vfs_bio.c revision 49101
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $Id: vfs_bio.c,v 1.223 1999/07/09 16:41:19 peter Exp $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#define VMIO
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/sysproto.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/proc.h>
37#include <sys/kthread.h>
38#include <sys/vnode.h>
39#include <sys/vmmeter.h>
40#include <sys/lock.h>
41#include <miscfs/specfs/specdev.h>
42#include <vm/vm.h>
43#include <vm/vm_param.h>
44#include <vm/vm_prot.h>
45#include <vm/vm_kern.h>
46#include <vm/vm_pageout.h>
47#include <vm/vm_page.h>
48#include <vm/vm_object.h>
49#include <vm/vm_extern.h>
50#include <vm/vm_map.h>
51#include <sys/buf.h>
52#include <sys/mount.h>
53#include <sys/malloc.h>
54#include <sys/resourcevar.h>
55
56static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
57
58struct	bio_ops bioops;		/* I/O operation notification */
59
60struct buf *buf;		/* buffer header pool */
61struct swqueue bswlist;
62
63static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
64		vm_offset_t to);
65static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
66		vm_offset_t to);
67static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
68			       int pageno, vm_page_t m);
69static void vfs_clean_pages(struct buf * bp);
70static void vfs_setdirty(struct buf *bp);
71static void vfs_vmio_release(struct buf *bp);
72static int flushbufqueues(void);
73
74static int bd_request;
75
76static void buf_daemon __P((void));
77/*
78 * bogus page -- for I/O to/from partially complete buffers
79 * this is a temporary solution to the problem, but it is not
80 * really that bad.  it would be better to split the buffer
81 * for input in the case of buffers partially already in memory,
82 * but the code is intricate enough already.
83 */
84vm_page_t bogus_page;
85int runningbufspace;
86int vmiodirenable = FALSE;
87static vm_offset_t bogus_offset;
88
89static int bufspace, maxbufspace, vmiospace,
90	bufmallocspace, maxbufmallocspace, hibufspace;
91#if 0
92static int maxvmiobufspace;
93#endif
94static int maxbdrun;
95static int needsbuffer;
96static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
97static int numfreebuffers, lofreebuffers, hifreebuffers;
98static int getnewbufcalls;
99static int getnewbufrestarts;
100static int kvafreespace;
101
102SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
103	&numdirtybuffers, 0, "");
104SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
105	&lodirtybuffers, 0, "");
106SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
107	&hidirtybuffers, 0, "");
108SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
109	&numfreebuffers, 0, "");
110SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
111	&lofreebuffers, 0, "");
112SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
113	&hifreebuffers, 0, "");
114SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
115	&runningbufspace, 0, "");
116SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
117	&maxbufspace, 0, "");
118SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
119	&hibufspace, 0, "");
120SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
121	&bufspace, 0, "");
122SYSCTL_INT(_vfs, OID_AUTO, maxbdrun, CTLFLAG_RW,
123	&maxbdrun, 0, "");
124#if 0
125SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
126	&maxvmiobufspace, 0, "");
127#endif
128SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
129	&vmiospace, 0, "");
130SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
131	&maxbufmallocspace, 0, "");
132SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
133	&bufmallocspace, 0, "");
134SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
135	&kvafreespace, 0, "");
136SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW,
137	&getnewbufcalls, 0, "");
138SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW,
139	&getnewbufrestarts, 0, "");
140SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW,
141	&vmiodirenable, 0, "");
142
143
144static int bufhashmask;
145static LIST_HEAD(bufhashhdr, buf) *bufhashtbl, invalhash;
146struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
147char *buf_wmesg = BUF_WMESG;
148
149extern int vm_swap_size;
150
151#define BUF_MAXUSE		24
152
153#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
154#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
155#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
156#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
157#define VFS_BIO_NEED_KVASPACE	0x10	/* wait for buffer_map space, emerg  */
158
159/*
160 * Buffer hash table code.  Note that the logical block scans linearly, which
161 * gives us some L1 cache locality.
162 */
163
164static __inline
165struct bufhashhdr *
166bufhash(struct vnode *vnp, daddr_t bn)
167{
168	return(&bufhashtbl[(((uintptr_t)(vnp) >> 7) + (int)bn) & bufhashmask]);
169}
170
171/*
172 *	kvaspacewakeup:
173 *
174 *	Called when kva space is potential available for recovery or when
175 *	kva space is recovered in the buffer_map.  This function wakes up
176 *	anyone waiting for buffer_map kva space.  Even though the buffer_map
177 *	is larger then maxbufspace, this situation will typically occur
178 *	when the buffer_map gets fragmented.
179 */
180
181static __inline void
182kvaspacewakeup(void)
183{
184	/*
185	 * If someone is waiting for KVA space, wake them up.  Even
186	 * though we haven't freed the kva space yet, the waiting
187	 * process will be able to now.
188	 */
189	if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
190		needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
191		wakeup(&needsbuffer);
192	}
193}
194
195/*
196 *	numdirtywakeup:
197 *
198 *	If someone is blocked due to there being too many dirty buffers,
199 *	and numdirtybuffers is now reasonable, wake them up.
200 */
201
202static __inline void
203numdirtywakeup(void)
204{
205	if (numdirtybuffers < hidirtybuffers) {
206		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
207			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
208			wakeup(&needsbuffer);
209		}
210	}
211}
212
213/*
214 *	bufspacewakeup:
215 *
216 *	Called when buffer space is potentially available for recovery or when
217 *	buffer space is recovered.  getnewbuf() will block on this flag when
218 *	it is unable to free sufficient buffer space.  Buffer space becomes
219 *	recoverable when bp's get placed back in the queues.
220 */
221
222static __inline void
223bufspacewakeup(void)
224{
225	/*
226	 * If someone is waiting for BUF space, wake them up.  Even
227	 * though we haven't freed the kva space yet, the waiting
228	 * process will be able to now.
229	 */
230	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
231		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
232		wakeup(&needsbuffer);
233	}
234}
235
236/*
237 *	bufcountwakeup:
238 *
239 *	Called when a buffer has been added to one of the free queues to
240 *	account for the buffer and to wakeup anyone waiting for free buffers.
241 *	This typically occurs when large amounts of metadata are being handled
242 *	by the buffer cache ( else buffer space runs out first, usually ).
243 */
244
245static __inline void
246bufcountwakeup(void)
247{
248	++numfreebuffers;
249	if (needsbuffer) {
250		needsbuffer &= ~VFS_BIO_NEED_ANY;
251		if (numfreebuffers >= hifreebuffers)
252			needsbuffer &= ~VFS_BIO_NEED_FREE;
253		wakeup(&needsbuffer);
254	}
255}
256
257/*
258 *	vfs_buf_test_cache:
259 *
260 *	Called when a buffer is extended.  This function clears the B_CACHE
261 *	bit if the newly extended portion of the buffer does not contain
262 *	valid data.
263 */
264static __inline__
265void
266vfs_buf_test_cache(struct buf *bp,
267		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
268		  vm_page_t m)
269{
270	if (bp->b_flags & B_CACHE) {
271		int base = (foff + off) & PAGE_MASK;
272		if (vm_page_is_valid(m, base, size) == 0)
273			bp->b_flags &= ~B_CACHE;
274	}
275}
276
277static __inline__
278void
279bd_wakeup(int dirtybuflevel)
280{
281	if (numdirtybuffers >= dirtybuflevel && bd_request == 0) {
282		bd_request = 1;
283		wakeup(&bd_request);
284	}
285}
286
287
288/*
289 * Initialize buffer headers and related structures.
290 */
291
292caddr_t
293bufhashinit(caddr_t vaddr)
294{
295	/* first, make a null hash table */
296	for (bufhashmask = 8; bufhashmask < nbuf / 4; bufhashmask <<= 1)
297		;
298	bufhashtbl = (void *)vaddr;
299	vaddr = vaddr + sizeof(*bufhashtbl) * bufhashmask;
300	--bufhashmask;
301	return(vaddr);
302}
303
304void
305bufinit(void)
306{
307	struct buf *bp;
308	int i;
309
310	TAILQ_INIT(&bswlist);
311	LIST_INIT(&invalhash);
312	simple_lock_init(&buftimelock);
313
314	for (i = 0; i <= bufhashmask; i++)
315		LIST_INIT(&bufhashtbl[i]);
316
317	/* next, make a null set of free lists */
318	for (i = 0; i < BUFFER_QUEUES; i++)
319		TAILQ_INIT(&bufqueues[i]);
320
321	/* finally, initialize each buffer header and stick on empty q */
322	for (i = 0; i < nbuf; i++) {
323		bp = &buf[i];
324		bzero(bp, sizeof *bp);
325		bp->b_flags = B_INVAL;	/* we're just an empty header */
326		bp->b_dev = NODEV;
327		bp->b_rcred = NOCRED;
328		bp->b_wcred = NOCRED;
329		bp->b_qindex = QUEUE_EMPTY;
330		bp->b_xflags = 0;
331		LIST_INIT(&bp->b_dep);
332		BUF_LOCKINIT(bp);
333		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
334		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
335	}
336
337	/*
338	 * maxbufspace is currently calculated to support all filesystem
339	 * blocks to be 8K.  If you happen to use a 16K filesystem, the size
340	 * of the buffer cache is still the same as it would be for 8K
341	 * filesystems.  This keeps the size of the buffer cache "in check"
342	 * for big block filesystems.
343	 *
344	 * maxbufspace is calculated as around 50% of the KVA available in
345	 * the buffer_map ( DFLTSIZE vs BKVASIZE ), I presume to reduce the
346	 * effect of fragmentation.
347	 */
348	maxbufspace = (nbuf + 8) * DFLTBSIZE;
349	if ((hibufspace = maxbufspace - MAXBSIZE * 5) <= MAXBSIZE)
350		hibufspace = 3 * maxbufspace / 4;
351#if 0
352/*
353 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
354 */
355	maxvmiobufspace = 2 * hibufspace / 3;
356#endif
357/*
358 * Limit the amount of malloc memory since it is wired permanently into
359 * the kernel space.  Even though this is accounted for in the buffer
360 * allocation, we don't want the malloced region to grow uncontrolled.
361 * The malloc scheme improves memory utilization significantly on average
362 * (small) directories.
363 */
364	maxbufmallocspace = hibufspace / 20;
365
366/*
367 * Reduce the chance of a deadlock occuring by limiting the number
368 * of delayed-write dirty buffers we allow to stack up.
369 */
370	lodirtybuffers = nbuf / 7 + 10;
371	hidirtybuffers = nbuf / 4 + 20;
372	numdirtybuffers = 0;
373
374/*
375 * Try to keep the number of free buffers in the specified range,
376 * and give the syncer access to an emergency reserve.
377 */
378	lofreebuffers = nbuf / 18 + 5;
379	hifreebuffers = 2 * lofreebuffers;
380	numfreebuffers = nbuf;
381
382/*
383 * Maximum number of async ops initiated per buf_daemon loop.  This is
384 * somewhat of a hack at the moment, we really need to limit ourselves
385 * based on the number of bytes of I/O in-transit that were initiated
386 * from buf_daemon.
387 */
388	if ((maxbdrun = nswbuf / 4) < 4)
389		maxbdrun = 4;
390
391	kvafreespace = 0;
392
393	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
394	bogus_page = vm_page_alloc(kernel_object,
395			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
396			VM_ALLOC_NORMAL);
397
398}
399
400/*
401 * Free the kva allocation for a buffer
402 * Must be called only at splbio or higher,
403 *  as this is the only locking for buffer_map.
404 */
405static void
406bfreekva(struct buf * bp)
407{
408	if (bp->b_kvasize) {
409		vm_map_delete(buffer_map,
410		    (vm_offset_t) bp->b_kvabase,
411		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
412		);
413		bp->b_kvasize = 0;
414		kvaspacewakeup();
415	}
416}
417
418/*
419 *	bremfree:
420 *
421 *	Remove the buffer from the appropriate free list.
422 */
423void
424bremfree(struct buf * bp)
425{
426	int s = splbio();
427	int old_qindex = bp->b_qindex;
428
429	if (bp->b_qindex != QUEUE_NONE) {
430		if (bp->b_qindex == QUEUE_EMPTYKVA) {
431			kvafreespace -= bp->b_kvasize;
432		}
433		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
434		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
435		bp->b_qindex = QUEUE_NONE;
436		runningbufspace += bp->b_bufsize;
437	} else {
438#if !defined(MAX_PERF)
439		if (BUF_REFCNT(bp) <= 1)
440			panic("bremfree: removing a buffer not on a queue");
441#endif
442	}
443
444	/*
445	 * Fixup numfreebuffers count.  If the buffer is invalid or not
446	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
447	 * the buffer was free and we must decrement numfreebuffers.
448	 */
449	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
450		switch(old_qindex) {
451		case QUEUE_DIRTY:
452		case QUEUE_CLEAN:
453		case QUEUE_EMPTY:
454		case QUEUE_EMPTYKVA:
455			--numfreebuffers;
456			break;
457		default:
458			break;
459		}
460	}
461	splx(s);
462}
463
464
465/*
466 * Get a buffer with the specified data.  Look in the cache first.  We
467 * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
468 * is set, the buffer is valid and we do not have to do anything ( see
469 * getblk() ).
470 */
471int
472bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
473    struct buf ** bpp)
474{
475	struct buf *bp;
476
477	bp = getblk(vp, blkno, size, 0, 0);
478	*bpp = bp;
479
480	/* if not found in cache, do some I/O */
481	if ((bp->b_flags & B_CACHE) == 0) {
482		if (curproc != NULL)
483			curproc->p_stats->p_ru.ru_inblock++;
484		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
485		bp->b_flags |= B_READ;
486		bp->b_flags &= ~(B_ERROR | B_INVAL);
487		if (bp->b_rcred == NOCRED) {
488			if (cred != NOCRED)
489				crhold(cred);
490			bp->b_rcred = cred;
491		}
492		vfs_busy_pages(bp, 0);
493		VOP_STRATEGY(vp, bp);
494		return (biowait(bp));
495	}
496	return (0);
497}
498
499/*
500 * Operates like bread, but also starts asynchronous I/O on
501 * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
502 * to initiating I/O . If B_CACHE is set, the buffer is valid
503 * and we do not have to do anything.
504 */
505int
506breadn(struct vnode * vp, daddr_t blkno, int size,
507    daddr_t * rablkno, int *rabsize,
508    int cnt, struct ucred * cred, struct buf ** bpp)
509{
510	struct buf *bp, *rabp;
511	int i;
512	int rv = 0, readwait = 0;
513
514	*bpp = bp = getblk(vp, blkno, size, 0, 0);
515
516	/* if not found in cache, do some I/O */
517	if ((bp->b_flags & B_CACHE) == 0) {
518		if (curproc != NULL)
519			curproc->p_stats->p_ru.ru_inblock++;
520		bp->b_flags |= B_READ;
521		bp->b_flags &= ~(B_ERROR | B_INVAL);
522		if (bp->b_rcred == NOCRED) {
523			if (cred != NOCRED)
524				crhold(cred);
525			bp->b_rcred = cred;
526		}
527		vfs_busy_pages(bp, 0);
528		VOP_STRATEGY(vp, bp);
529		++readwait;
530	}
531
532	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
533		if (inmem(vp, *rablkno))
534			continue;
535		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
536
537		if ((rabp->b_flags & B_CACHE) == 0) {
538			if (curproc != NULL)
539				curproc->p_stats->p_ru.ru_inblock++;
540			rabp->b_flags |= B_READ | B_ASYNC;
541			rabp->b_flags &= ~(B_ERROR | B_INVAL);
542			if (rabp->b_rcred == NOCRED) {
543				if (cred != NOCRED)
544					crhold(cred);
545				rabp->b_rcred = cred;
546			}
547			vfs_busy_pages(rabp, 0);
548			BUF_KERNPROC(rabp);
549			VOP_STRATEGY(vp, rabp);
550		} else {
551			brelse(rabp);
552		}
553	}
554
555	if (readwait) {
556		rv = biowait(bp);
557	}
558	return (rv);
559}
560
561/*
562 * Write, release buffer on completion.  (Done by iodone
563 * if async).  Do not bother writing anything if the buffer
564 * is invalid.
565 *
566 * Note that we set B_CACHE here, indicating that buffer is
567 * fully valid and thus cacheable.  This is true even of NFS
568 * now so we set it generally.  This could be set either here
569 * or in biodone() since the I/O is synchronous.  We put it
570 * here.
571 */
572int
573bwrite(struct buf * bp)
574{
575	int oldflags, s;
576	struct vnode *vp;
577	struct mount *mp;
578
579	if (bp->b_flags & B_INVAL) {
580		brelse(bp);
581		return (0);
582	}
583
584	oldflags = bp->b_flags;
585
586#if !defined(MAX_PERF)
587	if (BUF_REFCNT(bp) == 0)
588		panic("bwrite: buffer is not busy???");
589#endif
590	s = splbio();
591	bundirty(bp);
592
593	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
594	bp->b_flags |= B_WRITEINPROG | B_CACHE;
595
596	bp->b_vp->v_numoutput++;
597	vfs_busy_pages(bp, 1);
598	if (curproc != NULL)
599		curproc->p_stats->p_ru.ru_oublock++;
600	splx(s);
601	if (oldflags & B_ASYNC)
602		BUF_KERNPROC(bp);
603	VOP_STRATEGY(bp->b_vp, bp);
604
605	/*
606	 * Collect statistics on synchronous and asynchronous writes.
607	 * Writes to block devices are charged to their associated
608	 * filesystem (if any).
609	 */
610	if ((vp = bp->b_vp) != NULL) {
611		if (vp->v_type == VBLK)
612			mp = vp->v_specmountpoint;
613		else
614			mp = vp->v_mount;
615		if (mp != NULL) {
616			if ((oldflags & B_ASYNC) == 0)
617				mp->mnt_stat.f_syncwrites++;
618			else
619				mp->mnt_stat.f_asyncwrites++;
620		}
621	}
622
623	if ((oldflags & B_ASYNC) == 0) {
624		int rtval = biowait(bp);
625		brelse(bp);
626		return (rtval);
627	}
628
629	return (0);
630}
631
632/*
633 * Delayed write. (Buffer is marked dirty).  Do not bother writing
634 * anything if the buffer is marked invalid.
635 *
636 * Note that since the buffer must be completely valid, we can safely
637 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
638 * biodone() in order to prevent getblk from writing the buffer
639 * out synchronously.
640 */
641void
642bdwrite(struct buf * bp)
643{
644#if 0
645	struct vnode *vp;
646#endif
647
648#if !defined(MAX_PERF)
649	if (BUF_REFCNT(bp) == 0)
650		panic("bdwrite: buffer is not busy");
651#endif
652
653	if (bp->b_flags & B_INVAL) {
654		brelse(bp);
655		return;
656	}
657	bdirty(bp);
658
659	/*
660	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
661	 * true even of NFS now.
662	 */
663	bp->b_flags |= B_CACHE;
664
665	/*
666	 * This bmap keeps the system from needing to do the bmap later,
667	 * perhaps when the system is attempting to do a sync.  Since it
668	 * is likely that the indirect block -- or whatever other datastructure
669	 * that the filesystem needs is still in memory now, it is a good
670	 * thing to do this.  Note also, that if the pageout daemon is
671	 * requesting a sync -- there might not be enough memory to do
672	 * the bmap then...  So, this is important to do.
673	 */
674	if (bp->b_lblkno == bp->b_blkno) {
675		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
676	}
677
678	/*
679	 * Set the *dirty* buffer range based upon the VM system dirty pages.
680	 */
681	vfs_setdirty(bp);
682
683	/*
684	 * We need to do this here to satisfy the vnode_pager and the
685	 * pageout daemon, so that it thinks that the pages have been
686	 * "cleaned".  Note that since the pages are in a delayed write
687	 * buffer -- the VFS layer "will" see that the pages get written
688	 * out on the next sync, or perhaps the cluster will be completed.
689	 */
690	vfs_clean_pages(bp);
691	bqrelse(bp);
692
693	/*
694	 * Wakeup the buffer flushing daemon if we have saturated the
695	 * buffer cache.
696	 */
697
698	bd_wakeup(hidirtybuffers);
699
700	/*
701	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
702	 * due to the softdep code.
703	 */
704#if 0
705	/*
706	 * XXX The soft dependency code is not prepared to
707	 * have I/O done when a bdwrite is requested. For
708	 * now we just let the write be delayed if it is
709	 * requested by the soft dependency code.
710	 */
711	if ((vp = bp->b_vp) &&
712	    ((vp->v_type == VBLK && vp->v_specmountpoint &&
713		  (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) ||
714		 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP))))
715		return;
716#endif
717}
718
719/*
720 *	bdirty:
721 *
722 *	Turn buffer into delayed write request.  We must clear B_READ and
723 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
724 *	itself to properly update it in the dirty/clean lists.  We mark it
725 *	B_DONE to ensure that any asynchronization of the buffer properly
726 *	clears B_DONE ( else a panic will occur later ).
727 *
728 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
729 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
730 *	should only be called if the buffer is known-good.
731 *
732 *	Since the buffer is not on a queue, we do not update the numfreebuffers
733 *	count.
734 *
735 *	Must be called at splbio().
736 *	The buffer must be on QUEUE_NONE.
737 */
738void
739bdirty(bp)
740	struct buf *bp;
741{
742	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
743	bp->b_flags &= ~(B_READ|B_RELBUF);
744
745	if ((bp->b_flags & B_DELWRI) == 0) {
746		bp->b_flags |= B_DONE | B_DELWRI;
747		reassignbuf(bp, bp->b_vp);
748		++numdirtybuffers;
749		bd_wakeup(hidirtybuffers);
750	}
751}
752
753/*
754 *	bundirty:
755 *
756 *	Clear B_DELWRI for buffer.
757 *
758 *	Since the buffer is not on a queue, we do not update the numfreebuffers
759 *	count.
760 *
761 *	Must be called at splbio().
762 *	The buffer must be on QUEUE_NONE.
763 */
764
765void
766bundirty(bp)
767	struct buf *bp;
768{
769	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
770
771	if (bp->b_flags & B_DELWRI) {
772		bp->b_flags &= ~B_DELWRI;
773		reassignbuf(bp, bp->b_vp);
774		--numdirtybuffers;
775		numdirtywakeup();
776	}
777}
778
779/*
780 *	bawrite:
781 *
782 *	Asynchronous write.  Start output on a buffer, but do not wait for
783 *	it to complete.  The buffer is released when the output completes.
784 *
785 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
786 *	B_INVAL buffers.  Not us.
787 */
788void
789bawrite(struct buf * bp)
790{
791	bp->b_flags |= B_ASYNC;
792	(void) VOP_BWRITE(bp->b_vp, bp);
793}
794
795/*
796 *	bowrite:
797 *
798 *	Ordered write.  Start output on a buffer, and flag it so that the
799 *	device will write it in the order it was queued.  The buffer is
800 *	released when the output completes.  bwrite() ( or the VOP routine
801 *	anyway ) is responsible for handling B_INVAL buffers.
802 */
803int
804bowrite(struct buf * bp)
805{
806	bp->b_flags |= B_ORDERED | B_ASYNC;
807	return (VOP_BWRITE(bp->b_vp, bp));
808}
809
810/*
811 *	bwillwrite:
812 *
813 *	Called prior to the locking of any vnodes when we are expecting to
814 *	write.  We do not want to starve the buffer cache with too many
815 *	dirty buffers so we block here.  By blocking prior to the locking
816 *	of any vnodes we attempt to avoid the situation where a locked vnode
817 *	prevents the various system daemons from flushing related buffers.
818 */
819
820void
821bwillwrite(void)
822{
823	int twenty = (hidirtybuffers - lodirtybuffers) / 5;
824
825	if (numdirtybuffers > hidirtybuffers + twenty) {
826		int s;
827
828		s = splbio();
829		while (numdirtybuffers > hidirtybuffers) {
830			bd_wakeup(hidirtybuffers);
831			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
832			tsleep(&needsbuffer, (PRIBIO + 4), "flswai", 0);
833		}
834		splx(s);
835	}
836}
837
838/*
839 *	brelse:
840 *
841 *	Release a busy buffer and, if requested, free its resources.  The
842 *	buffer will be stashed in the appropriate bufqueue[] allowing it
843 *	to be accessed later as a cache entity or reused for other purposes.
844 */
845void
846brelse(struct buf * bp)
847{
848	int s;
849
850	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
851
852#if 0
853	if (bp->b_flags & B_CLUSTER) {
854		relpbuf(bp, NULL);
855		return;
856	}
857#endif
858
859	s = splbio();
860
861	if (bp->b_flags & B_LOCKED)
862		bp->b_flags &= ~B_ERROR;
863
864	if ((bp->b_flags & (B_READ | B_ERROR)) == B_ERROR) {
865		/*
866		 * Failed write, redirty.  Must clear B_ERROR to prevent
867		 * pages from being scrapped.  Note: B_INVAL is ignored
868		 * here but will presumably be dealt with later.
869		 */
870		bp->b_flags &= ~B_ERROR;
871		bdirty(bp);
872	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
873	    (bp->b_bufsize <= 0)) {
874		/*
875		 * Either a failed I/O or we were asked to free or not
876		 * cache the buffer.
877		 */
878		bp->b_flags |= B_INVAL;
879		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
880			(*bioops.io_deallocate)(bp);
881		if (bp->b_flags & B_DELWRI) {
882			--numdirtybuffers;
883			numdirtywakeup();
884		}
885		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
886		if ((bp->b_flags & B_VMIO) == 0) {
887			if (bp->b_bufsize)
888				allocbuf(bp, 0);
889			if (bp->b_vp)
890				brelvp(bp);
891		}
892	}
893
894	/*
895	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
896	 * is called with B_DELWRI set, the underlying pages may wind up
897	 * getting freed causing a previous write (bdwrite()) to get 'lost'
898	 * because pages associated with a B_DELWRI bp are marked clean.
899	 *
900	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
901	 * if B_DELWRI is set.
902	 */
903
904	if (bp->b_flags & B_DELWRI)
905		bp->b_flags &= ~B_RELBUF;
906
907	/*
908	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
909	 * constituted, not even NFS buffers now.  Two flags effect this.  If
910	 * B_INVAL, the struct buf is invalidated but the VM object is kept
911	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
912	 *
913	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
914	 * invalidated.  B_ERROR cannot be set for a failed write unless the
915	 * buffer is also B_INVAL because it hits the re-dirtying code above.
916	 *
917	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
918	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
919	 * the commit state and we cannot afford to lose the buffer.
920	 */
921	if ((bp->b_flags & B_VMIO)
922	    && !(bp->b_vp->v_tag == VT_NFS &&
923		 bp->b_vp->v_type != VBLK &&
924		 (bp->b_flags & B_DELWRI))
925	    ) {
926
927		int i, j, resid;
928		vm_page_t m;
929		off_t foff;
930		vm_pindex_t poff;
931		vm_object_t obj;
932		struct vnode *vp;
933
934		vp = bp->b_vp;
935
936		/*
937		 * Get the base offset and length of the buffer.  Note that
938		 * for block sizes that are less then PAGE_SIZE, the b_data
939		 * base of the buffer does not represent exactly b_offset and
940		 * neither b_offset nor b_size are necessarily page aligned.
941		 * Instead, the starting position of b_offset is:
942		 *
943		 * 	b_data + (b_offset & PAGE_MASK)
944		 *
945		 * block sizes less then DEV_BSIZE (usually 512) are not
946		 * supported due to the page granularity bits (m->valid,
947		 * m->dirty, etc...).
948		 *
949		 * See man buf(9) for more information
950		 */
951
952		resid = bp->b_bufsize;
953		foff = bp->b_offset;
954
955		for (i = 0; i < bp->b_npages; i++) {
956			m = bp->b_pages[i];
957			vm_page_flag_clear(m, PG_ZERO);
958			if (m == bogus_page) {
959
960				obj = (vm_object_t) vp->v_object;
961				poff = OFF_TO_IDX(bp->b_offset);
962
963				for (j = i; j < bp->b_npages; j++) {
964					m = bp->b_pages[j];
965					if (m == bogus_page) {
966						m = vm_page_lookup(obj, poff + j);
967#if !defined(MAX_PERF)
968						if (!m) {
969							panic("brelse: page missing\n");
970						}
971#endif
972						bp->b_pages[j] = m;
973					}
974				}
975
976				if ((bp->b_flags & B_INVAL) == 0) {
977					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
978				}
979			}
980			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
981				int poffset = foff & PAGE_MASK;
982				int presid = resid > (PAGE_SIZE - poffset) ?
983					(PAGE_SIZE - poffset) : resid;
984
985				KASSERT(presid >= 0, ("brelse: extra page"));
986				vm_page_set_invalid(m, poffset, presid);
987			}
988			resid -= PAGE_SIZE - (foff & PAGE_MASK);
989			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
990		}
991
992		if (bp->b_flags & (B_INVAL | B_RELBUF))
993			vfs_vmio_release(bp);
994
995	} else if (bp->b_flags & B_VMIO) {
996
997		if (bp->b_flags & (B_INVAL | B_RELBUF))
998			vfs_vmio_release(bp);
999
1000	}
1001
1002#if !defined(MAX_PERF)
1003	if (bp->b_qindex != QUEUE_NONE)
1004		panic("brelse: free buffer onto another queue???");
1005#endif
1006	if (BUF_REFCNT(bp) > 1) {
1007		/* Temporary panic to verify exclusive locking */
1008		/* This panic goes away when we allow shared refs */
1009		panic("brelse: multiple refs");
1010		/* do not release to free list */
1011		BUF_UNLOCK(bp);
1012		splx(s);
1013		return;
1014	}
1015
1016	/* enqueue */
1017
1018	/* buffers with no memory */
1019	if (bp->b_bufsize == 0) {
1020		bp->b_flags |= B_INVAL;
1021		if (bp->b_kvasize)
1022			bp->b_qindex = QUEUE_EMPTYKVA;
1023		else
1024			bp->b_qindex = QUEUE_EMPTY;
1025		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1026		LIST_REMOVE(bp, b_hash);
1027		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1028		bp->b_dev = NODEV;
1029		kvafreespace += bp->b_kvasize;
1030		if (bp->b_kvasize)
1031			kvaspacewakeup();
1032	/* buffers with junk contents */
1033	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
1034		bp->b_flags |= B_INVAL;
1035		bp->b_qindex = QUEUE_CLEAN;
1036		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1037		LIST_REMOVE(bp, b_hash);
1038		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1039		bp->b_dev = NODEV;
1040
1041	/* buffers that are locked */
1042	} else if (bp->b_flags & B_LOCKED) {
1043		bp->b_qindex = QUEUE_LOCKED;
1044		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1045
1046	/* remaining buffers */
1047	} else {
1048		switch(bp->b_flags & (B_DELWRI|B_AGE)) {
1049		case B_DELWRI | B_AGE:
1050		    bp->b_qindex = QUEUE_DIRTY;
1051		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1052		    break;
1053		case B_DELWRI:
1054		    bp->b_qindex = QUEUE_DIRTY;
1055		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1056		    break;
1057		case B_AGE:
1058		    bp->b_qindex = QUEUE_CLEAN;
1059		    TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1060		    break;
1061		default:
1062		    bp->b_qindex = QUEUE_CLEAN;
1063		    TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1064		    break;
1065		}
1066	}
1067
1068	/*
1069	 * If B_INVAL, clear B_DELWRI.  We've already placed the buffer
1070	 * on the correct queue.
1071	 */
1072	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
1073		bp->b_flags &= ~B_DELWRI;
1074		--numdirtybuffers;
1075		numdirtywakeup();
1076	}
1077
1078	runningbufspace -= bp->b_bufsize;
1079
1080	/*
1081	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1082	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1083	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1084	 * if B_INVAL is set ).
1085	 */
1086
1087	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
1088		bufcountwakeup();
1089
1090	/*
1091	 * Something we can maybe free.
1092	 */
1093
1094	if (bp->b_bufsize)
1095		bufspacewakeup();
1096
1097	/* unlock */
1098	BUF_UNLOCK(bp);
1099	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1100	splx(s);
1101}
1102
1103/*
1104 * Release a buffer back to the appropriate queue but do not try to free
1105 * it.
1106 *
1107 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1108 * biodone() to requeue an async I/O on completion.  It is also used when
1109 * known good buffers need to be requeued but we think we may need the data
1110 * again soon.
1111 */
1112void
1113bqrelse(struct buf * bp)
1114{
1115	int s;
1116
1117	s = splbio();
1118
1119	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1120
1121#if !defined(MAX_PERF)
1122	if (bp->b_qindex != QUEUE_NONE)
1123		panic("bqrelse: free buffer onto another queue???");
1124#endif
1125	if (BUF_REFCNT(bp) > 1) {
1126		/* do not release to free list */
1127		panic("bqrelse: multiple refs");
1128		BUF_UNLOCK(bp);
1129		splx(s);
1130		return;
1131	}
1132	if (bp->b_flags & B_LOCKED) {
1133		bp->b_flags &= ~B_ERROR;
1134		bp->b_qindex = QUEUE_LOCKED;
1135		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
1136		/* buffers with stale but valid contents */
1137	} else if (bp->b_flags & B_DELWRI) {
1138		bp->b_qindex = QUEUE_DIRTY;
1139		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1140	} else {
1141		bp->b_qindex = QUEUE_CLEAN;
1142		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1143	}
1144
1145	runningbufspace -= bp->b_bufsize;
1146
1147	if ((bp->b_flags & B_LOCKED) == 0 &&
1148	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))) {
1149		bufcountwakeup();
1150	}
1151
1152	/*
1153	 * Something we can maybe wakeup
1154	 */
1155	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1156		bufspacewakeup();
1157
1158	/* unlock */
1159	BUF_UNLOCK(bp);
1160	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1161	splx(s);
1162}
1163
1164static void
1165vfs_vmio_release(bp)
1166	struct buf *bp;
1167{
1168	int i, s;
1169	vm_page_t m;
1170
1171	s = splvm();
1172	for (i = 0; i < bp->b_npages; i++) {
1173		m = bp->b_pages[i];
1174		bp->b_pages[i] = NULL;
1175		/*
1176		 * In order to keep page LRU ordering consistent, put
1177		 * everything on the inactive queue.
1178		 */
1179		vm_page_unwire(m, 0);
1180		/*
1181		 * We don't mess with busy pages, it is
1182		 * the responsibility of the process that
1183		 * busied the pages to deal with them.
1184		 */
1185		if ((m->flags & PG_BUSY) || (m->busy != 0))
1186			continue;
1187
1188		if (m->wire_count == 0) {
1189			vm_page_flag_clear(m, PG_ZERO);
1190			/*
1191			 * Might as well free the page if we can and it has
1192			 * no valid data.
1193			 */
1194			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1195				vm_page_busy(m);
1196				vm_page_protect(m, VM_PROT_NONE);
1197				vm_page_free(m);
1198			}
1199		}
1200	}
1201	bufspace -= bp->b_bufsize;
1202	vmiospace -= bp->b_bufsize;
1203	runningbufspace -= bp->b_bufsize;
1204	splx(s);
1205	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1206	if (bp->b_bufsize)
1207		bufspacewakeup();
1208	bp->b_npages = 0;
1209	bp->b_bufsize = 0;
1210	bp->b_flags &= ~B_VMIO;
1211	if (bp->b_vp)
1212		brelvp(bp);
1213}
1214
1215/*
1216 * Check to see if a block is currently memory resident.
1217 */
1218struct buf *
1219gbincore(struct vnode * vp, daddr_t blkno)
1220{
1221	struct buf *bp;
1222	struct bufhashhdr *bh;
1223
1224	bh = bufhash(vp, blkno);
1225	bp = bh->lh_first;
1226
1227	/* Search hash chain */
1228	while (bp != NULL) {
1229		/* hit */
1230		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1231		    (bp->b_flags & B_INVAL) == 0) {
1232			break;
1233		}
1234		bp = bp->b_hash.le_next;
1235	}
1236	return (bp);
1237}
1238
1239/*
1240 *	vfs_bio_awrite:
1241 *
1242 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1243 *	This is much better then the old way of writing only one buffer at
1244 *	a time.  Note that we may not be presented with the buffers in the
1245 *	correct order, so we search for the cluster in both directions.
1246 */
1247int
1248vfs_bio_awrite(struct buf * bp)
1249{
1250	int i;
1251	int j;
1252	daddr_t lblkno = bp->b_lblkno;
1253	struct vnode *vp = bp->b_vp;
1254	int s;
1255	int ncl;
1256	struct buf *bpa;
1257	int nwritten;
1258	int size;
1259	int maxcl;
1260
1261	s = splbio();
1262	/*
1263	 * right now we support clustered writing only to regular files.  If
1264	 * we find a clusterable block we could be in the middle of a cluster
1265	 * rather then at the beginning.
1266	 */
1267	if ((vp->v_type == VREG) &&
1268	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1269	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1270
1271		size = vp->v_mount->mnt_stat.f_iosize;
1272		maxcl = MAXPHYS / size;
1273
1274		for (i = 1; i < maxcl; i++) {
1275			if ((bpa = gbincore(vp, lblkno + i)) &&
1276			    BUF_REFCNT(bpa) == 0 &&
1277			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1278			    (B_DELWRI | B_CLUSTEROK)) &&
1279			    (bpa->b_bufsize == size)) {
1280				if ((bpa->b_blkno == bpa->b_lblkno) ||
1281				    (bpa->b_blkno !=
1282				     bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1283					break;
1284			} else {
1285				break;
1286			}
1287		}
1288		for (j = 1; i + j <= maxcl && j <= lblkno; j++) {
1289			if ((bpa = gbincore(vp, lblkno - j)) &&
1290			    BUF_REFCNT(bpa) == 0 &&
1291			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1292			    (B_DELWRI | B_CLUSTEROK)) &&
1293			    (bpa->b_bufsize == size)) {
1294				if ((bpa->b_blkno == bpa->b_lblkno) ||
1295				    (bpa->b_blkno !=
1296				     bp->b_blkno - ((j * size) >> DEV_BSHIFT)))
1297					break;
1298			} else {
1299				break;
1300			}
1301		}
1302		--j;
1303		ncl = i + j;
1304		/*
1305		 * this is a possible cluster write
1306		 */
1307		if (ncl != 1) {
1308			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1309			splx(s);
1310			return nwritten;
1311		}
1312	}
1313
1314	BUF_LOCK(bp, LK_EXCLUSIVE);
1315	bremfree(bp);
1316	bp->b_flags |= B_ASYNC;
1317
1318	splx(s);
1319	/*
1320	 * default (old) behavior, writing out only one block
1321	 *
1322	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1323	 */
1324	nwritten = bp->b_bufsize;
1325	(void) VOP_BWRITE(bp->b_vp, bp);
1326
1327	return nwritten;
1328}
1329
1330/*
1331 *	getnewbuf:
1332 *
1333 *	Find and initialize a new buffer header, freeing up existing buffers
1334 *	in the bufqueues as necessary.  The new buffer is returned locked.
1335 *
1336 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1337 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1338 *
1339 *	We block if:
1340 *		We have insufficient buffer headers
1341 *		We have insufficient buffer space
1342 *		buffer_map is too fragmented ( space reservation fails )
1343 *		If we have to flush dirty buffers ( but we try to avoid this )
1344 *
1345 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1346 *	Instead we ask the buf daemon to do it for us.  We attempt to
1347 *	avoid piecemeal wakeups of the pageout daemon.
1348 */
1349
1350static struct buf *
1351getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1352{
1353	struct buf *bp;
1354	struct buf *nbp;
1355	struct buf *dbp;
1356	int outofspace;
1357	int nqindex;
1358	int defrag = 0;
1359
1360	++getnewbufcalls;
1361	--getnewbufrestarts;
1362restart:
1363	++getnewbufrestarts;
1364
1365	/*
1366	 * Calculate whether we are out of buffer space.  This state is
1367	 * recalculated on every restart.  If we are out of space, we
1368	 * have to turn off defragmentation.  Setting defrag to -1 when
1369	 * outofspace is positive means "defrag while freeing buffers".
1370	 * The looping conditional will be muffed up if defrag is left
1371	 * positive when outofspace is positive.
1372	 */
1373
1374	dbp = NULL;
1375	outofspace = 0;
1376	if (bufspace >= hibufspace) {
1377		if ((curproc->p_flag & P_BUFEXHAUST) == 0 ||
1378		    bufspace >= maxbufspace) {
1379			outofspace = 1;
1380			if (defrag > 0)
1381				defrag = -1;
1382		}
1383	}
1384
1385	/*
1386	 * defrag state is semi-persistant.  1 means we are flagged for
1387	 * defragging.  -1 means we actually defragged something.
1388	 */
1389	/* nop */
1390
1391	/*
1392	 * Setup for scan.  If we do not have enough free buffers,
1393	 * we setup a degenerate case that immediately fails.  Note
1394	 * that if we are specially marked process, we are allowed to
1395	 * dip into our reserves.
1396	 *
1397	 * Normally we want to find an EMPTYKVA buffer.  That is, a
1398	 * buffer with kva already allocated.  If there are no EMPTYKVA
1399	 * buffers we back up to the truely EMPTY buffers.  When defragging
1400	 * we do not bother backing up since we have to locate buffers with
1401	 * kva to defrag.  If we are out of space we skip both EMPTY and
1402	 * EMPTYKVA and dig right into the CLEAN queue.
1403	 *
1404	 * In this manner we avoid scanning unnecessary buffers.  It is very
1405	 * important for us to do this because the buffer cache is almost
1406	 * constantly out of space or in need of defragmentation.
1407	 */
1408
1409	if ((curproc->p_flag & P_BUFEXHAUST) == 0 &&
1410	    numfreebuffers < lofreebuffers) {
1411		nqindex = QUEUE_CLEAN;
1412		nbp = NULL;
1413	} else {
1414		nqindex = QUEUE_EMPTYKVA;
1415		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1416		if (nbp == NULL) {
1417			if (defrag <= 0) {
1418				nqindex = QUEUE_EMPTY;
1419				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1420			}
1421		}
1422		if (outofspace || nbp == NULL) {
1423			nqindex = QUEUE_CLEAN;
1424			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1425		}
1426	}
1427
1428	/*
1429	 * Run scan, possibly freeing data and/or kva mappings on the fly
1430	 * depending.
1431	 */
1432
1433	while ((bp = nbp) != NULL) {
1434		int qindex = nqindex;
1435
1436		/*
1437		 * Calculate next bp ( we can only use it if we do not block
1438		 * or do other fancy things ).
1439		 */
1440		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1441			switch(qindex) {
1442			case QUEUE_EMPTY:
1443				nqindex = QUEUE_EMPTYKVA;
1444				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1445					break;
1446				/* fall through */
1447			case QUEUE_EMPTYKVA:
1448				nqindex = QUEUE_CLEAN;
1449				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1450					break;
1451				/* fall through */
1452			case QUEUE_CLEAN:
1453				/*
1454				 * nbp is NULL.
1455				 */
1456				break;
1457			}
1458		}
1459
1460		/*
1461		 * Sanity Checks
1462		 */
1463		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1464
1465		/*
1466		 * Note: we no longer distinguish between VMIO and non-VMIO
1467		 * buffers.
1468		 */
1469
1470		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1471
1472		/*
1473		 * If we are defragging and the buffer isn't useful for fixing
1474		 * that problem we continue.  If we are out of space and the
1475		 * buffer isn't useful for fixing that problem we continue.
1476		 */
1477
1478		if (defrag > 0 && bp->b_kvasize == 0)
1479			continue;
1480		if (outofspace > 0 && bp->b_bufsize == 0)
1481			continue;
1482
1483		/*
1484		 * Start freeing the bp.  This is somewhat involved.  nbp
1485		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1486		 */
1487
1488		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1489			panic("getnewbuf: locked buf");
1490		bremfree(bp);
1491
1492		if (qindex == QUEUE_CLEAN) {
1493			if (bp->b_flags & B_VMIO) {
1494				bp->b_flags &= ~B_ASYNC;
1495				vfs_vmio_release(bp);
1496			}
1497			if (bp->b_vp)
1498				brelvp(bp);
1499		}
1500
1501		/*
1502		 * NOTE:  nbp is now entirely invalid.  We can only restart
1503		 * the scan from this point on.
1504		 *
1505		 * Get the rest of the buffer freed up.  b_kva* is still
1506		 * valid after this operation.
1507		 */
1508
1509		if (bp->b_rcred != NOCRED) {
1510			crfree(bp->b_rcred);
1511			bp->b_rcred = NOCRED;
1512		}
1513		if (bp->b_wcred != NOCRED) {
1514			crfree(bp->b_wcred);
1515			bp->b_wcred = NOCRED;
1516		}
1517		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1518			(*bioops.io_deallocate)(bp);
1519		LIST_REMOVE(bp, b_hash);
1520		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1521
1522		if (bp->b_bufsize)
1523			allocbuf(bp, 0);
1524
1525		bp->b_flags = 0;
1526		bp->b_dev = NODEV;
1527		bp->b_vp = NULL;
1528		bp->b_blkno = bp->b_lblkno = 0;
1529		bp->b_offset = NOOFFSET;
1530		bp->b_iodone = 0;
1531		bp->b_error = 0;
1532		bp->b_resid = 0;
1533		bp->b_bcount = 0;
1534		bp->b_npages = 0;
1535		bp->b_dirtyoff = bp->b_dirtyend = 0;
1536
1537		LIST_INIT(&bp->b_dep);
1538
1539		/*
1540		 * Ok, now that we have a free buffer, if we are defragging
1541		 * we have to recover the kvaspace.  If we are out of space
1542		 * we have to free the buffer (which we just did), but we
1543		 * do not have to recover kva space unless we hit a defrag
1544		 * hicup.  Being able to avoid freeing the kva space leads
1545		 * to a significant reduction in overhead.
1546		 */
1547
1548		if (defrag > 0) {
1549			defrag = -1;
1550			bp->b_flags |= B_INVAL;
1551			bfreekva(bp);
1552			brelse(bp);
1553			goto restart;
1554		}
1555
1556		if (outofspace > 0) {
1557			outofspace = -1;
1558			bp->b_flags |= B_INVAL;
1559			if (defrag < 0)
1560				bfreekva(bp);
1561			brelse(bp);
1562			goto restart;
1563		}
1564
1565		/*
1566		 * We are done
1567		 */
1568		break;
1569	}
1570
1571	/*
1572	 * If we exhausted our list, sleep as appropriate.  We may have to
1573	 * wakeup various daemons and write out some dirty buffers.
1574	 *
1575	 * Generally we are sleeping due to insufficient buffer space.
1576	 */
1577
1578	if (bp == NULL) {
1579		int flags;
1580		char *waitmsg;
1581
1582dosleep:
1583		if (defrag > 0) {
1584			flags = VFS_BIO_NEED_KVASPACE;
1585			waitmsg = "nbufkv";
1586		} else if (outofspace > 0) {
1587			waitmsg = "nbufbs";
1588			flags = VFS_BIO_NEED_BUFSPACE;
1589		} else {
1590			waitmsg = "newbuf";
1591			flags = VFS_BIO_NEED_ANY;
1592		}
1593
1594		/* XXX */
1595
1596		(void) speedup_syncer();
1597		needsbuffer |= flags;
1598		while (needsbuffer & flags) {
1599			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1600			    waitmsg, slptimeo))
1601				return (NULL);
1602		}
1603	} else {
1604		/*
1605		 * We finally have a valid bp.  We aren't quite out of the
1606		 * woods, we still have to reserve kva space.
1607		 */
1608		vm_offset_t addr = 0;
1609
1610		maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1611
1612		if (maxsize != bp->b_kvasize) {
1613			bfreekva(bp);
1614
1615			if (vm_map_findspace(buffer_map,
1616				vm_map_min(buffer_map), maxsize, &addr)) {
1617				/*
1618				 * Uh oh.  Buffer map is to fragmented.  Try
1619				 * to defragment.
1620				 */
1621				if (defrag <= 0) {
1622					defrag = 1;
1623					bp->b_flags |= B_INVAL;
1624					brelse(bp);
1625					goto restart;
1626				}
1627				/*
1628				 * Uh oh.  We couldn't seem to defragment
1629				 */
1630				bp = NULL;
1631				goto dosleep;
1632			}
1633		}
1634		if (addr) {
1635			vm_map_insert(buffer_map, NULL, 0,
1636				addr, addr + maxsize,
1637				VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1638
1639			bp->b_kvabase = (caddr_t) addr;
1640			bp->b_kvasize = maxsize;
1641		}
1642		bp->b_data = bp->b_kvabase;
1643	}
1644	return(bp);
1645}
1646
1647/*
1648 *	waitfreebuffers:
1649 *
1650 *	Wait for sufficient free buffers.  Only called from normal processes.
1651 */
1652
1653static void
1654waitfreebuffers(int slpflag, int slptimeo)
1655{
1656	while (numfreebuffers < hifreebuffers) {
1657		if (numfreebuffers >= hifreebuffers)
1658			break;
1659		needsbuffer |= VFS_BIO_NEED_FREE;
1660		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1661			break;
1662	}
1663}
1664
1665/*
1666 *	buf_daemon:
1667 *
1668 *	buffer flushing daemon.  Buffers are normally flushed by the
1669 *	update daemon but if it cannot keep up this process starts to
1670 *	take the load in an attempt to prevent getnewbuf() from blocking.
1671 */
1672
1673static struct proc *bufdaemonproc;
1674static int bd_interval;
1675static int bd_flushto;
1676
1677static struct kproc_desc buf_kp = {
1678	"bufdaemon",
1679	buf_daemon,
1680	&bufdaemonproc
1681};
1682SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1683
1684static void
1685buf_daemon()
1686{
1687	int s;
1688	/*
1689	 * This process is allowed to take the buffer cache to the limit
1690	 */
1691	curproc->p_flag |= P_BUFEXHAUST;
1692	s = splbio();
1693
1694	bd_interval = 5 * hz;	/* dynamically adjusted */
1695	bd_flushto = hidirtybuffers;	/* dynamically adjusted */
1696
1697	while (TRUE) {
1698		bd_request = 0;
1699
1700		/*
1701		 * Do the flush.  Limit the number of buffers we flush in one
1702		 * go.  The failure condition occurs when processes are writing
1703		 * buffers faster then we can dispose of them.  In this case
1704		 * we may be flushing so often that the previous set of flushes
1705		 * have not had time to complete, causing us to run out of
1706		 * physical buffers and block.
1707		 */
1708		{
1709			int runcount = maxbdrun;
1710
1711			while (numdirtybuffers > bd_flushto && runcount) {
1712				--runcount;
1713				if (flushbufqueues() == 0)
1714					break;
1715			}
1716		}
1717
1718		/*
1719		 * If nobody is requesting anything we sleep
1720		 */
1721		if (bd_request == 0)
1722			tsleep(&bd_request, PVM, "psleep", bd_interval);
1723
1724		/*
1725		 * We calculate how much to add or subtract from bd_flushto
1726		 * and bd_interval based on how far off we are from the
1727		 * optimal number of dirty buffers, which is 20% below the
1728		 * hidirtybuffers mark.  We cannot use hidirtybuffers straight
1729		 * because being right on the mark will cause getnewbuf()
1730		 * to oscillate our wakeup.
1731		 *
1732		 * The larger the error in either direction, the more we adjust
1733		 * bd_flushto and bd_interval.  The time interval is adjusted
1734		 * by 2 seconds per whole-buffer-range of error.  This is an
1735		 * exponential convergence algorithm, with large errors
1736		 * producing large changes and small errors producing small
1737		 * changes.
1738		 */
1739
1740		{
1741			int brange = hidirtybuffers - lodirtybuffers;
1742			int middb = hidirtybuffers - brange / 5;
1743			int deltabuf = middb - numdirtybuffers;
1744
1745			bd_flushto += deltabuf / 20;
1746			bd_interval += deltabuf * (2 * hz) / (brange * 1);
1747		}
1748		if (bd_flushto < lodirtybuffers)
1749			bd_flushto = lodirtybuffers;
1750		if (bd_flushto > hidirtybuffers)
1751			bd_flushto = hidirtybuffers;
1752		if (bd_interval < hz / 10)
1753			bd_interval = hz / 10;
1754		if (bd_interval > 5 * hz)
1755			bd_interval = 5 * hz;
1756	}
1757}
1758
1759/*
1760 *	flushbufqueues:
1761 *
1762 *	Try to flush a buffer in the dirty queue.  We must be careful to
1763 *	free up B_INVAL buffers instead of write them, which NFS is
1764 *	particularly sensitive to.
1765 */
1766
1767static int
1768flushbufqueues(void)
1769{
1770	struct buf *bp;
1771	int r = 0;
1772
1773	bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
1774
1775	while (bp) {
1776		KASSERT((bp->b_flags & B_DELWRI), ("unexpected clean buffer %p", bp));
1777		if ((bp->b_flags & B_DELWRI) != 0) {
1778			if (bp->b_flags & B_INVAL) {
1779				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1780					panic("flushbufqueues: locked buf");
1781				bremfree(bp);
1782				brelse(bp);
1783				++r;
1784				break;
1785			}
1786			vfs_bio_awrite(bp);
1787			++r;
1788			break;
1789		}
1790		bp = TAILQ_NEXT(bp, b_freelist);
1791	}
1792	return(r);
1793}
1794
1795/*
1796 * Check to see if a block is currently memory resident.
1797 */
1798struct buf *
1799incore(struct vnode * vp, daddr_t blkno)
1800{
1801	struct buf *bp;
1802
1803	int s = splbio();
1804	bp = gbincore(vp, blkno);
1805	splx(s);
1806	return (bp);
1807}
1808
1809/*
1810 * Returns true if no I/O is needed to access the
1811 * associated VM object.  This is like incore except
1812 * it also hunts around in the VM system for the data.
1813 */
1814
1815int
1816inmem(struct vnode * vp, daddr_t blkno)
1817{
1818	vm_object_t obj;
1819	vm_offset_t toff, tinc, size;
1820	vm_page_t m;
1821	vm_ooffset_t off;
1822
1823	if (incore(vp, blkno))
1824		return 1;
1825	if (vp->v_mount == NULL)
1826		return 0;
1827	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1828		return 0;
1829
1830	obj = vp->v_object;
1831	size = PAGE_SIZE;
1832	if (size > vp->v_mount->mnt_stat.f_iosize)
1833		size = vp->v_mount->mnt_stat.f_iosize;
1834	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1835
1836	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1837		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1838		if (!m)
1839			return 0;
1840		tinc = size;
1841		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1842			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1843		if (vm_page_is_valid(m,
1844		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1845			return 0;
1846	}
1847	return 1;
1848}
1849
1850/*
1851 *	vfs_setdirty:
1852 *
1853 *	Sets the dirty range for a buffer based on the status of the dirty
1854 *	bits in the pages comprising the buffer.
1855 *
1856 *	The range is limited to the size of the buffer.
1857 *
1858 *	This routine is primarily used by NFS, but is generalized for the
1859 *	B_VMIO case.
1860 */
1861static void
1862vfs_setdirty(struct buf *bp)
1863{
1864	int i;
1865	vm_object_t object;
1866
1867	/*
1868	 * Degenerate case - empty buffer
1869	 */
1870
1871	if (bp->b_bufsize == 0)
1872		return;
1873
1874	/*
1875	 * We qualify the scan for modified pages on whether the
1876	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1877	 * is not cleared simply by protecting pages off.
1878	 */
1879
1880	if ((bp->b_flags & B_VMIO) == 0)
1881		return;
1882
1883	object = bp->b_pages[0]->object;
1884
1885	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1886		printf("Warning: object %p writeable but not mightbedirty\n", object);
1887	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1888		printf("Warning: object %p mightbedirty but not writeable\n", object);
1889
1890	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1891		vm_offset_t boffset;
1892		vm_offset_t eoffset;
1893
1894		/*
1895		 * test the pages to see if they have been modified directly
1896		 * by users through the VM system.
1897		 */
1898		for (i = 0; i < bp->b_npages; i++) {
1899			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1900			vm_page_test_dirty(bp->b_pages[i]);
1901		}
1902
1903		/*
1904		 * Calculate the encompassing dirty range, boffset and eoffset,
1905		 * (eoffset - boffset) bytes.
1906		 */
1907
1908		for (i = 0; i < bp->b_npages; i++) {
1909			if (bp->b_pages[i]->dirty)
1910				break;
1911		}
1912		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1913
1914		for (i = bp->b_npages - 1; i >= 0; --i) {
1915			if (bp->b_pages[i]->dirty) {
1916				break;
1917			}
1918		}
1919		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1920
1921		/*
1922		 * Fit it to the buffer.
1923		 */
1924
1925		if (eoffset > bp->b_bcount)
1926			eoffset = bp->b_bcount;
1927
1928		/*
1929		 * If we have a good dirty range, merge with the existing
1930		 * dirty range.
1931		 */
1932
1933		if (boffset < eoffset) {
1934			if (bp->b_dirtyoff > boffset)
1935				bp->b_dirtyoff = boffset;
1936			if (bp->b_dirtyend < eoffset)
1937				bp->b_dirtyend = eoffset;
1938		}
1939	}
1940}
1941
1942/*
1943 *	getblk:
1944 *
1945 *	Get a block given a specified block and offset into a file/device.
1946 *	The buffers B_DONE bit will be cleared on return, making it almost
1947 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
1948 *	return.  The caller should clear B_INVAL prior to initiating a
1949 *	READ.
1950 *
1951 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
1952 *	an existing buffer.
1953 *
1954 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
1955 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
1956 *	and then cleared based on the backing VM.  If the previous buffer is
1957 *	non-0-sized but invalid, B_CACHE will be cleared.
1958 *
1959 *	If getblk() must create a new buffer, the new buffer is returned with
1960 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
1961 *	case it is returned with B_INVAL clear and B_CACHE set based on the
1962 *	backing VM.
1963 *
1964 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
1965 *	B_CACHE bit is clear.
1966 *
1967 *	What this means, basically, is that the caller should use B_CACHE to
1968 *	determine whether the buffer is fully valid or not and should clear
1969 *	B_INVAL prior to issuing a read.  If the caller intends to validate
1970 *	the buffer by loading its data area with something, the caller needs
1971 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
1972 *	the caller should set B_CACHE ( as an optimization ), else the caller
1973 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
1974 *	a write attempt or if it was a successfull read.  If the caller
1975 *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
1976 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
1977 */
1978struct buf *
1979getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1980{
1981	struct buf *bp;
1982	int s;
1983	struct bufhashhdr *bh;
1984
1985#if !defined(MAX_PERF)
1986	if (size > MAXBSIZE)
1987		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1988#endif
1989
1990	s = splbio();
1991loop:
1992	/*
1993	 * Block if we are low on buffers.   Certain processes are allowed
1994	 * to completely exhaust the buffer cache.
1995	 */
1996	if (curproc->p_flag & P_BUFEXHAUST) {
1997		if (numfreebuffers == 0) {
1998			needsbuffer |= VFS_BIO_NEED_ANY;
1999			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
2000			    slptimeo);
2001		}
2002	} else if (numfreebuffers < lofreebuffers) {
2003		waitfreebuffers(slpflag, slptimeo);
2004	}
2005
2006	if ((bp = gbincore(vp, blkno))) {
2007		/*
2008		 * Buffer is in-core.  If the buffer is not busy, it must
2009		 * be on a queue.
2010		 */
2011
2012		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
2013			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
2014			    "getblk", slpflag, slptimeo) == ENOLCK)
2015				goto loop;
2016			splx(s);
2017			return (struct buf *) NULL;
2018		}
2019
2020		/*
2021		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2022		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
2023		 * and for a VMIO buffer B_CACHE is adjusted according to the
2024		 * backing VM cache.
2025		 */
2026		if (bp->b_flags & B_INVAL)
2027			bp->b_flags &= ~B_CACHE;
2028		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2029			bp->b_flags |= B_CACHE;
2030		bremfree(bp);
2031
2032		/*
2033		 * check for size inconsistancies for non-VMIO case.
2034		 */
2035
2036		if (bp->b_bcount != size) {
2037			if ((bp->b_flags & B_VMIO) == 0 ||
2038			    (size > bp->b_kvasize)) {
2039				if (bp->b_flags & B_DELWRI) {
2040					bp->b_flags |= B_NOCACHE;
2041					VOP_BWRITE(bp->b_vp, bp);
2042				} else {
2043					if ((bp->b_flags & B_VMIO) &&
2044					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2045						bp->b_flags |= B_RELBUF;
2046						brelse(bp);
2047					} else {
2048						bp->b_flags |= B_NOCACHE;
2049						VOP_BWRITE(bp->b_vp, bp);
2050					}
2051				}
2052				goto loop;
2053			}
2054		}
2055
2056		/*
2057		 * If the size is inconsistant in the VMIO case, we can resize
2058		 * the buffer.  This might lead to B_CACHE getting set or
2059		 * cleared.  If the size has not changed, B_CACHE remains
2060		 * unchanged from its previous state.
2061		 */
2062
2063		if (bp->b_bcount != size)
2064			allocbuf(bp, size);
2065
2066		KASSERT(bp->b_offset != NOOFFSET,
2067		    ("getblk: no buffer offset"));
2068
2069		/*
2070		 * A buffer with B_DELWRI set and B_CACHE clear must
2071		 * be committed before we can return the buffer in
2072		 * order to prevent the caller from issuing a read
2073		 * ( due to B_CACHE not being set ) and overwriting
2074		 * it.
2075		 *
2076		 * Most callers, including NFS and FFS, need this to
2077		 * operate properly either because they assume they
2078		 * can issue a read if B_CACHE is not set, or because
2079		 * ( for example ) an uncached B_DELWRI might loop due
2080		 * to softupdates re-dirtying the buffer.  In the latter
2081		 * case, B_CACHE is set after the first write completes,
2082		 * preventing further loops.
2083		 */
2084
2085		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2086			VOP_BWRITE(bp->b_vp, bp);
2087			goto loop;
2088		}
2089
2090		splx(s);
2091		bp->b_flags &= ~B_DONE;
2092	} else {
2093		/*
2094		 * Buffer is not in-core, create new buffer.  The buffer
2095		 * returned by getnewbuf() is locked.  Note that the returned
2096		 * buffer is also considered valid (not marked B_INVAL).
2097		 */
2098		int bsize, maxsize, vmio;
2099		off_t offset;
2100
2101		if (vp->v_type == VBLK)
2102			bsize = DEV_BSIZE;
2103		else if (vp->v_mountedhere)
2104			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2105		else if (vp->v_mount)
2106			bsize = vp->v_mount->mnt_stat.f_iosize;
2107		else
2108			bsize = size;
2109
2110		offset = (off_t)blkno * bsize;
2111		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
2112		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2113		maxsize = imax(maxsize, bsize);
2114
2115		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2116			if (slpflag || slptimeo) {
2117				splx(s);
2118				return NULL;
2119			}
2120			goto loop;
2121		}
2122
2123		/*
2124		 * This code is used to make sure that a buffer is not
2125		 * created while the getnewbuf routine is blocked.
2126		 * This can be a problem whether the vnode is locked or not.
2127		 * If the buffer is created out from under us, we have to
2128		 * throw away the one we just created.  There is now window
2129		 * race because we are safely running at splbio() from the
2130		 * point of the duplicate buffer creation through to here,
2131		 * and we've locked the buffer.
2132		 */
2133		if (gbincore(vp, blkno)) {
2134			bp->b_flags |= B_INVAL;
2135			brelse(bp);
2136			goto loop;
2137		}
2138
2139		/*
2140		 * Insert the buffer into the hash, so that it can
2141		 * be found by incore.
2142		 */
2143		bp->b_blkno = bp->b_lblkno = blkno;
2144		bp->b_offset = offset;
2145
2146		bgetvp(vp, bp);
2147		LIST_REMOVE(bp, b_hash);
2148		bh = bufhash(vp, blkno);
2149		LIST_INSERT_HEAD(bh, bp, b_hash);
2150
2151		/*
2152		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2153		 * buffer size starts out as 0, B_CACHE will be set by
2154		 * allocbuf() for the VMIO case prior to it testing the
2155		 * backing store for validity.
2156		 */
2157
2158		if (vmio) {
2159			bp->b_flags |= B_VMIO;
2160#if defined(VFS_BIO_DEBUG)
2161			if (vp->v_type != VREG && vp->v_type != VBLK)
2162				printf("getblk: vmioing file type %d???\n", vp->v_type);
2163#endif
2164		} else {
2165			bp->b_flags &= ~B_VMIO;
2166		}
2167
2168		allocbuf(bp, size);
2169
2170		splx(s);
2171		bp->b_flags &= ~B_DONE;
2172	}
2173	return (bp);
2174}
2175
2176/*
2177 * Get an empty, disassociated buffer of given size.  The buffer is initially
2178 * set to B_INVAL.
2179 */
2180struct buf *
2181geteblk(int size)
2182{
2183	struct buf *bp;
2184	int s;
2185
2186	s = splbio();
2187	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
2188	splx(s);
2189	allocbuf(bp, size);
2190	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2191	return (bp);
2192}
2193
2194
2195/*
2196 * This code constitutes the buffer memory from either anonymous system
2197 * memory (in the case of non-VMIO operations) or from an associated
2198 * VM object (in the case of VMIO operations).  This code is able to
2199 * resize a buffer up or down.
2200 *
2201 * Note that this code is tricky, and has many complications to resolve
2202 * deadlock or inconsistant data situations.  Tread lightly!!!
2203 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2204 * the caller.  Calling this code willy nilly can result in the loss of data.
2205 *
2206 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2207 * B_CACHE for the non-VMIO case.
2208 */
2209
2210int
2211allocbuf(struct buf *bp, int size)
2212{
2213	int newbsize, mbsize;
2214	int i;
2215
2216#if !defined(MAX_PERF)
2217	if (BUF_REFCNT(bp) == 0)
2218		panic("allocbuf: buffer not busy");
2219
2220	if (bp->b_kvasize < size)
2221		panic("allocbuf: buffer too small");
2222#endif
2223
2224	if ((bp->b_flags & B_VMIO) == 0) {
2225		caddr_t origbuf;
2226		int origbufsize;
2227		/*
2228		 * Just get anonymous memory from the kernel.  Don't
2229		 * mess with B_CACHE.
2230		 */
2231		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2232#if !defined(NO_B_MALLOC)
2233		if (bp->b_flags & B_MALLOC)
2234			newbsize = mbsize;
2235		else
2236#endif
2237			newbsize = round_page(size);
2238
2239		if (newbsize < bp->b_bufsize) {
2240#if !defined(NO_B_MALLOC)
2241			/*
2242			 * malloced buffers are not shrunk
2243			 */
2244			if (bp->b_flags & B_MALLOC) {
2245				if (newbsize) {
2246					bp->b_bcount = size;
2247				} else {
2248					free(bp->b_data, M_BIOBUF);
2249					bufspace -= bp->b_bufsize;
2250					bufmallocspace -= bp->b_bufsize;
2251					runningbufspace -= bp->b_bufsize;
2252					if (bp->b_bufsize)
2253						bufspacewakeup();
2254					bp->b_data = bp->b_kvabase;
2255					bp->b_bufsize = 0;
2256					bp->b_bcount = 0;
2257					bp->b_flags &= ~B_MALLOC;
2258				}
2259				return 1;
2260			}
2261#endif
2262			vm_hold_free_pages(
2263			    bp,
2264			    (vm_offset_t) bp->b_data + newbsize,
2265			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2266		} else if (newbsize > bp->b_bufsize) {
2267#if !defined(NO_B_MALLOC)
2268			/*
2269			 * We only use malloced memory on the first allocation.
2270			 * and revert to page-allocated memory when the buffer
2271			 * grows.
2272			 */
2273			if ( (bufmallocspace < maxbufmallocspace) &&
2274				(bp->b_bufsize == 0) &&
2275				(mbsize <= PAGE_SIZE/2)) {
2276
2277				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2278				bp->b_bufsize = mbsize;
2279				bp->b_bcount = size;
2280				bp->b_flags |= B_MALLOC;
2281				bufspace += mbsize;
2282				bufmallocspace += mbsize;
2283				runningbufspace += bp->b_bufsize;
2284				return 1;
2285			}
2286#endif
2287			origbuf = NULL;
2288			origbufsize = 0;
2289#if !defined(NO_B_MALLOC)
2290			/*
2291			 * If the buffer is growing on its other-than-first allocation,
2292			 * then we revert to the page-allocation scheme.
2293			 */
2294			if (bp->b_flags & B_MALLOC) {
2295				origbuf = bp->b_data;
2296				origbufsize = bp->b_bufsize;
2297				bp->b_data = bp->b_kvabase;
2298				bufspace -= bp->b_bufsize;
2299				bufmallocspace -= bp->b_bufsize;
2300				runningbufspace -= bp->b_bufsize;
2301				if (bp->b_bufsize)
2302					bufspacewakeup();
2303				bp->b_bufsize = 0;
2304				bp->b_flags &= ~B_MALLOC;
2305				newbsize = round_page(newbsize);
2306			}
2307#endif
2308			vm_hold_load_pages(
2309			    bp,
2310			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2311			    (vm_offset_t) bp->b_data + newbsize);
2312#if !defined(NO_B_MALLOC)
2313			if (origbuf) {
2314				bcopy(origbuf, bp->b_data, origbufsize);
2315				free(origbuf, M_BIOBUF);
2316			}
2317#endif
2318		}
2319	} else {
2320		vm_page_t m;
2321		int desiredpages;
2322
2323		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2324		desiredpages = (size == 0) ? 0 :
2325			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2326
2327#if !defined(NO_B_MALLOC)
2328		if (bp->b_flags & B_MALLOC)
2329			panic("allocbuf: VMIO buffer can't be malloced");
2330#endif
2331		/*
2332		 * Set B_CACHE initially if buffer is 0 length or will become
2333		 * 0-length.
2334		 */
2335		if (size == 0 || bp->b_bufsize == 0)
2336			bp->b_flags |= B_CACHE;
2337
2338		if (newbsize < bp->b_bufsize) {
2339			/*
2340			 * DEV_BSIZE aligned new buffer size is less then the
2341			 * DEV_BSIZE aligned existing buffer size.  Figure out
2342			 * if we have to remove any pages.
2343			 */
2344			if (desiredpages < bp->b_npages) {
2345				for (i = desiredpages; i < bp->b_npages; i++) {
2346					/*
2347					 * the page is not freed here -- it
2348					 * is the responsibility of
2349					 * vnode_pager_setsize
2350					 */
2351					m = bp->b_pages[i];
2352					KASSERT(m != bogus_page,
2353					    ("allocbuf: bogus page found"));
2354					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2355						;
2356
2357					bp->b_pages[i] = NULL;
2358					vm_page_unwire(m, 0);
2359				}
2360				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2361				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2362				bp->b_npages = desiredpages;
2363			}
2364		} else if (size > bp->b_bcount) {
2365			/*
2366			 * We are growing the buffer, possibly in a
2367			 * byte-granular fashion.
2368			 */
2369			struct vnode *vp;
2370			vm_object_t obj;
2371			vm_offset_t toff;
2372			vm_offset_t tinc;
2373
2374			/*
2375			 * Step 1, bring in the VM pages from the object,
2376			 * allocating them if necessary.  We must clear
2377			 * B_CACHE if these pages are not valid for the
2378			 * range covered by the buffer.
2379			 */
2380
2381			vp = bp->b_vp;
2382			obj = vp->v_object;
2383
2384			while (bp->b_npages < desiredpages) {
2385				vm_page_t m;
2386				vm_pindex_t pi;
2387
2388				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2389				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2390					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
2391					if (m == NULL) {
2392						VM_WAIT;
2393						vm_pageout_deficit += desiredpages - bp->b_npages;
2394					} else {
2395						vm_page_wire(m);
2396						vm_page_wakeup(m);
2397						bp->b_flags &= ~B_CACHE;
2398						bp->b_pages[bp->b_npages] = m;
2399						++bp->b_npages;
2400					}
2401					continue;
2402				}
2403
2404				/*
2405				 * We found a page.  If we have to sleep on it,
2406				 * retry because it might have gotten freed out
2407				 * from under us.
2408				 *
2409				 * We can only test PG_BUSY here.  Blocking on
2410				 * m->busy might lead to a deadlock:
2411				 *
2412				 *  vm_fault->getpages->cluster_read->allocbuf
2413				 *
2414				 */
2415
2416				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2417					continue;
2418
2419				/*
2420				 * We have a good page.  Should we wakeup the
2421				 * page daemon?
2422				 */
2423				if ((curproc != pageproc) &&
2424				    ((m->queue - m->pc) == PQ_CACHE) &&
2425				    ((cnt.v_free_count + cnt.v_cache_count) <
2426					(cnt.v_free_min + cnt.v_cache_min))) {
2427					pagedaemon_wakeup();
2428				}
2429				vm_page_flag_clear(m, PG_ZERO);
2430				vm_page_wire(m);
2431				bp->b_pages[bp->b_npages] = m;
2432				++bp->b_npages;
2433			}
2434
2435			/*
2436			 * Step 2.  We've loaded the pages into the buffer,
2437			 * we have to figure out if we can still have B_CACHE
2438			 * set.  Note that B_CACHE is set according to the
2439			 * byte-granular range ( bcount and size ), new the
2440			 * aligned range ( newbsize ).
2441			 *
2442			 * The VM test is against m->valid, which is DEV_BSIZE
2443			 * aligned.  Needless to say, the validity of the data
2444			 * needs to also be DEV_BSIZE aligned.  Note that this
2445			 * fails with NFS if the server or some other client
2446			 * extends the file's EOF.  If our buffer is resized,
2447			 * B_CACHE may remain set! XXX
2448			 */
2449
2450			toff = bp->b_bcount;
2451			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2452
2453			while ((bp->b_flags & B_CACHE) && toff < size) {
2454				vm_pindex_t pi;
2455
2456				if (tinc > (size - toff))
2457					tinc = size - toff;
2458
2459				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2460				    PAGE_SHIFT;
2461
2462				vfs_buf_test_cache(
2463				    bp,
2464				    bp->b_offset,
2465				    toff,
2466				    tinc,
2467				    bp->b_pages[pi]
2468				);
2469				toff += tinc;
2470				tinc = PAGE_SIZE;
2471			}
2472
2473			/*
2474			 * Step 3, fixup the KVM pmap.  Remember that
2475			 * bp->b_data is relative to bp->b_offset, but
2476			 * bp->b_offset may be offset into the first page.
2477			 */
2478
2479			bp->b_data = (caddr_t)
2480			    trunc_page((vm_offset_t)bp->b_data);
2481			pmap_qenter(
2482			    (vm_offset_t)bp->b_data,
2483			    bp->b_pages,
2484			    bp->b_npages
2485			);
2486			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2487			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2488		}
2489	}
2490	if (bp->b_flags & B_VMIO)
2491		vmiospace += (newbsize - bp->b_bufsize);
2492	bufspace += (newbsize - bp->b_bufsize);
2493	runningbufspace += (newbsize - bp->b_bufsize);
2494	if (newbsize < bp->b_bufsize)
2495		bufspacewakeup();
2496	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2497	bp->b_bcount = size;		/* requested buffer size	*/
2498	return 1;
2499}
2500
2501/*
2502 *	biowait:
2503 *
2504 *	Wait for buffer I/O completion, returning error status.  The buffer
2505 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2506 *	error and cleared.
2507 */
2508int
2509biowait(register struct buf * bp)
2510{
2511	int s;
2512
2513	s = splbio();
2514	while ((bp->b_flags & B_DONE) == 0) {
2515#if defined(NO_SCHEDULE_MODS)
2516		tsleep(bp, PRIBIO, "biowait", 0);
2517#else
2518		if (bp->b_flags & B_READ)
2519			tsleep(bp, PRIBIO, "biord", 0);
2520		else
2521			tsleep(bp, PRIBIO, "biowr", 0);
2522#endif
2523	}
2524	splx(s);
2525	if (bp->b_flags & B_EINTR) {
2526		bp->b_flags &= ~B_EINTR;
2527		return (EINTR);
2528	}
2529	if (bp->b_flags & B_ERROR) {
2530		return (bp->b_error ? bp->b_error : EIO);
2531	} else {
2532		return (0);
2533	}
2534}
2535
2536/*
2537 *	biodone:
2538 *
2539 *	Finish I/O on a buffer, optionally calling a completion function.
2540 *	This is usually called from an interrupt so process blocking is
2541 *	not allowed.
2542 *
2543 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2544 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2545 *	assuming B_INVAL is clear.
2546 *
2547 *	For the VMIO case, we set B_CACHE if the op was a read and no
2548 *	read error occured, or if the op was a write.  B_CACHE is never
2549 *	set if the buffer is invalid or otherwise uncacheable.
2550 *
2551 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2552 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2553 *	in the biodone routine.
2554 */
2555void
2556biodone(register struct buf * bp)
2557{
2558	int s;
2559
2560	s = splbio();
2561
2562	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
2563	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2564
2565	bp->b_flags |= B_DONE;
2566
2567	if (bp->b_flags & B_FREEBUF) {
2568		brelse(bp);
2569		splx(s);
2570		return;
2571	}
2572
2573	if ((bp->b_flags & B_READ) == 0) {
2574		vwakeup(bp);
2575	}
2576
2577	/* call optional completion function if requested */
2578	if (bp->b_flags & B_CALL) {
2579		bp->b_flags &= ~B_CALL;
2580		(*bp->b_iodone) (bp);
2581		splx(s);
2582		return;
2583	}
2584	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2585		(*bioops.io_complete)(bp);
2586
2587	if (bp->b_flags & B_VMIO) {
2588		int i, resid;
2589		vm_ooffset_t foff;
2590		vm_page_t m;
2591		vm_object_t obj;
2592		int iosize;
2593		struct vnode *vp = bp->b_vp;
2594
2595		obj = vp->v_object;
2596
2597#if defined(VFS_BIO_DEBUG)
2598		if (vp->v_usecount == 0) {
2599			panic("biodone: zero vnode ref count");
2600		}
2601
2602		if (vp->v_object == NULL) {
2603			panic("biodone: missing VM object");
2604		}
2605
2606		if ((vp->v_flag & VOBJBUF) == 0) {
2607			panic("biodone: vnode is not setup for merged cache");
2608		}
2609#endif
2610
2611		foff = bp->b_offset;
2612		KASSERT(bp->b_offset != NOOFFSET,
2613		    ("biodone: no buffer offset"));
2614
2615#if !defined(MAX_PERF)
2616		if (!obj) {
2617			panic("biodone: no object");
2618		}
2619#endif
2620#if defined(VFS_BIO_DEBUG)
2621		if (obj->paging_in_progress < bp->b_npages) {
2622			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2623			    obj->paging_in_progress, bp->b_npages);
2624		}
2625#endif
2626
2627		/*
2628		 * Set B_CACHE if the op was a normal read and no error
2629		 * occured.  B_CACHE is set for writes in the b*write()
2630		 * routines.
2631		 */
2632		iosize = bp->b_bcount;
2633		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2634			bp->b_flags |= B_CACHE;
2635		}
2636
2637		for (i = 0; i < bp->b_npages; i++) {
2638			int bogusflag = 0;
2639			m = bp->b_pages[i];
2640			if (m == bogus_page) {
2641				bogusflag = 1;
2642				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2643				if (!m) {
2644#if defined(VFS_BIO_DEBUG)
2645					printf("biodone: page disappeared\n");
2646#endif
2647					vm_object_pip_subtract(obj, 1);
2648					bp->b_flags &= ~B_CACHE;
2649					continue;
2650				}
2651				bp->b_pages[i] = m;
2652				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2653			}
2654#if defined(VFS_BIO_DEBUG)
2655			if (OFF_TO_IDX(foff) != m->pindex) {
2656				printf(
2657"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2658				    (unsigned long)foff, m->pindex);
2659			}
2660#endif
2661			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2662			if (resid > iosize)
2663				resid = iosize;
2664
2665			/*
2666			 * In the write case, the valid and clean bits are
2667			 * already changed correctly ( see bdwrite() ), so we
2668			 * only need to do this here in the read case.
2669			 */
2670			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2671				vfs_page_set_valid(bp, foff, i, m);
2672			}
2673			vm_page_flag_clear(m, PG_ZERO);
2674
2675			/*
2676			 * when debugging new filesystems or buffer I/O methods, this
2677			 * is the most common error that pops up.  if you see this, you
2678			 * have not set the page busy flag correctly!!!
2679			 */
2680			if (m->busy == 0) {
2681#if !defined(MAX_PERF)
2682				printf("biodone: page busy < 0, "
2683				    "pindex: %d, foff: 0x(%x,%x), "
2684				    "resid: %d, index: %d\n",
2685				    (int) m->pindex, (int)(foff >> 32),
2686						(int) foff & 0xffffffff, resid, i);
2687#endif
2688				if (vp->v_type != VBLK)
2689#if !defined(MAX_PERF)
2690					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2691					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2692					    (int) bp->b_lblkno,
2693					    bp->b_flags, bp->b_npages);
2694				else
2695					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2696					    (int) bp->b_lblkno,
2697					    bp->b_flags, bp->b_npages);
2698				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2699				    m->valid, m->dirty, m->wire_count);
2700#endif
2701				panic("biodone: page busy < 0\n");
2702			}
2703			vm_page_io_finish(m);
2704			vm_object_pip_subtract(obj, 1);
2705			foff += resid;
2706			iosize -= resid;
2707		}
2708		if (obj)
2709			vm_object_pip_wakeupn(obj, 0);
2710	}
2711	/*
2712	 * For asynchronous completions, release the buffer now. The brelse
2713	 * will do a wakeup there if necessary - so no need to do a wakeup
2714	 * here in the async case. The sync case always needs to do a wakeup.
2715	 */
2716
2717	if (bp->b_flags & B_ASYNC) {
2718		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2719			brelse(bp);
2720		else
2721			bqrelse(bp);
2722	} else {
2723		wakeup(bp);
2724	}
2725	splx(s);
2726}
2727
2728/*
2729 * This routine is called in lieu of iodone in the case of
2730 * incomplete I/O.  This keeps the busy status for pages
2731 * consistant.
2732 */
2733void
2734vfs_unbusy_pages(struct buf * bp)
2735{
2736	int i;
2737
2738	if (bp->b_flags & B_VMIO) {
2739		struct vnode *vp = bp->b_vp;
2740		vm_object_t obj = vp->v_object;
2741
2742		for (i = 0; i < bp->b_npages; i++) {
2743			vm_page_t m = bp->b_pages[i];
2744
2745			if (m == bogus_page) {
2746				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2747#if !defined(MAX_PERF)
2748				if (!m) {
2749					panic("vfs_unbusy_pages: page missing\n");
2750				}
2751#endif
2752				bp->b_pages[i] = m;
2753				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2754			}
2755			vm_object_pip_subtract(obj, 1);
2756			vm_page_flag_clear(m, PG_ZERO);
2757			vm_page_io_finish(m);
2758		}
2759		vm_object_pip_wakeupn(obj, 0);
2760	}
2761}
2762
2763/*
2764 * vfs_page_set_valid:
2765 *
2766 *	Set the valid bits in a page based on the supplied offset.   The
2767 *	range is restricted to the buffer's size.
2768 *
2769 *	This routine is typically called after a read completes.
2770 */
2771static void
2772vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2773{
2774	vm_ooffset_t soff, eoff;
2775
2776	/*
2777	 * Start and end offsets in buffer.  eoff - soff may not cross a
2778	 * page boundry or cross the end of the buffer.  The end of the
2779	 * buffer, in this case, is our file EOF, not the allocation size
2780	 * of the buffer.
2781	 */
2782	soff = off;
2783	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2784	if (eoff > bp->b_offset + bp->b_bcount)
2785		eoff = bp->b_offset + bp->b_bcount;
2786
2787	/*
2788	 * Set valid range.  This is typically the entire buffer and thus the
2789	 * entire page.
2790	 */
2791	if (eoff > soff) {
2792		vm_page_set_validclean(
2793		    m,
2794		   (vm_offset_t) (soff & PAGE_MASK),
2795		   (vm_offset_t) (eoff - soff)
2796		);
2797	}
2798}
2799
2800/*
2801 * This routine is called before a device strategy routine.
2802 * It is used to tell the VM system that paging I/O is in
2803 * progress, and treat the pages associated with the buffer
2804 * almost as being PG_BUSY.  Also the object paging_in_progress
2805 * flag is handled to make sure that the object doesn't become
2806 * inconsistant.
2807 *
2808 * Since I/O has not been initiated yet, certain buffer flags
2809 * such as B_ERROR or B_INVAL may be in an inconsistant state
2810 * and should be ignored.
2811 */
2812void
2813vfs_busy_pages(struct buf * bp, int clear_modify)
2814{
2815	int i, bogus;
2816
2817	if (bp->b_flags & B_VMIO) {
2818		struct vnode *vp = bp->b_vp;
2819		vm_object_t obj = vp->v_object;
2820		vm_ooffset_t foff;
2821
2822		foff = bp->b_offset;
2823		KASSERT(bp->b_offset != NOOFFSET,
2824		    ("vfs_busy_pages: no buffer offset"));
2825		vfs_setdirty(bp);
2826
2827retry:
2828		for (i = 0; i < bp->b_npages; i++) {
2829			vm_page_t m = bp->b_pages[i];
2830			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2831				goto retry;
2832		}
2833
2834		bogus = 0;
2835		for (i = 0; i < bp->b_npages; i++) {
2836			vm_page_t m = bp->b_pages[i];
2837
2838			vm_page_flag_clear(m, PG_ZERO);
2839			if ((bp->b_flags & B_CLUSTER) == 0) {
2840				vm_object_pip_add(obj, 1);
2841				vm_page_io_start(m);
2842			}
2843
2844			/*
2845			 * When readying a buffer for a read ( i.e
2846			 * clear_modify == 0 ), it is important to do
2847			 * bogus_page replacement for valid pages in
2848			 * partially instantiated buffers.  Partially
2849			 * instantiated buffers can, in turn, occur when
2850			 * reconstituting a buffer from its VM backing store
2851			 * base.  We only have to do this if B_CACHE is
2852			 * clear ( which causes the I/O to occur in the
2853			 * first place ).  The replacement prevents the read
2854			 * I/O from overwriting potentially dirty VM-backed
2855			 * pages.  XXX bogus page replacement is, uh, bogus.
2856			 * It may not work properly with small-block devices.
2857			 * We need to find a better way.
2858			 */
2859
2860			vm_page_protect(m, VM_PROT_NONE);
2861			if (clear_modify)
2862				vfs_page_set_valid(bp, foff, i, m);
2863			else if (m->valid == VM_PAGE_BITS_ALL &&
2864				(bp->b_flags & B_CACHE) == 0) {
2865				bp->b_pages[i] = bogus_page;
2866				bogus++;
2867			}
2868			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2869		}
2870		if (bogus)
2871			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2872	}
2873}
2874
2875/*
2876 * Tell the VM system that the pages associated with this buffer
2877 * are clean.  This is used for delayed writes where the data is
2878 * going to go to disk eventually without additional VM intevention.
2879 *
2880 * Note that while we only really need to clean through to b_bcount, we
2881 * just go ahead and clean through to b_bufsize.
2882 */
2883static void
2884vfs_clean_pages(struct buf * bp)
2885{
2886	int i;
2887
2888	if (bp->b_flags & B_VMIO) {
2889		vm_ooffset_t foff;
2890
2891		foff = bp->b_offset;
2892		KASSERT(bp->b_offset != NOOFFSET,
2893		    ("vfs_clean_pages: no buffer offset"));
2894		for (i = 0; i < bp->b_npages; i++) {
2895			vm_page_t m = bp->b_pages[i];
2896			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2897			vm_ooffset_t eoff = noff;
2898
2899			if (eoff > bp->b_offset + bp->b_bufsize)
2900				eoff = bp->b_offset + bp->b_bufsize;
2901			vfs_page_set_valid(bp, foff, i, m);
2902			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2903			foff = noff;
2904		}
2905	}
2906}
2907
2908/*
2909 *	vfs_bio_set_validclean:
2910 *
2911 *	Set the range within the buffer to valid and clean.  The range is
2912 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
2913 *	itself may be offset from the beginning of the first page.
2914 */
2915
2916void
2917vfs_bio_set_validclean(struct buf *bp, int base, int size)
2918{
2919	if (bp->b_flags & B_VMIO) {
2920		int i;
2921		int n;
2922
2923		/*
2924		 * Fixup base to be relative to beginning of first page.
2925		 * Set initial n to be the maximum number of bytes in the
2926		 * first page that can be validated.
2927		 */
2928
2929		base += (bp->b_offset & PAGE_MASK);
2930		n = PAGE_SIZE - (base & PAGE_MASK);
2931
2932		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
2933			vm_page_t m = bp->b_pages[i];
2934
2935			if (n > size)
2936				n = size;
2937
2938			vm_page_set_validclean(m, base & PAGE_MASK, n);
2939			base += n;
2940			size -= n;
2941			n = PAGE_SIZE;
2942		}
2943	}
2944}
2945
2946/*
2947 *	vfs_bio_clrbuf:
2948 *
2949 *	clear a buffer.  This routine essentially fakes an I/O, so we need
2950 *	to clear B_ERROR and B_INVAL.
2951 *
2952 *	Note that while we only theoretically need to clear through b_bcount,
2953 *	we go ahead and clear through b_bufsize.
2954 */
2955
2956void
2957vfs_bio_clrbuf(struct buf *bp) {
2958	int i, mask = 0;
2959	caddr_t sa, ea;
2960	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2961		bp->b_flags &= ~(B_INVAL|B_ERROR);
2962		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2963		    (bp->b_offset & PAGE_MASK) == 0) {
2964			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2965			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2966			    ((bp->b_pages[0]->valid & mask) != mask)) {
2967				bzero(bp->b_data, bp->b_bufsize);
2968			}
2969			bp->b_pages[0]->valid |= mask;
2970			bp->b_resid = 0;
2971			return;
2972		}
2973		ea = sa = bp->b_data;
2974		for(i=0;i<bp->b_npages;i++,sa=ea) {
2975			int j = ((u_long)sa & PAGE_MASK) / DEV_BSIZE;
2976			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2977			ea = (caddr_t)ulmin((u_long)ea,
2978				(u_long)bp->b_data + bp->b_bufsize);
2979			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2980			if ((bp->b_pages[i]->valid & mask) == mask)
2981				continue;
2982			if ((bp->b_pages[i]->valid & mask) == 0) {
2983				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2984					bzero(sa, ea - sa);
2985				}
2986			} else {
2987				for (; sa < ea; sa += DEV_BSIZE, j++) {
2988					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2989						(bp->b_pages[i]->valid & (1<<j)) == 0)
2990						bzero(sa, DEV_BSIZE);
2991				}
2992			}
2993			bp->b_pages[i]->valid |= mask;
2994			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2995		}
2996		bp->b_resid = 0;
2997	} else {
2998		clrbuf(bp);
2999	}
3000}
3001
3002/*
3003 * vm_hold_load_pages and vm_hold_unload pages get pages into
3004 * a buffers address space.  The pages are anonymous and are
3005 * not associated with a file object.
3006 */
3007void
3008vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3009{
3010	vm_offset_t pg;
3011	vm_page_t p;
3012	int index;
3013
3014	to = round_page(to);
3015	from = round_page(from);
3016	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3017
3018	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3019
3020tryagain:
3021
3022		p = vm_page_alloc(kernel_object,
3023			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3024		    VM_ALLOC_NORMAL);
3025		if (!p) {
3026			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
3027			VM_WAIT;
3028			goto tryagain;
3029		}
3030		vm_page_wire(p);
3031		p->valid = VM_PAGE_BITS_ALL;
3032		vm_page_flag_clear(p, PG_ZERO);
3033		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
3034		bp->b_pages[index] = p;
3035		vm_page_wakeup(p);
3036	}
3037	bp->b_npages = index;
3038}
3039
3040void
3041vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3042{
3043	vm_offset_t pg;
3044	vm_page_t p;
3045	int index, newnpages;
3046
3047	from = round_page(from);
3048	to = round_page(to);
3049	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3050
3051	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3052		p = bp->b_pages[index];
3053		if (p && (index < bp->b_npages)) {
3054#if !defined(MAX_PERF)
3055			if (p->busy) {
3056				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
3057					bp->b_blkno, bp->b_lblkno);
3058			}
3059#endif
3060			bp->b_pages[index] = NULL;
3061			pmap_kremove(pg);
3062			vm_page_busy(p);
3063			vm_page_unwire(p, 0);
3064			vm_page_free(p);
3065		}
3066	}
3067	bp->b_npages = newnpages;
3068}
3069
3070
3071#include "opt_ddb.h"
3072#ifdef DDB
3073#include <ddb/ddb.h>
3074
3075DB_SHOW_COMMAND(buffer, db_show_buffer)
3076{
3077	/* get args */
3078	struct buf *bp = (struct buf *)addr;
3079
3080	if (!have_addr) {
3081		db_printf("usage: show buffer <addr>\n");
3082		return;
3083	}
3084
3085	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3086	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
3087		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
3088		  "b_blkno = %d, b_pblkno = %d\n",
3089		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3090		  major(bp->b_dev), minor(bp->b_dev),
3091		  bp->b_data, bp->b_blkno, bp->b_pblkno);
3092	if (bp->b_npages) {
3093		int i;
3094		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3095		for (i = 0; i < bp->b_npages; i++) {
3096			vm_page_t m;
3097			m = bp->b_pages[i];
3098			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3099			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3100			if ((i + 1) < bp->b_npages)
3101				db_printf(",");
3102		}
3103		db_printf("\n");
3104	}
3105}
3106#endif /* DDB */
3107