vfs_bio.c revision 52452
1285809Sscottl/*
2285809Sscottl * Copyright (c) 1994,1997 John S. Dyson
3285809Sscottl * All rights reserved.
4285809Sscottl *
5285809Sscottl * Redistribution and use in source and binary forms, with or without
6285809Sscottl * modification, are permitted provided that the following conditions
7285809Sscottl * are met:
8285809Sscottl * 1. Redistributions of source code must retain the above copyright
9285809Sscottl *    notice immediately at the beginning of the file, without modification,
10285809Sscottl *    this list of conditions, and the following disclaimer.
11285809Sscottl * 2. Absolutely no warranty of function or purpose is made by the author
12285809Sscottl *		John S. Dyson.
13285809Sscottl *
14285809Sscottl * $FreeBSD: head/sys/kern/vfs_bio.c 52452 1999-10-24 03:27:28Z dillon $
15285809Sscottl */
16285809Sscottl
17285809Sscottl/*
18285809Sscottl * this file contains a new buffer I/O scheme implementing a coherent
19285809Sscottl * VM object and buffer cache scheme.  Pains have been taken to make
20285809Sscottl * sure that the performance degradation associated with schemes such
21285809Sscottl * as this is not realized.
22285809Sscottl *
23285809Sscottl * Author:  John S. Dyson
24285809Sscottl * Significant help during the development and debugging phases
25285809Sscottl * had been provided by David Greenman, also of the FreeBSD core team.
26285809Sscottl *
27285809Sscottl * see man buf(9) for more info.
28285809Sscottl */
29285809Sscottl
30285809Sscottl#define VMIO
31285809Sscottl#include <sys/param.h>
32285809Sscottl#include <sys/systm.h>
33285809Sscottl#include <sys/kernel.h>
34285809Sscottl#include <sys/sysctl.h>
35285809Sscottl#include <sys/proc.h>
36285809Sscottl#include <sys/kthread.h>
37285809Sscottl#include <sys/vnode.h>
38285809Sscottl#include <sys/vmmeter.h>
39285809Sscottl#include <sys/lock.h>
40285809Sscottl#include <vm/vm.h>
41285809Sscottl#include <vm/vm_param.h>
42285809Sscottl#include <vm/vm_prot.h>
43285809Sscottl#include <vm/vm_kern.h>
44285809Sscottl#include <vm/vm_pageout.h>
45285809Sscottl#include <vm/vm_page.h>
46285809Sscottl#include <vm/vm_object.h>
47285809Sscottl#include <vm/vm_extern.h>
48285809Sscottl#include <vm/vm_map.h>
49285809Sscottl#include <sys/buf.h>
50285809Sscottl#include <sys/mount.h>
51285809Sscottl#include <sys/malloc.h>
52285809Sscottl#include <sys/resourcevar.h>
53285809Sscottl#include <sys/conf.h>
54285809Sscottl
55285809Sscottlstatic MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
56285809Sscottl
57285809Sscottlstruct	bio_ops bioops;		/* I/O operation notification */
58285809Sscottl
59285809Sscottlstruct buf *buf;		/* buffer header pool */
60285809Sscottlstruct swqueue bswlist;
61285809Sscottl
62285809Sscottlstatic void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
63285809Sscottl		vm_offset_t to);
64285809Sscottlstatic void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
65285809Sscottl		vm_offset_t to);
66285809Sscottlstatic void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
67285809Sscottl			       int pageno, vm_page_t m);
68285809Sscottlstatic void vfs_clean_pages(struct buf * bp);
69285809Sscottlstatic void vfs_setdirty(struct buf *bp);
70285809Sscottlstatic void vfs_vmio_release(struct buf *bp);
71285809Sscottlstatic int flushbufqueues(void);
72285809Sscottl
73285809Sscottlstatic int bd_request;
74285809Sscottl
75285809Sscottlstatic void buf_daemon __P((void));
76285809Sscottl/*
77285809Sscottl * bogus page -- for I/O to/from partially complete buffers
78285809Sscottl * this is a temporary solution to the problem, but it is not
79285809Sscottl * really that bad.  it would be better to split the buffer
80285809Sscottl * for input in the case of buffers partially already in memory,
81285809Sscottl * but the code is intricate enough already.
82285809Sscottl */
83285809Sscottlvm_page_t bogus_page;
84285809Sscottlint runningbufspace;
85285809Sscottlint vmiodirenable = FALSE;
86285809Sscottlint buf_maxio = DFLTPHYS;
87285809Sscottlstatic vm_offset_t bogus_offset;
88285809Sscottl
89285809Sscottlstatic int bufspace, maxbufspace, vmiospace,
90285809Sscottl	bufmallocspace, maxbufmallocspace, hibufspace;
91285809Sscottlstatic int maxbdrun;
92285809Sscottlstatic int needsbuffer;
93285809Sscottlstatic int numdirtybuffers, lodirtybuffers, hidirtybuffers;
94285809Sscottlstatic int numfreebuffers, lofreebuffers, hifreebuffers;
95285809Sscottlstatic int getnewbufcalls;
96285809Sscottlstatic int getnewbufrestarts;
97285809Sscottlstatic int kvafreespace;
98285809Sscottl
99285809SscottlSYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
100285809Sscottl	&numdirtybuffers, 0, "");
101285809SscottlSYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
102285809Sscottl	&lodirtybuffers, 0, "");
103285809SscottlSYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
104285809Sscottl	&hidirtybuffers, 0, "");
105285809SscottlSYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
106285809Sscottl	&numfreebuffers, 0, "");
107285809SscottlSYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
108285809Sscottl	&lofreebuffers, 0, "");
109285809SscottlSYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
110285809Sscottl	&hifreebuffers, 0, "");
111285809SscottlSYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
112285809Sscottl	&runningbufspace, 0, "");
113285809SscottlSYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
114285809Sscottl	&maxbufspace, 0, "");
115285809SscottlSYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
116285809Sscottl	&hibufspace, 0, "");
117285809SscottlSYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
118285809Sscottl	&bufspace, 0, "");
119285809SscottlSYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
120285809Sscottl	&maxbdrun, 0, "");
121285809SscottlSYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
122285809Sscottl	&vmiospace, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
124	&maxbufmallocspace, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
126	&bufmallocspace, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
128	&kvafreespace, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
130	&getnewbufcalls, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
132	&getnewbufrestarts, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
134	&vmiodirenable, 0, "");
135
136
137static int bufhashmask;
138static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
139struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
140char *buf_wmesg = BUF_WMESG;
141
142extern int vm_swap_size;
143
144#define BUF_MAXUSE		24
145
146#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
147#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
148#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
149#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
150#define VFS_BIO_NEED_KVASPACE	0x10	/* wait for buffer_map space, emerg  */
151
152/*
153 * Buffer hash table code.  Note that the logical block scans linearly, which
154 * gives us some L1 cache locality.
155 */
156
157static __inline
158struct bufhashhdr *
159bufhash(struct vnode *vnp, daddr_t bn)
160{
161	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
162}
163
164/*
165 *	kvaspacewakeup:
166 *
167 *	Called when kva space is potential available for recovery or when
168 *	kva space is recovered in the buffer_map.  This function wakes up
169 *	anyone waiting for buffer_map kva space.  Even though the buffer_map
170 *	is larger then maxbufspace, this situation will typically occur
171 *	when the buffer_map gets fragmented.
172 */
173
174static __inline void
175kvaspacewakeup(void)
176{
177	/*
178	 * If someone is waiting for KVA space, wake them up.  Even
179	 * though we haven't freed the kva space yet, the waiting
180	 * process will be able to now.
181	 */
182	if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
183		needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
184		wakeup(&needsbuffer);
185	}
186}
187
188/*
189 *	numdirtywakeup:
190 *
191 *	If someone is blocked due to there being too many dirty buffers,
192 *	and numdirtybuffers is now reasonable, wake them up.
193 */
194
195static __inline void
196numdirtywakeup(void)
197{
198	if (numdirtybuffers < hidirtybuffers) {
199		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
200			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
201			wakeup(&needsbuffer);
202		}
203	}
204}
205
206/*
207 *	bufspacewakeup:
208 *
209 *	Called when buffer space is potentially available for recovery or when
210 *	buffer space is recovered.  getnewbuf() will block on this flag when
211 *	it is unable to free sufficient buffer space.  Buffer space becomes
212 *	recoverable when bp's get placed back in the queues.
213 */
214
215static __inline void
216bufspacewakeup(void)
217{
218	/*
219	 * If someone is waiting for BUF space, wake them up.  Even
220	 * though we haven't freed the kva space yet, the waiting
221	 * process will be able to now.
222	 */
223	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
224		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
225		wakeup(&needsbuffer);
226	}
227}
228
229/*
230 *	bufcountwakeup:
231 *
232 *	Called when a buffer has been added to one of the free queues to
233 *	account for the buffer and to wakeup anyone waiting for free buffers.
234 *	This typically occurs when large amounts of metadata are being handled
235 *	by the buffer cache ( else buffer space runs out first, usually ).
236 */
237
238static __inline void
239bufcountwakeup(void)
240{
241	++numfreebuffers;
242	if (needsbuffer) {
243		needsbuffer &= ~VFS_BIO_NEED_ANY;
244		if (numfreebuffers >= hifreebuffers)
245			needsbuffer &= ~VFS_BIO_NEED_FREE;
246		wakeup(&needsbuffer);
247	}
248}
249
250/*
251 *	vfs_buf_test_cache:
252 *
253 *	Called when a buffer is extended.  This function clears the B_CACHE
254 *	bit if the newly extended portion of the buffer does not contain
255 *	valid data.
256 */
257static __inline__
258void
259vfs_buf_test_cache(struct buf *bp,
260		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
261		  vm_page_t m)
262{
263	if (bp->b_flags & B_CACHE) {
264		int base = (foff + off) & PAGE_MASK;
265		if (vm_page_is_valid(m, base, size) == 0)
266			bp->b_flags &= ~B_CACHE;
267	}
268}
269
270static __inline__
271void
272bd_wakeup(int dirtybuflevel)
273{
274	if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
275		bd_request = 1;
276		wakeup(&bd_request);
277	}
278}
279
280
281/*
282 * Initialize buffer headers and related structures.
283 */
284
285caddr_t
286bufhashinit(caddr_t vaddr)
287{
288	/* first, make a null hash table */
289	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
290		;
291	bufhashtbl = (void *)vaddr;
292	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
293	--bufhashmask;
294	return(vaddr);
295}
296
297void
298bufinit(void)
299{
300	struct buf *bp;
301	int i;
302
303	TAILQ_INIT(&bswlist);
304	LIST_INIT(&invalhash);
305	simple_lock_init(&buftimelock);
306
307	for (i = 0; i <= bufhashmask; i++)
308		LIST_INIT(&bufhashtbl[i]);
309
310	/* next, make a null set of free lists */
311	for (i = 0; i < BUFFER_QUEUES; i++)
312		TAILQ_INIT(&bufqueues[i]);
313
314	/* finally, initialize each buffer header and stick on empty q */
315	for (i = 0; i < nbuf; i++) {
316		bp = &buf[i];
317		bzero(bp, sizeof *bp);
318		bp->b_flags = B_INVAL;	/* we're just an empty header */
319		bp->b_dev = NODEV;
320		bp->b_rcred = NOCRED;
321		bp->b_wcred = NOCRED;
322		bp->b_qindex = QUEUE_EMPTY;
323		bp->b_xflags = 0;
324		LIST_INIT(&bp->b_dep);
325		BUF_LOCKINIT(bp);
326		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
327		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
328	}
329
330	/*
331	 * maxbufspace is currently calculated to be maximally efficient
332	 * when the filesystem block size is DFLTBSIZE or DFLTBSIZE*2
333	 * (4K or 8K).  To reduce the number of stall points our calculation
334	 * is based on DFLTBSIZE which should reduce the chances of actually
335	 * running out of buffer headers.  The maxbufspace calculation is also
336	 * based on DFLTBSIZE (4K) instead of BKVASIZE (8K) in order to
337	 * reduce the chance that a KVA allocation will fail due to
338	 * fragmentation.  While this does not usually create a stall,
339	 * the KVA map allocation/free functions are O(N) rather then O(1)
340	 * so running them constantly would result in inefficient O(N*M)
341	 * buffer cache operation.
342	 */
343	maxbufspace = (nbuf + 8) * DFLTBSIZE;
344	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 5);
345/*
346 * Limit the amount of malloc memory since it is wired permanently into
347 * the kernel space.  Even though this is accounted for in the buffer
348 * allocation, we don't want the malloced region to grow uncontrolled.
349 * The malloc scheme improves memory utilization significantly on average
350 * (small) directories.
351 */
352	maxbufmallocspace = hibufspace / 20;
353
354/*
355 * Reduce the chance of a deadlock occuring by limiting the number
356 * of delayed-write dirty buffers we allow to stack up.
357 */
358	lodirtybuffers = nbuf / 7 + 10;
359	hidirtybuffers = nbuf / 4 + 20;
360	numdirtybuffers = 0;
361/*
362 * To support extreme low-memory systems, make sure hidirtybuffers cannot
363 * eat up all available buffer space.  This occurs when our minimum cannot
364 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
365 * BKVASIZE'd (8K) buffers.  We also reduce buf_maxio in this case (used
366 * by the clustering code) in an attempt to further reduce the load on
367 * the buffer cache.
368 */
369	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
370		lodirtybuffers >>= 1;
371		hidirtybuffers >>= 1;
372		buf_maxio >>= 1;
373	}
374	if (lodirtybuffers < 2) {
375		lodirtybuffers = 2;
376		hidirtybuffers = 4;
377	}
378
379	/*
380	 * Temporary, BKVASIZE may be manipulated soon, make sure we don't
381	 * do something illegal. XXX
382	 */
383#if BKVASIZE < MAXBSIZE
384	if (buf_maxio < BKVASIZE * 2)
385		buf_maxio = BKVASIZE * 2;
386#else
387	if (buf_maxio < MAXBSIZE)
388		buf_maxio = MAXBSIZE;
389#endif
390
391/*
392 * Try to keep the number of free buffers in the specified range,
393 * and give the syncer access to an emergency reserve.
394 */
395	lofreebuffers = nbuf / 18 + 5;
396	hifreebuffers = 2 * lofreebuffers;
397	numfreebuffers = nbuf;
398
399/*
400 * Maximum number of async ops initiated per buf_daemon loop.  This is
401 * somewhat of a hack at the moment, we really need to limit ourselves
402 * based on the number of bytes of I/O in-transit that were initiated
403 * from buf_daemon.
404 */
405	if ((maxbdrun = nswbuf / 4) < 4)
406		maxbdrun = 4;
407
408	kvafreespace = 0;
409
410	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
411	bogus_page = vm_page_alloc(kernel_object,
412			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
413			VM_ALLOC_NORMAL);
414	cnt.v_wire_count++;
415
416}
417
418/*
419 * Free the kva allocation for a buffer
420 * Must be called only at splbio or higher,
421 *  as this is the only locking for buffer_map.
422 */
423static void
424bfreekva(struct buf * bp)
425{
426	if (bp->b_kvasize) {
427		vm_map_delete(buffer_map,
428		    (vm_offset_t) bp->b_kvabase,
429		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
430		);
431		bp->b_kvasize = 0;
432		kvaspacewakeup();
433	}
434}
435
436/*
437 *	bremfree:
438 *
439 *	Remove the buffer from the appropriate free list.
440 */
441void
442bremfree(struct buf * bp)
443{
444	int s = splbio();
445	int old_qindex = bp->b_qindex;
446
447	if (bp->b_qindex != QUEUE_NONE) {
448		if (bp->b_qindex == QUEUE_EMPTYKVA) {
449			kvafreespace -= bp->b_kvasize;
450		}
451		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
452		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
453		bp->b_qindex = QUEUE_NONE;
454		runningbufspace += bp->b_bufsize;
455	} else {
456#if !defined(MAX_PERF)
457		if (BUF_REFCNT(bp) <= 1)
458			panic("bremfree: removing a buffer not on a queue");
459#endif
460	}
461
462	/*
463	 * Fixup numfreebuffers count.  If the buffer is invalid or not
464	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
465	 * the buffer was free and we must decrement numfreebuffers.
466	 */
467	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
468		switch(old_qindex) {
469		case QUEUE_DIRTY:
470		case QUEUE_CLEAN:
471		case QUEUE_EMPTY:
472		case QUEUE_EMPTYKVA:
473			--numfreebuffers;
474			break;
475		default:
476			break;
477		}
478	}
479	splx(s);
480}
481
482
483/*
484 * Get a buffer with the specified data.  Look in the cache first.  We
485 * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
486 * is set, the buffer is valid and we do not have to do anything ( see
487 * getblk() ).
488 */
489int
490bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
491    struct buf ** bpp)
492{
493	struct buf *bp;
494
495	bp = getblk(vp, blkno, size, 0, 0);
496	*bpp = bp;
497
498	/* if not found in cache, do some I/O */
499	if ((bp->b_flags & B_CACHE) == 0) {
500		if (curproc != NULL)
501			curproc->p_stats->p_ru.ru_inblock++;
502		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
503		bp->b_flags |= B_READ;
504		bp->b_flags &= ~(B_ERROR | B_INVAL);
505		if (bp->b_rcred == NOCRED) {
506			if (cred != NOCRED)
507				crhold(cred);
508			bp->b_rcred = cred;
509		}
510		vfs_busy_pages(bp, 0);
511		VOP_STRATEGY(vp, bp);
512		return (biowait(bp));
513	}
514	return (0);
515}
516
517/*
518 * Operates like bread, but also starts asynchronous I/O on
519 * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
520 * to initiating I/O . If B_CACHE is set, the buffer is valid
521 * and we do not have to do anything.
522 */
523int
524breadn(struct vnode * vp, daddr_t blkno, int size,
525    daddr_t * rablkno, int *rabsize,
526    int cnt, struct ucred * cred, struct buf ** bpp)
527{
528	struct buf *bp, *rabp;
529	int i;
530	int rv = 0, readwait = 0;
531
532	*bpp = bp = getblk(vp, blkno, size, 0, 0);
533
534	/* if not found in cache, do some I/O */
535	if ((bp->b_flags & B_CACHE) == 0) {
536		if (curproc != NULL)
537			curproc->p_stats->p_ru.ru_inblock++;
538		bp->b_flags |= B_READ;
539		bp->b_flags &= ~(B_ERROR | B_INVAL);
540		if (bp->b_rcred == NOCRED) {
541			if (cred != NOCRED)
542				crhold(cred);
543			bp->b_rcred = cred;
544		}
545		vfs_busy_pages(bp, 0);
546		VOP_STRATEGY(vp, bp);
547		++readwait;
548	}
549
550	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
551		if (inmem(vp, *rablkno))
552			continue;
553		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
554
555		if ((rabp->b_flags & B_CACHE) == 0) {
556			if (curproc != NULL)
557				curproc->p_stats->p_ru.ru_inblock++;
558			rabp->b_flags |= B_READ | B_ASYNC;
559			rabp->b_flags &= ~(B_ERROR | B_INVAL);
560			if (rabp->b_rcred == NOCRED) {
561				if (cred != NOCRED)
562					crhold(cred);
563				rabp->b_rcred = cred;
564			}
565			vfs_busy_pages(rabp, 0);
566			BUF_KERNPROC(rabp);
567			VOP_STRATEGY(vp, rabp);
568		} else {
569			brelse(rabp);
570		}
571	}
572
573	if (readwait) {
574		rv = biowait(bp);
575	}
576	return (rv);
577}
578
579/*
580 * Write, release buffer on completion.  (Done by iodone
581 * if async).  Do not bother writing anything if the buffer
582 * is invalid.
583 *
584 * Note that we set B_CACHE here, indicating that buffer is
585 * fully valid and thus cacheable.  This is true even of NFS
586 * now so we set it generally.  This could be set either here
587 * or in biodone() since the I/O is synchronous.  We put it
588 * here.
589 */
590int
591bwrite(struct buf * bp)
592{
593	int oldflags, s;
594	struct vnode *vp;
595	struct mount *mp;
596
597	if (bp->b_flags & B_INVAL) {
598		brelse(bp);
599		return (0);
600	}
601
602	oldflags = bp->b_flags;
603
604#if !defined(MAX_PERF)
605	if (BUF_REFCNT(bp) == 0)
606		panic("bwrite: buffer is not busy???");
607#endif
608	s = splbio();
609	bundirty(bp);
610
611	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
612	bp->b_flags |= B_WRITEINPROG | B_CACHE;
613
614	bp->b_vp->v_numoutput++;
615	vfs_busy_pages(bp, 1);
616	if (curproc != NULL)
617		curproc->p_stats->p_ru.ru_oublock++;
618	splx(s);
619	if (oldflags & B_ASYNC)
620		BUF_KERNPROC(bp);
621	VOP_STRATEGY(bp->b_vp, bp);
622
623	/*
624	 * Collect statistics on synchronous and asynchronous writes.
625	 * Writes to block devices are charged to their associated
626	 * filesystem (if any).
627	 */
628	if ((vp = bp->b_vp) != NULL) {
629		if (vp->v_type == VBLK)
630			mp = vp->v_specmountpoint;
631		else
632			mp = vp->v_mount;
633		if (mp != NULL) {
634			if ((oldflags & B_ASYNC) == 0)
635				mp->mnt_stat.f_syncwrites++;
636			else
637				mp->mnt_stat.f_asyncwrites++;
638		}
639	}
640
641	if ((oldflags & B_ASYNC) == 0) {
642		int rtval = biowait(bp);
643		brelse(bp);
644		return (rtval);
645	}
646
647	return (0);
648}
649
650/*
651 * Delayed write. (Buffer is marked dirty).  Do not bother writing
652 * anything if the buffer is marked invalid.
653 *
654 * Note that since the buffer must be completely valid, we can safely
655 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
656 * biodone() in order to prevent getblk from writing the buffer
657 * out synchronously.
658 */
659void
660bdwrite(struct buf * bp)
661{
662#if !defined(MAX_PERF)
663	if (BUF_REFCNT(bp) == 0)
664		panic("bdwrite: buffer is not busy");
665#endif
666
667	if (bp->b_flags & B_INVAL) {
668		brelse(bp);
669		return;
670	}
671	bdirty(bp);
672
673	/*
674	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
675	 * true even of NFS now.
676	 */
677	bp->b_flags |= B_CACHE;
678
679	/*
680	 * This bmap keeps the system from needing to do the bmap later,
681	 * perhaps when the system is attempting to do a sync.  Since it
682	 * is likely that the indirect block -- or whatever other datastructure
683	 * that the filesystem needs is still in memory now, it is a good
684	 * thing to do this.  Note also, that if the pageout daemon is
685	 * requesting a sync -- there might not be enough memory to do
686	 * the bmap then...  So, this is important to do.
687	 */
688	if (bp->b_lblkno == bp->b_blkno) {
689		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
690	}
691
692	/*
693	 * Set the *dirty* buffer range based upon the VM system dirty pages.
694	 */
695	vfs_setdirty(bp);
696
697	/*
698	 * We need to do this here to satisfy the vnode_pager and the
699	 * pageout daemon, so that it thinks that the pages have been
700	 * "cleaned".  Note that since the pages are in a delayed write
701	 * buffer -- the VFS layer "will" see that the pages get written
702	 * out on the next sync, or perhaps the cluster will be completed.
703	 */
704	vfs_clean_pages(bp);
705	bqrelse(bp);
706
707	/*
708	 * Wakeup the buffer flushing daemon if we have saturated the
709	 * buffer cache.
710	 */
711
712	bd_wakeup(hidirtybuffers);
713
714	/*
715	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
716	 * due to the softdep code.
717	 */
718}
719
720/*
721 *	bdirty:
722 *
723 *	Turn buffer into delayed write request.  We must clear B_READ and
724 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
725 *	itself to properly update it in the dirty/clean lists.  We mark it
726 *	B_DONE to ensure that any asynchronization of the buffer properly
727 *	clears B_DONE ( else a panic will occur later ).
728 *
729 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
730 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
731 *	should only be called if the buffer is known-good.
732 *
733 *	Since the buffer is not on a queue, we do not update the numfreebuffers
734 *	count.
735 *
736 *	Must be called at splbio().
737 *	The buffer must be on QUEUE_NONE.
738 */
739void
740bdirty(bp)
741	struct buf *bp;
742{
743	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
744	bp->b_flags &= ~(B_READ|B_RELBUF);
745
746	if ((bp->b_flags & B_DELWRI) == 0) {
747		bp->b_flags |= B_DONE | B_DELWRI;
748		reassignbuf(bp, bp->b_vp);
749		++numdirtybuffers;
750		bd_wakeup(hidirtybuffers);
751	}
752}
753
754/*
755 *	bundirty:
756 *
757 *	Clear B_DELWRI for buffer.
758 *
759 *	Since the buffer is not on a queue, we do not update the numfreebuffers
760 *	count.
761 *
762 *	Must be called at splbio().
763 *	The buffer must be on QUEUE_NONE.
764 */
765
766void
767bundirty(bp)
768	struct buf *bp;
769{
770	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
771
772	if (bp->b_flags & B_DELWRI) {
773		bp->b_flags &= ~B_DELWRI;
774		reassignbuf(bp, bp->b_vp);
775		--numdirtybuffers;
776		numdirtywakeup();
777	}
778}
779
780/*
781 *	bawrite:
782 *
783 *	Asynchronous write.  Start output on a buffer, but do not wait for
784 *	it to complete.  The buffer is released when the output completes.
785 *
786 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
787 *	B_INVAL buffers.  Not us.
788 */
789void
790bawrite(struct buf * bp)
791{
792	bp->b_flags |= B_ASYNC;
793	(void) VOP_BWRITE(bp->b_vp, bp);
794}
795
796/*
797 *	bowrite:
798 *
799 *	Ordered write.  Start output on a buffer, and flag it so that the
800 *	device will write it in the order it was queued.  The buffer is
801 *	released when the output completes.  bwrite() ( or the VOP routine
802 *	anyway ) is responsible for handling B_INVAL buffers.
803 */
804int
805bowrite(struct buf * bp)
806{
807	bp->b_flags |= B_ORDERED | B_ASYNC;
808	return (VOP_BWRITE(bp->b_vp, bp));
809}
810
811/*
812 *	bwillwrite:
813 *
814 *	Called prior to the locking of any vnodes when we are expecting to
815 *	write.  We do not want to starve the buffer cache with too many
816 *	dirty buffers so we block here.  By blocking prior to the locking
817 *	of any vnodes we attempt to avoid the situation where a locked vnode
818 *	prevents the various system daemons from flushing related buffers.
819 */
820
821void
822bwillwrite(void)
823{
824	int twenty = (hidirtybuffers - lodirtybuffers) / 5;
825
826	if (numdirtybuffers > hidirtybuffers + twenty) {
827		int s;
828
829		s = splbio();
830		while (numdirtybuffers > hidirtybuffers) {
831			bd_wakeup(hidirtybuffers);
832			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
833			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
834		}
835		splx(s);
836	}
837}
838
839/*
840 *	brelse:
841 *
842 *	Release a busy buffer and, if requested, free its resources.  The
843 *	buffer will be stashed in the appropriate bufqueue[] allowing it
844 *	to be accessed later as a cache entity or reused for other purposes.
845 */
846void
847brelse(struct buf * bp)
848{
849	int s;
850	int kvawakeup = 0;
851
852	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
853
854	s = splbio();
855
856	if (bp->b_flags & B_LOCKED)
857		bp->b_flags &= ~B_ERROR;
858
859	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
860		/*
861		 * Failed write, redirty.  Must clear B_ERROR to prevent
862		 * pages from being scrapped.  If B_INVAL is set then
863		 * this case is not run and the next case is run to
864		 * destroy the buffer.  B_INVAL can occur if the buffer
865		 * is outside the range supported by the underlying device.
866		 */
867		bp->b_flags &= ~B_ERROR;
868		bdirty(bp);
869	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
870	    (bp->b_bufsize <= 0)) {
871		/*
872		 * Either a failed I/O or we were asked to free or not
873		 * cache the buffer.
874		 */
875		bp->b_flags |= B_INVAL;
876		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
877			(*bioops.io_deallocate)(bp);
878		if (bp->b_flags & B_DELWRI) {
879			--numdirtybuffers;
880			numdirtywakeup();
881		}
882		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
883		if ((bp->b_flags & B_VMIO) == 0) {
884			if (bp->b_bufsize)
885				allocbuf(bp, 0);
886			if (bp->b_vp)
887				brelvp(bp);
888		}
889	}
890
891	/*
892	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
893	 * is called with B_DELWRI set, the underlying pages may wind up
894	 * getting freed causing a previous write (bdwrite()) to get 'lost'
895	 * because pages associated with a B_DELWRI bp are marked clean.
896	 *
897	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
898	 * if B_DELWRI is set.
899	 */
900
901	if (bp->b_flags & B_DELWRI)
902		bp->b_flags &= ~B_RELBUF;
903
904	/*
905	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
906	 * constituted, not even NFS buffers now.  Two flags effect this.  If
907	 * B_INVAL, the struct buf is invalidated but the VM object is kept
908	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
909	 *
910	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
911	 * invalidated.  B_ERROR cannot be set for a failed write unless the
912	 * buffer is also B_INVAL because it hits the re-dirtying code above.
913	 *
914	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
915	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
916	 * the commit state and we cannot afford to lose the buffer.
917	 */
918	if ((bp->b_flags & B_VMIO)
919	    && !(bp->b_vp->v_tag == VT_NFS &&
920		 bp->b_vp->v_type != VBLK &&
921		 (bp->b_flags & B_DELWRI))
922	    ) {
923
924		int i, j, resid;
925		vm_page_t m;
926		off_t foff;
927		vm_pindex_t poff;
928		vm_object_t obj;
929		struct vnode *vp;
930
931		vp = bp->b_vp;
932
933		/*
934		 * Get the base offset and length of the buffer.  Note that
935		 * for block sizes that are less then PAGE_SIZE, the b_data
936		 * base of the buffer does not represent exactly b_offset and
937		 * neither b_offset nor b_size are necessarily page aligned.
938		 * Instead, the starting position of b_offset is:
939		 *
940		 * 	b_data + (b_offset & PAGE_MASK)
941		 *
942		 * block sizes less then DEV_BSIZE (usually 512) are not
943		 * supported due to the page granularity bits (m->valid,
944		 * m->dirty, etc...).
945		 *
946		 * See man buf(9) for more information
947		 */
948
949		resid = bp->b_bufsize;
950		foff = bp->b_offset;
951
952		for (i = 0; i < bp->b_npages; i++) {
953			m = bp->b_pages[i];
954			vm_page_flag_clear(m, PG_ZERO);
955			if (m == bogus_page) {
956
957				obj = (vm_object_t) vp->v_object;
958				poff = OFF_TO_IDX(bp->b_offset);
959
960				for (j = i; j < bp->b_npages; j++) {
961					m = bp->b_pages[j];
962					if (m == bogus_page) {
963						m = vm_page_lookup(obj, poff + j);
964#if !defined(MAX_PERF)
965						if (!m) {
966							panic("brelse: page missing\n");
967						}
968#endif
969						bp->b_pages[j] = m;
970					}
971				}
972
973				if ((bp->b_flags & B_INVAL) == 0) {
974					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
975				}
976			}
977			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
978				int poffset = foff & PAGE_MASK;
979				int presid = resid > (PAGE_SIZE - poffset) ?
980					(PAGE_SIZE - poffset) : resid;
981
982				KASSERT(presid >= 0, ("brelse: extra page"));
983				vm_page_set_invalid(m, poffset, presid);
984			}
985			resid -= PAGE_SIZE - (foff & PAGE_MASK);
986			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
987		}
988
989		if (bp->b_flags & (B_INVAL | B_RELBUF))
990			vfs_vmio_release(bp);
991
992	} else if (bp->b_flags & B_VMIO) {
993
994		if (bp->b_flags & (B_INVAL | B_RELBUF))
995			vfs_vmio_release(bp);
996
997	}
998
999#if !defined(MAX_PERF)
1000	if (bp->b_qindex != QUEUE_NONE)
1001		panic("brelse: free buffer onto another queue???");
1002#endif
1003	if (BUF_REFCNT(bp) > 1) {
1004		/* Temporary panic to verify exclusive locking */
1005		/* This panic goes away when we allow shared refs */
1006		panic("brelse: multiple refs");
1007		/* do not release to free list */
1008		BUF_UNLOCK(bp);
1009		splx(s);
1010		return;
1011	}
1012
1013	/* enqueue */
1014
1015	/* buffers with no memory */
1016	if (bp->b_bufsize == 0) {
1017		bp->b_flags |= B_INVAL;
1018		if (bp->b_kvasize) {
1019			bp->b_qindex = QUEUE_EMPTYKVA;
1020			kvawakeup = 1;
1021		} else {
1022			bp->b_qindex = QUEUE_EMPTY;
1023		}
1024		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1025		LIST_REMOVE(bp, b_hash);
1026		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1027		bp->b_dev = NODEV;
1028		kvafreespace += bp->b_kvasize;
1029	/* buffers with junk contents */
1030	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1031		bp->b_flags |= B_INVAL;
1032		bp->b_qindex = QUEUE_CLEAN;
1033		if (bp->b_kvasize)
1034			kvawakeup = 1;
1035		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1036		LIST_REMOVE(bp, b_hash);
1037		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1038		bp->b_dev = NODEV;
1039
1040	/* buffers that are locked */
1041	} else if (bp->b_flags & B_LOCKED) {
1042		bp->b_qindex = QUEUE_LOCKED;
1043		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1044
1045	/* remaining buffers */
1046	} else {
1047		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1048		case B_DELWRI | B_AGE:
1049		    bp->b_qindex = QUEUE_DIRTY;
1050		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1051		    break;
1052		case B_DELWRI:
1053		    bp->b_qindex = QUEUE_DIRTY;
1054		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1055		    break;
1056		case B_AGE:
1057		    bp->b_qindex = QUEUE_CLEAN;
1058		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1059		    if (bp->b_kvasize)
1060			    kvawakeup = 1;
1061		    break;
1062		default:
1063		    bp->b_qindex = QUEUE_CLEAN;
1064		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1065		    if (bp->b_kvasize)
1066			    kvawakeup = 1;
1067		    break;
1068		}
1069	}
1070
1071	/*
1072	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1073	 * on the correct queue.
1074	 */
1075	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1076		bp->b_flags &= ~B_DELWRI;
1077		--numdirtybuffers;
1078		numdirtywakeup();
1079	}
1080
1081	runningbufspace -= bp->b_bufsize;
1082
1083	/*
1084	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1085	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1086	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1087	 * if B_INVAL is set ).
1088	 */
1089
1090	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1091		bufcountwakeup();
1092
1093	/*
1094	 * Something we can maybe free.
1095	 */
1096
1097	if (bp->b_bufsize)
1098		bufspacewakeup();
1099	if (kvawakeup)
1100		kvaspacewakeup();
1101
1102	/* unlock */
1103	BUF_UNLOCK(bp);
1104	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1105	splx(s);
1106}
1107
1108/*
1109 * Release a buffer back to the appropriate queue but do not try to free
1110 * it.
1111 *
1112 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1113 * biodone() to requeue an async I/O on completion.  It is also used when
1114 * known good buffers need to be requeued but we think we may need the data
1115 * again soon.
1116 */
1117void
1118bqrelse(struct buf * bp)
1119{
1120	int s;
1121
1122	s = splbio();
1123
1124	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1125
1126#if !defined(MAX_PERF)
1127	if (bp->b_qindex != QUEUE_NONE)
1128		panic("bqrelse: free buffer onto another queue???");
1129#endif
1130	if (BUF_REFCNT(bp) > 1) {
1131		/* do not release to free list */
1132		panic("bqrelse: multiple refs");
1133		BUF_UNLOCK(bp);
1134		splx(s);
1135		return;
1136	}
1137	if (bp->b_flags & B_LOCKED) {
1138		bp->b_flags &= ~B_ERROR;
1139		bp->b_qindex = QUEUE_LOCKED;
1140		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1141		/* buffers with stale but valid contents */
1142	} else if (bp->b_flags & B_DELWRI) {
1143		bp->b_qindex = QUEUE_DIRTY;
1144		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1145	} else {
1146		bp->b_qindex = QUEUE_CLEAN;
1147		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1148	}
1149
1150	runningbufspace -= bp->b_bufsize;
1151
1152	if ((bp->b_flags & B_LOCKED) == 0 &&
1153	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1154		bufcountwakeup();
1155	}
1156
1157	/*
1158	 * Something we can maybe wakeup
1159	 */
1160	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1161		bufspacewakeup();
1162
1163	/* unlock */
1164	BUF_UNLOCK(bp);
1165	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1166	splx(s);
1167}
1168
1169static void
1170vfs_vmio_release(bp)
1171	struct buf *bp;
1172{
1173	int i, s;
1174	vm_page_t m;
1175
1176	s = splvm();
1177	for (i = 0; i < bp->b_npages; i++) {
1178		m = bp->b_pages[i];
1179		bp->b_pages[i] = NULL;
1180		/*
1181		 * In order to keep page LRU ordering consistent, put
1182		 * everything on the inactive queue.
1183		 */
1184		vm_page_unwire(m, 0);
1185		/*
1186		 * We don't mess with busy pages, it is
1187		 * the responsibility of the process that
1188		 * busied the pages to deal with them.
1189		 */
1190		if ((m->flags & PG_BUSY) || (m->busy != 0))
1191			continue;
1192
1193		if (m->wire_count == 0) {
1194			vm_page_flag_clear(m, PG_ZERO);
1195			/*
1196			 * Might as well free the page if we can and it has
1197			 * no valid data.
1198			 */
1199			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1200				vm_page_busy(m);
1201				vm_page_protect(m, VM_PROT_NONE);
1202				vm_page_free(m);
1203			}
1204		}
1205	}
1206	bufspace -= bp->b_bufsize;
1207	vmiospace -= bp->b_bufsize;
1208	runningbufspace -= bp->b_bufsize;
1209	splx(s);
1210	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1211	if (bp->b_bufsize)
1212		bufspacewakeup();
1213	bp->b_npages = 0;
1214	bp->b_bufsize = 0;
1215	bp->b_flags &= ~B_VMIO;
1216	if (bp->b_vp)
1217		brelvp(bp);
1218}
1219
1220/*
1221 * Check to see if a block is currently memory resident.
1222 */
1223struct buf *
1224gbincore(struct vnode * vp, daddr_t blkno)
1225{
1226	struct buf *bp;
1227	struct bufhashhdr *bh;
1228
1229	bh = bufhash(vp, blkno);
1230	bp = bh->lh_first;
1231
1232	/* Search hash chain */
1233	while (bp != NULL) {
1234		/* hit */
1235		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1236		    (bp->b_flags & B_INVAL) == 0) {
1237			break;
1238		}
1239		bp = bp->b_hash.le_next;
1240	}
1241	return (bp);
1242}
1243
1244/*
1245 *	vfs_bio_awrite:
1246 *
1247 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1248 *	This is much better then the old way of writing only one buffer at
1249 *	a time.  Note that we may not be presented with the buffers in the
1250 *	correct order, so we search for the cluster in both directions.
1251 */
1252int
1253vfs_bio_awrite(struct buf * bp)
1254{
1255	int i;
1256	int j;
1257	daddr_t lblkno = bp->b_lblkno;
1258	struct vnode *vp = bp->b_vp;
1259	int s;
1260	int ncl;
1261	struct buf *bpa;
1262	int nwritten;
1263	int size;
1264	int maxcl;
1265
1266	s = splbio();
1267	/*
1268	 * right now we support clustered writing only to regular files.  If
1269	 * we find a clusterable block we could be in the middle of a cluster
1270	 * rather then at the beginning.
1271	 */
1272	if ((vp->v_type == VREG) &&
1273	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1274	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1275
1276		size = vp->v_mount->mnt_stat.f_iosize;
1277		maxcl = MAXPHYS / size;
1278
1279		for (i = 1; i < maxcl; i++) {
1280			if ((bpa = gbincore(vp, lblkno + i)) &&
1281			    BUF_REFCNT(bpa) == 0 &&
1282			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1283			    (B_DELWRI | B_CLUSTEROK)) &&
1284			    (bpa->b_bufsize == size)) {
1285				if ((bpa->b_blkno == bpa->b_lblkno) ||
1286				    (bpa->b_blkno !=
1287				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1288					break;
1289			} else {
1290				break;
1291			}
1292		}
1293		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1294			if ((bpa = gbincore(vp, lblkno - j)) &&
1295			    BUF_REFCNT(bpa) == 0 &&
1296			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1297			    (B_DELWRI | B_CLUSTEROK)) &&
1298			    (bpa->b_bufsize == size)) {
1299				if ((bpa->b_blkno == bpa->b_lblkno) ||
1300				    (bpa->b_blkno !=
1301				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1302					break;
1303			} else {
1304				break;
1305			}
1306		}
1307		--j;
1308		ncl = i + j;
1309		/*
1310		 * this is a possible cluster write
1311		 */
1312		if (ncl != 1) {
1313			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1314			splx(s);
1315			return nwritten;
1316		}
1317	}
1318
1319	BUF_LOCK(bp, LK_EXCLUSIVE);
1320	bremfree(bp);
1321	bp->b_flags |= B_ASYNC;
1322
1323	splx(s);
1324	/*
1325	 * default (old) behavior, writing out only one block
1326	 *
1327	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1328	 */
1329	nwritten = bp->b_bufsize;
1330	(void) VOP_BWRITE(bp->b_vp, bp);
1331
1332	return nwritten;
1333}
1334
1335/*
1336 *	getnewbuf:
1337 *
1338 *	Find and initialize a new buffer header, freeing up existing buffers
1339 *	in the bufqueues as necessary.  The new buffer is returned locked.
1340 *
1341 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1342 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1343 *
1344 *	We block if:
1345 *		We have insufficient buffer headers
1346 *		We have insufficient buffer space
1347 *		buffer_map is too fragmented ( space reservation fails )
1348 *		If we have to flush dirty buffers ( but we try to avoid this )
1349 *
1350 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1351 *	Instead we ask the buf daemon to do it for us.  We attempt to
1352 *	avoid piecemeal wakeups of the pageout daemon.
1353 */
1354
1355static struct buf *
1356getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1357{
1358	struct buf *bp;
1359	struct buf *nbp;
1360	struct buf *dbp;
1361	int outofspace;
1362	int nqindex;
1363	int defrag = 0;
1364
1365	++getnewbufcalls;
1366	--getnewbufrestarts;
1367restart:
1368	++getnewbufrestarts;
1369
1370	/*
1371	 * Calculate whether we are out of buffer space.  This state is
1372	 * recalculated on every restart.  If we are out of space, we
1373	 * have to turn off defragmentation.  Setting defrag to -1 when
1374	 * outofspace is positive means "defrag while freeing buffers".
1375	 * The looping conditional will be muffed up if defrag is left
1376	 * positive when outofspace is positive.
1377	 */
1378
1379	dbp = NULL;
1380	outofspace = 0;
1381	if (bufspace >= hibufspace) {
1382		if ((curproc && (curproc->p_flag & P_BUFEXHAUST) == 0) ||
1383		    bufspace >= maxbufspace) {
1384			outofspace = 1;
1385			if (defrag > 0)
1386				defrag = -1;
1387		}
1388	}
1389
1390	/*
1391	 * defrag state is semi-persistant.  1 means we are flagged for
1392	 * defragging.  -1 means we actually defragged something.
1393	 */
1394	/* nop */
1395
1396	/*
1397	 * Setup for scan.  If we do not have enough free buffers,
1398	 * we setup a degenerate case that immediately fails.  Note
1399	 * that if we are specially marked process, we are allowed to
1400	 * dip into our reserves.
1401	 *
1402	 * Normally we want to find an EMPTYKVA buffer.  That is, a
1403	 * buffer with kva already allocated.  If there are no EMPTYKVA
1404	 * buffers we back up to the truely EMPTY buffers.  When defragging
1405	 * we do not bother backing up since we have to locate buffers with
1406	 * kva to defrag.  If we are out of space we skip both EMPTY and
1407	 * EMPTYKVA and dig right into the CLEAN queue.
1408	 *
1409	 * In this manner we avoid scanning unnecessary buffers.  It is very
1410	 * important for us to do this because the buffer cache is almost
1411	 * constantly out of space or in need of defragmentation.
1412	 */
1413
1414	if (curproc && (curproc->p_flag & P_BUFEXHAUST) == 0 &&
1415	    numfreebuffers < lofreebuffers) {
1416		nqindex = QUEUE_CLEAN;
1417		nbp = NULL;
1418	} else {
1419		nqindex = QUEUE_EMPTYKVA;
1420		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1421		if (nbp == NULL) {
1422			if (defrag <= 0) {
1423				nqindex = QUEUE_EMPTY;
1424				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1425			}
1426		}
1427		if (outofspace || nbp == NULL) {
1428			nqindex = QUEUE_CLEAN;
1429			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1430		}
1431	}
1432
1433	/*
1434	 * Run scan, possibly freeing data and/or kva mappings on the fly
1435	 * depending.
1436	 */
1437
1438	while ((bp = nbp) != NULL) {
1439		int qindex = nqindex;
1440
1441		/*
1442		 * Calculate next bp ( we can only use it if we do not block
1443		 * or do other fancy things ).
1444		 */
1445		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1446			switch(qindex) {
1447			case QUEUE_EMPTY:
1448				nqindex = QUEUE_EMPTYKVA;
1449				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1450					break;
1451				/* fall through */
1452			case QUEUE_EMPTYKVA:
1453				nqindex = QUEUE_CLEAN;
1454				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1455					break;
1456				/* fall through */
1457			case QUEUE_CLEAN:
1458				/*
1459				 * nbp is NULL.
1460				 */
1461				break;
1462			}
1463		}
1464
1465		/*
1466		 * Sanity Checks
1467		 */
1468		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1469
1470		/*
1471		 * Note: we no longer distinguish between VMIO and non-VMIO
1472		 * buffers.
1473		 */
1474
1475		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1476
1477		/*
1478		 * If we are defragging and the buffer isn't useful for fixing
1479		 * that problem we continue.  If we are out of space and the
1480		 * buffer isn't useful for fixing that problem we continue.
1481		 */
1482
1483		if (defrag > 0 && bp->b_kvasize == 0)
1484			continue;
1485		if (outofspace > 0 && bp->b_bufsize == 0)
1486			continue;
1487
1488		/*
1489		 * Start freeing the bp.  This is somewhat involved.  nbp
1490		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1491		 */
1492
1493		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1494			panic("getnewbuf: locked buf");
1495		bremfree(bp);
1496
1497		if (qindex == QUEUE_CLEAN) {
1498			if (bp->b_flags & B_VMIO) {
1499				bp->b_flags &= ~B_ASYNC;
1500				vfs_vmio_release(bp);
1501			}
1502			if (bp->b_vp)
1503				brelvp(bp);
1504		}
1505
1506		/*
1507		 * NOTE:  nbp is now entirely invalid.  We can only restart
1508		 * the scan from this point on.
1509		 *
1510		 * Get the rest of the buffer freed up.  b_kva* is still
1511		 * valid after this operation.
1512		 */
1513
1514		if (bp->b_rcred != NOCRED) {
1515			crfree(bp->b_rcred);
1516			bp->b_rcred = NOCRED;
1517		}
1518		if (bp->b_wcred != NOCRED) {
1519			crfree(bp->b_wcred);
1520			bp->b_wcred = NOCRED;
1521		}
1522		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1523			(*bioops.io_deallocate)(bp);
1524		LIST_REMOVE(bp, b_hash);
1525		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1526
1527		if (bp->b_bufsize)
1528			allocbuf(bp, 0);
1529
1530		bp->b_flags = 0;
1531		bp->b_dev = NODEV;
1532		bp->b_vp = NULL;
1533		bp->b_blkno = bp->b_lblkno = 0;
1534		bp->b_offset = NOOFFSET;
1535		bp->b_iodone = 0;
1536		bp->b_error = 0;
1537		bp->b_resid = 0;
1538		bp->b_bcount = 0;
1539		bp->b_npages = 0;
1540		bp->b_dirtyoff = bp->b_dirtyend = 0;
1541
1542		LIST_INIT(&bp->b_dep);
1543
1544		/*
1545		 * Ok, now that we have a free buffer, if we are defragging
1546		 * we have to recover the kvaspace.  If we are out of space
1547		 * we have to free the buffer (which we just did), but we
1548		 * do not have to recover kva space unless we hit a defrag
1549		 * hicup.  Being able to avoid freeing the kva space leads
1550		 * to a significant reduction in overhead.
1551		 */
1552
1553		if (defrag > 0) {
1554			defrag = -1;
1555			bp->b_flags |= B_INVAL;
1556			bfreekva(bp);
1557			brelse(bp);
1558			goto restart;
1559		}
1560
1561		if (outofspace > 0) {
1562			outofspace = -1;
1563			bp->b_flags |= B_INVAL;
1564			if (defrag < 0)
1565				bfreekva(bp);
1566			brelse(bp);
1567			goto restart;
1568		}
1569
1570		/*
1571		 * We are done
1572		 */
1573		break;
1574	}
1575
1576	/*
1577	 * If we exhausted our list, sleep as appropriate.  We may have to
1578	 * wakeup various daemons and write out some dirty buffers.
1579	 *
1580	 * Generally we are sleeping due to insufficient buffer space.
1581	 */
1582
1583	if (bp == NULL) {
1584		int flags;
1585		char *waitmsg;
1586
1587		if (defrag > 0) {
1588			flags = VFS_BIO_NEED_KVASPACE;
1589			waitmsg = "nbufkv";
1590		} else if (outofspace > 0) {
1591			waitmsg = "nbufbs";
1592			flags = VFS_BIO_NEED_BUFSPACE;
1593		} else {
1594			waitmsg = "newbuf";
1595			flags = VFS_BIO_NEED_ANY;
1596		}
1597
1598		/* XXX */
1599
1600		(void) speedup_syncer();
1601		needsbuffer |= flags;
1602		while (needsbuffer & flags) {
1603			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1604			    waitmsg, slptimeo))
1605				return (NULL);
1606		}
1607	} else {
1608		/*
1609		 * We finally have a valid bp.  We aren't quite out of the
1610		 * woods, we still have to reserve kva space.
1611		 */
1612		vm_offset_t addr = 0;
1613
1614		maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1615
1616		if (maxsize != bp->b_kvasize) {
1617			bfreekva(bp);
1618
1619			if (vm_map_findspace(buffer_map,
1620				vm_map_min(buffer_map), maxsize, &addr)) {
1621				/*
1622				 * Uh oh.  Buffer map is to fragmented.  Try
1623				 * to defragment.
1624				 */
1625				if (defrag <= 0) {
1626					defrag = 1;
1627					bp->b_flags |= B_INVAL;
1628					brelse(bp);
1629					goto restart;
1630				}
1631				/*
1632				 * Uh oh.  We couldn't seem to defragment
1633				 */
1634				panic("getnewbuf: unreachable code reached");
1635			}
1636		}
1637		if (addr) {
1638			vm_map_insert(buffer_map, NULL, 0,
1639				addr, addr + maxsize,
1640				VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1641
1642			bp->b_kvabase = (caddr_t) addr;
1643			bp->b_kvasize = maxsize;
1644		}
1645		bp->b_data = bp->b_kvabase;
1646	}
1647	return(bp);
1648}
1649
1650/*
1651 *	waitfreebuffers:
1652 *
1653 *	Wait for sufficient free buffers.  Only called from normal processes.
1654 */
1655
1656static void
1657waitfreebuffers(int slpflag, int slptimeo)
1658{
1659	while (numfreebuffers < hifreebuffers) {
1660		if (numfreebuffers >= hifreebuffers)
1661			break;
1662		needsbuffer |= VFS_BIO_NEED_FREE;
1663		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1664			break;
1665	}
1666}
1667
1668/*
1669 *	buf_daemon:
1670 *
1671 *	buffer flushing daemon.  Buffers are normally flushed by the
1672 *	update daemon but if it cannot keep up this process starts to
1673 *	take the load in an attempt to prevent getnewbuf() from blocking.
1674 */
1675
1676static struct proc *bufdaemonproc;
1677static int bd_interval;
1678static int bd_flushto;
1679
1680static struct kproc_desc buf_kp = {
1681	"bufdaemon",
1682	buf_daemon,
1683	&bufdaemonproc
1684};
1685SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1686
1687static void
1688buf_daemon()
1689{
1690	int s;
1691	/*
1692	 * This process is allowed to take the buffer cache to the limit
1693	 */
1694	curproc->p_flag |= P_BUFEXHAUST;
1695	s = splbio();
1696
1697	bd_interval = 5 * hz;	/* dynamically adjusted */
1698	bd_flushto = hidirtybuffers;	/* dynamically adjusted */
1699
1700	while (TRUE) {
1701		bd_request = 0;
1702
1703		/*
1704		 * Do the flush.  Limit the number of buffers we flush in one
1705		 * go.  The failure condition occurs when processes are writing
1706		 * buffers faster then we can dispose of them.  In this case
1707		 * we may be flushing so often that the previous set of flushes
1708		 * have not had time to complete, causing us to run out of
1709		 * physical buffers and block.
1710		 */
1711		{
1712			int runcount = maxbdrun;
1713
1714			while (numdirtybuffers > bd_flushto && runcount) {
1715				--runcount;
1716				if (flushbufqueues() == 0)
1717					break;
1718			}
1719		}
1720
1721		/*
1722		 * If nobody is requesting anything we sleep
1723		 */
1724		if (bd_request == 0)
1725			tsleep(&bd_request, PVM, "psleep", bd_interval);
1726
1727		/*
1728		 * We calculate how much to add or subtract from bd_flushto
1729		 * and bd_interval based on how far off we are from the
1730		 * optimal number of dirty buffers, which is 20% below the
1731		 * hidirtybuffers mark.  We cannot use hidirtybuffers straight
1732		 * because being right on the mark will cause getnewbuf()
1733		 * to oscillate our wakeup.
1734		 *
1735		 * The larger the error in either direction, the more we adjust
1736		 * bd_flushto and bd_interval.  The time interval is adjusted
1737		 * by 2 seconds per whole-buffer-range of error.  This is an
1738		 * exponential convergence algorithm, with large errors
1739		 * producing large changes and small errors producing small
1740		 * changes.
1741		 */
1742
1743		{
1744			int brange = hidirtybuffers - lodirtybuffers;
1745			int middb = hidirtybuffers - brange / 5;
1746			int deltabuf = middb - numdirtybuffers;
1747
1748			bd_flushto += deltabuf / 20;
1749			bd_interval += deltabuf * (2 * hz) / (brange * 1);
1750		}
1751		if (bd_flushto < lodirtybuffers)
1752			bd_flushto = lodirtybuffers;
1753		if (bd_flushto > hidirtybuffers)
1754			bd_flushto = hidirtybuffers;
1755		if (bd_interval < hz / 10)
1756			bd_interval = hz / 10;
1757		if (bd_interval > 5 * hz)
1758			bd_interval = 5 * hz;
1759	}
1760}
1761
1762/*
1763 *	flushbufqueues:
1764 *
1765 *	Try to flush a buffer in the dirty queue.  We must be careful to
1766 *	free up B_INVAL buffers instead of write them, which NFS is
1767 *	particularly sensitive to.
1768 */
1769
1770static int
1771flushbufqueues(void)
1772{
1773	struct buf *bp;
1774	int r = 0;
1775
1776	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1777
1778	while (bp) {
1779		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1780		if ((bp->b_flags & B_DELWRI) != 0) {
1781			if (bp->b_flags & B_INVAL) {
1782				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1783					panic("flushbufqueues: locked buf");
1784				bremfree(bp);
1785				brelse(bp);
1786				++r;
1787				break;
1788			}
1789			vfs_bio_awrite(bp);
1790			++r;
1791			break;
1792		}
1793		bp = TAILQ_NEXT(bp, b_freelist);
1794	}
1795	return(r);
1796}
1797
1798/*
1799 * Check to see if a block is currently memory resident.
1800 */
1801struct buf *
1802incore(struct vnode * vp, daddr_t blkno)
1803{
1804	struct buf *bp;
1805
1806	int s = splbio();
1807	bp = gbincore(vp, blkno);
1808	splx(s);
1809	return (bp);
1810}
1811
1812/*
1813 * Returns true if no I/O is needed to access the
1814 * associated VM object.  This is like incore except
1815 * it also hunts around in the VM system for the data.
1816 */
1817
1818int
1819inmem(struct vnode * vp, daddr_t blkno)
1820{
1821	vm_object_t obj;
1822	vm_offset_t toff, tinc, size;
1823	vm_page_t m;
1824	vm_ooffset_t off;
1825
1826	if (incore(vp, blkno))
1827		return 1;
1828	if (vp->v_mount == NULL)
1829		return 0;
1830	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1831		return 0;
1832
1833	obj = vp->v_object;
1834	size = PAGE_SIZE;
1835	if (size > vp->v_mount->mnt_stat.f_iosize)
1836		size = vp->v_mount->mnt_stat.f_iosize;
1837	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1838
1839	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1840		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1841		if (!m)
1842			return 0;
1843		tinc = size;
1844		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1845			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1846		if (vm_page_is_valid(m,
1847		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1848			return 0;
1849	}
1850	return 1;
1851}
1852
1853/*
1854 *	vfs_setdirty:
1855 *
1856 *	Sets the dirty range for a buffer based on the status of the dirty
1857 *	bits in the pages comprising the buffer.
1858 *
1859 *	The range is limited to the size of the buffer.
1860 *
1861 *	This routine is primarily used by NFS, but is generalized for the
1862 *	B_VMIO case.
1863 */
1864static void
1865vfs_setdirty(struct buf *bp)
1866{
1867	int i;
1868	vm_object_t object;
1869
1870	/*
1871	 * Degenerate case - empty buffer
1872	 */
1873
1874	if (bp->b_bufsize == 0)
1875		return;
1876
1877	/*
1878	 * We qualify the scan for modified pages on whether the
1879	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1880	 * is not cleared simply by protecting pages off.
1881	 */
1882
1883	if ((bp->b_flags & B_VMIO) == 0)
1884		return;
1885
1886	object = bp->b_pages[0]->object;
1887
1888	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1889		printf("Warning: object %p writeable but not mightbedirty\n", object);
1890	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1891		printf("Warning: object %p mightbedirty but not writeable\n", object);
1892
1893	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1894		vm_offset_t boffset;
1895		vm_offset_t eoffset;
1896
1897		/*
1898		 * test the pages to see if they have been modified directly
1899		 * by users through the VM system.
1900		 */
1901		for (i = 0; i < bp->b_npages; i++) {
1902			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1903			vm_page_test_dirty(bp->b_pages[i]);
1904		}
1905
1906		/*
1907		 * Calculate the encompassing dirty range, boffset and eoffset,
1908		 * (eoffset - boffset) bytes.
1909		 */
1910
1911		for (i = 0; i < bp->b_npages; i++) {
1912			if (bp->b_pages[i]->dirty)
1913				break;
1914		}
1915		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1916
1917		for (i = bp->b_npages - 1; i >= 0; --i) {
1918			if (bp->b_pages[i]->dirty) {
1919				break;
1920			}
1921		}
1922		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1923
1924		/*
1925		 * Fit it to the buffer.
1926		 */
1927
1928		if (eoffset > bp->b_bcount)
1929			eoffset = bp->b_bcount;
1930
1931		/*
1932		 * If we have a good dirty range, merge with the existing
1933		 * dirty range.
1934		 */
1935
1936		if (boffset < eoffset) {
1937			if (bp->b_dirtyoff > boffset)
1938				bp->b_dirtyoff = boffset;
1939			if (bp->b_dirtyend < eoffset)
1940				bp->b_dirtyend = eoffset;
1941		}
1942	}
1943}
1944
1945/*
1946 *	getblk:
1947 *
1948 *	Get a block given a specified block and offset into a file/device.
1949 *	The buffers B_DONE bit will be cleared on return, making it almost
1950 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
1951 *	return.  The caller should clear B_INVAL prior to initiating a
1952 *	READ.
1953 *
1954 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
1955 *	an existing buffer.
1956 *
1957 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
1958 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
1959 *	and then cleared based on the backing VM.  If the previous buffer is
1960 *	non-0-sized but invalid, B_CACHE will be cleared.
1961 *
1962 *	If getblk() must create a new buffer, the new buffer is returned with
1963 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
1964 *	case it is returned with B_INVAL clear and B_CACHE set based on the
1965 *	backing VM.
1966 *
1967 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
1968 *	B_CACHE bit is clear.
1969 *
1970 *	What this means, basically, is that the caller should use B_CACHE to
1971 *	determine whether the buffer is fully valid or not and should clear
1972 *	B_INVAL prior to issuing a read.  If the caller intends to validate
1973 *	the buffer by loading its data area with something, the caller needs
1974 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
1975 *	the caller should set B_CACHE ( as an optimization ), else the caller
1976 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
1977 *	a write attempt or if it was a successfull read.  If the caller
1978 *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
1979 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
1980 */
1981struct buf *
1982getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1983{
1984	struct buf *bp;
1985	int s;
1986	struct bufhashhdr *bh;
1987
1988#if !defined(MAX_PERF)
1989	if (size > MAXBSIZE)
1990		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1991#endif
1992
1993	s = splbio();
1994loop:
1995	/*
1996	 * Block if we are low on buffers.   Certain processes are allowed
1997	 * to completely exhaust the buffer cache.
1998         *
1999         * If this check ever becomes a bottleneck it may be better to
2000         * move it into the else, when gbincore() fails.  At the moment
2001         * it isn't a problem.
2002         */
2003	if (!curproc || (curproc->p_flag & P_BUFEXHAUST)) {
2004		if (numfreebuffers == 0) {
2005			if (!curproc)
2006				return NULL;
2007			needsbuffer |= VFS_BIO_NEED_ANY;
2008			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
2009			    slptimeo);
2010		}
2011	} else if (numfreebuffers < lofreebuffers) {
2012		waitfreebuffers(slpflag, slptimeo);
2013	}
2014
2015	if ((bp = gbincore(vp, blkno))) {
2016		/*
2017		 * Buffer is in-core.  If the buffer is not busy, it must
2018		 * be on a queue.
2019		 */
2020
2021		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2022			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2023			    "getblk", slpflag, slptimeo) == ENOLCK)
2024				goto loop;
2025			splx(s);
2026			return (struct buf *) NULL;
2027		}
2028
2029		/*
2030		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2031		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2032		 * and for a VMIO buffer B_CACHE is adjusted according to the
2033		 * backing VM cache.
2034		 */
2035		if (bp->b_flags & B_INVAL)
2036			bp->b_flags &= ~B_CACHE;
2037		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2038			bp->b_flags |= B_CACHE;
2039		bremfree(bp);
2040
2041		/*
2042		 * check for size inconsistancies for non-VMIO case.
2043		 */
2044
2045		if (bp->b_bcount != size) {
2046			if ((bp->b_flags & B_VMIO) == 0 ||
2047			    (size > bp->b_kvasize)) {
2048				if (bp->b_flags & B_DELWRI) {
2049					bp->b_flags |= B_NOCACHE;
2050					VOP_BWRITE(bp->b_vp, bp);
2051				} else {
2052					if ((bp->b_flags & B_VMIO) &&
2053					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2054						bp->b_flags |= B_RELBUF;
2055						brelse(bp);
2056					} else {
2057						bp->b_flags |= B_NOCACHE;
2058						VOP_BWRITE(bp->b_vp, bp);
2059					}
2060				}
2061				goto loop;
2062			}
2063		}
2064
2065		/*
2066		 * If the size is inconsistant in the VMIO case, we can resize
2067		 * the buffer.  This might lead to B_CACHE getting set or
2068		 * cleared.  If the size has not changed, B_CACHE remains
2069		 * unchanged from its previous state.
2070		 */
2071
2072		if (bp->b_bcount != size)
2073			allocbuf(bp, size);
2074
2075		KASSERT(bp->b_offset != NOOFFSET,
2076		    ("getblk: no buffer offset"));
2077
2078		/*
2079		 * A buffer with B_DELWRI set and B_CACHE clear must
2080		 * be committed before we can return the buffer in
2081		 * order to prevent the caller from issuing a read
2082		 * ( due to B_CACHE not being set ) and overwriting
2083		 * it.
2084		 *
2085		 * Most callers, including NFS and FFS, need this to
2086		 * operate properly either because they assume they
2087		 * can issue a read if B_CACHE is not set, or because
2088		 * ( for example ) an uncached B_DELWRI might loop due
2089		 * to softupdates re-dirtying the buffer.  In the latter
2090		 * case, B_CACHE is set after the first write completes,
2091		 * preventing further loops.
2092		 */
2093
2094		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2095			VOP_BWRITE(bp->b_vp, bp);
2096			goto loop;
2097		}
2098
2099		splx(s);
2100		bp->b_flags &= ~B_DONE;
2101	} else {
2102		/*
2103		 * Buffer is not in-core, create new buffer.  The buffer
2104		 * returned by getnewbuf() is locked.  Note that the returned
2105		 * buffer is also considered valid (not marked B_INVAL).
2106		 */
2107		int bsize, maxsize, vmio;
2108		off_t offset;
2109
2110		if (vp->v_type == VBLK)
2111			bsize = DEV_BSIZE;
2112		else if (vp->v_mountedhere)
2113			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2114		else if (vp->v_mount)
2115			bsize = vp->v_mount->mnt_stat.f_iosize;
2116		else
2117			bsize = size;
2118
2119		offset = (off_t)blkno * bsize;
2120		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
2121		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2122		maxsize = imax(maxsize, bsize);
2123
2124		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2125			if (slpflag || slptimeo) {
2126				splx(s);
2127				return NULL;
2128			}
2129			goto loop;
2130		}
2131
2132		/*
2133		 * This code is used to make sure that a buffer is not
2134		 * created while the getnewbuf routine is blocked.
2135		 * This can be a problem whether the vnode is locked or not.
2136		 * If the buffer is created out from under us, we have to
2137		 * throw away the one we just created.  There is now window
2138		 * race because we are safely running at splbio() from the
2139		 * point of the duplicate buffer creation through to here,
2140		 * and we've locked the buffer.
2141		 */
2142		if (gbincore(vp, blkno)) {
2143			bp->b_flags |= B_INVAL;
2144			brelse(bp);
2145			goto loop;
2146		}
2147
2148		/*
2149		 * Insert the buffer into the hash, so that it can
2150		 * be found by incore.
2151		 */
2152		bp->b_blkno = bp->b_lblkno = blkno;
2153		bp->b_offset = offset;
2154
2155		bgetvp(vp, bp);
2156		LIST_REMOVE(bp, b_hash);
2157		bh = bufhash(vp, blkno);
2158		LIST_INSERT_HEAD(bh, bp, b_hash);
2159
2160		/*
2161		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2162		 * buffer size starts out as 0, B_CACHE will be set by
2163		 * allocbuf() for the VMIO case prior to it testing the
2164		 * backing store for validity.
2165		 */
2166
2167		if (vmio) {
2168			bp->b_flags |= B_VMIO;
2169#if defined(VFS_BIO_DEBUG)
2170			if (vp->v_type != VREG && vp->v_type != VBLK)
2171				printf("getblk: vmioing file type %d???\n", vp->v_type);
2172#endif
2173		} else {
2174			bp->b_flags &= ~B_VMIO;
2175		}
2176
2177		allocbuf(bp, size);
2178
2179		splx(s);
2180		bp->b_flags &= ~B_DONE;
2181	}
2182	return (bp);
2183}
2184
2185/*
2186 * Get an empty, disassociated buffer of given size.  The buffer is initially
2187 * set to B_INVAL.
2188 */
2189struct buf *
2190geteblk(int size)
2191{
2192	struct buf *bp;
2193	int s;
2194
2195	s = splbio();
2196	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
2197	splx(s);
2198	allocbuf(bp, size);
2199	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2200	return (bp);
2201}
2202
2203
2204/*
2205 * This code constitutes the buffer memory from either anonymous system
2206 * memory (in the case of non-VMIO operations) or from an associated
2207 * VM object (in the case of VMIO operations).  This code is able to
2208 * resize a buffer up or down.
2209 *
2210 * Note that this code is tricky, and has many complications to resolve
2211 * deadlock or inconsistant data situations.  Tread lightly!!!
2212 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2213 * the caller.  Calling this code willy nilly can result in the loss of data.
2214 *
2215 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2216 * B_CACHE for the non-VMIO case.
2217 */
2218
2219int
2220allocbuf(struct buf *bp, int size)
2221{
2222	int newbsize, mbsize;
2223	int i;
2224
2225#if !defined(MAX_PERF)
2226	if (BUF_REFCNT(bp) == 0)
2227		panic("allocbuf: buffer not busy");
2228
2229	if (bp->b_kvasize < size)
2230		panic("allocbuf: buffer too small");
2231#endif
2232
2233	if ((bp->b_flags & B_VMIO) == 0) {
2234		caddr_t origbuf;
2235		int origbufsize;
2236		/*
2237		 * Just get anonymous memory from the kernel.  Don't
2238		 * mess with B_CACHE.
2239		 */
2240		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2241#if !defined(NO_B_MALLOC)
2242		if (bp->b_flags & B_MALLOC)
2243			newbsize = mbsize;
2244		else
2245#endif
2246			newbsize = round_page(size);
2247
2248		if (newbsize < bp->b_bufsize) {
2249#if !defined(NO_B_MALLOC)
2250			/*
2251			 * malloced buffers are not shrunk
2252			 */
2253			if (bp->b_flags & B_MALLOC) {
2254				if (newbsize) {
2255					bp->b_bcount = size;
2256				} else {
2257					free(bp->b_data, M_BIOBUF);
2258					bufspace -= bp->b_bufsize;
2259					bufmallocspace -= bp->b_bufsize;
2260					runningbufspace -= bp->b_bufsize;
2261					if (bp->b_bufsize)
2262						bufspacewakeup();
2263					bp->b_data = bp->b_kvabase;
2264					bp->b_bufsize = 0;
2265					bp->b_bcount = 0;
2266					bp->b_flags &= ~B_MALLOC;
2267				}
2268				return 1;
2269			}
2270#endif
2271			vm_hold_free_pages(
2272			    bp,
2273			    (vm_offset_t) bp->b_data + newbsize,
2274			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2275		} else if (newbsize > bp->b_bufsize) {
2276#if !defined(NO_B_MALLOC)
2277			/*
2278			 * We only use malloced memory on the first allocation.
2279			 * and revert to page-allocated memory when the buffer
2280			 * grows.
2281			 */
2282			if ( (bufmallocspace < maxbufmallocspace) &&
2283				(bp->b_bufsize == 0) &&
2284				(mbsize <= PAGE_SIZE/2)) {
2285
2286				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2287				bp->b_bufsize = mbsize;
2288				bp->b_bcount = size;
2289				bp->b_flags |= B_MALLOC;
2290				bufspace += mbsize;
2291				bufmallocspace += mbsize;
2292				runningbufspace += bp->b_bufsize;
2293				return 1;
2294			}
2295#endif
2296			origbuf = NULL;
2297			origbufsize = 0;
2298#if !defined(NO_B_MALLOC)
2299			/*
2300			 * If the buffer is growing on its other-than-first allocation,
2301			 * then we revert to the page-allocation scheme.
2302			 */
2303			if (bp->b_flags & B_MALLOC) {
2304				origbuf = bp->b_data;
2305				origbufsize = bp->b_bufsize;
2306				bp->b_data = bp->b_kvabase;
2307				bufspace -= bp->b_bufsize;
2308				bufmallocspace -= bp->b_bufsize;
2309				runningbufspace -= bp->b_bufsize;
2310				if (bp->b_bufsize)
2311					bufspacewakeup();
2312				bp->b_bufsize = 0;
2313				bp->b_flags &= ~B_MALLOC;
2314				newbsize = round_page(newbsize);
2315			}
2316#endif
2317			vm_hold_load_pages(
2318			    bp,
2319			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2320			    (vm_offset_t) bp->b_data + newbsize);
2321#if !defined(NO_B_MALLOC)
2322			if (origbuf) {
2323				bcopy(origbuf, bp->b_data, origbufsize);
2324				free(origbuf, M_BIOBUF);
2325			}
2326#endif
2327		}
2328	} else {
2329		vm_page_t m;
2330		int desiredpages;
2331
2332		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2333		desiredpages = (size == 0) ? 0 :
2334			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2335
2336#if !defined(NO_B_MALLOC)
2337		if (bp->b_flags & B_MALLOC)
2338			panic("allocbuf: VMIO buffer can't be malloced");
2339#endif
2340		/*
2341		 * Set B_CACHE initially if buffer is 0 length or will become
2342		 * 0-length.
2343		 */
2344		if (size == 0 || bp->b_bufsize == 0)
2345			bp->b_flags |= B_CACHE;
2346
2347		if (newbsize < bp->b_bufsize) {
2348			/*
2349			 * DEV_BSIZE aligned new buffer size is less then the
2350			 * DEV_BSIZE aligned existing buffer size.  Figure out
2351			 * if we have to remove any pages.
2352			 */
2353			if (desiredpages < bp->b_npages) {
2354				for (i = desiredpages; i < bp->b_npages; i++) {
2355					/*
2356					 * the page is not freed here -- it
2357					 * is the responsibility of
2358					 * vnode_pager_setsize
2359					 */
2360					m = bp->b_pages[i];
2361					KASSERT(m != bogus_page,
2362					    ("allocbuf: bogus page found"));
2363					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2364						;
2365
2366					bp->b_pages[i] = NULL;
2367					vm_page_unwire(m, 0);
2368				}
2369				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2370				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2371				bp->b_npages = desiredpages;
2372			}
2373		} else if (size > bp->b_bcount) {
2374			/*
2375			 * We are growing the buffer, possibly in a
2376			 * byte-granular fashion.
2377			 */
2378			struct vnode *vp;
2379			vm_object_t obj;
2380			vm_offset_t toff;
2381			vm_offset_t tinc;
2382
2383			/*
2384			 * Step 1, bring in the VM pages from the object,
2385			 * allocating them if necessary.  We must clear
2386			 * B_CACHE if these pages are not valid for the
2387			 * range covered by the buffer.
2388			 */
2389
2390			vp = bp->b_vp;
2391			obj = vp->v_object;
2392
2393			while (bp->b_npages < desiredpages) {
2394				vm_page_t m;
2395				vm_pindex_t pi;
2396
2397				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2398				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2399					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
2400					if (m == NULL) {
2401						VM_WAIT;
2402						vm_pageout_deficit += desiredpages - bp->b_npages;
2403					} else {
2404						vm_page_wire(m);
2405						vm_page_wakeup(m);
2406						bp->b_flags &= ~B_CACHE;
2407						bp->b_pages[bp->b_npages] = m;
2408						++bp->b_npages;
2409					}
2410					continue;
2411				}
2412
2413				/*
2414				 * We found a page.  If we have to sleep on it,
2415				 * retry because it might have gotten freed out
2416				 * from under us.
2417				 *
2418				 * We can only test PG_BUSY here.  Blocking on
2419				 * m->busy might lead to a deadlock:
2420				 *
2421				 *  vm_fault->getpages->cluster_read->allocbuf
2422				 *
2423				 */
2424
2425				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2426					continue;
2427
2428				/*
2429				 * We have a good page.  Should we wakeup the
2430				 * page daemon?
2431				 */
2432				if ((curproc != pageproc) &&
2433				    ((m->queue - m->pc) == PQ_CACHE) &&
2434				    ((cnt.v_free_count + cnt.v_cache_count) <
2435					(cnt.v_free_min + cnt.v_cache_min))) {
2436					pagedaemon_wakeup();
2437				}
2438				vm_page_flag_clear(m, PG_ZERO);
2439				vm_page_wire(m);
2440				bp->b_pages[bp->b_npages] = m;
2441				++bp->b_npages;
2442			}
2443
2444			/*
2445			 * Step 2.  We've loaded the pages into the buffer,
2446			 * we have to figure out if we can still have B_CACHE
2447			 * set.  Note that B_CACHE is set according to the
2448			 * byte-granular range ( bcount and size ), new the
2449			 * aligned range ( newbsize ).
2450			 *
2451			 * The VM test is against m->valid, which is DEV_BSIZE
2452			 * aligned.  Needless to say, the validity of the data
2453			 * needs to also be DEV_BSIZE aligned.  Note that this
2454			 * fails with NFS if the server or some other client
2455			 * extends the file's EOF.  If our buffer is resized,
2456			 * B_CACHE may remain set! XXX
2457			 */
2458
2459			toff = bp->b_bcount;
2460			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2461
2462			while ((bp->b_flags & B_CACHE) && toff < size) {
2463				vm_pindex_t pi;
2464
2465				if (tinc > (size - toff))
2466					tinc = size - toff;
2467
2468				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2469				    PAGE_SHIFT;
2470
2471				vfs_buf_test_cache(
2472				    bp,
2473				    bp->b_offset,
2474				    toff,
2475				    tinc,
2476				    bp->b_pages[pi]
2477				);
2478				toff += tinc;
2479				tinc = PAGE_SIZE;
2480			}
2481
2482			/*
2483			 * Step 3, fixup the KVM pmap.  Remember that
2484			 * bp->b_data is relative to bp->b_offset, but
2485			 * bp->b_offset may be offset into the first page.
2486			 */
2487
2488			bp->b_data = (caddr_t)
2489			    trunc_page((vm_offset_t)bp->b_data);
2490			pmap_qenter(
2491			    (vm_offset_t)bp->b_data,
2492			    bp->b_pages,
2493			    bp->b_npages
2494			);
2495			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2496			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2497		}
2498	}
2499	if (bp->b_flags & B_VMIO)
2500		vmiospace += (newbsize - bp->b_bufsize);
2501	bufspace += (newbsize - bp->b_bufsize);
2502	runningbufspace += (newbsize - bp->b_bufsize);
2503	if (newbsize < bp->b_bufsize)
2504		bufspacewakeup();
2505	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2506	bp->b_bcount = size;		/* requested buffer size	*/
2507	return 1;
2508}
2509
2510/*
2511 *	biowait:
2512 *
2513 *	Wait for buffer I/O completion, returning error status.  The buffer
2514 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2515 *	error and cleared.
2516 */
2517int
2518biowait(register struct buf * bp)
2519{
2520	int s;
2521
2522	s = splbio();
2523	while ((bp->b_flags & B_DONE) == 0) {
2524#if defined(NO_SCHEDULE_MODS)
2525		tsleep(bp, PRIBIO, "biowait", 0);
2526#else
2527		if (bp->b_flags & B_READ)
2528			tsleep(bp, PRIBIO, "biord", 0);
2529		else
2530			tsleep(bp, PRIBIO, "biowr", 0);
2531#endif
2532	}
2533	splx(s);
2534	if (bp->b_flags & B_EINTR) {
2535		bp->b_flags &= ~B_EINTR;
2536		return (EINTR);
2537	}
2538	if (bp->b_flags & B_ERROR) {
2539		return (bp->b_error ? bp->b_error : EIO);
2540	} else {
2541		return (0);
2542	}
2543}
2544
2545/*
2546 *	biodone:
2547 *
2548 *	Finish I/O on a buffer, optionally calling a completion function.
2549 *	This is usually called from an interrupt so process blocking is
2550 *	not allowed.
2551 *
2552 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2553 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2554 *	assuming B_INVAL is clear.
2555 *
2556 *	For the VMIO case, we set B_CACHE if the op was a read and no
2557 *	read error occured, or if the op was a write.  B_CACHE is never
2558 *	set if the buffer is invalid or otherwise uncacheable.
2559 *
2560 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2561 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2562 *	in the biodone routine.
2563 */
2564void
2565biodone(register struct buf * bp)
2566{
2567	int s;
2568
2569	s = splbio();
2570
2571	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2572	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2573
2574	bp->b_flags |= B_DONE;
2575
2576	if (bp->b_flags & B_FREEBUF) {
2577		brelse(bp);
2578		splx(s);
2579		return;
2580	}
2581
2582	if ((bp->b_flags & B_READ) == 0) {
2583		vwakeup(bp);
2584	}
2585
2586	/* call optional completion function if requested */
2587	if (bp->b_flags & B_CALL) {
2588		bp->b_flags &= ~B_CALL;
2589		(*bp->b_iodone) (bp);
2590		splx(s);
2591		return;
2592	}
2593	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2594		(*bioops.io_complete)(bp);
2595
2596	if (bp->b_flags & B_VMIO) {
2597		int i, resid;
2598		vm_ooffset_t foff;
2599		vm_page_t m;
2600		vm_object_t obj;
2601		int iosize;
2602		struct vnode *vp = bp->b_vp;
2603
2604		obj = vp->v_object;
2605
2606#if defined(VFS_BIO_DEBUG)
2607		if (vp->v_usecount == 0) {
2608			panic("biodone: zero vnode ref count");
2609		}
2610
2611		if (vp->v_object == NULL) {
2612			panic("biodone: missing VM object");
2613		}
2614
2615		if ((vp->v_flag & VOBJBUF) == 0) {
2616			panic("biodone: vnode is not setup for merged cache");
2617		}
2618#endif
2619
2620		foff = bp->b_offset;
2621		KASSERT(bp->b_offset != NOOFFSET,
2622		    ("biodone: no buffer offset"));
2623
2624#if !defined(MAX_PERF)
2625		if (!obj) {
2626			panic("biodone: no object");
2627		}
2628#endif
2629#if defined(VFS_BIO_DEBUG)
2630		if (obj->paging_in_progress < bp->b_npages) {
2631			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2632			    obj->paging_in_progress, bp->b_npages);
2633		}
2634#endif
2635
2636		/*
2637		 * Set B_CACHE if the op was a normal read and no error
2638		 * occured.  B_CACHE is set for writes in the b*write()
2639		 * routines.
2640		 */
2641		iosize = bp->b_bcount - bp->b_resid;
2642		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2643			bp->b_flags |= B_CACHE;
2644		}
2645
2646		for (i = 0; i < bp->b_npages; i++) {
2647			int bogusflag = 0;
2648			m = bp->b_pages[i];
2649			if (m == bogus_page) {
2650				bogusflag = 1;
2651				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2652				if (!m) {
2653#if defined(VFS_BIO_DEBUG)
2654					printf("biodone: page disappeared\n");
2655#endif
2656					vm_object_pip_subtract(obj, 1);
2657					bp->b_flags &= ~B_CACHE;
2658					continue;
2659				}
2660				bp->b_pages[i] = m;
2661				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2662			}
2663#if defined(VFS_BIO_DEBUG)
2664			if (OFF_TO_IDX(foff) != m->pindex) {
2665				printf(
2666"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2667				    (unsigned long)foff, m->pindex);
2668			}
2669#endif
2670			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2671			if (resid > iosize)
2672				resid = iosize;
2673
2674			/*
2675			 * In the write case, the valid and clean bits are
2676			 * already changed correctly ( see bdwrite() ), so we
2677			 * only need to do this here in the read case.
2678			 */
2679			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2680				vfs_page_set_valid(bp, foff, i, m);
2681			}
2682			vm_page_flag_clear(m, PG_ZERO);
2683
2684			/*
2685			 * when debugging new filesystems or buffer I/O methods, this
2686			 * is the most common error that pops up.  if you see this, you
2687			 * have not set the page busy flag correctly!!!
2688			 */
2689			if (m->busy == 0) {
2690#if !defined(MAX_PERF)
2691				printf("biodone: page busy < 0, "
2692				    "pindex: %d, foff: 0x(%x,%x), "
2693				    "resid: %d, index: %d\n",
2694				    (int) m->pindex, (int)(foff >> 32),
2695						(int) foff & 0xffffffff, resid, i);
2696#endif
2697				if (vp->v_type != VBLK)
2698#if !defined(MAX_PERF)
2699					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2700					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2701					    (int) bp->b_lblkno,
2702					    bp->b_flags, bp->b_npages);
2703				else
2704					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2705					    (int) bp->b_lblkno,
2706					    bp->b_flags, bp->b_npages);
2707				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2708				    m->valid, m->dirty, m->wire_count);
2709#endif
2710				panic("biodone: page busy < 0\n");
2711			}
2712			vm_page_io_finish(m);
2713			vm_object_pip_subtract(obj, 1);
2714			foff += resid;
2715			iosize -= resid;
2716		}
2717		if (obj)
2718			vm_object_pip_wakeupn(obj, 0);
2719	}
2720	/*
2721	 * For asynchronous completions, release the buffer now. The brelse
2722	 * will do a wakeup there if necessary - so no need to do a wakeup
2723	 * here in the async case. The sync case always needs to do a wakeup.
2724	 */
2725
2726	if (bp->b_flags & B_ASYNC) {
2727		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2728			brelse(bp);
2729		else
2730			bqrelse(bp);
2731	} else {
2732		wakeup(bp);
2733	}
2734	splx(s);
2735}
2736
2737/*
2738 * This routine is called in lieu of iodone in the case of
2739 * incomplete I/O.  This keeps the busy status for pages
2740 * consistant.
2741 */
2742void
2743vfs_unbusy_pages(struct buf * bp)
2744{
2745	int i;
2746
2747	if (bp->b_flags & B_VMIO) {
2748		struct vnode *vp = bp->b_vp;
2749		vm_object_t obj = vp->v_object;
2750
2751		for (i = 0; i < bp->b_npages; i++) {
2752			vm_page_t m = bp->b_pages[i];
2753
2754			if (m == bogus_page) {
2755				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2756#if !defined(MAX_PERF)
2757				if (!m) {
2758					panic("vfs_unbusy_pages: page missing\n");
2759				}
2760#endif
2761				bp->b_pages[i] = m;
2762				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2763			}
2764			vm_object_pip_subtract(obj, 1);
2765			vm_page_flag_clear(m, PG_ZERO);
2766			vm_page_io_finish(m);
2767		}
2768		vm_object_pip_wakeupn(obj, 0);
2769	}
2770}
2771
2772/*
2773 * vfs_page_set_valid:
2774 *
2775 *	Set the valid bits in a page based on the supplied offset.   The
2776 *	range is restricted to the buffer's size.
2777 *
2778 *	This routine is typically called after a read completes.
2779 */
2780static void
2781vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2782{
2783	vm_ooffset_t soff, eoff;
2784
2785	/*
2786	 * Start and end offsets in buffer.  eoff - soff may not cross a
2787	 * page boundry or cross the end of the buffer.  The end of the
2788	 * buffer, in this case, is our file EOF, not the allocation size
2789	 * of the buffer.
2790	 */
2791	soff = off;
2792	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2793	if (eoff > bp->b_offset + bp->b_bcount)
2794		eoff = bp->b_offset + bp->b_bcount;
2795
2796	/*
2797	 * Set valid range.  This is typically the entire buffer and thus the
2798	 * entire page.
2799	 */
2800	if (eoff > soff) {
2801		vm_page_set_validclean(
2802		    m,
2803		   (vm_offset_t) (soff & PAGE_MASK),
2804		   (vm_offset_t) (eoff - soff)
2805		);
2806	}
2807}
2808
2809/*
2810 * This routine is called before a device strategy routine.
2811 * It is used to tell the VM system that paging I/O is in
2812 * progress, and treat the pages associated with the buffer
2813 * almost as being PG_BUSY.  Also the object paging_in_progress
2814 * flag is handled to make sure that the object doesn't become
2815 * inconsistant.
2816 *
2817 * Since I/O has not been initiated yet, certain buffer flags
2818 * such as B_ERROR or B_INVAL may be in an inconsistant state
2819 * and should be ignored.
2820 */
2821void
2822vfs_busy_pages(struct buf * bp, int clear_modify)
2823{
2824	int i, bogus;
2825
2826	if (bp->b_flags & B_VMIO) {
2827		struct vnode *vp = bp->b_vp;
2828		vm_object_t obj = vp->v_object;
2829		vm_ooffset_t foff;
2830
2831		foff = bp->b_offset;
2832		KASSERT(bp->b_offset != NOOFFSET,
2833		    ("vfs_busy_pages: no buffer offset"));
2834		vfs_setdirty(bp);
2835
2836retry:
2837		for (i = 0; i < bp->b_npages; i++) {
2838			vm_page_t m = bp->b_pages[i];
2839			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2840				goto retry;
2841		}
2842
2843		bogus = 0;
2844		for (i = 0; i < bp->b_npages; i++) {
2845			vm_page_t m = bp->b_pages[i];
2846
2847			vm_page_flag_clear(m, PG_ZERO);
2848			if ((bp->b_flags & B_CLUSTER) == 0) {
2849				vm_object_pip_add(obj, 1);
2850				vm_page_io_start(m);
2851			}
2852
2853			/*
2854			 * When readying a buffer for a read ( i.e
2855			 * clear_modify == 0 ), it is important to do
2856			 * bogus_page replacement for valid pages in
2857			 * partially instantiated buffers.  Partially
2858			 * instantiated buffers can, in turn, occur when
2859			 * reconstituting a buffer from its VM backing store
2860			 * base.  We only have to do this if B_CACHE is
2861			 * clear ( which causes the I/O to occur in the
2862			 * first place ).  The replacement prevents the read
2863			 * I/O from overwriting potentially dirty VM-backed
2864			 * pages.  XXX bogus page replacement is, uh, bogus.
2865			 * It may not work properly with small-block devices.
2866			 * We need to find a better way.
2867			 */
2868
2869			vm_page_protect(m, VM_PROT_NONE);
2870			if (clear_modify)
2871				vfs_page_set_valid(bp, foff, i, m);
2872			else if (m->valid == VM_PAGE_BITS_ALL &&
2873				(bp->b_flags & B_CACHE) == 0) {
2874				bp->b_pages[i] = bogus_page;
2875				bogus++;
2876			}
2877			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2878		}
2879		if (bogus)
2880			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2881	}
2882}
2883
2884/*
2885 * Tell the VM system that the pages associated with this buffer
2886 * are clean.  This is used for delayed writes where the data is
2887 * going to go to disk eventually without additional VM intevention.
2888 *
2889 * Note that while we only really need to clean through to b_bcount, we
2890 * just go ahead and clean through to b_bufsize.
2891 */
2892static void
2893vfs_clean_pages(struct buf * bp)
2894{
2895	int i;
2896
2897	if (bp->b_flags & B_VMIO) {
2898		vm_ooffset_t foff;
2899
2900		foff = bp->b_offset;
2901		KASSERT(bp->b_offset != NOOFFSET,
2902		    ("vfs_clean_pages: no buffer offset"));
2903		for (i = 0; i < bp->b_npages; i++) {
2904			vm_page_t m = bp->b_pages[i];
2905			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2906			vm_ooffset_t eoff = noff;
2907
2908			if (eoff > bp->b_offset + bp->b_bufsize)
2909				eoff = bp->b_offset + bp->b_bufsize;
2910			vfs_page_set_valid(bp, foff, i, m);
2911			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2912			foff = noff;
2913		}
2914	}
2915}
2916
2917/*
2918 *	vfs_bio_set_validclean:
2919 *
2920 *	Set the range within the buffer to valid and clean.  The range is
2921 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
2922 *	itself may be offset from the beginning of the first page.
2923 */
2924
2925void
2926vfs_bio_set_validclean(struct buf *bp, int base, int size)
2927{
2928	if (bp->b_flags & B_VMIO) {
2929		int i;
2930		int n;
2931
2932		/*
2933		 * Fixup base to be relative to beginning of first page.
2934		 * Set initial n to be the maximum number of bytes in the
2935		 * first page that can be validated.
2936		 */
2937
2938		base += (bp->b_offset & PAGE_MASK);
2939		n = PAGE_SIZE - (base & PAGE_MASK);
2940
2941		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
2942			vm_page_t m = bp->b_pages[i];
2943
2944			if (n > size)
2945				n = size;
2946
2947			vm_page_set_validclean(m, base & PAGE_MASK, n);
2948			base += n;
2949			size -= n;
2950			n = PAGE_SIZE;
2951		}
2952	}
2953}
2954
2955/*
2956 *	vfs_bio_clrbuf:
2957 *
2958 *	clear a buffer.  This routine essentially fakes an I/O, so we need
2959 *	to clear B_ERROR and B_INVAL.
2960 *
2961 *	Note that while we only theoretically need to clear through b_bcount,
2962 *	we go ahead and clear through b_bufsize.
2963 */
2964
2965void
2966vfs_bio_clrbuf(struct buf *bp) {
2967	int i, mask = 0;
2968	caddr_t sa, ea;
2969	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2970		bp->b_flags &= ~(B_INVAL|B_ERROR);
2971		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2972		    (bp->b_offset & PAGE_MASK) == 0) {
2973			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2974			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2975			    ((bp->b_pages[0]->valid & mask) != mask)) {
2976				bzero(bp->b_data, bp->b_bufsize);
2977			}
2978			bp->b_pages[0]->valid |= mask;
2979			bp->b_resid = 0;
2980			return;
2981		}
2982		ea = sa = bp->b_data;
2983		for(i=0;i<bp->b_npages;i++,sa=ea) {
2984			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
2985			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2986			ea = (caddr_t)(vm_offset_t)ulmin(
2987			    (u_long)(vm_offset_t)ea,
2988			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
2989			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2990			if ((bp->b_pages[i]->valid & mask) == mask)
2991				continue;
2992			if ((bp->b_pages[i]->valid & mask) == 0) {
2993				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2994					bzero(sa, ea - sa);
2995				}
2996			} else {
2997				for (; sa < ea; sa += DEV_BSIZE, j++) {
2998					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2999						(bp->b_pages[i]->valid & (1<<j)) == 0)
3000						bzero(sa, DEV_BSIZE);
3001				}
3002			}
3003			bp->b_pages[i]->valid |= mask;
3004			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3005		}
3006		bp->b_resid = 0;
3007	} else {
3008		clrbuf(bp);
3009	}
3010}
3011
3012/*
3013 * vm_hold_load_pages and vm_hold_unload pages get pages into
3014 * a buffers address space.  The pages are anonymous and are
3015 * not associated with a file object.
3016 */
3017void
3018vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3019{
3020	vm_offset_t pg;
3021	vm_page_t p;
3022	int index;
3023
3024	to = round_page(to);
3025	from = round_page(from);
3026	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3027
3028	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3029
3030tryagain:
3031
3032		p = vm_page_alloc(kernel_object,
3033			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3034		    VM_ALLOC_NORMAL);
3035		if (!p) {
3036			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3037			VM_WAIT;
3038			goto tryagain;
3039		}
3040		vm_page_wire(p);
3041		p->valid = VM_PAGE_BITS_ALL;
3042		vm_page_flag_clear(p, PG_ZERO);
3043		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3044		bp->b_pages[index] = p;
3045		vm_page_wakeup(p);
3046	}
3047	bp->b_npages = index;
3048}
3049
3050void
3051vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3052{
3053	vm_offset_t pg;
3054	vm_page_t p;
3055	int index, newnpages;
3056
3057	from = round_page(from);
3058	to = round_page(to);
3059	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3060
3061	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3062		p = bp->b_pages[index];
3063		if (p && (index < bp->b_npages)) {
3064#if !defined(MAX_PERF)
3065			if (p->busy) {
3066				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3067					bp->b_blkno, bp->b_lblkno);
3068			}
3069#endif
3070			bp->b_pages[index] = NULL;
3071			pmap_kremove(pg);
3072			vm_page_busy(p);
3073			vm_page_unwire(p, 0);
3074			vm_page_free(p);
3075		}
3076	}
3077	bp->b_npages = newnpages;
3078}
3079
3080
3081#include "opt_ddb.h"
3082#ifdef DDB
3083#include <ddb/ddb.h>
3084
3085DB_SHOW_COMMAND(buffer, db_show_buffer)
3086{
3087	/* get args */
3088	struct buf *bp = (struct buf *)addr;
3089
3090	if (!have_addr) {
3091		db_printf("usage: show buffer <addr>\n");
3092		return;
3093	}
3094
3095	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3096	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3097		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3098		  "b_blkno = %d, b_pblkno = %d\n",
3099		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3100		  major(bp->b_dev), minor(bp->b_dev),
3101		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3102	if (bp->b_npages) {
3103		int i;
3104		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3105		for (i = 0; i < bp->b_npages; i++) {
3106			vm_page_t m;
3107			m = bp->b_pages[i];
3108			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3109			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3110			if ((i + 1) < bp->b_npages)
3111				db_printf(",");
3112		}
3113		db_printf("\n");
3114	}
3115}
3116#endif /* DDB */
3117