vfs_bio.c revision 48333
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $Id: vfs_bio.c,v 1.218 1999/06/28 15:32:10 peter Exp $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#define VMIO
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/sysproto.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/proc.h>
37#include <sys/vnode.h>
38#include <sys/vmmeter.h>
39#include <sys/lock.h>
40#include <miscfs/specfs/specdev.h>
41#include <vm/vm.h>
42#include <vm/vm_param.h>
43#include <vm/vm_prot.h>
44#include <vm/vm_kern.h>
45#include <vm/vm_pageout.h>
46#include <vm/vm_page.h>
47#include <vm/vm_object.h>
48#include <vm/vm_extern.h>
49#include <vm/vm_map.h>
50#include <sys/buf.h>
51#include <sys/mount.h>
52#include <sys/malloc.h>
53#include <sys/resourcevar.h>
54
55static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
56
57struct	bio_ops bioops;		/* I/O operation notification */
58
59struct buf *buf;		/* buffer header pool */
60struct swqueue bswlist;
61
62static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
63		vm_offset_t to);
64static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
65		vm_offset_t to);
66static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
67			       int pageno, vm_page_t m);
68static void vfs_clean_pages(struct buf * bp);
69static void vfs_setdirty(struct buf *bp);
70static void vfs_vmio_release(struct buf *bp);
71static void flushdirtybuffers(int slpflag, int slptimeo);
72static int flushbufqueues(void);
73
74/*
75 * bogus page -- for I/O to/from partially complete buffers
76 * this is a temporary solution to the problem, but it is not
77 * really that bad.  it would be better to split the buffer
78 * for input in the case of buffers partially already in memory,
79 * but the code is intricate enough already.
80 */
81vm_page_t bogus_page;
82int runningbufspace;
83static vm_offset_t bogus_offset;
84
85static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
86	bufmallocspace, maxbufmallocspace, hibufspace;
87static int needsbuffer;
88static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
89static int numfreebuffers, lofreebuffers, hifreebuffers;
90static int kvafreespace;
91
92SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
93	&numdirtybuffers, 0, "");
94SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
95	&lodirtybuffers, 0, "");
96SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
97	&hidirtybuffers, 0, "");
98SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
99	&numfreebuffers, 0, "");
100SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
101	&lofreebuffers, 0, "");
102SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
103	&hifreebuffers, 0, "");
104SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
105	&runningbufspace, 0, "");
106SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
107	&maxbufspace, 0, "");
108SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
109	&hibufspace, 0, "");
110SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
111	&bufspace, 0, "");
112SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
113	&maxvmiobufspace, 0, "");
114SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
115	&vmiospace, 0, "");
116SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
117	&maxbufmallocspace, 0, "");
118SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
119	&bufmallocspace, 0, "");
120SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
121	&kvafreespace, 0, "");
122
123static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
124struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
125char *buf_wmesg = BUF_WMESG;
126
127extern int vm_swap_size;
128
129#define BUF_MAXUSE		24
130
131#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
132#define VFS_BIO_NEED_RESERVED02	0x02	/* unused */
133#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
134#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
135#define VFS_BIO_NEED_KVASPACE	0x10	/* wait for buffer_map space, emerg  */
136
137/*
138 *	kvaspacewakeup:
139 *
140 *	Called when kva space is potential available for recovery or when
141 *	kva space is recovered in the buffer_map.  This function wakes up
142 *	anyone waiting for buffer_map kva space.  Even though the buffer_map
143 *	is larger then maxbufspace, this situation will typically occur
144 *	when the buffer_map gets fragmented.
145 */
146
147static __inline void
148kvaspacewakeup(void)
149{
150	/*
151	 * If someone is waiting for KVA space, wake them up.  Even
152	 * though we haven't freed the kva space yet, the waiting
153	 * process will be able to now.
154	 */
155	if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
156		needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
157		wakeup(&needsbuffer);
158	}
159}
160
161/*
162 *	bufspacewakeup:
163 *
164 *	Called when buffer space is potentially available for recovery or when
165 *	buffer space is recovered.  getnewbuf() will block on this flag when
166 *	it is unable to free sufficient buffer space.  Buffer space becomes
167 *	recoverable when bp's get placed back in the queues.
168 */
169
170static __inline void
171bufspacewakeup(void)
172{
173	/*
174	 * If someone is waiting for BUF space, wake them up.  Even
175	 * though we haven't freed the kva space yet, the waiting
176	 * process will be able to now.
177	 */
178	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
179		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
180		wakeup(&needsbuffer);
181	}
182}
183
184/*
185 *	bufcountwakeup:
186 *
187 *	Called when a buffer has been added to one of the free queues to
188 *	account for the buffer and to wakeup anyone waiting for free buffers.
189 *	This typically occurs when large amounts of metadata are being handled
190 *	by the buffer cache ( else buffer space runs out first, usually ).
191 */
192
193static __inline void
194bufcountwakeup(void)
195{
196	++numfreebuffers;
197	if (needsbuffer) {
198		needsbuffer &= ~VFS_BIO_NEED_ANY;
199		if (numfreebuffers >= hifreebuffers)
200			needsbuffer &= ~VFS_BIO_NEED_FREE;
201		wakeup(&needsbuffer);
202	}
203}
204
205/*
206 *	vfs_buf_test_cache:
207 *
208 *	Called when a buffer is extended.  This function clears the B_CACHE
209 *	bit if the newly extended portion of the buffer does not contain
210 *	valid data.
211 */
212static __inline__
213void
214vfs_buf_test_cache(struct buf *bp,
215		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
216		  vm_page_t m)
217{
218	if (bp->b_flags & B_CACHE) {
219		int base = (foff + off) & PAGE_MASK;
220		if (vm_page_is_valid(m, base, size) == 0)
221			bp->b_flags &= ~B_CACHE;
222	}
223}
224
225
226/*
227 * Initialize buffer headers and related structures.
228 */
229void
230bufinit()
231{
232	struct buf *bp;
233	int i;
234
235	TAILQ_INIT(&bswlist);
236	LIST_INIT(&invalhash);
237	simple_lock_init(&buftimelock);
238
239	/* first, make a null hash table */
240	for (i = 0; i < BUFHSZ; i++)
241		LIST_INIT(&bufhashtbl[i]);
242
243	/* next, make a null set of free lists */
244	for (i = 0; i < BUFFER_QUEUES; i++)
245		TAILQ_INIT(&bufqueues[i]);
246
247	/* finally, initialize each buffer header and stick on empty q */
248	for (i = 0; i < nbuf; i++) {
249		bp = &buf[i];
250		bzero(bp, sizeof *bp);
251		bp->b_flags = B_INVAL;	/* we're just an empty header */
252		bp->b_dev = NODEV;
253		bp->b_rcred = NOCRED;
254		bp->b_wcred = NOCRED;
255		bp->b_qindex = QUEUE_EMPTY;
256		bp->b_xflags = 0;
257		LIST_INIT(&bp->b_dep);
258		BUF_LOCKINIT(bp);
259		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
260		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
261	}
262
263	/*
264	 * maxbufspace is currently calculated to support all filesystem
265	 * blocks to be 8K.  If you happen to use a 16K filesystem, the size
266	 * of the buffer cache is still the same as it would be for 8K
267	 * filesystems.  This keeps the size of the buffer cache "in check"
268	 * for big block filesystems.
269	 *
270	 * maxbufspace is calculated as around 50% of the KVA available in
271	 * the buffer_map ( DFLTSIZE vs BKVASIZE ), I presume to reduce the
272	 * effect of fragmentation.
273	 */
274	maxbufspace = (nbuf + 8) * DFLTBSIZE;
275	if ((hibufspace = maxbufspace - MAXBSIZE * 5) <= MAXBSIZE)
276		hibufspace = 3 * maxbufspace / 4;
277/*
278 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
279 */
280	maxvmiobufspace = 2 * hibufspace / 3;
281/*
282 * Limit the amount of malloc memory since it is wired permanently into
283 * the kernel space.  Even though this is accounted for in the buffer
284 * allocation, we don't want the malloced region to grow uncontrolled.
285 * The malloc scheme improves memory utilization significantly on average
286 * (small) directories.
287 */
288	maxbufmallocspace = hibufspace / 20;
289
290/*
291 * Reduce the chance of a deadlock occuring by limiting the number
292 * of delayed-write dirty buffers we allow to stack up.
293 */
294	lodirtybuffers = nbuf / 16 + 10;
295	hidirtybuffers = nbuf / 8 + 20;
296	numdirtybuffers = 0;
297
298/*
299 * Try to keep the number of free buffers in the specified range,
300 * and give the syncer access to an emergency reserve.
301 */
302	lofreebuffers = nbuf / 18 + 5;
303	hifreebuffers = 2 * lofreebuffers;
304	numfreebuffers = nbuf;
305
306	kvafreespace = 0;
307
308	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
309	bogus_page = vm_page_alloc(kernel_object,
310			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
311			VM_ALLOC_NORMAL);
312
313}
314
315/*
316 * Free the kva allocation for a buffer
317 * Must be called only at splbio or higher,
318 *  as this is the only locking for buffer_map.
319 */
320static void
321bfreekva(struct buf * bp)
322{
323	if (bp->b_kvasize) {
324		vm_map_delete(buffer_map,
325		    (vm_offset_t) bp->b_kvabase,
326		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
327		);
328		bp->b_kvasize = 0;
329		kvaspacewakeup();
330	}
331}
332
333/*
334 *	bremfree:
335 *
336 *	Remove the buffer from the appropriate free list.
337 */
338void
339bremfree(struct buf * bp)
340{
341	int s = splbio();
342	int old_qindex = bp->b_qindex;
343
344	if (bp->b_qindex != QUEUE_NONE) {
345		if (bp->b_qindex == QUEUE_EMPTY) {
346			kvafreespace -= bp->b_kvasize;
347		}
348		if (BUF_REFCNT(bp) == 1)
349			TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
350		else if (BUF_REFCNT(bp) == 0)
351			panic("bremfree: not locked");
352		else
353			/* Temporary panic to verify exclusive locking */
354			/* This panic goes away when we allow shared refs */
355			panic("bremfree: multiple refs");
356		bp->b_qindex = QUEUE_NONE;
357		runningbufspace += bp->b_bufsize;
358	} else {
359#if !defined(MAX_PERF)
360		panic("bremfree: removing a buffer when not on a queue");
361#endif
362	}
363
364	/*
365	 * Fixup numfreebuffers count.  If the buffer is invalid or not
366	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
367	 * the buffer was free and we must decrement numfreebuffers.
368	 */
369	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
370		switch(old_qindex) {
371		case QUEUE_EMPTY:
372		case QUEUE_LRU:
373		case QUEUE_AGE:
374			--numfreebuffers;
375			break;
376		default:
377			break;
378		}
379	}
380	splx(s);
381}
382
383
384/*
385 * Get a buffer with the specified data.  Look in the cache first.  We
386 * must clear B_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
387 * is set, the buffer is valid and we do not have to do anything ( see
388 * getblk() ).
389 */
390int
391bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
392    struct buf ** bpp)
393{
394	struct buf *bp;
395
396	bp = getblk(vp, blkno, size, 0, 0);
397	*bpp = bp;
398
399	/* if not found in cache, do some I/O */
400	if ((bp->b_flags & B_CACHE) == 0) {
401		if (curproc != NULL)
402			curproc->p_stats->p_ru.ru_inblock++;
403		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
404		bp->b_flags |= B_READ;
405		bp->b_flags &= ~(B_ERROR | B_INVAL);
406		if (bp->b_rcred == NOCRED) {
407			if (cred != NOCRED)
408				crhold(cred);
409			bp->b_rcred = cred;
410		}
411		vfs_busy_pages(bp, 0);
412		VOP_STRATEGY(vp, bp);
413		return (biowait(bp));
414	}
415	return (0);
416}
417
418/*
419 * Operates like bread, but also starts asynchronous I/O on
420 * read-ahead blocks.  We must clear B_ERROR and B_INVAL prior
421 * to initiating I/O . If B_CACHE is set, the buffer is valid
422 * and we do not have to do anything.
423 */
424int
425breadn(struct vnode * vp, daddr_t blkno, int size,
426    daddr_t * rablkno, int *rabsize,
427    int cnt, struct ucred * cred, struct buf ** bpp)
428{
429	struct buf *bp, *rabp;
430	int i;
431	int rv = 0, readwait = 0;
432
433	*bpp = bp = getblk(vp, blkno, size, 0, 0);
434
435	/* if not found in cache, do some I/O */
436	if ((bp->b_flags & B_CACHE) == 0) {
437		if (curproc != NULL)
438			curproc->p_stats->p_ru.ru_inblock++;
439		bp->b_flags |= B_READ;
440		bp->b_flags &= ~(B_ERROR | B_INVAL);
441		if (bp->b_rcred == NOCRED) {
442			if (cred != NOCRED)
443				crhold(cred);
444			bp->b_rcred = cred;
445		}
446		vfs_busy_pages(bp, 0);
447		VOP_STRATEGY(vp, bp);
448		++readwait;
449	}
450
451	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
452		if (inmem(vp, *rablkno))
453			continue;
454		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
455
456		if ((rabp->b_flags & B_CACHE) == 0) {
457			if (curproc != NULL)
458				curproc->p_stats->p_ru.ru_inblock++;
459			rabp->b_flags |= B_READ | B_ASYNC;
460			rabp->b_flags &= ~(B_ERROR | B_INVAL);
461			if (rabp->b_rcred == NOCRED) {
462				if (cred != NOCRED)
463					crhold(cred);
464				rabp->b_rcred = cred;
465			}
466			vfs_busy_pages(rabp, 0);
467			BUF_KERNPROC(rabp);
468			VOP_STRATEGY(vp, rabp);
469		} else {
470			brelse(rabp);
471		}
472	}
473
474	if (readwait) {
475		rv = biowait(bp);
476	}
477	return (rv);
478}
479
480/*
481 * Write, release buffer on completion.  (Done by iodone
482 * if async).  Do not bother writing anything if the buffer
483 * is invalid.
484 *
485 * Note that we set B_CACHE here, indicating that buffer is
486 * fully valid and thus cacheable.  This is true even of NFS
487 * now so we set it generally.  This could be set either here
488 * or in biodone() since the I/O is synchronous.  We put it
489 * here.
490 */
491int
492bwrite(struct buf * bp)
493{
494	int oldflags, s;
495	struct vnode *vp;
496	struct mount *mp;
497
498	if (bp->b_flags & B_INVAL) {
499		brelse(bp);
500		return (0);
501	}
502
503	oldflags = bp->b_flags;
504
505#if !defined(MAX_PERF)
506	if (BUF_REFCNT(bp) == 0)
507		panic("bwrite: buffer is not busy???");
508#endif
509	s = splbio();
510	bundirty(bp);
511
512	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
513	bp->b_flags |= B_WRITEINPROG | B_CACHE;
514
515	bp->b_vp->v_numoutput++;
516	vfs_busy_pages(bp, 1);
517	if (curproc != NULL)
518		curproc->p_stats->p_ru.ru_oublock++;
519	splx(s);
520	if (oldflags & B_ASYNC)
521		BUF_KERNPROC(bp);
522	VOP_STRATEGY(bp->b_vp, bp);
523
524	/*
525	 * Collect statistics on synchronous and asynchronous writes.
526	 * Writes to block devices are charged to their associated
527	 * filesystem (if any).
528	 */
529	if ((vp = bp->b_vp) != NULL) {
530		if (vp->v_type == VBLK)
531			mp = vp->v_specmountpoint;
532		else
533			mp = vp->v_mount;
534		if (mp != NULL) {
535			if ((oldflags & B_ASYNC) == 0)
536				mp->mnt_stat.f_syncwrites++;
537			else
538				mp->mnt_stat.f_asyncwrites++;
539		}
540	}
541
542	if ((oldflags & B_ASYNC) == 0) {
543		int rtval = biowait(bp);
544		brelse(bp);
545		return (rtval);
546	}
547
548	return (0);
549}
550
551/*
552 * Delayed write. (Buffer is marked dirty).  Do not bother writing
553 * anything if the buffer is marked invalid.
554 *
555 * Note that since the buffer must be completely valid, we can safely
556 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
557 * biodone() in order to prevent getblk from writing the buffer
558 * out synchronously.
559 */
560void
561bdwrite(struct buf * bp)
562{
563	struct vnode *vp;
564
565#if !defined(MAX_PERF)
566	if (BUF_REFCNT(bp) == 0)
567		panic("bdwrite: buffer is not busy");
568#endif
569
570	if (bp->b_flags & B_INVAL) {
571		brelse(bp);
572		return;
573	}
574	bdirty(bp);
575
576	/*
577	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
578	 * true even of NFS now.
579	 */
580	bp->b_flags |= B_CACHE;
581
582	/*
583	 * This bmap keeps the system from needing to do the bmap later,
584	 * perhaps when the system is attempting to do a sync.  Since it
585	 * is likely that the indirect block -- or whatever other datastructure
586	 * that the filesystem needs is still in memory now, it is a good
587	 * thing to do this.  Note also, that if the pageout daemon is
588	 * requesting a sync -- there might not be enough memory to do
589	 * the bmap then...  So, this is important to do.
590	 */
591	if (bp->b_lblkno == bp->b_blkno) {
592		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
593	}
594
595	/*
596	 * Set the *dirty* buffer range based upon the VM system dirty pages.
597	 */
598	vfs_setdirty(bp);
599
600	/*
601	 * We need to do this here to satisfy the vnode_pager and the
602	 * pageout daemon, so that it thinks that the pages have been
603	 * "cleaned".  Note that since the pages are in a delayed write
604	 * buffer -- the VFS layer "will" see that the pages get written
605	 * out on the next sync, or perhaps the cluster will be completed.
606	 */
607	vfs_clean_pages(bp);
608	bqrelse(bp);
609
610	/*
611	 * XXX The soft dependency code is not prepared to
612	 * have I/O done when a bdwrite is requested. For
613	 * now we just let the write be delayed if it is
614	 * requested by the soft dependency code.
615	 */
616	if ((vp = bp->b_vp) &&
617	    ((vp->v_type == VBLK && vp->v_specmountpoint &&
618		  (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) ||
619		 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP))))
620		return;
621
622	if (numdirtybuffers >= hidirtybuffers)
623		flushdirtybuffers(0, 0);
624}
625
626/*
627 *	bdirty:
628 *
629 *	Turn buffer into delayed write request.  We must clear B_READ and
630 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
631 *	itself to properly update it in the dirty/clean lists.  We mark it
632 *	B_DONE to ensure that any asynchronization of the buffer properly
633 *	clears B_DONE ( else a panic will occur later ).
634 *
635 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
636 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
637 *	should only be called if the buffer is known-good.
638 *
639 *	Since the buffer is not on a queue, we do not update the numfreebuffers
640 *	count.
641 *
642 *	Must be called at splbio().
643 *	The buffer must be on QUEUE_NONE.
644 */
645void
646bdirty(bp)
647	struct buf *bp;
648{
649	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
650	bp->b_flags &= ~(B_READ|B_RELBUF);
651
652	if ((bp->b_flags & B_DELWRI) == 0) {
653		bp->b_flags |= B_DONE | B_DELWRI;
654		reassignbuf(bp, bp->b_vp);
655		++numdirtybuffers;
656	}
657}
658
659/*
660 *	bundirty:
661 *
662 *	Clear B_DELWRI for buffer.
663 *
664 *	Since the buffer is not on a queue, we do not update the numfreebuffers
665 *	count.
666 *
667 *	Must be called at splbio().
668 *	The buffer must be on QUEUE_NONE.
669 */
670
671void
672bundirty(bp)
673	struct buf *bp;
674{
675	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
676
677	if (bp->b_flags & B_DELWRI) {
678		bp->b_flags &= ~B_DELWRI;
679		reassignbuf(bp, bp->b_vp);
680		--numdirtybuffers;
681	}
682}
683
684/*
685 *	bawrite:
686 *
687 *	Asynchronous write.  Start output on a buffer, but do not wait for
688 *	it to complete.  The buffer is released when the output completes.
689 *
690 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
691 *	B_INVAL buffers.  Not us.
692 */
693void
694bawrite(struct buf * bp)
695{
696	bp->b_flags |= B_ASYNC;
697	(void) VOP_BWRITE(bp->b_vp, bp);
698}
699
700/*
701 *	bowrite:
702 *
703 *	Ordered write.  Start output on a buffer, and flag it so that the
704 *	device will write it in the order it was queued.  The buffer is
705 *	released when the output completes.  bwrite() ( or the VOP routine
706 *	anyway ) is responsible for handling B_INVAL buffers.
707 */
708int
709bowrite(struct buf * bp)
710{
711	bp->b_flags |= B_ORDERED | B_ASYNC;
712	return (VOP_BWRITE(bp->b_vp, bp));
713}
714
715/*
716 *	brelse:
717 *
718 *	Release a busy buffer and, if requested, free its resources.  The
719 *	buffer will be stashed in the appropriate bufqueue[] allowing it
720 *	to be accessed later as a cache entity or reused for other purposes.
721 */
722void
723brelse(struct buf * bp)
724{
725	int s;
726
727	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
728
729#if 0
730	if (bp->b_flags & B_CLUSTER) {
731		relpbuf(bp, NULL);
732		return;
733	}
734#endif
735
736	s = splbio();
737
738	if (bp->b_flags & B_LOCKED)
739		bp->b_flags &= ~B_ERROR;
740
741	if ((bp->b_flags & (B_READ | B_ERROR)) == B_ERROR) {
742		/*
743		 * Failed write, redirty.  Must clear B_ERROR to prevent
744		 * pages from being scrapped.  Note: B_INVAL is ignored
745		 * here but will presumably be dealt with later.
746		 */
747		bp->b_flags &= ~B_ERROR;
748		bdirty(bp);
749	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
750	    (bp->b_bufsize <= 0)) {
751		/*
752		 * Either a failed I/O or we were asked to free or not
753		 * cache the buffer.
754		 */
755		bp->b_flags |= B_INVAL;
756		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
757			(*bioops.io_deallocate)(bp);
758		if (bp->b_flags & B_DELWRI)
759			--numdirtybuffers;
760		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
761		if ((bp->b_flags & B_VMIO) == 0) {
762			if (bp->b_bufsize)
763				allocbuf(bp, 0);
764			if (bp->b_vp)
765				brelvp(bp);
766		}
767	}
768
769	/*
770	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
771	 * is called with B_DELWRI set, the underlying pages may wind up
772	 * getting freed causing a previous write (bdwrite()) to get 'lost'
773	 * because pages associated with a B_DELWRI bp are marked clean.
774	 *
775	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
776	 * if B_DELWRI is set.
777	 */
778
779	if (bp->b_flags & B_DELWRI)
780		bp->b_flags &= ~B_RELBUF;
781
782	/*
783	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
784	 * constituted, not even NFS buffers now.  Two flags effect this.  If
785	 * B_INVAL, the struct buf is invalidated but the VM object is kept
786	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
787	 *
788	 * If B_ERROR or B_NOCACHE is set, pages in the VM object will be
789	 * invalidated.  B_ERROR cannot be set for a failed write unless the
790	 * buffer is also B_INVAL because it hits the re-dirtying code above.
791	 *
792	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
793	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
794	 * the commit state and we cannot afford to lose the buffer.
795	 */
796	if ((bp->b_flags & B_VMIO)
797	    && !(bp->b_vp->v_tag == VT_NFS &&
798		 bp->b_vp->v_type != VBLK &&
799		 (bp->b_flags & B_DELWRI))
800	    ) {
801
802		int i, j, resid;
803		vm_page_t m;
804		off_t foff;
805		vm_pindex_t poff;
806		vm_object_t obj;
807		struct vnode *vp;
808
809		vp = bp->b_vp;
810
811		/*
812		 * Get the base offset and length of the buffer.  Note that
813		 * for block sizes that are less then PAGE_SIZE, the b_data
814		 * base of the buffer does not represent exactly b_offset and
815		 * neither b_offset nor b_size are necessarily page aligned.
816		 * Instead, the starting position of b_offset is:
817		 *
818		 * 	b_data + (b_offset & PAGE_MASK)
819		 *
820		 * block sizes less then DEV_BSIZE (usually 512) are not
821		 * supported due to the page granularity bits (m->valid,
822		 * m->dirty, etc...).
823		 *
824		 * See man buf(9) for more information
825		 */
826
827		resid = bp->b_bufsize;
828		foff = bp->b_offset;
829
830		for (i = 0; i < bp->b_npages; i++) {
831			m = bp->b_pages[i];
832			vm_page_flag_clear(m, PG_ZERO);
833			if (m == bogus_page) {
834
835				obj = (vm_object_t) vp->v_object;
836				poff = OFF_TO_IDX(bp->b_offset);
837
838				for (j = i; j < bp->b_npages; j++) {
839					m = bp->b_pages[j];
840					if (m == bogus_page) {
841						m = vm_page_lookup(obj, poff + j);
842#if !defined(MAX_PERF)
843						if (!m) {
844							panic("brelse: page missing\n");
845						}
846#endif
847						bp->b_pages[j] = m;
848					}
849				}
850
851				if ((bp->b_flags & B_INVAL) == 0) {
852					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
853				}
854			}
855			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
856				int poffset = foff & PAGE_MASK;
857				int presid = resid > (PAGE_SIZE - poffset) ?
858					(PAGE_SIZE - poffset) : resid;
859
860				KASSERT(presid >= 0, ("brelse: extra page"));
861				vm_page_set_invalid(m, poffset, presid);
862			}
863			resid -= PAGE_SIZE - (foff & PAGE_MASK);
864			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
865		}
866
867		if (bp->b_flags & (B_INVAL | B_RELBUF))
868			vfs_vmio_release(bp);
869
870	} else if (bp->b_flags & B_VMIO) {
871
872		if (bp->b_flags & (B_INVAL | B_RELBUF))
873			vfs_vmio_release(bp);
874
875	}
876
877#if !defined(MAX_PERF)
878	if (bp->b_qindex != QUEUE_NONE)
879		panic("brelse: free buffer onto another queue???");
880#endif
881	if (BUF_REFCNT(bp) > 1) {
882		/* Temporary panic to verify exclusive locking */
883		/* This panic goes away when we allow shared refs */
884		panic("brelse: multiple refs");
885		/* do not release to free list */
886		BUF_UNLOCK(bp);
887		splx(s);
888		return;
889	}
890
891	/* enqueue */
892
893	/* buffers with no memory */
894	if (bp->b_bufsize == 0) {
895		bp->b_flags |= B_INVAL;
896		bp->b_qindex = QUEUE_EMPTY;
897		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
898		LIST_REMOVE(bp, b_hash);
899		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
900		bp->b_dev = NODEV;
901		kvafreespace += bp->b_kvasize;
902		if (bp->b_kvasize)
903			kvaspacewakeup();
904	/* buffers with junk contents */
905	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
906		bp->b_flags |= B_INVAL;
907		bp->b_qindex = QUEUE_AGE;
908		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
909		LIST_REMOVE(bp, b_hash);
910		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
911		bp->b_dev = NODEV;
912
913	/* buffers that are locked */
914	} else if (bp->b_flags & B_LOCKED) {
915		bp->b_qindex = QUEUE_LOCKED;
916		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
917
918	/* buffers with stale but valid contents */
919	} else if (bp->b_flags & B_AGE) {
920		bp->b_qindex = QUEUE_AGE;
921		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
922
923	/* buffers with valid and quite potentially reuseable contents */
924	} else {
925		bp->b_qindex = QUEUE_LRU;
926		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
927	}
928
929	/*
930	 * If B_INVAL, clear B_DELWRI.
931	 */
932	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
933		bp->b_flags &= ~B_DELWRI;
934		--numdirtybuffers;
935	}
936
937	runningbufspace -= bp->b_bufsize;
938
939	/*
940	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
941	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
942	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
943	 * if B_INVAL is set ).
944	 */
945
946	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
947		bufcountwakeup();
948
949	/*
950	 * Something we can maybe free.
951	 */
952
953	if (bp->b_bufsize)
954		bufspacewakeup();
955
956	/* unlock */
957	BUF_UNLOCK(bp);
958	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
959	splx(s);
960}
961
962/*
963 * Release a buffer back to the appropriate queue but do not try to free
964 * it.
965 *
966 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
967 * biodone() to requeue an async I/O on completion.  It is also used when
968 * known good buffers need to be requeued but we think we may need the data
969 * again soon.
970 */
971void
972bqrelse(struct buf * bp)
973{
974	int s;
975
976	s = splbio();
977
978	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
979
980#if !defined(MAX_PERF)
981	if (bp->b_qindex != QUEUE_NONE)
982		panic("bqrelse: free buffer onto another queue???");
983#endif
984	if (BUF_REFCNT(bp) > 1) {
985		/* do not release to free list */
986		panic("bqrelse: multiple refs");
987		BUF_UNLOCK(bp);
988		splx(s);
989		return;
990	}
991	if (bp->b_flags & B_LOCKED) {
992		bp->b_flags &= ~B_ERROR;
993		bp->b_qindex = QUEUE_LOCKED;
994		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
995		/* buffers with stale but valid contents */
996	} else {
997		bp->b_qindex = QUEUE_LRU;
998		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
999	}
1000
1001	runningbufspace -= bp->b_bufsize;
1002
1003	if ((bp->b_flags & B_LOCKED) == 0 &&
1004	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1005	) {
1006		bufcountwakeup();
1007	}
1008
1009	/*
1010	 * Something we can maybe wakeup
1011	 */
1012	if (bp->b_bufsize)
1013		bufspacewakeup();
1014
1015	/* unlock */
1016	BUF_UNLOCK(bp);
1017	bp->b_flags &= ~(B_ORDERED | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1018	splx(s);
1019}
1020
1021static void
1022vfs_vmio_release(bp)
1023	struct buf *bp;
1024{
1025	int i, s;
1026	vm_page_t m;
1027
1028	s = splvm();
1029	for (i = 0; i < bp->b_npages; i++) {
1030		m = bp->b_pages[i];
1031		bp->b_pages[i] = NULL;
1032		/*
1033		 * In order to keep page LRU ordering consistent, put
1034		 * everything on the inactive queue.
1035		 */
1036		vm_page_unwire(m, 0);
1037		/*
1038		 * We don't mess with busy pages, it is
1039		 * the responsibility of the process that
1040		 * busied the pages to deal with them.
1041		 */
1042		if ((m->flags & PG_BUSY) || (m->busy != 0))
1043			continue;
1044
1045		if (m->wire_count == 0) {
1046			vm_page_flag_clear(m, PG_ZERO);
1047			/*
1048			 * Might as well free the page if we can and it has
1049			 * no valid data.
1050			 */
1051			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
1052				vm_page_busy(m);
1053				vm_page_protect(m, VM_PROT_NONE);
1054				vm_page_free(m);
1055			}
1056		}
1057	}
1058	bufspace -= bp->b_bufsize;
1059	vmiospace -= bp->b_bufsize;
1060	runningbufspace -= bp->b_bufsize;
1061	splx(s);
1062	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1063	if (bp->b_bufsize)
1064		bufspacewakeup();
1065	bp->b_npages = 0;
1066	bp->b_bufsize = 0;
1067	bp->b_flags &= ~B_VMIO;
1068	if (bp->b_vp)
1069		brelvp(bp);
1070}
1071
1072/*
1073 * Check to see if a block is currently memory resident.
1074 */
1075struct buf *
1076gbincore(struct vnode * vp, daddr_t blkno)
1077{
1078	struct buf *bp;
1079	struct bufhashhdr *bh;
1080
1081	bh = BUFHASH(vp, blkno);
1082	bp = bh->lh_first;
1083
1084	/* Search hash chain */
1085	while (bp != NULL) {
1086		/* hit */
1087		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1088		    (bp->b_flags & B_INVAL) == 0) {
1089			break;
1090		}
1091		bp = bp->b_hash.le_next;
1092	}
1093	return (bp);
1094}
1095
1096/*
1097 * this routine implements clustered async writes for
1098 * clearing out B_DELWRI buffers...  This is much better
1099 * than the old way of writing only one buffer at a time.
1100 */
1101int
1102vfs_bio_awrite(struct buf * bp)
1103{
1104	int i;
1105	daddr_t lblkno = bp->b_lblkno;
1106	struct vnode *vp = bp->b_vp;
1107	int s;
1108	int ncl;
1109	struct buf *bpa;
1110	int nwritten;
1111	int size;
1112	int maxcl;
1113
1114	s = splbio();
1115	/*
1116	 * right now we support clustered writing only to regular files, and
1117	 * then only if our I/O system is not saturated.
1118	 */
1119	if ((vp->v_type == VREG) &&
1120	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1121	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1122
1123		size = vp->v_mount->mnt_stat.f_iosize;
1124		maxcl = MAXPHYS / size;
1125
1126		for (i = 1; i < maxcl; i++) {
1127			if ((bpa = gbincore(vp, lblkno + i)) &&
1128			    BUF_REFCNT(bpa) == 0 &&
1129			    ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1130			    (B_DELWRI | B_CLUSTEROK)) &&
1131			    (bpa->b_bufsize == size)) {
1132				if ((bpa->b_blkno == bpa->b_lblkno) ||
1133				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1134					break;
1135			} else {
1136				break;
1137			}
1138		}
1139		ncl = i;
1140		/*
1141		 * this is a possible cluster write
1142		 */
1143		if (ncl != 1) {
1144			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
1145			splx(s);
1146			return nwritten;
1147		}
1148	}
1149
1150	BUF_LOCK(bp, LK_EXCLUSIVE);
1151	bremfree(bp);
1152	bp->b_flags |= B_ASYNC;
1153
1154	splx(s);
1155	/*
1156	 * default (old) behavior, writing out only one block
1157	 *
1158	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1159	 */
1160	nwritten = bp->b_bufsize;
1161	(void) VOP_BWRITE(bp->b_vp, bp);
1162
1163	return nwritten;
1164}
1165
1166/*
1167 *	getnewbuf:
1168 *
1169 *	Find and initialize a new buffer header, freeing up existing buffers
1170 *	in the bufqueues as necessary.  The new buffer is returned locked.
1171 *
1172 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1173 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1174 *
1175 *	We block if:
1176 *		We have insufficient buffer headers
1177 *		We have insufficient buffer space
1178 *		buffer_map is too fragmented ( space reservation fails )
1179 *
1180 *	We do *not* attempt to flush dirty buffers more then one level deep.
1181 *	I.e., if P_FLSINPROG is set we do not flush dirty buffers at all.
1182 *
1183 *	If P_FLSINPROG is set, we are allowed to dip into our emergency
1184 *	reserve.
1185 */
1186static struct buf *
1187getnewbuf(struct vnode *vp, daddr_t blkno,
1188	int slpflag, int slptimeo, int size, int maxsize)
1189{
1190	struct buf *bp;
1191	struct buf *nbp;
1192	struct buf *dbp;
1193	int outofspace;
1194	int nqindex;
1195	int defrag = 0;
1196	static int newbufcnt = 0;
1197	int lastnewbuf = newbufcnt;
1198
1199restart:
1200	/*
1201	 * Calculate whether we are out of buffer space.  This state is
1202	 * recalculated on every restart.  If we are out of space, we
1203	 * have to turn off defragmentation.  The outofspace code will
1204	 * defragment too, but the looping conditionals will be messed up
1205	 * if both outofspace and defrag are on.
1206	 */
1207
1208	dbp = NULL;
1209	outofspace = 0;
1210	if (bufspace >= hibufspace) {
1211		if ((curproc->p_flag & P_FLSINPROG) == 0 ||
1212		    bufspace >= maxbufspace
1213		) {
1214			outofspace = 1;
1215			defrag = 0;
1216		}
1217	}
1218
1219	/*
1220	 * defrag state is semi-persistant.  1 means we are flagged for
1221	 * defragging.  -1 means we actually defragged something.
1222	 */
1223	/* nop */
1224
1225	/*
1226	 * Setup for scan.  If we do not have enough free buffers,
1227	 * we setup a degenerate case that falls through the while.
1228	 *
1229	 * If we are in the middle of a flush, we can dip into the
1230	 * emergency reserve.
1231	 *
1232	 * If we are out of space, we skip trying to scan QUEUE_EMPTY
1233	 * because those buffers are, well, empty.
1234	 */
1235
1236	if ((curproc->p_flag & P_FLSINPROG) == 0 &&
1237	    numfreebuffers < lofreebuffers) {
1238		nqindex = QUEUE_LRU;
1239		nbp = NULL;
1240	} else {
1241		nqindex = QUEUE_EMPTY;
1242		if (outofspace ||
1243		    (nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY])) == NULL) {
1244			nqindex = QUEUE_AGE;
1245			nbp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1246			if (nbp == NULL) {
1247				nqindex = QUEUE_LRU;
1248				nbp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1249			}
1250		}
1251	}
1252
1253	/*
1254	 * Run scan, possibly freeing data and/or kva mappings on the fly
1255	 * depending.
1256	 */
1257
1258	while ((bp = nbp) != NULL) {
1259		int qindex = nqindex;
1260		/*
1261		 * Calculate next bp ( we can only use it if we do not block
1262		 * or do other fancy things ).
1263		 */
1264		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1265			switch(qindex) {
1266			case QUEUE_EMPTY:
1267				nqindex = QUEUE_AGE;
1268				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_AGE])))
1269					break;
1270				/* fall through */
1271			case QUEUE_AGE:
1272				nqindex = QUEUE_LRU;
1273				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_LRU])))
1274					break;
1275				/* fall through */
1276			case QUEUE_LRU:
1277				/*
1278				 * nbp is NULL.
1279				 */
1280				break;
1281			}
1282		}
1283
1284		/*
1285		 * Sanity Checks
1286		 */
1287		KASSERT(BUF_REFCNT(bp) == 0, ("getnewbuf: busy buffer %p on free list", bp));
1288		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1289
1290		/*
1291		 * Here we try to move NON VMIO buffers to the end of the
1292		 * LRU queue in order to make VMIO buffers more readily
1293		 * freeable.  We also try to move buffers with a positive
1294		 * usecount to the end.
1295		 *
1296		 * Note that by moving the bp to the end, we setup a following
1297		 * loop.  Since we continue to decrement b_usecount this
1298		 * is ok and, in fact, desireable.
1299		 *
1300		 * If we are at the end of the list, we move ourself to the
1301		 * same place and need to fixup nbp and nqindex to handle
1302		 * the following case.
1303		 */
1304
1305		if ((qindex == QUEUE_LRU) && bp->b_usecount > 0) {
1306			if ((bp->b_flags & B_VMIO) == 0 ||
1307			    (vmiospace < maxvmiobufspace)
1308			) {
1309				--bp->b_usecount;
1310				TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
1311				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1312				if (nbp == NULL) {
1313					nqindex = qindex;
1314					nbp = bp;
1315				}
1316				continue;
1317			}
1318		}
1319
1320		/*
1321		 * If we come across a delayed write and numdirtybuffers should
1322		 * be flushed, try to write it out.  Only if P_FLSINPROG is
1323		 * not set.  We can't afford to recursively stack more then
1324		 * one deep due to the possibility of having deep VFS call
1325		 * stacks.
1326		 *
1327		 * Limit the number of dirty buffers we are willing to try
1328		 * to recover since it really isn't our job here.
1329		 */
1330		if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
1331			/*
1332			 * This is rather complex, but necessary.  If we come
1333			 * across a B_DELWRI buffer we have to flush it in
1334			 * order to use it.  We only do this if we absolutely
1335			 * need to.  We must also protect against too much
1336			 * recursion which might run us out of stack due to
1337			 * deep VFS call stacks.
1338			 *
1339			 * In heavy-writing situations, QUEUE_LRU can contain
1340			 * a large number of DELWRI buffers at its head.  These
1341			 * buffers must be moved to the tail if they cannot be
1342			 * written async in order to reduce the scanning time
1343			 * required to skip past these buffers in later
1344			 * getnewbuf() calls.
1345			 */
1346			if ((curproc->p_flag & P_FLSINPROG) ||
1347			    numdirtybuffers < hidirtybuffers) {
1348				if (qindex == QUEUE_LRU) {
1349					/*
1350					 * dbp prevents us from looping forever
1351					 * if all bps in QUEUE_LRU are dirty.
1352					 */
1353					if (bp == dbp) {
1354						bp = NULL;
1355						break;
1356					}
1357					if (dbp == NULL)
1358						dbp = TAILQ_LAST(&bufqueues[QUEUE_LRU], bqueues);
1359					TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
1360					TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1361				}
1362				continue;
1363			}
1364			curproc->p_flag |= P_FLSINPROG;
1365			vfs_bio_awrite(bp);
1366			curproc->p_flag &= ~P_FLSINPROG;
1367			goto restart;
1368		}
1369
1370		if (defrag > 0 && bp->b_kvasize == 0)
1371			continue;
1372		if (outofspace > 0 && bp->b_bufsize == 0)
1373			continue;
1374
1375		/*
1376		 * Start freeing the bp.  This is somewhat involved.  nbp
1377		 * remains valid only for QUEUE_EMPTY bp's.
1378		 */
1379
1380		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1381			panic("getnewbuf: locked buf");
1382		bremfree(bp);
1383
1384		if (qindex == QUEUE_LRU || qindex == QUEUE_AGE) {
1385			if (bp->b_flags & B_VMIO) {
1386				bp->b_flags &= ~B_ASYNC;
1387				vfs_vmio_release(bp);
1388			}
1389			if (bp->b_vp)
1390				brelvp(bp);
1391		}
1392
1393		/*
1394		 * NOTE:  nbp is now entirely invalid.  We can only restart
1395		 * the scan from this point on.
1396		 *
1397		 * Get the rest of the buffer freed up.  b_kva* is still
1398		 * valid after this operation.
1399		 */
1400
1401		if (bp->b_rcred != NOCRED) {
1402			crfree(bp->b_rcred);
1403			bp->b_rcred = NOCRED;
1404		}
1405		if (bp->b_wcred != NOCRED) {
1406			crfree(bp->b_wcred);
1407			bp->b_wcred = NOCRED;
1408		}
1409		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1410			(*bioops.io_deallocate)(bp);
1411
1412		LIST_REMOVE(bp, b_hash);
1413		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1414
1415		if (bp->b_bufsize)
1416			allocbuf(bp, 0);
1417
1418		bp->b_flags = 0;
1419		bp->b_dev = NODEV;
1420		bp->b_vp = NULL;
1421		bp->b_blkno = bp->b_lblkno = 0;
1422		bp->b_offset = NOOFFSET;
1423		bp->b_iodone = 0;
1424		bp->b_error = 0;
1425		bp->b_resid = 0;
1426		bp->b_bcount = 0;
1427		bp->b_npages = 0;
1428		bp->b_dirtyoff = bp->b_dirtyend = 0;
1429		bp->b_usecount = 5;
1430
1431		LIST_INIT(&bp->b_dep);
1432
1433		/*
1434		 * Ok, now that we have a free buffer, if we are defragging
1435		 * we have to recover the kvaspace.
1436		 */
1437
1438		if (defrag > 0) {
1439			defrag = -1;
1440			bp->b_flags |= B_INVAL;
1441			bfreekva(bp);
1442			brelse(bp);
1443			goto restart;
1444		}
1445
1446		if (outofspace > 0) {
1447			outofspace = -1;
1448			bp->b_flags |= B_INVAL;
1449			bfreekva(bp);
1450			brelse(bp);
1451			goto restart;
1452		}
1453
1454		/*
1455		 * We are done
1456		 */
1457		break;
1458	}
1459
1460	/*
1461	 * If we exhausted our list, sleep as appropriate.
1462	 */
1463
1464	if (bp == NULL) {
1465		int flags;
1466
1467dosleep:
1468		if (defrag > 0)
1469			flags = VFS_BIO_NEED_KVASPACE;
1470		else if (outofspace > 0)
1471			flags = VFS_BIO_NEED_BUFSPACE;
1472		else
1473			flags = VFS_BIO_NEED_ANY;
1474
1475		(void) speedup_syncer();
1476		needsbuffer |= flags;
1477		while (needsbuffer & flags) {
1478			if (tsleep(&needsbuffer, (PRIBIO + 4) | slpflag,
1479			    "newbuf", slptimeo))
1480				return (NULL);
1481		}
1482	} else {
1483		/*
1484		 * We finally have a valid bp.  We aren't quite out of the
1485		 * woods, we still have to reserve kva space.
1486		 */
1487		vm_offset_t addr = 0;
1488
1489		maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1490
1491		if (maxsize != bp->b_kvasize) {
1492			bfreekva(bp);
1493
1494			if (vm_map_findspace(buffer_map,
1495				vm_map_min(buffer_map), maxsize, &addr)
1496			) {
1497				/*
1498				 * Uh oh.  Buffer map is to fragmented.  Try
1499				 * to defragment.
1500				 */
1501				if (defrag <= 0) {
1502					defrag = 1;
1503					bp->b_flags |= B_INVAL;
1504					brelse(bp);
1505					goto restart;
1506				}
1507				/*
1508				 * Uh oh.  We couldn't seem to defragment
1509				 */
1510				bp = NULL;
1511				goto dosleep;
1512			}
1513		}
1514		if (addr) {
1515			vm_map_insert(buffer_map, NULL, 0,
1516				addr, addr + maxsize,
1517				VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1518
1519			bp->b_kvabase = (caddr_t) addr;
1520			bp->b_kvasize = maxsize;
1521		}
1522		bp->b_data = bp->b_kvabase;
1523	}
1524
1525	/*
1526	 * If we have slept at some point in this process and another
1527	 * process has managed to allocate a new buffer while we slept,
1528	 * we have to return NULL so that our caller can recheck to
1529	 * ensure that the other process did not create an identically
1530	 * identified buffer to the one we were requesting. We make this
1531	 * check by incrementing the static int newbufcnt each time we
1532	 * successfully allocate a new buffer. By saving the value of
1533	 * newbufcnt in our local lastnewbuf, we can compare newbufcnt
1534	 * with lastnewbuf to see if any other process managed to
1535	 * allocate a buffer while we were doing so ourselves.
1536	 *
1537	 * Note that bp, if valid, is locked.
1538	 */
1539	if (lastnewbuf == newbufcnt) {
1540		/*
1541		 * No buffers allocated, so we can return one if we were
1542		 * successful, or continue trying if we were not successful.
1543		 */
1544		if (bp != NULL) {
1545			newbufcnt += 1;
1546			return (bp);
1547		}
1548		goto restart;
1549	}
1550	/*
1551	 * Another process allocated a buffer since we were called, so
1552	 * we have to free the one we allocated and return NULL to let
1553	 * our caller recheck to see if a new buffer is still needed.
1554	 */
1555	if (bp != NULL) {
1556		bp->b_flags |= B_INVAL;
1557		brelse(bp);
1558	}
1559	return (NULL);
1560}
1561
1562/*
1563 *	waitfreebuffers:
1564 *
1565 *	Wait for sufficient free buffers.  This routine is not called if
1566 *	curproc is the update process so we do not have to do anything
1567 *	fancy.
1568 */
1569
1570static void
1571waitfreebuffers(int slpflag, int slptimeo)
1572{
1573	while (numfreebuffers < hifreebuffers) {
1574		flushdirtybuffers(slpflag, slptimeo);
1575		if (numfreebuffers >= hifreebuffers)
1576			break;
1577		needsbuffer |= VFS_BIO_NEED_FREE;
1578		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1579			break;
1580	}
1581}
1582
1583/*
1584 *	flushdirtybuffers:
1585 *
1586 *	This routine is called when we get too many dirty buffers.
1587 *
1588 *	We have to protect ourselves from recursion, but we also do not want
1589 *	other process's flushdirtybuffers() to interfere with the syncer if
1590 *	it decides to flushdirtybuffers().
1591 *
1592 *	In order to maximize operations, we allow any process to flush
1593 *	dirty buffers and use P_FLSINPROG to prevent recursion.
1594 */
1595
1596static void
1597flushdirtybuffers(int slpflag, int slptimeo)
1598{
1599	int s;
1600
1601	s = splbio();
1602
1603	if (curproc->p_flag & P_FLSINPROG) {
1604		splx(s);
1605		return;
1606	}
1607	curproc->p_flag |= P_FLSINPROG;
1608
1609	while (numdirtybuffers > lodirtybuffers) {
1610		if (flushbufqueues() == 0)
1611			break;
1612	}
1613
1614	curproc->p_flag &= ~P_FLSINPROG;
1615
1616	splx(s);
1617}
1618
1619static int
1620flushbufqueues(void)
1621{
1622	struct buf *bp;
1623	int qindex;
1624	int r = 0;
1625
1626	qindex = QUEUE_AGE;
1627	bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1628
1629	for (;;) {
1630		if (bp == NULL) {
1631			if (qindex == QUEUE_LRU)
1632				break;
1633			qindex = QUEUE_LRU;
1634			if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU])) == NULL)
1635				break;
1636		}
1637
1638		/*
1639		 * Try to free up B_INVAL delayed-write buffers rather then
1640		 * writing them out.  Note also that NFS is somewhat sensitive
1641		 * to B_INVAL buffers so it is doubly important that we do
1642		 * this.
1643		 */
1644		if ((bp->b_flags & B_DELWRI) != 0) {
1645			if (bp->b_flags & B_INVAL) {
1646				if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) != 0)
1647					panic("flushbufqueues: locked buf");
1648				bremfree(bp);
1649				brelse(bp);
1650			} else {
1651				vfs_bio_awrite(bp);
1652			}
1653			++r;
1654			break;
1655		}
1656		bp = TAILQ_NEXT(bp, b_freelist);
1657	}
1658	return(r);
1659}
1660
1661/*
1662 * Check to see if a block is currently memory resident.
1663 */
1664struct buf *
1665incore(struct vnode * vp, daddr_t blkno)
1666{
1667	struct buf *bp;
1668
1669	int s = splbio();
1670	bp = gbincore(vp, blkno);
1671	splx(s);
1672	return (bp);
1673}
1674
1675/*
1676 * Returns true if no I/O is needed to access the
1677 * associated VM object.  This is like incore except
1678 * it also hunts around in the VM system for the data.
1679 */
1680
1681int
1682inmem(struct vnode * vp, daddr_t blkno)
1683{
1684	vm_object_t obj;
1685	vm_offset_t toff, tinc, size;
1686	vm_page_t m;
1687	vm_ooffset_t off;
1688
1689	if (incore(vp, blkno))
1690		return 1;
1691	if (vp->v_mount == NULL)
1692		return 0;
1693	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1694		return 0;
1695
1696	obj = vp->v_object;
1697	size = PAGE_SIZE;
1698	if (size > vp->v_mount->mnt_stat.f_iosize)
1699		size = vp->v_mount->mnt_stat.f_iosize;
1700	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1701
1702	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1703		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1704		if (!m)
1705			return 0;
1706		tinc = size;
1707		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1708			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1709		if (vm_page_is_valid(m,
1710		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1711			return 0;
1712	}
1713	return 1;
1714}
1715
1716/*
1717 *	vfs_setdirty:
1718 *
1719 *	Sets the dirty range for a buffer based on the status of the dirty
1720 *	bits in the pages comprising the buffer.
1721 *
1722 *	The range is limited to the size of the buffer.
1723 *
1724 *	This routine is primarily used by NFS, but is generalized for the
1725 *	B_VMIO case.
1726 */
1727static void
1728vfs_setdirty(struct buf *bp)
1729{
1730	int i;
1731	vm_object_t object;
1732
1733	/*
1734	 * Degenerate case - empty buffer
1735	 */
1736
1737	if (bp->b_bufsize == 0)
1738		return;
1739
1740	/*
1741	 * We qualify the scan for modified pages on whether the
1742	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1743	 * is not cleared simply by protecting pages off.
1744	 */
1745
1746	if ((bp->b_flags & B_VMIO) == 0)
1747		return;
1748
1749	object = bp->b_pages[0]->object;
1750
1751	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1752		printf("Warning: object %p writeable but not mightbedirty\n", object);
1753	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1754		printf("Warning: object %p mightbedirty but not writeable\n", object);
1755
1756	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1757		vm_offset_t boffset;
1758		vm_offset_t eoffset;
1759
1760		/*
1761		 * test the pages to see if they have been modified directly
1762		 * by users through the VM system.
1763		 */
1764		for (i = 0; i < bp->b_npages; i++) {
1765			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1766			vm_page_test_dirty(bp->b_pages[i]);
1767		}
1768
1769		/*
1770		 * Calculate the encompassing dirty range, boffset and eoffset,
1771		 * (eoffset - boffset) bytes.
1772		 */
1773
1774		for (i = 0; i < bp->b_npages; i++) {
1775			if (bp->b_pages[i]->dirty)
1776				break;
1777		}
1778		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1779
1780		for (i = bp->b_npages - 1; i >= 0; --i) {
1781			if (bp->b_pages[i]->dirty) {
1782				break;
1783			}
1784		}
1785		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1786
1787		/*
1788		 * Fit it to the buffer.
1789		 */
1790
1791		if (eoffset > bp->b_bcount)
1792			eoffset = bp->b_bcount;
1793
1794		/*
1795		 * If we have a good dirty range, merge with the existing
1796		 * dirty range.
1797		 */
1798
1799		if (boffset < eoffset) {
1800			if (bp->b_dirtyoff > boffset)
1801				bp->b_dirtyoff = boffset;
1802			if (bp->b_dirtyend < eoffset)
1803				bp->b_dirtyend = eoffset;
1804		}
1805	}
1806}
1807
1808/*
1809 *	getblk:
1810 *
1811 *	Get a block given a specified block and offset into a file/device.
1812 *	The buffers B_DONE bit will be cleared on return, making it almost
1813 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
1814 *	return.  The caller should clear B_INVAL prior to initiating a
1815 *	READ.
1816 *
1817 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
1818 *	an existing buffer.
1819 *
1820 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
1821 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
1822 *	and then cleared based on the backing VM.  If the previous buffer is
1823 *	non-0-sized but invalid, B_CACHE will be cleared.
1824 *
1825 *	If getblk() must create a new buffer, the new buffer is returned with
1826 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
1827 *	case it is returned with B_INVAL clear and B_CACHE set based on the
1828 *	backing VM.
1829 *
1830 *	getblk() also forces a VOP_BWRITE() for any B_DELWRI buffer whos
1831 *	B_CACHE bit is clear.
1832 *
1833 *	What this means, basically, is that the caller should use B_CACHE to
1834 *	determine whether the buffer is fully valid or not and should clear
1835 *	B_INVAL prior to issuing a read.  If the caller intends to validate
1836 *	the buffer by loading its data area with something, the caller needs
1837 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
1838 *	the caller should set B_CACHE ( as an optimization ), else the caller
1839 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
1840 *	a write attempt or if it was a successfull read.  If the caller
1841 *	intends to issue a READ, the caller must clear B_INVAL and B_ERROR
1842 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
1843 */
1844struct buf *
1845getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1846{
1847	struct buf *bp;
1848	int s;
1849	struct bufhashhdr *bh;
1850
1851#if !defined(MAX_PERF)
1852	if (size > MAXBSIZE)
1853		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1854#endif
1855
1856	s = splbio();
1857loop:
1858	/*
1859	 * Block if we are low on buffers.  The syncer is allowed more
1860	 * buffers in order to avoid a deadlock.
1861	 */
1862	if (curproc == updateproc && numfreebuffers == 0) {
1863		needsbuffer |= VFS_BIO_NEED_ANY;
1864		tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
1865		    slptimeo);
1866	} else if (curproc != updateproc && numfreebuffers < lofreebuffers) {
1867		waitfreebuffers(slpflag, slptimeo);
1868	}
1869
1870	if ((bp = gbincore(vp, blkno))) {
1871		/*
1872		 * Buffer is in-core
1873		 */
1874
1875		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT)) {
1876			if (bp->b_usecount < BUF_MAXUSE)
1877				++bp->b_usecount;
1878			if (BUF_TIMELOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL,
1879			    "getblk", slpflag, slptimeo) == ENOLCK)
1880				goto loop;
1881			splx(s);
1882			return (struct buf *) NULL;
1883		}
1884
1885		/*
1886		 * The buffer is locked.  B_CACHE is cleared if the buffer is
1887		 * invalid.  Ohterwise, for a non-VMIO buffer, B_CACHE is set
1888		 * and for a VMIO buffer B_CACHE is adjusted according to the
1889		 * backing VM cache.
1890		 */
1891		if (bp->b_flags & B_INVAL)
1892			bp->b_flags &= ~B_CACHE;
1893		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
1894			bp->b_flags |= B_CACHE;
1895		bremfree(bp);
1896
1897		/*
1898		 * check for size inconsistancies for non-VMIO case.
1899		 */
1900
1901		if (bp->b_bcount != size) {
1902			if ((bp->b_flags & B_VMIO) == 0 ||
1903			    (size > bp->b_kvasize)
1904			) {
1905				if (bp->b_flags & B_DELWRI) {
1906					bp->b_flags |= B_NOCACHE;
1907					VOP_BWRITE(bp->b_vp, bp);
1908				} else {
1909					if ((bp->b_flags & B_VMIO) &&
1910					   (LIST_FIRST(&bp->b_dep) == NULL)) {
1911						bp->b_flags |= B_RELBUF;
1912						brelse(bp);
1913					} else {
1914						bp->b_flags |= B_NOCACHE;
1915						VOP_BWRITE(bp->b_vp, bp);
1916					}
1917				}
1918				goto loop;
1919			}
1920		}
1921
1922		/*
1923		 * If the size is inconsistant in the VMIO case, we can resize
1924		 * the buffer.  This might lead to B_CACHE getting set or
1925		 * cleared.  If the size has not changed, B_CACHE remains
1926		 * unchanged from its previous state.
1927		 */
1928
1929		if (bp->b_bcount != size)
1930			allocbuf(bp, size);
1931
1932		KASSERT(bp->b_offset != NOOFFSET,
1933		    ("getblk: no buffer offset"));
1934
1935		/*
1936		 * A buffer with B_DELWRI set and B_CACHE clear must
1937		 * be committed before we can return the buffer in
1938		 * order to prevent the caller from issuing a read
1939		 * ( due to B_CACHE not being set ) and overwriting
1940		 * it.
1941		 *
1942		 * Most callers, including NFS and FFS, need this to
1943		 * operate properly either because they assume they
1944		 * can issue a read if B_CACHE is not set, or because
1945		 * ( for example ) an uncached B_DELWRI might loop due
1946		 * to softupdates re-dirtying the buffer.  In the latter
1947		 * case, B_CACHE is set after the first write completes,
1948		 * preventing further loops.
1949		 */
1950
1951		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
1952			VOP_BWRITE(bp->b_vp, bp);
1953			goto loop;
1954		}
1955
1956		if (bp->b_usecount < BUF_MAXUSE)
1957			++bp->b_usecount;
1958		splx(s);
1959		bp->b_flags &= ~B_DONE;
1960	} else {
1961		/*
1962		 * Buffer is not in-core, create new buffer.  The buffer
1963		 * returned by getnewbuf() is locked.  Note that the returned
1964		 * buffer is also considered valid (not marked B_INVAL).
1965		 */
1966		int bsize, maxsize, vmio;
1967		off_t offset;
1968
1969		if (vp->v_type == VBLK)
1970			bsize = DEV_BSIZE;
1971		else if (vp->v_mountedhere)
1972			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
1973		else if (vp->v_mount)
1974			bsize = vp->v_mount->mnt_stat.f_iosize;
1975		else
1976			bsize = size;
1977
1978		offset = (off_t)blkno * bsize;
1979		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
1980		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
1981		maxsize = imax(maxsize, bsize);
1982
1983		if ((bp = getnewbuf(vp, blkno,
1984			slpflag, slptimeo, size, maxsize)) == NULL) {
1985			if (slpflag || slptimeo) {
1986				splx(s);
1987				return NULL;
1988			}
1989			goto loop;
1990		}
1991
1992		/*
1993		 * This code is used to make sure that a buffer is not
1994		 * created while the getnewbuf routine is blocked.
1995		 * This can be a problem whether the vnode is locked or not.
1996		 * If the buffer is created out from under us, we have to
1997		 * throw away the one we just created.  There is now window
1998		 * race because we are safely running at splbio() from the
1999		 * point of the duplicate buffer creation through to here.
2000		 */
2001		if (gbincore(vp, blkno)) {
2002			bp->b_flags |= B_INVAL;
2003			brelse(bp);
2004			goto loop;
2005		}
2006
2007		/*
2008		 * Insert the buffer into the hash, so that it can
2009		 * be found by incore.
2010		 */
2011		bp->b_blkno = bp->b_lblkno = blkno;
2012		bp->b_offset = offset;
2013
2014		bgetvp(vp, bp);
2015		LIST_REMOVE(bp, b_hash);
2016		bh = BUFHASH(vp, blkno);
2017		LIST_INSERT_HEAD(bh, bp, b_hash);
2018
2019		/*
2020		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2021		 * buffer size starts out as 0, B_CACHE will be set by
2022		 * allocbuf() for the VMIO case prior to it testing the
2023		 * backing store for validity.
2024		 */
2025
2026		if (vmio) {
2027			bp->b_flags |= B_VMIO;
2028#if defined(VFS_BIO_DEBUG)
2029			if (vp->v_type != VREG && vp->v_type != VBLK)
2030				printf("getblk: vmioing file type %d???\n", vp->v_type);
2031#endif
2032		} else {
2033			bp->b_flags &= ~B_VMIO;
2034		}
2035
2036		allocbuf(bp, size);
2037
2038		splx(s);
2039		bp->b_flags &= ~B_DONE;
2040	}
2041	return (bp);
2042}
2043
2044/*
2045 * Get an empty, disassociated buffer of given size.  The buffer is initially
2046 * set to B_INVAL.
2047 */
2048struct buf *
2049geteblk(int size)
2050{
2051	struct buf *bp;
2052	int s;
2053
2054	s = splbio();
2055	while ((bp = getnewbuf(0, (daddr_t) 0, 0, 0, size, MAXBSIZE)) == 0);
2056	splx(s);
2057	allocbuf(bp, size);
2058	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2059	return (bp);
2060}
2061
2062
2063/*
2064 * This code constitutes the buffer memory from either anonymous system
2065 * memory (in the case of non-VMIO operations) or from an associated
2066 * VM object (in the case of VMIO operations).  This code is able to
2067 * resize a buffer up or down.
2068 *
2069 * Note that this code is tricky, and has many complications to resolve
2070 * deadlock or inconsistant data situations.  Tread lightly!!!
2071 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2072 * the caller.  Calling this code willy nilly can result in the loss of data.
2073 *
2074 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2075 * B_CACHE for the non-VMIO case.
2076 */
2077
2078int
2079allocbuf(struct buf *bp, int size)
2080{
2081	int newbsize, mbsize;
2082	int i;
2083
2084#if !defined(MAX_PERF)
2085	if (BUF_REFCNT(bp) == 0)
2086		panic("allocbuf: buffer not busy");
2087
2088	if (bp->b_kvasize < size)
2089		panic("allocbuf: buffer too small");
2090#endif
2091
2092	if ((bp->b_flags & B_VMIO) == 0) {
2093		caddr_t origbuf;
2094		int origbufsize;
2095		/*
2096		 * Just get anonymous memory from the kernel.  Don't
2097		 * mess with B_CACHE.
2098		 */
2099		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2100#if !defined(NO_B_MALLOC)
2101		if (bp->b_flags & B_MALLOC)
2102			newbsize = mbsize;
2103		else
2104#endif
2105			newbsize = round_page(size);
2106
2107		if (newbsize < bp->b_bufsize) {
2108#if !defined(NO_B_MALLOC)
2109			/*
2110			 * malloced buffers are not shrunk
2111			 */
2112			if (bp->b_flags & B_MALLOC) {
2113				if (newbsize) {
2114					bp->b_bcount = size;
2115				} else {
2116					free(bp->b_data, M_BIOBUF);
2117					bufspace -= bp->b_bufsize;
2118					bufmallocspace -= bp->b_bufsize;
2119					runningbufspace -= bp->b_bufsize;
2120					if (bp->b_bufsize)
2121						bufspacewakeup();
2122					bp->b_data = bp->b_kvabase;
2123					bp->b_bufsize = 0;
2124					bp->b_bcount = 0;
2125					bp->b_flags &= ~B_MALLOC;
2126				}
2127				return 1;
2128			}
2129#endif
2130			vm_hold_free_pages(
2131			    bp,
2132			    (vm_offset_t) bp->b_data + newbsize,
2133			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2134		} else if (newbsize > bp->b_bufsize) {
2135#if !defined(NO_B_MALLOC)
2136			/*
2137			 * We only use malloced memory on the first allocation.
2138			 * and revert to page-allocated memory when the buffer grows.
2139			 */
2140			if ( (bufmallocspace < maxbufmallocspace) &&
2141				(bp->b_bufsize == 0) &&
2142				(mbsize <= PAGE_SIZE/2)) {
2143
2144				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2145				bp->b_bufsize = mbsize;
2146				bp->b_bcount = size;
2147				bp->b_flags |= B_MALLOC;
2148				bufspace += mbsize;
2149				bufmallocspace += mbsize;
2150				runningbufspace += bp->b_bufsize;
2151				return 1;
2152			}
2153#endif
2154			origbuf = NULL;
2155			origbufsize = 0;
2156#if !defined(NO_B_MALLOC)
2157			/*
2158			 * If the buffer is growing on its other-than-first allocation,
2159			 * then we revert to the page-allocation scheme.
2160			 */
2161			if (bp->b_flags & B_MALLOC) {
2162				origbuf = bp->b_data;
2163				origbufsize = bp->b_bufsize;
2164				bp->b_data = bp->b_kvabase;
2165				bufspace -= bp->b_bufsize;
2166				bufmallocspace -= bp->b_bufsize;
2167				runningbufspace -= bp->b_bufsize;
2168				if (bp->b_bufsize)
2169					bufspacewakeup();
2170				bp->b_bufsize = 0;
2171				bp->b_flags &= ~B_MALLOC;
2172				newbsize = round_page(newbsize);
2173			}
2174#endif
2175			vm_hold_load_pages(
2176			    bp,
2177			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2178			    (vm_offset_t) bp->b_data + newbsize);
2179#if !defined(NO_B_MALLOC)
2180			if (origbuf) {
2181				bcopy(origbuf, bp->b_data, origbufsize);
2182				free(origbuf, M_BIOBUF);
2183			}
2184#endif
2185		}
2186	} else {
2187		vm_page_t m;
2188		int desiredpages;
2189
2190		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2191		desiredpages = (size == 0) ? 0 :
2192			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2193
2194#if !defined(NO_B_MALLOC)
2195		if (bp->b_flags & B_MALLOC)
2196			panic("allocbuf: VMIO buffer can't be malloced");
2197#endif
2198		/*
2199		 * Set B_CACHE initially if buffer is 0 length or will become
2200		 * 0-length.
2201		 */
2202		if (size == 0 || bp->b_bufsize == 0)
2203			bp->b_flags |= B_CACHE;
2204
2205		if (newbsize < bp->b_bufsize) {
2206			/*
2207			 * DEV_BSIZE aligned new buffer size is less then the
2208			 * DEV_BSIZE aligned existing buffer size.  Figure out
2209			 * if we have to remove any pages.
2210			 */
2211			if (desiredpages < bp->b_npages) {
2212				for (i = desiredpages; i < bp->b_npages; i++) {
2213					/*
2214					 * the page is not freed here -- it
2215					 * is the responsibility of
2216					 * vnode_pager_setsize
2217					 */
2218					m = bp->b_pages[i];
2219					KASSERT(m != bogus_page,
2220					    ("allocbuf: bogus page found"));
2221					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2222						;
2223
2224					bp->b_pages[i] = NULL;
2225					vm_page_unwire(m, 0);
2226				}
2227				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2228				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2229				bp->b_npages = desiredpages;
2230			}
2231		} else if (size > bp->b_bcount) {
2232			/*
2233			 * We are growing the buffer, possibly in a
2234			 * byte-granular fashion.
2235			 */
2236			struct vnode *vp;
2237			vm_object_t obj;
2238			vm_offset_t toff;
2239			vm_offset_t tinc;
2240
2241			/*
2242			 * Step 1, bring in the VM pages from the object,
2243			 * allocating them if necessary.  We must clear
2244			 * B_CACHE if these pages are not valid for the
2245			 * range covered by the buffer.
2246			 */
2247
2248			vp = bp->b_vp;
2249			obj = vp->v_object;
2250
2251			while (bp->b_npages < desiredpages) {
2252				vm_page_t m;
2253				vm_pindex_t pi;
2254
2255				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2256				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2257					m = vm_page_alloc(obj, pi, VM_ALLOC_NORMAL);
2258					if (m == NULL) {
2259						VM_WAIT;
2260						vm_pageout_deficit += desiredpages - bp->b_npages;
2261					} else {
2262						vm_page_wire(m);
2263						vm_page_wakeup(m);
2264						bp->b_flags &= ~B_CACHE;
2265						bp->b_pages[bp->b_npages] = m;
2266						++bp->b_npages;
2267					}
2268					continue;
2269				}
2270
2271				/*
2272				 * We found a page.  If we have to sleep on it,
2273				 * retry because it might have gotten freed out
2274				 * from under us.
2275				 *
2276				 * We can only test PG_BUSY here.  Blocking on
2277				 * m->busy might lead to a deadlock:
2278				 *
2279				 *  vm_fault->getpages->cluster_read->allocbuf
2280				 *
2281				 */
2282
2283				if (vm_page_sleep_busy(m, FALSE, "pgtblk"))
2284					continue;
2285
2286				/*
2287				 * We have a good page.  Should we wakeup the
2288				 * page daemon?
2289				 */
2290				if ((curproc != pageproc) &&
2291				    ((m->queue - m->pc) == PQ_CACHE) &&
2292				    ((cnt.v_free_count + cnt.v_cache_count) <
2293					(cnt.v_free_min + cnt.v_cache_min))
2294				) {
2295					pagedaemon_wakeup();
2296				}
2297				vm_page_flag_clear(m, PG_ZERO);
2298				vm_page_wire(m);
2299				bp->b_pages[bp->b_npages] = m;
2300				++bp->b_npages;
2301			}
2302
2303			/*
2304			 * Step 2.  We've loaded the pages into the buffer,
2305			 * we have to figure out if we can still have B_CACHE
2306			 * set.  Note that B_CACHE is set according to the
2307			 * byte-granular range ( bcount and size ), new the
2308			 * aligned range ( newbsize ).
2309			 *
2310			 * The VM test is against m->valid, which is DEV_BSIZE
2311			 * aligned.  Needless to say, the validity of the data
2312			 * needs to also be DEV_BSIZE aligned.  Note that this
2313			 * fails with NFS if the server or some other client
2314			 * extends the file's EOF.  If our buffer is resized,
2315			 * B_CACHE may remain set! XXX
2316			 */
2317
2318			toff = bp->b_bcount;
2319			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2320
2321			while ((bp->b_flags & B_CACHE) && toff < size) {
2322				vm_pindex_t pi;
2323
2324				if (tinc > (size - toff))
2325					tinc = size - toff;
2326
2327				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2328				    PAGE_SHIFT;
2329
2330				vfs_buf_test_cache(
2331				    bp,
2332				    bp->b_offset,
2333				    toff,
2334				    tinc,
2335				    bp->b_pages[pi]
2336				);
2337				toff += tinc;
2338				tinc = PAGE_SIZE;
2339			}
2340
2341			/*
2342			 * Step 3, fixup the KVM pmap.  Remember that
2343			 * bp->b_data is relative to bp->b_offset, but
2344			 * bp->b_offset may be offset into the first page.
2345			 */
2346
2347			bp->b_data = (caddr_t)
2348			    trunc_page((vm_offset_t)bp->b_data);
2349			pmap_qenter(
2350			    (vm_offset_t)bp->b_data,
2351			    bp->b_pages,
2352			    bp->b_npages
2353			);
2354			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2355			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2356		}
2357	}
2358	if (bp->b_flags & B_VMIO)
2359		vmiospace += (newbsize - bp->b_bufsize);
2360	bufspace += (newbsize - bp->b_bufsize);
2361	runningbufspace += (newbsize - bp->b_bufsize);
2362	if (newbsize < bp->b_bufsize)
2363		bufspacewakeup();
2364	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2365	bp->b_bcount = size;		/* requested buffer size	*/
2366	return 1;
2367}
2368
2369/*
2370 *	biowait:
2371 *
2372 *	Wait for buffer I/O completion, returning error status.  The buffer
2373 *	is left locked and B_DONE on return.  B_EINTR is converted into a EINTR
2374 *	error and cleared.
2375 */
2376int
2377biowait(register struct buf * bp)
2378{
2379	int s;
2380
2381	s = splbio();
2382	while ((bp->b_flags & B_DONE) == 0)
2383#if defined(NO_SCHEDULE_MODS)
2384		tsleep(bp, PRIBIO, "biowait", 0);
2385#else
2386		if (bp->b_flags & B_READ)
2387			tsleep(bp, PRIBIO, "biord", 0);
2388		else
2389			tsleep(bp, PRIBIO, "biowr", 0);
2390#endif
2391	splx(s);
2392	if (bp->b_flags & B_EINTR) {
2393		bp->b_flags &= ~B_EINTR;
2394		return (EINTR);
2395	}
2396	if (bp->b_flags & B_ERROR) {
2397		return (bp->b_error ? bp->b_error : EIO);
2398	} else {
2399		return (0);
2400	}
2401}
2402
2403/*
2404 *	biodone:
2405 *
2406 *	Finish I/O on a buffer, optionally calling a completion function.
2407 *	This is usually called from an interrupt so process blocking is
2408 *	not allowed.
2409 *
2410 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
2411 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
2412 *	assuming B_INVAL is clear.
2413 *
2414 *	For the VMIO case, we set B_CACHE if the op was a read and no
2415 *	read error occured, or if the op was a write.  B_CACHE is never
2416 *	set if the buffer is invalid or otherwise uncacheable.
2417 *
2418 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
2419 *	initiator to leave B_INVAL set to brelse the buffer out of existance
2420 *	in the biodone routine.
2421 */
2422void
2423biodone(register struct buf * bp)
2424{
2425	int s;
2426
2427	s = splbio();
2428
2429	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy", bp));
2430	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2431
2432	bp->b_flags |= B_DONE;
2433
2434	if (bp->b_flags & B_FREEBUF) {
2435		brelse(bp);
2436		splx(s);
2437		return;
2438	}
2439
2440	if ((bp->b_flags & B_READ) == 0) {
2441		vwakeup(bp);
2442	}
2443
2444	/* call optional completion function if requested */
2445	if (bp->b_flags & B_CALL) {
2446		bp->b_flags &= ~B_CALL;
2447		(*bp->b_iodone) (bp);
2448		splx(s);
2449		return;
2450	}
2451	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2452		(*bioops.io_complete)(bp);
2453
2454	if (bp->b_flags & B_VMIO) {
2455		int i, resid;
2456		vm_ooffset_t foff;
2457		vm_page_t m;
2458		vm_object_t obj;
2459		int iosize;
2460		struct vnode *vp = bp->b_vp;
2461
2462		obj = vp->v_object;
2463
2464#if defined(VFS_BIO_DEBUG)
2465		if (vp->v_usecount == 0) {
2466			panic("biodone: zero vnode ref count");
2467		}
2468
2469		if (vp->v_object == NULL) {
2470			panic("biodone: missing VM object");
2471		}
2472
2473		if ((vp->v_flag & VOBJBUF) == 0) {
2474			panic("biodone: vnode is not setup for merged cache");
2475		}
2476#endif
2477
2478		foff = bp->b_offset;
2479		KASSERT(bp->b_offset != NOOFFSET,
2480		    ("biodone: no buffer offset"));
2481
2482#if !defined(MAX_PERF)
2483		if (!obj) {
2484			panic("biodone: no object");
2485		}
2486#endif
2487#if defined(VFS_BIO_DEBUG)
2488		if (obj->paging_in_progress < bp->b_npages) {
2489			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2490			    obj->paging_in_progress, bp->b_npages);
2491		}
2492#endif
2493
2494		/*
2495		 * Set B_CACHE if the op was a normal read and no error
2496		 * occured.  B_CACHE is set for writes in the b*write()
2497		 * routines.
2498		 */
2499		iosize = bp->b_bcount;
2500		if ((bp->b_flags & (B_READ|B_FREEBUF|B_INVAL|B_NOCACHE|B_ERROR)) == B_READ) {
2501			bp->b_flags |= B_CACHE;
2502		}
2503
2504		for (i = 0; i < bp->b_npages; i++) {
2505			int bogusflag = 0;
2506			m = bp->b_pages[i];
2507			if (m == bogus_page) {
2508				bogusflag = 1;
2509				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2510				if (!m) {
2511#if defined(VFS_BIO_DEBUG)
2512					printf("biodone: page disappeared\n");
2513#endif
2514					vm_object_pip_subtract(obj, 1);
2515					bp->b_flags &= ~B_CACHE;
2516					continue;
2517				}
2518				bp->b_pages[i] = m;
2519				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2520			}
2521#if defined(VFS_BIO_DEBUG)
2522			if (OFF_TO_IDX(foff) != m->pindex) {
2523				printf(
2524"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2525				    (unsigned long)foff, m->pindex);
2526			}
2527#endif
2528			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2529			if (resid > iosize)
2530				resid = iosize;
2531
2532			/*
2533			 * In the write case, the valid and clean bits are
2534			 * already changed correctly ( see bdwrite() ), so we
2535			 * only need to do this here in the read case.
2536			 */
2537			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2538				vfs_page_set_valid(bp, foff, i, m);
2539			}
2540			vm_page_flag_clear(m, PG_ZERO);
2541
2542			/*
2543			 * when debugging new filesystems or buffer I/O methods, this
2544			 * is the most common error that pops up.  if you see this, you
2545			 * have not set the page busy flag correctly!!!
2546			 */
2547			if (m->busy == 0) {
2548#if !defined(MAX_PERF)
2549				printf("biodone: page busy < 0, "
2550				    "pindex: %d, foff: 0x(%x,%x), "
2551				    "resid: %d, index: %d\n",
2552				    (int) m->pindex, (int)(foff >> 32),
2553						(int) foff & 0xffffffff, resid, i);
2554#endif
2555				if (vp->v_type != VBLK)
2556#if !defined(MAX_PERF)
2557					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2558					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2559					    (int) bp->b_lblkno,
2560					    bp->b_flags, bp->b_npages);
2561				else
2562					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2563					    (int) bp->b_lblkno,
2564					    bp->b_flags, bp->b_npages);
2565				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2566				    m->valid, m->dirty, m->wire_count);
2567#endif
2568				panic("biodone: page busy < 0\n");
2569			}
2570			vm_page_io_finish(m);
2571			vm_object_pip_subtract(obj, 1);
2572			foff += resid;
2573			iosize -= resid;
2574		}
2575		if (obj)
2576			vm_object_pip_wakeupn(obj, 0);
2577	}
2578	/*
2579	 * For asynchronous completions, release the buffer now. The brelse
2580	 * will do a wakeup there if necessary - so no need to do a wakeup
2581	 * here in the async case. The sync case always needs to do a wakeup.
2582	 */
2583
2584	if (bp->b_flags & B_ASYNC) {
2585		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2586			brelse(bp);
2587		else
2588			bqrelse(bp);
2589	} else {
2590		wakeup(bp);
2591	}
2592	splx(s);
2593}
2594
2595/*
2596 * This routine is called in lieu of iodone in the case of
2597 * incomplete I/O.  This keeps the busy status for pages
2598 * consistant.
2599 */
2600void
2601vfs_unbusy_pages(struct buf * bp)
2602{
2603	int i;
2604
2605	if (bp->b_flags & B_VMIO) {
2606		struct vnode *vp = bp->b_vp;
2607		vm_object_t obj = vp->v_object;
2608
2609		for (i = 0; i < bp->b_npages; i++) {
2610			vm_page_t m = bp->b_pages[i];
2611
2612			if (m == bogus_page) {
2613				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2614#if !defined(MAX_PERF)
2615				if (!m) {
2616					panic("vfs_unbusy_pages: page missing\n");
2617				}
2618#endif
2619				bp->b_pages[i] = m;
2620				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2621			}
2622			vm_object_pip_subtract(obj, 1);
2623			vm_page_flag_clear(m, PG_ZERO);
2624			vm_page_io_finish(m);
2625		}
2626		vm_object_pip_wakeupn(obj, 0);
2627	}
2628}
2629
2630/*
2631 * vfs_page_set_valid:
2632 *
2633 *	Set the valid bits in a page based on the supplied offset.   The
2634 *	range is restricted to the buffer's size.
2635 *
2636 *	This routine is typically called after a read completes.
2637 */
2638static void
2639vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2640{
2641	vm_ooffset_t soff, eoff;
2642
2643	/*
2644	 * Start and end offsets in buffer.  eoff - soff may not cross a
2645	 * page boundry or cross the end of the buffer.  The end of the
2646	 * buffer, in this case, is our file EOF, not the allocation size
2647	 * of the buffer.
2648	 */
2649	soff = off;
2650	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2651	if (eoff > bp->b_offset + bp->b_bcount)
2652		eoff = bp->b_offset + bp->b_bcount;
2653
2654	/*
2655	 * Set valid range.  This is typically the entire buffer and thus the
2656	 * entire page.
2657	 */
2658	if (eoff > soff) {
2659		vm_page_set_validclean(
2660		    m,
2661		   (vm_offset_t) (soff & PAGE_MASK),
2662		   (vm_offset_t) (eoff - soff)
2663		);
2664	}
2665}
2666
2667/*
2668 * This routine is called before a device strategy routine.
2669 * It is used to tell the VM system that paging I/O is in
2670 * progress, and treat the pages associated with the buffer
2671 * almost as being PG_BUSY.  Also the object paging_in_progress
2672 * flag is handled to make sure that the object doesn't become
2673 * inconsistant.
2674 *
2675 * Since I/O has not been initiated yet, certain buffer flags
2676 * such as B_ERROR or B_INVAL may be in an inconsistant state
2677 * and should be ignored.
2678 */
2679void
2680vfs_busy_pages(struct buf * bp, int clear_modify)
2681{
2682	int i, bogus;
2683
2684	if (bp->b_flags & B_VMIO) {
2685		struct vnode *vp = bp->b_vp;
2686		vm_object_t obj = vp->v_object;
2687		vm_ooffset_t foff;
2688
2689		foff = bp->b_offset;
2690		KASSERT(bp->b_offset != NOOFFSET,
2691		    ("vfs_busy_pages: no buffer offset"));
2692		vfs_setdirty(bp);
2693
2694retry:
2695		for (i = 0; i < bp->b_npages; i++) {
2696			vm_page_t m = bp->b_pages[i];
2697			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2698				goto retry;
2699		}
2700
2701		bogus = 0;
2702		for (i = 0; i < bp->b_npages; i++) {
2703			vm_page_t m = bp->b_pages[i];
2704
2705			vm_page_flag_clear(m, PG_ZERO);
2706			if ((bp->b_flags & B_CLUSTER) == 0) {
2707				vm_object_pip_add(obj, 1);
2708				vm_page_io_start(m);
2709			}
2710
2711			/*
2712			 * When readying a buffer for a read ( i.e
2713			 * clear_modify == 0 ), it is important to do
2714			 * bogus_page replacement for valid pages in
2715			 * partially instantiated buffers.  Partially
2716			 * instantiated buffers can, in turn, occur when
2717			 * reconstituting a buffer from its VM backing store
2718			 * base.  We only have to do this if B_CACHE is
2719			 * clear ( which causes the I/O to occur in the
2720			 * first place ).  The replacement prevents the read
2721			 * I/O from overwriting potentially dirty VM-backed
2722			 * pages.  XXX bogus page replacement is, uh, bogus.
2723			 * It may not work properly with small-block devices.
2724			 * We need to find a better way.
2725			 */
2726
2727			vm_page_protect(m, VM_PROT_NONE);
2728			if (clear_modify)
2729				vfs_page_set_valid(bp, foff, i, m);
2730			else if (m->valid == VM_PAGE_BITS_ALL &&
2731				(bp->b_flags & B_CACHE) == 0) {
2732				bp->b_pages[i] = bogus_page;
2733				bogus++;
2734			}
2735			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2736		}
2737		if (bogus)
2738			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2739	}
2740}
2741
2742/*
2743 * Tell the VM system that the pages associated with this buffer
2744 * are clean.  This is used for delayed writes where the data is
2745 * going to go to disk eventually without additional VM intevention.
2746 *
2747 * Note that while we only really need to clean through to b_bcount, we
2748 * just go ahead and clean through to b_bufsize.
2749 */
2750static void
2751vfs_clean_pages(struct buf * bp)
2752{
2753	int i;
2754
2755	if (bp->b_flags & B_VMIO) {
2756		vm_ooffset_t foff;
2757
2758		foff = bp->b_offset;
2759		KASSERT(bp->b_offset != NOOFFSET,
2760		    ("vfs_clean_pages: no buffer offset"));
2761		for (i = 0; i < bp->b_npages; i++) {
2762			vm_page_t m = bp->b_pages[i];
2763			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2764			vm_ooffset_t eoff = noff;
2765
2766			if (eoff > bp->b_offset + bp->b_bufsize)
2767				eoff = bp->b_offset + bp->b_bufsize;
2768			vfs_page_set_valid(bp, foff, i, m);
2769			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2770			foff = noff;
2771		}
2772	}
2773}
2774
2775/*
2776 *	vfs_bio_set_validclean:
2777 *
2778 *	Set the range within the buffer to valid and clean.  The range is
2779 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
2780 *	itself may be offset from the beginning of the first page.
2781 */
2782
2783void
2784vfs_bio_set_validclean(struct buf *bp, int base, int size)
2785{
2786	if (bp->b_flags & B_VMIO) {
2787		int i;
2788		int n;
2789
2790		/*
2791		 * Fixup base to be relative to beginning of first page.
2792		 * Set initial n to be the maximum number of bytes in the
2793		 * first page that can be validated.
2794		 */
2795
2796		base += (bp->b_offset & PAGE_MASK);
2797		n = PAGE_SIZE - (base & PAGE_MASK);
2798
2799		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
2800			vm_page_t m = bp->b_pages[i];
2801
2802			if (n > size)
2803				n = size;
2804
2805			vm_page_set_validclean(m, base & PAGE_MASK, n);
2806			base += n;
2807			size -= n;
2808			n = PAGE_SIZE;
2809		}
2810	}
2811}
2812
2813/*
2814 *	vfs_bio_clrbuf:
2815 *
2816 *	clear a buffer.  This routine essentially fakes an I/O, so we need
2817 *	to clear B_ERROR and B_INVAL.
2818 *
2819 *	Note that while we only theoretically need to clear through b_bcount,
2820 *	we go ahead and clear through b_bufsize.
2821 */
2822
2823void
2824vfs_bio_clrbuf(struct buf *bp) {
2825	int i, mask = 0;
2826	caddr_t sa, ea;
2827	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2828		bp->b_flags &= ~(B_INVAL|B_ERROR);
2829		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2830		    (bp->b_offset & PAGE_MASK) == 0) {
2831			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2832			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2833			    ((bp->b_pages[0]->valid & mask) != mask)) {
2834				bzero(bp->b_data, bp->b_bufsize);
2835			}
2836			bp->b_pages[0]->valid |= mask;
2837			bp->b_resid = 0;
2838			return;
2839		}
2840		ea = sa = bp->b_data;
2841		for(i=0;i<bp->b_npages;i++,sa=ea) {
2842			int j = ((u_long)sa & PAGE_MASK) / DEV_BSIZE;
2843			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2844			ea = (caddr_t)ulmin((u_long)ea,
2845				(u_long)bp->b_data + bp->b_bufsize);
2846			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2847			if ((bp->b_pages[i]->valid & mask) == mask)
2848				continue;
2849			if ((bp->b_pages[i]->valid & mask) == 0) {
2850				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2851					bzero(sa, ea - sa);
2852				}
2853			} else {
2854				for (; sa < ea; sa += DEV_BSIZE, j++) {
2855					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2856						(bp->b_pages[i]->valid & (1<<j)) == 0)
2857						bzero(sa, DEV_BSIZE);
2858				}
2859			}
2860			bp->b_pages[i]->valid |= mask;
2861			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2862		}
2863		bp->b_resid = 0;
2864	} else {
2865		clrbuf(bp);
2866	}
2867}
2868
2869/*
2870 * vm_hold_load_pages and vm_hold_unload pages get pages into
2871 * a buffers address space.  The pages are anonymous and are
2872 * not associated with a file object.
2873 */
2874void
2875vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2876{
2877	vm_offset_t pg;
2878	vm_page_t p;
2879	int index;
2880
2881	to = round_page(to);
2882	from = round_page(from);
2883	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
2884
2885	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2886
2887tryagain:
2888
2889		p = vm_page_alloc(kernel_object,
2890			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
2891		    VM_ALLOC_NORMAL);
2892		if (!p) {
2893			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
2894			VM_WAIT;
2895			goto tryagain;
2896		}
2897		vm_page_wire(p);
2898		p->valid = VM_PAGE_BITS_ALL;
2899		vm_page_flag_clear(p, PG_ZERO);
2900		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
2901		bp->b_pages[index] = p;
2902		vm_page_wakeup(p);
2903	}
2904	bp->b_npages = index;
2905}
2906
2907void
2908vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2909{
2910	vm_offset_t pg;
2911	vm_page_t p;
2912	int index, newnpages;
2913
2914	from = round_page(from);
2915	to = round_page(to);
2916	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
2917
2918	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2919		p = bp->b_pages[index];
2920		if (p && (index < bp->b_npages)) {
2921#if !defined(MAX_PERF)
2922			if (p->busy) {
2923				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2924					bp->b_blkno, bp->b_lblkno);
2925			}
2926#endif
2927			bp->b_pages[index] = NULL;
2928			pmap_kremove(pg);
2929			vm_page_busy(p);
2930			vm_page_unwire(p, 0);
2931			vm_page_free(p);
2932		}
2933	}
2934	bp->b_npages = newnpages;
2935}
2936
2937
2938#include "opt_ddb.h"
2939#ifdef DDB
2940#include <ddb/ddb.h>
2941
2942DB_SHOW_COMMAND(buffer, db_show_buffer)
2943{
2944	/* get args */
2945	struct buf *bp = (struct buf *)addr;
2946
2947	if (!have_addr) {
2948		db_printf("usage: show buffer <addr>\n");
2949		return;
2950	}
2951
2952	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
2953	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2954		  "b_resid = %ld\nb_dev = (%d,%d), b_data = %p, "
2955		  "b_blkno = %d, b_pblkno = %d\n",
2956		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2957		  major(bp->b_dev), minor(bp->b_dev),
2958		  bp->b_data, bp->b_blkno, bp->b_pblkno);
2959	if (bp->b_npages) {
2960		int i;
2961		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
2962		for (i = 0; i < bp->b_npages; i++) {
2963			vm_page_t m;
2964			m = bp->b_pages[i];
2965			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
2966			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
2967			if ((i + 1) < bp->b_npages)
2968				db_printf(",");
2969		}
2970		db_printf("\n");
2971	}
2972}
2973#endif /* DDB */
2974