
2359					KASSERT(m != bogus_page,
2360					    ("allocbuf: bogus page found"));
2361					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2362						;
2363
2364					bp->b_pages[i] = NULL;
2365					vm_page_unwire(m, 0);
2366				}
2367				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2368				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2369				bp->b_npages = desiredpages;
2370			}
2371		} else if (size > bp->b_bcount) {
2372			/*
2373			 * We are growing the buffer, possibly in a
2374			 * byte-granular fashion.
2375			 */
2376			struct vnode *vp;
2377			vm_object_t obj;
2378			vm_offset_t toff;
2379			vm_offset_t tinc;
2380
2381			/*
2382			 * Step 1, bring in the VM pages from the object,
2383			 * allocating them if necessary.  We must clear
2384			 * B_CACHE if these pages are not valid for the
2385			 * range covered by the buffer.
2386			 */
2387
2388			vp = bp->b_vp;
2389			obj = vp->v_object;
2390
2391			while (bp->b_npages < desiredpages) {
2392				vm_page_t m;
2393				vm_pindex_t pi;
2394
2395				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2396				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2397					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
2398					if (m == NULL) {
2399						VM_WAIT;
2400						vm_pageout_deficit += desiredpages - bp->b_npages;
2401					} else {
2402						vm_page_wire(m);
2403						vm_page_wakeup(m);
2404						bp->b_flags &= ~B_CACHE;
2405						bp->b_pages[bp->b_npages] = m;
2406						++bp->b_npages;
2407					}
2408					continue;
2409				}
2410
2411				/*
2412				 * We found a page.  If we have to sleep on it,
2413				 * retry because it might have gotten freed out
2414				 * from under us.
2415				 *
2416				 * We can only test PG_BUSY here.  Blocking on
2417				 * m->busy might lead to a deadlock:
2418				 *
2419				 *  vm_fault->getpages->cluster_read->allocbuf
2420				 *
2421				 */
2422
2423				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2424					continue;
2425
2426				/*
2427				 * We have a good page.  Should we wakeup the
2428				 * page daemon?
2429				 */
2430				if ((curproc != pageproc) &&
2431				    ((m->queue - m->pc) == PQ_CACHE) &&
2432				    ((cnt.v_free_count + cnt.v_cache_count) <
2433					(cnt.v_free_min + cnt.v_cache_min))) {
2434					pagedaemon_wakeup();
2435				}
2436				vm_page_flag_clear(m, PG_ZERO);
2437				vm_page_wire(m);
2438				bp->b_pages[bp->b_npages] = m;
2439				++bp->b_npages;
2440			}
2441
2442			/*
2443			 * Step 2.  We've loaded the pages into the buffer,
2444			 * we have to figure out if we can still have B_CACHE
2445			 * set.  Note that B_CACHE is set according to the
2446			 * byte-granular range ( bcount and size ), new the
2447			 * aligned range ( newbsize ).
2448			 *
2449			 * The VM test is against m->valid, which is DEV_BSIZE
2450			 * aligned.  Needless to say, the validity of the data
2451			 * needs to also be DEV_BSIZE aligned.  Note that this
2452			 * fails with NFS if the server or some other client
2453			 * extends the file's EOF.  If our buffer is resized,
2454			 * B_CACHE may remain set! XXX
2455			 */
2456
2457			toff = bp->b_bcount;
2458			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2459
2460			while ((bp->b_flags & B_CACHE) && toff < size) {
2461				vm_pindex_t pi;
2462
2463				if (tinc > (size - toff))
2464					tinc = size - toff;
2465
2466				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2467				    PAGE_SHIFT;
2468
2469				vfs_buf_test_cache(
2470				    bp,
2471				    bp->b_offset,
2472				    toff,
2473				    tinc,
2474				    bp->b_pages[pi]
2475				);
2476				toff += tinc;
2477				tinc = PAGE_SIZE;
2478			}
2479
2480			/*
2481			 * Step 3, fixup the KVM pmap.  Remember that
2482			 * bp->b_data is relative to bp->b_offset, but
2483			 * bp->b_offset may be offset into the first page.
2484			 */
2485
2486			bp->b_data = (caddr_t)
2487			    trunc_page((vm_offset_t)bp->b_data);
2488			pmap_qenter(
2489			    (vm_offset_t)bp->b_data,
2490			    bp->b_pages,
2491			    bp->b_npages
2492			);
2493			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2494			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2495		}
2496	}
2497	if (bp->b_flags & B_VMIO)
2498		vmiospace += (newbsize - bp->b_bufsize);
2499	bufspace += (newbsize - bp->b_bufsize);
2500	runningbufspace += (newbsize - bp->b_bufsize);
2501	if (newbsize < bp->b_bufsize)
2502		bufspacewakeup();
2503	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2504	bp->b_bcount = size;		/* requested buffer size	*/
2505	return 1;
2506}
2507
2508/*
2509 *	biowait:
2510 *
2511 *	Wait for buffer I/O completion, returning error status.  The buffer
2512 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2513 *	error and cleared.
2514 */
2515int
2516biowait(register struct buf * bp)
2517{
2518	int s;
2519
2520	s = splbio();
2521	while ((bp->b_flags & B_DONE) == 0) {
2522#if defined(NO_SCHEDULE_MODS)
2523		tsleep(bp, PRIBIO, "biowait", 0);
2524#else
2525		if (bp->b_flags & B_READ)
2526			tsleep(bp, PRIBIO, "biord", 0);
2527		else
2528			tsleep(bp, PRIBIO, "biowr", 0);
2529#endif
2530	}
2531	splx(s);
2532	if (bp->b_flags & B_EINTR) {
2533		bp->b_flags &= ~B_EINTR;
2534		return (EINTR);
2535	}
2536	if (bp->b_flags & B_ERROR) {
2537		return (bp->b_error ? bp->b_error : EIO);
2538	} else {
2539		return (0);
2540	}
2541}
2542
2543/*
2544 *	biodone:
2545 *
2546 *	Finish I/O on a buffer, optionally calling a completion function.
2547 *	This is usually called from an interrupt so process blocking is
2548 *	not allowed.
2549 *
2550 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2551 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2552 *	assuming B_INVAL is clear.
2553 *
2554 *	For the VMIO case, we set B_CACHE if the op was a read and no
2555 *	read error occured, or if the op was a write.  B_CACHE is never
2556 *	set if the buffer is invalid or otherwise uncacheable.
2557 *
2558 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2559 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2560 *	in the biodone routine.
2561 */
2562void
2563biodone(register struct buf * bp)
2564{
2565	int s;
2566
2567	s = splbio();
2568
2569	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2570	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2571
2572	bp->b_flags |= B_DONE;
2573
2574	if (bp->b_flags & B_FREEBUF) {
2575		brelse(bp);
2576		splx(s);
2577		return;
2578	}
2579
2580	if ((bp->b_flags & B_READ) == 0) {
2581		vwakeup(bp);
2582	}
2583
2584	/* call optional completion function if requested */
2585	if (bp->b_flags & B_CALL) {
2586		bp->b_flags &= ~B_CALL;
2587		(*bp->b_iodone) (bp);
2588		splx(s);
2589		return;
2590	}
2591	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2592		(*bioops.io_complete)(bp);
2593
2594	if (bp->b_flags & B_VMIO) {
2595		int i, resid;
2596		vm_ooffset_t foff;
2597		vm_page_t m;
2598		vm_object_t obj;
2599		int iosize;
2600		struct vnode *vp = bp->b_vp;
2601
2602		obj = vp->v_object;
2603
2604#if defined(VFS_BIO_DEBUG)
2605		if (vp->v_usecount == 0) {
2606			panic("biodone: zero vnode ref count");
2607		}
2608
2609		if (vp->v_object == NULL) {
2610			panic("biodone: missing VM object");
2611		}
2612
2613		if ((vp->v_flag & VOBJBUF) == 0) {
2614			panic("biodone: vnode is not setup for merged cache");
2615		}
2616#endif
2617
2618		foff = bp->b_offset;
2619		KASSERT(bp->b_offset != NOOFFSET,
2620		    ("biodone: no buffer offset"));
2621
2622#if !defined(MAX_PERF)
2623		if (!obj) {
2624			panic("biodone: no object");
2625		}
2626#endif
2627#if defined(VFS_BIO_DEBUG)
2628		if (obj->paging_in_progress < bp->b_npages) {
2629			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2630			    obj->paging_in_progress, bp->b_npages);
2631		}
2632#endif
2633
2634		/*
2635		 * Set B_CACHE if the op was a normal read and no error
2636		 * occured.  B_CACHE is set for writes in the b*write()
2637		 * routines.
2638		 */
2639		iosize = bp->b_bcount - bp->b_resid;
2640		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2641			bp->b_flags |= B_CACHE;
2642		}
2643
2644		for (i = 0; i < bp->b_npages; i++) {
2645			int bogusflag = 0;
2646			m = bp->b_pages[i];
2647			if (m == bogus_page) {
2648				bogusflag = 1;
2649				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2650				if (!m) {
2651#if defined(VFS_BIO_DEBUG)
2652					printf("biodone: page disappeared\n");
2653#endif
2654					vm_object_pip_subtract(obj, 1);
2655					bp->b_flags &= ~B_CACHE;
2656					continue;
2657				}
2658				bp->b_pages[i] = m;
2659				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2660			}
2661#if defined(VFS_BIO_DEBUG)
2662			if (OFF_TO_IDX(foff) != m->pindex) {
2663				printf(
2664"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2665				    (unsigned long)foff, m->pindex);
2666			}
2667#endif
2668			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2669			if (resid > iosize)
2670				resid = iosize;
2671
2672			/*
2673			 * In the write case, the valid and clean bits are
2674			 * already changed correctly ( see bdwrite() ), so we
2675			 * only need to do this here in the read case.
2676			 */
2677			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2678				vfs_page_set_valid(bp, foff, i, m);
2679			}
2680			vm_page_flag_clear(m, PG_ZERO);
2681
2682			/*
2683			 * when debugging new filesystems or buffer I/O methods, this
2684			 * is the most common error that pops up.  if you see this, you
2685			 * have not set the page busy flag correctly!!!
2686			 */
2687			if (m->busy == 0) {
2688#if !defined(MAX_PERF)
2689				printf("biodone: page busy < 0, "
2690				    "pindex: %d, foff: 0x(%x,%x), "
2691				    "resid: %d, index: %d\n",
2692				    (int) m->pindex, (int)(foff >> 32),
2693						(int) foff & 0xffffffff, resid, i);
2694#endif
2695				if (vp->v_type != VBLK)
2696#if !defined(MAX_PERF)
2697					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2698					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2699					    (int) bp->b_lblkno,
2700					    bp->b_flags, bp->b_npages);
2701				else
2702					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2703					    (int) bp->b_lblkno,
2704					    bp->b_flags, bp->b_npages);
2705				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2706				    m->valid, m->dirty, m->wire_count);
2707#endif
2708				panic("biodone: page busy < 0\n");
2709			}
2710			vm_page_io_finish(m);
2711			vm_object_pip_subtract(obj, 1);
2712			foff += resid;
2713			iosize -= resid;
2714		}
2715		if (obj)
2716			vm_object_pip_wakeupn(obj, 0);
2717	}
2718	/*
2719	 * For asynchronous completions, release the buffer now. The brelse
2720	 * will do a wakeup there if necessary - so no need to do a wakeup
2721	 * here in the async case. The sync case always needs to do a wakeup.
2722	 */
2723
2724	if (bp->b_flags & B_ASYNC) {
2725		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2726			brelse(bp);
2727		else
2728			bqrelse(bp);
2729	} else {
2730		wakeup(bp);
2731	}
2732	splx(s);
2733}
2734
2735/*
2736 * This routine is called in lieu of iodone in the case of
2737 * incomplete I/O.  This keeps the busy status for pages
2738 * consistant.
2739 */
2740void
2741vfs_unbusy_pages(struct buf * bp)
2742{
2743	int i;
2744
2745	if (bp->b_flags & B_VMIO) {
2746		struct vnode *vp = bp->b_vp;
2747		vm_object_t obj = vp->v_object;
2748
2749		for (i = 0; i < bp->b_npages; i++) {
2750			vm_page_t m = bp->b_pages[i];
2751
2752			if (m == bogus_page) {
2753				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2754#if !defined(MAX_PERF)
2755				if (!m) {
2756					panic("vfs_unbusy_pages: page missing\n");
2757				}
2758#endif
2759				bp->b_pages[i] = m;
2760				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2761			}
2762			vm_object_pip_subtract(obj, 1);
2763			vm_page_flag_clear(m, PG_ZERO);
2764			vm_page_io_finish(m);
2765		}
2766		vm_object_pip_wakeupn(obj, 0);
2767	}
2768}
2769
2770/*
2771 * vfs_page_set_valid:
2772 *
2773 *	Set the valid bits in a page based on the supplied offset.   The
2774 *	range is restricted to the buffer's size.
2775 *
2776 *	This routine is typically called after a read completes.
2777 */
2778static void
2779vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2780{
2781	vm_ooffset_t soff, eoff;
2782
2783	/*
2784	 * Start and end offsets in buffer.  eoff - soff may not cross a
2785	 * page boundry or cross the end of the buffer.  The end of the
2786	 * buffer, in this case, is our file EOF, not the allocation size
2787	 * of the buffer.
2788	 */
2789	soff = off;
2790	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2791	if (eoff > bp->b_offset + bp->b_bcount)
2792		eoff = bp->b_offset + bp->b_bcount;
2793
2794	/*
2795	 * Set valid range.  This is typically the entire buffer and thus the
2796	 * entire page.
2797	 */
2798	if (eoff > soff) {
2799		vm_page_set_validclean(
2800		    m,
2801		   (vm_offset_t) (soff & PAGE_MASK),
2802		   (vm_offset_t) (eoff - soff)
2803		);
2804	}
2805}
2806
2807/*
2808 * This routine is called before a device strategy routine.
2809 * It is used to tell the VM system that paging I/O is in
2810 * progress, and treat the pages associated with the buffer
2811 * almost as being PG_BUSY.  Also the object paging_in_progress
2812 * flag is handled to make sure that the object doesn't become
2813 * inconsistant.
2814 *
2815 * Since I/O has not been initiated yet, certain buffer flags
2816 * such as B_ERROR or B_INVAL may be in an inconsistant state
2817 * and should be ignored.
2818 */
2819void
2820vfs_busy_pages(struct buf * bp, int clear_modify)
2821{
2822	int i, bogus;
2823
2824	if (bp->b_flags & B_VMIO) {
2825		struct vnode *vp = bp->b_vp;
2826		vm_object_t obj = vp->v_object;
2827		vm_ooffset_t foff;
2828
2829		foff = bp->b_offset;
2830		KASSERT(bp->b_offset != NOOFFSET,
2831		    ("vfs_busy_pages: no buffer offset"));
2832		vfs_setdirty(bp);
2833
2834retry:
2835		for (i = 0; i < bp->b_npages; i++) {
2836			vm_page_t m = bp->b_pages[i];
2837			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2838				goto retry;
2839		}
2840
2841		bogus = 0;
2842		for (i = 0; i < bp->b_npages; i++) {
2843			vm_page_t m = bp->b_pages[i];
2844
2845			vm_page_flag_clear(m, PG_ZERO);
2846			if ((bp->b_flags & B_CLUSTER) == 0) {
2847				vm_object_pip_add(obj, 1);
2848				vm_page_io_start(m);
2849			}
2850
2851			/*
2852			 * When readying a buffer for a read ( i.e
2853			 * clear_modify == 0 ), it is important to do
2854			 * bogus_page replacement for valid pages in
2855			 * partially instantiated buffers.  Partially
2856			 * instantiated buffers can, in turn, occur when
2857			 * reconstituting a buffer from its VM backing store
2858			 * base.  We only have to do this if B_CACHE is
2859			 * clear ( which causes the I/O to occur in the
2860			 * first place ).  The replacement prevents the read
2861			 * I/O from overwriting potentially dirty VM-backed
2862			 * pages.  XXX bogus page replacement is, uh, bogus.
2863			 * It may not work properly with small-block devices.
2864			 * We need to find a better way.
2865			 */
2866
2867			vm_page_protect(m, VM_PROT_NONE);
2868			if (clear_modify)
2869				vfs_page_set_valid(bp, foff, i, m);
2870			else if (m->valid == VM_PAGE_BITS_ALL &&
2871				(bp->b_flags & B_CACHE) == 0) {
2872				bp->b_pages[i] = bogus_page;
2873				bogus++;
2874			}
2875			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2876		}
2877		if (bogus)
2878			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2879	}
2880}
2881
2882/*
2883 * Tell the VM system that the pages associated with this buffer
2884 * are clean.  This is used for delayed writes where the data is
2885 * going to go to disk eventually without additional VM intevention.
2886 *
2887 * Note that while we only really need to clean through to b_bcount, we
2888 * just go ahead and clean through to b_bufsize.
2889 */
2890static void
2891vfs_clean_pages(struct buf * bp)
2892{
2893	int i;
2894
2895	if (bp->b_flags & B_VMIO) {
2896		vm_ooffset_t foff;
2897
2898		foff = bp->b_offset;
2899		KASSERT(bp->b_offset != NOOFFSET,
2900		    ("vfs_clean_pages: no buffer offset"));
2901		for (i = 0; i < bp->b_npages; i++) {
2902			vm_page_t m = bp->b_pages[i];
2903			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2904			vm_ooffset_t eoff = noff;
2905
2906			if (eoff > bp->b_offset + bp->b_bufsize)
2907				eoff = bp->b_offset + bp->b_bufsize;
2908			vfs_page_set_valid(bp, foff, i, m);
2909			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2910			foff = noff;
2911		}
2912	}
2913}
2914
2915/*
2916 *	vfs_bio_set_validclean:
2917 *
2918 *	Set the range within the buffer to valid and clean.  The range is
2919 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
2920 *	itself may be offset from the beginning of the first page.
2921 */
2922
2923void
2924vfs_bio_set_validclean(struct buf *bp, int base, int size)
2925{
2926	if (bp->b_flags & B_VMIO) {
2927		int i;
2928		int n;
2929
2930		/*
2931		 * Fixup base to be relative to beginning of first page.
2932		 * Set initial n to be the maximum number of bytes in the
2933		 * first page that can be validated.
2934		 */
2935
2936		base += (bp->b_offset & PAGE_MASK);
2937		n = PAGE_SIZE - (base & PAGE_MASK);
2938
2939		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
2940			vm_page_t m = bp->b_pages[i];
2941
2942			if (n > size)
2943				n = size;
2944
2945			vm_page_set_validclean(m, base & PAGE_MASK, n);
2946			base += n;
2947			size -= n;
2948			n = PAGE_SIZE;
2949		}
2950	}
2951}
2952
2953/*
2954 *	vfs_bio_clrbuf:
2955 *
2956 *	clear a buffer.  This routine essentially fakes an I/O, so we need
2957 *	to clear B_ERROR and B_INVAL.
2958 *
2959 *	Note that while we only theoretically need to clear through b_bcount,
2960 *	we go ahead and clear through b_bufsize.
2961 */
2962
2963void
2964vfs_bio_clrbuf(struct buf *bp) {
2965	int i, mask = 0;
2966	caddr_t sa, ea;
2967	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2968		bp->b_flags &= ~(B_INVAL|B_ERROR);
2969		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2970		    (bp->b_offset & PAGE_MASK) == 0) {
2971			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2972			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2973			    ((bp->b_pages[0]->valid & mask) != mask)) {
2974				bzero(bp->b_data, bp->b_bufsize);
2975			}
2976			bp->b_pages[0]->valid |= mask;
2977			bp->b_resid = 0;
2978			return;
2979		}
2980		ea = sa = bp->b_data;
2981		for(i=0;i<bp->b_npages;i++,sa=ea) {
2982			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
2983			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2984			ea = (caddr_t)(vm_offset_t)ulmin(
2985			    (u_long)(vm_offset_t)ea,
2986			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
2987			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2988			if ((bp->b_pages[i]->valid & mask) == mask)
2989				continue;
2990			if ((bp->b_pages[i]->valid & mask) == 0) {
2991				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2992					bzero(sa, ea - sa);
2993				}
2994			} else {
2995				for (; sa < ea; sa += DEV_BSIZE, j++) {
2996					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2997						(bp->b_pages[i]->valid & (1<<j)) == 0)
2998						bzero(sa, DEV_BSIZE);
2999				}
3000			}
3001			bp->b_pages[i]->valid |= mask;
3002			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3003		}
3004		bp->b_resid = 0;
3005	} else {
3006		clrbuf(bp);
3007	}
3008}
3009
3010/*
3011 * vm_hold_load_pages and vm_hold_unload pages get pages into
3012 * a buffers address space.  The pages are anonymous and are
3013 * not associated with a file object.
3014 */
3015void
3016vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3017{
3018	vm_offset_t pg;
3019	vm_page_t p;
3020	int index;
3021
3022	to = round_page(to);
3023	from = round_page(from);
3024	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3025
3026	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3027
3028tryagain:
3029
3030		p = vm_page_alloc(kernel_object,
3031			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3032		    VM_ALLOC_NORMAL);
3033		if (!p) {
3034			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3035			VM_WAIT;
3036			goto tryagain;
3037		}
3038		vm_page_wire(p);
3039		p->valid = VM_PAGE_BITS_ALL;
3040		vm_page_flag_clear(p, PG_ZERO);
3041		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3042		bp->b_pages[index] = p;
3043		vm_page_wakeup(p);
3044	}
3045	bp->b_npages = index;
3046}
3047
3048void
3049vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3050{
3051	vm_offset_t pg;
3052	vm_page_t p;
3053	int index, newnpages;
3054
3055	from = round_page(from);
3056	to = round_page(to);
3057	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3058
3059	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3060		p = bp->b_pages[index];
3061		if (p && (index < bp->b_npages)) {
3062#if !defined(MAX_PERF)
3063			if (p->busy) {
3064				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3065					bp->b_blkno, bp->b_lblkno);
3066			}
3067#endif
3068			bp->b_pages[index] = NULL;
3069			pmap_kremove(pg);
3070			vm_page_busy(p);
3071			vm_page_unwire(p, 0);
3072			vm_page_free(p);
3073		}
3074	}
3075	bp->b_npages = newnpages;
3076}
3077
3078
3079#include "opt_ddb.h"
3080#ifdef DDB
3081#include <ddb/ddb.h>
3082
3083DB_SHOW_COMMAND(buffer, db_show_buffer)
3084{
3085	/* get args */
3086	struct buf *bp = (struct buf *)addr;
3087
3088	if (!have_addr) {
3089		db_printf("usage: show buffer <addr>\n");
3090		return;
3091	}
3092
3093	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3094	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3095		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3096		  "b_blkno = %d, b_pblkno = %d\n",
3097		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3098		  major(bp->b_dev), minor(bp->b_dev),
3099		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3100	if (bp->b_npages) {
3101		int i;
3102		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3103		for (i = 0; i < bp->b_npages; i++) {
3104			vm_page_t m;
3105			m = bp->b_pages[i];
3106			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3107			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3108			if ((i + 1) < bp->b_npages)
3109				db_printf(",");
3110		}
3111		db_printf("\n");
3112	}
3113}
3114#endif /* DDB */
3115