vfs_bio.c revision 44433
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $Id: vfs_bio.c,v 1.199 1999/01/27 21:49:58 dillon Exp $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#define VMIO
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/sysproto.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/proc.h>
37#include <sys/vnode.h>
38#include <sys/vmmeter.h>
39#include <sys/lock.h>
40#include <miscfs/specfs/specdev.h>
41#include <vm/vm.h>
42#include <vm/vm_param.h>
43#include <vm/vm_prot.h>
44#include <vm/vm_kern.h>
45#include <vm/vm_pageout.h>
46#include <vm/vm_page.h>
47#include <vm/vm_object.h>
48#include <vm/vm_extern.h>
49#include <vm/vm_map.h>
50#include <sys/buf.h>
51#include <sys/mount.h>
52#include <sys/malloc.h>
53#include <sys/resourcevar.h>
54
55static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
56
57struct	bio_ops bioops;		/* I/O operation notification */
58
59#if 0 	/* replaced bu sched_sync */
60static void vfs_update __P((void));
61static struct	proc *updateproc;
62static struct kproc_desc up_kp = {
63	"update",
64	vfs_update,
65	&updateproc
66};
67SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
68#endif
69
70struct buf *buf;		/* buffer header pool */
71struct swqueue bswlist;
72
73static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
74		vm_offset_t to);
75static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
78			      vm_offset_t off, vm_offset_t size,
79			      vm_page_t m);
80static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
81			       int pageno, vm_page_t m);
82static void vfs_clean_pages(struct buf * bp);
83static void vfs_setdirty(struct buf *bp);
84static void vfs_vmio_release(struct buf *bp);
85static void flushdirtybuffers(int slpflag, int slptimeo);
86
87int needsbuffer;
88
89/*
90 * Internal update daemon, process 3
91 *	The variable vfs_update_wakeup allows for internal syncs.
92 */
93int vfs_update_wakeup;
94
95
96/*
97 * buffers base kva
98 */
99
100/*
101 * bogus page -- for I/O to/from partially complete buffers
102 * this is a temporary solution to the problem, but it is not
103 * really that bad.  it would be better to split the buffer
104 * for input in the case of buffers partially already in memory,
105 * but the code is intricate enough already.
106 */
107vm_page_t bogus_page;
108static vm_offset_t bogus_offset;
109
110static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
111	bufmallocspace, maxbufmallocspace;
112int numdirtybuffers;
113static int lodirtybuffers, hidirtybuffers;
114static int numfreebuffers, lofreebuffers, hifreebuffers;
115static int kvafreespace;
116
117SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
118	&numdirtybuffers, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
120	&lodirtybuffers, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
122	&hidirtybuffers, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
124	&numfreebuffers, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
126	&lofreebuffers, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
128	&hifreebuffers, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
130	&maxbufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132	&bufspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
134	&maxvmiobufspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
136	&vmiospace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
138	&maxbufmallocspace, 0, "");
139SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
140	&bufmallocspace, 0, "");
141SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
142	&kvafreespace, 0, "");
143
144static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
145struct bqueues bufqueues[BUFFER_QUEUES] = { { 0 } };
146
147extern int vm_swap_size;
148
149#define BUF_MAXUSE 24
150
151#define VFS_BIO_NEED_ANY 1
152#define VFS_BIO_NEED_LOWLIMIT 2
153#define VFS_BIO_NEED_FREE 4
154
155/*
156 * Initialize buffer headers and related structures.
157 */
158void
159bufinit()
160{
161	struct buf *bp;
162	int i;
163
164	TAILQ_INIT(&bswlist);
165	LIST_INIT(&invalhash);
166
167	/* first, make a null hash table */
168	for (i = 0; i < BUFHSZ; i++)
169		LIST_INIT(&bufhashtbl[i]);
170
171	/* next, make a null set of free lists */
172	for (i = 0; i < BUFFER_QUEUES; i++)
173		TAILQ_INIT(&bufqueues[i]);
174
175	/* finally, initialize each buffer header and stick on empty q */
176	for (i = 0; i < nbuf; i++) {
177		bp = &buf[i];
178		bzero(bp, sizeof *bp);
179		bp->b_flags = B_INVAL;	/* we're just an empty header */
180		bp->b_dev = NODEV;
181		bp->b_rcred = NOCRED;
182		bp->b_wcred = NOCRED;
183		bp->b_qindex = QUEUE_EMPTY;
184		bp->b_xflags = 0;
185		LIST_INIT(&bp->b_dep);
186		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
187		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
188	}
189/*
190 * maxbufspace is currently calculated to support all filesystem blocks
191 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
192 * cache is still the same as it would be for 8K filesystems.  This
193 * keeps the size of the buffer cache "in check" for big block filesystems.
194 */
195	maxbufspace = (nbuf + 8) * DFLTBSIZE;
196/*
197 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
198 */
199	maxvmiobufspace = 2 * maxbufspace / 3;
200/*
201 * Limit the amount of malloc memory since it is wired permanently into
202 * the kernel space.  Even though this is accounted for in the buffer
203 * allocation, we don't want the malloced region to grow uncontrolled.
204 * The malloc scheme improves memory utilization significantly on average
205 * (small) directories.
206 */
207	maxbufmallocspace = maxbufspace / 20;
208
209/*
210 * Remove the probability of deadlock conditions by limiting the
211 * number of dirty buffers.
212 */
213	hidirtybuffers = nbuf / 8 + 20;
214	lodirtybuffers = nbuf / 16 + 10;
215	numdirtybuffers = 0;
216	lofreebuffers = nbuf / 18 + 5;
217	hifreebuffers = 2 * lofreebuffers;
218	numfreebuffers = nbuf;
219	kvafreespace = 0;
220
221	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
222	bogus_page = vm_page_alloc(kernel_object,
223			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
224			VM_ALLOC_NORMAL);
225
226}
227
228/*
229 * Free the kva allocation for a buffer
230 * Must be called only at splbio or higher,
231 *  as this is the only locking for buffer_map.
232 */
233static void
234bfreekva(struct buf * bp)
235{
236	if (bp->b_kvasize == 0)
237		return;
238
239	vm_map_delete(buffer_map,
240		(vm_offset_t) bp->b_kvabase,
241		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
242
243	bp->b_kvasize = 0;
244
245}
246
247/*
248 * remove the buffer from the appropriate free list
249 */
250void
251bremfree(struct buf * bp)
252{
253	int s = splbio();
254
255	if (bp->b_qindex != QUEUE_NONE) {
256		if (bp->b_qindex == QUEUE_EMPTY) {
257			kvafreespace -= bp->b_kvasize;
258		}
259		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
260		bp->b_qindex = QUEUE_NONE;
261	} else {
262#if !defined(MAX_PERF)
263		panic("bremfree: removing a buffer when not on a queue");
264#endif
265	}
266	if ((bp->b_flags & B_INVAL) ||
267		(bp->b_flags & (B_DELWRI|B_LOCKED)) == 0)
268		--numfreebuffers;
269	splx(s);
270}
271
272
273/*
274 * Get a buffer with the specified data.  Look in the cache first.
275 */
276int
277bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
278    struct buf ** bpp)
279{
280	struct buf *bp;
281
282	bp = getblk(vp, blkno, size, 0, 0);
283	*bpp = bp;
284
285	/* if not found in cache, do some I/O */
286	if ((bp->b_flags & B_CACHE) == 0) {
287		if (curproc != NULL)
288			curproc->p_stats->p_ru.ru_inblock++;
289		bp->b_flags |= B_READ;
290		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
291		if (bp->b_rcred == NOCRED) {
292			if (cred != NOCRED)
293				crhold(cred);
294			bp->b_rcred = cred;
295		}
296		vfs_busy_pages(bp, 0);
297		VOP_STRATEGY(vp, bp);
298		return (biowait(bp));
299	}
300	return (0);
301}
302
303/*
304 * Operates like bread, but also starts asynchronous I/O on
305 * read-ahead blocks.
306 */
307int
308breadn(struct vnode * vp, daddr_t blkno, int size,
309    daddr_t * rablkno, int *rabsize,
310    int cnt, struct ucred * cred, struct buf ** bpp)
311{
312	struct buf *bp, *rabp;
313	int i;
314	int rv = 0, readwait = 0;
315
316	*bpp = bp = getblk(vp, blkno, size, 0, 0);
317
318	/* if not found in cache, do some I/O */
319	if ((bp->b_flags & B_CACHE) == 0) {
320		if (curproc != NULL)
321			curproc->p_stats->p_ru.ru_inblock++;
322		bp->b_flags |= B_READ;
323		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
324		if (bp->b_rcred == NOCRED) {
325			if (cred != NOCRED)
326				crhold(cred);
327			bp->b_rcred = cred;
328		}
329		vfs_busy_pages(bp, 0);
330		VOP_STRATEGY(vp, bp);
331		++readwait;
332	}
333	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
334		if (inmem(vp, *rablkno))
335			continue;
336		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
337
338		if ((rabp->b_flags & B_CACHE) == 0) {
339			if (curproc != NULL)
340				curproc->p_stats->p_ru.ru_inblock++;
341			rabp->b_flags |= B_READ | B_ASYNC;
342			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
343			if (rabp->b_rcred == NOCRED) {
344				if (cred != NOCRED)
345					crhold(cred);
346				rabp->b_rcred = cred;
347			}
348			vfs_busy_pages(rabp, 0);
349			VOP_STRATEGY(vp, rabp);
350		} else {
351			brelse(rabp);
352		}
353	}
354
355	if (readwait) {
356		rv = biowait(bp);
357	}
358	return (rv);
359}
360
361/*
362 * Write, release buffer on completion.  (Done by iodone
363 * if async.)
364 */
365int
366bwrite(struct buf * bp)
367{
368	int oldflags, s;
369	struct vnode *vp;
370	struct mount *mp;
371
372
373	if (bp->b_flags & B_INVAL) {
374		brelse(bp);
375		return (0);
376	}
377
378	oldflags = bp->b_flags;
379
380#if !defined(MAX_PERF)
381	if ((bp->b_flags & B_BUSY) == 0)
382		panic("bwrite: buffer is not busy???");
383#endif
384
385	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
386	bp->b_flags |= B_WRITEINPROG;
387
388	s = splbio();
389	if ((oldflags & B_DELWRI) == B_DELWRI) {
390		--numdirtybuffers;
391		reassignbuf(bp, bp->b_vp);
392	}
393
394	bp->b_vp->v_numoutput++;
395	vfs_busy_pages(bp, 1);
396	if (curproc != NULL)
397		curproc->p_stats->p_ru.ru_oublock++;
398	splx(s);
399	VOP_STRATEGY(bp->b_vp, bp);
400
401	/*
402	 * Collect statistics on synchronous and asynchronous writes.
403	 * Writes to block devices are charged to their associated
404	 * filesystem (if any).
405	 */
406	if ((vp = bp->b_vp) != NULL) {
407		if (vp->v_type == VBLK)
408			mp = vp->v_specmountpoint;
409		else
410			mp = vp->v_mount;
411		if (mp != NULL)
412			if ((oldflags & B_ASYNC) == 0)
413				mp->mnt_stat.f_syncwrites++;
414			else
415				mp->mnt_stat.f_asyncwrites++;
416	}
417
418	if ((oldflags & B_ASYNC) == 0) {
419		int rtval = biowait(bp);
420		brelse(bp);
421		return (rtval);
422	}
423	return (0);
424}
425
426void
427vfs_bio_need_satisfy(void) {
428	++numfreebuffers;
429	if (!needsbuffer)
430		return;
431	if (numdirtybuffers < lodirtybuffers) {
432		needsbuffer &= ~(VFS_BIO_NEED_ANY | VFS_BIO_NEED_LOWLIMIT);
433	} else {
434		needsbuffer &= ~VFS_BIO_NEED_ANY;
435	}
436	if (numfreebuffers >= hifreebuffers) {
437		needsbuffer &= ~VFS_BIO_NEED_FREE;
438	}
439	wakeup(&needsbuffer);
440}
441
442/*
443 * Delayed write. (Buffer is marked dirty).
444 */
445void
446bdwrite(struct buf * bp)
447{
448	struct vnode *vp;
449
450#if !defined(MAX_PERF)
451	if ((bp->b_flags & B_BUSY) == 0) {
452		panic("bdwrite: buffer is not busy");
453	}
454#endif
455
456	if (bp->b_flags & B_INVAL) {
457		brelse(bp);
458		return;
459	}
460	bp->b_flags &= ~(B_READ|B_RELBUF);
461	if ((bp->b_flags & B_DELWRI) == 0) {
462		bp->b_flags |= B_DONE | B_DELWRI;
463		reassignbuf(bp, bp->b_vp);
464		++numdirtybuffers;
465	}
466
467	/*
468	 * This bmap keeps the system from needing to do the bmap later,
469	 * perhaps when the system is attempting to do a sync.  Since it
470	 * is likely that the indirect block -- or whatever other datastructure
471	 * that the filesystem needs is still in memory now, it is a good
472	 * thing to do this.  Note also, that if the pageout daemon is
473	 * requesting a sync -- there might not be enough memory to do
474	 * the bmap then...  So, this is important to do.
475	 */
476	if (bp->b_lblkno == bp->b_blkno) {
477		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
478	}
479
480	/*
481	 * Set the *dirty* buffer range based upon the VM system dirty pages.
482	 */
483	vfs_setdirty(bp);
484
485	/*
486	 * We need to do this here to satisfy the vnode_pager and the
487	 * pageout daemon, so that it thinks that the pages have been
488	 * "cleaned".  Note that since the pages are in a delayed write
489	 * buffer -- the VFS layer "will" see that the pages get written
490	 * out on the next sync, or perhaps the cluster will be completed.
491	 */
492	vfs_clean_pages(bp);
493	bqrelse(bp);
494
495	/*
496	 * XXX The soft dependency code is not prepared to
497	 * have I/O done when a bdwrite is requested. For
498	 * now we just let the write be delayed if it is
499	 * requested by the soft dependency code.
500	 */
501	if ((vp = bp->b_vp) &&
502	    ((vp->v_type == VBLK && vp->v_specmountpoint &&
503		  (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) ||
504		 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP))))
505		return;
506
507	if (numdirtybuffers >= hidirtybuffers)
508		flushdirtybuffers(0, 0);
509
510	return;
511}
512
513
514/*
515 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
516 * Check how this compares with vfs_setdirty(); XXX [JRE]
517 */
518void
519bdirty(bp)
520      struct buf *bp;
521{
522
523	bp->b_flags &= ~(B_READ|B_RELBUF); /* XXX ??? check this */
524	if ((bp->b_flags & B_DELWRI) == 0) {
525		bp->b_flags |= B_DONE | B_DELWRI; /* why done? XXX JRE */
526		reassignbuf(bp, bp->b_vp);
527		++numdirtybuffers;
528	}
529}
530
531/*
532 * Asynchronous write.
533 * Start output on a buffer, but do not wait for it to complete.
534 * The buffer is released when the output completes.
535 */
536void
537bawrite(struct buf * bp)
538{
539	bp->b_flags |= B_ASYNC;
540	(void) VOP_BWRITE(bp);
541}
542
543/*
544 * Ordered write.
545 * Start output on a buffer, and flag it so that the device will write
546 * it in the order it was queued.  The buffer is released when the output
547 * completes.
548 */
549int
550bowrite(struct buf * bp)
551{
552	bp->b_flags |= B_ORDERED|B_ASYNC;
553	return (VOP_BWRITE(bp));
554}
555
556/*
557 * Release a buffer.
558 */
559void
560brelse(struct buf * bp)
561{
562	int s;
563
564	if (bp->b_flags & B_CLUSTER) {
565		relpbuf(bp, NULL);
566		return;
567	}
568
569	s = splbio();
570
571	/* anyone need this block? */
572	if (bp->b_flags & B_WANTED) {
573		bp->b_flags &= ~(B_WANTED | B_AGE);
574		wakeup(bp);
575	}
576
577	if (bp->b_flags & B_LOCKED)
578		bp->b_flags &= ~B_ERROR;
579
580	if ((bp->b_flags & (B_READ | B_ERROR)) == B_ERROR) {
581		bp->b_flags &= ~B_ERROR;
582		bdirty(bp);
583	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
584	    (bp->b_bufsize <= 0)) {
585		bp->b_flags |= B_INVAL;
586		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
587			(*bioops.io_deallocate)(bp);
588		if (bp->b_flags & B_DELWRI)
589			--numdirtybuffers;
590		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
591		if ((bp->b_flags & B_VMIO) == 0) {
592			if (bp->b_bufsize)
593				allocbuf(bp, 0);
594			if (bp->b_vp)
595				brelvp(bp);
596		}
597	}
598
599	/*
600	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
601	 * is called with B_DELWRI set, the underlying pages may wind up
602	 * getting freed causing a previous write (bdwrite()) to get 'lost'
603	 * because pages associated with a B_DELWRI bp are marked clean.
604	 *
605	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
606	 * if B_DELWRI is set.
607	 */
608
609	if (bp->b_flags & B_DELWRI)
610		bp->b_flags &= ~B_RELBUF;
611
612	/*
613	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
614	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
615	 * but the VM object is kept around.  The B_NOCACHE flag is used to
616	 * invalidate the pages in the VM object.
617	 *
618	 * The b_{validoff,validend,dirtyoff,dirtyend} values are relative
619	 * to b_offset and currently have byte granularity, whereas the
620	 * valid flags in the vm_pages have only DEV_BSIZE resolution.
621	 * The byte resolution fields are used to avoid unnecessary re-reads
622	 * of the buffer but the code really needs to be genericized so
623	 * other filesystem modules can take advantage of these fields.
624	 *
625	 * XXX this seems to cause performance problems.
626	 */
627	if ((bp->b_flags & B_VMIO)
628	    && !(bp->b_vp->v_tag == VT_NFS &&
629		 bp->b_vp->v_type != VBLK &&
630		 (bp->b_flags & B_DELWRI) != 0)
631#ifdef notdef
632	    && (bp->b_vp->v_tag != VT_NFS
633		|| bp->b_vp->v_type == VBLK
634		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
635		|| bp->b_validend == 0
636		|| (bp->b_validoff == 0
637		    && bp->b_validend == bp->b_bufsize))
638#endif
639	    ) {
640
641		int i, j, resid;
642		vm_page_t m;
643		off_t foff;
644		vm_pindex_t poff;
645		vm_object_t obj;
646		struct vnode *vp;
647
648		vp = bp->b_vp;
649
650		/*
651		 * Get the base offset and length of the buffer.  Note that
652		 * for block sizes that are less then PAGE_SIZE, the b_data
653		 * base of the buffer does not represent exactly b_offset and
654		 * neither b_offset nor b_size are necessarily page aligned.
655		 * Instead, the starting position of b_offset is:
656		 *
657		 * 	b_data + (b_offset & PAGE_MASK)
658		 *
659		 * block sizes less then DEV_BSIZE (usually 512) are not
660		 * supported due to the page granularity bits (m->valid,
661		 * m->dirty, etc...).
662		 *
663		 * See man buf(9) for more information
664		 */
665
666		resid = bp->b_bufsize;
667		foff = bp->b_offset;
668
669		for (i = 0; i < bp->b_npages; i++) {
670			m = bp->b_pages[i];
671			vm_page_flag_clear(m, PG_ZERO);
672			if (m == bogus_page) {
673
674				obj = (vm_object_t) vp->v_object;
675				poff = OFF_TO_IDX(bp->b_offset);
676
677				for (j = i; j < bp->b_npages; j++) {
678					m = bp->b_pages[j];
679					if (m == bogus_page) {
680						m = vm_page_lookup(obj, poff + j);
681#if !defined(MAX_PERF)
682						if (!m) {
683							panic("brelse: page missing\n");
684						}
685#endif
686						bp->b_pages[j] = m;
687					}
688				}
689
690				if ((bp->b_flags & B_INVAL) == 0) {
691					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
692				}
693			}
694			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
695				int poffset = foff & PAGE_MASK;
696				int presid = resid > (PAGE_SIZE - poffset) ?
697					(PAGE_SIZE - poffset) : resid;
698
699				KASSERT(presid >= 0, ("brelse: extra page"));
700				vm_page_set_invalid(m, poffset, presid);
701			}
702			resid -= PAGE_SIZE - (foff & PAGE_MASK);
703			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
704		}
705
706		if (bp->b_flags & (B_INVAL | B_RELBUF))
707			vfs_vmio_release(bp);
708
709	} else if (bp->b_flags & B_VMIO) {
710
711		if (bp->b_flags & (B_INVAL | B_RELBUF))
712			vfs_vmio_release(bp);
713
714	}
715
716#if !defined(MAX_PERF)
717	if (bp->b_qindex != QUEUE_NONE)
718		panic("brelse: free buffer onto another queue???");
719#endif
720
721	/* enqueue */
722	/* buffers with no memory */
723	if (bp->b_bufsize == 0) {
724		bp->b_flags |= B_INVAL;
725		bp->b_qindex = QUEUE_EMPTY;
726		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
727		LIST_REMOVE(bp, b_hash);
728		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
729		bp->b_dev = NODEV;
730		kvafreespace += bp->b_kvasize;
731
732	/* buffers with junk contents */
733	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
734		bp->b_flags |= B_INVAL;
735		bp->b_qindex = QUEUE_AGE;
736		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
737		LIST_REMOVE(bp, b_hash);
738		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
739		bp->b_dev = NODEV;
740
741	/* buffers that are locked */
742	} else if (bp->b_flags & B_LOCKED) {
743		bp->b_qindex = QUEUE_LOCKED;
744		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
745
746	/* buffers with stale but valid contents */
747	} else if (bp->b_flags & B_AGE) {
748		bp->b_qindex = QUEUE_AGE;
749		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
750
751	/* buffers with valid and quite potentially reuseable contents */
752	} else {
753		bp->b_qindex = QUEUE_LRU;
754		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
755	}
756
757	if ((bp->b_flags & B_INVAL) ||
758		(bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
759		if (bp->b_flags & B_DELWRI) {
760			--numdirtybuffers;
761			bp->b_flags &= ~B_DELWRI;
762		}
763		vfs_bio_need_satisfy();
764	}
765
766	/* unlock */
767	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
768		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
769	splx(s);
770}
771
772/*
773 * Release a buffer.
774 */
775void
776bqrelse(struct buf * bp)
777{
778	int s;
779
780	s = splbio();
781
782	/* anyone need this block? */
783	if (bp->b_flags & B_WANTED) {
784		bp->b_flags &= ~(B_WANTED | B_AGE);
785		wakeup(bp);
786	}
787
788#if !defined(MAX_PERF)
789	if (bp->b_qindex != QUEUE_NONE)
790		panic("bqrelse: free buffer onto another queue???");
791#endif
792
793	if (bp->b_flags & B_LOCKED) {
794		bp->b_flags &= ~B_ERROR;
795		bp->b_qindex = QUEUE_LOCKED;
796		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
797		/* buffers with stale but valid contents */
798	} else {
799		bp->b_qindex = QUEUE_LRU;
800		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
801	}
802
803	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
804		vfs_bio_need_satisfy();
805	}
806
807	/* unlock */
808	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
809		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
810	splx(s);
811}
812
813static void
814vfs_vmio_release(bp)
815	struct buf *bp;
816{
817	int i, s;
818	vm_page_t m;
819
820	s = splvm();
821	for (i = 0; i < bp->b_npages; i++) {
822		m = bp->b_pages[i];
823		bp->b_pages[i] = NULL;
824		/*
825		 * In order to keep page LRU ordering consistent, put
826		 * everything on the inactive queue.
827		 */
828		vm_page_unwire(m, 0);
829		/*
830		 * We don't mess with busy pages, it is
831		 * the responsibility of the process that
832		 * busied the pages to deal with them.
833		 */
834		if ((m->flags & PG_BUSY) || (m->busy != 0))
835			continue;
836
837		if (m->wire_count == 0) {
838			vm_page_flag_clear(m, PG_ZERO);
839			/*
840			 * Might as well free the page if we can and it has
841			 * no valid data.
842			 */
843			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
844				vm_page_busy(m);
845				vm_page_protect(m, VM_PROT_NONE);
846				vm_page_free(m);
847			}
848		}
849	}
850	splx(s);
851	bufspace -= bp->b_bufsize;
852	vmiospace -= bp->b_bufsize;
853	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
854	bp->b_npages = 0;
855	bp->b_bufsize = 0;
856	bp->b_flags &= ~B_VMIO;
857	if (bp->b_vp)
858		brelvp(bp);
859}
860
861/*
862 * Check to see if a block is currently memory resident.
863 */
864struct buf *
865gbincore(struct vnode * vp, daddr_t blkno)
866{
867	struct buf *bp;
868	struct bufhashhdr *bh;
869
870	bh = BUFHASH(vp, blkno);
871	bp = bh->lh_first;
872
873	/* Search hash chain */
874	while (bp != NULL) {
875		/* hit */
876		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
877		    (bp->b_flags & B_INVAL) == 0) {
878			break;
879		}
880		bp = bp->b_hash.le_next;
881	}
882	return (bp);
883}
884
885/*
886 * this routine implements clustered async writes for
887 * clearing out B_DELWRI buffers...  This is much better
888 * than the old way of writing only one buffer at a time.
889 */
890int
891vfs_bio_awrite(struct buf * bp)
892{
893	int i;
894	daddr_t lblkno = bp->b_lblkno;
895	struct vnode *vp = bp->b_vp;
896	int s;
897	int ncl;
898	struct buf *bpa;
899	int nwritten;
900	int size;
901	int maxcl;
902
903	s = splbio();
904	/*
905	 * right now we support clustered writing only to regular files
906	 */
907	if ((vp->v_type == VREG) &&
908	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
909	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
910
911		size = vp->v_mount->mnt_stat.f_iosize;
912		maxcl = MAXPHYS / size;
913
914		for (i = 1; i < maxcl; i++) {
915			if ((bpa = gbincore(vp, lblkno + i)) &&
916			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
917			    (B_DELWRI | B_CLUSTEROK)) &&
918			    (bpa->b_bufsize == size)) {
919				if ((bpa->b_blkno == bpa->b_lblkno) ||
920				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
921					break;
922			} else {
923				break;
924			}
925		}
926		ncl = i;
927		/*
928		 * this is a possible cluster write
929		 */
930		if (ncl != 1) {
931			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
932			splx(s);
933			return nwritten;
934		}
935	}
936
937	bremfree(bp);
938	bp->b_flags |= B_BUSY | B_ASYNC;
939
940	splx(s);
941	/*
942	 * default (old) behavior, writing out only one block
943	 */
944	nwritten = bp->b_bufsize;
945	(void) VOP_BWRITE(bp);
946	return nwritten;
947}
948
949
950/*
951 * Find a buffer header which is available for use.
952 */
953static struct buf *
954getnewbuf(struct vnode *vp, daddr_t blkno,
955	int slpflag, int slptimeo, int size, int maxsize)
956{
957	struct buf *bp, *bp1;
958	int nbyteswritten = 0;
959	vm_offset_t addr;
960	static int writerecursion = 0;
961
962start:
963	if (bufspace >= maxbufspace)
964		goto trytofreespace;
965
966	/* can we constitute a new buffer? */
967	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
968#if !defined(MAX_PERF)
969		if (bp->b_qindex != QUEUE_EMPTY)
970			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
971			    bp->b_qindex);
972#endif
973		bp->b_flags |= B_BUSY;
974		bremfree(bp);
975		goto fillbuf;
976	}
977trytofreespace:
978	/*
979	 * We keep the file I/O from hogging metadata I/O
980	 * This is desirable because file data is cached in the
981	 * VM/Buffer cache even if a buffer is freed.
982	 */
983	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
984#if !defined(MAX_PERF)
985		if (bp->b_qindex != QUEUE_AGE)
986			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
987			    bp->b_qindex);
988#endif
989	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
990#if !defined(MAX_PERF)
991		if (bp->b_qindex != QUEUE_LRU)
992			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
993			    bp->b_qindex);
994#endif
995	}
996	if (!bp) {
997		/* wait for a free buffer of any kind */
998		needsbuffer |= VFS_BIO_NEED_ANY;
999		do
1000			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
1001			    slptimeo);
1002		while (needsbuffer & VFS_BIO_NEED_ANY);
1003		return (0);
1004	}
1005	KASSERT(!(bp->b_flags & B_BUSY),
1006	    ("getnewbuf: busy buffer on free list\n"));
1007	/*
1008	 * We are fairly aggressive about freeing VMIO buffers, but since
1009	 * the buffering is intact without buffer headers, there is not
1010	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
1011	 */
1012	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
1013		if ((bp->b_flags & B_VMIO) == 0 ||
1014			(vmiospace < maxvmiobufspace)) {
1015			--bp->b_usecount;
1016			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
1017			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
1018				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1019				goto start;
1020			}
1021			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1022		}
1023	}
1024
1025
1026	/* if we are a delayed write, convert to an async write */
1027	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
1028
1029		/*
1030		 * If our delayed write is likely to be used soon, then
1031		 * recycle back onto the LRU queue.
1032		 */
1033		if (vp && (bp->b_vp == vp) && (bp->b_qindex == QUEUE_LRU) &&
1034			(bp->b_lblkno >= blkno) && (maxsize > 0)) {
1035
1036			if (bp->b_usecount > 0) {
1037				if (bp->b_lblkno < blkno + (MAXPHYS / maxsize)) {
1038
1039					TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
1040
1041					if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
1042						TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1043						bp->b_usecount--;
1044						goto start;
1045					}
1046					TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1047				}
1048			}
1049		}
1050
1051		/*
1052		 * Certain layered filesystems can recursively re-enter the vfs_bio
1053		 * code, due to delayed writes.  This helps keep the system from
1054		 * deadlocking.
1055		 */
1056		if (writerecursion > 0) {
1057			if (writerecursion > 5) {
1058				bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1059				while (bp) {
1060					if ((bp->b_flags & B_DELWRI) == 0)
1061						break;
1062					bp = TAILQ_NEXT(bp, b_freelist);
1063				}
1064				if (bp == NULL) {
1065					bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1066					while (bp) {
1067						if ((bp->b_flags & B_DELWRI) == 0)
1068							break;
1069						bp = TAILQ_NEXT(bp, b_freelist);
1070					}
1071				}
1072				if (bp == NULL)
1073					panic("getnewbuf: cannot get buffer, infinite recursion failure");
1074			} else {
1075				bremfree(bp);
1076				bp->b_flags |= B_BUSY | B_AGE | B_ASYNC;
1077				nbyteswritten += bp->b_bufsize;
1078				++writerecursion;
1079				VOP_BWRITE(bp);
1080				--writerecursion;
1081				if (!slpflag && !slptimeo) {
1082					return (0);
1083				}
1084				goto start;
1085			}
1086		} else {
1087			++writerecursion;
1088			nbyteswritten += vfs_bio_awrite(bp);
1089			--writerecursion;
1090			if (!slpflag && !slptimeo) {
1091				return (0);
1092			}
1093			goto start;
1094		}
1095	}
1096
1097	if (bp->b_flags & B_WANTED) {
1098		bp->b_flags &= ~B_WANTED;
1099		wakeup(bp);
1100	}
1101	bremfree(bp);
1102	bp->b_flags |= B_BUSY;
1103
1104	if (bp->b_flags & B_VMIO) {
1105		bp->b_flags &= ~B_ASYNC;
1106		vfs_vmio_release(bp);
1107	}
1108
1109	if (bp->b_vp)
1110		brelvp(bp);
1111
1112fillbuf:
1113
1114	/* we are not free, nor do we contain interesting data */
1115	if (bp->b_rcred != NOCRED) {
1116		crfree(bp->b_rcred);
1117		bp->b_rcred = NOCRED;
1118	}
1119	if (bp->b_wcred != NOCRED) {
1120		crfree(bp->b_wcred);
1121		bp->b_wcred = NOCRED;
1122	}
1123	if (LIST_FIRST(&bp->b_dep) != NULL &&
1124	    bioops.io_deallocate)
1125		(*bioops.io_deallocate)(bp);
1126
1127	LIST_REMOVE(bp, b_hash);
1128	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1129	if (bp->b_bufsize) {
1130		allocbuf(bp, 0);
1131	}
1132	bp->b_flags = B_BUSY;
1133	bp->b_dev = NODEV;
1134	bp->b_vp = NULL;
1135	bp->b_blkno = bp->b_lblkno = 0;
1136	bp->b_offset = NOOFFSET;
1137	bp->b_iodone = 0;
1138	bp->b_error = 0;
1139	bp->b_resid = 0;
1140	bp->b_bcount = 0;
1141	bp->b_npages = 0;
1142	bp->b_dirtyoff = bp->b_dirtyend = 0;
1143	bp->b_validoff = bp->b_validend = 0;
1144	bp->b_usecount = 5;
1145	/* Here, not kern_physio.c, is where this should be done*/
1146	LIST_INIT(&bp->b_dep);
1147
1148	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1149
1150	/*
1151	 * we assume that buffer_map is not at address 0
1152	 */
1153	addr = 0;
1154	if (maxsize != bp->b_kvasize) {
1155		bfreekva(bp);
1156
1157findkvaspace:
1158		/*
1159		 * See if we have buffer kva space
1160		 */
1161		if (vm_map_findspace(buffer_map,
1162			vm_map_min(buffer_map), maxsize, &addr)) {
1163			if (kvafreespace > 0) {
1164				int totfree = 0, freed;
1165				do {
1166					freed = 0;
1167					for (bp1 = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1168						bp1 != NULL; bp1 = TAILQ_NEXT(bp1, b_freelist)) {
1169						if (bp1->b_kvasize != 0) {
1170							totfree += bp1->b_kvasize;
1171							freed = bp1->b_kvasize;
1172							bremfree(bp1);
1173							bfreekva(bp1);
1174							brelse(bp1);
1175							break;
1176						}
1177					}
1178				} while (freed);
1179				/*
1180				 * if we found free space, then retry with the same buffer.
1181				 */
1182				if (totfree)
1183					goto findkvaspace;
1184			}
1185			bp->b_flags |= B_INVAL;
1186			brelse(bp);
1187			goto trytofreespace;
1188		}
1189	}
1190
1191	/*
1192	 * See if we are below are allocated minimum
1193	 */
1194	if (bufspace >= (maxbufspace + nbyteswritten)) {
1195		bp->b_flags |= B_INVAL;
1196		brelse(bp);
1197		goto trytofreespace;
1198	}
1199
1200	/*
1201	 * create a map entry for the buffer -- in essence
1202	 * reserving the kva space.
1203	 */
1204	if (addr) {
1205		vm_map_insert(buffer_map, NULL, 0,
1206			addr, addr + maxsize,
1207			VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1208
1209		bp->b_kvabase = (caddr_t) addr;
1210		bp->b_kvasize = maxsize;
1211	}
1212	bp->b_data = bp->b_kvabase;
1213
1214	return (bp);
1215}
1216
1217static void
1218waitfreebuffers(int slpflag, int slptimeo) {
1219	while (numfreebuffers < hifreebuffers) {
1220		flushdirtybuffers(slpflag, slptimeo);
1221		if (numfreebuffers < hifreebuffers)
1222			break;
1223		needsbuffer |= VFS_BIO_NEED_FREE;
1224		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1225			break;
1226	}
1227}
1228
1229static void
1230flushdirtybuffers(int slpflag, int slptimeo) {
1231	int s;
1232	static pid_t flushing = 0;
1233
1234	s = splbio();
1235
1236	if (flushing) {
1237		if (flushing == curproc->p_pid) {
1238			splx(s);
1239			return;
1240		}
1241		while (flushing) {
1242			if (tsleep(&flushing, (PRIBIO + 4)|slpflag, "biofls", slptimeo)) {
1243				splx(s);
1244				return;
1245			}
1246		}
1247	}
1248	flushing = curproc->p_pid;
1249
1250	while (numdirtybuffers > lodirtybuffers) {
1251		struct buf *bp;
1252		needsbuffer |= VFS_BIO_NEED_LOWLIMIT;
1253		bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1254		if (bp == NULL)
1255			bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1256
1257		while (bp && ((bp->b_flags & B_DELWRI) == 0)) {
1258			bp = TAILQ_NEXT(bp, b_freelist);
1259		}
1260
1261		if (bp) {
1262			vfs_bio_awrite(bp);
1263			continue;
1264		}
1265		break;
1266	}
1267
1268	flushing = 0;
1269	wakeup(&flushing);
1270	splx(s);
1271}
1272
1273/*
1274 * Check to see if a block is currently memory resident.
1275 */
1276struct buf *
1277incore(struct vnode * vp, daddr_t blkno)
1278{
1279	struct buf *bp;
1280
1281	int s = splbio();
1282	bp = gbincore(vp, blkno);
1283	splx(s);
1284	return (bp);
1285}
1286
1287/*
1288 * Returns true if no I/O is needed to access the
1289 * associated VM object.  This is like incore except
1290 * it also hunts around in the VM system for the data.
1291 */
1292
1293int
1294inmem(struct vnode * vp, daddr_t blkno)
1295{
1296	vm_object_t obj;
1297	vm_offset_t toff, tinc, size;
1298	vm_page_t m;
1299	vm_ooffset_t off;
1300
1301	if (incore(vp, blkno))
1302		return 1;
1303	if (vp->v_mount == NULL)
1304		return 0;
1305	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1306		return 0;
1307
1308	obj = vp->v_object;
1309	size = PAGE_SIZE;
1310	if (size > vp->v_mount->mnt_stat.f_iosize)
1311		size = vp->v_mount->mnt_stat.f_iosize;
1312	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1313
1314	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1315		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1316		if (!m)
1317			return 0;
1318		tinc = size;
1319		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1320			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1321		if (vm_page_is_valid(m,
1322		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1323			return 0;
1324	}
1325	return 1;
1326}
1327
1328/*
1329 * now we set the dirty range for the buffer --
1330 * for NFS -- if the file is mapped and pages have
1331 * been written to, let it know.  We want the
1332 * entire range of the buffer to be marked dirty if
1333 * any of the pages have been written to for consistancy
1334 * with the b_validoff, b_validend set in the nfs write
1335 * code, and used by the nfs read code.
1336 */
1337static void
1338vfs_setdirty(struct buf *bp) {
1339	int i;
1340	vm_object_t object;
1341	vm_offset_t boffset;
1342#if 0
1343	vm_offset_t offset;
1344#endif
1345
1346	/*
1347	 * We qualify the scan for modified pages on whether the
1348	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1349	 * is not cleared simply by protecting pages off.
1350	 */
1351	if ((bp->b_flags & B_VMIO) &&
1352		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1353		/*
1354		 * test the pages to see if they have been modified directly
1355		 * by users through the VM system.
1356		 */
1357		for (i = 0; i < bp->b_npages; i++) {
1358			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1359			vm_page_test_dirty(bp->b_pages[i]);
1360		}
1361
1362		/*
1363		 * scan forwards for the first page modified
1364		 */
1365		for (i = 0; i < bp->b_npages; i++) {
1366			if (bp->b_pages[i]->dirty) {
1367				break;
1368			}
1369		}
1370
1371		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1372		if (boffset < bp->b_dirtyoff) {
1373			bp->b_dirtyoff = max(boffset, 0);
1374		}
1375
1376		/*
1377		 * scan backwards for the last page modified
1378		 */
1379		for (i = bp->b_npages - 1; i >= 0; --i) {
1380			if (bp->b_pages[i]->dirty) {
1381				break;
1382			}
1383		}
1384		boffset = (i + 1);
1385#if 0
1386		offset = boffset + bp->b_pages[0]->pindex;
1387		if (offset >= object->size)
1388			boffset = object->size - bp->b_pages[0]->pindex;
1389#endif
1390		boffset = (boffset << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1391		if (bp->b_dirtyend < boffset)
1392			bp->b_dirtyend = min(boffset, bp->b_bufsize);
1393	}
1394}
1395
1396/*
1397 * Get a block given a specified block and offset into a file/device.
1398 */
1399struct buf *
1400getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1401{
1402	struct buf *bp;
1403	int i, s;
1404	struct bufhashhdr *bh;
1405
1406#if !defined(MAX_PERF)
1407	if (size > MAXBSIZE)
1408		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1409#endif
1410
1411	s = splbio();
1412loop:
1413	if (numfreebuffers < lofreebuffers) {
1414		waitfreebuffers(slpflag, slptimeo);
1415	}
1416
1417	if ((bp = gbincore(vp, blkno))) {
1418		if (bp->b_flags & B_BUSY) {
1419			bp->b_flags |= B_WANTED;
1420			if (bp->b_usecount < BUF_MAXUSE)
1421				++bp->b_usecount;
1422
1423			if (!tsleep(bp,
1424				(PRIBIO + 4) | slpflag, "getblk", slptimeo)) {
1425				goto loop;
1426			}
1427
1428			splx(s);
1429			return (struct buf *) NULL;
1430		}
1431		bp->b_flags |= B_BUSY | B_CACHE;
1432		bremfree(bp);
1433
1434		/*
1435		 * check for size inconsistancies for non-VMIO case.
1436		 */
1437
1438		if (bp->b_bcount != size) {
1439			if ((bp->b_flags & B_VMIO) == 0 ||
1440			    (size > bp->b_kvasize)
1441			) {
1442				if (bp->b_flags & B_DELWRI) {
1443					bp->b_flags |= B_NOCACHE;
1444					VOP_BWRITE(bp);
1445				} else {
1446					if ((bp->b_flags & B_VMIO) &&
1447					   (LIST_FIRST(&bp->b_dep) == NULL)) {
1448						bp->b_flags |= B_RELBUF;
1449						brelse(bp);
1450					} else {
1451						bp->b_flags |= B_NOCACHE;
1452						VOP_BWRITE(bp);
1453					}
1454				}
1455				goto loop;
1456			}
1457		}
1458
1459		/*
1460		 * If the size is inconsistant in the VMIO case, we can resize
1461		 * the buffer.  This might lead to B_CACHE getting cleared.
1462		 */
1463
1464		if (bp->b_bcount != size)
1465			allocbuf(bp, size);
1466
1467		KASSERT(bp->b_offset != NOOFFSET,
1468		    ("getblk: no buffer offset"));
1469
1470		/*
1471		 * Check that the constituted buffer really deserves for the
1472		 * B_CACHE bit to be set.  B_VMIO type buffers might not
1473		 * contain fully valid pages.  Normal (old-style) buffers
1474		 * should be fully valid.  This might also lead to B_CACHE
1475		 * getting clear.
1476		 *
1477		 * If B_CACHE is already clear, don't bother checking to see
1478		 * if we have to clear it again.
1479		 *
1480		 * XXX this code should not be necessary unless the B_CACHE
1481		 * handling is broken elsewhere in the kernel.  We need to
1482		 * check the cases and then turn the clearing part of this
1483		 * code into a panic.
1484		 */
1485		if (
1486		    (bp->b_flags & (B_VMIO|B_CACHE)) == (B_VMIO|B_CACHE) &&
1487		    (bp->b_vp->v_tag != VT_NFS || bp->b_validend <= 0)
1488		) {
1489			int checksize = bp->b_bufsize;
1490			int poffset = bp->b_offset & PAGE_MASK;
1491			int resid;
1492			for (i = 0; i < bp->b_npages; i++) {
1493				resid = (checksize > (PAGE_SIZE - poffset)) ?
1494					(PAGE_SIZE - poffset) : checksize;
1495				if (!vm_page_is_valid(bp->b_pages[i], poffset, resid)) {
1496					bp->b_flags &= ~(B_CACHE | B_DONE);
1497					break;
1498				}
1499				checksize -= resid;
1500				poffset = 0;
1501			}
1502		}
1503
1504		/*
1505		 * If B_DELWRI is set and B_CACHE got cleared ( or was
1506		 * already clear ), we have to commit the write and
1507		 * retry.  The NFS code absolutely depends on this,
1508		 * and so might the FFS code.  In anycase, it formalizes
1509		 * the B_CACHE rules.  See sys/buf.h.
1510		 */
1511
1512		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
1513			VOP_BWRITE(bp);
1514			goto loop;
1515		}
1516
1517		if (bp->b_usecount < BUF_MAXUSE)
1518			++bp->b_usecount;
1519		splx(s);
1520		return (bp);
1521	} else {
1522		int bsize, maxsize, vmio;
1523		off_t offset;
1524
1525		if (vp->v_type == VBLK)
1526			bsize = DEV_BSIZE;
1527		else if (vp->v_mountedhere)
1528			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
1529		else if (vp->v_mount)
1530			bsize = vp->v_mount->mnt_stat.f_iosize;
1531		else
1532			bsize = size;
1533
1534		offset = (off_t)blkno * bsize;
1535		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
1536		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
1537		maxsize = imax(maxsize, bsize);
1538
1539		if ((bp = getnewbuf(vp, blkno,
1540			slpflag, slptimeo, size, maxsize)) == 0) {
1541			if (slpflag || slptimeo) {
1542				splx(s);
1543				return NULL;
1544			}
1545			goto loop;
1546		}
1547
1548		/*
1549		 * This code is used to make sure that a buffer is not
1550		 * created while the getnewbuf routine is blocked.
1551		 * Normally the vnode is locked so this isn't a problem.
1552		 * VBLK type I/O requests, however, don't lock the vnode.
1553		 */
1554		if (gbincore(vp, blkno)) {
1555			bp->b_flags |= B_INVAL;
1556			brelse(bp);
1557			goto loop;
1558		}
1559
1560		/*
1561		 * Insert the buffer into the hash, so that it can
1562		 * be found by incore.
1563		 */
1564		bp->b_blkno = bp->b_lblkno = blkno;
1565		bp->b_offset = offset;
1566
1567		bgetvp(vp, bp);
1568		LIST_REMOVE(bp, b_hash);
1569		bh = BUFHASH(vp, blkno);
1570		LIST_INSERT_HEAD(bh, bp, b_hash);
1571
1572		if (vmio) {
1573			bp->b_flags |= (B_VMIO | B_CACHE);
1574#if defined(VFS_BIO_DEBUG)
1575			if (vp->v_type != VREG && vp->v_type != VBLK)
1576				printf("getblk: vmioing file type %d???\n", vp->v_type);
1577#endif
1578		} else {
1579			bp->b_flags &= ~B_VMIO;
1580		}
1581
1582		allocbuf(bp, size);
1583
1584		splx(s);
1585		return (bp);
1586	}
1587}
1588
1589/*
1590 * Get an empty, disassociated buffer of given size.
1591 */
1592struct buf *
1593geteblk(int size)
1594{
1595	struct buf *bp;
1596	int s;
1597
1598	s = splbio();
1599	while ((bp = getnewbuf(0, (daddr_t) 0, 0, 0, size, MAXBSIZE)) == 0);
1600	splx(s);
1601	allocbuf(bp, size);
1602	bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
1603	return (bp);
1604}
1605
1606
1607/*
1608 * This code constitutes the buffer memory from either anonymous system
1609 * memory (in the case of non-VMIO operations) or from an associated
1610 * VM object (in the case of VMIO operations).  This code is able to
1611 * resize a buffer up or down.
1612 *
1613 * Note that this code is tricky, and has many complications to resolve
1614 * deadlock or inconsistant data situations.  Tread lightly!!!
1615 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
1616 * the caller.  Calling this code willy nilly can result in the loss of data.
1617 */
1618
1619int
1620allocbuf(struct buf *bp, int size)
1621{
1622	int newbsize, mbsize;
1623	int i;
1624
1625#if !defined(MAX_PERF)
1626	if (!(bp->b_flags & B_BUSY))
1627		panic("allocbuf: buffer not busy");
1628
1629	if (bp->b_kvasize < size)
1630		panic("allocbuf: buffer too small");
1631#endif
1632
1633	if ((bp->b_flags & B_VMIO) == 0) {
1634		caddr_t origbuf;
1635		int origbufsize;
1636		/*
1637		 * Just get anonymous memory from the kernel
1638		 */
1639		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1640#if !defined(NO_B_MALLOC)
1641		if (bp->b_flags & B_MALLOC)
1642			newbsize = mbsize;
1643		else
1644#endif
1645			newbsize = round_page(size);
1646
1647		if (newbsize < bp->b_bufsize) {
1648#if !defined(NO_B_MALLOC)
1649			/*
1650			 * malloced buffers are not shrunk
1651			 */
1652			if (bp->b_flags & B_MALLOC) {
1653				if (newbsize) {
1654					bp->b_bcount = size;
1655				} else {
1656					free(bp->b_data, M_BIOBUF);
1657					bufspace -= bp->b_bufsize;
1658					bufmallocspace -= bp->b_bufsize;
1659					bp->b_data = bp->b_kvabase;
1660					bp->b_bufsize = 0;
1661					bp->b_bcount = 0;
1662					bp->b_flags &= ~B_MALLOC;
1663				}
1664				return 1;
1665			}
1666#endif
1667			vm_hold_free_pages(
1668			    bp,
1669			    (vm_offset_t) bp->b_data + newbsize,
1670			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1671		} else if (newbsize > bp->b_bufsize) {
1672#if !defined(NO_B_MALLOC)
1673			/*
1674			 * We only use malloced memory on the first allocation.
1675			 * and revert to page-allocated memory when the buffer grows.
1676			 */
1677			if ( (bufmallocspace < maxbufmallocspace) &&
1678				(bp->b_bufsize == 0) &&
1679				(mbsize <= PAGE_SIZE/2)) {
1680
1681				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1682				bp->b_bufsize = mbsize;
1683				bp->b_bcount = size;
1684				bp->b_flags |= B_MALLOC;
1685				bufspace += mbsize;
1686				bufmallocspace += mbsize;
1687				return 1;
1688			}
1689#endif
1690			origbuf = NULL;
1691			origbufsize = 0;
1692#if !defined(NO_B_MALLOC)
1693			/*
1694			 * If the buffer is growing on its other-than-first allocation,
1695			 * then we revert to the page-allocation scheme.
1696			 */
1697			if (bp->b_flags & B_MALLOC) {
1698				origbuf = bp->b_data;
1699				origbufsize = bp->b_bufsize;
1700				bp->b_data = bp->b_kvabase;
1701				bufspace -= bp->b_bufsize;
1702				bufmallocspace -= bp->b_bufsize;
1703				bp->b_bufsize = 0;
1704				bp->b_flags &= ~B_MALLOC;
1705				newbsize = round_page(newbsize);
1706			}
1707#endif
1708			vm_hold_load_pages(
1709			    bp,
1710			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1711			    (vm_offset_t) bp->b_data + newbsize);
1712#if !defined(NO_B_MALLOC)
1713			if (origbuf) {
1714				bcopy(origbuf, bp->b_data, origbufsize);
1715				free(origbuf, M_BIOBUF);
1716			}
1717#endif
1718		}
1719	} else {
1720		vm_page_t m;
1721		int desiredpages;
1722
1723		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1724		desiredpages = (size == 0) ? 0 :
1725			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
1726
1727#if !defined(NO_B_MALLOC)
1728		if (bp->b_flags & B_MALLOC)
1729			panic("allocbuf: VMIO buffer can't be malloced");
1730#endif
1731
1732		if (newbsize < bp->b_bufsize) {
1733			if (desiredpages < bp->b_npages) {
1734				for (i = desiredpages; i < bp->b_npages; i++) {
1735					/*
1736					 * the page is not freed here -- it
1737					 * is the responsibility of vnode_pager_setsize
1738					 */
1739					m = bp->b_pages[i];
1740					KASSERT(m != bogus_page,
1741					    ("allocbuf: bogus page found"));
1742					while (vm_page_sleep_busy(m, TRUE, "biodep"))
1743						;
1744
1745					bp->b_pages[i] = NULL;
1746					vm_page_unwire(m, 0);
1747				}
1748				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
1749				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1750				bp->b_npages = desiredpages;
1751			}
1752		} else if (newbsize > bp->b_bufsize) {
1753			vm_object_t obj;
1754			vm_offset_t tinc, toff;
1755			vm_ooffset_t off;
1756			vm_pindex_t objoff;
1757			int pageindex, curbpnpages;
1758			struct vnode *vp;
1759			int bsize;
1760			int orig_validoff = bp->b_validoff;
1761			int orig_validend = bp->b_validend;
1762
1763			vp = bp->b_vp;
1764
1765			if (vp->v_type == VBLK)
1766				bsize = DEV_BSIZE;
1767			else
1768				bsize = vp->v_mount->mnt_stat.f_iosize;
1769
1770			if (bp->b_npages < desiredpages) {
1771				obj = vp->v_object;
1772				tinc = PAGE_SIZE;
1773
1774				off = bp->b_offset;
1775				KASSERT(bp->b_offset != NOOFFSET,
1776				    ("allocbuf: no buffer offset"));
1777				curbpnpages = bp->b_npages;
1778		doretry:
1779				bp->b_validoff = orig_validoff;
1780				bp->b_validend = orig_validend;
1781				bp->b_flags |= B_CACHE;
1782				for (toff = 0; toff < newbsize; toff += tinc) {
1783					objoff = OFF_TO_IDX(off + toff);
1784					pageindex = objoff - OFF_TO_IDX(off);
1785					tinc = PAGE_SIZE - ((off + toff) & PAGE_MASK);
1786					if (pageindex < curbpnpages) {
1787
1788						m = bp->b_pages[pageindex];
1789#ifdef VFS_BIO_DIAG
1790						if (m->pindex != objoff)
1791							panic("allocbuf: page changed offset?!!!?");
1792#endif
1793						if (tinc > (newbsize - toff))
1794							tinc = newbsize - toff;
1795						if (bp->b_flags & B_CACHE)
1796							vfs_buf_set_valid(bp, off, toff, tinc, m);
1797						continue;
1798					}
1799					m = vm_page_lookup(obj, objoff);
1800					if (!m) {
1801						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1802						if (!m) {
1803							VM_WAIT;
1804							vm_pageout_deficit += (desiredpages - curbpnpages);
1805							goto doretry;
1806						}
1807
1808						vm_page_wire(m);
1809						vm_page_wakeup(m);
1810						bp->b_flags &= ~B_CACHE;
1811
1812					} else if (vm_page_sleep_busy(m, FALSE, "pgtblk")) {
1813						/*
1814						 *  If we had to sleep, retry.
1815						 *
1816						 *  Also note that we only test
1817						 *  PG_BUSY here, not m->busy.
1818						 *
1819						 *  We cannot sleep on m->busy
1820						 *  here because a vm_fault ->
1821						 *  getpages -> cluster-read ->
1822						 *  ...-> allocbuf sequence
1823						 *  will convert PG_BUSY to
1824						 *  m->busy so we have to let
1825						 *  m->busy through if we do
1826						 *  not want to deadlock.
1827						 */
1828						goto doretry;
1829					} else {
1830						if ((curproc != pageproc) &&
1831							((m->queue - m->pc) == PQ_CACHE) &&
1832						    ((cnt.v_free_count + cnt.v_cache_count) <
1833								(cnt.v_free_min + cnt.v_cache_min))) {
1834							pagedaemon_wakeup();
1835						}
1836						if (tinc > (newbsize - toff))
1837							tinc = newbsize - toff;
1838						if (bp->b_flags & B_CACHE)
1839							vfs_buf_set_valid(bp, off, toff, tinc, m);
1840						vm_page_flag_clear(m, PG_ZERO);
1841						vm_page_wire(m);
1842					}
1843					bp->b_pages[pageindex] = m;
1844					curbpnpages = pageindex + 1;
1845				}
1846				if (vp->v_tag == VT_NFS &&
1847				    vp->v_type != VBLK) {
1848					if (bp->b_dirtyend > 0) {
1849						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
1850						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
1851					}
1852					if (bp->b_validend == 0)
1853						bp->b_flags &= ~B_CACHE;
1854				}
1855				bp->b_data = (caddr_t) trunc_page((vm_offset_t)bp->b_data);
1856				bp->b_npages = curbpnpages;
1857				pmap_qenter((vm_offset_t) bp->b_data,
1858					bp->b_pages, bp->b_npages);
1859				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1860			}
1861		}
1862	}
1863	if (bp->b_flags & B_VMIO)
1864		vmiospace += (newbsize - bp->b_bufsize);
1865	bufspace += (newbsize - bp->b_bufsize);
1866	bp->b_bufsize = newbsize;
1867	bp->b_bcount = size;
1868	return 1;
1869}
1870
1871/*
1872 * Wait for buffer I/O completion, returning error status.
1873 */
1874int
1875biowait(register struct buf * bp)
1876{
1877	int s;
1878
1879	s = splbio();
1880	while ((bp->b_flags & B_DONE) == 0)
1881#if defined(NO_SCHEDULE_MODS)
1882		tsleep(bp, PRIBIO, "biowait", 0);
1883#else
1884		if (bp->b_flags & B_READ)
1885			tsleep(bp, PRIBIO, "biord", 0);
1886		else
1887			tsleep(bp, PRIBIO, "biowr", 0);
1888#endif
1889	splx(s);
1890	if (bp->b_flags & B_EINTR) {
1891		bp->b_flags &= ~B_EINTR;
1892		return (EINTR);
1893	}
1894	if (bp->b_flags & B_ERROR) {
1895		return (bp->b_error ? bp->b_error : EIO);
1896	} else {
1897		return (0);
1898	}
1899}
1900
1901/*
1902 * Finish I/O on a buffer, calling an optional function.
1903 * This is usually called from interrupt level, so process blocking
1904 * is not *a good idea*.
1905 */
1906void
1907biodone(register struct buf * bp)
1908{
1909	int s;
1910
1911	s = splbio();
1912
1913#if !defined(MAX_PERF)
1914	if (!(bp->b_flags & B_BUSY))
1915		panic("biodone: buffer not busy");
1916#endif
1917
1918	if (bp->b_flags & B_DONE) {
1919		splx(s);
1920#if !defined(MAX_PERF)
1921		printf("biodone: buffer already done\n");
1922#endif
1923		return;
1924	}
1925	bp->b_flags |= B_DONE;
1926
1927	if (bp->b_flags & B_FREEBUF) {
1928		brelse(bp);
1929		splx(s);
1930		return;
1931	}
1932
1933	if ((bp->b_flags & B_READ) == 0) {
1934		vwakeup(bp);
1935	}
1936
1937	/* call optional completion function if requested */
1938	if (bp->b_flags & B_CALL) {
1939		bp->b_flags &= ~B_CALL;
1940		(*bp->b_iodone) (bp);
1941		splx(s);
1942		return;
1943	}
1944	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1945		(*bioops.io_complete)(bp);
1946
1947	if (bp->b_flags & B_VMIO) {
1948		int i, resid;
1949		vm_ooffset_t foff;
1950		vm_page_t m;
1951		vm_object_t obj;
1952		int iosize;
1953		struct vnode *vp = bp->b_vp;
1954
1955		obj = vp->v_object;
1956
1957#if defined(VFS_BIO_DEBUG)
1958		if (vp->v_usecount == 0) {
1959			panic("biodone: zero vnode ref count");
1960		}
1961
1962		if (vp->v_object == NULL) {
1963			panic("biodone: missing VM object");
1964		}
1965
1966		if ((vp->v_flag & VOBJBUF) == 0) {
1967			panic("biodone: vnode is not setup for merged cache");
1968		}
1969#endif
1970
1971		foff = bp->b_offset;
1972		KASSERT(bp->b_offset != NOOFFSET,
1973		    ("biodone: no buffer offset"));
1974
1975#if !defined(MAX_PERF)
1976		if (!obj) {
1977			panic("biodone: no object");
1978		}
1979#endif
1980#if defined(VFS_BIO_DEBUG)
1981		if (obj->paging_in_progress < bp->b_npages) {
1982			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1983			    obj->paging_in_progress, bp->b_npages);
1984		}
1985#endif
1986		iosize = bp->b_bufsize;
1987		for (i = 0; i < bp->b_npages; i++) {
1988			int bogusflag = 0;
1989			m = bp->b_pages[i];
1990			if (m == bogus_page) {
1991				bogusflag = 1;
1992				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1993				if (!m) {
1994#if defined(VFS_BIO_DEBUG)
1995					printf("biodone: page disappeared\n");
1996#endif
1997					vm_object_pip_subtract(obj, 1);
1998					continue;
1999				}
2000				bp->b_pages[i] = m;
2001				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2002			}
2003#if defined(VFS_BIO_DEBUG)
2004			if (OFF_TO_IDX(foff) != m->pindex) {
2005				printf(
2006"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
2007				    (unsigned long)foff, m->pindex);
2008			}
2009#endif
2010			resid = IDX_TO_OFF(m->pindex + 1) - foff;
2011			if (resid > iosize)
2012				resid = iosize;
2013
2014			/*
2015			 * In the write case, the valid and clean bits are
2016			 * already changed correctly, so we only need to do this
2017			 * here in the read case.
2018			 */
2019			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
2020				vfs_page_set_valid(bp, foff, i, m);
2021			}
2022			vm_page_flag_clear(m, PG_ZERO);
2023
2024			/*
2025			 * when debugging new filesystems or buffer I/O methods, this
2026			 * is the most common error that pops up.  if you see this, you
2027			 * have not set the page busy flag correctly!!!
2028			 */
2029			if (m->busy == 0) {
2030#if !defined(MAX_PERF)
2031				printf("biodone: page busy < 0, "
2032				    "pindex: %d, foff: 0x(%x,%x), "
2033				    "resid: %d, index: %d\n",
2034				    (int) m->pindex, (int)(foff >> 32),
2035						(int) foff & 0xffffffff, resid, i);
2036#endif
2037				if (vp->v_type != VBLK)
2038#if !defined(MAX_PERF)
2039					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
2040					    bp->b_vp->v_mount->mnt_stat.f_iosize,
2041					    (int) bp->b_lblkno,
2042					    bp->b_flags, bp->b_npages);
2043				else
2044					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2045					    (int) bp->b_lblkno,
2046					    bp->b_flags, bp->b_npages);
2047				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2048				    m->valid, m->dirty, m->wire_count);
2049#endif
2050				panic("biodone: page busy < 0\n");
2051			}
2052			vm_page_io_finish(m);
2053			vm_object_pip_subtract(obj, 1);
2054			foff += resid;
2055			iosize -= resid;
2056		}
2057		if (obj)
2058			vm_object_pip_wakeupn(obj, 0);
2059	}
2060	/*
2061	 * For asynchronous completions, release the buffer now. The brelse
2062	 * checks for B_WANTED and will do the wakeup there if necessary - so
2063	 * no need to do a wakeup here in the async case.
2064	 */
2065
2066	if (bp->b_flags & B_ASYNC) {
2067		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2068			brelse(bp);
2069		else
2070			bqrelse(bp);
2071	} else {
2072		bp->b_flags &= ~B_WANTED;
2073		wakeup(bp);
2074	}
2075	splx(s);
2076}
2077
2078#if 0	/* not with kirks code */
2079static int vfs_update_interval = 30;
2080
2081static void
2082vfs_update()
2083{
2084	while (1) {
2085		tsleep(&vfs_update_wakeup, PUSER, "update",
2086		    hz * vfs_update_interval);
2087		vfs_update_wakeup = 0;
2088		sync(curproc, NULL);
2089	}
2090}
2091
2092static int
2093sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
2094{
2095	int error = sysctl_handle_int(oidp,
2096		oidp->oid_arg1, oidp->oid_arg2, req);
2097	if (!error)
2098		wakeup(&vfs_update_wakeup);
2099	return error;
2100}
2101
2102SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
2103	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
2104
2105#endif
2106
2107
2108/*
2109 * This routine is called in lieu of iodone in the case of
2110 * incomplete I/O.  This keeps the busy status for pages
2111 * consistant.
2112 */
2113void
2114vfs_unbusy_pages(struct buf * bp)
2115{
2116	int i;
2117
2118	if (bp->b_flags & B_VMIO) {
2119		struct vnode *vp = bp->b_vp;
2120		vm_object_t obj = vp->v_object;
2121
2122		for (i = 0; i < bp->b_npages; i++) {
2123			vm_page_t m = bp->b_pages[i];
2124
2125			if (m == bogus_page) {
2126				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2127#if !defined(MAX_PERF)
2128				if (!m) {
2129					panic("vfs_unbusy_pages: page missing\n");
2130				}
2131#endif
2132				bp->b_pages[i] = m;
2133				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2134			}
2135			vm_object_pip_subtract(obj, 1);
2136			vm_page_flag_clear(m, PG_ZERO);
2137			vm_page_io_finish(m);
2138		}
2139		vm_object_pip_wakeupn(obj, 0);
2140	}
2141}
2142
2143/*
2144 * Set NFS' b_validoff and b_validend fields from the valid bits
2145 * of a page.  If the consumer is not NFS, and the page is not
2146 * valid for the entire range, clear the B_CACHE flag to force
2147 * the consumer to re-read the page.
2148 *
2149 * B_CACHE interaction is especially tricky.
2150 */
2151static void
2152vfs_buf_set_valid(struct buf *bp,
2153		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
2154		  vm_page_t m)
2155{
2156	if (bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK) {
2157		vm_offset_t svalid, evalid;
2158		int validbits = m->valid >> (((foff+off)&PAGE_MASK)/DEV_BSIZE);
2159
2160		/*
2161		 * This only bothers with the first valid range in the
2162		 * page.
2163		 */
2164		svalid = off;
2165		while (validbits && !(validbits & 1)) {
2166			svalid += DEV_BSIZE;
2167			validbits >>= 1;
2168		}
2169		evalid = svalid;
2170		while (validbits & 1) {
2171			evalid += DEV_BSIZE;
2172			validbits >>= 1;
2173		}
2174		evalid = min(evalid, off + size);
2175		/*
2176		 * We can only set b_validoff/end if this range is contiguous
2177		 * with the range built up already.  If we cannot set
2178		 * b_validoff/end, we must clear B_CACHE to force an update
2179		 * to clean the bp up.
2180		 */
2181		if (svalid == bp->b_validend) {
2182			bp->b_validoff = min(bp->b_validoff, svalid);
2183			bp->b_validend = max(bp->b_validend, evalid);
2184		} else {
2185			bp->b_flags &= ~B_CACHE;
2186		}
2187	} else if (!vm_page_is_valid(m,
2188				     (vm_offset_t) ((foff + off) & PAGE_MASK),
2189				     size)) {
2190		bp->b_flags &= ~B_CACHE;
2191	}
2192}
2193
2194/*
2195 * Set the valid bits in a page, taking care of the b_validoff,
2196 * b_validend fields which NFS uses to optimise small reads.  Off is
2197 * the offset within the file and pageno is the page index within the buf.
2198 *
2199 * XXX we have to set the valid & clean bits for all page fragments
2200 * touched by b_validoff/validend, even if the page fragment goes somewhat
2201 * beyond b_validoff/validend due to alignment.
2202 */
2203static void
2204vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2205{
2206	struct vnode *vp = bp->b_vp;
2207	vm_ooffset_t soff, eoff;
2208
2209	soff = off;
2210	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2211	if (eoff > bp->b_offset + bp->b_bufsize)
2212		eoff = bp->b_offset + bp->b_bufsize;
2213	if (vp->v_tag == VT_NFS && vp->v_type != VBLK) {
2214		vm_ooffset_t sv, ev;
2215		vm_page_set_invalid(m,
2216		    (vm_offset_t) (soff & PAGE_MASK),
2217		    (vm_offset_t) (eoff - soff));
2218		sv = (bp->b_offset + bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2219		ev = (bp->b_offset + bp->b_validend + (DEV_BSIZE - 1)) &
2220		    ~(DEV_BSIZE - 1);
2221		soff = qmax(sv, soff);
2222		eoff = qmin(ev, eoff);
2223	}
2224	if (eoff > soff)
2225		vm_page_set_validclean(m,
2226	       (vm_offset_t) (soff & PAGE_MASK),
2227	       (vm_offset_t) (eoff - soff));
2228}
2229
2230/*
2231 * This routine is called before a device strategy routine.
2232 * It is used to tell the VM system that paging I/O is in
2233 * progress, and treat the pages associated with the buffer
2234 * almost as being PG_BUSY.  Also the object paging_in_progress
2235 * flag is handled to make sure that the object doesn't become
2236 * inconsistant.
2237 */
2238void
2239vfs_busy_pages(struct buf * bp, int clear_modify)
2240{
2241	int i, bogus;
2242
2243	if (bp->b_flags & B_VMIO) {
2244		struct vnode *vp = bp->b_vp;
2245		vm_object_t obj = vp->v_object;
2246		vm_ooffset_t foff;
2247
2248		foff = bp->b_offset;
2249		KASSERT(bp->b_offset != NOOFFSET,
2250		    ("vfs_busy_pages: no buffer offset"));
2251		vfs_setdirty(bp);
2252
2253retry:
2254		for (i = 0; i < bp->b_npages; i++) {
2255			vm_page_t m = bp->b_pages[i];
2256			if (vm_page_sleep_busy(m, FALSE, "vbpage"))
2257				goto retry;
2258		}
2259
2260		bogus = 0;
2261		for (i = 0; i < bp->b_npages; i++) {
2262			vm_page_t m = bp->b_pages[i];
2263
2264			vm_page_flag_clear(m, PG_ZERO);
2265			if ((bp->b_flags & B_CLUSTER) == 0) {
2266				vm_object_pip_add(obj, 1);
2267				vm_page_io_start(m);
2268			}
2269
2270			vm_page_protect(m, VM_PROT_NONE);
2271			if (clear_modify)
2272				vfs_page_set_valid(bp, foff, i, m);
2273			else if (m->valid == VM_PAGE_BITS_ALL &&
2274				(bp->b_flags & B_CACHE) == 0) {
2275				bp->b_pages[i] = bogus_page;
2276				bogus++;
2277			}
2278			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2279		}
2280		if (bogus)
2281			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2282	}
2283}
2284
2285/*
2286 * Tell the VM system that the pages associated with this buffer
2287 * are clean.  This is used for delayed writes where the data is
2288 * going to go to disk eventually without additional VM intevention.
2289 */
2290void
2291vfs_clean_pages(struct buf * bp)
2292{
2293	int i;
2294
2295	if (bp->b_flags & B_VMIO) {
2296		vm_ooffset_t foff;
2297		foff = bp->b_offset;
2298		KASSERT(bp->b_offset != NOOFFSET,
2299		    ("vfs_clean_pages: no buffer offset"));
2300		for (i = 0; i < bp->b_npages; i++) {
2301			vm_page_t m = bp->b_pages[i];
2302			vfs_page_set_valid(bp, foff, i, m);
2303			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2304		}
2305	}
2306}
2307
2308void
2309vfs_bio_clrbuf(struct buf *bp) {
2310	int i, mask = 0;
2311	caddr_t sa, ea;
2312	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2313		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2314		    (bp->b_offset & PAGE_MASK) == 0) {
2315			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2316			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2317			    ((bp->b_pages[0]->valid & mask) != mask)) {
2318				bzero(bp->b_data, bp->b_bufsize);
2319			}
2320			bp->b_pages[0]->valid |= mask;
2321			bp->b_resid = 0;
2322			return;
2323		}
2324		ea = sa = bp->b_data;
2325		for(i=0;i<bp->b_npages;i++,sa=ea) {
2326			int j = ((u_long)sa & PAGE_MASK) / DEV_BSIZE;
2327			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2328			ea = (caddr_t)ulmin((u_long)ea,
2329				(u_long)bp->b_data + bp->b_bufsize);
2330			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2331			if ((bp->b_pages[i]->valid & mask) == mask)
2332				continue;
2333			if ((bp->b_pages[i]->valid & mask) == 0) {
2334				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2335					bzero(sa, ea - sa);
2336				}
2337			} else {
2338				for (; sa < ea; sa += DEV_BSIZE, j++) {
2339					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2340						(bp->b_pages[i]->valid & (1<<j)) == 0)
2341						bzero(sa, DEV_BSIZE);
2342				}
2343			}
2344			bp->b_pages[i]->valid |= mask;
2345			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2346		}
2347		bp->b_resid = 0;
2348	} else {
2349		clrbuf(bp);
2350	}
2351}
2352
2353/*
2354 * vm_hold_load_pages and vm_hold_unload pages get pages into
2355 * a buffers address space.  The pages are anonymous and are
2356 * not associated with a file object.
2357 */
2358void
2359vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2360{
2361	vm_offset_t pg;
2362	vm_page_t p;
2363	int index;
2364
2365	to = round_page(to);
2366	from = round_page(from);
2367	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
2368
2369	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2370
2371tryagain:
2372
2373		p = vm_page_alloc(kernel_object,
2374			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
2375		    VM_ALLOC_NORMAL);
2376		if (!p) {
2377			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
2378			VM_WAIT;
2379			goto tryagain;
2380		}
2381		vm_page_wire(p);
2382		p->valid = VM_PAGE_BITS_ALL;
2383		vm_page_flag_clear(p, PG_ZERO);
2384		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
2385		bp->b_pages[index] = p;
2386		vm_page_wakeup(p);
2387	}
2388	bp->b_npages = index;
2389}
2390
2391void
2392vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2393{
2394	vm_offset_t pg;
2395	vm_page_t p;
2396	int index, newnpages;
2397
2398	from = round_page(from);
2399	to = round_page(to);
2400	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
2401
2402	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2403		p = bp->b_pages[index];
2404		if (p && (index < bp->b_npages)) {
2405#if !defined(MAX_PERF)
2406			if (p->busy) {
2407				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2408					bp->b_blkno, bp->b_lblkno);
2409			}
2410#endif
2411			bp->b_pages[index] = NULL;
2412			pmap_kremove(pg);
2413			vm_page_busy(p);
2414			vm_page_unwire(p, 0);
2415			vm_page_free(p);
2416		}
2417	}
2418	bp->b_npages = newnpages;
2419}
2420
2421
2422#include "opt_ddb.h"
2423#ifdef DDB
2424#include <ddb/ddb.h>
2425
2426DB_SHOW_COMMAND(buffer, db_show_buffer)
2427{
2428	/* get args */
2429	struct buf *bp = (struct buf *)addr;
2430
2431	if (!have_addr) {
2432		db_printf("usage: show buffer <addr>\n");
2433		return;
2434	}
2435
2436	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2437		  (u_int)bp->b_flags, PRINT_BUF_FLAGS);
2438	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2439		  "b_resid = %ld\nb_dev = 0x%x, b_data = %p, "
2440		  "b_blkno = %d, b_pblkno = %d\n",
2441		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2442		  bp->b_dev, bp->b_data, bp->b_blkno, bp->b_pblkno);
2443	if (bp->b_npages) {
2444		int i;
2445		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
2446		for (i = 0; i < bp->b_npages; i++) {
2447			vm_page_t m;
2448			m = bp->b_pages[i];
2449			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
2450			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
2451			if ((i + 1) < bp->b_npages)
2452				db_printf(",");
2453		}
2454		db_printf("\n");
2455	}
2456}
2457#endif /* DDB */
2458