vfs_bio.c revision 42827
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $Id: vfs_bio.c,v 1.192 1999/01/12 11:59:34 eivind Exp $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#define VMIO
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/sysproto.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/proc.h>
37#include <sys/vnode.h>
38#include <sys/vmmeter.h>
39#include <sys/lock.h>
40#include <miscfs/specfs/specdev.h>
41#include <vm/vm.h>
42#include <vm/vm_param.h>
43#include <vm/vm_prot.h>
44#include <vm/vm_kern.h>
45#include <vm/vm_pageout.h>
46#include <vm/vm_page.h>
47#include <vm/vm_object.h>
48#include <vm/vm_extern.h>
49#include <vm/vm_map.h>
50#include <sys/buf.h>
51#include <sys/mount.h>
52#include <sys/malloc.h>
53#include <sys/resourcevar.h>
54
55static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
56
57struct	bio_ops bioops;		/* I/O operation notification */
58
59#if 0 	/* replaced bu sched_sync */
60static void vfs_update __P((void));
61static struct	proc *updateproc;
62static struct kproc_desc up_kp = {
63	"update",
64	vfs_update,
65	&updateproc
66};
67SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
68#endif
69
70struct buf *buf;		/* buffer header pool */
71struct swqueue bswlist;
72
73static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
74		vm_offset_t to);
75static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
78			      vm_offset_t off, vm_offset_t size,
79			      vm_page_t m);
80static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
81			       int pageno, vm_page_t m);
82static void vfs_clean_pages(struct buf * bp);
83static void vfs_setdirty(struct buf *bp);
84static void vfs_vmio_release(struct buf *bp);
85static void flushdirtybuffers(int slpflag, int slptimeo);
86
87int needsbuffer;
88
89/*
90 * Internal update daemon, process 3
91 *	The variable vfs_update_wakeup allows for internal syncs.
92 */
93int vfs_update_wakeup;
94
95
96/*
97 * buffers base kva
98 */
99
100/*
101 * bogus page -- for I/O to/from partially complete buffers
102 * this is a temporary solution to the problem, but it is not
103 * really that bad.  it would be better to split the buffer
104 * for input in the case of buffers partially already in memory,
105 * but the code is intricate enough already.
106 */
107vm_page_t bogus_page;
108static vm_offset_t bogus_offset;
109
110static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
111	bufmallocspace, maxbufmallocspace;
112int numdirtybuffers;
113static int lodirtybuffers, hidirtybuffers;
114static int numfreebuffers, lofreebuffers, hifreebuffers;
115static int kvafreespace;
116
117SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
118	&numdirtybuffers, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
120	&lodirtybuffers, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
122	&hidirtybuffers, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
124	&numfreebuffers, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
126	&lofreebuffers, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
128	&hifreebuffers, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
130	&maxbufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132	&bufspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
134	&maxvmiobufspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
136	&vmiospace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
138	&maxbufmallocspace, 0, "");
139SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
140	&bufmallocspace, 0, "");
141SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
142	&kvafreespace, 0, "");
143
144static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
145struct bqueues bufqueues[BUFFER_QUEUES] = {0};
146
147extern int vm_swap_size;
148
149#define BUF_MAXUSE 24
150
151#define VFS_BIO_NEED_ANY 1
152#define VFS_BIO_NEED_LOWLIMIT 2
153#define VFS_BIO_NEED_FREE 4
154
155/*
156 * Initialize buffer headers and related structures.
157 */
158void
159bufinit()
160{
161	struct buf *bp;
162	int i;
163
164	TAILQ_INIT(&bswlist);
165	LIST_INIT(&invalhash);
166
167	/* first, make a null hash table */
168	for (i = 0; i < BUFHSZ; i++)
169		LIST_INIT(&bufhashtbl[i]);
170
171	/* next, make a null set of free lists */
172	for (i = 0; i < BUFFER_QUEUES; i++)
173		TAILQ_INIT(&bufqueues[i]);
174
175	/* finally, initialize each buffer header and stick on empty q */
176	for (i = 0; i < nbuf; i++) {
177		bp = &buf[i];
178		bzero(bp, sizeof *bp);
179		bp->b_flags = B_INVAL;	/* we're just an empty header */
180		bp->b_dev = NODEV;
181		bp->b_rcred = NOCRED;
182		bp->b_wcred = NOCRED;
183		bp->b_qindex = QUEUE_EMPTY;
184		bp->b_xflags = 0;
185		LIST_INIT(&bp->b_dep);
186		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
187		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
188	}
189/*
190 * maxbufspace is currently calculated to support all filesystem blocks
191 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
192 * cache is still the same as it would be for 8K filesystems.  This
193 * keeps the size of the buffer cache "in check" for big block filesystems.
194 */
195	maxbufspace = (nbuf + 8) * DFLTBSIZE;
196/*
197 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
198 */
199	maxvmiobufspace = 2 * maxbufspace / 3;
200/*
201 * Limit the amount of malloc memory since it is wired permanently into
202 * the kernel space.  Even though this is accounted for in the buffer
203 * allocation, we don't want the malloced region to grow uncontrolled.
204 * The malloc scheme improves memory utilization significantly on average
205 * (small) directories.
206 */
207	maxbufmallocspace = maxbufspace / 20;
208
209/*
210 * Remove the probability of deadlock conditions by limiting the
211 * number of dirty buffers.
212 */
213	hidirtybuffers = nbuf / 8 + 20;
214	lodirtybuffers = nbuf / 16 + 10;
215	numdirtybuffers = 0;
216	lofreebuffers = nbuf / 18 + 5;
217	hifreebuffers = 2 * lofreebuffers;
218	numfreebuffers = nbuf;
219	kvafreespace = 0;
220
221	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
222	bogus_page = vm_page_alloc(kernel_object,
223			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
224			VM_ALLOC_NORMAL);
225
226}
227
228/*
229 * Free the kva allocation for a buffer
230 * Must be called only at splbio or higher,
231 *  as this is the only locking for buffer_map.
232 */
233static void
234bfreekva(struct buf * bp)
235{
236	if (bp->b_kvasize == 0)
237		return;
238
239	vm_map_delete(buffer_map,
240		(vm_offset_t) bp->b_kvabase,
241		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
242
243	bp->b_kvasize = 0;
244
245}
246
247/*
248 * remove the buffer from the appropriate free list
249 */
250void
251bremfree(struct buf * bp)
252{
253	int s = splbio();
254
255	if (bp->b_qindex != QUEUE_NONE) {
256		if (bp->b_qindex == QUEUE_EMPTY) {
257			kvafreespace -= bp->b_kvasize;
258		}
259		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
260		bp->b_qindex = QUEUE_NONE;
261	} else {
262#if !defined(MAX_PERF)
263		panic("bremfree: removing a buffer when not on a queue");
264#endif
265	}
266	if ((bp->b_flags & B_INVAL) ||
267		(bp->b_flags & (B_DELWRI|B_LOCKED)) == 0)
268		--numfreebuffers;
269	splx(s);
270}
271
272
273/*
274 * Get a buffer with the specified data.  Look in the cache first.
275 */
276int
277bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
278    struct buf ** bpp)
279{
280	struct buf *bp;
281
282	bp = getblk(vp, blkno, size, 0, 0);
283	*bpp = bp;
284
285	/* if not found in cache, do some I/O */
286	if ((bp->b_flags & B_CACHE) == 0) {
287		if (curproc != NULL)
288			curproc->p_stats->p_ru.ru_inblock++;
289		bp->b_flags |= B_READ;
290		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
291		if (bp->b_rcred == NOCRED) {
292			if (cred != NOCRED)
293				crhold(cred);
294			bp->b_rcred = cred;
295		}
296		vfs_busy_pages(bp, 0);
297		VOP_STRATEGY(vp, bp);
298		return (biowait(bp));
299	}
300	return (0);
301}
302
303/*
304 * Operates like bread, but also starts asynchronous I/O on
305 * read-ahead blocks.
306 */
307int
308breadn(struct vnode * vp, daddr_t blkno, int size,
309    daddr_t * rablkno, int *rabsize,
310    int cnt, struct ucred * cred, struct buf ** bpp)
311{
312	struct buf *bp, *rabp;
313	int i;
314	int rv = 0, readwait = 0;
315
316	*bpp = bp = getblk(vp, blkno, size, 0, 0);
317
318	/* if not found in cache, do some I/O */
319	if ((bp->b_flags & B_CACHE) == 0) {
320		if (curproc != NULL)
321			curproc->p_stats->p_ru.ru_inblock++;
322		bp->b_flags |= B_READ;
323		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
324		if (bp->b_rcred == NOCRED) {
325			if (cred != NOCRED)
326				crhold(cred);
327			bp->b_rcred = cred;
328		}
329		vfs_busy_pages(bp, 0);
330		VOP_STRATEGY(vp, bp);
331		++readwait;
332	}
333	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
334		if (inmem(vp, *rablkno))
335			continue;
336		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
337
338		if ((rabp->b_flags & B_CACHE) == 0) {
339			if (curproc != NULL)
340				curproc->p_stats->p_ru.ru_inblock++;
341			rabp->b_flags |= B_READ | B_ASYNC;
342			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
343			if (rabp->b_rcred == NOCRED) {
344				if (cred != NOCRED)
345					crhold(cred);
346				rabp->b_rcred = cred;
347			}
348			vfs_busy_pages(rabp, 0);
349			VOP_STRATEGY(vp, rabp);
350		} else {
351			brelse(rabp);
352		}
353	}
354
355	if (readwait) {
356		rv = biowait(bp);
357	}
358	return (rv);
359}
360
361/*
362 * Write, release buffer on completion.  (Done by iodone
363 * if async.)
364 */
365int
366bwrite(struct buf * bp)
367{
368	int oldflags, s;
369	struct vnode *vp;
370	struct mount *mp;
371
372
373	if (bp->b_flags & B_INVAL) {
374		brelse(bp);
375		return (0);
376	}
377
378	oldflags = bp->b_flags;
379
380#if !defined(MAX_PERF)
381	if ((bp->b_flags & B_BUSY) == 0)
382		panic("bwrite: buffer is not busy???");
383#endif
384
385	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
386	bp->b_flags |= B_WRITEINPROG;
387
388	s = splbio();
389	if ((oldflags & B_DELWRI) == B_DELWRI) {
390		--numdirtybuffers;
391		reassignbuf(bp, bp->b_vp);
392	}
393
394	bp->b_vp->v_numoutput++;
395	vfs_busy_pages(bp, 1);
396	if (curproc != NULL)
397		curproc->p_stats->p_ru.ru_oublock++;
398	splx(s);
399	VOP_STRATEGY(bp->b_vp, bp);
400
401	/*
402	 * Collect statistics on synchronous and asynchronous writes.
403	 * Writes to block devices are charged to their associated
404	 * filesystem (if any).
405	 */
406	if ((vp = bp->b_vp) != NULL) {
407		if (vp->v_type == VBLK)
408			mp = vp->v_specmountpoint;
409		else
410			mp = vp->v_mount;
411		if (mp != NULL)
412			if ((oldflags & B_ASYNC) == 0)
413				mp->mnt_stat.f_syncwrites++;
414			else
415				mp->mnt_stat.f_asyncwrites++;
416	}
417
418	if ((oldflags & B_ASYNC) == 0) {
419		int rtval = biowait(bp);
420		brelse(bp);
421		return (rtval);
422	}
423	return (0);
424}
425
426void
427vfs_bio_need_satisfy(void) {
428	++numfreebuffers;
429	if (!needsbuffer)
430		return;
431	if (numdirtybuffers < lodirtybuffers) {
432		needsbuffer &= ~(VFS_BIO_NEED_ANY | VFS_BIO_NEED_LOWLIMIT);
433	} else {
434		needsbuffer &= ~VFS_BIO_NEED_ANY;
435	}
436	if (numfreebuffers >= hifreebuffers) {
437		needsbuffer &= ~VFS_BIO_NEED_FREE;
438	}
439	wakeup(&needsbuffer);
440}
441
442/*
443 * Delayed write. (Buffer is marked dirty).
444 */
445void
446bdwrite(struct buf * bp)
447{
448	struct vnode *vp;
449
450#if !defined(MAX_PERF)
451	if ((bp->b_flags & B_BUSY) == 0) {
452		panic("bdwrite: buffer is not busy");
453	}
454#endif
455
456	if (bp->b_flags & B_INVAL) {
457		brelse(bp);
458		return;
459	}
460	bp->b_flags &= ~(B_READ|B_RELBUF);
461	if ((bp->b_flags & B_DELWRI) == 0) {
462		bp->b_flags |= B_DONE | B_DELWRI;
463		reassignbuf(bp, bp->b_vp);
464		++numdirtybuffers;
465	}
466
467	/*
468	 * This bmap keeps the system from needing to do the bmap later,
469	 * perhaps when the system is attempting to do a sync.  Since it
470	 * is likely that the indirect block -- or whatever other datastructure
471	 * that the filesystem needs is still in memory now, it is a good
472	 * thing to do this.  Note also, that if the pageout daemon is
473	 * requesting a sync -- there might not be enough memory to do
474	 * the bmap then...  So, this is important to do.
475	 */
476	if (bp->b_lblkno == bp->b_blkno) {
477		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
478	}
479
480	/*
481	 * Set the *dirty* buffer range based upon the VM system dirty pages.
482	 */
483	vfs_setdirty(bp);
484
485	/*
486	 * We need to do this here to satisfy the vnode_pager and the
487	 * pageout daemon, so that it thinks that the pages have been
488	 * "cleaned".  Note that since the pages are in a delayed write
489	 * buffer -- the VFS layer "will" see that the pages get written
490	 * out on the next sync, or perhaps the cluster will be completed.
491	 */
492	vfs_clean_pages(bp);
493	bqrelse(bp);
494
495	/*
496	 * XXX The soft dependency code is not prepared to
497	 * have I/O done when a bdwrite is requested. For
498	 * now we just let the write be delayed if it is
499	 * requested by the soft dependency code.
500	 */
501	if ((vp = bp->b_vp) &&
502	    ((vp->v_type == VBLK && vp->v_specmountpoint &&
503		  (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) ||
504		 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP))))
505		return;
506
507	if (numdirtybuffers >= hidirtybuffers)
508		flushdirtybuffers(0, 0);
509
510	return;
511}
512
513
514/*
515 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
516 * Check how this compares with vfs_setdirty(); XXX [JRE]
517 */
518void
519bdirty(bp)
520      struct buf *bp;
521{
522
523	bp->b_flags &= ~(B_READ|B_RELBUF); /* XXX ??? check this */
524	if ((bp->b_flags & B_DELWRI) == 0) {
525		bp->b_flags |= B_DONE | B_DELWRI; /* why done? XXX JRE */
526		reassignbuf(bp, bp->b_vp);
527		++numdirtybuffers;
528	}
529}
530
531/*
532 * Asynchronous write.
533 * Start output on a buffer, but do not wait for it to complete.
534 * The buffer is released when the output completes.
535 */
536void
537bawrite(struct buf * bp)
538{
539	bp->b_flags |= B_ASYNC;
540	(void) VOP_BWRITE(bp);
541}
542
543/*
544 * Ordered write.
545 * Start output on a buffer, and flag it so that the device will write
546 * it in the order it was queued.  The buffer is released when the output
547 * completes.
548 */
549int
550bowrite(struct buf * bp)
551{
552	bp->b_flags |= B_ORDERED|B_ASYNC;
553	return (VOP_BWRITE(bp));
554}
555
556/*
557 * Release a buffer.
558 */
559void
560brelse(struct buf * bp)
561{
562	int s;
563
564	if (bp->b_flags & B_CLUSTER) {
565		relpbuf(bp);
566		return;
567	}
568
569	s = splbio();
570
571	/* anyone need this block? */
572	if (bp->b_flags & B_WANTED) {
573		bp->b_flags &= ~(B_WANTED | B_AGE);
574		wakeup(bp);
575	}
576
577	if (bp->b_flags & B_LOCKED)
578		bp->b_flags &= ~B_ERROR;
579
580	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
581	    (bp->b_bufsize <= 0)) {
582		bp->b_flags |= B_INVAL;
583		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
584			(*bioops.io_deallocate)(bp);
585		if (bp->b_flags & B_DELWRI)
586			--numdirtybuffers;
587		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
588		if ((bp->b_flags & B_VMIO) == 0) {
589			if (bp->b_bufsize)
590				allocbuf(bp, 0);
591			if (bp->b_vp)
592				brelvp(bp);
593		}
594	}
595
596	/*
597	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
598	 * is called with B_DELWRI set, the underlying pages may wind up
599	 * getting freed causing a previous write (bdwrite()) to get 'lost'
600	 * because pages associated with a B_DELWRI bp are marked clean.
601	 *
602	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
603	 * if B_DELWRI is set.
604	 */
605
606	if (bp->b_flags & B_DELWRI)
607		bp->b_flags &= ~B_RELBUF;
608
609	/*
610	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
611	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
612	 * but the VM object is kept around.  The B_NOCACHE flag is used to
613	 * invalidate the pages in the VM object.
614	 *
615	 * The b_{validoff,validend,dirtyoff,dirtyend} values are relative
616	 * to b_offset and currently have byte granularity, whereas the
617	 * valid flags in the vm_pages have only DEV_BSIZE resolution.
618	 * The byte resolution fields are used to avoid unnecessary re-reads
619	 * of the buffer but the code really needs to be genericized so
620	 * other filesystem modules can take advantage of these fields.
621	 *
622	 * XXX this seems to cause performance problems.
623	 */
624	if ((bp->b_flags & B_VMIO)
625	    && !(bp->b_vp->v_tag == VT_NFS &&
626		 bp->b_vp->v_type != VBLK &&
627		 (bp->b_flags & B_DELWRI) != 0)
628#ifdef notdef
629	    && (bp->b_vp->v_tag != VT_NFS
630		|| bp->b_vp->v_type == VBLK
631		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
632		|| bp->b_validend == 0
633		|| (bp->b_validoff == 0
634		    && bp->b_validend == bp->b_bufsize))
635#endif
636	    ) {
637
638		int i, j, resid;
639		vm_page_t m;
640		off_t foff;
641		vm_pindex_t poff;
642		vm_object_t obj;
643		struct vnode *vp;
644
645		vp = bp->b_vp;
646
647		/*
648		 * Get the base offset and length of the buffer.  Note that
649		 * for block sizes that are less then PAGE_SIZE, the b_data
650		 * base of the buffer does not represent exactly b_offset and
651		 * neither b_offset nor b_size are necessarily page aligned.
652		 * Instead, the starting position of b_offset is:
653		 *
654		 * 	b_data + (b_offset & PAGE_MASK)
655		 *
656		 * block sizes less then DEV_BSIZE (usually 512) are not
657		 * supported due to the page granularity bits (m->valid,
658		 * m->dirty, etc...).
659		 *
660		 * See man buf(9) for more information
661		 */
662
663		resid = bp->b_bufsize;
664		foff = bp->b_offset;
665
666		for (i = 0; i < bp->b_npages; i++) {
667			m = bp->b_pages[i];
668			vm_page_flag_clear(m, PG_ZERO);
669			if (m == bogus_page) {
670
671				obj = (vm_object_t) vp->v_object;
672				poff = OFF_TO_IDX(bp->b_offset);
673
674				for (j = i; j < bp->b_npages; j++) {
675					m = bp->b_pages[j];
676					if (m == bogus_page) {
677						m = vm_page_lookup(obj, poff + j);
678#if !defined(MAX_PERF)
679						if (!m) {
680							panic("brelse: page missing\n");
681						}
682#endif
683						bp->b_pages[j] = m;
684					}
685				}
686
687				if ((bp->b_flags & B_INVAL) == 0) {
688					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
689				}
690			}
691			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
692				int poffset = foff & PAGE_MASK;
693				int presid = resid > (PAGE_SIZE - poffset) ?
694					(PAGE_SIZE - poffset) : resid;
695
696				KASSERT(presid >= 0, ("brelse: extra page"));
697				vm_page_set_invalid(m, poffset, presid);
698			}
699			resid -= PAGE_SIZE - (foff & PAGE_MASK);
700			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
701		}
702
703		if (bp->b_flags & (B_INVAL | B_RELBUF))
704			vfs_vmio_release(bp);
705
706	} else if (bp->b_flags & B_VMIO) {
707
708		if (bp->b_flags & (B_INVAL | B_RELBUF))
709			vfs_vmio_release(bp);
710
711	}
712
713#if !defined(MAX_PERF)
714	if (bp->b_qindex != QUEUE_NONE)
715		panic("brelse: free buffer onto another queue???");
716#endif
717
718	/* enqueue */
719	/* buffers with no memory */
720	if (bp->b_bufsize == 0) {
721		bp->b_flags |= B_INVAL;
722		bp->b_qindex = QUEUE_EMPTY;
723		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
724		LIST_REMOVE(bp, b_hash);
725		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
726		bp->b_dev = NODEV;
727		kvafreespace += bp->b_kvasize;
728
729	/* buffers with junk contents */
730	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
731		bp->b_flags |= B_INVAL;
732		bp->b_qindex = QUEUE_AGE;
733		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
734		LIST_REMOVE(bp, b_hash);
735		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
736		bp->b_dev = NODEV;
737
738	/* buffers that are locked */
739	} else if (bp->b_flags & B_LOCKED) {
740		bp->b_qindex = QUEUE_LOCKED;
741		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
742
743	/* buffers with stale but valid contents */
744	} else if (bp->b_flags & B_AGE) {
745		bp->b_qindex = QUEUE_AGE;
746		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
747
748	/* buffers with valid and quite potentially reuseable contents */
749	} else {
750		bp->b_qindex = QUEUE_LRU;
751		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
752	}
753
754	if ((bp->b_flags & B_INVAL) ||
755		(bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
756		if (bp->b_flags & B_DELWRI) {
757			--numdirtybuffers;
758			bp->b_flags &= ~B_DELWRI;
759		}
760		vfs_bio_need_satisfy();
761	}
762
763	/* unlock */
764	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
765		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
766	splx(s);
767}
768
769/*
770 * Release a buffer.
771 */
772void
773bqrelse(struct buf * bp)
774{
775	int s;
776
777	s = splbio();
778
779	/* anyone need this block? */
780	if (bp->b_flags & B_WANTED) {
781		bp->b_flags &= ~(B_WANTED | B_AGE);
782		wakeup(bp);
783	}
784
785#if !defined(MAX_PERF)
786	if (bp->b_qindex != QUEUE_NONE)
787		panic("bqrelse: free buffer onto another queue???");
788#endif
789
790	if (bp->b_flags & B_LOCKED) {
791		bp->b_flags &= ~B_ERROR;
792		bp->b_qindex = QUEUE_LOCKED;
793		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
794		/* buffers with stale but valid contents */
795	} else {
796		bp->b_qindex = QUEUE_LRU;
797		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
798	}
799
800	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
801		vfs_bio_need_satisfy();
802	}
803
804	/* unlock */
805	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
806		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
807	splx(s);
808}
809
810static void
811vfs_vmio_release(bp)
812	struct buf *bp;
813{
814	int i, s;
815	vm_page_t m;
816
817	s = splvm();
818	for (i = 0; i < bp->b_npages; i++) {
819		m = bp->b_pages[i];
820		bp->b_pages[i] = NULL;
821		/*
822		 * In order to keep page LRU ordering consistent, put
823		 * everything on the inactive queue.
824		 */
825		vm_page_unwire(m, 0);
826		/*
827		 * We don't mess with busy pages, it is
828		 * the responsibility of the process that
829		 * busied the pages to deal with them.
830		 */
831		if ((m->flags & PG_BUSY) || (m->busy != 0))
832			continue;
833
834		if (m->wire_count == 0) {
835			vm_page_flag_clear(m, PG_ZERO);
836			/*
837			 * Might as well free the page if we can and it has
838			 * no valid data.
839			 */
840			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
841				vm_page_busy(m);
842				vm_page_protect(m, VM_PROT_NONE);
843				vm_page_free(m);
844			}
845		}
846	}
847	splx(s);
848	bufspace -= bp->b_bufsize;
849	vmiospace -= bp->b_bufsize;
850	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
851	bp->b_npages = 0;
852	bp->b_bufsize = 0;
853	bp->b_flags &= ~B_VMIO;
854	if (bp->b_vp)
855		brelvp(bp);
856}
857
858/*
859 * Check to see if a block is currently memory resident.
860 */
861struct buf *
862gbincore(struct vnode * vp, daddr_t blkno)
863{
864	struct buf *bp;
865	struct bufhashhdr *bh;
866
867	bh = BUFHASH(vp, blkno);
868	bp = bh->lh_first;
869
870	/* Search hash chain */
871	while (bp != NULL) {
872		/* hit */
873		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
874		    (bp->b_flags & B_INVAL) == 0) {
875			break;
876		}
877		bp = bp->b_hash.le_next;
878	}
879	return (bp);
880}
881
882/*
883 * this routine implements clustered async writes for
884 * clearing out B_DELWRI buffers...  This is much better
885 * than the old way of writing only one buffer at a time.
886 */
887int
888vfs_bio_awrite(struct buf * bp)
889{
890	int i;
891	daddr_t lblkno = bp->b_lblkno;
892	struct vnode *vp = bp->b_vp;
893	int s;
894	int ncl;
895	struct buf *bpa;
896	int nwritten;
897	int size;
898	int maxcl;
899
900	s = splbio();
901	/*
902	 * right now we support clustered writing only to regular files
903	 */
904	if ((vp->v_type == VREG) &&
905	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
906	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
907
908		size = vp->v_mount->mnt_stat.f_iosize;
909		maxcl = MAXPHYS / size;
910
911		for (i = 1; i < maxcl; i++) {
912			if ((bpa = gbincore(vp, lblkno + i)) &&
913			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
914			    (B_DELWRI | B_CLUSTEROK)) &&
915			    (bpa->b_bufsize == size)) {
916				if ((bpa->b_blkno == bpa->b_lblkno) ||
917				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
918					break;
919			} else {
920				break;
921			}
922		}
923		ncl = i;
924		/*
925		 * this is a possible cluster write
926		 */
927		if (ncl != 1) {
928			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
929			splx(s);
930			return nwritten;
931		}
932	}
933
934	bremfree(bp);
935	bp->b_flags |= B_BUSY | B_ASYNC;
936
937	splx(s);
938	/*
939	 * default (old) behavior, writing out only one block
940	 */
941	nwritten = bp->b_bufsize;
942	(void) VOP_BWRITE(bp);
943	return nwritten;
944}
945
946
947/*
948 * Find a buffer header which is available for use.
949 */
950static struct buf *
951getnewbuf(struct vnode *vp, daddr_t blkno,
952	int slpflag, int slptimeo, int size, int maxsize)
953{
954	struct buf *bp, *bp1;
955	int nbyteswritten = 0;
956	vm_offset_t addr;
957	static int writerecursion = 0;
958
959start:
960	if (bufspace >= maxbufspace)
961		goto trytofreespace;
962
963	/* can we constitute a new buffer? */
964	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
965#if !defined(MAX_PERF)
966		if (bp->b_qindex != QUEUE_EMPTY)
967			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
968			    bp->b_qindex);
969#endif
970		bp->b_flags |= B_BUSY;
971		bremfree(bp);
972		goto fillbuf;
973	}
974trytofreespace:
975	/*
976	 * We keep the file I/O from hogging metadata I/O
977	 * This is desirable because file data is cached in the
978	 * VM/Buffer cache even if a buffer is freed.
979	 */
980	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
981#if !defined(MAX_PERF)
982		if (bp->b_qindex != QUEUE_AGE)
983			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
984			    bp->b_qindex);
985#endif
986	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
987#if !defined(MAX_PERF)
988		if (bp->b_qindex != QUEUE_LRU)
989			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
990			    bp->b_qindex);
991#endif
992	}
993	if (!bp) {
994		/* wait for a free buffer of any kind */
995		needsbuffer |= VFS_BIO_NEED_ANY;
996		do
997			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
998			    slptimeo);
999		while (needsbuffer & VFS_BIO_NEED_ANY);
1000		return (0);
1001	}
1002	KASSERT(!(bp->b_flags & B_BUSY),
1003	    ("getnewbuf: busy buffer on free list\n"));
1004	/*
1005	 * We are fairly aggressive about freeing VMIO buffers, but since
1006	 * the buffering is intact without buffer headers, there is not
1007	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
1008	 */
1009	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
1010		if ((bp->b_flags & B_VMIO) == 0 ||
1011			(vmiospace < maxvmiobufspace)) {
1012			--bp->b_usecount;
1013			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
1014			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
1015				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1016				goto start;
1017			}
1018			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1019		}
1020	}
1021
1022
1023	/* if we are a delayed write, convert to an async write */
1024	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
1025
1026		/*
1027		 * If our delayed write is likely to be used soon, then
1028		 * recycle back onto the LRU queue.
1029		 */
1030		if (vp && (bp->b_vp == vp) && (bp->b_qindex == QUEUE_LRU) &&
1031			(bp->b_lblkno >= blkno) && (maxsize > 0)) {
1032
1033			if (bp->b_usecount > 0) {
1034				if (bp->b_lblkno < blkno + (MAXPHYS / maxsize)) {
1035
1036					TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
1037
1038					if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
1039						TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1040						bp->b_usecount--;
1041						goto start;
1042					}
1043					TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1044				}
1045			}
1046		}
1047
1048		/*
1049		 * Certain layered filesystems can recursively re-enter the vfs_bio
1050		 * code, due to delayed writes.  This helps keep the system from
1051		 * deadlocking.
1052		 */
1053		if (writerecursion > 0) {
1054			if (writerecursion > 5) {
1055				bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1056				while (bp) {
1057					if ((bp->b_flags & B_DELWRI) == 0)
1058						break;
1059					bp = TAILQ_NEXT(bp, b_freelist);
1060				}
1061				if (bp == NULL) {
1062					bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1063					while (bp) {
1064						if ((bp->b_flags & B_DELWRI) == 0)
1065							break;
1066						bp = TAILQ_NEXT(bp, b_freelist);
1067					}
1068				}
1069				if (bp == NULL)
1070					panic("getnewbuf: cannot get buffer, infinite recursion failure");
1071			} else {
1072				bremfree(bp);
1073				bp->b_flags |= B_BUSY | B_AGE | B_ASYNC;
1074				nbyteswritten += bp->b_bufsize;
1075				++writerecursion;
1076				VOP_BWRITE(bp);
1077				--writerecursion;
1078				if (!slpflag && !slptimeo) {
1079					return (0);
1080				}
1081				goto start;
1082			}
1083		} else {
1084			++writerecursion;
1085			nbyteswritten += vfs_bio_awrite(bp);
1086			--writerecursion;
1087			if (!slpflag && !slptimeo) {
1088				return (0);
1089			}
1090			goto start;
1091		}
1092	}
1093
1094	if (bp->b_flags & B_WANTED) {
1095		bp->b_flags &= ~B_WANTED;
1096		wakeup(bp);
1097	}
1098	bremfree(bp);
1099	bp->b_flags |= B_BUSY;
1100
1101	if (bp->b_flags & B_VMIO) {
1102		bp->b_flags &= ~B_ASYNC;
1103		vfs_vmio_release(bp);
1104	}
1105
1106	if (bp->b_vp)
1107		brelvp(bp);
1108
1109fillbuf:
1110
1111	/* we are not free, nor do we contain interesting data */
1112	if (bp->b_rcred != NOCRED) {
1113		crfree(bp->b_rcred);
1114		bp->b_rcred = NOCRED;
1115	}
1116	if (bp->b_wcred != NOCRED) {
1117		crfree(bp->b_wcred);
1118		bp->b_wcred = NOCRED;
1119	}
1120	if (LIST_FIRST(&bp->b_dep) != NULL &&
1121	    bioops.io_deallocate)
1122		(*bioops.io_deallocate)(bp);
1123
1124	LIST_REMOVE(bp, b_hash);
1125	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1126	if (bp->b_bufsize) {
1127		allocbuf(bp, 0);
1128	}
1129	bp->b_flags = B_BUSY;
1130	bp->b_dev = NODEV;
1131	bp->b_vp = NULL;
1132	bp->b_blkno = bp->b_lblkno = 0;
1133	bp->b_offset = NOOFFSET;
1134	bp->b_iodone = 0;
1135	bp->b_error = 0;
1136	bp->b_resid = 0;
1137	bp->b_bcount = 0;
1138	bp->b_npages = 0;
1139	bp->b_dirtyoff = bp->b_dirtyend = 0;
1140	bp->b_validoff = bp->b_validend = 0;
1141	bp->b_usecount = 5;
1142	/* Here, not kern_physio.c, is where this should be done*/
1143	LIST_INIT(&bp->b_dep);
1144
1145	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1146
1147	/*
1148	 * we assume that buffer_map is not at address 0
1149	 */
1150	addr = 0;
1151	if (maxsize != bp->b_kvasize) {
1152		bfreekva(bp);
1153
1154findkvaspace:
1155		/*
1156		 * See if we have buffer kva space
1157		 */
1158		if (vm_map_findspace(buffer_map,
1159			vm_map_min(buffer_map), maxsize, &addr)) {
1160			if (kvafreespace > 0) {
1161				int totfree = 0, freed;
1162				do {
1163					freed = 0;
1164					for (bp1 = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1165						bp1 != NULL; bp1 = TAILQ_NEXT(bp1, b_freelist)) {
1166						if (bp1->b_kvasize != 0) {
1167							totfree += bp1->b_kvasize;
1168							freed = bp1->b_kvasize;
1169							bremfree(bp1);
1170							bfreekva(bp1);
1171							brelse(bp1);
1172							break;
1173						}
1174					}
1175				} while (freed);
1176				/*
1177				 * if we found free space, then retry with the same buffer.
1178				 */
1179				if (totfree)
1180					goto findkvaspace;
1181			}
1182			bp->b_flags |= B_INVAL;
1183			brelse(bp);
1184			goto trytofreespace;
1185		}
1186	}
1187
1188	/*
1189	 * See if we are below are allocated minimum
1190	 */
1191	if (bufspace >= (maxbufspace + nbyteswritten)) {
1192		bp->b_flags |= B_INVAL;
1193		brelse(bp);
1194		goto trytofreespace;
1195	}
1196
1197	/*
1198	 * create a map entry for the buffer -- in essence
1199	 * reserving the kva space.
1200	 */
1201	if (addr) {
1202		vm_map_insert(buffer_map, NULL, 0,
1203			addr, addr + maxsize,
1204			VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1205
1206		bp->b_kvabase = (caddr_t) addr;
1207		bp->b_kvasize = maxsize;
1208	}
1209	bp->b_data = bp->b_kvabase;
1210
1211	return (bp);
1212}
1213
1214static void
1215waitfreebuffers(int slpflag, int slptimeo) {
1216	while (numfreebuffers < hifreebuffers) {
1217		flushdirtybuffers(slpflag, slptimeo);
1218		if (numfreebuffers < hifreebuffers)
1219			break;
1220		needsbuffer |= VFS_BIO_NEED_FREE;
1221		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1222			break;
1223	}
1224}
1225
1226static void
1227flushdirtybuffers(int slpflag, int slptimeo) {
1228	int s;
1229	static pid_t flushing = 0;
1230
1231	s = splbio();
1232
1233	if (flushing) {
1234		if (flushing == curproc->p_pid) {
1235			splx(s);
1236			return;
1237		}
1238		while (flushing) {
1239			if (tsleep(&flushing, (PRIBIO + 4)|slpflag, "biofls", slptimeo)) {
1240				splx(s);
1241				return;
1242			}
1243		}
1244	}
1245	flushing = curproc->p_pid;
1246
1247	while (numdirtybuffers > lodirtybuffers) {
1248		struct buf *bp;
1249		needsbuffer |= VFS_BIO_NEED_LOWLIMIT;
1250		bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1251		if (bp == NULL)
1252			bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1253
1254		while (bp && ((bp->b_flags & B_DELWRI) == 0)) {
1255			bp = TAILQ_NEXT(bp, b_freelist);
1256		}
1257
1258		if (bp) {
1259			vfs_bio_awrite(bp);
1260			continue;
1261		}
1262		break;
1263	}
1264
1265	flushing = 0;
1266	wakeup(&flushing);
1267	splx(s);
1268}
1269
1270/*
1271 * Check to see if a block is currently memory resident.
1272 */
1273struct buf *
1274incore(struct vnode * vp, daddr_t blkno)
1275{
1276	struct buf *bp;
1277
1278	int s = splbio();
1279	bp = gbincore(vp, blkno);
1280	splx(s);
1281	return (bp);
1282}
1283
1284/*
1285 * Returns true if no I/O is needed to access the
1286 * associated VM object.  This is like incore except
1287 * it also hunts around in the VM system for the data.
1288 */
1289
1290int
1291inmem(struct vnode * vp, daddr_t blkno)
1292{
1293	vm_object_t obj;
1294	vm_offset_t toff, tinc, size;
1295	vm_page_t m;
1296	vm_ooffset_t off;
1297
1298	if (incore(vp, blkno))
1299		return 1;
1300	if (vp->v_mount == NULL)
1301		return 0;
1302	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1303		return 0;
1304
1305	obj = vp->v_object;
1306	size = PAGE_SIZE;
1307	if (size > vp->v_mount->mnt_stat.f_iosize)
1308		size = vp->v_mount->mnt_stat.f_iosize;
1309	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1310
1311	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1312		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1313		if (!m)
1314			return 0;
1315		tinc = size;
1316		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1317			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1318		if (vm_page_is_valid(m,
1319		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1320			return 0;
1321	}
1322	return 1;
1323}
1324
1325/*
1326 * now we set the dirty range for the buffer --
1327 * for NFS -- if the file is mapped and pages have
1328 * been written to, let it know.  We want the
1329 * entire range of the buffer to be marked dirty if
1330 * any of the pages have been written to for consistancy
1331 * with the b_validoff, b_validend set in the nfs write
1332 * code, and used by the nfs read code.
1333 */
1334static void
1335vfs_setdirty(struct buf *bp) {
1336	int i;
1337	vm_object_t object;
1338	vm_offset_t boffset;
1339#if 0
1340	vm_offset_t offset;
1341#endif
1342
1343	/*
1344	 * We qualify the scan for modified pages on whether the
1345	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1346	 * is not cleared simply by protecting pages off.
1347	 */
1348	if ((bp->b_flags & B_VMIO) &&
1349		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1350		/*
1351		 * test the pages to see if they have been modified directly
1352		 * by users through the VM system.
1353		 */
1354		for (i = 0; i < bp->b_npages; i++) {
1355			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1356			vm_page_test_dirty(bp->b_pages[i]);
1357		}
1358
1359		/*
1360		 * scan forwards for the first page modified
1361		 */
1362		for (i = 0; i < bp->b_npages; i++) {
1363			if (bp->b_pages[i]->dirty) {
1364				break;
1365			}
1366		}
1367		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1368		if (boffset < bp->b_dirtyoff) {
1369			bp->b_dirtyoff = max(boffset, 0);
1370		}
1371
1372		/*
1373		 * scan backwards for the last page modified
1374		 */
1375		for (i = bp->b_npages - 1; i >= 0; --i) {
1376			if (bp->b_pages[i]->dirty) {
1377				break;
1378			}
1379		}
1380		boffset = (i + 1);
1381#if 0
1382		offset = boffset + bp->b_pages[0]->pindex;
1383		if (offset >= object->size)
1384			boffset = object->size - bp->b_pages[0]->pindex;
1385#endif
1386		boffset = (boffset << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1387		if (bp->b_dirtyend < boffset)
1388			bp->b_dirtyend = min(boffset, bp->b_bufsize);
1389	}
1390}
1391
1392/*
1393 * Get a block given a specified block and offset into a file/device.
1394 */
1395struct buf *
1396getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1397{
1398	struct buf *bp;
1399	int i, s;
1400	struct bufhashhdr *bh;
1401
1402#if !defined(MAX_PERF)
1403	if (size > MAXBSIZE)
1404		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1405#endif
1406
1407	s = splbio();
1408loop:
1409	if (numfreebuffers < lofreebuffers) {
1410		waitfreebuffers(slpflag, slptimeo);
1411	}
1412
1413	if ((bp = gbincore(vp, blkno))) {
1414		if (bp->b_flags & B_BUSY) {
1415
1416			bp->b_flags |= B_WANTED;
1417			if (bp->b_usecount < BUF_MAXUSE)
1418				++bp->b_usecount;
1419
1420			if (!tsleep(bp,
1421				(PRIBIO + 4) | slpflag, "getblk", slptimeo)) {
1422				goto loop;
1423			}
1424
1425			splx(s);
1426			return (struct buf *) NULL;
1427		}
1428		bp->b_flags |= B_BUSY | B_CACHE;
1429		bremfree(bp);
1430
1431		/*
1432		 * check for size inconsistancies (note that they shouldn't
1433		 * happen but do when filesystems don't handle the size changes
1434		 * correctly.) We are conservative on metadata and don't just
1435		 * extend the buffer but write (if needed) and re-constitute it.
1436		 */
1437
1438		if (bp->b_bcount != size) {
1439			if ((bp->b_flags & B_VMIO) && (size <= bp->b_kvasize)) {
1440				allocbuf(bp, size);
1441			} else {
1442				if (bp->b_flags & B_DELWRI) {
1443					bp->b_flags |= B_NOCACHE;
1444					VOP_BWRITE(bp);
1445				} else {
1446					if ((bp->b_flags & B_VMIO) &&
1447					   (LIST_FIRST(&bp->b_dep) == NULL)) {
1448						bp->b_flags |= B_RELBUF;
1449						brelse(bp);
1450					} else {
1451						bp->b_flags |= B_NOCACHE;
1452						VOP_BWRITE(bp);
1453					}
1454				}
1455				goto loop;
1456			}
1457		}
1458		KASSERT(bp->b_offset != NOOFFSET,
1459		    ("getblk: no buffer offset"));
1460		/*
1461		 * Check that the constituted buffer really deserves for the
1462		 * B_CACHE bit to be set.  B_VMIO type buffers might not
1463		 * contain fully valid pages.  Normal (old-style) buffers
1464		 * should be fully valid.
1465		 */
1466		if (bp->b_flags & B_VMIO) {
1467			int checksize = bp->b_bufsize;
1468			int poffset = bp->b_offset & PAGE_MASK;
1469			int resid;
1470			for (i = 0; i < bp->b_npages; i++) {
1471				resid = (checksize > (PAGE_SIZE - poffset)) ?
1472					(PAGE_SIZE - poffset) : checksize;
1473				if (!vm_page_is_valid(bp->b_pages[i], poffset, resid)) {
1474					bp->b_flags &= ~(B_CACHE | B_DONE);
1475					break;
1476				}
1477				checksize -= resid;
1478				poffset = 0;
1479			}
1480		}
1481
1482		if (bp->b_usecount < BUF_MAXUSE)
1483			++bp->b_usecount;
1484		splx(s);
1485		return (bp);
1486	} else {
1487		int bsize, maxsize, vmio;
1488		off_t offset;
1489
1490		if (vp->v_type == VBLK)
1491			bsize = DEV_BSIZE;
1492		else if (vp->v_mountedhere)
1493			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
1494		else if (vp->v_mount)
1495			bsize = vp->v_mount->mnt_stat.f_iosize;
1496		else
1497			bsize = size;
1498
1499		offset = (off_t)blkno * bsize;
1500		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
1501		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
1502		maxsize = imax(maxsize, bsize);
1503
1504		if ((bp = getnewbuf(vp, blkno,
1505			slpflag, slptimeo, size, maxsize)) == 0) {
1506			if (slpflag || slptimeo) {
1507				splx(s);
1508				return NULL;
1509			}
1510			goto loop;
1511		}
1512
1513		/*
1514		 * This code is used to make sure that a buffer is not
1515		 * created while the getnewbuf routine is blocked.
1516		 * Normally the vnode is locked so this isn't a problem.
1517		 * VBLK type I/O requests, however, don't lock the vnode.
1518		 */
1519		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE && gbincore(vp, blkno)) {
1520			bp->b_flags |= B_INVAL;
1521			brelse(bp);
1522			goto loop;
1523		}
1524
1525		/*
1526		 * Insert the buffer into the hash, so that it can
1527		 * be found by incore.
1528		 */
1529		bp->b_blkno = bp->b_lblkno = blkno;
1530		bp->b_offset = offset;
1531
1532		bgetvp(vp, bp);
1533		LIST_REMOVE(bp, b_hash);
1534		bh = BUFHASH(vp, blkno);
1535		LIST_INSERT_HEAD(bh, bp, b_hash);
1536
1537		if (vmio) {
1538			bp->b_flags |= (B_VMIO | B_CACHE);
1539#if defined(VFS_BIO_DEBUG)
1540			if (vp->v_type != VREG && vp->v_type != VBLK)
1541				printf("getblk: vmioing file type %d???\n", vp->v_type);
1542#endif
1543		} else {
1544			bp->b_flags &= ~B_VMIO;
1545		}
1546
1547		allocbuf(bp, size);
1548
1549		splx(s);
1550		return (bp);
1551	}
1552}
1553
1554/*
1555 * Get an empty, disassociated buffer of given size.
1556 */
1557struct buf *
1558geteblk(int size)
1559{
1560	struct buf *bp;
1561	int s;
1562
1563	s = splbio();
1564	while ((bp = getnewbuf(0, (daddr_t) 0, 0, 0, size, MAXBSIZE)) == 0);
1565	splx(s);
1566	allocbuf(bp, size);
1567	bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
1568	return (bp);
1569}
1570
1571
1572/*
1573 * This code constitutes the buffer memory from either anonymous system
1574 * memory (in the case of non-VMIO operations) or from an associated
1575 * VM object (in the case of VMIO operations).
1576 *
1577 * Note that this code is tricky, and has many complications to resolve
1578 * deadlock or inconsistant data situations.  Tread lightly!!!
1579 *
1580 * Modify the length of a buffer's underlying buffer storage without
1581 * destroying information (unless, of course the buffer is shrinking).
1582 */
1583int
1584allocbuf(struct buf * bp, int size)
1585{
1586
1587	int s;
1588	int newbsize, mbsize;
1589	int i;
1590
1591#if !defined(MAX_PERF)
1592	if (!(bp->b_flags & B_BUSY))
1593		panic("allocbuf: buffer not busy");
1594
1595	if (bp->b_kvasize < size)
1596		panic("allocbuf: buffer too small");
1597#endif
1598
1599	if ((bp->b_flags & B_VMIO) == 0) {
1600		caddr_t origbuf;
1601		int origbufsize;
1602		/*
1603		 * Just get anonymous memory from the kernel
1604		 */
1605		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1606#if !defined(NO_B_MALLOC)
1607		if (bp->b_flags & B_MALLOC)
1608			newbsize = mbsize;
1609		else
1610#endif
1611			newbsize = round_page(size);
1612
1613		if (newbsize < bp->b_bufsize) {
1614#if !defined(NO_B_MALLOC)
1615			/*
1616			 * malloced buffers are not shrunk
1617			 */
1618			if (bp->b_flags & B_MALLOC) {
1619				if (newbsize) {
1620					bp->b_bcount = size;
1621				} else {
1622					free(bp->b_data, M_BIOBUF);
1623					bufspace -= bp->b_bufsize;
1624					bufmallocspace -= bp->b_bufsize;
1625					bp->b_data = bp->b_kvabase;
1626					bp->b_bufsize = 0;
1627					bp->b_bcount = 0;
1628					bp->b_flags &= ~B_MALLOC;
1629				}
1630				return 1;
1631			}
1632#endif
1633			vm_hold_free_pages(
1634			    bp,
1635			    (vm_offset_t) bp->b_data + newbsize,
1636			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1637		} else if (newbsize > bp->b_bufsize) {
1638#if !defined(NO_B_MALLOC)
1639			/*
1640			 * We only use malloced memory on the first allocation.
1641			 * and revert to page-allocated memory when the buffer grows.
1642			 */
1643			if ( (bufmallocspace < maxbufmallocspace) &&
1644				(bp->b_bufsize == 0) &&
1645				(mbsize <= PAGE_SIZE/2)) {
1646
1647				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1648				bp->b_bufsize = mbsize;
1649				bp->b_bcount = size;
1650				bp->b_flags |= B_MALLOC;
1651				bufspace += mbsize;
1652				bufmallocspace += mbsize;
1653				return 1;
1654			}
1655#endif
1656			origbuf = NULL;
1657			origbufsize = 0;
1658#if !defined(NO_B_MALLOC)
1659			/*
1660			 * If the buffer is growing on its other-than-first allocation,
1661			 * then we revert to the page-allocation scheme.
1662			 */
1663			if (bp->b_flags & B_MALLOC) {
1664				origbuf = bp->b_data;
1665				origbufsize = bp->b_bufsize;
1666				bp->b_data = bp->b_kvabase;
1667				bufspace -= bp->b_bufsize;
1668				bufmallocspace -= bp->b_bufsize;
1669				bp->b_bufsize = 0;
1670				bp->b_flags &= ~B_MALLOC;
1671				newbsize = round_page(newbsize);
1672			}
1673#endif
1674			vm_hold_load_pages(
1675			    bp,
1676			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1677			    (vm_offset_t) bp->b_data + newbsize);
1678#if !defined(NO_B_MALLOC)
1679			if (origbuf) {
1680				bcopy(origbuf, bp->b_data, origbufsize);
1681				free(origbuf, M_BIOBUF);
1682			}
1683#endif
1684		}
1685	} else {
1686		vm_page_t m;
1687		int desiredpages;
1688
1689		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1690		desiredpages = (size == 0) ? 0 :
1691			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
1692
1693#if !defined(NO_B_MALLOC)
1694		if (bp->b_flags & B_MALLOC)
1695			panic("allocbuf: VMIO buffer can't be malloced");
1696#endif
1697
1698		if (newbsize < bp->b_bufsize) {
1699			if (desiredpages < bp->b_npages) {
1700				for (i = desiredpages; i < bp->b_npages; i++) {
1701					/*
1702					 * the page is not freed here -- it
1703					 * is the responsibility of vnode_pager_setsize
1704					 */
1705					m = bp->b_pages[i];
1706					KASSERT(m != bogus_page,
1707					    ("allocbuf: bogus page found"));
1708					vm_page_sleep(m, "biodep", &m->busy);
1709
1710					bp->b_pages[i] = NULL;
1711					vm_page_unwire(m, 0);
1712				}
1713				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
1714				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1715				bp->b_npages = desiredpages;
1716			}
1717		} else if (newbsize > bp->b_bufsize) {
1718			vm_object_t obj;
1719			vm_offset_t tinc, toff;
1720			vm_ooffset_t off;
1721			vm_pindex_t objoff;
1722			int pageindex, curbpnpages;
1723			struct vnode *vp;
1724			int bsize;
1725			int orig_validoff = bp->b_validoff;
1726			int orig_validend = bp->b_validend;
1727
1728			vp = bp->b_vp;
1729
1730			if (vp->v_type == VBLK)
1731				bsize = DEV_BSIZE;
1732			else
1733				bsize = vp->v_mount->mnt_stat.f_iosize;
1734
1735			if (bp->b_npages < desiredpages) {
1736				obj = vp->v_object;
1737				tinc = PAGE_SIZE;
1738
1739				off = bp->b_offset;
1740				KASSERT(bp->b_offset != NOOFFSET,
1741				    ("allocbuf: no buffer offset"));
1742				curbpnpages = bp->b_npages;
1743		doretry:
1744				bp->b_validoff = orig_validoff;
1745				bp->b_validend = orig_validend;
1746				bp->b_flags |= B_CACHE;
1747				for (toff = 0; toff < newbsize; toff += tinc) {
1748					objoff = OFF_TO_IDX(off + toff);
1749					pageindex = objoff - OFF_TO_IDX(off);
1750					tinc = PAGE_SIZE - ((off + toff) & PAGE_MASK);
1751					if (pageindex < curbpnpages) {
1752
1753						m = bp->b_pages[pageindex];
1754#ifdef VFS_BIO_DIAG
1755						if (m->pindex != objoff)
1756							panic("allocbuf: page changed offset?!!!?");
1757#endif
1758						if (tinc > (newbsize - toff))
1759							tinc = newbsize - toff;
1760						if (bp->b_flags & B_CACHE)
1761							vfs_buf_set_valid(bp, off, toff, tinc, m);
1762						continue;
1763					}
1764					m = vm_page_lookup(obj, objoff);
1765					if (!m) {
1766						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1767						if (!m) {
1768							VM_WAIT;
1769							vm_pageout_deficit += (desiredpages - curbpnpages);
1770							goto doretry;
1771						}
1772
1773						vm_page_wire(m);
1774						vm_page_flag_clear(m, PG_BUSY);
1775						bp->b_flags &= ~B_CACHE;
1776
1777					} else if (m->flags & PG_BUSY) {
1778						s = splvm();
1779						if (m->flags & PG_BUSY) {
1780							vm_page_flag_set(m, PG_WANTED);
1781							tsleep(m, PVM, "pgtblk", 0);
1782						}
1783						splx(s);
1784						goto doretry;
1785					} else {
1786						if ((curproc != pageproc) &&
1787							((m->queue - m->pc) == PQ_CACHE) &&
1788						    ((cnt.v_free_count + cnt.v_cache_count) <
1789								(cnt.v_free_min + cnt.v_cache_min))) {
1790							pagedaemon_wakeup();
1791						}
1792						if (tinc > (newbsize - toff))
1793							tinc = newbsize - toff;
1794						if (bp->b_flags & B_CACHE)
1795							vfs_buf_set_valid(bp, off, toff, tinc, m);
1796						vm_page_flag_clear(m, PG_ZERO);
1797						vm_page_wire(m);
1798					}
1799					bp->b_pages[pageindex] = m;
1800					curbpnpages = pageindex + 1;
1801				}
1802				if (vp->v_tag == VT_NFS &&
1803				    vp->v_type != VBLK) {
1804					if (bp->b_dirtyend > 0) {
1805						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
1806						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
1807					}
1808					if (bp->b_validend == 0)
1809						bp->b_flags &= ~B_CACHE;
1810				}
1811				bp->b_data = (caddr_t) trunc_page((vm_offset_t)bp->b_data);
1812				bp->b_npages = curbpnpages;
1813				pmap_qenter((vm_offset_t) bp->b_data,
1814					bp->b_pages, bp->b_npages);
1815				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1816			}
1817		}
1818	}
1819	if (bp->b_flags & B_VMIO)
1820		vmiospace += (newbsize - bp->b_bufsize);
1821	bufspace += (newbsize - bp->b_bufsize);
1822	bp->b_bufsize = newbsize;
1823	bp->b_bcount = size;
1824	return 1;
1825}
1826
1827/*
1828 * Wait for buffer I/O completion, returning error status.
1829 */
1830int
1831biowait(register struct buf * bp)
1832{
1833	int s;
1834
1835	s = splbio();
1836	while ((bp->b_flags & B_DONE) == 0)
1837#if defined(NO_SCHEDULE_MODS)
1838		tsleep(bp, PRIBIO, "biowait", 0);
1839#else
1840		if (bp->b_flags & B_READ)
1841			tsleep(bp, PRIBIO, "biord", 0);
1842		else
1843			tsleep(bp, PRIBIO, "biowr", 0);
1844#endif
1845	splx(s);
1846	if (bp->b_flags & B_EINTR) {
1847		bp->b_flags &= ~B_EINTR;
1848		return (EINTR);
1849	}
1850	if (bp->b_flags & B_ERROR) {
1851		return (bp->b_error ? bp->b_error : EIO);
1852	} else {
1853		return (0);
1854	}
1855}
1856
1857/*
1858 * Finish I/O on a buffer, calling an optional function.
1859 * This is usually called from interrupt level, so process blocking
1860 * is not *a good idea*.
1861 */
1862void
1863biodone(register struct buf * bp)
1864{
1865	int s;
1866
1867	s = splbio();
1868
1869#if !defined(MAX_PERF)
1870	if (!(bp->b_flags & B_BUSY))
1871		panic("biodone: buffer not busy");
1872#endif
1873
1874	if (bp->b_flags & B_DONE) {
1875		splx(s);
1876#if !defined(MAX_PERF)
1877		printf("biodone: buffer already done\n");
1878#endif
1879		return;
1880	}
1881	bp->b_flags |= B_DONE;
1882
1883	if (bp->b_flags & B_FREEBUF) {
1884		brelse(bp);
1885		splx(s);
1886		return;
1887	}
1888
1889	if ((bp->b_flags & B_READ) == 0) {
1890		vwakeup(bp);
1891	}
1892
1893	/* call optional completion function if requested */
1894	if (bp->b_flags & B_CALL) {
1895		bp->b_flags &= ~B_CALL;
1896		(*bp->b_iodone) (bp);
1897		splx(s);
1898		return;
1899	}
1900	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1901		(*bioops.io_complete)(bp);
1902
1903	if (bp->b_flags & B_VMIO) {
1904		int i, resid;
1905		vm_ooffset_t foff;
1906		vm_page_t m;
1907		vm_object_t obj;
1908		int iosize;
1909		struct vnode *vp = bp->b_vp;
1910
1911		obj = vp->v_object;
1912
1913#if defined(VFS_BIO_DEBUG)
1914		if (vp->v_usecount == 0) {
1915			panic("biodone: zero vnode ref count");
1916		}
1917
1918		if (vp->v_object == NULL) {
1919			panic("biodone: missing VM object");
1920		}
1921
1922		if ((vp->v_flag & VOBJBUF) == 0) {
1923			panic("biodone: vnode is not setup for merged cache");
1924		}
1925#endif
1926
1927		foff = bp->b_offset;
1928		KASSERT(bp->b_offset != NOOFFSET,
1929		    ("biodone: no buffer offset"));
1930
1931#if !defined(MAX_PERF)
1932		if (!obj) {
1933			panic("biodone: no object");
1934		}
1935#endif
1936#if defined(VFS_BIO_DEBUG)
1937		if (obj->paging_in_progress < bp->b_npages) {
1938			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1939			    obj->paging_in_progress, bp->b_npages);
1940		}
1941#endif
1942		iosize = bp->b_bufsize;
1943		for (i = 0; i < bp->b_npages; i++) {
1944			int bogusflag = 0;
1945			m = bp->b_pages[i];
1946			if (m == bogus_page) {
1947				bogusflag = 1;
1948				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1949				if (!m) {
1950#if defined(VFS_BIO_DEBUG)
1951					printf("biodone: page disappeared\n");
1952#endif
1953					vm_object_pip_subtract(obj, 1);
1954					continue;
1955				}
1956				bp->b_pages[i] = m;
1957				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1958			}
1959#if defined(VFS_BIO_DEBUG)
1960			if (OFF_TO_IDX(foff) != m->pindex) {
1961				printf(
1962"biodone: foff(%lu)/m->pindex(%d) mismatch\n",
1963				    (unsigned long)foff, m->pindex);
1964			}
1965#endif
1966			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1967			if (resid > iosize)
1968				resid = iosize;
1969
1970			/*
1971			 * In the write case, the valid and clean bits are
1972			 * already changed correctly, so we only need to do this
1973			 * here in the read case.
1974			 */
1975			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1976				vfs_page_set_valid(bp, foff, i, m);
1977			}
1978			vm_page_flag_clear(m, PG_ZERO);
1979
1980			/*
1981			 * when debugging new filesystems or buffer I/O methods, this
1982			 * is the most common error that pops up.  if you see this, you
1983			 * have not set the page busy flag correctly!!!
1984			 */
1985			if (m->busy == 0) {
1986#if !defined(MAX_PERF)
1987				printf("biodone: page busy < 0, "
1988				    "pindex: %d, foff: 0x(%x,%x), "
1989				    "resid: %d, index: %d\n",
1990				    (int) m->pindex, (int)(foff >> 32),
1991						(int) foff & 0xffffffff, resid, i);
1992#endif
1993				if (vp->v_type != VBLK)
1994#if !defined(MAX_PERF)
1995					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1996					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1997					    (int) bp->b_lblkno,
1998					    bp->b_flags, bp->b_npages);
1999				else
2000					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2001					    (int) bp->b_lblkno,
2002					    bp->b_flags, bp->b_npages);
2003				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2004				    m->valid, m->dirty, m->wire_count);
2005#endif
2006				panic("biodone: page busy < 0\n");
2007			}
2008			vm_page_io_finish(m);
2009			vm_object_pip_subtract(obj, 1);
2010			foff += resid;
2011			iosize -= resid;
2012		}
2013		if (obj &&
2014			(obj->paging_in_progress == 0) &&
2015		    (obj->flags & OBJ_PIPWNT)) {
2016			vm_object_clear_flag(obj, OBJ_PIPWNT);
2017			wakeup(obj);
2018		}
2019	}
2020	/*
2021	 * For asynchronous completions, release the buffer now. The brelse
2022	 * checks for B_WANTED and will do the wakeup there if necessary - so
2023	 * no need to do a wakeup here in the async case.
2024	 */
2025
2026	if (bp->b_flags & B_ASYNC) {
2027		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2028			brelse(bp);
2029		else
2030			bqrelse(bp);
2031	} else {
2032		bp->b_flags &= ~B_WANTED;
2033		wakeup(bp);
2034	}
2035	splx(s);
2036}
2037
2038#if 0	/* not with kirks code */
2039static int vfs_update_interval = 30;
2040
2041static void
2042vfs_update()
2043{
2044	while (1) {
2045		tsleep(&vfs_update_wakeup, PUSER, "update",
2046		    hz * vfs_update_interval);
2047		vfs_update_wakeup = 0;
2048		sync(curproc, NULL);
2049	}
2050}
2051
2052static int
2053sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
2054{
2055	int error = sysctl_handle_int(oidp,
2056		oidp->oid_arg1, oidp->oid_arg2, req);
2057	if (!error)
2058		wakeup(&vfs_update_wakeup);
2059	return error;
2060}
2061
2062SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
2063	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
2064
2065#endif
2066
2067
2068/*
2069 * This routine is called in lieu of iodone in the case of
2070 * incomplete I/O.  This keeps the busy status for pages
2071 * consistant.
2072 */
2073void
2074vfs_unbusy_pages(struct buf * bp)
2075{
2076	int i;
2077
2078	if (bp->b_flags & B_VMIO) {
2079		struct vnode *vp = bp->b_vp;
2080		vm_object_t obj = vp->v_object;
2081
2082		for (i = 0; i < bp->b_npages; i++) {
2083			vm_page_t m = bp->b_pages[i];
2084
2085			if (m == bogus_page) {
2086				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2087#if !defined(MAX_PERF)
2088				if (!m) {
2089					panic("vfs_unbusy_pages: page missing\n");
2090				}
2091#endif
2092				bp->b_pages[i] = m;
2093				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2094			}
2095			vm_object_pip_subtract(obj, 1);
2096			vm_page_flag_clear(m, PG_ZERO);
2097			vm_page_io_finish(m);
2098		}
2099		if (obj->paging_in_progress == 0 &&
2100		    (obj->flags & OBJ_PIPWNT)) {
2101			vm_object_clear_flag(obj, OBJ_PIPWNT);
2102			wakeup(obj);
2103		}
2104	}
2105}
2106
2107/*
2108 * Set NFS' b_validoff and b_validend fields from the valid bits
2109 * of a page.  If the consumer is not NFS, and the page is not
2110 * valid for the entire range, clear the B_CACHE flag to force
2111 * the consumer to re-read the page.
2112 */
2113static void
2114vfs_buf_set_valid(struct buf *bp,
2115		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
2116		  vm_page_t m)
2117{
2118	if (bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK) {
2119		vm_offset_t svalid, evalid;
2120		int validbits = m->valid >> (((foff+off)&PAGE_MASK)/DEV_BSIZE);
2121
2122		/*
2123		 * This only bothers with the first valid range in the
2124		 * page.
2125		 */
2126		svalid = off;
2127		while (validbits && !(validbits & 1)) {
2128			svalid += DEV_BSIZE;
2129			validbits >>= 1;
2130		}
2131		evalid = svalid;
2132		while (validbits & 1) {
2133			evalid += DEV_BSIZE;
2134			validbits >>= 1;
2135		}
2136		evalid = min(evalid, off + size);
2137		/*
2138		 * Make sure this range is contiguous with the range
2139		 * built up from previous pages.  If not, then we will
2140		 * just use the range from the previous pages.
2141		 */
2142		if (svalid == bp->b_validend) {
2143			bp->b_validoff = min(bp->b_validoff, svalid);
2144			bp->b_validend = max(bp->b_validend, evalid);
2145		}
2146	} else if (!vm_page_is_valid(m,
2147				     (vm_offset_t) ((foff + off) & PAGE_MASK),
2148				     size)) {
2149		bp->b_flags &= ~B_CACHE;
2150	}
2151}
2152
2153/*
2154 * Set the valid bits in a page, taking care of the b_validoff,
2155 * b_validend fields which NFS uses to optimise small reads.  Off is
2156 * the offset within the file and pageno is the page index within the buf.
2157 */
2158static void
2159vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2160{
2161	struct vnode *vp = bp->b_vp;
2162	vm_ooffset_t soff, eoff;
2163
2164	soff = off;
2165	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2166	if (eoff > bp->b_offset + bp->b_bufsize)
2167		eoff = bp->b_offset + bp->b_bufsize;
2168	if (vp->v_tag == VT_NFS && vp->v_type != VBLK) {
2169		vm_ooffset_t sv, ev;
2170		vm_page_set_invalid(m,
2171		    (vm_offset_t) (soff & PAGE_MASK),
2172		    (vm_offset_t) (eoff - soff));
2173		sv = (bp->b_offset + bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2174		ev = (bp->b_offset + bp->b_validend + (DEV_BSIZE - 1)) &
2175		    ~(DEV_BSIZE - 1);
2176		soff = qmax(sv, soff);
2177		eoff = qmin(ev, eoff);
2178	}
2179	if (eoff > soff)
2180		vm_page_set_validclean(m,
2181	       (vm_offset_t) (soff & PAGE_MASK),
2182	       (vm_offset_t) (eoff - soff));
2183}
2184
2185/*
2186 * This routine is called before a device strategy routine.
2187 * It is used to tell the VM system that paging I/O is in
2188 * progress, and treat the pages associated with the buffer
2189 * almost as being PG_BUSY.  Also the object paging_in_progress
2190 * flag is handled to make sure that the object doesn't become
2191 * inconsistant.
2192 */
2193void
2194vfs_busy_pages(struct buf * bp, int clear_modify)
2195{
2196	int i, bogus;
2197
2198	if (bp->b_flags & B_VMIO) {
2199		struct vnode *vp = bp->b_vp;
2200		vm_object_t obj = vp->v_object;
2201		vm_ooffset_t foff;
2202
2203		foff = bp->b_offset;
2204		KASSERT(bp->b_offset != NOOFFSET,
2205		    ("vfs_busy_pages: no buffer offset"));
2206		vfs_setdirty(bp);
2207
2208retry:
2209		for (i = 0; i < bp->b_npages; i++) {
2210			vm_page_t m = bp->b_pages[i];
2211			if (vm_page_sleep(m, "vbpage", NULL))
2212				goto retry;
2213		}
2214
2215		bogus = 0;
2216		for (i = 0; i < bp->b_npages; i++) {
2217			vm_page_t m = bp->b_pages[i];
2218
2219			vm_page_flag_clear(m, PG_ZERO);
2220			if ((bp->b_flags & B_CLUSTER) == 0) {
2221				vm_object_pip_add(obj, 1);
2222				vm_page_io_start(m);
2223			}
2224
2225			vm_page_protect(m, VM_PROT_NONE);
2226			if (clear_modify)
2227				vfs_page_set_valid(bp, foff, i, m);
2228			else if (m->valid == VM_PAGE_BITS_ALL &&
2229				(bp->b_flags & B_CACHE) == 0) {
2230				bp->b_pages[i] = bogus_page;
2231				bogus++;
2232			}
2233			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2234		}
2235		if (bogus)
2236			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2237	}
2238}
2239
2240/*
2241 * Tell the VM system that the pages associated with this buffer
2242 * are clean.  This is used for delayed writes where the data is
2243 * going to go to disk eventually without additional VM intevention.
2244 */
2245void
2246vfs_clean_pages(struct buf * bp)
2247{
2248	int i;
2249
2250	if (bp->b_flags & B_VMIO) {
2251		vm_ooffset_t foff;
2252		foff = bp->b_offset;
2253		KASSERT(bp->b_offset != NOOFFSET,
2254		    ("vfs_clean_pages: no buffer offset"));
2255		for (i = 0; i < bp->b_npages; i++) {
2256			vm_page_t m = bp->b_pages[i];
2257			vfs_page_set_valid(bp, foff, i, m);
2258			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2259		}
2260	}
2261}
2262
2263void
2264vfs_bio_clrbuf(struct buf *bp) {
2265	int i, mask = 0;
2266	caddr_t sa, ea;
2267	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2268		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2269		    (bp->b_offset & PAGE_MASK) == 0) {
2270			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2271			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2272			    ((bp->b_pages[0]->valid & mask) != mask)) {
2273				bzero(bp->b_data, bp->b_bufsize);
2274			}
2275			bp->b_pages[0]->valid |= mask;
2276			bp->b_resid = 0;
2277			return;
2278		}
2279		ea = sa = bp->b_data;
2280		for(i=0;i<bp->b_npages;i++,sa=ea) {
2281			int j = ((u_long)sa & PAGE_MASK) / DEV_BSIZE;
2282			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2283			ea = (caddr_t)ulmin((u_long)ea,
2284				(u_long)bp->b_data + bp->b_bufsize);
2285			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2286			if ((bp->b_pages[i]->valid & mask) == mask)
2287				continue;
2288			if ((bp->b_pages[i]->valid & mask) == 0) {
2289				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2290					bzero(sa, ea - sa);
2291				}
2292			} else {
2293				for (; sa < ea; sa += DEV_BSIZE, j++) {
2294					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2295						(bp->b_pages[i]->valid & (1<<j)) == 0)
2296						bzero(sa, DEV_BSIZE);
2297				}
2298			}
2299			bp->b_pages[i]->valid |= mask;
2300			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2301		}
2302		bp->b_resid = 0;
2303	} else {
2304		clrbuf(bp);
2305	}
2306}
2307
2308/*
2309 * vm_hold_load_pages and vm_hold_unload pages get pages into
2310 * a buffers address space.  The pages are anonymous and are
2311 * not associated with a file object.
2312 */
2313void
2314vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2315{
2316	vm_offset_t pg;
2317	vm_page_t p;
2318	int index;
2319
2320	to = round_page(to);
2321	from = round_page(from);
2322	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
2323
2324	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2325
2326tryagain:
2327
2328		p = vm_page_alloc(kernel_object,
2329			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
2330		    VM_ALLOC_NORMAL);
2331		if (!p) {
2332			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
2333			VM_WAIT;
2334			goto tryagain;
2335		}
2336		vm_page_wire(p);
2337		p->valid = VM_PAGE_BITS_ALL;
2338		vm_page_flag_clear(p, PG_ZERO);
2339		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
2340		bp->b_pages[index] = p;
2341		vm_page_wakeup(p);
2342	}
2343	bp->b_npages = index;
2344}
2345
2346void
2347vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2348{
2349	vm_offset_t pg;
2350	vm_page_t p;
2351	int index, newnpages;
2352
2353	from = round_page(from);
2354	to = round_page(to);
2355	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
2356
2357	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2358		p = bp->b_pages[index];
2359		if (p && (index < bp->b_npages)) {
2360#if !defined(MAX_PERF)
2361			if (p->busy) {
2362				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2363					bp->b_blkno, bp->b_lblkno);
2364			}
2365#endif
2366			bp->b_pages[index] = NULL;
2367			pmap_kremove(pg);
2368			vm_page_busy(p);
2369			vm_page_unwire(p, 0);
2370			vm_page_free(p);
2371		}
2372	}
2373	bp->b_npages = newnpages;
2374}
2375
2376
2377#include "opt_ddb.h"
2378#ifdef DDB
2379#include <ddb/ddb.h>
2380
2381DB_SHOW_COMMAND(buffer, db_show_buffer)
2382{
2383	/* get args */
2384	struct buf *bp = (struct buf *)addr;
2385
2386	if (!have_addr) {
2387		db_printf("usage: show buffer <addr>\n");
2388		return;
2389	}
2390
2391	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2392		  (u_int)bp->b_flags, PRINT_BUF_FLAGS);
2393	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2394		  "b_resid = %ld\nb_dev = 0x%x, b_data = %p, "
2395		  "b_blkno = %d, b_pblkno = %d\n",
2396		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2397		  bp->b_dev, bp->b_data, bp->b_blkno, bp->b_pblkno);
2398	if (bp->b_npages) {
2399		int i;
2400		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
2401		for (i = 0; i < bp->b_npages; i++) {
2402			vm_page_t m;
2403			m = bp->b_pages[i];
2404			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
2405			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
2406			if ((i + 1) < bp->b_npages)
2407				db_printf(",");
2408		}
2409		db_printf("\n");
2410	}
2411}
2412#endif /* DDB */
2413