vfs_bio.c revision 42408
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $Id: vfs_bio.c,v 1.189 1998/12/22 18:57:30 dillon Exp $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 *
27 * see man buf(9) for more info.
28 */
29
30#define VMIO
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/sysproto.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/proc.h>
37#include <sys/vnode.h>
38#include <sys/vmmeter.h>
39#include <sys/lock.h>
40#include <miscfs/specfs/specdev.h>
41#include <vm/vm.h>
42#include <vm/vm_param.h>
43#include <vm/vm_prot.h>
44#include <vm/vm_kern.h>
45#include <vm/vm_pageout.h>
46#include <vm/vm_page.h>
47#include <vm/vm_object.h>
48#include <vm/vm_extern.h>
49#include <vm/vm_map.h>
50#include <sys/buf.h>
51#include <sys/mount.h>
52#include <sys/malloc.h>
53#include <sys/resourcevar.h>
54
55static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
56
57struct	bio_ops bioops;		/* I/O operation notification */
58
59#if 0 	/* replaced bu sched_sync */
60static void vfs_update __P((void));
61static struct	proc *updateproc;
62static struct kproc_desc up_kp = {
63	"update",
64	vfs_update,
65	&updateproc
66};
67SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
68#endif
69
70struct buf *buf;		/* buffer header pool */
71struct swqueue bswlist;
72
73static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
74		vm_offset_t to);
75static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
78			      vm_offset_t off, vm_offset_t size,
79			      vm_page_t m);
80static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
81			       int pageno, vm_page_t m);
82static void vfs_clean_pages(struct buf * bp);
83static void vfs_setdirty(struct buf *bp);
84static void vfs_vmio_release(struct buf *bp);
85static void flushdirtybuffers(int slpflag, int slptimeo);
86
87int needsbuffer;
88
89/*
90 * Internal update daemon, process 3
91 *	The variable vfs_update_wakeup allows for internal syncs.
92 */
93int vfs_update_wakeup;
94
95
96/*
97 * buffers base kva
98 */
99
100/*
101 * bogus page -- for I/O to/from partially complete buffers
102 * this is a temporary solution to the problem, but it is not
103 * really that bad.  it would be better to split the buffer
104 * for input in the case of buffers partially already in memory,
105 * but the code is intricate enough already.
106 */
107vm_page_t bogus_page;
108static vm_offset_t bogus_offset;
109
110static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
111	bufmallocspace, maxbufmallocspace;
112int numdirtybuffers;
113static int lodirtybuffers, hidirtybuffers;
114static int numfreebuffers, lofreebuffers, hifreebuffers;
115static int kvafreespace;
116
117SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
118	&numdirtybuffers, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
120	&lodirtybuffers, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
122	&hidirtybuffers, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
124	&numfreebuffers, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
126	&lofreebuffers, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
128	&hifreebuffers, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
130	&maxbufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132	&bufspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
134	&maxvmiobufspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
136	&vmiospace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
138	&maxbufmallocspace, 0, "");
139SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
140	&bufmallocspace, 0, "");
141SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
142	&kvafreespace, 0, "");
143
144static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
145struct bqueues bufqueues[BUFFER_QUEUES] = {0};
146
147extern int vm_swap_size;
148
149#define BUF_MAXUSE 24
150
151#define VFS_BIO_NEED_ANY 1
152#define VFS_BIO_NEED_LOWLIMIT 2
153#define VFS_BIO_NEED_FREE 4
154
155/*
156 * Initialize buffer headers and related structures.
157 */
158void
159bufinit()
160{
161	struct buf *bp;
162	int i;
163
164	TAILQ_INIT(&bswlist);
165	LIST_INIT(&invalhash);
166
167	/* first, make a null hash table */
168	for (i = 0; i < BUFHSZ; i++)
169		LIST_INIT(&bufhashtbl[i]);
170
171	/* next, make a null set of free lists */
172	for (i = 0; i < BUFFER_QUEUES; i++)
173		TAILQ_INIT(&bufqueues[i]);
174
175	/* finally, initialize each buffer header and stick on empty q */
176	for (i = 0; i < nbuf; i++) {
177		bp = &buf[i];
178		bzero(bp, sizeof *bp);
179		bp->b_flags = B_INVAL;	/* we're just an empty header */
180		bp->b_dev = NODEV;
181		bp->b_rcred = NOCRED;
182		bp->b_wcred = NOCRED;
183		bp->b_qindex = QUEUE_EMPTY;
184		bp->b_xflags = 0;
185		LIST_INIT(&bp->b_dep);
186		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
187		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
188	}
189/*
190 * maxbufspace is currently calculated to support all filesystem blocks
191 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
192 * cache is still the same as it would be for 8K filesystems.  This
193 * keeps the size of the buffer cache "in check" for big block filesystems.
194 */
195	maxbufspace = (nbuf + 8) * DFLTBSIZE;
196/*
197 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
198 */
199	maxvmiobufspace = 2 * maxbufspace / 3;
200/*
201 * Limit the amount of malloc memory since it is wired permanently into
202 * the kernel space.  Even though this is accounted for in the buffer
203 * allocation, we don't want the malloced region to grow uncontrolled.
204 * The malloc scheme improves memory utilization significantly on average
205 * (small) directories.
206 */
207	maxbufmallocspace = maxbufspace / 20;
208
209/*
210 * Remove the probability of deadlock conditions by limiting the
211 * number of dirty buffers.
212 */
213	hidirtybuffers = nbuf / 8 + 20;
214	lodirtybuffers = nbuf / 16 + 10;
215	numdirtybuffers = 0;
216	lofreebuffers = nbuf / 18 + 5;
217	hifreebuffers = 2 * lofreebuffers;
218	numfreebuffers = nbuf;
219	kvafreespace = 0;
220
221	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
222	bogus_page = vm_page_alloc(kernel_object,
223			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
224			VM_ALLOC_NORMAL);
225
226}
227
228/*
229 * Free the kva allocation for a buffer
230 * Must be called only at splbio or higher,
231 *  as this is the only locking for buffer_map.
232 */
233static void
234bfreekva(struct buf * bp)
235{
236	if (bp->b_kvasize == 0)
237		return;
238
239	vm_map_delete(buffer_map,
240		(vm_offset_t) bp->b_kvabase,
241		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
242
243	bp->b_kvasize = 0;
244
245}
246
247/*
248 * remove the buffer from the appropriate free list
249 */
250void
251bremfree(struct buf * bp)
252{
253	int s = splbio();
254
255	if (bp->b_qindex != QUEUE_NONE) {
256		if (bp->b_qindex == QUEUE_EMPTY) {
257			kvafreespace -= bp->b_kvasize;
258		}
259		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
260		bp->b_qindex = QUEUE_NONE;
261	} else {
262#if !defined(MAX_PERF)
263		panic("bremfree: removing a buffer when not on a queue");
264#endif
265	}
266	if ((bp->b_flags & B_INVAL) ||
267		(bp->b_flags & (B_DELWRI|B_LOCKED)) == 0)
268		--numfreebuffers;
269	splx(s);
270}
271
272
273/*
274 * Get a buffer with the specified data.  Look in the cache first.
275 */
276int
277bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
278    struct buf ** bpp)
279{
280	struct buf *bp;
281
282	bp = getblk(vp, blkno, size, 0, 0);
283	*bpp = bp;
284
285	/* if not found in cache, do some I/O */
286	if ((bp->b_flags & B_CACHE) == 0) {
287		if (curproc != NULL)
288			curproc->p_stats->p_ru.ru_inblock++;
289		bp->b_flags |= B_READ;
290		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
291		if (bp->b_rcred == NOCRED) {
292			if (cred != NOCRED)
293				crhold(cred);
294			bp->b_rcred = cred;
295		}
296		vfs_busy_pages(bp, 0);
297		VOP_STRATEGY(vp, bp);
298		return (biowait(bp));
299	}
300	return (0);
301}
302
303/*
304 * Operates like bread, but also starts asynchronous I/O on
305 * read-ahead blocks.
306 */
307int
308breadn(struct vnode * vp, daddr_t blkno, int size,
309    daddr_t * rablkno, int *rabsize,
310    int cnt, struct ucred * cred, struct buf ** bpp)
311{
312	struct buf *bp, *rabp;
313	int i;
314	int rv = 0, readwait = 0;
315
316	*bpp = bp = getblk(vp, blkno, size, 0, 0);
317
318	/* if not found in cache, do some I/O */
319	if ((bp->b_flags & B_CACHE) == 0) {
320		if (curproc != NULL)
321			curproc->p_stats->p_ru.ru_inblock++;
322		bp->b_flags |= B_READ;
323		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
324		if (bp->b_rcred == NOCRED) {
325			if (cred != NOCRED)
326				crhold(cred);
327			bp->b_rcred = cred;
328		}
329		vfs_busy_pages(bp, 0);
330		VOP_STRATEGY(vp, bp);
331		++readwait;
332	}
333	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
334		if (inmem(vp, *rablkno))
335			continue;
336		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
337
338		if ((rabp->b_flags & B_CACHE) == 0) {
339			if (curproc != NULL)
340				curproc->p_stats->p_ru.ru_inblock++;
341			rabp->b_flags |= B_READ | B_ASYNC;
342			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
343			if (rabp->b_rcred == NOCRED) {
344				if (cred != NOCRED)
345					crhold(cred);
346				rabp->b_rcred = cred;
347			}
348			vfs_busy_pages(rabp, 0);
349			VOP_STRATEGY(vp, rabp);
350		} else {
351			brelse(rabp);
352		}
353	}
354
355	if (readwait) {
356		rv = biowait(bp);
357	}
358	return (rv);
359}
360
361/*
362 * Write, release buffer on completion.  (Done by iodone
363 * if async.)
364 */
365int
366bwrite(struct buf * bp)
367{
368	int oldflags, s;
369	struct vnode *vp;
370	struct mount *mp;
371
372
373	if (bp->b_flags & B_INVAL) {
374		brelse(bp);
375		return (0);
376	}
377
378	oldflags = bp->b_flags;
379
380#if !defined(MAX_PERF)
381	if ((bp->b_flags & B_BUSY) == 0)
382		panic("bwrite: buffer is not busy???");
383#endif
384
385	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
386	bp->b_flags |= B_WRITEINPROG;
387
388	s = splbio();
389	if ((oldflags & B_DELWRI) == B_DELWRI) {
390		--numdirtybuffers;
391		reassignbuf(bp, bp->b_vp);
392	}
393
394	bp->b_vp->v_numoutput++;
395	vfs_busy_pages(bp, 1);
396	if (curproc != NULL)
397		curproc->p_stats->p_ru.ru_oublock++;
398	splx(s);
399	VOP_STRATEGY(bp->b_vp, bp);
400
401	/*
402	 * Collect statistics on synchronous and asynchronous writes.
403	 * Writes to block devices are charged to their associated
404	 * filesystem (if any).
405	 */
406	if ((vp = bp->b_vp) != NULL) {
407		if (vp->v_type == VBLK)
408			mp = vp->v_specmountpoint;
409		else
410			mp = vp->v_mount;
411		if (mp != NULL)
412			if ((oldflags & B_ASYNC) == 0)
413				mp->mnt_stat.f_syncwrites++;
414			else
415				mp->mnt_stat.f_asyncwrites++;
416	}
417
418	if ((oldflags & B_ASYNC) == 0) {
419		int rtval = biowait(bp);
420		brelse(bp);
421		return (rtval);
422	}
423	return (0);
424}
425
426void
427vfs_bio_need_satisfy(void) {
428	++numfreebuffers;
429	if (!needsbuffer)
430		return;
431	if (numdirtybuffers < lodirtybuffers) {
432		needsbuffer &= ~(VFS_BIO_NEED_ANY | VFS_BIO_NEED_LOWLIMIT);
433	} else {
434		needsbuffer &= ~VFS_BIO_NEED_ANY;
435	}
436	if (numfreebuffers >= hifreebuffers) {
437		needsbuffer &= ~VFS_BIO_NEED_FREE;
438	}
439	wakeup(&needsbuffer);
440}
441
442/*
443 * Delayed write. (Buffer is marked dirty).
444 */
445void
446bdwrite(struct buf * bp)
447{
448	struct vnode *vp;
449
450#if !defined(MAX_PERF)
451	if ((bp->b_flags & B_BUSY) == 0) {
452		panic("bdwrite: buffer is not busy");
453	}
454#endif
455
456	if (bp->b_flags & B_INVAL) {
457		brelse(bp);
458		return;
459	}
460	bp->b_flags &= ~(B_READ|B_RELBUF);
461	if ((bp->b_flags & B_DELWRI) == 0) {
462		bp->b_flags |= B_DONE | B_DELWRI;
463		reassignbuf(bp, bp->b_vp);
464		++numdirtybuffers;
465	}
466
467	/*
468	 * This bmap keeps the system from needing to do the bmap later,
469	 * perhaps when the system is attempting to do a sync.  Since it
470	 * is likely that the indirect block -- or whatever other datastructure
471	 * that the filesystem needs is still in memory now, it is a good
472	 * thing to do this.  Note also, that if the pageout daemon is
473	 * requesting a sync -- there might not be enough memory to do
474	 * the bmap then...  So, this is important to do.
475	 */
476	if (bp->b_lblkno == bp->b_blkno) {
477		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
478	}
479
480	/*
481	 * Set the *dirty* buffer range based upon the VM system dirty pages.
482	 */
483	vfs_setdirty(bp);
484
485	/*
486	 * We need to do this here to satisfy the vnode_pager and the
487	 * pageout daemon, so that it thinks that the pages have been
488	 * "cleaned".  Note that since the pages are in a delayed write
489	 * buffer -- the VFS layer "will" see that the pages get written
490	 * out on the next sync, or perhaps the cluster will be completed.
491	 */
492	vfs_clean_pages(bp);
493	bqrelse(bp);
494
495	/*
496	 * XXX The soft dependency code is not prepared to
497	 * have I/O done when a bdwrite is requested. For
498	 * now we just let the write be delayed if it is
499	 * requested by the soft dependency code.
500	 */
501	if ((vp = bp->b_vp) &&
502	    ((vp->v_type == VBLK && vp->v_specmountpoint &&
503		  (vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP)) ||
504		 (vp->v_mount && (vp->v_mount->mnt_flag & MNT_SOFTDEP))))
505		return;
506
507	if (numdirtybuffers >= hidirtybuffers)
508		flushdirtybuffers(0, 0);
509
510	return;
511}
512
513
514/*
515 * Same as first half of bdwrite, mark buffer dirty, but do not release it.
516 * Check how this compares with vfs_setdirty(); XXX [JRE]
517 */
518void
519bdirty(bp)
520      struct buf *bp;
521{
522
523	bp->b_flags &= ~(B_READ|B_RELBUF); /* XXX ??? check this */
524	if ((bp->b_flags & B_DELWRI) == 0) {
525		bp->b_flags |= B_DONE | B_DELWRI; /* why done? XXX JRE */
526		reassignbuf(bp, bp->b_vp);
527		++numdirtybuffers;
528	}
529}
530
531/*
532 * Asynchronous write.
533 * Start output on a buffer, but do not wait for it to complete.
534 * The buffer is released when the output completes.
535 */
536void
537bawrite(struct buf * bp)
538{
539	bp->b_flags |= B_ASYNC;
540	(void) VOP_BWRITE(bp);
541}
542
543/*
544 * Ordered write.
545 * Start output on a buffer, and flag it so that the device will write
546 * it in the order it was queued.  The buffer is released when the output
547 * completes.
548 */
549int
550bowrite(struct buf * bp)
551{
552	bp->b_flags |= B_ORDERED|B_ASYNC;
553	return (VOP_BWRITE(bp));
554}
555
556/*
557 * Release a buffer.
558 */
559void
560brelse(struct buf * bp)
561{
562	int s;
563
564	if (bp->b_flags & B_CLUSTER) {
565		relpbuf(bp);
566		return;
567	}
568
569	s = splbio();
570
571	/* anyone need this block? */
572	if (bp->b_flags & B_WANTED) {
573		bp->b_flags &= ~(B_WANTED | B_AGE);
574		wakeup(bp);
575	}
576
577	if (bp->b_flags & B_LOCKED)
578		bp->b_flags &= ~B_ERROR;
579
580	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_FREEBUF)) ||
581	    (bp->b_bufsize <= 0)) {
582		bp->b_flags |= B_INVAL;
583		if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_deallocate)
584			(*bioops.io_deallocate)(bp);
585		if (bp->b_flags & B_DELWRI)
586			--numdirtybuffers;
587		bp->b_flags &= ~(B_DELWRI | B_CACHE | B_FREEBUF);
588		if ((bp->b_flags & B_VMIO) == 0) {
589			if (bp->b_bufsize)
590				allocbuf(bp, 0);
591			if (bp->b_vp)
592				brelvp(bp);
593		}
594	}
595
596	/*
597	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
598	 * is called with B_DELWRI set, the underlying pages may wind up
599	 * getting freed causing a previous write (bdwrite()) to get 'lost'
600	 * because pages associated with a B_DELWRI bp are marked clean.
601	 *
602	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
603	 * if B_DELWRI is set.
604	 */
605
606	if (bp->b_flags & B_DELWRI)
607		bp->b_flags &= ~B_RELBUF;
608
609	/*
610	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
611	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
612	 * but the VM object is kept around.  The B_NOCACHE flag is used to
613	 * invalidate the pages in the VM object.
614	 *
615	 * The b_{validoff,validend,dirtyoff,dirtyend} values are relative
616	 * to b_offset and currently have byte granularity, whereas the
617	 * valid flags in the vm_pages have only DEV_BSIZE resolution.
618	 * The byte resolution fields are used to avoid unnecessary re-reads
619	 * of the buffer but the code really needs to be genericized so
620	 * other filesystem modules can take advantage of these fields.
621	 *
622	 * XXX this seems to cause performance problems.
623	 */
624	if ((bp->b_flags & B_VMIO)
625	    && !(bp->b_vp->v_tag == VT_NFS &&
626		 bp->b_vp->v_type != VBLK &&
627		 (bp->b_flags & B_DELWRI) != 0)
628#ifdef notdef
629	    && (bp->b_vp->v_tag != VT_NFS
630		|| bp->b_vp->v_type == VBLK
631		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
632		|| bp->b_validend == 0
633		|| (bp->b_validoff == 0
634		    && bp->b_validend == bp->b_bufsize))
635#endif
636	    ) {
637
638		int i, j, resid;
639		vm_page_t m;
640		off_t foff;
641		vm_pindex_t poff;
642		vm_object_t obj;
643		struct vnode *vp;
644
645		vp = bp->b_vp;
646
647		/*
648		 * Get the base offset and length of the buffer.  Note that
649		 * for block sizes that are less then PAGE_SIZE, the b_data
650		 * base of the buffer does not represent exactly b_offset and
651		 * neither b_offset nor b_size are necessarily page aligned.
652		 * Instead, the starting position of b_offset is:
653		 *
654		 * 	b_data + (b_offset & PAGE_MASK)
655		 *
656		 * block sizes less then DEV_BSIZE (usually 512) are not
657		 * supported due to the page granularity bits (m->valid,
658		 * m->dirty, etc...).
659		 *
660		 * See man buf(9) for more information
661		 */
662
663		resid = bp->b_bufsize;
664		foff = bp->b_offset;
665
666		for (i = 0; i < bp->b_npages; i++) {
667			m = bp->b_pages[i];
668			vm_page_flag_clear(m, PG_ZERO);
669			if (m == bogus_page) {
670
671				obj = (vm_object_t) vp->v_object;
672				poff = OFF_TO_IDX(bp->b_offset);
673
674				for (j = i; j < bp->b_npages; j++) {
675					m = bp->b_pages[j];
676					if (m == bogus_page) {
677						m = vm_page_lookup(obj, poff + j);
678#if !defined(MAX_PERF)
679						if (!m) {
680							panic("brelse: page missing\n");
681						}
682#endif
683						bp->b_pages[j] = m;
684					}
685				}
686
687				if ((bp->b_flags & B_INVAL) == 0) {
688					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
689				}
690			}
691			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
692				int poffset = foff & PAGE_MASK;
693				int presid = resid > (PAGE_SIZE - poffset) ?
694					(PAGE_SIZE - poffset) : resid;
695				KASSERT(presid >= 0, ("brelse: extra page"));
696				vm_page_set_invalid(m, poffset, presid);
697			}
698			resid -= PAGE_SIZE - (foff & PAGE_MASK);
699			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
700		}
701
702		if (bp->b_flags & (B_INVAL | B_RELBUF))
703			vfs_vmio_release(bp);
704
705	} else if (bp->b_flags & B_VMIO) {
706
707		if (bp->b_flags & (B_INVAL | B_RELBUF))
708			vfs_vmio_release(bp);
709
710	}
711
712#if !defined(MAX_PERF)
713	if (bp->b_qindex != QUEUE_NONE)
714		panic("brelse: free buffer onto another queue???");
715#endif
716
717	/* enqueue */
718	/* buffers with no memory */
719	if (bp->b_bufsize == 0) {
720		bp->b_flags |= B_INVAL;
721		bp->b_qindex = QUEUE_EMPTY;
722		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
723		LIST_REMOVE(bp, b_hash);
724		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
725		bp->b_dev = NODEV;
726		kvafreespace += bp->b_kvasize;
727
728	/* buffers with junk contents */
729	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
730		bp->b_flags |= B_INVAL;
731		bp->b_qindex = QUEUE_AGE;
732		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
733		LIST_REMOVE(bp, b_hash);
734		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
735		bp->b_dev = NODEV;
736
737	/* buffers that are locked */
738	} else if (bp->b_flags & B_LOCKED) {
739		bp->b_qindex = QUEUE_LOCKED;
740		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
741
742	/* buffers with stale but valid contents */
743	} else if (bp->b_flags & B_AGE) {
744		bp->b_qindex = QUEUE_AGE;
745		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
746
747	/* buffers with valid and quite potentially reuseable contents */
748	} else {
749		bp->b_qindex = QUEUE_LRU;
750		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
751	}
752
753	if ((bp->b_flags & B_INVAL) ||
754		(bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
755		if (bp->b_flags & B_DELWRI) {
756			--numdirtybuffers;
757			bp->b_flags &= ~B_DELWRI;
758		}
759		vfs_bio_need_satisfy();
760	}
761
762	/* unlock */
763	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
764		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
765	splx(s);
766}
767
768/*
769 * Release a buffer.
770 */
771void
772bqrelse(struct buf * bp)
773{
774	int s;
775
776	s = splbio();
777
778	/* anyone need this block? */
779	if (bp->b_flags & B_WANTED) {
780		bp->b_flags &= ~(B_WANTED | B_AGE);
781		wakeup(bp);
782	}
783
784#if !defined(MAX_PERF)
785	if (bp->b_qindex != QUEUE_NONE)
786		panic("bqrelse: free buffer onto another queue???");
787#endif
788
789	if (bp->b_flags & B_LOCKED) {
790		bp->b_flags &= ~B_ERROR;
791		bp->b_qindex = QUEUE_LOCKED;
792		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
793		/* buffers with stale but valid contents */
794	} else {
795		bp->b_qindex = QUEUE_LRU;
796		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
797	}
798
799	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
800		vfs_bio_need_satisfy();
801	}
802
803	/* unlock */
804	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
805		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
806	splx(s);
807}
808
809static void
810vfs_vmio_release(bp)
811	struct buf *bp;
812{
813	int i, s;
814	vm_page_t m;
815
816	s = splvm();
817	for (i = 0; i < bp->b_npages; i++) {
818		m = bp->b_pages[i];
819		bp->b_pages[i] = NULL;
820		/*
821		 * In order to keep page LRU ordering consistent, put
822		 * everything on the inactive queue.
823		 */
824		vm_page_unwire(m, 0);
825		/*
826		 * We don't mess with busy pages, it is
827		 * the responsibility of the process that
828		 * busied the pages to deal with them.
829		 */
830		if ((m->flags & PG_BUSY) || (m->busy != 0))
831			continue;
832
833		if (m->wire_count == 0) {
834			vm_page_flag_clear(m, PG_ZERO);
835			/*
836			 * Might as well free the page if we can and it has
837			 * no valid data.
838			 */
839			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid && m->hold_count == 0) {
840				vm_page_busy(m);
841				vm_page_protect(m, VM_PROT_NONE);
842				vm_page_free(m);
843			}
844		}
845	}
846	splx(s);
847	bufspace -= bp->b_bufsize;
848	vmiospace -= bp->b_bufsize;
849	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
850	bp->b_npages = 0;
851	bp->b_bufsize = 0;
852	bp->b_flags &= ~B_VMIO;
853	if (bp->b_vp)
854		brelvp(bp);
855}
856
857/*
858 * Check to see if a block is currently memory resident.
859 */
860struct buf *
861gbincore(struct vnode * vp, daddr_t blkno)
862{
863	struct buf *bp;
864	struct bufhashhdr *bh;
865
866	bh = BUFHASH(vp, blkno);
867	bp = bh->lh_first;
868
869	/* Search hash chain */
870	while (bp != NULL) {
871		/* hit */
872		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
873		    (bp->b_flags & B_INVAL) == 0) {
874			break;
875		}
876		bp = bp->b_hash.le_next;
877	}
878	return (bp);
879}
880
881/*
882 * this routine implements clustered async writes for
883 * clearing out B_DELWRI buffers...  This is much better
884 * than the old way of writing only one buffer at a time.
885 */
886int
887vfs_bio_awrite(struct buf * bp)
888{
889	int i;
890	daddr_t lblkno = bp->b_lblkno;
891	struct vnode *vp = bp->b_vp;
892	int s;
893	int ncl;
894	struct buf *bpa;
895	int nwritten;
896	int size;
897	int maxcl;
898
899	s = splbio();
900	/*
901	 * right now we support clustered writing only to regular files
902	 */
903	if ((vp->v_type == VREG) &&
904	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
905	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
906
907		size = vp->v_mount->mnt_stat.f_iosize;
908		maxcl = MAXPHYS / size;
909
910		for (i = 1; i < maxcl; i++) {
911			if ((bpa = gbincore(vp, lblkno + i)) &&
912			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
913			    (B_DELWRI | B_CLUSTEROK)) &&
914			    (bpa->b_bufsize == size)) {
915				if ((bpa->b_blkno == bpa->b_lblkno) ||
916				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
917					break;
918			} else {
919				break;
920			}
921		}
922		ncl = i;
923		/*
924		 * this is a possible cluster write
925		 */
926		if (ncl != 1) {
927			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
928			splx(s);
929			return nwritten;
930		}
931	}
932
933	bremfree(bp);
934	bp->b_flags |= B_BUSY | B_ASYNC;
935
936	splx(s);
937	/*
938	 * default (old) behavior, writing out only one block
939	 */
940	nwritten = bp->b_bufsize;
941	(void) VOP_BWRITE(bp);
942	return nwritten;
943}
944
945
946/*
947 * Find a buffer header which is available for use.
948 */
949static struct buf *
950getnewbuf(struct vnode *vp, daddr_t blkno,
951	int slpflag, int slptimeo, int size, int maxsize)
952{
953	struct buf *bp, *bp1;
954	int nbyteswritten = 0;
955	vm_offset_t addr;
956	static int writerecursion = 0;
957
958start:
959	if (bufspace >= maxbufspace)
960		goto trytofreespace;
961
962	/* can we constitute a new buffer? */
963	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
964#if !defined(MAX_PERF)
965		if (bp->b_qindex != QUEUE_EMPTY)
966			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
967			    bp->b_qindex);
968#endif
969		bp->b_flags |= B_BUSY;
970		bremfree(bp);
971		goto fillbuf;
972	}
973trytofreespace:
974	/*
975	 * We keep the file I/O from hogging metadata I/O
976	 * This is desirable because file data is cached in the
977	 * VM/Buffer cache even if a buffer is freed.
978	 */
979	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
980#if !defined(MAX_PERF)
981		if (bp->b_qindex != QUEUE_AGE)
982			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
983			    bp->b_qindex);
984#endif
985	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
986#if !defined(MAX_PERF)
987		if (bp->b_qindex != QUEUE_LRU)
988			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
989			    bp->b_qindex);
990#endif
991	}
992	if (!bp) {
993		/* wait for a free buffer of any kind */
994		needsbuffer |= VFS_BIO_NEED_ANY;
995		do
996			tsleep(&needsbuffer, (PRIBIO + 4) | slpflag, "newbuf",
997			    slptimeo);
998		while (needsbuffer & VFS_BIO_NEED_ANY);
999		return (0);
1000	}
1001
1002	KASSERT(!(bp->b_flags & B_BUSY),
1003		("getnewbuf: busy buffer on free list\n"));
1004
1005	/*
1006	 * We are fairly aggressive about freeing VMIO buffers, but since
1007	 * the buffering is intact without buffer headers, there is not
1008	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
1009	 */
1010	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
1011		if ((bp->b_flags & B_VMIO) == 0 ||
1012			(vmiospace < maxvmiobufspace)) {
1013			--bp->b_usecount;
1014			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
1015			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
1016				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1017				goto start;
1018			}
1019			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1020		}
1021	}
1022
1023
1024	/* if we are a delayed write, convert to an async write */
1025	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
1026
1027		/*
1028		 * If our delayed write is likely to be used soon, then
1029		 * recycle back onto the LRU queue.
1030		 */
1031		if (vp && (bp->b_vp == vp) && (bp->b_qindex == QUEUE_LRU) &&
1032			(bp->b_lblkno >= blkno) && (maxsize > 0)) {
1033
1034			if (bp->b_usecount > 0) {
1035				if (bp->b_lblkno < blkno + (MAXPHYS / maxsize)) {
1036
1037					TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
1038
1039					if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
1040						TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1041						bp->b_usecount--;
1042						goto start;
1043					}
1044					TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1045				}
1046			}
1047		}
1048
1049		/*
1050		 * Certain layered filesystems can recursively re-enter the vfs_bio
1051		 * code, due to delayed writes.  This helps keep the system from
1052		 * deadlocking.
1053		 */
1054		if (writerecursion > 0) {
1055			if (writerecursion > 5) {
1056				bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1057				while (bp) {
1058					if ((bp->b_flags & B_DELWRI) == 0)
1059						break;
1060					bp = TAILQ_NEXT(bp, b_freelist);
1061				}
1062				if (bp == NULL) {
1063					bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1064					while (bp) {
1065						if ((bp->b_flags & B_DELWRI) == 0)
1066							break;
1067						bp = TAILQ_NEXT(bp, b_freelist);
1068					}
1069				}
1070				if (bp == NULL)
1071					panic("getnewbuf: cannot get buffer, infinite recursion failure");
1072			} else {
1073				bremfree(bp);
1074				bp->b_flags |= B_BUSY | B_AGE | B_ASYNC;
1075				nbyteswritten += bp->b_bufsize;
1076				++writerecursion;
1077				VOP_BWRITE(bp);
1078				--writerecursion;
1079				if (!slpflag && !slptimeo) {
1080					return (0);
1081				}
1082				goto start;
1083			}
1084		} else {
1085			++writerecursion;
1086			nbyteswritten += vfs_bio_awrite(bp);
1087			--writerecursion;
1088			if (!slpflag && !slptimeo) {
1089				return (0);
1090			}
1091			goto start;
1092		}
1093	}
1094
1095	if (bp->b_flags & B_WANTED) {
1096		bp->b_flags &= ~B_WANTED;
1097		wakeup(bp);
1098	}
1099	bremfree(bp);
1100	bp->b_flags |= B_BUSY;
1101
1102	if (bp->b_flags & B_VMIO) {
1103		bp->b_flags &= ~B_ASYNC;
1104		vfs_vmio_release(bp);
1105	}
1106
1107	if (bp->b_vp)
1108		brelvp(bp);
1109
1110fillbuf:
1111
1112	/* we are not free, nor do we contain interesting data */
1113	if (bp->b_rcred != NOCRED) {
1114		crfree(bp->b_rcred);
1115		bp->b_rcred = NOCRED;
1116	}
1117	if (bp->b_wcred != NOCRED) {
1118		crfree(bp->b_wcred);
1119		bp->b_wcred = NOCRED;
1120	}
1121	if (LIST_FIRST(&bp->b_dep) != NULL &&
1122	    bioops.io_deallocate)
1123		(*bioops.io_deallocate)(bp);
1124
1125	LIST_REMOVE(bp, b_hash);
1126	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1127	if (bp->b_bufsize) {
1128		allocbuf(bp, 0);
1129	}
1130	bp->b_flags = B_BUSY;
1131	bp->b_dev = NODEV;
1132	bp->b_vp = NULL;
1133	bp->b_blkno = bp->b_lblkno = 0;
1134	bp->b_offset = NOOFFSET;
1135	bp->b_iodone = 0;
1136	bp->b_error = 0;
1137	bp->b_resid = 0;
1138	bp->b_bcount = 0;
1139	bp->b_npages = 0;
1140	bp->b_dirtyoff = bp->b_dirtyend = 0;
1141	bp->b_validoff = bp->b_validend = 0;
1142	bp->b_usecount = 5;
1143	/* Here, not kern_physio.c, is where this should be done*/
1144	LIST_INIT(&bp->b_dep);
1145
1146	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1147
1148	/*
1149	 * we assume that buffer_map is not at address 0
1150	 */
1151	addr = 0;
1152	if (maxsize != bp->b_kvasize) {
1153		bfreekva(bp);
1154
1155findkvaspace:
1156		/*
1157		 * See if we have buffer kva space
1158		 */
1159		if (vm_map_findspace(buffer_map,
1160			vm_map_min(buffer_map), maxsize, &addr)) {
1161			if (kvafreespace > 0) {
1162				int totfree = 0, freed;
1163				do {
1164					freed = 0;
1165					for (bp1 = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1166						bp1 != NULL; bp1 = TAILQ_NEXT(bp1, b_freelist)) {
1167						if (bp1->b_kvasize != 0) {
1168							totfree += bp1->b_kvasize;
1169							freed = bp1->b_kvasize;
1170							bremfree(bp1);
1171							bfreekva(bp1);
1172							brelse(bp1);
1173							break;
1174						}
1175					}
1176				} while (freed);
1177				/*
1178				 * if we found free space, then retry with the same buffer.
1179				 */
1180				if (totfree)
1181					goto findkvaspace;
1182			}
1183			bp->b_flags |= B_INVAL;
1184			brelse(bp);
1185			goto trytofreespace;
1186		}
1187	}
1188
1189	/*
1190	 * See if we are below are allocated minimum
1191	 */
1192	if (bufspace >= (maxbufspace + nbyteswritten)) {
1193		bp->b_flags |= B_INVAL;
1194		brelse(bp);
1195		goto trytofreespace;
1196	}
1197
1198	/*
1199	 * create a map entry for the buffer -- in essence
1200	 * reserving the kva space.
1201	 */
1202	if (addr) {
1203		vm_map_insert(buffer_map, NULL, 0,
1204			addr, addr + maxsize,
1205			VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1206
1207		bp->b_kvabase = (caddr_t) addr;
1208		bp->b_kvasize = maxsize;
1209	}
1210	bp->b_data = bp->b_kvabase;
1211
1212	return (bp);
1213}
1214
1215static void
1216waitfreebuffers(int slpflag, int slptimeo) {
1217	while (numfreebuffers < hifreebuffers) {
1218		flushdirtybuffers(slpflag, slptimeo);
1219		if (numfreebuffers < hifreebuffers)
1220			break;
1221		needsbuffer |= VFS_BIO_NEED_FREE;
1222		if (tsleep(&needsbuffer, (PRIBIO + 4)|slpflag, "biofre", slptimeo))
1223			break;
1224	}
1225}
1226
1227static void
1228flushdirtybuffers(int slpflag, int slptimeo) {
1229	int s;
1230	static pid_t flushing = 0;
1231
1232	s = splbio();
1233
1234	if (flushing) {
1235		if (flushing == curproc->p_pid) {
1236			splx(s);
1237			return;
1238		}
1239		while (flushing) {
1240			if (tsleep(&flushing, (PRIBIO + 4)|slpflag, "biofls", slptimeo)) {
1241				splx(s);
1242				return;
1243			}
1244		}
1245	}
1246	flushing = curproc->p_pid;
1247
1248	while (numdirtybuffers > lodirtybuffers) {
1249		struct buf *bp;
1250		needsbuffer |= VFS_BIO_NEED_LOWLIMIT;
1251		bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1252		if (bp == NULL)
1253			bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1254
1255		while (bp && ((bp->b_flags & B_DELWRI) == 0)) {
1256			bp = TAILQ_NEXT(bp, b_freelist);
1257		}
1258
1259		if (bp) {
1260			vfs_bio_awrite(bp);
1261			continue;
1262		}
1263		break;
1264	}
1265
1266	flushing = 0;
1267	wakeup(&flushing);
1268	splx(s);
1269}
1270
1271/*
1272 * Check to see if a block is currently memory resident.
1273 */
1274struct buf *
1275incore(struct vnode * vp, daddr_t blkno)
1276{
1277	struct buf *bp;
1278
1279	int s = splbio();
1280	bp = gbincore(vp, blkno);
1281	splx(s);
1282	return (bp);
1283}
1284
1285/*
1286 * Returns true if no I/O is needed to access the
1287 * associated VM object.  This is like incore except
1288 * it also hunts around in the VM system for the data.
1289 */
1290
1291int
1292inmem(struct vnode * vp, daddr_t blkno)
1293{
1294	vm_object_t obj;
1295	vm_offset_t toff, tinc, size;
1296	vm_page_t m;
1297	vm_ooffset_t off;
1298
1299	if (incore(vp, blkno))
1300		return 1;
1301	if (vp->v_mount == NULL)
1302		return 0;
1303	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1304		return 0;
1305
1306	obj = vp->v_object;
1307	size = PAGE_SIZE;
1308	if (size > vp->v_mount->mnt_stat.f_iosize)
1309		size = vp->v_mount->mnt_stat.f_iosize;
1310	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
1311
1312	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1313		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1314		if (!m)
1315			return 0;
1316		tinc = size;
1317		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
1318			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
1319		if (vm_page_is_valid(m,
1320		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
1321			return 0;
1322	}
1323	return 1;
1324}
1325
1326/*
1327 * now we set the dirty range for the buffer --
1328 * for NFS -- if the file is mapped and pages have
1329 * been written to, let it know.  We want the
1330 * entire range of the buffer to be marked dirty if
1331 * any of the pages have been written to for consistancy
1332 * with the b_validoff, b_validend set in the nfs write
1333 * code, and used by the nfs read code.
1334 */
1335static void
1336vfs_setdirty(struct buf *bp) {
1337	int i;
1338	vm_object_t object;
1339	vm_offset_t boffset, offset;
1340	/*
1341	 * We qualify the scan for modified pages on whether the
1342	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1343	 * is not cleared simply by protecting pages off.
1344	 */
1345	if ((bp->b_flags & B_VMIO) &&
1346		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1347		/*
1348		 * test the pages to see if they have been modified directly
1349		 * by users through the VM system.
1350		 */
1351		for (i = 0; i < bp->b_npages; i++) {
1352			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
1353			vm_page_test_dirty(bp->b_pages[i]);
1354		}
1355
1356		/*
1357		 * scan forwards for the first page modified
1358		 */
1359		for (i = 0; i < bp->b_npages; i++) {
1360			if (bp->b_pages[i]->dirty) {
1361				break;
1362			}
1363		}
1364		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1365		if (boffset < bp->b_dirtyoff) {
1366			bp->b_dirtyoff = max(boffset, 0);
1367		}
1368
1369		/*
1370		 * scan backwards for the last page modified
1371		 */
1372		for (i = bp->b_npages - 1; i >= 0; --i) {
1373			if (bp->b_pages[i]->dirty) {
1374				break;
1375			}
1376		}
1377		boffset = (i + 1);
1378#if 0
1379		offset = boffset + bp->b_pages[0]->pindex;
1380		if (offset >= object->size)
1381			boffset = object->size - bp->b_pages[0]->pindex;
1382#endif
1383		boffset = (boffset << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
1384		if (bp->b_dirtyend < boffset)
1385			bp->b_dirtyend = min(boffset, bp->b_bufsize);
1386	}
1387}
1388
1389/*
1390 * Get a block given a specified block and offset into a file/device.
1391 */
1392struct buf *
1393getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1394{
1395	struct buf *bp;
1396	int i, s;
1397	struct bufhashhdr *bh;
1398	int maxsize;
1399
1400#if !defined(MAX_PERF)
1401	if (size > MAXBSIZE)
1402		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1403#endif
1404
1405	s = splbio();
1406loop:
1407	if (numfreebuffers < lofreebuffers) {
1408		waitfreebuffers(slpflag, slptimeo);
1409	}
1410
1411	if ((bp = gbincore(vp, blkno))) {
1412		if (bp->b_flags & B_BUSY) {
1413
1414			bp->b_flags |= B_WANTED;
1415			if (bp->b_usecount < BUF_MAXUSE)
1416				++bp->b_usecount;
1417
1418			if (!tsleep(bp,
1419				(PRIBIO + 4) | slpflag, "getblk", slptimeo)) {
1420				goto loop;
1421			}
1422
1423			splx(s);
1424			return (struct buf *) NULL;
1425		}
1426		bp->b_flags |= B_BUSY | B_CACHE;
1427		bremfree(bp);
1428
1429		/*
1430		 * check for size inconsistancies (note that they shouldn't
1431		 * happen but do when filesystems don't handle the size changes
1432		 * correctly.) We are conservative on metadata and don't just
1433		 * extend the buffer but write (if needed) and re-constitute it.
1434		 */
1435
1436		if (bp->b_bcount != size) {
1437			if ((bp->b_flags & B_VMIO) && (size <= bp->b_kvasize)) {
1438				allocbuf(bp, size);
1439			} else {
1440				if (bp->b_flags & B_DELWRI) {
1441					bp->b_flags |= B_NOCACHE;
1442					VOP_BWRITE(bp);
1443				} else {
1444					if ((bp->b_flags & B_VMIO) &&
1445					   (LIST_FIRST(&bp->b_dep) == NULL)) {
1446						bp->b_flags |= B_RELBUF;
1447						brelse(bp);
1448					} else {
1449						bp->b_flags |= B_NOCACHE;
1450						VOP_BWRITE(bp);
1451					}
1452				}
1453				goto loop;
1454			}
1455		}
1456
1457		KASSERT(bp->b_offset != NOOFFSET,
1458			("getblk: no buffer offset"));
1459
1460		/*
1461		 * Check that the constituted buffer really deserves for the
1462		 * B_CACHE bit to be set.  B_VMIO type buffers might not
1463		 * contain fully valid pages.  Normal (old-style) buffers
1464		 * should be fully valid.
1465		 */
1466		if (bp->b_flags & B_VMIO) {
1467			int checksize = bp->b_bufsize;
1468			int poffset = bp->b_offset & PAGE_MASK;
1469			int resid;
1470			for (i = 0; i < bp->b_npages; i++) {
1471				resid = (checksize > (PAGE_SIZE - poffset)) ?
1472					(PAGE_SIZE - poffset) : checksize;
1473				if (!vm_page_is_valid(bp->b_pages[i], poffset, resid)) {
1474					bp->b_flags &= ~(B_CACHE | B_DONE);
1475					break;
1476				}
1477				checksize -= resid;
1478				poffset = 0;
1479			}
1480		}
1481
1482		if (bp->b_usecount < BUF_MAXUSE)
1483			++bp->b_usecount;
1484		splx(s);
1485		return (bp);
1486	} else {
1487		int bsize, maxsize, vmio;
1488		off_t offset;
1489
1490		if (vp->v_type == VBLK)
1491			bsize = DEV_BSIZE;
1492		else if (vp->v_mountedhere)
1493			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
1494		else if (vp->v_mount)
1495			bsize = vp->v_mount->mnt_stat.f_iosize;
1496		else
1497			bsize = size;
1498
1499		offset = (off_t)blkno * bsize;
1500		vmio = (vp->v_object != 0) && (vp->v_flag & VOBJBUF);
1501		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
1502		maxsize = imax(maxsize, bsize);
1503
1504		if ((bp = getnewbuf(vp, blkno,
1505			slpflag, slptimeo, size, maxsize)) == 0) {
1506			if (slpflag || slptimeo) {
1507				splx(s);
1508				return NULL;
1509			}
1510			goto loop;
1511		}
1512
1513		/*
1514		 * This code is used to make sure that a buffer is not
1515		 * created while the getnewbuf routine is blocked.
1516		 * Normally the vnode is locked so this isn't a problem.
1517		 * VBLK type I/O requests, however, don't lock the vnode.
1518		 */
1519		if (VOP_ISLOCKED(vp) != LK_EXCLUSIVE && gbincore(vp, blkno)) {
1520			bp->b_flags |= B_INVAL;
1521			brelse(bp);
1522			goto loop;
1523		}
1524
1525		/*
1526		 * Insert the buffer into the hash, so that it can
1527		 * be found by incore.
1528		 */
1529		bp->b_blkno = bp->b_lblkno = blkno;
1530		bp->b_offset = offset;
1531
1532		bgetvp(vp, bp);
1533		LIST_REMOVE(bp, b_hash);
1534		bh = BUFHASH(vp, blkno);
1535		LIST_INSERT_HEAD(bh, bp, b_hash);
1536
1537		if (vmio) {
1538			bp->b_flags |= (B_VMIO | B_CACHE);
1539#if defined(VFS_BIO_DEBUG)
1540			if (vp->v_type != VREG && vp->v_type != VBLK)
1541				printf("getblk: vmioing file type %d???\n", vp->v_type);
1542#endif
1543		} else {
1544			bp->b_flags &= ~B_VMIO;
1545		}
1546
1547		allocbuf(bp, size);
1548
1549		splx(s);
1550		return (bp);
1551	}
1552}
1553
1554/*
1555 * Get an empty, disassociated buffer of given size.
1556 */
1557struct buf *
1558geteblk(int size)
1559{
1560	struct buf *bp;
1561	int s;
1562
1563	s = splbio();
1564	while ((bp = getnewbuf(0, (daddr_t) 0, 0, 0, size, MAXBSIZE)) == 0);
1565	splx(s);
1566	allocbuf(bp, size);
1567	bp->b_flags |= B_INVAL; /* b_dep cleared by getnewbuf() */
1568	return (bp);
1569}
1570
1571
1572/*
1573 * This code constitutes the buffer memory from either anonymous system
1574 * memory (in the case of non-VMIO operations) or from an associated
1575 * VM object (in the case of VMIO operations).
1576 *
1577 * Note that this code is tricky, and has many complications to resolve
1578 * deadlock or inconsistant data situations.  Tread lightly!!!
1579 *
1580 * Modify the length of a buffer's underlying buffer storage without
1581 * destroying information (unless, of course the buffer is shrinking).
1582 */
1583int
1584allocbuf(struct buf * bp, int size)
1585{
1586
1587	int s;
1588	int newbsize, mbsize;
1589	int i;
1590
1591#if !defined(MAX_PERF)
1592	if (!(bp->b_flags & B_BUSY))
1593		panic("allocbuf: buffer not busy");
1594
1595	if (bp->b_kvasize < size)
1596		panic("allocbuf: buffer too small");
1597#endif
1598
1599	if ((bp->b_flags & B_VMIO) == 0) {
1600		caddr_t origbuf;
1601		int origbufsize;
1602		/*
1603		 * Just get anonymous memory from the kernel
1604		 */
1605		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1606#if !defined(NO_B_MALLOC)
1607		if (bp->b_flags & B_MALLOC)
1608			newbsize = mbsize;
1609		else
1610#endif
1611			newbsize = round_page(size);
1612
1613		if (newbsize < bp->b_bufsize) {
1614#if !defined(NO_B_MALLOC)
1615			/*
1616			 * malloced buffers are not shrunk
1617			 */
1618			if (bp->b_flags & B_MALLOC) {
1619				if (newbsize) {
1620					bp->b_bcount = size;
1621				} else {
1622					free(bp->b_data, M_BIOBUF);
1623					bufspace -= bp->b_bufsize;
1624					bufmallocspace -= bp->b_bufsize;
1625					bp->b_data = bp->b_kvabase;
1626					bp->b_bufsize = 0;
1627					bp->b_bcount = 0;
1628					bp->b_flags &= ~B_MALLOC;
1629				}
1630				return 1;
1631			}
1632#endif
1633			vm_hold_free_pages(
1634			    bp,
1635			    (vm_offset_t) bp->b_data + newbsize,
1636			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1637		} else if (newbsize > bp->b_bufsize) {
1638#if !defined(NO_B_MALLOC)
1639			/*
1640			 * We only use malloced memory on the first allocation.
1641			 * and revert to page-allocated memory when the buffer grows.
1642			 */
1643			if ( (bufmallocspace < maxbufmallocspace) &&
1644				(bp->b_bufsize == 0) &&
1645				(mbsize <= PAGE_SIZE/2)) {
1646
1647				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1648				bp->b_bufsize = mbsize;
1649				bp->b_bcount = size;
1650				bp->b_flags |= B_MALLOC;
1651				bufspace += mbsize;
1652				bufmallocspace += mbsize;
1653				return 1;
1654			}
1655#endif
1656			origbuf = NULL;
1657			origbufsize = 0;
1658#if !defined(NO_B_MALLOC)
1659			/*
1660			 * If the buffer is growing on its other-than-first allocation,
1661			 * then we revert to the page-allocation scheme.
1662			 */
1663			if (bp->b_flags & B_MALLOC) {
1664				origbuf = bp->b_data;
1665				origbufsize = bp->b_bufsize;
1666				bp->b_data = bp->b_kvabase;
1667				bufspace -= bp->b_bufsize;
1668				bufmallocspace -= bp->b_bufsize;
1669				bp->b_bufsize = 0;
1670				bp->b_flags &= ~B_MALLOC;
1671				newbsize = round_page(newbsize);
1672			}
1673#endif
1674			vm_hold_load_pages(
1675			    bp,
1676			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1677			    (vm_offset_t) bp->b_data + newbsize);
1678#if !defined(NO_B_MALLOC)
1679			if (origbuf) {
1680				bcopy(origbuf, bp->b_data, origbufsize);
1681				free(origbuf, M_BIOBUF);
1682			}
1683#endif
1684		}
1685	} else {
1686		vm_page_t m;
1687		int desiredpages;
1688
1689		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1690		desiredpages = (size == 0) ? 0 :
1691			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
1692
1693#if !defined(NO_B_MALLOC)
1694		if (bp->b_flags & B_MALLOC)
1695			panic("allocbuf: VMIO buffer can't be malloced");
1696#endif
1697
1698		if (newbsize < bp->b_bufsize) {
1699			if (desiredpages < bp->b_npages) {
1700				for (i = desiredpages; i < bp->b_npages; i++) {
1701					/*
1702					 * the page is not freed here -- it
1703					 * is the responsibility of vnode_pager_setsize
1704					 */
1705					m = bp->b_pages[i];
1706					KASSERT(m != bogus_page,
1707						("allocbuf: bogus page found"));
1708					vm_page_sleep(m, "biodep", &m->busy);
1709
1710					bp->b_pages[i] = NULL;
1711					vm_page_unwire(m, 0);
1712				}
1713				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
1714				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1715				bp->b_npages = desiredpages;
1716			}
1717		} else if (newbsize > bp->b_bufsize) {
1718			vm_object_t obj;
1719			vm_offset_t tinc, toff;
1720			vm_ooffset_t off;
1721			vm_pindex_t objoff;
1722			int pageindex, curbpnpages;
1723			struct vnode *vp;
1724			int bsize;
1725			int orig_validoff = bp->b_validoff;
1726			int orig_validend = bp->b_validend;
1727
1728			vp = bp->b_vp;
1729
1730			if (vp->v_type == VBLK)
1731				bsize = DEV_BSIZE;
1732			else
1733				bsize = vp->v_mount->mnt_stat.f_iosize;
1734
1735			if (bp->b_npages < desiredpages) {
1736				obj = vp->v_object;
1737				tinc = PAGE_SIZE;
1738
1739				off = bp->b_offset;
1740				KASSERT(bp->b_offset != NOOFFSET,
1741					("allocbuf: no buffer offset"));
1742
1743				curbpnpages = bp->b_npages;
1744		doretry:
1745				bp->b_validoff = orig_validoff;
1746				bp->b_validend = orig_validend;
1747				bp->b_flags |= B_CACHE;
1748				for (toff = 0; toff < newbsize; toff += tinc) {
1749					objoff = OFF_TO_IDX(off + toff);
1750					pageindex = objoff - OFF_TO_IDX(off);
1751					tinc = PAGE_SIZE - ((off + toff) & PAGE_MASK);
1752					if (pageindex < curbpnpages) {
1753
1754						m = bp->b_pages[pageindex];
1755#ifdef VFS_BIO_DIAG
1756						if (m->pindex != objoff)
1757							panic("allocbuf: page changed offset?!!!?");
1758#endif
1759						if (tinc > (newbsize - toff))
1760							tinc = newbsize - toff;
1761						if (bp->b_flags & B_CACHE)
1762							vfs_buf_set_valid(bp, off, toff, tinc, m);
1763						continue;
1764					}
1765					m = vm_page_lookup(obj, objoff);
1766					if (!m) {
1767						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1768						if (!m) {
1769							VM_WAIT;
1770							vm_pageout_deficit += (desiredpages - curbpnpages);
1771							goto doretry;
1772						}
1773
1774						vm_page_wire(m);
1775						vm_page_flag_clear(m, PG_BUSY);
1776						bp->b_flags &= ~B_CACHE;
1777
1778					} else if (m->flags & PG_BUSY) {
1779						s = splvm();
1780						if (m->flags & PG_BUSY) {
1781							vm_page_flag_set(m, PG_WANTED);
1782							tsleep(m, PVM, "pgtblk", 0);
1783						}
1784						splx(s);
1785						goto doretry;
1786					} else {
1787						if ((curproc != pageproc) &&
1788							((m->queue - m->pc) == PQ_CACHE) &&
1789						    ((cnt.v_free_count + cnt.v_cache_count) <
1790								(cnt.v_free_min + cnt.v_cache_min))) {
1791							pagedaemon_wakeup();
1792						}
1793						if (tinc > (newbsize - toff))
1794							tinc = newbsize - toff;
1795						if (bp->b_flags & B_CACHE)
1796							vfs_buf_set_valid(bp, off, toff, tinc, m);
1797						vm_page_flag_clear(m, PG_ZERO);
1798						vm_page_wire(m);
1799					}
1800					bp->b_pages[pageindex] = m;
1801					curbpnpages = pageindex + 1;
1802				}
1803				if (vp->v_tag == VT_NFS &&
1804				    vp->v_type != VBLK) {
1805					if (bp->b_dirtyend > 0) {
1806						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
1807						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
1808					}
1809					if (bp->b_validend == 0)
1810						bp->b_flags &= ~B_CACHE;
1811				}
1812				bp->b_data = (caddr_t) trunc_page((vm_offset_t)bp->b_data);
1813				bp->b_npages = curbpnpages;
1814				pmap_qenter((vm_offset_t) bp->b_data,
1815					bp->b_pages, bp->b_npages);
1816				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1817			}
1818		}
1819	}
1820	if (bp->b_flags & B_VMIO)
1821		vmiospace += (newbsize - bp->b_bufsize);
1822	bufspace += (newbsize - bp->b_bufsize);
1823	bp->b_bufsize = newbsize;
1824	bp->b_bcount = size;
1825	return 1;
1826}
1827
1828/*
1829 * Wait for buffer I/O completion, returning error status.
1830 */
1831int
1832biowait(register struct buf * bp)
1833{
1834	int s;
1835
1836	s = splbio();
1837	while ((bp->b_flags & B_DONE) == 0)
1838#if defined(NO_SCHEDULE_MODS)
1839		tsleep(bp, PRIBIO, "biowait", 0);
1840#else
1841		if (bp->b_flags & B_READ)
1842			tsleep(bp, PRIBIO, "biord", 0);
1843		else
1844			tsleep(bp, PRIBIO, "biowr", 0);
1845#endif
1846	splx(s);
1847	if (bp->b_flags & B_EINTR) {
1848		bp->b_flags &= ~B_EINTR;
1849		return (EINTR);
1850	}
1851	if (bp->b_flags & B_ERROR) {
1852		return (bp->b_error ? bp->b_error : EIO);
1853	} else {
1854		return (0);
1855	}
1856}
1857
1858/*
1859 * Finish I/O on a buffer, calling an optional function.
1860 * This is usually called from interrupt level, so process blocking
1861 * is not *a good idea*.
1862 */
1863void
1864biodone(register struct buf * bp)
1865{
1866	int s;
1867
1868	s = splbio();
1869
1870#if !defined(MAX_PERF)
1871	if (!(bp->b_flags & B_BUSY))
1872		panic("biodone: buffer not busy");
1873#endif
1874
1875	if (bp->b_flags & B_DONE) {
1876		splx(s);
1877#if !defined(MAX_PERF)
1878		printf("biodone: buffer already done\n");
1879#endif
1880		return;
1881	}
1882	bp->b_flags |= B_DONE;
1883
1884	if (bp->b_flags & B_FREEBUF) {
1885		brelse(bp);
1886		splx(s);
1887		return;
1888	}
1889
1890	if ((bp->b_flags & B_READ) == 0) {
1891		vwakeup(bp);
1892	}
1893
1894	/* call optional completion function if requested */
1895	if (bp->b_flags & B_CALL) {
1896		bp->b_flags &= ~B_CALL;
1897		(*bp->b_iodone) (bp);
1898		splx(s);
1899		return;
1900	}
1901	if (LIST_FIRST(&bp->b_dep) != NULL && bioops.io_complete)
1902		(*bioops.io_complete)(bp);
1903
1904	if (bp->b_flags & B_VMIO) {
1905		int i, resid;
1906		vm_ooffset_t foff;
1907		vm_page_t m;
1908		vm_object_t obj;
1909		int iosize;
1910		struct vnode *vp = bp->b_vp;
1911
1912		obj = vp->v_object;
1913
1914#if defined(VFS_BIO_DEBUG)
1915		if (vp->v_usecount == 0) {
1916			panic("biodone: zero vnode ref count");
1917		}
1918
1919		if (vp->v_object == NULL) {
1920			panic("biodone: missing VM object");
1921		}
1922
1923		if ((vp->v_flag & VOBJBUF) == 0) {
1924			panic("biodone: vnode is not setup for merged cache");
1925		}
1926#endif
1927
1928		foff = bp->b_offset;
1929		KASSERT(bp->b_offset != NOOFFSET,
1930			("biodone: no buffer offset"));
1931
1932#if !defined(MAX_PERF)
1933		if (!obj) {
1934			panic("biodone: no object");
1935		}
1936#endif
1937#if defined(VFS_BIO_DEBUG)
1938		if (obj->paging_in_progress < bp->b_npages) {
1939			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1940			    obj->paging_in_progress, bp->b_npages);
1941		}
1942#endif
1943		iosize = bp->b_bufsize;
1944		for (i = 0; i < bp->b_npages; i++) {
1945			int bogusflag = 0;
1946			m = bp->b_pages[i];
1947			if (m == bogus_page) {
1948				bogusflag = 1;
1949				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1950				if (!m) {
1951#if defined(VFS_BIO_DEBUG)
1952					printf("biodone: page disappeared\n");
1953#endif
1954					vm_object_pip_subtract(obj, 1);
1955					continue;
1956				}
1957				bp->b_pages[i] = m;
1958				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1959			}
1960#if defined(VFS_BIO_DEBUG)
1961			if (OFF_TO_IDX(foff) != m->pindex) {
1962				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1963			}
1964#endif
1965			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1966			if (resid > iosize)
1967				resid = iosize;
1968
1969			/*
1970			 * In the write case, the valid and clean bits are
1971			 * already changed correctly, so we only need to do this
1972			 * here in the read case.
1973			 */
1974			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1975				vfs_page_set_valid(bp, foff, i, m);
1976			}
1977			vm_page_flag_clear(m, PG_ZERO);
1978
1979			/*
1980			 * when debugging new filesystems or buffer I/O methods, this
1981			 * is the most common error that pops up.  if you see this, you
1982			 * have not set the page busy flag correctly!!!
1983			 */
1984			if (m->busy == 0) {
1985#if !defined(MAX_PERF)
1986				printf("biodone: page busy < 0, "
1987				    "pindex: %d, foff: 0x(%x,%x), "
1988				    "resid: %d, index: %d\n",
1989				    (int) m->pindex, (int)(foff >> 32),
1990						(int) foff & 0xffffffff, resid, i);
1991#endif
1992				if (vp->v_type != VBLK)
1993#if !defined(MAX_PERF)
1994					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1995					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1996					    (int) bp->b_lblkno,
1997					    bp->b_flags, bp->b_npages);
1998				else
1999					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
2000					    (int) bp->b_lblkno,
2001					    bp->b_flags, bp->b_npages);
2002				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
2003				    m->valid, m->dirty, m->wire_count);
2004#endif
2005				panic("biodone: page busy < 0\n");
2006			}
2007			vm_page_io_finish(m);
2008			vm_object_pip_subtract(obj, 1);
2009			foff += resid;
2010			iosize -= resid;
2011		}
2012		if (obj &&
2013			(obj->paging_in_progress == 0) &&
2014		    (obj->flags & OBJ_PIPWNT)) {
2015			vm_object_clear_flag(obj, OBJ_PIPWNT);
2016			wakeup(obj);
2017		}
2018	}
2019	/*
2020	 * For asynchronous completions, release the buffer now. The brelse
2021	 * checks for B_WANTED and will do the wakeup there if necessary - so
2022	 * no need to do a wakeup here in the async case.
2023	 */
2024
2025	if (bp->b_flags & B_ASYNC) {
2026		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
2027			brelse(bp);
2028		else
2029			bqrelse(bp);
2030	} else {
2031		bp->b_flags &= ~B_WANTED;
2032		wakeup(bp);
2033	}
2034	splx(s);
2035}
2036
2037#if 0	/* not with kirks code */
2038static int vfs_update_interval = 30;
2039
2040static void
2041vfs_update()
2042{
2043	while (1) {
2044		tsleep(&vfs_update_wakeup, PUSER, "update",
2045		    hz * vfs_update_interval);
2046		vfs_update_wakeup = 0;
2047		sync(curproc, NULL);
2048	}
2049}
2050
2051static int
2052sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
2053{
2054	int error = sysctl_handle_int(oidp,
2055		oidp->oid_arg1, oidp->oid_arg2, req);
2056	if (!error)
2057		wakeup(&vfs_update_wakeup);
2058	return error;
2059}
2060
2061SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
2062	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
2063
2064#endif
2065
2066
2067/*
2068 * This routine is called in lieu of iodone in the case of
2069 * incomplete I/O.  This keeps the busy status for pages
2070 * consistant.
2071 */
2072void
2073vfs_unbusy_pages(struct buf * bp)
2074{
2075	int i;
2076
2077	if (bp->b_flags & B_VMIO) {
2078		struct vnode *vp = bp->b_vp;
2079		vm_object_t obj = vp->v_object;
2080
2081		for (i = 0; i < bp->b_npages; i++) {
2082			vm_page_t m = bp->b_pages[i];
2083
2084			if (m == bogus_page) {
2085				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
2086#if !defined(MAX_PERF)
2087				if (!m) {
2088					panic("vfs_unbusy_pages: page missing\n");
2089				}
2090#endif
2091				bp->b_pages[i] = m;
2092				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2093			}
2094			vm_object_pip_subtract(obj, 1);
2095			vm_page_flag_clear(m, PG_ZERO);
2096			vm_page_io_finish(m);
2097		}
2098		if (obj->paging_in_progress == 0 &&
2099		    (obj->flags & OBJ_PIPWNT)) {
2100			vm_object_clear_flag(obj, OBJ_PIPWNT);
2101			wakeup(obj);
2102		}
2103	}
2104}
2105
2106/*
2107 * Set NFS' b_validoff and b_validend fields from the valid bits
2108 * of a page.  If the consumer is not NFS, and the page is not
2109 * valid for the entire range, clear the B_CACHE flag to force
2110 * the consumer to re-read the page.
2111 */
2112static void
2113vfs_buf_set_valid(struct buf *bp,
2114		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
2115		  vm_page_t m)
2116{
2117	if (bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK) {
2118		vm_offset_t svalid, evalid;
2119		int validbits = m->valid >> (((foff+off)&PAGE_MASK)/DEV_BSIZE);
2120
2121		/*
2122		 * This only bothers with the first valid range in the
2123		 * page.
2124		 */
2125		svalid = off;
2126		while (validbits && !(validbits & 1)) {
2127			svalid += DEV_BSIZE;
2128			validbits >>= 1;
2129		}
2130		evalid = svalid;
2131		while (validbits & 1) {
2132			evalid += DEV_BSIZE;
2133			validbits >>= 1;
2134		}
2135		evalid = min(evalid, off + size);
2136		/*
2137		 * Make sure this range is contiguous with the range
2138		 * built up from previous pages.  If not, then we will
2139		 * just use the range from the previous pages.
2140		 */
2141		if (svalid == bp->b_validend) {
2142			bp->b_validoff = min(bp->b_validoff, svalid);
2143			bp->b_validend = max(bp->b_validend, evalid);
2144		}
2145	} else if (!vm_page_is_valid(m,
2146				     (vm_offset_t) ((foff + off) & PAGE_MASK),
2147				     size)) {
2148		bp->b_flags &= ~B_CACHE;
2149	}
2150}
2151
2152/*
2153 * Set the valid bits in a page, taking care of the b_validoff,
2154 * b_validend fields which NFS uses to optimise small reads.  Off is
2155 * the offset within the file and pageno is the page index within the buf.
2156 */
2157static void
2158vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2159{
2160	struct vnode *vp = bp->b_vp;
2161	vm_ooffset_t soff, eoff;
2162
2163	soff = off;
2164	eoff = (off + PAGE_SIZE) & ~PAGE_MASK;
2165	if (eoff > bp->b_offset + bp->b_bufsize)
2166		eoff = bp->b_offset + bp->b_bufsize;
2167	if (vp->v_tag == VT_NFS && vp->v_type != VBLK) {
2168		vm_ooffset_t sv, ev;
2169		vm_page_set_invalid(m,
2170		    (vm_offset_t) (soff & PAGE_MASK),
2171		    (vm_offset_t) (eoff - soff));
2172		sv = (bp->b_offset + bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2173		ev = (bp->b_offset + bp->b_validend) & ~(DEV_BSIZE - 1);
2174		soff = qmax(sv, soff);
2175		eoff = qmin(ev, eoff);
2176	}
2177	if (eoff > soff)
2178		vm_page_set_validclean(m,
2179	       (vm_offset_t) (soff & PAGE_MASK),
2180	       (vm_offset_t) (eoff - soff));
2181}
2182
2183/*
2184 * This routine is called before a device strategy routine.
2185 * It is used to tell the VM system that paging I/O is in
2186 * progress, and treat the pages associated with the buffer
2187 * almost as being PG_BUSY.  Also the object paging_in_progress
2188 * flag is handled to make sure that the object doesn't become
2189 * inconsistant.
2190 */
2191void
2192vfs_busy_pages(struct buf * bp, int clear_modify)
2193{
2194	int i, bogus;
2195
2196	if (bp->b_flags & B_VMIO) {
2197		struct vnode *vp = bp->b_vp;
2198		vm_object_t obj = vp->v_object;
2199		vm_ooffset_t foff;
2200
2201		foff = bp->b_offset;
2202		KASSERT(bp->b_offset != NOOFFSET,
2203			("vfs_busy_pages: no buffer offset"));
2204
2205		vfs_setdirty(bp);
2206
2207retry:
2208		for (i = 0; i < bp->b_npages; i++) {
2209			vm_page_t m = bp->b_pages[i];
2210			if (vm_page_sleep(m, "vbpage", NULL))
2211				goto retry;
2212		}
2213
2214		bogus = 0;
2215		for (i = 0; i < bp->b_npages; i++) {
2216			vm_page_t m = bp->b_pages[i];
2217
2218			vm_page_flag_clear(m, PG_ZERO);
2219			if ((bp->b_flags & B_CLUSTER) == 0) {
2220				vm_object_pip_add(obj, 1);
2221				vm_page_io_start(m);
2222			}
2223
2224			vm_page_protect(m, VM_PROT_NONE);
2225			if (clear_modify)
2226				vfs_page_set_valid(bp, foff, i, m);
2227			else if (m->valid == VM_PAGE_BITS_ALL &&
2228				(bp->b_flags & B_CACHE) == 0) {
2229				bp->b_pages[i] = bogus_page;
2230				bogus++;
2231			}
2232			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2233		}
2234		if (bogus)
2235			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
2236	}
2237}
2238
2239/*
2240 * Tell the VM system that the pages associated with this buffer
2241 * are clean.  This is used for delayed writes where the data is
2242 * going to go to disk eventually without additional VM intevention.
2243 */
2244void
2245vfs_clean_pages(struct buf * bp)
2246{
2247	int i;
2248
2249	if (bp->b_flags & B_VMIO) {
2250		vm_ooffset_t foff;
2251		foff = bp->b_offset;
2252
2253		KASSERT(bp->b_offset != NOOFFSET,
2254			("vfs_clean_pages: no buffer offset"));
2255
2256		for (i = 0; i < bp->b_npages; i++) {
2257			vm_page_t m = bp->b_pages[i];
2258			vfs_page_set_valid(bp, foff, i, m);
2259			foff = (foff + PAGE_SIZE) & ~PAGE_MASK;
2260		}
2261	}
2262}
2263
2264void
2265vfs_bio_clrbuf(struct buf *bp) {
2266	int i, size, mask = 0;
2267	caddr_t sa, ea;
2268	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
2269		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
2270		    (bp->b_offset & PAGE_MASK) == 0) {
2271			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
2272			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
2273			    ((bp->b_pages[0]->valid & mask) != mask)) {
2274				bzero(bp->b_data, bp->b_bufsize);
2275			}
2276			bp->b_pages[0]->valid |= mask;
2277			bp->b_resid = 0;
2278			return;
2279		}
2280		ea = sa = bp->b_data;
2281		for(i=0;i<bp->b_npages;i++,sa=ea) {
2282			int j = ((u_long)sa & PAGE_MASK) / DEV_BSIZE;
2283			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
2284			ea = (caddr_t)ulmin((u_long)ea,
2285				(u_long)bp->b_data + bp->b_bufsize);
2286			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
2287			if ((bp->b_pages[i]->valid & mask) == mask)
2288				continue;
2289			if ((bp->b_pages[i]->valid & mask) == 0) {
2290				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2291					bzero(sa, ea - sa);
2292				}
2293			} else {
2294				for (; sa < ea; sa += DEV_BSIZE, j++) {
2295					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
2296						(bp->b_pages[i]->valid & (1<<j)) == 0)
2297						bzero(sa, DEV_BSIZE);
2298				}
2299			}
2300			bp->b_pages[i]->valid |= mask;
2301			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2302		}
2303		bp->b_resid = 0;
2304	} else {
2305		clrbuf(bp);
2306	}
2307}
2308
2309/*
2310 * vm_hold_load_pages and vm_hold_unload pages get pages into
2311 * a buffers address space.  The pages are anonymous and are
2312 * not associated with a file object.
2313 */
2314void
2315vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2316{
2317	vm_offset_t pg;
2318	vm_page_t p;
2319	int index;
2320
2321	to = round_page(to);
2322	from = round_page(from);
2323	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
2324
2325	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2326
2327tryagain:
2328
2329		p = vm_page_alloc(kernel_object,
2330			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
2331		    VM_ALLOC_NORMAL);
2332		if (!p) {
2333			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
2334			VM_WAIT;
2335			goto tryagain;
2336		}
2337		vm_page_wire(p);
2338		p->valid = VM_PAGE_BITS_ALL;
2339		vm_page_flag_clear(p, PG_ZERO);
2340		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
2341		bp->b_pages[index] = p;
2342		vm_page_wakeup(p);
2343	}
2344	bp->b_npages = index;
2345}
2346
2347void
2348vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2349{
2350	vm_offset_t pg;
2351	vm_page_t p;
2352	int index, newnpages;
2353
2354	from = round_page(from);
2355	to = round_page(to);
2356	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
2357
2358	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2359		p = bp->b_pages[index];
2360		if (p && (index < bp->b_npages)) {
2361#if !defined(MAX_PERF)
2362			if (p->busy) {
2363				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2364					bp->b_blkno, bp->b_lblkno);
2365			}
2366#endif
2367			bp->b_pages[index] = NULL;
2368			pmap_kremove(pg);
2369			vm_page_busy(p);
2370			vm_page_unwire(p, 0);
2371			vm_page_free(p);
2372		}
2373	}
2374	bp->b_npages = newnpages;
2375}
2376
2377
2378#include "opt_ddb.h"
2379#ifdef DDB
2380#include <ddb/ddb.h>
2381
2382DB_SHOW_COMMAND(buffer, db_show_buffer)
2383{
2384	/* get args */
2385	struct buf *bp = (struct buf *)addr;
2386
2387	if (!have_addr) {
2388		db_printf("usage: show buffer <addr>\n");
2389		return;
2390	}
2391
2392	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2393		  (u_int)bp->b_flags, PRINT_BUF_FLAGS);
2394	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2395		  "b_resid = %ld\nb_dev = 0x%x, b_data = %p, "
2396		  "b_blkno = %d, b_pblkno = %d\n",
2397		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2398		  bp->b_dev, bp->b_data, bp->b_blkno, bp->b_pblkno);
2399	if (bp->b_npages) {
2400		int i;
2401		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
2402		for (i = 0; i < bp->b_npages; i++) {
2403			vm_page_t m;
2404			m = bp->b_pages[i];
2405			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
2406			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
2407			if ((i + 1) < bp->b_npages)
2408				db_printf(",");
2409		}
2410		db_printf("\n");
2411	}
2412}
2413#endif /* DDB */
2414