vfs_bio.c revision 45347
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $Id: vfs_bio.c,v 1.203 1999/03/19 10:17:44 bde Exp $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#define VMIO
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/sysproto.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/proc.h>
37#include <sys/vnode.h>
38#include <sys/vmmeter.h>
39#include <sys/lock.h>
40#include <miscfs/specfs/specdev.h>
41#include <vm/vm.h>
42#include <vm/vm_param.h>
43#include <vm/vm_prot.h>
44#include <vm/vm_kern.h>
45#include <vm/vm_pageout.h>
46#include <vm/vm_page.h>
47#include <vm/vm_object.h>
48#include <vm/vm_extern.h>
49#include <vm/vm_map.h>
50#include <sys/buf.h>
51#include <sys/mount.h>
52#include <sys/malloc.h>
53#include <sys/resourcevar.h>
54
55static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
56
57struct	bio_ops bioops;		/* I/O operation notification */
58
59#if 0 	/* replaced bu sched_sync */
60static void vfs_update __P((void));
61static struct	proc *updateproc;
62static struct kproc_desc up_kp = {
63	"update",
64	vfs_update,
65	&updateproc
66};
67SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
68#endif
69
70struct buf *buf;		/* buffer header pool */
71struct swqueue bswlist;
72
73static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
74		vm_offset_t to);
75static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
78			      vm_offset_t off, vm_offset_t size,
79			      vm_page_t m);
80static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
81			       int pageno, vm_page_t m);
82static void vfs_clean_pages(struct buf * bp);
83static void vfs_setdirty(struct buf *bp);
84static void vfs_vmio_release(struct buf *bp);
85static void flushdirtybuffers(int slpflag, int slptimeo);
86static int flushbufqueues(void);
87
88/*
89 * Internal update daemon, process 3
90 *	The variable vfs_update_wakeup allows for internal syncs.
91 */
92int vfs_update_wakeup;
93
94/*
95 * bogus page -- for I/O to/from partially complete buffers
96 * this is a temporary solution to the problem, but it is not
97 * really that bad.  it would be better to split the buffer
98 * for input in the case of buffers partially already in memory,
99 * but the code is intricate enough already.
100 */
101vm_page_t bogus_page;
102int runningbufspace;
103static vm_offset_t bogus_offset;
104
105static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
106	bufmallocspace, maxbufmallocspace, hibufspace;
107static int needsbuffer;
108static int numdirtybuffers, lodirtybuffers, hidirtybuffers;
109static int numfreebuffers, lofreebuffers, hifreebuffers;
110static int kvafreespace;
111
112SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
113	&numdirtybuffers, 0, "");
114SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
115	&lodirtybuffers, 0, "");
116SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
117	&hidirtybuffers, 0, "");
118SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
119	&numfreebuffers, 0, "");
120SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
121	&lofreebuffers, 0, "");
122SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
123	&hifreebuffers, 0, "");
124SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD,
125	&runningbufspace, 0, "");
126SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
127	&maxbufspace, 0, "");
128SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD,
129	&hibufspace, 0, "");
130SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
131	&bufspace, 0, "");
132SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
133	&maxvmiobufspace, 0, "");
134SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
135	&vmiospace, 0, "");
136SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
137	&maxbufmallocspace, 0, "");
138SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
139	&bufmallocspace, 0, "");
140SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
141	&kvafreespace, 0, "");
142
143static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
144struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
145
146extern int vm_swap_size;
147
148#define BUF_MAXUSE		24
149
150#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
151#define VFS_BIO_NEED_RESERVED02	0x02	/* unused */
152#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
153#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
154#define VFS_BIO_NEED_KVASPACE	0x10	/* wait for buffer_map space, emerg  */
155
156/*
157 *	kvaspacewakeup:
158 *
159 *	Called when kva space is potential available for recovery or when
160 *	kva space is recovered in the buffer_map.  This function wakes up
161 *	anyone waiting for buffer_map kva space.  Even though the buffer_map
162 *	is larger then maxbufspace, this situation will typically occur
163 *	when the buffer_map gets fragmented.
164 */
165
166static __inline void
167kvaspacewakeup(void)
168{
169	/*
170	 * If someone is waiting for KVA space, wake them up.  Even
171	 * though we haven't freed the kva space yet, the waiting
172	 * process will be able to now.
173	 */
174	if (needsbuffer & VFS_BIO_NEED_KVASPACE) {
175		needsbuffer &= ~VFS_BIO_NEED_KVASPACE;
176		wakeup(&needsbuffer);
177	}
178}
179
180/*
181 *	bufspacewakeup:
182 *
183 *	Called when buffer space is potentially available for recovery or when
184 *	buffer space is recovered.  getnewbuf() will block on this flag when
185 *	it is unable to free sufficient buffer space.  Buffer space becomes
186 *	recoverable when bp's get placed back in the queues.
187 */
188
189static __inline void
190bufspacewakeup(void)
191{
192	/*
193	 * If someone is waiting for BUF space, wake them up.  Even
194	 * though we haven't freed the kva space yet, the waiting
195	 * process will be able to now.
196	 */
197	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
198		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
199		wakeup(&needsbuffer);
200	}
201}
202
203/*
204 *	bufcountwakeup:
205 *
206 *	Called when a buffer has been added to one of the free queues to
207 *	account for the buffer and to wakeup anyone waiting for free buffers.
208 *	This typically occurs when large amounts of metadata are being handled
209 *	by the buffer cache ( else buffer space runs out first, usually ).
210 */
211
212static __inline void
213bufcountwakeup(void)
214{
215	++numfreebuffers;
216	if (needsbuffer) {
217		needsbuffer &= ~VFS_BIO_NEED_ANY;
218		if (numfreebuffers >= hifreebuffers)
219			needsbuffer &= ~VFS_BIO_NEED_FREE;
220		wakeup(&needsbuffer);
221	}
222}
223
224/*
225 * Initialize buffer headers and related structures.
226 */
227void
228bufinit()
229{
230	struct buf *bp;
231	int i;
232
233	TAILQ_INIT(&bswlist);
234	LIST_INIT(&invalhash);
235
236	/* first, make a null hash table */
237	for (i = 0; i < BUFHSZ; i++)
238		LIST_INIT(&bufhashtbl[i]);
239
240	/* next, make a null set of free lists */
241	for (i = 0; i < BUFFER_QUEUES; i++)
242		TAILQ_INIT(&bufqueues[i]);
243
244	/* finally, initialize each buffer header and stick on empty q */
245	for (i = 0; i < nbuf; i++) {
246		bp = &buf[i];
247		bzero(bp, sizeof *bp);
248		bp->b_flags = B_INVAL;	/* we're just an empty header */
249		bp->b_dev = NODEV;
250		bp->b_rcred = NOCRED;
251		bp->b_wcred = NOCRED;
252		bp->b_qindex = QUEUE_EMPTY;
253		bp->b_xflags = 0;
254		LIST_INIT(&bp->b_dep);
255		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
256		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
257	}
258
259	/*
260	 * maxbufspace is currently calculated to support all filesystem
261	 * blocks to be 8K.  If you happen to use a 16K filesystem, the size
262	 * of the buffer cache is still the same as it would be for 8K
263	 * filesystems.  This keeps the size of the buffer cache "in check"
264	 * for big block filesystems.
265	 *
266	 * maxbufspace is calculated as around 50% of the KVA available in
267	 * the buffer_map ( DFLTSIZE vs BKVASIZE ), I presume to reduce the
268	 * effect of fragmentation.
269	 */
270	maxbufspace = (nbuf + 8) * DFLTBSIZE;
271	if ((hibufspace = maxbufspace - MAXBSIZE * 5) <= MAXBSIZE)
272		hibufspace = 3 * maxbufspace / 4;
273/*
274 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
275 */
276	maxvmiobufspace = 2 * hibufspace / 3;
277/*
278 * Limit the amount of malloc memory since it is wired permanently into
279 * the kernel space.  Even though this is accounted for in the buffer
280 * allocation, we don't want the malloced region to grow uncontrolled.
281 * The malloc scheme improves memory utilization significantly on average
282 * (small) directories.
283 */
284	maxbufmallocspace = hibufspace / 20;
285
286/*
287 * Reduce the chance of a deadlock occuring by limiting the number
288 * of delayed-write dirty buffers we allow to stack up.
289 */
290	lodirtybuffers = nbuf / 16 + 10;
291	hidirtybuffers = nbuf / 8 + 20;
292	numdirtybuffers = 0;
293
294/*
295 * Try to keep the number of free buffers in the specified range,
296 * and give the syncer access to an emergency reserve.
297 */
298	lofreebuffers = nbuf / 18 + 5;
299	hifreebuffers = 2 * lofreebuffers;
300	numfreebuffers = nbuf;
301
302	kvafreespace = 0;
303
304	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
305	bogus_page = vm_page_alloc(kernel_object,
306			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
307			VM_ALLOC_NORMAL);
308
309}
310
311/*
312 * Free the kva allocation for a buffer
313 * Must be called only at splbio or higher,
314 *  as this is the only locking for buffer_map.
315 */
316static void
317bfreekva(struct buf * bp)
318{
319	if (bp->b_kvasize) {
320		vm_map_delete(buffer_map,
321		    (vm_offset_t) bp->b_kvabase,
322		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
323		);
324		bp->b_kvasize = 0;
325		kvaspacewakeup();
326	}
327}
328
329/*
330 *	bremfree:
331 *
332 *	Remove the buffer from the appropriate free list.
333 */
334void
335bremfree(struct buf * bp)
336{
337	int s = splbio();
338	int old_qindex = bp->b_qindex;
339
340	if (bp->b_qindex != QUEUE_NONE) {
341		if (bp->b_qindex == QUEUE_EMPTY) {
342			kvafreespace -= bp->b_kvasize;
343		}
344		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
345		bp->b_qindex = QUEUE_NONE;
346		runningbufspace += bp->b_bufsize;
347	} else {
348#if !defined(MAX_PERF)
349		panic("bremfree: removing a buffer when not on a queue");
350#endif
351	}
352
353	/*
354	 * Fixup numfreebuffers count.  If the buffer is invalid or not
355	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
356	 * the buffer was free and we must decrement numfreebuffers.
357	 */
358	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
359		switch(old_qindex) {
360		case QUEUE_EMPTY:
361		case QUEUE_LRU:
362		case QUEUE_AGE:
363			--numfreebuffers;
364			break;
365		default:
366			break;
367		}
368	}
369	splx(s);
370}
371
372
373/*
374 * Get a buffer with the specified data.  Look in the cache first.
375 */
376int
377bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
378    struct buf ** bpp)
379{
380	struct buf *bp;
381
382	bp = getblk(vp, blkno, size, 0, 0);
383	*bpp = bp;
384
385	/* if not found in cache, do some I/O */
386	if ((bp->b_flags & B_CACHE) == 0) {
387		if (curproc != NULL)
388			curproc->p_stats->p_ru.ru_inblock++;
389		KASSERT(!(bp->b_flags & B_ASYNC), ("bread: illegal async bp %p", bp));
390		bp->b_flags |= B_READ;
391		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
392		if (bp->b_rcred == NOCRED) {
393			if (cred != NOCRED)
394				crhold(cred);
395			bp->b_rcred = cred;
396		}
397		vfs_busy_pages(bp, 0);
398		VOP_STRATEGY(vp, bp);
399		return (biowait(bp));
400	}
401	return (0);
402}
403
404/*
405 * Operates like bread, but also starts asynchronous I/O on
406 * read-ahead blocks.
407 */
408int
409breadn(struct vnode * vp, daddr_t blkno, int size,
410    daddr_t * rablkno, int *rabsize,
411    int cnt, struct ucred * cred, struct buf ** bpp)
412{
413	struct buf *bp, *rabp;
414	int i;
415	int rv = 0, readwait = 0;
416
417	*bpp = bp = getblk(vp, blkno, size, 0, 0);
418
419	/* if not found in cache, do some I/O */
420	if ((bp->b_flags & B_CACHE) == 0) {
421		if (curproc != NULL)
422			curproc->p_stats->p_ru.ru_inblock++;
423		bp->b_flags |= B_READ;
424		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
425		if (bp->b_rcred == NOCRED) {
426			if (cred != NOCRED)
427				crhold(cred);
428			bp->b_rcred = cred;
429		}
430		vfs_busy_pages(bp, 0);
431		VOP_STRATEGY(vp, bp);
432		++readwait;
433	}
434
435	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
436		if (inmem(vp, *rablkno))
437			continue;
438		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
439
440		if ((rabp->b_flags & B_CACHE) == 0) {
441			if (curproc != NULL)
442				curproc->p_stats->p_ru.ru_inblock++;
443			rabp->b_flags |= B_READ | B_ASYNC;
444			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
445			if (rabp->b_rcred == NOCRED) {
446				if (cred != NOCRED)
447					crhold(cred);
448				rabp->b_rcred = cred;
449			}
450			vfs_busy_pages(rabp, 0);
451			VOP_STRATEGY(vp, rabp);
452		} else {
453			brelse(rabp);
454		}
455	}
456
457	if (readwait) {
458		rv = biowait(bp);
459	}
460	return (rv);
461}
462
463/*
464 * Write, release buffer on completion.  (Done by iodone
465 * if async.)
466 */
467int
468bwrite(struct buf * bp)
469{
470	int oldflags, s;
471	struct vnode *vp;
472	struct mount *mp;
473
474	if (bp->b_flags & B_INVAL) {
475		brelse(bp);
476		return (0);
477	}
478
479	oldflags = bp->b_flags;
480
481#if !defined(MAX_PERF)
482	if ((bp->b_flags & B_BUSY) == 0)
483		panic("bwrite: buffer is not busy???");
484#endif
485	s = splbio();
486	bundirty(bp);
487
488	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
489	bp->b_flags |= B_WRITEINPROG;
490
491	bp->b_vp->v_numoutput++;
492	vfs_busy_pages(bp, 1);
493	if (curproc != NULL)
494		curproc->p_stats->p_ru.ru_oublock++;
495	splx(s);
496	VOP_STRATEGY(bp->b_vp, bp);
497
498	/*
499	 * Collect statistics on synchronous and asynchronous writes.
500	 * Writes to block devices are charged to their associated
501	 * filesystem (if any).
502	 */
503	if ((vp = bp->b_vp) != NULL) {
504		if (vp->v_type == VBLK)
505			mp = vp->v_specmountpoint;
506		else
507			mp = vp->v_mount;
508		if (mp != NULL)
509			if ((oldflags & B_ASYNC) == 0)
510				mp->mnt_stat.f_syncwrites++;
511			else
512				mp->mnt_stat.f_asyncwrites++;
513	}
514
515	if ((oldflags & B_ASYNC) == 0) {
516		int rtval = biowait(bp);
517		brelse(bp);
518		return (rtval);
519	}
520
521	return (0);
522}
523
524/*
525 * Delayed write. (Buffer is marked dirty).
526 */
527void
528bdwrite(struct buf * bp)
529{
530	struct vnode *vp;
531
532#if !defined(MAX_PERF)
533	if ((bp->b_flags & B_BUSY) == 0) {
534		panic("bdwrite: buffer is not busy");
535	}
536#endif
537
538	if (bp->b_flags & B_INVAL) {
539		brelse(bp);
540		return;
541	}
542	bdirty(bp);
543
544	/*
545	 * This bmap keeps the system from needing to do the bmap later,
546	 * perhaps when the system is attempting to do a sync.  Since it
547	 * is likely that the indirect block -- or whatever other datastructure
548	 * that the filesystem needs is still in memory now, it is a good
549	 * thing to do this.  Note also, that if the pageout daemon is
550	 * requesting a sync -- there might not be enough memory to do
551	 * the bmap then...  So, this is important to do.
552	 */
553	if (bp->b_lblkno == bp->b_blkno) {
554		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
555	}
556
557	/*
558	 * Set the *dirty* buffer range based upon the VM system dirty pages.
559	 */
560	vfs_setdirty(bp);
561
562	/*
563	 * We need to do this here to satisfy the vnode_pager and the
564	 * pageout daemon, so that it thinks that the pages have been
565	 * "cleaned".  Note that since the pages are in a delayed write
566	 * buffer -- the VFS layer "will" see that the pages get written
567	 * out on the next sync, or perhaps the cluster will be completed.
568	 */
569	vfs_clean_pages(bp);
570	bqrelse(bp);
571
572	/*
573	 * XXX The soft dependency code is not prepared to
574	 * have I/O done when a bdwrite is requested. For
575	 * now we just let the write be delayed if it is
576	 * requested by the soft dependency code.
577	 */
578	if ((vp = bp->b_vp) &&
579	    ((vp->v_type == VBLK && vp->v_specmountpoint &&
580		  (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) ||
581		 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP))))
582		return;
583
584	if (numdirtybuffers >= hidirtybuffers)
585		flushdirtybuffers(0, 0);
586}
587
588/*
589 *	bdirty:
590 *
591 *	Turn buffer into delayed write request.  We must clear B_READ and
592 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
593 *	itself to properly update it in the dirty/clean lists.  We mark it
594 *	B_DONE to ensure that any asynchronization of the buffer properly
595 *	clears B_DONE ( else a panic will occur later ).  Note that B_INVALID
596 *	buffers are not considered dirty even if B_DELWRI is set.
597 *
598 *	Since the buffer is not on a queue, we do not update the numfreebuffers
599 *	count.
600 *
601 *	Must be called at splbio().
602 *	The buffer must be on QUEUE_NONE.
603 */
604void
605bdirty(bp)
606	struct buf *bp;
607{
608	KASSERT(bp->b_qindex == QUEUE_NONE, ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
609	bp->b_flags &= ~(B_READ|B_RELBUF);
610
611	if ((bp->b_flags & B_DELWRI) == 0) {
612		bp->b_flags |= B_DONE | B_DELWRI;
613		reassignbuf(bp, bp->b_vp);
614		++numdirtybuffers;
615	}
616}
617
618/*
619 *	bundirty:
620 *
621 *	Clear B_DELWRI for buffer.
622 *
623 *	Since the buffer is not on a queue, we do not update the numfreebuffers
624 *	count.
625 *
626 *	Must be called at splbio().
627 *	The buffer must be on QUEUE_NONE.
628 */
629
630void
631bundirty(bp)
632	struct buf *bp;
633{
634	KASSERT(bp->b_qindex == QUEUE_NONE, ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
635
636	if (bp->b_flags & B_DELWRI) {
637		bp->b_flags &= ~B_DELWRI;
638		reassignbuf(bp, bp->b_vp);
639		--numdirtybuffers;
640	}
641}
642
643/*
644 *	bawrite:
645 *
646 *	Asynchronous write.  Start output on a buffer, but do not wait for
647 *	it to complete.  The buffer is released when the output completes.
648 */
649void
650bawrite(struct buf * bp)
651{
652	bp->b_flags |= B_ASYNC;
653	(void) VOP_BWRITE(bp);
654}
655
656/*
657 *	bowrite:
658 *
659 *	Ordered write.  Start output on a buffer, and flag it so that the
660 *	device will write it in the order it was queued.  The buffer is
661 *	released when the output completes.
662 */
663int
664bowrite(struct buf * bp)
665{
666	bp->b_flags |= B_ORDERED | B_ASYNC;
667	return (VOP_BWRITE(bp));
668}
669
670/*
671 *	brelse:
672 *
673 *	Release a busy buffer and, if requested, free its resources.  The
674 *	buffer will be stashed in the appropriate bufqueue[] allowing it
675 *	to be accessed later as a cache entity or reused for other purposes.
676 */
677void
678brelse(struct buf * bp)
679{
680	int s;
681
682	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
683
684#if 0
685	if (bp->b_flags & B_CLUSTER) {
686		relpbuf(bp, NULL);
687		return;
688	}
689#endif
690
691	s = splbio();
692
693	if (bp->b_flags & B_LOCKED)
694		bp->b_flags &= ~B_ERROR;
695
696	if ((bp->b_flags & (B_READ | B_ERROR)) == B_ERROR) {
697		bp->b_flags &= ~B_ERROR;
698		bdirty(bp);
699	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
700	    (bp->b_bufsize <= 0)) {
701		bp->b_flags |= B_INVAL;
702		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
703			(*bioops.io_deallocate)(bp);
704		if (bp->b_flags & B_DELWRI)
705			--numdirtybuffers;
706		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
707		if ((bp->b_flags & B_VMIO) == 0) {
708			if (bp->b_bufsize)
709				allocbuf(bp, 0);
710			if (bp->b_vp)
711				brelvp(bp);
712		}
713	}
714
715	/*
716	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
717	 * is called with B_DELWRI set, the underlying pages may wind up
718	 * getting freed causing a previous write (bdwrite()) to get 'lost'
719	 * because pages associated with a B_DELWRI bp are marked clean.
720	 *
721	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
722	 * if B_DELWRI is set.
723	 */
724
725	if (bp->b_flags & B_DELWRI)
726		bp->b_flags &= ~B_RELBUF;
727
728	/*
729	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
730	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
731	 * but the VM object is kept around.  The B_NOCACHE flag is used to
732	 * invalidate the pages in the VM object.
733	 *
734	 * The b_{validoff,validend,dirtyoff,dirtyend} values are relative
735	 * to b_offset and currently have byte granularity, whereas the
736	 * valid flags in the vm_pages have only DEV_BSIZE resolution.
737	 * The byte resolution fields are used to avoid unnecessary re-reads
738	 * of the buffer but the code really needs to be genericized so
739	 * other filesystem modules can take advantage of these fields.
740	 *
741	 * XXX this seems to cause performance problems.
742	 */
743	if ((bp->b_flags & B_VMIO)
744	    && !(bp->b_vp->v_tag == VT_NFS &&
745		 bp->b_vp->v_type != VBLK &&
746		 (bp->b_flags & B_DELWRI) != 0)
747#ifdef notdef
748	    && (bp->b_vp->v_tag != VT_NFS
749		|| bp->b_vp->v_type == VBLK
750		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
751		|| bp->b_validend == 0
752		|| (bp->b_validoff == 0
753		    && bp->b_validend == bp->b_bufsize))
754#endif
755	    ) {
756
757		int i, j, resid;
758		vm_page_t m;
759		off_t foff;
760		vm_pindex_t poff;
761		vm_object_t obj;
762		struct vnode *vp;
763
764		vp = bp->b_vp;
765
766		/*
767		 * Get the base offset and length of the buffer.  Note that
768		 * for block sizes that are less then PAGE_SIZE, the b_data
769		 * base of the buffer does not represent exactly b_offset and
770		 * neither b_offset nor b_size are necessarily page aligned.
771		 * Instead, the starting position of b_offset is:
772		 *
773		 * 	b_data + (b_offset & PAGE_MASK)
774		 *
775		 * block sizes less then DEV_BSIZE (usually 512) are not
776		 * supported due to the page granularity bits (m->valid,
777		 * m->dirty, etc...).
778		 *
779		 * See man buf(9) for more information
780		 */
781
782		resid = bp->b_bufsize;
783		foff = bp->b_offset;
784
785		for (i = 0; i < bp->b_npages; i++) {
786			m = bp->b_pages[i];
787			vm_page_flag_clear(m, PG_ZERO);
788			if (m == bogus_page) {
789
790				obj = (vm_object_t) vp->v_object;
791				poff = OFF_TO_IDX(bp->b_offset);
792
793				for (j = i; j < bp->b_npages; j++) {
794					m = bp->b_pages[j];
795					if (m == bogus_page) {
796						m = vm_page_lookup(obj, poff + j);
797#if !defined(MAX_PERF)
798						if (!m) {
799							panic("brelse: page missing\n");
800						}
801#endif
802						bp->b_pages[j] = m;
803					}
804				}
805
806				if ((bp->b_flags & B_INVAL) == 0) {
807					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
808				}
809			}
810			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
811				int poffset = foff & PAGE_MASK;
812				int presid = resid > (PAGE_SIZE - poffset) ?
813					(PAGE_SIZE - poffset) : resid;
814
815				KASSERT(presid >= 0, ("brelse: extra page"));
816				vm_page_set_invalid(m, poffset, presid);
817			}
818			resid -= PAGE_SIZE - (foff & PAGE_MASK);
819			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
820		}
821
822		if (bp->b_flags & (B_INVAL | B_RELBUF))
823			vfs_vmio_release(bp);
824
825	} else if (bp->b_flags & B_VMIO) {
826
827		if (bp->b_flags & (B_INVAL | B_RELBUF))
828			vfs_vmio_release(bp);
829
830	}
831
832#if !defined(MAX_PERF)
833	if (bp->b_qindex != QUEUE_NONE)
834		panic("brelse: free buffer onto another queue???");
835#endif
836	/* enqueue */
837
838	/* buffers with no memory */
839	if (bp->b_bufsize == 0) {
840		bp->b_flags |= B_INVAL;
841		bp->b_qindex = QUEUE_EMPTY;
842		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
843		LIST_REMOVE(bp, b_hash);
844		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
845		bp->b_dev = NODEV;
846		kvafreespace += bp->b_kvasize;
847		if (bp->b_kvasize)
848			kvaspacewakeup();
849	/* buffers with junk contents */
850	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
851		bp->b_flags |= B_INVAL;
852		bp->b_qindex = QUEUE_AGE;
853		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
854		LIST_REMOVE(bp, b_hash);
855		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
856		bp->b_dev = NODEV;
857
858	/* buffers that are locked */
859	} else if (bp->b_flags & B_LOCKED) {
860		bp->b_qindex = QUEUE_LOCKED;
861		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
862
863	/* buffers with stale but valid contents */
864	} else if (bp->b_flags & B_AGE) {
865		bp->b_qindex = QUEUE_AGE;
866		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
867
868	/* buffers with valid and quite potentially reuseable contents */
869	} else {
870		bp->b_qindex = QUEUE_LRU;
871		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
872	}
873
874	/*
875	 * If B_INVAL, clear B_DELWRI.
876	 */
877	if ((bp->b_flags & (B_INVAL|B_DELWRI)) == (B_INVAL|B_DELWRI)) {
878		bp->b_flags &= ~B_DELWRI;
879		--numdirtybuffers;
880	}
881
882	runningbufspace -= bp->b_bufsize;
883
884	/*
885	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
886	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
887	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
888	 * if B_INVAL is set ).
889	 */
890
891	if ((bp->b_flags & B_LOCKED) == 0 && !(bp->b_flags & B_DELWRI))
892		bufcountwakeup();
893
894	/*
895	 * Something we can maybe free.
896	 */
897
898	if (bp->b_bufsize)
899		bufspacewakeup();
900
901	if (bp->b_flags & B_WANTED) {
902		bp->b_flags &= ~(B_WANTED | B_AGE);
903		wakeup(bp);
904	}
905
906	/* unlock */
907	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
908		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
909	splx(s);
910}
911
912/*
913 * Release a buffer back to the appropriate queue but do not try to free
914 * it.
915 */
916void
917bqrelse(struct buf * bp)
918{
919	int s;
920
921	s = splbio();
922
923	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
924
925#if !defined(MAX_PERF)
926	if (bp->b_qindex != QUEUE_NONE)
927		panic("bqrelse: free buffer onto another queue???");
928#endif
929	if (bp->b_flags & B_LOCKED) {
930		bp->b_flags &= ~B_ERROR;
931		bp->b_qindex = QUEUE_LOCKED;
932		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
933		/* buffers with stale but valid contents */
934	} else {
935		bp->b_qindex = QUEUE_LRU;
936		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
937	}
938
939	runningbufspace -= bp->b_bufsize;
940
941	if ((bp->b_flags & B_LOCKED) == 0 &&
942	    ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
943	) {
944		bufcountwakeup();
945	}
946
947	/*
948	 * Something we can maybe wakeup
949	 */
950	if (bp->b_bufsize)
951		bufspacewakeup();
952
953	/* anyone need this block? */
954	if (bp->b_flags & B_WANTED) {
955		bp->b_flags &= ~(B_WANTED | B_AGE);
956		wakeup(bp);
957	}
958
959	/* unlock */
960	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
961		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
962	splx(s);
963}
964
965static void
966vfs_vmio_release(bp)
967	struct buf *bp;
968{
969	int i, s;
970	vm_page_t m;
971
972	s = splvm();
973	for (i = 0; i < bp->b_npages; i++) {
974		m = bp->b_pages[i];
975		bp->b_pages[i] = NULL;
976		/*
977		 * In order to keep page LRU ordering consistent, put
978		 * everything on the inactive queue.
979		 */
980		vm_page_unwire(m, 0);
981		/*
982		 * We don't mess with busy pages, it is
983		 * the responsibility of the process that
984		 * busied the pages to deal with them.
985		 */
986		if ((m->flags & PG_BUSY) || (m->busy != 0))
987			continue;
988
989		if (m->wire_count == 0) {
990			vm_page_flag_clear(m, PG_ZERO);
991			/*
992			 * Might as well free the page if we can and it has
993			 * no valid data.
994			 */
995			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
996				vm_page_busy(m);
997				vm_page_protect(m, VM_PROT_NONE);
998				vm_page_free(m);
999			}
1000		}
1001	}
1002	bufspace -= bp->b_bufsize;
1003	vmiospace -= bp->b_bufsize;
1004	runningbufspace -= bp->b_bufsize;
1005	splx(s);
1006	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1007	if (bp->b_bufsize)
1008		bufspacewakeup();
1009	bp->b_npages = 0;
1010	bp->b_bufsize = 0;
1011	bp->b_flags &= ~B_VMIO;
1012	if (bp->b_vp)
1013		brelvp(bp);
1014}
1015
1016/*
1017 * Check to see if a block is currently memory resident.
1018 */
1019struct buf *
1020gbincore(struct vnode * vp, daddr_t blkno)
1021{
1022	struct buf *bp;
1023	struct bufhashhdr *bh;
1024
1025	bh = BUFHASH(vp, blkno);
1026	bp = bh->lh_first;
1027
1028	/* Search hash chain */
1029	while (bp != NULL) {
1030		/* hit */
1031		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
1032		    (bp->b_flags & B_INVAL) == 0) {
1033			break;
1034		}
1035		bp = bp->b_hash.le_next;
1036	}
1037	return (bp);
1038}
1039
1040/*
1041 * this routine implements clustered async writes for
1042 * clearing out B_DELWRI buffers...  This is much better
1043 * than the old way of writing only one buffer at a time.
1044 */
1045int
1046vfs_bio_awrite(struct buf * bp)
1047{
1048	int i;
1049	daddr_t lblkno = bp->b_lblkno;
1050	struct vnode *vp = bp->b_vp;
1051	int s;
1052	int ncl;
1053	struct buf *bpa;
1054	int nwritten;
1055	int size;
1056	int maxcl;
1057
1058	s = splbio();
1059	/*
1060	 * right now we support clustered writing only to regular files, and
1061	 * then only if our I/O system is not saturated.
1062	 */
1063	if ((vp->v_type == VREG) &&
1064	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1065	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1066
1067		size = vp->v_mount->mnt_stat.f_iosize;
1068		maxcl = MAXPHYS / size;
1069
1070		for (i = 1; i < maxcl; i++) {
1071			if ((bpa = gbincore(vp, lblkno + i)) &&
1072			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
1073			    (B_DELWRI | B_CLUSTEROK)) &&
1074			    (bpa->b_bufsize == size)) {
1075				if ((bpa->b_blkno == bpa->b_lblkno) ||
1076				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
1077					break;
1078			} else {
1079				break;
1080			}
1081		}
1082		ncl = i;
1083		/*
1084		 * this is a possible cluster write
1085		 */
1086		if (ncl != 1) {
1087			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
1088			splx(s);
1089			return nwritten;
1090		}
1091	}
1092
1093	bremfree(bp);
1094	bp->b_flags |= B_BUSY | B_ASYNC;
1095
1096	splx(s);
1097	/*
1098	 * default (old) behavior, writing out only one block
1099	 */
1100	nwritten = bp->b_bufsize;
1101	(void) VOP_BWRITE(bp);
1102
1103	return nwritten;
1104}
1105
1106/*
1107 *	getnewbuf:
1108 *
1109 *	Find and initialize a new buffer header, freeing up existing buffers
1110 *	in the bufqueues as necessary.
1111 *
1112 *	We block if:
1113 *		We have insufficient buffer headers
1114 *		We have insufficient buffer space
1115 *		buffer_map is too fragmented ( space reservation fails )
1116 *
1117 *	We do *not* attempt to flush dirty buffers more then one level deep.
1118 *	I.e., if P_FLSINPROG is set we do not flush dirty buffers at all.
1119 *
1120 *	If P_FLSINPROG is set, we are allowed to dip into our emergency
1121 *	reserve.
1122 */
1123static struct buf *
1124getnewbuf(struct vnode *vp, daddr_t blkno,
1125	int slpflag, int slptimeo, int size, int maxsize)
1126{
1127	struct buf *bp;
1128	struct buf *nbp;
1129	int outofspace;
1130	int nqindex;
1131	int defrag = 0;
1132	int countawrites = 0;
1133
1134restart:
1135
1136	/*
1137	 * Setup for scan.  If we do not have enough free buffers,
1138	 * we setup a degenerate case that falls through the while.
1139	 *
1140	 * If we are in the middle of a flush, we can dip into the
1141	 * emergency reserve.
1142	 */
1143
1144	if ((curproc->p_flag & P_FLSINPROG) == 0 &&
1145	    numfreebuffers < lofreebuffers
1146	) {
1147		nqindex = QUEUE_LRU;
1148		nbp = NULL;
1149	} else {
1150		nqindex = QUEUE_EMPTY;
1151		if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY])) == NULL) {
1152			nqindex = QUEUE_AGE;
1153			nbp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1154			if (nbp == NULL) {
1155				nqindex = QUEUE_LRU;
1156				nbp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1157			}
1158		}
1159	}
1160
1161	/*
1162	 * Calculate whether we are out of buffer space.  This state is
1163	 * recalculated on every restart.  If we are out of space, we
1164	 * have to turn off defragmentation.  The outofspace code will
1165	 * defragment too, but the looping conditionals will be messed up
1166	 * if both outofspace and defrag are on.
1167	 */
1168
1169	outofspace = 0;
1170	if (bufspace >= hibufspace) {
1171		if ((curproc->p_flag & P_FLSINPROG) == 0 ||
1172		    bufspace >= maxbufspace
1173		) {
1174			outofspace = 1;
1175			defrag = 0;
1176		}
1177	}
1178
1179	/*
1180	 * defrag state is semi-persistant.  1 means we are flagged for
1181	 * defragging.  -1 means we actually defragged something.
1182	 */
1183	/* nop */
1184
1185	/*
1186	 * Run scan, possibly freeing data and/or kva mappings on the fly
1187	 * depending.
1188	 */
1189
1190	while ((bp = nbp) != NULL) {
1191		int qindex = nqindex;
1192		/*
1193		 * Calculate next bp ( we can only use it if we do not block
1194		 * or do other fancy things ).
1195		 */
1196		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1197			switch(qindex) {
1198			case QUEUE_EMPTY:
1199				nqindex = QUEUE_AGE;
1200				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_AGE])))
1201					break;
1202				/* fall through */
1203			case QUEUE_AGE:
1204				nqindex = QUEUE_LRU;
1205				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_LRU])))
1206					break;
1207				/* fall through */
1208			case QUEUE_LRU:
1209				/*
1210				 * nbp is NULL.
1211				 */
1212				break;
1213			}
1214		}
1215
1216		/*
1217		 * Sanity Checks
1218		 */
1219		KASSERT(!(bp->b_flags & B_BUSY), ("getnewbuf: busy buffer %p on free list", bp));
1220		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1221
1222		/*
1223		 * Here we try to move NON VMIO buffers to the end of the
1224		 * LRU queue in order to make VMIO buffers more readily
1225		 * freeable.  We also try to move buffers with a positive
1226		 * usecount to the end.
1227		 *
1228		 * Note that by moving the bp to the end, we setup a following
1229		 * loop.  Since we continue to decrement b_usecount this
1230		 * is ok and, in fact, desireable.
1231		 *
1232		 * If we are at the end of the list, we move ourself to the
1233		 * same place and need to fixup nbp and nqindex to handle
1234		 * the following case.
1235		 */
1236
1237		if ((qindex == QUEUE_LRU) && bp->b_usecount > 0) {
1238			if ((bp->b_flags & B_VMIO) == 0 ||
1239			    (vmiospace < maxvmiobufspace)
1240			) {
1241				--bp->b_usecount;
1242				TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
1243				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1244				if (nbp == NULL) {
1245					nqindex = qindex;
1246					nbp = bp;
1247				}
1248				continue;
1249			}
1250		}
1251
1252		/*
1253		 * If we come across a delayed write and numdirtybuffers should
1254		 * be flushed, try to write it out.  Only if P_FLSINPROG is
1255		 * not set.  We can't afford to recursively stack more then
1256		 * one deep due to the possibility of having deep VFS call
1257		 * stacks.
1258		 *
1259		 * Limit the number of dirty buffers we are willing to try
1260		 * to recover since it really isn't our job here.
1261		 */
1262		if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
1263			if ((curproc->p_flag & P_FLSINPROG) ||
1264			    numdirtybuffers < hidirtybuffers ||
1265			    countawrites > 16
1266			) {
1267				continue;
1268			}
1269			curproc->p_flag |= P_FLSINPROG;
1270			vfs_bio_awrite(bp);
1271			curproc->p_flag &= ~P_FLSINPROG;
1272			++countawrites;
1273			goto restart;
1274		}
1275
1276		if (defrag > 0 && bp->b_kvasize == 0)
1277			continue;
1278		if (outofspace > 0 && bp->b_bufsize == 0)
1279			continue;
1280
1281		/*
1282		 * Start freeing the bp.  This is somewhat involved.  nbp
1283		 * remains valid only for QUEUE_EMPTY bp's.
1284		 */
1285
1286		bremfree(bp);
1287		bp->b_flags |= B_BUSY;
1288
1289		if (qindex == QUEUE_LRU || qindex == QUEUE_AGE) {
1290			if (bp->b_flags & B_VMIO) {
1291				bp->b_flags &= ~B_ASYNC;
1292				vfs_vmio_release(bp);
1293			}
1294			if (bp->b_vp)
1295				brelvp(bp);
1296		}
1297
1298		if (bp->b_flags & B_WANTED) {
1299			bp->b_flags &= ~B_WANTED;
1300			wakeup(bp);
1301		}
1302
1303		/*
1304		 * NOTE:  nbp is now entirely invalid.  We can only restart
1305		 * the scan from this point on.
1306		 *
1307		 * Get the rest of the buffer freed up.  b_kva* is still
1308		 * valid after this operation.
1309		 */
1310
1311		if (bp->b_rcred != NOCRED) {
1312			crfree(bp->b_rcred);
1313			bp->b_rcred = NOCRED;
1314		}
1315		if (bp->b_wcred != NOCRED) {
1316			crfree(bp->b_wcred);
1317			bp->b_wcred = NOCRED;
1318		}
1319		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
1320			(*bioops.io_deallocate)(bp);
1321
1322		LIST_REMOVE(bp, b_hash);
1323		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1324
1325		if (bp->b_bufsize)
1326			allocbuf(bp, 0);
1327
1328		bp->b_flags = B_BUSY;
1329		bp->b_dev = NODEV;
1330		bp->b_vp = NULL;
1331		bp->b_blkno = bp->b_lblkno = 0;
1332		bp->b_offset = NOOFFSET;
1333		bp->b_iodone = 0;
1334		bp->b_error = 0;
1335		bp->b_resid = 0;
1336		bp->b_bcount = 0;
1337		bp->b_npages = 0;
1338		bp->b_dirtyoff = bp->b_dirtyend = 0;
1339		bp->b_validoff = bp->b_validend = 0;
1340		bp->b_usecount = 5;
1341
1342		LIST_INIT(&bp->b_dep);
1343
1344		/*
1345		 * Ok, now that we have a free buffer, if we are defragging
1346		 * we have to recover the kvaspace.
1347		 */
1348
1349		if (defrag > 0) {
1350			defrag = -1;
1351			bp->b_flags |= B_INVAL;
1352			bfreekva(bp);
1353			brelse(bp);
1354			goto restart;
1355		}
1356
1357		if (outofspace > 0) {
1358			outofspace = -1;
1359			bp->b_flags |= B_INVAL;
1360			bfreekva(bp);
1361			brelse(bp);
1362			goto restart;
1363		}
1364
1365		/*
1366		 * We are done
1367		 */
1368		break;
1369	}
1370
1371	/*
1372	 * If we exhausted our list, sleep as appropriate.
1373	 */
1374
1375	if (bp == NULL) {
1376		int flags;
1377
1378dosleep:
1379		if (defrag > 0)
1380			flags = VFS_BIO_NEED_KVASPACE;
1381		else if (outofspace > 0)
1382			flags = VFS_BIO_NEED_BUFSPACE;
1383		else
1384			flags = VFS_BIO_NEED_ANY;
1385
1386		if (rushjob < syncdelay / 2)
1387			++rushjob;
1388		needsbuffer |= flags;
1389		while (needsbuffer & flags) {
1390			tsleep(
1391			    &needsbuffer,
1392			    (PRIBIO + 4) | slpflag,
1393			    "newbuf",
1394			    slptimeo
1395			);
1396		}
1397	} else {
1398		/*
1399		 * We finally have a valid bp.  We aren't quite out of the
1400		 * woods, we still have to reserve kva space.
1401		 */
1402		vm_offset_t addr = 0;
1403
1404		maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1405
1406		if (maxsize != bp->b_kvasize) {
1407			bfreekva(bp);
1408
1409			if (vm_map_findspace(buffer_map,
1410				vm_map_min(buffer_map), maxsize, &addr)
1411			) {
1412				/*
1413				 * Uh oh.  Buffer map is to fragmented.  Try
1414				 * to defragment.
1415				 */
1416				if (defrag <= 0) {
1417					defrag = 1;
1418					bp->b_flags |= B_INVAL;
1419					brelse(bp);
1420					goto restart;
1421				}
1422				/*
1423				 * Uh oh.  We couldn't seem to defragment
1424				 */
1425				bp = NULL;
1426				goto dosleep;
1427			}
1428		}
1429		if (addr) {
1430			vm_map_insert(buffer_map, NULL, 0,
1431				addr, addr + maxsize,
1432				VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1433
1434			bp->b_kvabase = (caddr_t) addr;
1435			bp->b_kvasize = maxsize;
1436		}
1437		bp->b_data = bp->b_kvabase;
1438	}
1439
1440	return (bp);
1441}
1442
1443/*
1444 *	waitfreebuffers:
1445 *
1446 *	Wait for sufficient free buffers.  This routine is not called if
1447 *	curproc is the update process so we do not have to do anything
1448 *	fancy.
1449 */
1450
1451static void
1452waitfreebuffers(int slpflag, int slptimeo)
1453{
1454	while (numfreebuffers < hifreebuffers) {
1455		flushdirtybuffers(slpflag, slptimeo);
1456		if (numfreebuffers < hifreebuffers)
1457			break;
1458		needsbuffer |= VFS_BIO_NEED_FREE;
1459		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1460			break;
1461	}
1462}
1463
1464/*
1465 *	flushdirtybuffers:
1466 *
1467 *	This routine is called when we get too many dirty buffers.
1468 *
1469 *	We have to protect ourselves from recursion, but we also do not want
1470 *	other process's flushdirtybuffers() to interfere with the syncer if
1471 *	it decides to flushdirtybuffers().
1472 *
1473 *	In order to maximize operations, we allow any process to flush
1474 *	dirty buffers and use P_FLSINPROG to prevent recursion.
1475 */
1476
1477static void
1478flushdirtybuffers(int slpflag, int slptimeo)
1479{
1480	int s;
1481
1482	s = splbio();
1483
1484	if (curproc->p_flag & P_FLSINPROG) {
1485		splx(s);
1486		return;
1487	}
1488	curproc->p_flag |= P_FLSINPROG;
1489
1490	while (numdirtybuffers > lodirtybuffers) {
1491		if (flushbufqueues() == 0)
1492			break;
1493	}
1494
1495	curproc->p_flag &= ~P_FLSINPROG;
1496
1497	splx(s);
1498}
1499
1500static int
1501flushbufqueues(void)
1502{
1503	struct buf *bp;
1504	int qindex;
1505	int r = 0;
1506
1507	qindex = QUEUE_AGE;
1508	bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1509
1510	for (;;) {
1511		if (bp == NULL) {
1512			if (qindex == QUEUE_LRU)
1513				break;
1514			qindex = QUEUE_LRU;
1515			if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU])) == NULL)
1516				break;
1517		}
1518
1519		/*
1520		 * XXX NFS does weird things with B_INVAL bps if we bwrite
1521		 * them ( vfs_bio_awrite/bawrite/bdwrite/etc )  Why?
1522		 *
1523		 */
1524		if ((bp->b_flags & B_DELWRI) != 0) {
1525			if (bp->b_flags & B_INVAL) {
1526				bremfree(bp);
1527				bp->b_flags |= B_BUSY;
1528				brelse(bp);
1529			} else {
1530				vfs_bio_awrite(bp);
1531			}
1532			++r;
1533			break;
1534		}
1535		bp = TAILQ_NEXT(bp, b_freelist);
1536	}
1537	return(r);
1538}
1539
1540/*
1541 * Check to see if a block is currently memory resident.
1542 */
1543struct buf *
1544incore(struct vnode * vp, daddr_t blkno)
1545{
1546	struct buf *bp;
1547
1548	int s = splbio();
1549	bp = gbincore(vp, blkno);
1550	splx(s);
1551	return (bp);
1552}
1553
1554/*
1555 * Returns true if no I/O is needed to access the
1556 * associated VM object.  This is like incore except
1557 * it also hunts around in the VM system for the data.
1558 */
1559
1560int
1561inmem(struct vnode * vp, daddr_t blkno)
1562{
1563	vm_object_t obj;
1564	vm_offset_t toff, tinc, size;
1565	vm_page_t m;
1566	vm_ooffset_t off;
1567
1568	if (incore(vp, blkno))
1569		return 1;
1570	if (vp->v_mount == NULL)
1571		return 0;
1572	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1573		return 0;
1574
1575	obj = vp->v_object;
1576	size = PAGE_SIZE;
1577	if (size > vp->v_mount->mnt_stat.f_iosize)
1578		size = vp->v_mount->mnt_stat.f_iosize;
1579	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1580
1581	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1582		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1583		if (!m)
1584			return 0;
1585		tinc = size;
1586		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1587			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1588		if (vm_page_is_valid(m,
1589		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1590			return 0;
1591	}
1592	return 1;
1593}
1594
1595/*
1596 * now we set the dirty range for the buffer --
1597 * for NFS -- if the file is mapped and pages have
1598 * been written to, let it know.  We want the
1599 * entire range of the buffer to be marked dirty if
1600 * any of the pages have been written to for consistancy
1601 * with the b_validoff, b_validend set in the nfs write
1602 * code, and used by the nfs read code.
1603 */
1604static void
1605vfs_setdirty(struct buf *bp)
1606{
1607	int i;
1608	vm_object_t object;
1609	vm_offset_t boffset;
1610
1611	/*
1612	 * We qualify the scan for modified pages on whether the
1613	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1614	 * is not cleared simply by protecting pages off.
1615	 */
1616
1617	if ((bp->b_flags & B_VMIO) == 0)
1618		return;
1619
1620	object = bp->b_pages[0]->object;
1621
1622	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
1623		printf("Warning: object %p writeable but not mightbedirty\n", object);
1624	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
1625		printf("Warning: object %p mightbedirty but not writeable\n", object);
1626
1627	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
1628		/*
1629		 * test the pages to see if they have been modified directly
1630		 * by users through the VM system.
1631		 */
1632		for (i = 0; i < bp->b_npages; i++) {
1633			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1634			vm_page_test_dirty(bp->b_pages[i]);
1635		}
1636
1637		/*
1638		 * scan forwards for the first page modified
1639		 */
1640		for (i = 0; i < bp->b_npages; i++) {
1641			if (bp->b_pages[i]->dirty) {
1642				break;
1643			}
1644		}
1645
1646		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1647		if (boffset < bp->b_dirtyoff) {
1648			bp->b_dirtyoff = max(boffset, 0);
1649		}
1650
1651		/*
1652		 * scan backwards for the last page modified
1653		 */
1654		for (i = bp->b_npages - 1; i >= 0; --i) {
1655			if (bp->b_pages[i]->dirty) {
1656				break;
1657			}
1658		}
1659		boffset = (i + 1);
1660#if 0
1661		offset = boffset + bp->b_pages[0]->pindex;
1662		if (offset >= object->size)
1663			boffset = object->size - bp->b_pages[0]->pindex;
1664#endif
1665		boffset = (boffset << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1666		if (bp->b_dirtyend < boffset)
1667			bp->b_dirtyend = min(boffset, bp->b_bufsize);
1668	}
1669}
1670
1671/*
1672 * Get a block given a specified block and offset into a file/device.
1673 */
1674struct buf *
1675getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1676{
1677	struct buf *bp;
1678	int i, s;
1679	struct bufhashhdr *bh;
1680
1681#if !defined(MAX_PERF)
1682	if (size > MAXBSIZE)
1683		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1684#endif
1685
1686	s = splbio();
1687loop:
1688	/*
1689	 * Block if we are low on buffers.  The syncer is allowed more
1690	 * buffers in order to avoid a deadlock.
1691	 */
1692	if (curproc == updateproc && numfreebuffers == 0) {
1693		needsbuffer |= VFS_BIO_NEED_ANY;
1694		tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
1695		    slptimeo);
1696	} else if (curproc != updateproc && numfreebuffers < lofreebuffers) {
1697		waitfreebuffers(slpflag, slptimeo);
1698	}
1699
1700	if ((bp = gbincore(vp, blkno))) {
1701		if (bp->b_flags & B_BUSY) {
1702			bp->b_flags |= B_WANTED;
1703			if (bp->b_usecount < BUF_MAXUSE)
1704				++bp->b_usecount;
1705
1706			if (!tsleep(bp,
1707				(PRIBIO + 4) | slpflag, "getblk", slptimeo)) {
1708				goto loop;
1709			}
1710
1711			splx(s);
1712			return (struct buf *) NULL;
1713		}
1714		bp->b_flags |= B_BUSY | B_CACHE;
1715		bremfree(bp);
1716
1717		/*
1718		 * check for size inconsistancies for non-VMIO case.
1719		 */
1720
1721		if (bp->b_bcount != size) {
1722			if ((bp->b_flags & B_VMIO) == 0 ||
1723			    (size > bp->b_kvasize)
1724			) {
1725				if (bp->b_flags & B_DELWRI) {
1726					bp->b_flags |= B_NOCACHE;
1727					VOP_BWRITE(bp);
1728				} else {
1729					if ((bp->b_flags & B_VMIO) &&
1730					   (LIST_FIRST(&bp->b_dep) == NULL)) {
1731						bp->b_flags |= B_RELBUF;
1732						brelse(bp);
1733					} else {
1734						bp->b_flags |= B_NOCACHE;
1735						VOP_BWRITE(bp);
1736					}
1737				}
1738				goto loop;
1739			}
1740		}
1741
1742		/*
1743		 * If the size is inconsistant in the VMIO case, we can resize
1744		 * the buffer.  This might lead to B_CACHE getting cleared.
1745		 */
1746
1747		if (bp->b_bcount != size)
1748			allocbuf(bp, size);
1749
1750		KASSERT(bp->b_offset != NOOFFSET,
1751		    ("getblk: no buffer offset"));
1752
1753		/*
1754		 * Check that the constituted buffer really deserves for the
1755		 * B_CACHE bit to be set.  B_VMIO type buffers might not
1756		 * contain fully valid pages.  Normal (old-style) buffers
1757		 * should be fully valid.  This might also lead to B_CACHE
1758		 * getting clear.
1759		 *
1760		 * If B_CACHE is already clear, don't bother checking to see
1761		 * if we have to clear it again.
1762		 *
1763		 * XXX this code should not be necessary unless the B_CACHE
1764		 * handling is broken elsewhere in the kernel.  We need to
1765		 * check the cases and then turn the clearing part of this
1766		 * code into a panic.
1767		 */
1768		if (
1769		    (bp->b_flags & (B_VMIO|B_CACHE)) == (B_VMIO|B_CACHE) &&
1770		    (bp->b_vp->v_tag != VT_NFS || bp->b_validend <= 0)
1771		) {
1772			int checksize = bp->b_bufsize;
1773			int poffset = bp->b_offset & PAGE_MASK;
1774			int resid;
1775			for (i = 0; i < bp->b_npages; i++) {
1776				resid = (checksize > (PAGE_SIZE - poffset)) ?
1777					(PAGE_SIZE - poffset) : checksize;
1778				if (!vm_page_is_valid(bp->b_pages[i], poffset, resid)) {
1779					bp->b_flags &= ~(B_CACHE | B_DONE);
1780					break;
1781				}
1782				checksize -= resid;
1783				poffset = 0;
1784			}
1785		}
1786
1787		/*
1788		 * If B_DELWRI is set and B_CACHE got cleared ( or was
1789		 * already clear ), we have to commit the write and
1790		 * retry.  The NFS code absolutely depends on this,
1791		 * and so might the FFS code.  In anycase, it formalizes
1792		 * the B_CACHE rules.  See sys/buf.h.
1793		 */
1794
1795		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
1796			VOP_BWRITE(bp);
1797			goto loop;
1798		}
1799
1800		if (bp->b_usecount < BUF_MAXUSE)
1801			++bp->b_usecount;
1802		splx(s);
1803		return (bp);
1804	} else {
1805		int bsize, maxsize, vmio;
1806		off_t offset;
1807
1808		if (vp->v_type == VBLK)
1809			bsize = DEV_BSIZE;
1810		else if (vp->v_mountedhere)
1811			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
1812		else if (vp->v_mount)
1813			bsize = vp->v_mount->mnt_stat.f_iosize;
1814		else
1815			bsize = size;
1816
1817		offset = (off_t)blkno * bsize;
1818		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
1819		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
1820		maxsize = imax(maxsize, bsize);
1821
1822		if ((bp = getnewbuf(vp, blkno,
1823			slpflag, slptimeo, size, maxsize)) == 0) {
1824			if (slpflag || slptimeo) {
1825				splx(s);
1826				return NULL;
1827			}
1828			goto loop;
1829		}
1830
1831		/*
1832		 * This code is used to make sure that a buffer is not
1833		 * created while the getnewbuf routine is blocked.
1834		 * This can be a problem whether the vnode is locked or not.
1835		 */
1836		if (gbincore(vp, blkno)) {
1837			bp->b_flags |= B_INVAL;
1838			brelse(bp);
1839			goto loop;
1840		}
1841
1842		/*
1843		 * Insert the buffer into the hash, so that it can
1844		 * be found by incore.
1845		 */
1846		bp->b_blkno = bp->b_lblkno = blkno;
1847		bp->b_offset = offset;
1848
1849		bgetvp(vp, bp);
1850		LIST_REMOVE(bp, b_hash);
1851		bh = BUFHASH(vp, blkno);
1852		LIST_INSERT_HEAD(bh, bp, b_hash);
1853
1854		if (vmio) {
1855			bp->b_flags |= (B_VMIO | B_CACHE);
1856#if defined(VFS_BIO_DEBUG)
1857			if (vp->v_type != VREG && vp->v_type != VBLK)
1858				printf("getblk: vmioing file type %d???\n", vp->v_type);
1859#endif
1860		} else {
1861			bp->b_flags &= ~B_VMIO;
1862		}
1863
1864		allocbuf(bp, size);
1865
1866		splx(s);
1867		return (bp);
1868	}
1869}
1870
1871/*
1872 * Get an empty, disassociated buffer of given size.
1873 */
1874struct buf *
1875geteblk(int size)
1876{
1877	struct buf *bp;
1878	int s;
1879
1880	s = splbio();
1881	while ((bp = getnewbuf(0, (daddr_t) 0, 0, 0, size, MAXBSIZE)) == 0);
1882	splx(s);
1883	allocbuf(bp, size);
1884	bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
1885	return (bp);
1886}
1887
1888
1889/*
1890 * This code constitutes the buffer memory from either anonymous system
1891 * memory (in the case of non-VMIO operations) or from an associated
1892 * VM object (in the case of VMIO operations).  This code is able to
1893 * resize a buffer up or down.
1894 *
1895 * Note that this code is tricky, and has many complications to resolve
1896 * deadlock or inconsistant data situations.  Tread lightly!!!
1897 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
1898 * the caller.  Calling this code willy nilly can result in the loss of data.
1899 */
1900
1901int
1902allocbuf(struct buf *bp, int size)
1903{
1904	int newbsize, mbsize;
1905	int i;
1906
1907#if !defined(MAX_PERF)
1908	if (!(bp->b_flags & B_BUSY))
1909		panic("allocbuf: buffer not busy");
1910
1911	if (bp->b_kvasize < size)
1912		panic("allocbuf: buffer too small");
1913#endif
1914
1915	if ((bp->b_flags & B_VMIO) == 0) {
1916		caddr_t origbuf;
1917		int origbufsize;
1918		/*
1919		 * Just get anonymous memory from the kernel
1920		 */
1921		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1922#if !defined(NO_B_MALLOC)
1923		if (bp->b_flags & B_MALLOC)
1924			newbsize = mbsize;
1925		else
1926#endif
1927			newbsize = round_page(size);
1928
1929		if (newbsize < bp->b_bufsize) {
1930#if !defined(NO_B_MALLOC)
1931			/*
1932			 * malloced buffers are not shrunk
1933			 */
1934			if (bp->b_flags & B_MALLOC) {
1935				if (newbsize) {
1936					bp->b_bcount = size;
1937				} else {
1938					free(bp->b_data, M_BIOBUF);
1939					bufspace -= bp->b_bufsize;
1940					bufmallocspace -= bp->b_bufsize;
1941					runningbufspace -= bp->b_bufsize;
1942					if (bp->b_bufsize)
1943						bufspacewakeup();
1944					bp->b_data = bp->b_kvabase;
1945					bp->b_bufsize = 0;
1946					bp->b_bcount = 0;
1947					bp->b_flags &= ~B_MALLOC;
1948				}
1949				return 1;
1950			}
1951#endif
1952			vm_hold_free_pages(
1953			    bp,
1954			    (vm_offset_t) bp->b_data + newbsize,
1955			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1956		} else if (newbsize > bp->b_bufsize) {
1957#if !defined(NO_B_MALLOC)
1958			/*
1959			 * We only use malloced memory on the first allocation.
1960			 * and revert to page-allocated memory when the buffer grows.
1961			 */
1962			if ( (bufmallocspace < maxbufmallocspace) &&
1963				(bp->b_bufsize == 0) &&
1964				(mbsize <= PAGE_SIZE/2)) {
1965
1966				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1967				bp->b_bufsize = mbsize;
1968				bp->b_bcount = size;
1969				bp->b_flags |= B_MALLOC;
1970				bufspace += mbsize;
1971				bufmallocspace += mbsize;
1972				runningbufspace += bp->b_bufsize;
1973				return 1;
1974			}
1975#endif
1976			origbuf = NULL;
1977			origbufsize = 0;
1978#if !defined(NO_B_MALLOC)
1979			/*
1980			 * If the buffer is growing on its other-than-first allocation,
1981			 * then we revert to the page-allocation scheme.
1982			 */
1983			if (bp->b_flags & B_MALLOC) {
1984				origbuf = bp->b_data;
1985				origbufsize = bp->b_bufsize;
1986				bp->b_data = bp->b_kvabase;
1987				bufspace -= bp->b_bufsize;
1988				bufmallocspace -= bp->b_bufsize;
1989				runningbufspace -= bp->b_bufsize;
1990				if (bp->b_bufsize)
1991					bufspacewakeup();
1992				bp->b_bufsize = 0;
1993				bp->b_flags &= ~B_MALLOC;
1994				newbsize = round_page(newbsize);
1995			}
1996#endif
1997			vm_hold_load_pages(
1998			    bp,
1999			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2000			    (vm_offset_t) bp->b_data + newbsize);
2001#if !defined(NO_B_MALLOC)
2002			if (origbuf) {
2003				bcopy(origbuf, bp->b_data, origbufsize);
2004				free(origbuf, M_BIOBUF);
2005			}
2006#endif
2007		}
2008	} else {
2009		vm_page_t m;
2010		int desiredpages;
2011
2012		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2013		desiredpages = (size == 0) ? 0 :
2014			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2015
2016#if !defined(NO_B_MALLOC)
2017		if (bp->b_flags & B_MALLOC)
2018			panic("allocbuf: VMIO buffer can't be malloced");
2019#endif
2020
2021		if (newbsize < bp->b_bufsize) {
2022			if (desiredpages < bp->b_npages) {
2023				for (i = desiredpages; i < bp->b_npages; i++) {
2024					/*
2025					 * the page is not freed here -- it
2026					 * is the responsibility of vnode_pager_setsize
2027					 */
2028					m = bp->b_pages[i];
2029					KASSERT(m != bogus_page,
2030					    ("allocbuf: bogus page found"));
2031					while (vm_page_sleep_busy(m, TRUE, "biodep"))
2032						;
2033
2034					bp->b_pages[i] = NULL;
2035					vm_page_unwire(m, 0);
2036				}
2037				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2038				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2039				bp->b_npages = desiredpages;
2040			}
2041		} else if (newbsize > bp->b_bufsize) {
2042			vm_object_t obj;
2043			vm_offset_t tinc, toff;
2044			vm_ooffset_t off;
2045			vm_pindex_t objoff;
2046			int pageindex, curbpnpages;
2047			struct vnode *vp;
2048			int bsize;
2049			int orig_validoff = bp->b_validoff;
2050			int orig_validend = bp->b_validend;
2051
2052			vp = bp->b_vp;
2053
2054			if (vp->v_type == VBLK)
2055				bsize = DEV_BSIZE;
2056			else
2057				bsize = vp->v_mount->mnt_stat.f_iosize;
2058
2059			if (bp->b_npages < desiredpages) {
2060				obj = vp->v_object;
2061				tinc = PAGE_SIZE;
2062
2063				off = bp->b_offset;
2064				KASSERT(bp->b_offset != NOOFFSET,
2065				    ("allocbuf: no buffer offset"));
2066				curbpnpages = bp->b_npages;
2067		doretry:
2068				bp->b_validoff = orig_validoff;
2069				bp->b_validend = orig_validend;
2070				bp->b_flags |= B_CACHE;
2071				for (toff = 0; toff < newbsize; toff += tinc) {
2072					objoff = OFF_TO_IDX(off + toff);
2073					pageindex = objoff - OFF_TO_IDX(off);
2074					tinc = PAGE_SIZE - ((off + toff) & PAGE_MASK);
2075					if (pageindex < curbpnpages) {
2076
2077						m = bp->b_pages[pageindex];
2078#ifdef VFS_BIO_DIAG
2079						if (m->pindex != objoff)
2080							panic("allocbuf: page changed offset?!!!?");
2081#endif
2082						if (tinc > (newbsize - toff))
2083							tinc = newbsize - toff;
2084						if (bp->b_flags & B_CACHE)
2085							vfs_buf_set_valid(bp, off, toff, tinc, m);
2086						continue;
2087					}
2088					m = vm_page_lookup(obj, objoff);
2089					if (!m) {
2090						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
2091						if (!m) {
2092							VM_WAIT;
2093							vm_pageout_deficit += (desiredpages - curbpnpages);
2094							goto doretry;
2095						}
2096
2097						vm_page_wire(m);
2098						vm_page_wakeup(m);
2099						bp->b_flags &= ~B_CACHE;
2100
2101					} else if (vm_page_sleep_busy(m, FALSE, "pgtblk")) {
2102						/*
2103						 *  If we had to sleep, retry.
2104						 *
2105						 *  Also note that we only test
2106						 *  PG_BUSY here, not m->busy.
2107						 *
2108						 *  We cannot sleep on m->busy
2109						 *  here because a vm_fault ->
2110						 *  getpages -> cluster-read ->
2111						 *  ...-> allocbuf sequence
2112						 *  will convert PG_BUSY to
2113						 *  m->busy so we have to let
2114						 *  m->busy through if we do
2115						 *  not want to deadlock.
2116						 */
2117						goto doretry;
2118					} else {
2119						if ((curproc != pageproc) &&
2120							((m->queue - m->pc) == PQ_CACHE) &&
2121						    ((cnt.v_free_count + cnt.v_cache_count) <
2122								(cnt.v_free_min + cnt.v_cache_min))) {
2123							pagedaemon_wakeup();
2124						}
2125						if (tinc > (newbsize - toff))
2126							tinc = newbsize - toff;
2127						if (bp->b_flags & B_CACHE)
2128							vfs_buf_set_valid(bp, off, toff, tinc, m);
2129						vm_page_flag_clear(m, PG_ZERO);
2130						vm_page_wire(m);
2131					}
2132					bp->b_pages[pageindex] = m;
2133					curbpnpages = pageindex + 1;
2134				}
2135				if (vp->v_tag == VT_NFS &&
2136				    vp->v_type != VBLK) {
2137					if (bp->b_dirtyend > 0) {
2138						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
2139						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
2140					}
2141					if (bp->b_validend == 0)
2142						bp->b_flags &= ~B_CACHE;
2143				}
2144				bp->b_data = (caddr_t) trunc_page((vm_offset_t)bp->b_data);
2145				bp->b_npages = curbpnpages;
2146				pmap_qenter((vm_offset_t) bp->b_data,
2147					bp->b_pages, bp->b_npages);
2148				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
2149			}
2150		}
2151	}
2152	if (bp->b_flags & B_VMIO)
2153		vmiospace += (newbsize - bp->b_bufsize);
2154	bufspace += (newbsize - bp->b_bufsize);
2155	runningbufspace += (newbsize - bp->b_bufsize);
2156	if (newbsize < bp->b_bufsize)
2157		bufspacewakeup();
2158	bp->b_bufsize = newbsize;
2159	bp->b_bcount = size;
2160	return 1;
2161}
2162
2163/*
2164 * Wait for buffer I/O completion, returning error status.
2165 */
2166int
2167biowait(register struct buf * bp)
2168{
2169	int s;
2170
2171	s = splbio();
2172	while ((bp->b_flags & B_DONE) == 0)
2173#if defined(NO_SCHEDULE_MODS)
2174		tsleep(bp, PRIBIO, "biowait", 0);
2175#else
2176		if (bp->b_flags & B_READ)
2177			tsleep(bp, PRIBIO, "biord", 0);
2178		else
2179			tsleep(bp, PRIBIO, "biowr", 0);
2180#endif
2181	splx(s);
2182	if (bp->b_flags & B_EINTR) {
2183		bp->b_flags &= ~B_EINTR;
2184		return (EINTR);
2185	}
2186	if (bp->b_flags & B_ERROR) {
2187		return (bp->b_error ? bp->b_error : EIO);
2188	} else {
2189		return (0);
2190	}
2191}
2192
2193/*
2194 * Finish I/O on a buffer, calling an optional function.
2195 * This is usually called from interrupt level, so process blocking
2196 * is not *a good idea*.
2197 */
2198void
2199biodone(register struct buf * bp)
2200{
2201	int s;
2202
2203	s = splbio();
2204
2205	KASSERT((bp->b_flags & B_BUSY), ("biodone: bp %p not busy", bp));
2206	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
2207
2208	bp->b_flags |= B_DONE;
2209
2210	if (bp->b_flags & B_FREEBUF) {
2211		brelse(bp);
2212		splx(s);
2213		return;
2214	}
2215
2216	if ((bp->b_flags & B_READ) == 0) {
2217		vwakeup(bp);
2218	}
2219
2220	/* call optional completion function if requested */
2221	if (bp->b_flags & B_CALL) {
2222		bp->b_flags &= ~B_CALL;
2223		(*bp->b_iodone) (bp);
2224		splx(s);
2225		return;
2226	}
2227	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
2228		(*bioops.io_complete)(bp);
2229
2230	if (bp->b_flags & B_VMIO) {
2231		int i, resid;
2232		vm_ooffset_t foff;
2233		vm_page_t m;
2234		vm_object_t obj;
2235		int iosize;
2236		struct vnode *vp = bp->b_vp;
2237
2238		obj = vp->v_object;
2239
2240#if defined(VFS_BIO_DEBUG)
2241		if (vp->v_usecount == 0) {
2242			panic("biodone: zero vnode ref count");
2243		}
2244
2245		if (vp->v_object == NULL) {
2246			panic("biodone: missing VM object");
2247		}
2248
2249		if ((vp->v_flag & VOBJBUF) == 0) {
2250			panic("biodone: vnode is not setup for merged cache");
2251		}
2252#endif
2253
2254		foff = bp->b_offset;
2255		KASSERT(bp->b_offset != NOOFFSET,
2256		    ("biodone: no buffer offset"));
2257
2258#if !defined(MAX_PERF)
2259		if (!obj) {
2260			panic("biodone: no object");
2261		}
2262#endif
2263#if defined(VFS_BIO_DEBUG)
2264		if (obj->paging_in_progress < bp->b_npages) {
2265			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
2266			    obj->paging_in_progress, bp->b_npages);
2267		}
2268#endif
2269		iosize = bp->b_bufsize;
2270		for (i = 0; i < bp->b_npages; i++) {
2271			int bogusflag = 0;
2272			m = bp->b_pages[i];
2273			if (m == bogus_page) {
2274				bogusflag = 1;
2275				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
2276				if (!m) {
2277#if defined(VFS_BIO_DEBUG)
2278					printf("biodone: page disappeared\n");
2279#endif
2280					vm_object_pip_subtract(obj, 1);
2281					continue;
2282				}
2283				bp->b_pages[i] = m;
2284				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2285			}
2286#if defined(VFS_BIO_DEBUG)
2287			if (OFF_TO_IDX(foff) != m->pindex) {
2288				printf(
2289"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2290				    (unsigned long)foff, m->pindex);
2291			}
2292#endif
2293			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2294			if (resid > iosize)
2295				resid = iosize;
2296
2297			/*
2298			 * In the write case, the valid and clean bits are
2299			 * already changed correctly, so we only need to do this
2300			 * here in the read case.
2301			 */
2302			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2303				vfs_page_set_valid(bp, foff, i, m);
2304			}
2305			vm_page_flag_clear(m, PG_ZERO);
2306
2307			/*
2308			 * when debugging new filesystems or buffer I/O methods, this
2309			 * is the most common error that pops up.  if you see this, you
2310			 * have not set the page busy flag correctly!!!
2311			 */
2312			if (m->busy == 0) {
2313#if !defined(MAX_PERF)
2314				printf("biodone: page busy < 0, "
2315				    "pindex: %d, foff: 0x(%x,%x), "
2316				    "resid: %d, index: %d\n",
2317				    (int) m->pindex, (int)(foff >> 32),
2318						(int) foff & 0xffffffff, resid, i);
2319#endif
2320				if (vp->v_type != VBLK)
2321#if !defined(MAX_PERF)
2322					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2323					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2324					    (int) bp->b_lblkno,
2325					    bp->b_flags, bp->b_npages);
2326				else
2327					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2328					    (int) bp->b_lblkno,
2329					    bp->b_flags, bp->b_npages);
2330				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2331				    m->valid, m->dirty, m->wire_count);
2332#endif
2333				panic("biodone: page busy < 0\n");
2334			}
2335			vm_page_io_finish(m);
2336			vm_object_pip_subtract(obj, 1);
2337			foff += resid;
2338			iosize -= resid;
2339		}
2340		if (obj)
2341			vm_object_pip_wakeupn(obj, 0);
2342	}
2343	/*
2344	 * For asynchronous completions, release the buffer now. The brelse
2345	 * checks for B_WANTED and will do the wakeup there if necessary - so
2346	 * no need to do a wakeup here in the async case.
2347	 */
2348
2349	if (bp->b_flags & B_ASYNC) {
2350		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2351			brelse(bp);
2352		else
2353			bqrelse(bp);
2354	} else {
2355		bp->b_flags &= ~B_WANTED;
2356		wakeup(bp);
2357	}
2358	splx(s);
2359}
2360
2361#if 0	/* not with kirks code */
2362static int vfs_update_interval = 30;
2363
2364static void
2365vfs_update()
2366{
2367	while (1) {
2368		tsleep(&vfs_update_wakeup, PUSER, "update",
2369		    hz * vfs_update_interval);
2370		vfs_update_wakeup = 0;
2371		sync(curproc, NULL);
2372	}
2373}
2374
2375static int
2376sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
2377{
2378	int error = sysctl_handle_int(oidp,
2379		oidp->oid_arg1, oidp->oid_arg2, req);
2380	if (!error)
2381		wakeup(&vfs_update_wakeup);
2382	return error;
2383}
2384
2385SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
2386	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
2387
2388#endif
2389
2390
2391/*
2392 * This routine is called in lieu of iodone in the case of
2393 * incomplete I/O.  This keeps the busy status for pages
2394 * consistant.
2395 */
2396void
2397vfs_unbusy_pages(struct buf * bp)
2398{
2399	int i;
2400
2401	if (bp->b_flags & B_VMIO) {
2402		struct vnode *vp = bp->b_vp;
2403		vm_object_t obj = vp->v_object;
2404
2405		for (i = 0; i < bp->b_npages; i++) {
2406			vm_page_t m = bp->b_pages[i];
2407
2408			if (m == bogus_page) {
2409				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2410#if !defined(MAX_PERF)
2411				if (!m) {
2412					panic("vfs_unbusy_pages: page missing\n");
2413				}
2414#endif
2415				bp->b_pages[i] = m;
2416				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2417			}
2418			vm_object_pip_subtract(obj, 1);
2419			vm_page_flag_clear(m, PG_ZERO);
2420			vm_page_io_finish(m);
2421		}
2422		vm_object_pip_wakeupn(obj, 0);
2423	}
2424}
2425
2426/*
2427 * Set NFS' b_validoff and b_validend fields from the valid bits
2428 * of a page.  If the consumer is not NFS, and the page is not
2429 * valid for the entire range, clear the B_CACHE flag to force
2430 * the consumer to re-read the page.
2431 *
2432 * B_CACHE interaction is especially tricky.
2433 */
2434static void
2435vfs_buf_set_valid(struct buf *bp,
2436		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
2437		  vm_page_t m)
2438{
2439	if (bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK) {
2440		vm_offset_t svalid, evalid;
2441		int validbits = m->valid >> (((foff+off)&PAGE_MASK)/DEV_BSIZE);
2442
2443		/*
2444		 * This only bothers with the first valid range in the
2445		 * page.
2446		 */
2447		svalid = off;
2448		while (validbits && !(validbits & 1)) {
2449			svalid += DEV_BSIZE;
2450			validbits >>= 1;
2451		}
2452		evalid = svalid;
2453		while (validbits & 1) {
2454			evalid += DEV_BSIZE;
2455			validbits >>= 1;
2456		}
2457		evalid = min(evalid, off + size);
2458		/*
2459		 * We can only set b_validoff/end if this range is contiguous
2460		 * with the range built up already.  If we cannot set
2461		 * b_validoff/end, we must clear B_CACHE to force an update
2462		 * to clean the bp up.
2463		 */
2464		if (svalid == bp->b_validend) {
2465			bp->b_validoff = min(bp->b_validoff, svalid);
2466			bp->b_validend = max(bp->b_validend, evalid);
2467		} else {
2468			bp->b_flags &= ~B_CACHE;
2469		}
2470	} else if (!vm_page_is_valid(m,
2471				     (vm_offset_t) ((foff + off) & PAGE_MASK),
2472				     size)) {
2473		bp->b_flags &= ~B_CACHE;
2474	}
2475}
2476
2477/*
2478 * Set the valid bits in a page, taking care of the b_validoff,
2479 * b_validend fields which NFS uses to optimise small reads.  Off is
2480 * the offset within the file and pageno is the page index within the buf.
2481 *
2482 * XXX we have to set the valid & clean bits for all page fragments
2483 * touched by b_validoff/validend, even if the page fragment goes somewhat
2484 * beyond b_validoff/validend due to alignment.
2485 */
2486static void
2487vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2488{
2489	struct vnode *vp = bp->b_vp;
2490	vm_ooffset_t soff, eoff;
2491
2492	/*
2493	 * Start and end offsets in buffer.  eoff - soff may not cross a
2494	 * page boundry or cross the end of the buffer.
2495	 */
2496	soff = off;
2497	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2498	if (eoff > bp->b_offset + bp->b_bufsize)
2499		eoff = bp->b_offset + bp->b_bufsize;
2500
2501	if (vp->v_tag == VT_NFS && vp->v_type != VBLK) {
2502		vm_ooffset_t sv, ev;
2503		vm_page_set_invalid(m,
2504		    (vm_offset_t) (soff & PAGE_MASK),
2505		    (vm_offset_t) (eoff - soff));
2506		/*
2507		 * bp->b_validoff and bp->b_validend restrict the valid range
2508		 * that we can set.  Note that these offsets are not DEV_BSIZE
2509		 * aligned.  vm_page_set_validclean() must know what
2510		 * sub-DEV_BSIZE ranges to clear.
2511		 */
2512#if 0
2513		sv = (bp->b_offset + bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2514		ev = (bp->b_offset + bp->b_validend + (DEV_BSIZE - 1)) &
2515		    ~(DEV_BSIZE - 1);
2516#endif
2517		sv = bp->b_offset + bp->b_validoff;
2518		ev = bp->b_offset + bp->b_validend;
2519		soff = qmax(sv, soff);
2520		eoff = qmin(ev, eoff);
2521	}
2522
2523	if (eoff > soff)
2524		vm_page_set_validclean(m,
2525	       (vm_offset_t) (soff & PAGE_MASK),
2526	       (vm_offset_t) (eoff - soff));
2527}
2528
2529/*
2530 * This routine is called before a device strategy routine.
2531 * It is used to tell the VM system that paging I/O is in
2532 * progress, and treat the pages associated with the buffer
2533 * almost as being PG_BUSY.  Also the object paging_in_progress
2534 * flag is handled to make sure that the object doesn't become
2535 * inconsistant.
2536 */
2537void
2538vfs_busy_pages(struct buf * bp, int clear_modify)
2539{
2540	int i, bogus;
2541
2542	if (bp->b_flags & B_VMIO) {
2543		struct vnode *vp = bp->b_vp;
2544		vm_object_t obj = vp->v_object;
2545		vm_ooffset_t foff;
2546
2547		foff = bp->b_offset;
2548		KASSERT(bp->b_offset != NOOFFSET,
2549		    ("vfs_busy_pages: no buffer offset"));
2550		vfs_setdirty(bp);
2551
2552retry:
2553		for (i = 0; i < bp->b_npages; i++) {
2554			vm_page_t m = bp->b_pages[i];
2555			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2556				goto retry;
2557		}
2558
2559		bogus = 0;
2560		for (i = 0; i < bp->b_npages; i++) {
2561			vm_page_t m = bp->b_pages[i];
2562
2563			vm_page_flag_clear(m, PG_ZERO);
2564			if ((bp->b_flags & B_CLUSTER) == 0) {
2565				vm_object_pip_add(obj, 1);
2566				vm_page_io_start(m);
2567			}
2568
2569			vm_page_protect(m, VM_PROT_NONE);
2570			if (clear_modify)
2571				vfs_page_set_valid(bp, foff, i, m);
2572			else if (m->valid == VM_PAGE_BITS_ALL &&
2573				(bp->b_flags & B_CACHE) == 0) {
2574				bp->b_pages[i] = bogus_page;
2575				bogus++;
2576			}
2577			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2578		}
2579		if (bogus)
2580			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2581	}
2582}
2583
2584/*
2585 * Tell the VM system that the pages associated with this buffer
2586 * are clean.  This is used for delayed writes where the data is
2587 * going to go to disk eventually without additional VM intevention.
2588 */
2589void
2590vfs_clean_pages(struct buf * bp)
2591{
2592	int i;
2593
2594	if (bp->b_flags & B_VMIO) {
2595		vm_ooffset_t foff;
2596		foff = bp->b_offset;
2597		KASSERT(bp->b_offset != NOOFFSET,
2598		    ("vfs_clean_pages: no buffer offset"));
2599		for (i = 0; i < bp->b_npages; i++) {
2600			vm_page_t m = bp->b_pages[i];
2601			vfs_page_set_valid(bp, foff, i, m);
2602			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2603		}
2604	}
2605}
2606
2607void
2608vfs_bio_clrbuf(struct buf *bp) {
2609	int i, mask = 0;
2610	caddr_t sa, ea;
2611	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2612		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2613		    (bp->b_offset & PAGE_MASK) == 0) {
2614			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2615			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2616			    ((bp->b_pages[0]->valid & mask) != mask)) {
2617				bzero(bp->b_data, bp->b_bufsize);
2618			}
2619			bp->b_pages[0]->valid |= mask;
2620			bp->b_resid = 0;
2621			return;
2622		}
2623		ea = sa = bp->b_data;
2624		for(i=0;i<bp->b_npages;i++,sa=ea) {
2625			int j = ((u_long)sa & PAGE_MASK) / DEV_BSIZE;
2626			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2627			ea = (caddr_t)ulmin((u_long)ea,
2628				(u_long)bp->b_data + bp->b_bufsize);
2629			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2630			if ((bp->b_pages[i]->valid & mask) == mask)
2631				continue;
2632			if ((bp->b_pages[i]->valid & mask) == 0) {
2633				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2634					bzero(sa, ea - sa);
2635				}
2636			} else {
2637				for (; sa < ea; sa += DEV_BSIZE, j++) {
2638					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2639						(bp->b_pages[i]->valid & (1<<j)) == 0)
2640						bzero(sa, DEV_BSIZE);
2641				}
2642			}
2643			bp->b_pages[i]->valid |= mask;
2644			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2645		}
2646		bp->b_resid = 0;
2647	} else {
2648		clrbuf(bp);
2649	}
2650}
2651
2652/*
2653 * vm_hold_load_pages and vm_hold_unload pages get pages into
2654 * a buffers address space.  The pages are anonymous and are
2655 * not associated with a file object.
2656 */
2657void
2658vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2659{
2660	vm_offset_t pg;
2661	vm_page_t p;
2662	int index;
2663
2664	to = round_page(to);
2665	from = round_page(from);
2666	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
2667
2668	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2669
2670tryagain:
2671
2672		p = vm_page_alloc(kernel_object,
2673			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
2674		    VM_ALLOC_NORMAL);
2675		if (!p) {
2676			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
2677			VM_WAIT;
2678			goto tryagain;
2679		}
2680		vm_page_wire(p);
2681		p->valid = VM_PAGE_BITS_ALL;
2682		vm_page_flag_clear(p, PG_ZERO);
2683		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
2684		bp->b_pages[index] = p;
2685		vm_page_wakeup(p);
2686	}
2687	bp->b_npages = index;
2688}
2689
2690void
2691vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2692{
2693	vm_offset_t pg;
2694	vm_page_t p;
2695	int index, newnpages;
2696
2697	from = round_page(from);
2698	to = round_page(to);
2699	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
2700
2701	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2702		p = bp->b_pages[index];
2703		if (p && (index < bp->b_npages)) {
2704#if !defined(MAX_PERF)
2705			if (p->busy) {
2706				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2707					bp->b_blkno, bp->b_lblkno);
2708			}
2709#endif
2710			bp->b_pages[index] = NULL;
2711			pmap_kremove(pg);
2712			vm_page_busy(p);
2713			vm_page_unwire(p, 0);
2714			vm_page_free(p);
2715		}
2716	}
2717	bp->b_npages = newnpages;
2718}
2719
2720
2721#include "opt_ddb.h"
2722#ifdef DDB
2723#include <ddb/ddb.h>
2724
2725DB_SHOW_COMMAND(buffer, db_show_buffer)
2726{
2727	/* get args */
2728	struct buf *bp = (struct buf *)addr;
2729
2730	if (!have_addr) {
2731		db_printf("usage: show buffer <addr>\n");
2732		return;
2733	}
2734
2735	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2736		  (u_int)bp->b_flags, PRINT_BUF_FLAGS);
2737	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2738		  "b_resid = %ld\nb_dev = 0x%x, b_data = %p, "
2739		  "b_blkno = %d, b_pblkno = %d\n",
2740		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2741		  bp->b_dev, bp->b_data, bp->b_blkno, bp->b_pblkno);
2742	if (bp->b_npages) {
2743		int i;
2744		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
2745		for (i = 0; i < bp->b_npages; i++) {
2746			vm_page_t m;
2747			m = bp->b_pages[i];
2748			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
2749			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
2750			if ((i + 1) < bp->b_npages)
2751				db_printf(",");
2752		}
2753		db_printf("\n");
2754	}
2755}
2756#endif /* DDB */
2757