vfs_bio.c revision 51465
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $FreeBSD: head/sys/kern/vfs_bio.c 51465 1999-09-20 16:19:24Z dillon $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#define VMIO
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/sysproto.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/proc.h>
37#include <sys/kthread.h>
38#include <sys/vnode.h>
39#include <sys/vmmeter.h>
40#include <sys/lock.h>
41#include <vm/vm.h>
42#include <vm/vm_param.h>
43#include <vm/vm_prot.h>
44#include <vm/vm_kern.h>
45#include <vm/vm_pageout.h>
46#include <vm/vm_page.h>
47#include <vm/vm_object.h>
48#include <vm/vm_extern.h>
49#include <vm/vm_map.h>
50#include <sys/buf.h>
51#include <sys/mount.h>
52#include <sys/malloc.h>
53#include <sys/resourcevar.h>
54#include <sys/conf.h>
55
56static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
57
58struct	bio_ops bioops;		/* I/O operation notification */
59
60struct buf *buf;		/* buffer header pool */
61struct swqueue bswlist;
62
63static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
64		vm_offset_t to);
65static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
66		vm_offset_t to);
67static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
68			       int pageno, vm_page_t m);
69static void vfs_clean_pages(struct buf * bp);
70static void vfs_setdirty(struct buf *bp);
71static void vfs_vmio_release(struct buf *bp);
72static int flushbufqueues(void);
73
74static int bd_request;
75
76static void buf_daemon __P((void));
77/*
78 * bogus page -- for I/O to/from partially complete buffers
79 * this is a temporary solution to the problem, but it is not
80 * really that bad.  it would be better to split the buffer
81 * for input in the case of buffers partially already in memory,
82 * but the code is intricate enough already.
83 */
84vm_page_t bogus_page;
85int runningbufspace;
86int vmiodirenable = FALSE;
87static vm_offset_t bogus_offset;
88
89static int bufspace, maxbufspace, vmiospace,
90	bufmallocspace, maxbufmallocspace, hibufspace;
91#if 0
92static int maxvmiobufspace;
93#endif
94static int maxbdrun;
95static int needsbuffer;
96static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
97static int numfreebuffers, lofreebuffers, hifreebuffers;
98static int getnewbufcalls;
99static int getnewbufrestarts;
100static int kvafreespace;
101
102SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
103	&numdirtybuffers, 0, "");
104SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
105	&lodirtybuffers, 0, "");
106SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
107	&hidirtybuffers, 0, "");
108SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
109	&numfreebuffers, 0, "");
110SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
111	&lofreebuffers, 0, "");
112SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
113	&hifreebuffers, 0, "");
114SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
115	&runningbufspace, 0, "");
116SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
117	&maxbufspace, 0, "");
118SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
119	&hibufspace, 0, "");
120SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
121	&bufspace, 0, "");
122SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
123	&maxbdrun, 0, "");
124#if 0
125SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
126	&maxvmiobufspace, 0, "");
127#endif
128SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
129	&vmiospace, 0, "");
130SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
131	&maxbufmallocspace, 0, "");
132SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
133	&bufmallocspace, 0, "");
134SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
135	&kvafreespace, 0, "");
136SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
137	&getnewbufcalls, 0, "");
138SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
139	&getnewbufrestarts, 0, "");
140SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
141	&vmiodirenable, 0, "");
142
143
144static int bufhashmask;
145static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
146struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
147char *buf_wmesg = BUF_WMESG;
148
149extern int vm_swap_size;
150
151#define BUF_MAXUSE		24
152
153#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
154#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
155#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
156#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
157#define VFS_BIO_NEED_KVASPACE	0x10	/* wait for buffer_map space, emerg  */
158
159/*
160 * Buffer hash table code.  Note that the logical block scans linearly, which
161 * gives us some L1 cache locality.
162 */
163
164static __inline
165struct bufhashhdr *
166bufhash(struct vnode *vnp, daddr_t bn)
167{
168	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
169}
170
171/*
172 *	kvaspacewakeup:
173 *
174 *	Called when kva space is potential available for recovery or when
175 *	kva space is recovered in the buffer_map.  This function wakes up
176 *	anyone waiting for buffer_map kva space.  Even though the buffer_map
177 *	is larger then maxbufspace, this situation will typically occur
178 *	when the buffer_map gets fragmented.
179 */
180
181static __inline void
182kvaspacewakeup(void)
183{
184	/*
185	 * If someone is waiting for KVA space, wake them up.  Even
186	 * though we haven't freed the kva space yet, the waiting
187	 * process will be able to now.
188	 */
189	if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
190		needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
191		wakeup(&needsbuffer);
192	}
193}
194
195/*
196 *	numdirtywakeup:
197 *
198 *	If someone is blocked due to there being too many dirty buffers,
199 *	and numdirtybuffers is now reasonable, wake them up.
200 */
201
202static __inline void
203numdirtywakeup(void)
204{
205	if (numdirtybuffers < hidirtybuffers) {
206		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
207			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
208			wakeup(&needsbuffer);
209		}
210	}
211}
212
213/*
214 *	bufspacewakeup:
215 *
216 *	Called when buffer space is potentially available for recovery or when
217 *	buffer space is recovered.  getnewbuf() will block on this flag when
218 *	it is unable to free sufficient buffer space.  Buffer space becomes
219 *	recoverable when bp's get placed back in the queues.
220 */
221
222static __inline void
223bufspacewakeup(void)
224{
225	/*
226	 * If someone is waiting for BUF space, wake them up.  Even
227	 * though we haven't freed the kva space yet, the waiting
228	 * process will be able to now.
229	 */
230	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
231		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
232		wakeup(&needsbuffer);
233	}
234}
235
236/*
237 *	bufcountwakeup:
238 *
239 *	Called when a buffer has been added to one of the free queues to
240 *	account for the buffer and to wakeup anyone waiting for free buffers.
241 *	This typically occurs when large amounts of metadata are being handled
242 *	by the buffer cache ( else buffer space runs out first, usually ).
243 */
244
245static __inline void
246bufcountwakeup(void)
247{
248	++numfreebuffers;
249	if (needsbuffer) {
250		needsbuffer &= ~VFS_BIO_NEED_ANY;
251		if (numfreebuffers >= hifreebuffers)
252			needsbuffer &= ~VFS_BIO_NEED_FREE;
253		wakeup(&needsbuffer);
254	}
255}
256
257/*
258 *	vfs_buf_test_cache:
259 *
260 *	Called when a buffer is extended.  This function clears the B_CACHE
261 *	bit if the newly extended portion of the buffer does not contain
262 *	valid data.
263 */
264static __inline__
265void
266vfs_buf_test_cache(struct buf *bp,
267		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
268		  vm_page_t m)
269{
270	if (bp->b_flags & B_CACHE) {
271		int base = (foff + off) & PAGE_MASK;
272		if (vm_page_is_valid(m, base, size) == 0)
273			bp->b_flags &= ~B_CACHE;
274	}
275}
276
277static __inline__
278void
279bd_wakeup(int dirtybuflevel)
280{
281	if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
282		bd_request = 1;
283		wakeup(&bd_request);
284	}
285}
286
287
288/*
289 * Initialize buffer headers and related structures.
290 */
291
292caddr_t
293bufhashinit(caddr_t vaddr)
294{
295	/* first, make a null hash table */
296	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
297		;
298	bufhashtbl = (void *)vaddr;
299	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
300	--bufhashmask;
301	return(vaddr);
302}
303
304void
305bufinit(void)
306{
307	struct buf *bp;
308	int i;
309
310	TAILQ_INIT(&bswlist);
311	LIST_INIT(&invalhash);
312	simple_lock_init(&buftimelock);
313
314	for (i = 0; i <= bufhashmask; i++)
315		LIST_INIT(&bufhashtbl[i]);
316
317	/* next, make a null set of free lists */
318	for (i = 0; i < BUFFER_QUEUES; i++)
319		TAILQ_INIT(&bufqueues[i]);
320
321	/* finally, initialize each buffer header and stick on empty q */
322	for (i = 0; i < nbuf; i++) {
323		bp = &buf[i];
324		bzero(bp, sizeof *bp);
325		bp->b_flags = B_INVAL;	/* we're just an empty header */
326		bp->b_dev = NODEV;
327		bp->b_rcred = NOCRED;
328		bp->b_wcred = NOCRED;
329		bp->b_qindex = QUEUE_EMPTY;
330		bp->b_xflags = 0;
331		LIST_INIT(&bp->b_dep);
332		BUF_LOCKINIT(bp);
333		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
334		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
335	}
336
337	/*
338	 * maxbufspace is currently calculated to support all filesystem
339	 * blocks to be 8K.  If you happen to use a 16K filesystem, the size
340	 * of the buffer cache is still the same as it would be for 8K
341	 * filesystems.  This keeps the size of the buffer cache "in check"
342	 * for big block filesystems.
343	 *
344	 * maxbufspace is calculated as around 50% of the KVA available in
345	 * the buffer_map ( DFLTSIZE vs BKVASIZE ), I presume to reduce the
346	 * effect of fragmentation.
347	 */
348	maxbufspace = (nbuf + 8) * DFLTBSIZE;
349	if ((hibufspace = maxbufspace - MAXBSIZE * 5) <= MAXBSIZE)
350		hibufspace = 3 * maxbufspace / 4;
351#if 0
352/*
353 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
354 */
355	maxvmiobufspace = 2 * hibufspace / 3;
356#endif
357/*
358 * Limit the amount of malloc memory since it is wired permanently into
359 * the kernel space.  Even though this is accounted for in the buffer
360 * allocation, we don't want the malloced region to grow uncontrolled.
361 * The malloc scheme improves memory utilization significantly on average
362 * (small) directories.
363 */
364	maxbufmallocspace = hibufspace / 20;
365
366/*
367 * Reduce the chance of a deadlock occuring by limiting the number
368 * of delayed-write dirty buffers we allow to stack up.
369 */
370	lodirtybuffers = nbuf / 7 + 10;
371	hidirtybuffers = nbuf / 4 + 20;
372	numdirtybuffers = 0;
373
374/*
375 * Try to keep the number of free buffers in the specified range,
376 * and give the syncer access to an emergency reserve.
377 */
378	lofreebuffers = nbuf / 18 + 5;
379	hifreebuffers = 2 * lofreebuffers;
380	numfreebuffers = nbuf;
381
382/*
383 * Maximum number of async ops initiated per buf_daemon loop.  This is
384 * somewhat of a hack at the moment, we really need to limit ourselves
385 * based on the number of bytes of I/O in-transit that were initiated
386 * from buf_daemon.
387 */
388	if ((maxbdrun = nswbuf / 4) < 4)
389		maxbdrun = 4;
390
391	kvafreespace = 0;
392
393	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
394	bogus_page = vm_page_alloc(kernel_object,
395			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
396			VM_ALLOC_NORMAL);
397
398}
399
400/*
401 * Free the kva allocation for a buffer
402 * Must be called only at splbio or higher,
403 *  as this is the only locking for buffer_map.
404 */
405static void
406bfreekva(struct buf * bp)
407{
408	if (bp->b_kvasize) {
409		vm_map_delete(buffer_map,
410		    (vm_offset_t) bp->b_kvabase,
411		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
412		);
413		bp->b_kvasize = 0;
414		kvaspacewakeup();
415	}
416}
417
418/*
419 *	bremfree:
420 *
421 *	Remove the buffer from the appropriate free list.
422 */
423void
424bremfree(struct buf * bp)
425{
426	int s = splbio();
427	int old_qindex = bp->b_qindex;
428
429	if (bp->b_qindex != QUEUE_NONE) {
430		if (bp->b_qindex == QUEUE_EMPTYKVA) {
431			kvafreespace -= bp->b_kvasize;
432		}
433		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
434		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
435		bp->b_qindex = QUEUE_NONE;
436		runningbufspace += bp->b_bufsize;
437	} else {
438#if !defined(MAX_PERF)
439		if (BUF_REFCNT(bp) <= 1)
440			panic("bremfree: removing a buffer not on a queue");
441#endif
442	}
443
444	/*
445	 * Fixup numfreebuffers count.  If the buffer is invalid or not
446	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
447	 * the buffer was free and we must decrement numfreebuffers.
448	 */
449	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
450		switch(old_qindex) {
451		case QUEUE_DIRTY:
452		case QUEUE_CLEAN:
453		case QUEUE_EMPTY:
454		case QUEUE_EMPTYKVA:
455			--numfreebuffers;
456			break;
457		default:
458			break;
459		}
460	}
461	splx(s);
462}
463
464
465/*
466 * Get a buffer with the specified data.  Look in the cache first.  We
467 * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
468 * is set, the buffer is valid and we do not have to do anything ( see
469 * getblk() ).
470 */
471int
472bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
473    struct buf ** bpp)
474{
475	struct buf *bp;
476
477	bp = getblk(vp, blkno, size, 0, 0);
478	*bpp = bp;
479
480	/* if not found in cache, do some I/O */
481	if ((bp->b_flags & B_CACHE) == 0) {
482		if (curproc != NULL)
483			curproc->p_stats->p_ru.ru_inblock++;
484		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
485		bp->b_flags |= B_READ;
486		bp->b_flags &= ~(B_ERROR | B_INVAL);
487		if (bp->b_rcred == NOCRED) {
488			if (cred != NOCRED)
489				crhold(cred);
490			bp->b_rcred = cred;
491		}
492		vfs_busy_pages(bp, 0);
493		VOP_STRATEGY(vp, bp);
494		return (biowait(bp));
495	}
496	return (0);
497}
498
499/*
500 * Operates like bread, but also starts asynchronous I/O on
501 * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
502 * to initiating I/O . If B_CACHE is set, the buffer is valid
503 * and we do not have to do anything.
504 */
505int
506breadn(struct vnode * vp, daddr_t blkno, int size,
507    daddr_t * rablkno, int *rabsize,
508    int cnt, struct ucred * cred, struct buf ** bpp)
509{
510	struct buf *bp, *rabp;
511	int i;
512	int rv = 0, readwait = 0;
513
514	*bpp = bp = getblk(vp, blkno, size, 0, 0);
515
516	/* if not found in cache, do some I/O */
517	if ((bp->b_flags & B_CACHE) == 0) {
518		if (curproc != NULL)
519			curproc->p_stats->p_ru.ru_inblock++;
520		bp->b_flags |= B_READ;
521		bp->b_flags &= ~(B_ERROR | B_INVAL);
522		if (bp->b_rcred == NOCRED) {
523			if (cred != NOCRED)
524				crhold(cred);
525			bp->b_rcred = cred;
526		}
527		vfs_busy_pages(bp, 0);
528		VOP_STRATEGY(vp, bp);
529		++readwait;
530	}
531
532	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
533		if (inmem(vp, *rablkno))
534			continue;
535		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
536
537		if ((rabp->b_flags & B_CACHE) == 0) {
538			if (curproc != NULL)
539				curproc->p_stats->p_ru.ru_inblock++;
540			rabp->b_flags |= B_READ | B_ASYNC;
541			rabp->b_flags &= ~(B_ERROR | B_INVAL);
542			if (rabp->b_rcred == NOCRED) {
543				if (cred != NOCRED)
544					crhold(cred);
545				rabp->b_rcred = cred;
546			}
547			vfs_busy_pages(rabp, 0);
548			BUF_KERNPROC(rabp);
549			VOP_STRATEGY(vp, rabp);
550		} else {
551			brelse(rabp);
552		}
553	}
554
555	if (readwait) {
556		rv = biowait(bp);
557	}
558	return (rv);
559}
560
561/*
562 * Write, release buffer on completion.  (Done by iodone
563 * if async).  Do not bother writing anything if the buffer
564 * is invalid.
565 *
566 * Note that we set B_CACHE here, indicating that buffer is
567 * fully valid and thus cacheable.  This is true even of NFS
568 * now so we set it generally.  This could be set either here
569 * or in biodone() since the I/O is synchronous.  We put it
570 * here.
571 */
572int
573bwrite(struct buf * bp)
574{
575	int oldflags, s;
576	struct vnode *vp;
577	struct mount *mp;
578
579	if (bp->b_flags & B_INVAL) {
580		brelse(bp);
581		return (0);
582	}
583
584	oldflags = bp->b_flags;
585
586#if !defined(MAX_PERF)
587	if (BUF_REFCNT(bp) == 0)
588		panic("bwrite: buffer is not busy???");
589#endif
590	s = splbio();
591	bundirty(bp);
592
593	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
594	bp->b_flags |= B_WRITEINPROG | B_CACHE;
595
596	bp->b_vp->v_numoutput++;
597	vfs_busy_pages(bp, 1);
598	if (curproc != NULL)
599		curproc->p_stats->p_ru.ru_oublock++;
600	splx(s);
601	if (oldflags & B_ASYNC)
602		BUF_KERNPROC(bp);
603	VOP_STRATEGY(bp->b_vp, bp);
604
605	/*
606	 * Collect statistics on synchronous and asynchronous writes.
607	 * Writes to block devices are charged to their associated
608	 * filesystem (if any).
609	 */
610	if ((vp = bp->b_vp) != NULL) {
611		if (vp->v_type == VBLK)
612			mp = vp->v_specmountpoint;
613		else
614			mp = vp->v_mount;
615		if (mp != NULL) {
616			if ((oldflags & B_ASYNC) == 0)
617				mp->mnt_stat.f_syncwrites++;
618			else
619				mp->mnt_stat.f_asyncwrites++;
620		}
621	}
622
623	if ((oldflags & B_ASYNC) == 0) {
624		int rtval = biowait(bp);
625		brelse(bp);
626		return (rtval);
627	}
628
629	return (0);
630}
631
632/*
633 * Delayed write. (Buffer is marked dirty).  Do not bother writing
634 * anything if the buffer is marked invalid.
635 *
636 * Note that since the buffer must be completely valid, we can safely
637 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
638 * biodone() in order to prevent getblk from writing the buffer
639 * out synchronously.
640 */
641void
642bdwrite(struct buf * bp)
643{
644#if 0
645	struct vnode *vp;
646#endif
647
648#if !defined(MAX_PERF)
649	if (BUF_REFCNT(bp) == 0)
650		panic("bdwrite: buffer is not busy");
651#endif
652
653	if (bp->b_flags & B_INVAL) {
654		brelse(bp);
655		return;
656	}
657	bdirty(bp);
658
659	/*
660	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
661	 * true even of NFS now.
662	 */
663	bp->b_flags |= B_CACHE;
664
665	/*
666	 * This bmap keeps the system from needing to do the bmap later,
667	 * perhaps when the system is attempting to do a sync.  Since it
668	 * is likely that the indirect block -- or whatever other datastructure
669	 * that the filesystem needs is still in memory now, it is a good
670	 * thing to do this.  Note also, that if the pageout daemon is
671	 * requesting a sync -- there might not be enough memory to do
672	 * the bmap then...  So, this is important to do.
673	 */
674	if (bp->b_lblkno == bp->b_blkno) {
675		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
676	}
677
678	/*
679	 * Set the *dirty* buffer range based upon the VM system dirty pages.
680	 */
681	vfs_setdirty(bp);
682
683	/*
684	 * We need to do this here to satisfy the vnode_pager and the
685	 * pageout daemon, so that it thinks that the pages have been
686	 * "cleaned".  Note that since the pages are in a delayed write
687	 * buffer -- the VFS layer "will" see that the pages get written
688	 * out on the next sync, or perhaps the cluster will be completed.
689	 */
690	vfs_clean_pages(bp);
691	bqrelse(bp);
692
693	/*
694	 * Wakeup the buffer flushing daemon if we have saturated the
695	 * buffer cache.
696	 */
697
698	bd_wakeup(hidirtybuffers);
699
700	/*
701	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
702	 * due to the softdep code.
703	 */
704#if 0
705	/*
706	 * XXX The soft dependency code is not prepared to
707	 * have I/O done when a bdwrite is requested. For
708	 * now we just let the write be delayed if it is
709	 * requested by the soft dependency code.
710	 */
711	if ((vp = bp->b_vp) &&
712	    ((vp->v_type == VBLK && vp->v_specmountpoint &&
713		  (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) ||
714		 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP))))
715		return;
716#endif
717}
718
719/*
720 *	bdirty:
721 *
722 *	Turn buffer into delayed write request.  We must clear B_READ and
723 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
724 *	itself to properly update it in the dirty/clean lists.  We mark it
725 *	B_DONE to ensure that any asynchronization of the buffer properly
726 *	clears B_DONE ( else a panic will occur later ).
727 *
728 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
729 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
730 *	should only be called if the buffer is known-good.
731 *
732 *	Since the buffer is not on a queue, we do not update the numfreebuffers
733 *	count.
734 *
735 *	Must be called at splbio().
736 *	The buffer must be on QUEUE_NONE.
737 */
738void
739bdirty(bp)
740	struct buf *bp;
741{
742	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
743	bp->b_flags &= ~(B_READ|B_RELBUF);
744
745	if ((bp->b_flags & B_DELWRI) == 0) {
746		bp->b_flags |= B_DONE | B_DELWRI;
747		reassignbuf(bp, bp->b_vp);
748		++numdirtybuffers;
749		bd_wakeup(hidirtybuffers);
750	}
751}
752
753/*
754 *	bundirty:
755 *
756 *	Clear B_DELWRI for buffer.
757 *
758 *	Since the buffer is not on a queue, we do not update the numfreebuffers
759 *	count.
760 *
761 *	Must be called at splbio().
762 *	The buffer must be on QUEUE_NONE.
763 */
764
765void
766bundirty(bp)
767	struct buf *bp;
768{
769	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
770
771	if (bp->b_flags & B_DELWRI) {
772		bp->b_flags &= ~B_DELWRI;
773		reassignbuf(bp, bp->b_vp);
774		--numdirtybuffers;
775		numdirtywakeup();
776	}
777}
778
779/*
780 *	bawrite:
781 *
782 *	Asynchronous write.  Start output on a buffer, but do not wait for
783 *	it to complete.  The buffer is released when the output completes.
784 *
785 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
786 *	B_INVAL buffers.  Not us.
787 */
788void
789bawrite(struct buf * bp)
790{
791	bp->b_flags |= B_ASYNC;
792	(void) VOP_BWRITE(bp->b_vp, bp);
793}
794
795/*
796 *	bowrite:
797 *
798 *	Ordered write.  Start output on a buffer, and flag it so that the
799 *	device will write it in the order it was queued.  The buffer is
800 *	released when the output completes.  bwrite() ( or the VOP routine
801 *	anyway ) is responsible for handling B_INVAL buffers.
802 */
803int
804bowrite(struct buf * bp)
805{
806	bp->b_flags |= B_ORDERED | B_ASYNC;
807	return (VOP_BWRITE(bp->b_vp, bp));
808}
809
810/*
811 *	bwillwrite:
812 *
813 *	Called prior to the locking of any vnodes when we are expecting to
814 *	write.  We do not want to starve the buffer cache with too many
815 *	dirty buffers so we block here.  By blocking prior to the locking
816 *	of any vnodes we attempt to avoid the situation where a locked vnode
817 *	prevents the various system daemons from flushing related buffers.
818 */
819
820void
821bwillwrite(void)
822{
823	int twenty = (hidirtybuffers - lodirtybuffers) / 5;
824
825	if (numdirtybuffers > hidirtybuffers + twenty) {
826		int s;
827
828		s = splbio();
829		while (numdirtybuffers > hidirtybuffers) {
830			bd_wakeup(hidirtybuffers);
831			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
832			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
833		}
834		splx(s);
835	}
836}
837
838/*
839 *	brelse:
840 *
841 *	Release a busy buffer and, if requested, free its resources.  The
842 *	buffer will be stashed in the appropriate bufqueue[] allowing it
843 *	to be accessed later as a cache entity or reused for other purposes.
844 */
845void
846brelse(struct buf * bp)
847{
848	int s;
849
850	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
851
852#if 0
853	if (bp->b_flags & B_CLUSTER) {
854		relpbuf(bp, NULL);
855		return;
856	}
857#endif
858
859	s = splbio();
860
861	if (bp->b_flags & B_LOCKED)
862		bp->b_flags &= ~B_ERROR;
863
864	if ((bp->b_flags & (B_READ | B_ERROR | B_INVAL)) == B_ERROR) {
865		/*
866		 * Failed write, redirty.  Must clear B_ERROR to prevent
867		 * pages from being scrapped.  If B_INVAL is set then
868		 * this case is not run and the next case is run to
869		 * destroy the buffer.  B_INVAL can occur if the buffer
870		 * is outside the range supported by the underlying device.
871		 */
872		bp->b_flags &= ~B_ERROR;
873		bdirty(bp);
874	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
875	    (bp->b_bufsize <= 0)) {
876		/*
877		 * Either a failed I/O or we were asked to free or not
878		 * cache the buffer.
879		 */
880		bp->b_flags |= B_INVAL;
881		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
882			(*bioops.io_deallocate)(bp);
883		if (bp->b_flags & B_DELWRI) {
884			--numdirtybuffers;
885			numdirtywakeup();
886		}
887		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
888		if ((bp->b_flags & B_VMIO) == 0) {
889			if (bp->b_bufsize)
890				allocbuf(bp, 0);
891			if (bp->b_vp)
892				brelvp(bp);
893		}
894	}
895
896	/*
897	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
898	 * is called with B_DELWRI set, the underlying pages may wind up
899	 * getting freed causing a previous write (bdwrite()) to get 'lost'
900	 * because pages associated with a B_DELWRI bp are marked clean.
901	 *
902	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
903	 * if B_DELWRI is set.
904	 */
905
906	if (bp->b_flags & B_DELWRI)
907		bp->b_flags &= ~B_RELBUF;
908
909	/*
910	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
911	 * constituted, not even NFS buffers now.  Two flags effect this.  If
912	 * B_INVAL, the struct buf is invalidated but the VM object is kept
913	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
914	 *
915	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
916	 * invalidated.  B_ERROR cannot be set for a failed write unless the
917	 * buffer is also B_INVAL because it hits the re-dirtying code above.
918	 *
919	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
920	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
921	 * the commit state and we cannot afford to lose the buffer.
922	 */
923	if ((bp->b_flags & B_VMIO)
924	    && !(bp->b_vp->v_tag == VT_NFS &&
925		 bp->b_vp->v_type != VBLK &&
926		 (bp->b_flags & B_DELWRI))
927	    ) {
928
929		int i, j, resid;
930		vm_page_t m;
931		off_t foff;
932		vm_pindex_t poff;
933		vm_object_t obj;
934		struct vnode *vp;
935
936		vp = bp->b_vp;
937
938		/*
939		 * Get the base offset and length of the buffer.  Note that
940		 * for block sizes that are less then PAGE_SIZE, the b_data
941		 * base of the buffer does not represent exactly b_offset and
942		 * neither b_offset nor b_size are necessarily page aligned.
943		 * Instead, the starting position of b_offset is:
944		 *
945		 * 	b_data + (b_offset & PAGE_MASK)
946		 *
947		 * block sizes less then DEV_BSIZE (usually 512) are not
948		 * supported due to the page granularity bits (m->valid,
949		 * m->dirty, etc...).
950		 *
951		 * See man buf(9) for more information
952		 */
953
954		resid = bp->b_bufsize;
955		foff = bp->b_offset;
956
957		for (i = 0; i < bp->b_npages; i++) {
958			m = bp->b_pages[i];
959			vm_page_flag_clear(m, PG_ZERO);
960			if (m == bogus_page) {
961
962				obj = (vm_object_t) vp->v_object;
963				poff = OFF_TO_IDX(bp->b_offset);
964
965				for (j = i; j < bp->b_npages; j++) {
966					m = bp->b_pages[j];
967					if (m == bogus_page) {
968						m = vm_page_lookup(obj, poff + j);
969#if !defined(MAX_PERF)
970						if (!m) {
971							panic("brelse: page missing\n");
972						}
973#endif
974						bp->b_pages[j] = m;
975					}
976				}
977
978				if ((bp->b_flags & B_INVAL) == 0) {
979					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
980				}
981			}
982			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
983				int poffset = foff & PAGE_MASK;
984				int presid = resid > (PAGE_SIZE - poffset) ?
985					(PAGE_SIZE - poffset) : resid;
986
987				KASSERT(presid >= 0, ("brelse: extra page"));
988				vm_page_set_invalid(m, poffset, presid);
989			}
990			resid -= PAGE_SIZE - (foff & PAGE_MASK);
991			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
992		}
993
994		if (bp->b_flags & (B_INVAL | B_RELBUF))
995			vfs_vmio_release(bp);
996
997	} else if (bp->b_flags & B_VMIO) {
998
999		if (bp->b_flags & (B_INVAL | B_RELBUF))
1000			vfs_vmio_release(bp);
1001
1002	}
1003
1004#if !defined(MAX_PERF)
1005	if (bp->b_qindex != QUEUE_NONE)
1006		panic("brelse: free buffer onto another queue???");
1007#endif
1008	if (BUF_REFCNT(bp) > 1) {
1009		/* Temporary panic to verify exclusive locking */
1010		/* This panic goes away when we allow shared refs */
1011		panic("brelse: multiple refs");
1012		/* do not release to free list */
1013		BUF_UNLOCK(bp);
1014		splx(s);
1015		return;
1016	}
1017
1018	/* enqueue */
1019
1020	/* buffers with no memory */
1021	if (bp->b_bufsize == 0) {
1022		bp->b_flags |= B_INVAL;
1023		if (bp->b_kvasize)
1024			bp->b_qindex = QUEUE_EMPTYKVA;
1025		else
1026			bp->b_qindex = QUEUE_EMPTY;
1027		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1028		LIST_REMOVE(bp, b_hash);
1029		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1030		bp->b_dev = NODEV;
1031		kvafreespace += bp->b_kvasize;
1032		if (bp->b_kvasize)
1033			kvaspacewakeup();
1034	/* buffers with junk contents */
1035	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1036		bp->b_flags |= B_INVAL;
1037		bp->b_qindex = QUEUE_CLEAN;
1038		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1039		LIST_REMOVE(bp, b_hash);
1040		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1041		bp->b_dev = NODEV;
1042
1043	/* buffers that are locked */
1044	} else if (bp->b_flags & B_LOCKED) {
1045		bp->b_qindex = QUEUE_LOCKED;
1046		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1047
1048	/* remaining buffers */
1049	} else {
1050		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1051		case B_DELWRI | B_AGE:
1052		    bp->b_qindex = QUEUE_DIRTY;
1053		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1054		    break;
1055		case B_DELWRI:
1056		    bp->b_qindex = QUEUE_DIRTY;
1057		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1058		    break;
1059		case B_AGE:
1060		    bp->b_qindex = QUEUE_CLEAN;
1061		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1062		    break;
1063		default:
1064		    bp->b_qindex = QUEUE_CLEAN;
1065		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1066		    break;
1067		}
1068	}
1069
1070	/*
1071	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1072	 * on the correct queue.
1073	 */
1074	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1075		bp->b_flags &= ~B_DELWRI;
1076		--numdirtybuffers;
1077		numdirtywakeup();
1078	}
1079
1080	runningbufspace -= bp->b_bufsize;
1081
1082	/*
1083	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1084	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1085	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1086	 * if B_INVAL is set ).
1087	 */
1088
1089	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1090		bufcountwakeup();
1091
1092	/*
1093	 * Something we can maybe free.
1094	 */
1095
1096	if (bp->b_bufsize)
1097		bufspacewakeup();
1098
1099	/* unlock */
1100	BUF_UNLOCK(bp);
1101	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1102	splx(s);
1103}
1104
1105/*
1106 * Release a buffer back to the appropriate queue but do not try to free
1107 * it.
1108 *
1109 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1110 * biodone() to requeue an async I/O on completion.  It is also used when
1111 * known good buffers need to be requeued but we think we may need the data
1112 * again soon.
1113 */
1114void
1115bqrelse(struct buf * bp)
1116{
1117	int s;
1118
1119	s = splbio();
1120
1121	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1122
1123#if !defined(MAX_PERF)
1124	if (bp->b_qindex != QUEUE_NONE)
1125		panic("bqrelse: free buffer onto another queue???");
1126#endif
1127	if (BUF_REFCNT(bp) > 1) {
1128		/* do not release to free list */
1129		panic("bqrelse: multiple refs");
1130		BUF_UNLOCK(bp);
1131		splx(s);
1132		return;
1133	}
1134	if (bp->b_flags & B_LOCKED) {
1135		bp->b_flags &= ~B_ERROR;
1136		bp->b_qindex = QUEUE_LOCKED;
1137		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1138		/* buffers with stale but valid contents */
1139	} else if (bp->b_flags & B_DELWRI) {
1140		bp->b_qindex = QUEUE_DIRTY;
1141		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1142	} else {
1143		bp->b_qindex = QUEUE_CLEAN;
1144		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1145	}
1146
1147	runningbufspace -= bp->b_bufsize;
1148
1149	if ((bp->b_flags & B_LOCKED) == 0 &&
1150	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1151		bufcountwakeup();
1152	}
1153
1154	/*
1155	 * Something we can maybe wakeup
1156	 */
1157	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1158		bufspacewakeup();
1159
1160	/* unlock */
1161	BUF_UNLOCK(bp);
1162	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1163	splx(s);
1164}
1165
1166static void
1167vfs_vmio_release(bp)
1168	struct buf *bp;
1169{
1170	int i, s;
1171	vm_page_t m;
1172
1173	s = splvm();
1174	for (i = 0; i < bp->b_npages; i++) {
1175		m = bp->b_pages[i];
1176		bp->b_pages[i] = NULL;
1177		/*
1178		 * In order to keep page LRU ordering consistent, put
1179		 * everything on the inactive queue.
1180		 */
1181		vm_page_unwire(m, 0);
1182		/*
1183		 * We don't mess with busy pages, it is
1184		 * the responsibility of the process that
1185		 * busied the pages to deal with them.
1186		 */
1187		if ((m->flags & PG_BUSY) || (m->busy != 0))
1188			continue;
1189
1190		if (m->wire_count == 0) {
1191			vm_page_flag_clear(m, PG_ZERO);
1192			/*
1193			 * Might as well free the page if we can and it has
1194			 * no valid data.
1195			 */
1196			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1197				vm_page_busy(m);
1198				vm_page_protect(m, VM_PROT_NONE);
1199				vm_page_free(m);
1200			}
1201		}
1202	}
1203	bufspace -= bp->b_bufsize;
1204	vmiospace -= bp->b_bufsize;
1205	runningbufspace -= bp->b_bufsize;
1206	splx(s);
1207	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1208	if (bp->b_bufsize)
1209		bufspacewakeup();
1210	bp->b_npages = 0;
1211	bp->b_bufsize = 0;
1212	bp->b_flags &= ~B_VMIO;
1213	if (bp->b_vp)
1214		brelvp(bp);
1215}
1216
1217/*
1218 * Check to see if a block is currently memory resident.
1219 */
1220struct buf *
1221gbincore(struct vnode * vp, daddr_t blkno)
1222{
1223	struct buf *bp;
1224	struct bufhashhdr *bh;
1225
1226	bh = bufhash(vp, blkno);
1227	bp = bh->lh_first;
1228
1229	/* Search hash chain */
1230	while (bp != NULL) {
1231		/* hit */
1232		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1233		    (bp->b_flags & B_INVAL) == 0) {
1234			break;
1235		}
1236		bp = bp->b_hash.le_next;
1237	}
1238	return (bp);
1239}
1240
1241/*
1242 *	vfs_bio_awrite:
1243 *
1244 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1245 *	This is much better then the old way of writing only one buffer at
1246 *	a time.  Note that we may not be presented with the buffers in the
1247 *	correct order, so we search for the cluster in both directions.
1248 */
1249int
1250vfs_bio_awrite(struct buf * bp)
1251{
1252	int i;
1253	int j;
1254	daddr_t lblkno = bp->b_lblkno;
1255	struct vnode *vp = bp->b_vp;
1256	int s;
1257	int ncl;
1258	struct buf *bpa;
1259	int nwritten;
1260	int size;
1261	int maxcl;
1262
1263	s = splbio();
1264	/*
1265	 * right now we support clustered writing only to regular files.  If
1266	 * we find a clusterable block we could be in the middle of a cluster
1267	 * rather then at the beginning.
1268	 */
1269	if ((vp->v_type == VREG) &&
1270	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1271	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1272
1273		size = vp->v_mount->mnt_stat.f_iosize;
1274		maxcl = MAXPHYS / size;
1275
1276		for (i = 1; i < maxcl; i++) {
1277			if ((bpa = gbincore(vp, lblkno + i)) &&
1278			    BUF_REFCNT(bpa) == 0 &&
1279			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1280			    (B_DELWRI | B_CLUSTEROK)) &&
1281			    (bpa->b_bufsize == size)) {
1282				if ((bpa->b_blkno == bpa->b_lblkno) ||
1283				    (bpa->b_blkno !=
1284				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1285					break;
1286			} else {
1287				break;
1288			}
1289		}
1290		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1291			if ((bpa = gbincore(vp, lblkno - j)) &&
1292			    BUF_REFCNT(bpa) == 0 &&
1293			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1294			    (B_DELWRI | B_CLUSTEROK)) &&
1295			    (bpa->b_bufsize == size)) {
1296				if ((bpa->b_blkno == bpa->b_lblkno) ||
1297				    (bpa->b_blkno !=
1298				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1299					break;
1300			} else {
1301				break;
1302			}
1303		}
1304		--j;
1305		ncl = i + j;
1306		/*
1307		 * this is a possible cluster write
1308		 */
1309		if (ncl != 1) {
1310			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1311			splx(s);
1312			return nwritten;
1313		}
1314	}
1315
1316	BUF_LOCK(bp, LK_EXCLUSIVE);
1317	bremfree(bp);
1318	bp->b_flags |= B_ASYNC;
1319
1320	splx(s);
1321	/*
1322	 * default (old) behavior, writing out only one block
1323	 *
1324	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1325	 */
1326	nwritten = bp->b_bufsize;
1327	(void) VOP_BWRITE(bp->b_vp, bp);
1328
1329	return nwritten;
1330}
1331
1332/*
1333 *	getnewbuf:
1334 *
1335 *	Find and initialize a new buffer header, freeing up existing buffers
1336 *	in the bufqueues as necessary.  The new buffer is returned locked.
1337 *
1338 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1339 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1340 *
1341 *	We block if:
1342 *		We have insufficient buffer headers
1343 *		We have insufficient buffer space
1344 *		buffer_map is too fragmented ( space reservation fails )
1345 *		If we have to flush dirty buffers ( but we try to avoid this )
1346 *
1347 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1348 *	Instead we ask the buf daemon to do it for us.  We attempt to
1349 *	avoid piecemeal wakeups of the pageout daemon.
1350 */
1351
1352static struct buf *
1353getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1354{
1355	struct buf *bp;
1356	struct buf *nbp;
1357	struct buf *dbp;
1358	int outofspace;
1359	int nqindex;
1360	int defrag = 0;
1361
1362	++getnewbufcalls;
1363	--getnewbufrestarts;
1364restart:
1365	++getnewbufrestarts;
1366
1367	/*
1368	 * Calculate whether we are out of buffer space.  This state is
1369	 * recalculated on every restart.  If we are out of space, we
1370	 * have to turn off defragmentation.  Setting defrag to -1 when
1371	 * outofspace is positive means "defrag while freeing buffers".
1372	 * The looping conditional will be muffed up if defrag is left
1373	 * positive when outofspace is positive.
1374	 */
1375
1376	dbp = NULL;
1377	outofspace = 0;
1378	if (bufspace >= hibufspace) {
1379		if ((curproc && (curproc->p_flag & P_BUFEXHAUST) == 0) ||
1380		    bufspace >= maxbufspace) {
1381			outofspace = 1;
1382			if (defrag > 0)
1383				defrag = -1;
1384		}
1385	}
1386
1387	/*
1388	 * defrag state is semi-persistant.  1 means we are flagged for
1389	 * defragging.  -1 means we actually defragged something.
1390	 */
1391	/* nop */
1392
1393	/*
1394	 * Setup for scan.  If we do not have enough free buffers,
1395	 * we setup a degenerate case that immediately fails.  Note
1396	 * that if we are specially marked process, we are allowed to
1397	 * dip into our reserves.
1398	 *
1399	 * Normally we want to find an EMPTYKVA buffer.  That is, a
1400	 * buffer with kva already allocated.  If there are no EMPTYKVA
1401	 * buffers we back up to the truely EMPTY buffers.  When defragging
1402	 * we do not bother backing up since we have to locate buffers with
1403	 * kva to defrag.  If we are out of space we skip both EMPTY and
1404	 * EMPTYKVA and dig right into the CLEAN queue.
1405	 *
1406	 * In this manner we avoid scanning unnecessary buffers.  It is very
1407	 * important for us to do this because the buffer cache is almost
1408	 * constantly out of space or in need of defragmentation.
1409	 */
1410
1411	if (curproc && (curproc->p_flag & P_BUFEXHAUST) == 0 &&
1412	    numfreebuffers < lofreebuffers) {
1413		nqindex = QUEUE_CLEAN;
1414		nbp = NULL;
1415	} else {
1416		nqindex = QUEUE_EMPTYKVA;
1417		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1418		if (nbp == NULL) {
1419			if (defrag <= 0) {
1420				nqindex = QUEUE_EMPTY;
1421				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1422			}
1423		}
1424		if (outofspace || nbp == NULL) {
1425			nqindex = QUEUE_CLEAN;
1426			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1427		}
1428	}
1429
1430	/*
1431	 * Run scan, possibly freeing data and/or kva mappings on the fly
1432	 * depending.
1433	 */
1434
1435	while ((bp = nbp) != NULL) {
1436		int qindex = nqindex;
1437
1438		/*
1439		 * Calculate next bp ( we can only use it if we do not block
1440		 * or do other fancy things ).
1441		 */
1442		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1443			switch(qindex) {
1444			case QUEUE_EMPTY:
1445				nqindex = QUEUE_EMPTYKVA;
1446				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1447					break;
1448				/* fall through */
1449			case QUEUE_EMPTYKVA:
1450				nqindex = QUEUE_CLEAN;
1451				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1452					break;
1453				/* fall through */
1454			case QUEUE_CLEAN:
1455				/*
1456				 * nbp is NULL.
1457				 */
1458				break;
1459			}
1460		}
1461
1462		/*
1463		 * Sanity Checks
1464		 */
1465		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1466
1467		/*
1468		 * Note: we no longer distinguish between VMIO and non-VMIO
1469		 * buffers.
1470		 */
1471
1472		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1473
1474		/*
1475		 * If we are defragging and the buffer isn't useful for fixing
1476		 * that problem we continue.  If we are out of space and the
1477		 * buffer isn't useful for fixing that problem we continue.
1478		 */
1479
1480		if (defrag > 0 && bp->b_kvasize == 0)
1481			continue;
1482		if (outofspace > 0 && bp->b_bufsize == 0)
1483			continue;
1484
1485		/*
1486		 * Start freeing the bp.  This is somewhat involved.  nbp
1487		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1488		 */
1489
1490		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1491			panic("getnewbuf: locked buf");
1492		bremfree(bp);
1493
1494		if (qindex == QUEUE_CLEAN) {
1495			if (bp->b_flags & B_VMIO) {
1496				bp->b_flags &= ~B_ASYNC;
1497				vfs_vmio_release(bp);
1498			}
1499			if (bp->b_vp)
1500				brelvp(bp);
1501		}
1502
1503		/*
1504		 * NOTE:  nbp is now entirely invalid.  We can only restart
1505		 * the scan from this point on.
1506		 *
1507		 * Get the rest of the buffer freed up.  b_kva* is still
1508		 * valid after this operation.
1509		 */
1510
1511		if (bp->b_rcred != NOCRED) {
1512			crfree(bp->b_rcred);
1513			bp->b_rcred = NOCRED;
1514		}
1515		if (bp->b_wcred != NOCRED) {
1516			crfree(bp->b_wcred);
1517			bp->b_wcred = NOCRED;
1518		}
1519		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1520			(*bioops.io_deallocate)(bp);
1521		LIST_REMOVE(bp, b_hash);
1522		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1523
1524		if (bp->b_bufsize)
1525			allocbuf(bp, 0);
1526
1527		bp->b_flags = 0;
1528		bp->b_dev = NODEV;
1529		bp->b_vp = NULL;
1530		bp->b_blkno = bp->b_lblkno = 0;
1531		bp->b_offset = NOOFFSET;
1532		bp->b_iodone = 0;
1533		bp->b_error = 0;
1534		bp->b_resid = 0;
1535		bp->b_bcount = 0;
1536		bp->b_npages = 0;
1537		bp->b_dirtyoff = bp->b_dirtyend = 0;
1538
1539		LIST_INIT(&bp->b_dep);
1540
1541		/*
1542		 * Ok, now that we have a free buffer, if we are defragging
1543		 * we have to recover the kvaspace.  If we are out of space
1544		 * we have to free the buffer (which we just did), but we
1545		 * do not have to recover kva space unless we hit a defrag
1546		 * hicup.  Being able to avoid freeing the kva space leads
1547		 * to a significant reduction in overhead.
1548		 */
1549
1550		if (defrag > 0) {
1551			defrag = -1;
1552			bp->b_flags |= B_INVAL;
1553			bfreekva(bp);
1554			brelse(bp);
1555			goto restart;
1556		}
1557
1558		if (outofspace > 0) {
1559			outofspace = -1;
1560			bp->b_flags |= B_INVAL;
1561			if (defrag < 0)
1562				bfreekva(bp);
1563			brelse(bp);
1564			goto restart;
1565		}
1566
1567		/*
1568		 * We are done
1569		 */
1570		break;
1571	}
1572
1573	/*
1574	 * If we exhausted our list, sleep as appropriate.  We may have to
1575	 * wakeup various daemons and write out some dirty buffers.
1576	 *
1577	 * Generally we are sleeping due to insufficient buffer space.
1578	 */
1579
1580	if (bp == NULL) {
1581		int flags;
1582		char *waitmsg;
1583
1584dosleep:
1585		if (defrag > 0) {
1586			flags = VFS_BIO_NEED_KVASPACE;
1587			waitmsg = "nbufkv";
1588		} else if (outofspace > 0) {
1589			waitmsg = "nbufbs";
1590			flags = VFS_BIO_NEED_BUFSPACE;
1591		} else {
1592			waitmsg = "newbuf";
1593			flags = VFS_BIO_NEED_ANY;
1594		}
1595
1596		/* XXX */
1597
1598		(void) speedup_syncer();
1599		needsbuffer |= flags;
1600		while (needsbuffer & flags) {
1601			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1602			    waitmsg, slptimeo))
1603				return (NULL);
1604		}
1605	} else {
1606		/*
1607		 * We finally have a valid bp.  We aren't quite out of the
1608		 * woods, we still have to reserve kva space.
1609		 */
1610		vm_offset_t addr = 0;
1611
1612		maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1613
1614		if (maxsize != bp->b_kvasize) {
1615			bfreekva(bp);
1616
1617			if (vm_map_findspace(buffer_map,
1618				vm_map_min(buffer_map), maxsize, &addr)) {
1619				/*
1620				 * Uh oh.  Buffer map is to fragmented.  Try
1621				 * to defragment.
1622				 */
1623				if (defrag <= 0) {
1624					defrag = 1;
1625					bp->b_flags |= B_INVAL;
1626					brelse(bp);
1627					goto restart;
1628				}
1629				/*
1630				 * Uh oh.  We couldn't seem to defragment
1631				 */
1632				bp = NULL;
1633				goto dosleep;
1634			}
1635		}
1636		if (addr) {
1637			vm_map_insert(buffer_map, NULL, 0,
1638				addr, addr + maxsize,
1639				VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1640
1641			bp->b_kvabase = (caddr_t) addr;
1642			bp->b_kvasize = maxsize;
1643		}
1644		bp->b_data = bp->b_kvabase;
1645	}
1646	return(bp);
1647}
1648
1649/*
1650 *	waitfreebuffers:
1651 *
1652 *	Wait for sufficient free buffers.  Only called from normal processes.
1653 */
1654
1655static void
1656waitfreebuffers(int slpflag, int slptimeo)
1657{
1658	while (numfreebuffers < hifreebuffers) {
1659		if (numfreebuffers >= hifreebuffers)
1660			break;
1661		needsbuffer |= VFS_BIO_NEED_FREE;
1662		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1663			break;
1664	}
1665}
1666
1667/*
1668 *	buf_daemon:
1669 *
1670 *	buffer flushing daemon.  Buffers are normally flushed by the
1671 *	update daemon but if it cannot keep up this process starts to
1672 *	take the load in an attempt to prevent getnewbuf() from blocking.
1673 */
1674
1675static struct proc *bufdaemonproc;
1676static int bd_interval;
1677static int bd_flushto;
1678
1679static struct kproc_desc buf_kp = {
1680	"bufdaemon",
1681	buf_daemon,
1682	&bufdaemonproc
1683};
1684SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1685
1686static void
1687buf_daemon()
1688{
1689	int s;
1690	/*
1691	 * This process is allowed to take the buffer cache to the limit
1692	 */
1693	curproc->p_flag |= P_BUFEXHAUST;
1694	s = splbio();
1695
1696	bd_interval = 5 * hz;	/* dynamically adjusted */
1697	bd_flushto = hidirtybuffers;	/* dynamically adjusted */
1698
1699	while (TRUE) {
1700		bd_request = 0;
1701
1702		/*
1703		 * Do the flush.  Limit the number of buffers we flush in one
1704		 * go.  The failure condition occurs when processes are writing
1705		 * buffers faster then we can dispose of them.  In this case
1706		 * we may be flushing so often that the previous set of flushes
1707		 * have not had time to complete, causing us to run out of
1708		 * physical buffers and block.
1709		 */
1710		{
1711			int runcount = maxbdrun;
1712
1713			while (numdirtybuffers > bd_flushto && runcount) {
1714				--runcount;
1715				if (flushbufqueues() == 0)
1716					break;
1717			}
1718		}
1719
1720		/*
1721		 * If nobody is requesting anything we sleep
1722		 */
1723		if (bd_request == 0)
1724			tsleep(&bd_request, PVM, "psleep", bd_interval);
1725
1726		/*
1727		 * We calculate how much to add or subtract from bd_flushto
1728		 * and bd_interval based on how far off we are from the
1729		 * optimal number of dirty buffers, which is 20% below the
1730		 * hidirtybuffers mark.  We cannot use hidirtybuffers straight
1731		 * because being right on the mark will cause getnewbuf()
1732		 * to oscillate our wakeup.
1733		 *
1734		 * The larger the error in either direction, the more we adjust
1735		 * bd_flushto and bd_interval.  The time interval is adjusted
1736		 * by 2 seconds per whole-buffer-range of error.  This is an
1737		 * exponential convergence algorithm, with large errors
1738		 * producing large changes and small errors producing small
1739		 * changes.
1740		 */
1741
1742		{
1743			int brange = hidirtybuffers - lodirtybuffers;
1744			int middb = hidirtybuffers - brange / 5;
1745			int deltabuf = middb - numdirtybuffers;
1746
1747			bd_flushto += deltabuf / 20;
1748			bd_interval += deltabuf * (2 * hz) / (brange * 1);
1749		}
1750		if (bd_flushto < lodirtybuffers)
1751			bd_flushto = lodirtybuffers;
1752		if (bd_flushto > hidirtybuffers)
1753			bd_flushto = hidirtybuffers;
1754		if (bd_interval < hz / 10)
1755			bd_interval = hz / 10;
1756		if (bd_interval > 5 * hz)
1757			bd_interval = 5 * hz;
1758	}
1759}
1760
1761/*
1762 *	flushbufqueues:
1763 *
1764 *	Try to flush a buffer in the dirty queue.  We must be careful to
1765 *	free up B_INVAL buffers instead of write them, which NFS is
1766 *	particularly sensitive to.
1767 */
1768
1769static int
1770flushbufqueues(void)
1771{
1772	struct buf *bp;
1773	int r = 0;
1774
1775	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1776
1777	while (bp) {
1778		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1779		if ((bp->b_flags & B_DELWRI) != 0) {
1780			if (bp->b_flags & B_INVAL) {
1781				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1782					panic("flushbufqueues: locked buf");
1783				bremfree(bp);
1784				brelse(bp);
1785				++r;
1786				break;
1787			}
1788			vfs_bio_awrite(bp);
1789			++r;
1790			break;
1791		}
1792		bp = TAILQ_NEXT(bp, b_freelist);
1793	}
1794	return(r);
1795}
1796
1797/*
1798 * Check to see if a block is currently memory resident.
1799 */
1800struct buf *
1801incore(struct vnode * vp, daddr_t blkno)
1802{
1803	struct buf *bp;
1804
1805	int s = splbio();
1806	bp = gbincore(vp, blkno);
1807	splx(s);
1808	return (bp);
1809}
1810
1811/*
1812 * Returns true if no I/O is needed to access the
1813 * associated VM object.  This is like incore except
1814 * it also hunts around in the VM system for the data.
1815 */
1816
1817int
1818inmem(struct vnode * vp, daddr_t blkno)
1819{
1820	vm_object_t obj;
1821	vm_offset_t toff, tinc, size;
1822	vm_page_t m;
1823	vm_ooffset_t off;
1824
1825	if (incore(vp, blkno))
1826		return 1;
1827	if (vp->v_mount == NULL)
1828		return 0;
1829	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1830		return 0;
1831
1832	obj = vp->v_object;
1833	size = PAGE_SIZE;
1834	if (size > vp->v_mount->mnt_stat.f_iosize)
1835		size = vp->v_mount->mnt_stat.f_iosize;
1836	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1837
1838	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1839		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1840		if (!m)
1841			return 0;
1842		tinc = size;
1843		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1844			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1845		if (vm_page_is_valid(m,
1846		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1847			return 0;
1848	}
1849	return 1;
1850}
1851
1852/*
1853 *	vfs_setdirty:
1854 *
1855 *	Sets the dirty range for a buffer based on the status of the dirty
1856 *	bits in the pages comprising the buffer.
1857 *
1858 *	The range is limited to the size of the buffer.
1859 *
1860 *	This routine is primarily used by NFS, but is generalized for the
1861 *	B_VMIO case.
1862 */
1863static void
1864vfs_setdirty(struct buf *bp)
1865{
1866	int i;
1867	vm_object_t object;
1868
1869	/*
1870	 * Degenerate case - empty buffer
1871	 */
1872
1873	if (bp->b_bufsize == 0)
1874		return;
1875
1876	/*
1877	 * We qualify the scan for modified pages on whether the
1878	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1879	 * is not cleared simply by protecting pages off.
1880	 */
1881
1882	if ((bp->b_flags & B_VMIO) == 0)
1883		return;
1884
1885	object = bp->b_pages[0]->object;
1886
1887	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1888		printf("Warning: object %p writeable but not mightbedirty\n", object);
1889	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1890		printf("Warning: object %p mightbedirty but not writeable\n", object);
1891
1892	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1893		vm_offset_t boffset;
1894		vm_offset_t eoffset;
1895
1896		/*
1897		 * test the pages to see if they have been modified directly
1898		 * by users through the VM system.
1899		 */
1900		for (i = 0; i < bp->b_npages; i++) {
1901			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1902			vm_page_test_dirty(bp->b_pages[i]);
1903		}
1904
1905		/*
1906		 * Calculate the encompassing dirty range, boffset and eoffset,
1907		 * (eoffset - boffset) bytes.
1908		 */
1909
1910		for (i = 0; i < bp->b_npages; i++) {
1911			if (bp->b_pages[i]->dirty)
1912				break;
1913		}
1914		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1915
1916		for (i = bp->b_npages - 1; i >= 0; --i) {
1917			if (bp->b_pages[i]->dirty) {
1918				break;
1919			}
1920		}
1921		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1922
1923		/*
1924		 * Fit it to the buffer.
1925		 */
1926
1927		if (eoffset > bp->b_bcount)
1928			eoffset = bp->b_bcount;
1929
1930		/*
1931		 * If we have a good dirty range, merge with the existing
1932		 * dirty range.
1933		 */
1934
1935		if (boffset < eoffset) {
1936			if (bp->b_dirtyoff > boffset)
1937				bp->b_dirtyoff = boffset;
1938			if (bp->b_dirtyend < eoffset)
1939				bp->b_dirtyend = eoffset;
1940		}
1941	}
1942}
1943
1944/*
1945 *	getblk:
1946 *
1947 *	Get a block given a specified block and offset into a file/device.
1948 *	The buffers B_DONE bit will be cleared on return, making it almost
1949 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
1950 *	return.  The caller should clear B_INVAL prior to initiating a
1951 *	READ.
1952 *
1953 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
1954 *	an existing buffer.
1955 *
1956 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
1957 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
1958 *	and then cleared based on the backing VM.  If the previous buffer is
1959 *	non-0-sized but invalid, B_CACHE will be cleared.
1960 *
1961 *	If getblk() must create a new buffer, the new buffer is returned with
1962 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
1963 *	case it is returned with B_INVAL clear and B_CACHE set based on the
1964 *	backing VM.
1965 *
1966 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
1967 *	B_CACHE bit is clear.
1968 *
1969 *	What this means, basically, is that the caller should use B_CACHE to
1970 *	determine whether the buffer is fully valid or not and should clear
1971 *	B_INVAL prior to issuing a read.  If the caller intends to validate
1972 *	the buffer by loading its data area with something, the caller needs
1973 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
1974 *	the caller should set B_CACHE ( as an optimization ), else the caller
1975 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
1976 *	a write attempt or if it was a successfull read.  If the caller
1977 *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
1978 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
1979 */
1980struct buf *
1981getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1982{
1983	struct buf *bp;
1984	int s;
1985	struct bufhashhdr *bh;
1986
1987#if !defined(MAX_PERF)
1988	if (size > MAXBSIZE)
1989		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1990#endif
1991
1992	s = splbio();
1993loop:
1994	/*
1995	 * Block if we are low on buffers.   Certain processes are allowed
1996	 * to completely exhaust the buffer cache.
1997         *
1998         * If this check ever becomes a bottleneck it may be better to
1999         * move it into the else, when gbincore() fails.  At the moment
2000         * it isn't a problem.
2001         */
2002	if (!curproc || (curproc->p_flag & P_BUFEXHAUST)) {
2003		if (numfreebuffers == 0) {
2004			if (!curproc)
2005				return NULL;
2006			needsbuffer |= VFS_BIO_NEED_ANY;
2007			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
2008			    slptimeo);
2009		}
2010	} else if (numfreebuffers < lofreebuffers) {
2011		waitfreebuffers(slpflag, slptimeo);
2012	}
2013
2014	if ((bp = gbincore(vp, blkno))) {
2015		/*
2016		 * Buffer is in-core.  If the buffer is not busy, it must
2017		 * be on a queue.
2018		 */
2019
2020		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2021			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2022			    "getblk", slpflag, slptimeo) == ENOLCK)
2023				goto loop;
2024			splx(s);
2025			return (struct buf *) NULL;
2026		}
2027
2028		/*
2029		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2030		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2031		 * and for a VMIO buffer B_CACHE is adjusted according to the
2032		 * backing VM cache.
2033		 */
2034		if (bp->b_flags & B_INVAL)
2035			bp->b_flags &= ~B_CACHE;
2036		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2037			bp->b_flags |= B_CACHE;
2038		bremfree(bp);
2039
2040		/*
2041		 * check for size inconsistancies for non-VMIO case.
2042		 */
2043
2044		if (bp->b_bcount != size) {
2045			if ((bp->b_flags & B_VMIO) == 0 ||
2046			    (size > bp->b_kvasize)) {
2047				if (bp->b_flags & B_DELWRI) {
2048					bp->b_flags |= B_NOCACHE;
2049					VOP_BWRITE(bp->b_vp, bp);
2050				} else {
2051					if ((bp->b_flags & B_VMIO) &&
2052					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2053						bp->b_flags |= B_RELBUF;
2054						brelse(bp);
2055					} else {
2056						bp->b_flags |= B_NOCACHE;
2057						VOP_BWRITE(bp->b_vp, bp);
2058					}
2059				}
2060				goto loop;
2061			}
2062		}
2063
2064		/*
2065		 * If the size is inconsistant in the VMIO case, we can resize
2066		 * the buffer.  This might lead to B_CACHE getting set or
2067		 * cleared.  If the size has not changed, B_CACHE remains
2068		 * unchanged from its previous state.
2069		 */
2070
2071		if (bp->b_bcount != size)
2072			allocbuf(bp, size);
2073
2074		KASSERT(bp->b_offset != NOOFFSET,
2075		    ("getblk: no buffer offset"));
2076
2077		/*
2078		 * A buffer with B_DELWRI set and B_CACHE clear must
2079		 * be committed before we can return the buffer in
2080		 * order to prevent the caller from issuing a read
2081		 * ( due to B_CACHE not being set ) and overwriting
2082		 * it.
2083		 *
2084		 * Most callers, including NFS and FFS, need this to
2085		 * operate properly either because they assume they
2086		 * can issue a read if B_CACHE is not set, or because
2087		 * ( for example ) an uncached B_DELWRI might loop due
2088		 * to softupdates re-dirtying the buffer.  In the latter
2089		 * case, B_CACHE is set after the first write completes,
2090		 * preventing further loops.
2091		 */
2092
2093		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2094			VOP_BWRITE(bp->b_vp, bp);
2095			goto loop;
2096		}
2097
2098		splx(s);
2099		bp->b_flags &= ~B_DONE;
2100	} else {
2101		/*
2102		 * Buffer is not in-core, create new buffer.  The buffer
2103		 * returned by getnewbuf() is locked.  Note that the returned
2104		 * buffer is also considered valid (not marked B_INVAL).
2105		 */
2106		int bsize, maxsize, vmio;
2107		off_t offset;
2108
2109		if (vp->v_type == VBLK)
2110			bsize = DEV_BSIZE;
2111		else if (vp->v_mountedhere)
2112			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2113		else if (vp->v_mount)
2114			bsize = vp->v_mount->mnt_stat.f_iosize;
2115		else
2116			bsize = size;
2117
2118		offset = (off_t)blkno * bsize;
2119		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
2120		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2121		maxsize = imax(maxsize, bsize);
2122
2123		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2124			if (slpflag || slptimeo) {
2125				splx(s);
2126				return NULL;
2127			}
2128			goto loop;
2129		}
2130
2131		/*
2132		 * This code is used to make sure that a buffer is not
2133		 * created while the getnewbuf routine is blocked.
2134		 * This can be a problem whether the vnode is locked or not.
2135		 * If the buffer is created out from under us, we have to
2136		 * throw away the one we just created.  There is now window
2137		 * race because we are safely running at splbio() from the
2138		 * point of the duplicate buffer creation through to here,
2139		 * and we've locked the buffer.
2140		 */
2141		if (gbincore(vp, blkno)) {
2142			bp->b_flags |= B_INVAL;
2143			brelse(bp);
2144			goto loop;
2145		}
2146
2147		/*
2148		 * Insert the buffer into the hash, so that it can
2149		 * be found by incore.
2150		 */
2151		bp->b_blkno = bp->b_lblkno = blkno;
2152		bp->b_offset = offset;
2153
2154		bgetvp(vp, bp);
2155		LIST_REMOVE(bp, b_hash);
2156		bh = bufhash(vp, blkno);
2157		LIST_INSERT_HEAD(bh, bp, b_hash);
2158
2159		/*
2160		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2161		 * buffer size starts out as 0, B_CACHE will be set by
2162		 * allocbuf() for the VMIO case prior to it testing the
2163		 * backing store for validity.
2164		 */
2165
2166		if (vmio) {
2167			bp->b_flags |= B_VMIO;
2168#if defined(VFS_BIO_DEBUG)
2169			if (vp->v_type != VREG && vp->v_type != VBLK)
2170				printf("getblk: vmioing file type %d???\n", vp->v_type);
2171#endif
2172		} else {
2173			bp->b_flags &= ~B_VMIO;
2174		}
2175
2176		allocbuf(bp, size);
2177
2178		splx(s);
2179		bp->b_flags &= ~B_DONE;
2180	}
2181	return (bp);
2182}
2183
2184/*
2185 * Get an empty, disassociated buffer of given size.  The buffer is initially
2186 * set to B_INVAL.
2187 */
2188struct buf *
2189geteblk(int size)
2190{
2191	struct buf *bp;
2192	int s;
2193
2194	s = splbio();
2195	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
2196	splx(s);
2197	allocbuf(bp, size);
2198	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2199	return (bp);
2200}
2201
2202
2203/*
2204 * This code constitutes the buffer memory from either anonymous system
2205 * memory (in the case of non-VMIO operations) or from an associated
2206 * VM object (in the case of VMIO operations).  This code is able to
2207 * resize a buffer up or down.
2208 *
2209 * Note that this code is tricky, and has many complications to resolve
2210 * deadlock or inconsistant data situations.  Tread lightly!!!
2211 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2212 * the caller.  Calling this code willy nilly can result in the loss of data.
2213 *
2214 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2215 * B_CACHE for the non-VMIO case.
2216 */
2217
2218int
2219allocbuf(struct buf *bp, int size)
2220{
2221	int newbsize, mbsize;
2222	int i;
2223
2224#if !defined(MAX_PERF)
2225	if (BUF_REFCNT(bp) == 0)
2226		panic("allocbuf: buffer not busy");
2227
2228	if (bp->b_kvasize < size)
2229		panic("allocbuf: buffer too small");
2230#endif
2231
2232	if ((bp->b_flags & B_VMIO) == 0) {
2233		caddr_t origbuf;
2234		int origbufsize;
2235		/*
2236		 * Just get anonymous memory from the kernel.  Don't
2237		 * mess with B_CACHE.
2238		 */
2239		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2240#if !defined(NO_B_MALLOC)
2241		if (bp->b_flags & B_MALLOC)
2242			newbsize = mbsize;
2243		else
2244#endif
2245			newbsize = round_page(size);
2246
2247		if (newbsize < bp->b_bufsize) {
2248#if !defined(NO_B_MALLOC)
2249			/*
2250			 * malloced buffers are not shrunk
2251			 */
2252			if (bp->b_flags & B_MALLOC) {
2253				if (newbsize) {
2254					bp->b_bcount = size;
2255				} else {
2256					free(bp->b_data, M_BIOBUF);
2257					bufspace -= bp->b_bufsize;
2258					bufmallocspace -= bp->b_bufsize;
2259					runningbufspace -= bp->b_bufsize;
2260					if (bp->b_bufsize)
2261						bufspacewakeup();
2262					bp->b_data = bp->b_kvabase;
2263					bp->b_bufsize = 0;
2264					bp->b_bcount = 0;
2265					bp->b_flags &= ~B_MALLOC;
2266				}
2267				return 1;
2268			}
2269#endif
2270			vm_hold_free_pages(
2271			    bp,
2272			    (vm_offset_t) bp->b_data + newbsize,
2273			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2274		} else if (newbsize > bp->b_bufsize) {
2275#if !defined(NO_B_MALLOC)
2276			/*
2277			 * We only use malloced memory on the first allocation.
2278			 * and revert to page-allocated memory when the buffer
2279			 * grows.
2280			 */
2281			if ( (bufmallocspace < maxbufmallocspace) &&
2282				(bp->b_bufsize == 0) &&
2283				(mbsize <= PAGE_SIZE/2)) {
2284
2285				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2286				bp->b_bufsize = mbsize;
2287				bp->b_bcount = size;
2288				bp->b_flags |= B_MALLOC;
2289				bufspace += mbsize;
2290				bufmallocspace += mbsize;
2291				runningbufspace += bp->b_bufsize;
2292				return 1;
2293			}
2294#endif
2295			origbuf = NULL;
2296			origbufsize = 0;
2297#if !defined(NO_B_MALLOC)
2298			/*
2299			 * If the buffer is growing on its other-than-first allocation,
2300			 * then we revert to the page-allocation scheme.
2301			 */
2302			if (bp->b_flags & B_MALLOC) {
2303				origbuf = bp->b_data;
2304				origbufsize = bp->b_bufsize;
2305				bp->b_data = bp->b_kvabase;
2306				bufspace -= bp->b_bufsize;
2307				bufmallocspace -= bp->b_bufsize;
2308				runningbufspace -= bp->b_bufsize;
2309				if (bp->b_bufsize)
2310					bufspacewakeup();
2311				bp->b_bufsize = 0;
2312				bp->b_flags &= ~B_MALLOC;
2313				newbsize = round_page(newbsize);
2314			}
2315#endif
2316			vm_hold_load_pages(
2317			    bp,
2318			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2319			    (vm_offset_t) bp->b_data + newbsize);
2320#if !defined(NO_B_MALLOC)
2321			if (origbuf) {
2322				bcopy(origbuf, bp->b_data, origbufsize);
2323				free(origbuf, M_BIOBUF);
2324			}
2325#endif
2326		}
2327	} else {
2328		vm_page_t m;
2329		int desiredpages;
2330
2331		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2332		desiredpages = (size == 0) ? 0 :
2333			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2334
2335#if !defined(NO_B_MALLOC)
2336		if (bp->b_flags & B_MALLOC)
2337			panic("allocbuf: VMIO buffer can't be malloced");
2338#endif
2339		/*
2340		 * Set B_CACHE initially if buffer is 0 length or will become
2341		 * 0-length.
2342		 */
2343		if (size == 0 || bp->b_bufsize == 0)
2344			bp->b_flags |= B_CACHE;
2345
2346		if (newbsize < bp->b_bufsize) {
2347			/*
2348			 * DEV_BSIZE aligned new buffer size is less then the
2349			 * DEV_BSIZE aligned existing buffer size.  Figure out
2350			 * if we have to remove any pages.
2351			 */
2352			if (desiredpages < bp->b_npages) {
2353				for (i = desiredpages; i < bp->b_npages; i++) {
2354					/*
2355					 * the page is not freed here -- it
2356					 * is the responsibility of
2357					 * vnode_pager_setsize
2358					 */
2359					m = bp->b_pages[i];
2360					KASSERT(m != bogus_page,
2361					    ("allocbuf: bogus page found"));
2362					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2363						;
2364
2365					bp->b_pages[i] = NULL;
2366					vm_page_unwire(m, 0);
2367				}
2368				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2369				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2370				bp->b_npages = desiredpages;
2371			}
2372		} else if (size > bp->b_bcount) {
2373			/*
2374			 * We are growing the buffer, possibly in a
2375			 * byte-granular fashion.
2376			 */
2377			struct vnode *vp;
2378			vm_object_t obj;
2379			vm_offset_t toff;
2380			vm_offset_t tinc;
2381
2382			/*
2383			 * Step 1, bring in the VM pages from the object,
2384			 * allocating them if necessary.  We must clear
2385			 * B_CACHE if these pages are not valid for the
2386			 * range covered by the buffer.
2387			 */
2388
2389			vp = bp->b_vp;
2390			obj = vp->v_object;
2391
2392			while (bp->b_npages < desiredpages) {
2393				vm_page_t m;
2394				vm_pindex_t pi;
2395
2396				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2397				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2398					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
2399					if (m == NULL) {
2400						VM_WAIT;
2401						vm_pageout_deficit += desiredpages - bp->b_npages;
2402					} else {
2403						vm_page_wire(m);
2404						vm_page_wakeup(m);
2405						bp->b_flags &= ~B_CACHE;
2406						bp->b_pages[bp->b_npages] = m;
2407						++bp->b_npages;
2408					}
2409					continue;
2410				}
2411
2412				/*
2413				 * We found a page.  If we have to sleep on it,
2414				 * retry because it might have gotten freed out
2415				 * from under us.
2416				 *
2417				 * We can only test PG_BUSY here.  Blocking on
2418				 * m->busy might lead to a deadlock:
2419				 *
2420				 *  vm_fault->getpages->cluster_read->allocbuf
2421				 *
2422				 */
2423
2424				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2425					continue;
2426
2427				/*
2428				 * We have a good page.  Should we wakeup the
2429				 * page daemon?
2430				 */
2431				if ((curproc != pageproc) &&
2432				    ((m->queue - m->pc) == PQ_CACHE) &&
2433				    ((cnt.v_free_count + cnt.v_cache_count) <
2434					(cnt.v_free_min + cnt.v_cache_min))) {
2435					pagedaemon_wakeup();
2436				}
2437				vm_page_flag_clear(m, PG_ZERO);
2438				vm_page_wire(m);
2439				bp->b_pages[bp->b_npages] = m;
2440				++bp->b_npages;
2441			}
2442
2443			/*
2444			 * Step 2.  We've loaded the pages into the buffer,
2445			 * we have to figure out if we can still have B_CACHE
2446			 * set.  Note that B_CACHE is set according to the
2447			 * byte-granular range ( bcount and size ), new the
2448			 * aligned range ( newbsize ).
2449			 *
2450			 * The VM test is against m->valid, which is DEV_BSIZE
2451			 * aligned.  Needless to say, the validity of the data
2452			 * needs to also be DEV_BSIZE aligned.  Note that this
2453			 * fails with NFS if the server or some other client
2454			 * extends the file's EOF.  If our buffer is resized,
2455			 * B_CACHE may remain set! XXX
2456			 */
2457
2458			toff = bp->b_bcount;
2459			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2460
2461			while ((bp->b_flags & B_CACHE) && toff < size) {
2462				vm_pindex_t pi;
2463
2464				if (tinc > (size - toff))
2465					tinc = size - toff;
2466
2467				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2468				    PAGE_SHIFT;
2469
2470				vfs_buf_test_cache(
2471				    bp,
2472				    bp->b_offset,
2473				    toff,
2474				    tinc,
2475				    bp->b_pages[pi]
2476				);
2477				toff += tinc;
2478				tinc = PAGE_SIZE;
2479			}
2480
2481			/*
2482			 * Step 3, fixup the KVM pmap.  Remember that
2483			 * bp->b_data is relative to bp->b_offset, but
2484			 * bp->b_offset may be offset into the first page.
2485			 */
2486
2487			bp->b_data = (caddr_t)
2488			    trunc_page((vm_offset_t)bp->b_data);
2489			pmap_qenter(
2490			    (vm_offset_t)bp->b_data,
2491			    bp->b_pages,
2492			    bp->b_npages
2493			);
2494			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2495			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2496		}
2497	}
2498	if (bp->b_flags & B_VMIO)
2499		vmiospace += (newbsize - bp->b_bufsize);
2500	bufspace += (newbsize - bp->b_bufsize);
2501	runningbufspace += (newbsize - bp->b_bufsize);
2502	if (newbsize < bp->b_bufsize)
2503		bufspacewakeup();
2504	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2505	bp->b_bcount = size;		/* requested buffer size	*/
2506	return 1;
2507}
2508
2509/*
2510 *	biowait:
2511 *
2512 *	Wait for buffer I/O completion, returning error status.  The buffer
2513 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2514 *	error and cleared.
2515 */
2516int
2517biowait(register struct buf * bp)
2518{
2519	int s;
2520
2521	s = splbio();
2522	while ((bp->b_flags & B_DONE) == 0) {
2523#if defined(NO_SCHEDULE_MODS)
2524		tsleep(bp, PRIBIO, "biowait", 0);
2525#else
2526		if (bp->b_flags & B_READ)
2527			tsleep(bp, PRIBIO, "biord", 0);
2528		else
2529			tsleep(bp, PRIBIO, "biowr", 0);
2530#endif
2531	}
2532	splx(s);
2533	if (bp->b_flags & B_EINTR) {
2534		bp->b_flags &= ~B_EINTR;
2535		return (EINTR);
2536	}
2537	if (bp->b_flags & B_ERROR) {
2538		return (bp->b_error ? bp->b_error : EIO);
2539	} else {
2540		return (0);
2541	}
2542}
2543
2544/*
2545 *	biodone:
2546 *
2547 *	Finish I/O on a buffer, optionally calling a completion function.
2548 *	This is usually called from an interrupt so process blocking is
2549 *	not allowed.
2550 *
2551 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2552 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2553 *	assuming B_INVAL is clear.
2554 *
2555 *	For the VMIO case, we set B_CACHE if the op was a read and no
2556 *	read error occured, or if the op was a write.  B_CACHE is never
2557 *	set if the buffer is invalid or otherwise uncacheable.
2558 *
2559 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2560 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2561 *	in the biodone routine.
2562 */
2563void
2564biodone(register struct buf * bp)
2565{
2566	int s;
2567
2568	s = splbio();
2569
2570	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2571	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2572
2573	bp->b_flags |= B_DONE;
2574
2575	if (bp->b_flags & B_FREEBUF) {
2576		brelse(bp);
2577		splx(s);
2578		return;
2579	}
2580
2581	if ((bp->b_flags & B_READ) == 0) {
2582		vwakeup(bp);
2583	}
2584
2585	/* call optional completion function if requested */
2586	if (bp->b_flags & B_CALL) {
2587		bp->b_flags &= ~B_CALL;
2588		(*bp->b_iodone) (bp);
2589		splx(s);
2590		return;
2591	}
2592	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2593		(*bioops.io_complete)(bp);
2594
2595	if (bp->b_flags & B_VMIO) {
2596		int i, resid;
2597		vm_ooffset_t foff;
2598		vm_page_t m;
2599		vm_object_t obj;
2600		int iosize;
2601		struct vnode *vp = bp->b_vp;
2602
2603		obj = vp->v_object;
2604
2605#if defined(VFS_BIO_DEBUG)
2606		if (vp->v_usecount == 0) {
2607			panic("biodone: zero vnode ref count");
2608		}
2609
2610		if (vp->v_object == NULL) {
2611			panic("biodone: missing VM object");
2612		}
2613
2614		if ((vp->v_flag & VOBJBUF) == 0) {
2615			panic("biodone: vnode is not setup for merged cache");
2616		}
2617#endif
2618
2619		foff = bp->b_offset;
2620		KASSERT(bp->b_offset != NOOFFSET,
2621		    ("biodone: no buffer offset"));
2622
2623#if !defined(MAX_PERF)
2624		if (!obj) {
2625			panic("biodone: no object");
2626		}
2627#endif
2628#if defined(VFS_BIO_DEBUG)
2629		if (obj->paging_in_progress < bp->b_npages) {
2630			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2631			    obj->paging_in_progress, bp->b_npages);
2632		}
2633#endif
2634
2635		/*
2636		 * Set B_CACHE if the op was a normal read and no error
2637		 * occured.  B_CACHE is set for writes in the b*write()
2638		 * routines.
2639		 */
2640		iosize = bp->b_bcount;
2641		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2642			bp->b_flags |= B_CACHE;
2643		}
2644
2645		for (i = 0; i < bp->b_npages; i++) {
2646			int bogusflag = 0;
2647			m = bp->b_pages[i];
2648			if (m == bogus_page) {
2649				bogusflag = 1;
2650				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2651				if (!m) {
2652#if defined(VFS_BIO_DEBUG)
2653					printf("biodone: page disappeared\n");
2654#endif
2655					vm_object_pip_subtract(obj, 1);
2656					bp->b_flags &= ~B_CACHE;
2657					continue;
2658				}
2659				bp->b_pages[i] = m;
2660				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2661			}
2662#if defined(VFS_BIO_DEBUG)
2663			if (OFF_TO_IDX(foff) != m->pindex) {
2664				printf(
2665"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2666				    (unsigned long)foff, m->pindex);
2667			}
2668#endif
2669			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2670			if (resid > iosize)
2671				resid = iosize;
2672
2673			/*
2674			 * In the write case, the valid and clean bits are
2675			 * already changed correctly ( see bdwrite() ), so we
2676			 * only need to do this here in the read case.
2677			 */
2678			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2679				vfs_page_set_valid(bp, foff, i, m);
2680			}
2681			vm_page_flag_clear(m, PG_ZERO);
2682
2683			/*
2684			 * when debugging new filesystems or buffer I/O methods, this
2685			 * is the most common error that pops up.  if you see this, you
2686			 * have not set the page busy flag correctly!!!
2687			 */
2688			if (m->busy == 0) {
2689#if !defined(MAX_PERF)
2690				printf("biodone: page busy < 0, "
2691				    "pindex: %d, foff: 0x(%x,%x), "
2692				    "resid: %d, index: %d\n",
2693				    (int) m->pindex, (int)(foff >> 32),
2694						(int) foff & 0xffffffff, resid, i);
2695#endif
2696				if (vp->v_type != VBLK)
2697#if !defined(MAX_PERF)
2698					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2699					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2700					    (int) bp->b_lblkno,
2701					    bp->b_flags, bp->b_npages);
2702				else
2703					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2704					    (int) bp->b_lblkno,
2705					    bp->b_flags, bp->b_npages);
2706				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2707				    m->valid, m->dirty, m->wire_count);
2708#endif
2709				panic("biodone: page busy < 0\n");
2710			}
2711			vm_page_io_finish(m);
2712			vm_object_pip_subtract(obj, 1);
2713			foff += resid;
2714			iosize -= resid;
2715		}
2716		if (obj)
2717			vm_object_pip_wakeupn(obj, 0);
2718	}
2719	/*
2720	 * For asynchronous completions, release the buffer now. The brelse
2721	 * will do a wakeup there if necessary - so no need to do a wakeup
2722	 * here in the async case. The sync case always needs to do a wakeup.
2723	 */
2724
2725	if (bp->b_flags & B_ASYNC) {
2726		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2727			brelse(bp);
2728		else
2729			bqrelse(bp);
2730	} else {
2731		wakeup(bp);
2732	}
2733	splx(s);
2734}
2735
2736/*
2737 * This routine is called in lieu of iodone in the case of
2738 * incomplete I/O.  This keeps the busy status for pages
2739 * consistant.
2740 */
2741void
2742vfs_unbusy_pages(struct buf * bp)
2743{
2744	int i;
2745
2746	if (bp->b_flags & B_VMIO) {
2747		struct vnode *vp = bp->b_vp;
2748		vm_object_t obj = vp->v_object;
2749
2750		for (i = 0; i < bp->b_npages; i++) {
2751			vm_page_t m = bp->b_pages[i];
2752
2753			if (m == bogus_page) {
2754				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2755#if !defined(MAX_PERF)
2756				if (!m) {
2757					panic("vfs_unbusy_pages: page missing\n");
2758				}
2759#endif
2760				bp->b_pages[i] = m;
2761				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2762			}
2763			vm_object_pip_subtract(obj, 1);
2764			vm_page_flag_clear(m, PG_ZERO);
2765			vm_page_io_finish(m);
2766		}
2767		vm_object_pip_wakeupn(obj, 0);
2768	}
2769}
2770
2771/*
2772 * vfs_page_set_valid:
2773 *
2774 *	Set the valid bits in a page based on the supplied offset.   The
2775 *	range is restricted to the buffer's size.
2776 *
2777 *	This routine is typically called after a read completes.
2778 */
2779static void
2780vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2781{
2782	vm_ooffset_t soff, eoff;
2783
2784	/*
2785	 * Start and end offsets in buffer.  eoff - soff may not cross a
2786	 * page boundry or cross the end of the buffer.  The end of the
2787	 * buffer, in this case, is our file EOF, not the allocation size
2788	 * of the buffer.
2789	 */
2790	soff = off;
2791	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2792	if (eoff > bp->b_offset + bp->b_bcount)
2793		eoff = bp->b_offset + bp->b_bcount;
2794
2795	/*
2796	 * Set valid range.  This is typically the entire buffer and thus the
2797	 * entire page.
2798	 */
2799	if (eoff > soff) {
2800		vm_page_set_validclean(
2801		    m,
2802		   (vm_offset_t) (soff & PAGE_MASK),
2803		   (vm_offset_t) (eoff - soff)
2804		);
2805	}
2806}
2807
2808/*
2809 * This routine is called before a device strategy routine.
2810 * It is used to tell the VM system that paging I/O is in
2811 * progress, and treat the pages associated with the buffer
2812 * almost as being PG_BUSY.  Also the object paging_in_progress
2813 * flag is handled to make sure that the object doesn't become
2814 * inconsistant.
2815 *
2816 * Since I/O has not been initiated yet, certain buffer flags
2817 * such as B_ERROR or B_INVAL may be in an inconsistant state
2818 * and should be ignored.
2819 */
2820void
2821vfs_busy_pages(struct buf * bp, int clear_modify)
2822{
2823	int i, bogus;
2824
2825	if (bp->b_flags & B_VMIO) {
2826		struct vnode *vp = bp->b_vp;
2827		vm_object_t obj = vp->v_object;
2828		vm_ooffset_t foff;
2829
2830		foff = bp->b_offset;
2831		KASSERT(bp->b_offset != NOOFFSET,
2832		    ("vfs_busy_pages: no buffer offset"));
2833		vfs_setdirty(bp);
2834
2835retry:
2836		for (i = 0; i < bp->b_npages; i++) {
2837			vm_page_t m = bp->b_pages[i];
2838			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2839				goto retry;
2840		}
2841
2842		bogus = 0;
2843		for (i = 0; i < bp->b_npages; i++) {
2844			vm_page_t m = bp->b_pages[i];
2845
2846			vm_page_flag_clear(m, PG_ZERO);
2847			if ((bp->b_flags & B_CLUSTER) == 0) {
2848				vm_object_pip_add(obj, 1);
2849				vm_page_io_start(m);
2850			}
2851
2852			/*
2853			 * When readying a buffer for a read ( i.e
2854			 * clear_modify == 0 ), it is important to do
2855			 * bogus_page replacement for valid pages in
2856			 * partially instantiated buffers.  Partially
2857			 * instantiated buffers can, in turn, occur when
2858			 * reconstituting a buffer from its VM backing store
2859			 * base.  We only have to do this if B_CACHE is
2860			 * clear ( which causes the I/O to occur in the
2861			 * first place ).  The replacement prevents the read
2862			 * I/O from overwriting potentially dirty VM-backed
2863			 * pages.  XXX bogus page replacement is, uh, bogus.
2864			 * It may not work properly with small-block devices.
2865			 * We need to find a better way.
2866			 */
2867
2868			vm_page_protect(m, VM_PROT_NONE);
2869			if (clear_modify)
2870				vfs_page_set_valid(bp, foff, i, m);
2871			else if (m->valid == VM_PAGE_BITS_ALL &&
2872				(bp->b_flags & B_CACHE) == 0) {
2873				bp->b_pages[i] = bogus_page;
2874				bogus++;
2875			}
2876			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2877		}
2878		if (bogus)
2879			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2880	}
2881}
2882
2883/*
2884 * Tell the VM system that the pages associated with this buffer
2885 * are clean.  This is used for delayed writes where the data is
2886 * going to go to disk eventually without additional VM intevention.
2887 *
2888 * Note that while we only really need to clean through to b_bcount, we
2889 * just go ahead and clean through to b_bufsize.
2890 */
2891static void
2892vfs_clean_pages(struct buf * bp)
2893{
2894	int i;
2895
2896	if (bp->b_flags & B_VMIO) {
2897		vm_ooffset_t foff;
2898
2899		foff = bp->b_offset;
2900		KASSERT(bp->b_offset != NOOFFSET,
2901		    ("vfs_clean_pages: no buffer offset"));
2902		for (i = 0; i < bp->b_npages; i++) {
2903			vm_page_t m = bp->b_pages[i];
2904			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2905			vm_ooffset_t eoff = noff;
2906
2907			if (eoff > bp->b_offset + bp->b_bufsize)
2908				eoff = bp->b_offset + bp->b_bufsize;
2909			vfs_page_set_valid(bp, foff, i, m);
2910			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2911			foff = noff;
2912		}
2913	}
2914}
2915
2916/*
2917 *	vfs_bio_set_validclean:
2918 *
2919 *	Set the range within the buffer to valid and clean.  The range is
2920 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
2921 *	itself may be offset from the beginning of the first page.
2922 */
2923
2924void
2925vfs_bio_set_validclean(struct buf *bp, int base, int size)
2926{
2927	if (bp->b_flags & B_VMIO) {
2928		int i;
2929		int n;
2930
2931		/*
2932		 * Fixup base to be relative to beginning of first page.
2933		 * Set initial n to be the maximum number of bytes in the
2934		 * first page that can be validated.
2935		 */
2936
2937		base += (bp->b_offset & PAGE_MASK);
2938		n = PAGE_SIZE - (base & PAGE_MASK);
2939
2940		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
2941			vm_page_t m = bp->b_pages[i];
2942
2943			if (n > size)
2944				n = size;
2945
2946			vm_page_set_validclean(m, base & PAGE_MASK, n);
2947			base += n;
2948			size -= n;
2949			n = PAGE_SIZE;
2950		}
2951	}
2952}
2953
2954/*
2955 *	vfs_bio_clrbuf:
2956 *
2957 *	clear a buffer.  This routine essentially fakes an I/O, so we need
2958 *	to clear B_ERROR and B_INVAL.
2959 *
2960 *	Note that while we only theoretically need to clear through b_bcount,
2961 *	we go ahead and clear through b_bufsize.
2962 */
2963
2964void
2965vfs_bio_clrbuf(struct buf *bp) {
2966	int i, mask = 0;
2967	caddr_t sa, ea;
2968	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2969		bp->b_flags &= ~(B_INVAL|B_ERROR);
2970		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2971		    (bp->b_offset & PAGE_MASK) == 0) {
2972			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2973			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2974			    ((bp->b_pages[0]->valid & mask) != mask)) {
2975				bzero(bp->b_data, bp->b_bufsize);
2976			}
2977			bp->b_pages[0]->valid |= mask;
2978			bp->b_resid = 0;
2979			return;
2980		}
2981		ea = sa = bp->b_data;
2982		for(i=0;i<bp->b_npages;i++,sa=ea) {
2983			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
2984			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2985			ea = (caddr_t)(vm_offset_t)ulmin(
2986			    (u_long)(vm_offset_t)ea,
2987			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
2988			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2989			if ((bp->b_pages[i]->valid & mask) == mask)
2990				continue;
2991			if ((bp->b_pages[i]->valid & mask) == 0) {
2992				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2993					bzero(sa, ea - sa);
2994				}
2995			} else {
2996				for (; sa < ea; sa += DEV_BSIZE, j++) {
2997					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2998						(bp->b_pages[i]->valid & (1<<j)) == 0)
2999						bzero(sa, DEV_BSIZE);
3000				}
3001			}
3002			bp->b_pages[i]->valid |= mask;
3003			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3004		}
3005		bp->b_resid = 0;
3006	} else {
3007		clrbuf(bp);
3008	}
3009}
3010
3011/*
3012 * vm_hold_load_pages and vm_hold_unload pages get pages into
3013 * a buffers address space.  The pages are anonymous and are
3014 * not associated with a file object.
3015 */
3016void
3017vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3018{
3019	vm_offset_t pg;
3020	vm_page_t p;
3021	int index;
3022
3023	to = round_page(to);
3024	from = round_page(from);
3025	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3026
3027	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3028
3029tryagain:
3030
3031		p = vm_page_alloc(kernel_object,
3032			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3033		    VM_ALLOC_NORMAL);
3034		if (!p) {
3035			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3036			VM_WAIT;
3037			goto tryagain;
3038		}
3039		vm_page_wire(p);
3040		p->valid = VM_PAGE_BITS_ALL;
3041		vm_page_flag_clear(p, PG_ZERO);
3042		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3043		bp->b_pages[index] = p;
3044		vm_page_wakeup(p);
3045	}
3046	bp->b_npages = index;
3047}
3048
3049void
3050vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3051{
3052	vm_offset_t pg;
3053	vm_page_t p;
3054	int index, newnpages;
3055
3056	from = round_page(from);
3057	to = round_page(to);
3058	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3059
3060	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3061		p = bp->b_pages[index];
3062		if (p && (index < bp->b_npages)) {
3063#if !defined(MAX_PERF)
3064			if (p->busy) {
3065				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3066					bp->b_blkno, bp->b_lblkno);
3067			}
3068#endif
3069			bp->b_pages[index] = NULL;
3070			pmap_kremove(pg);
3071			vm_page_busy(p);
3072			vm_page_unwire(p, 0);
3073			vm_page_free(p);
3074		}
3075	}
3076	bp->b_npages = newnpages;
3077}
3078
3079
3080#include "opt_ddb.h"
3081#ifdef DDB
3082#include <ddb/ddb.h>
3083
3084DB_SHOW_COMMAND(buffer, db_show_buffer)
3085{
3086	/* get args */
3087	struct buf *bp = (struct buf *)addr;
3088
3089	if (!have_addr) {
3090		db_printf("usage: show buffer <addr>\n");
3091		return;
3092	}
3093
3094	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3095	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3096		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3097		  "b_blkno = %d, b_pblkno = %d\n",
3098		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3099		  major(bp->b_dev), minor(bp->b_dev),
3100		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3101	if (bp->b_npages) {
3102		int i;
3103		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3104		for (i = 0; i < bp->b_npages; i++) {
3105			vm_page_t m;
3106			m = bp->b_pages[i];
3107			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3108			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3109			if ((i + 1) < bp->b_npages)
3110				db_printf(",");
3111		}
3112		db_printf("\n");
3113	}
3114}
3115#endif /* DDB */
3116