vfs_bio.c revision 34206
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 *
14 * $Id: vfs_bio.c,v 1.153 1998/03/04 03:17:30 dyson Exp $
15 */
16
17/*
18 * this file contains a new buffer I/O scheme implementing a coherent
19 * VM object and buffer cache scheme.  Pains have been taken to make
20 * sure that the performance degradation associated with schemes such
21 * as this is not realized.
22 *
23 * Author:  John S. Dyson
24 * Significant help during the development and debugging phases
25 * had been provided by David Greenman, also of the FreeBSD core team.
26 */
27
28#include "opt_bounce.h"
29
30#define VMIO
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/sysproto.h>
34#include <sys/kernel.h>
35#include <sys/sysctl.h>
36#include <sys/proc.h>
37#include <sys/vnode.h>
38#include <sys/vmmeter.h>
39#include <sys/lock.h>
40#include <vm/vm.h>
41#include <vm/vm_param.h>
42#include <vm/vm_prot.h>
43#include <vm/vm_kern.h>
44#include <vm/vm_pageout.h>
45#include <vm/vm_page.h>
46#include <vm/vm_object.h>
47#include <vm/vm_extern.h>
48#include <vm/vm_map.h>
49#include <sys/buf.h>
50#include <sys/mount.h>
51#include <sys/malloc.h>
52#include <sys/resourcevar.h>
53
54static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
55
56static void vfs_update __P((void));
57static struct	proc *updateproc;
58static struct kproc_desc up_kp = {
59	"update",
60	vfs_update,
61	&updateproc
62};
63SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
64
65struct buf *buf;		/* buffer header pool */
66struct swqueue bswlist;
67
68static int count_lock_queue __P((void));
69static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
70		vm_offset_t to);
71static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
72		vm_offset_t to);
73static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
74			      vm_offset_t off, vm_offset_t size,
75			      vm_page_t m);
76static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
77			       int pageno, vm_page_t m);
78static void vfs_clean_pages(struct buf * bp);
79static void vfs_setdirty(struct buf *bp);
80static void vfs_vmio_release(struct buf *bp);
81static void flushdirtybuffers(int slpflag, int slptimeo);
82
83int needsbuffer;
84
85/*
86 * Internal update daemon, process 3
87 *	The variable vfs_update_wakeup allows for internal syncs.
88 */
89int vfs_update_wakeup;
90
91
92/*
93 * buffers base kva
94 */
95
96/*
97 * bogus page -- for I/O to/from partially complete buffers
98 * this is a temporary solution to the problem, but it is not
99 * really that bad.  it would be better to split the buffer
100 * for input in the case of buffers partially already in memory,
101 * but the code is intricate enough already.
102 */
103vm_page_t bogus_page;
104static vm_offset_t bogus_offset;
105
106static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
107	bufmallocspace, maxbufmallocspace;
108int numdirtybuffers;
109static int lodirtybuffers, hidirtybuffers;
110static int numfreebuffers, lofreebuffers, hifreebuffers;
111static int kvafreespace;
112
113SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
114	&numdirtybuffers, 0, "");
115SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
116	&lodirtybuffers, 0, "");
117SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
118	&hidirtybuffers, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
120	&numfreebuffers, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
122	&lofreebuffers, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
124	&hifreebuffers, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
126	&maxbufspace, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
128	&bufspace, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
130	&maxvmiobufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
132	&vmiospace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
134	&maxbufmallocspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
136	&bufmallocspace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, kvafreespace, CTLFLAG_RD,
138	&kvafreespace, 0, "");
139
140static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
141struct bqueues bufqueues[BUFFER_QUEUES] = {0};
142
143extern int vm_swap_size;
144
145#define BUF_MAXUSE 24
146
147#define VFS_BIO_NEED_ANY 1
148#define VFS_BIO_NEED_LOWLIMIT 2
149#define VFS_BIO_NEED_FREE 4
150
151/*
152 * Initialize buffer headers and related structures.
153 */
154void
155bufinit()
156{
157	struct buf *bp;
158	int i;
159
160	TAILQ_INIT(&bswlist);
161	LIST_INIT(&invalhash);
162
163	/* first, make a null hash table */
164	for (i = 0; i < BUFHSZ; i++)
165		LIST_INIT(&bufhashtbl[i]);
166
167	/* next, make a null set of free lists */
168	for (i = 0; i < BUFFER_QUEUES; i++)
169		TAILQ_INIT(&bufqueues[i]);
170
171	/* finally, initialize each buffer header and stick on empty q */
172	for (i = 0; i < nbuf; i++) {
173		bp = &buf[i];
174		bzero(bp, sizeof *bp);
175		bp->b_flags = B_INVAL;	/* we're just an empty header */
176		bp->b_dev = NODEV;
177		bp->b_rcred = NOCRED;
178		bp->b_wcred = NOCRED;
179		bp->b_qindex = QUEUE_EMPTY;
180		bp->b_vnbufs.le_next = NOLIST;
181		bp->b_generation = 0;
182		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
183		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
184	}
185/*
186 * maxbufspace is currently calculated to support all filesystem blocks
187 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
188 * cache is still the same as it would be for 8K filesystems.  This
189 * keeps the size of the buffer cache "in check" for big block filesystems.
190 */
191	maxbufspace = (nbuf + 8) * DFLTBSIZE;
192/*
193 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
194 */
195	maxvmiobufspace = 2 * maxbufspace / 3;
196/*
197 * Limit the amount of malloc memory since it is wired permanently into
198 * the kernel space.  Even though this is accounted for in the buffer
199 * allocation, we don't want the malloced region to grow uncontrolled.
200 * The malloc scheme improves memory utilization significantly on average
201 * (small) directories.
202 */
203	maxbufmallocspace = maxbufspace / 20;
204
205/*
206 * Remove the probability of deadlock conditions by limiting the
207 * number of dirty buffers.
208 */
209	hidirtybuffers = nbuf / 8 + 20;
210	lodirtybuffers = nbuf / 16 + 10;
211	numdirtybuffers = 0;
212	lofreebuffers = nbuf / 18 + 5;
213	hifreebuffers = 2 * lofreebuffers;
214	numfreebuffers = nbuf;
215	kvafreespace = 0;
216
217	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
218	bogus_page = vm_page_alloc(kernel_object,
219			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
220			VM_ALLOC_NORMAL);
221
222}
223
224/*
225 * Free the kva allocation for a buffer
226 * Must be called only at splbio or higher,
227 *  as this is the only locking for buffer_map.
228 */
229static void
230bfreekva(struct buf * bp)
231{
232	if (bp->b_kvasize == 0)
233		return;
234
235	vm_map_delete(buffer_map,
236		(vm_offset_t) bp->b_kvabase,
237		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
238
239	bp->b_kvasize = 0;
240
241}
242
243/*
244 * remove the buffer from the appropriate free list
245 */
246void
247bremfree(struct buf * bp)
248{
249	int s = splbio();
250
251	if (bp->b_qindex != QUEUE_NONE) {
252		if (bp->b_qindex == QUEUE_EMPTY) {
253			kvafreespace -= bp->b_kvasize;
254		}
255		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
256		bp->b_qindex = QUEUE_NONE;
257	} else {
258#if !defined(MAX_PERF)
259		panic("bremfree: removing a buffer when not on a queue");
260#endif
261	}
262	if ((bp->b_flags & B_INVAL) ||
263		(bp->b_flags & (B_DELWRI|B_LOCKED)) == 0)
264		--numfreebuffers;
265	splx(s);
266}
267
268
269/*
270 * Get a buffer with the specified data.  Look in the cache first.
271 */
272int
273bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
274    struct buf ** bpp)
275{
276	struct buf *bp;
277
278	bp = getblk(vp, blkno, size, 0, 0);
279	*bpp = bp;
280
281	/* if not found in cache, do some I/O */
282	if ((bp->b_flags & B_CACHE) == 0) {
283		if (curproc != NULL)
284			curproc->p_stats->p_ru.ru_inblock++;
285		bp->b_flags |= B_READ;
286		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
287		if (bp->b_rcred == NOCRED) {
288			if (cred != NOCRED)
289				crhold(cred);
290			bp->b_rcred = cred;
291		}
292		vfs_busy_pages(bp, 0);
293		VOP_STRATEGY(bp);
294		return (biowait(bp));
295	}
296	return (0);
297}
298
299/*
300 * Operates like bread, but also starts asynchronous I/O on
301 * read-ahead blocks.
302 */
303int
304breadn(struct vnode * vp, daddr_t blkno, int size,
305    daddr_t * rablkno, int *rabsize,
306    int cnt, struct ucred * cred, struct buf ** bpp)
307{
308	struct buf *bp, *rabp;
309	int i;
310	int rv = 0, readwait = 0;
311
312	*bpp = bp = getblk(vp, blkno, size, 0, 0);
313
314	/* if not found in cache, do some I/O */
315	if ((bp->b_flags & B_CACHE) == 0) {
316		if (curproc != NULL)
317			curproc->p_stats->p_ru.ru_inblock++;
318		bp->b_flags |= B_READ;
319		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
320		if (bp->b_rcred == NOCRED) {
321			if (cred != NOCRED)
322				crhold(cred);
323			bp->b_rcred = cred;
324		}
325		vfs_busy_pages(bp, 0);
326		VOP_STRATEGY(bp);
327		++readwait;
328	}
329	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
330		if (inmem(vp, *rablkno))
331			continue;
332		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
333
334		if ((rabp->b_flags & B_CACHE) == 0) {
335			if (curproc != NULL)
336				curproc->p_stats->p_ru.ru_inblock++;
337			rabp->b_flags |= B_READ | B_ASYNC;
338			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
339			if (rabp->b_rcred == NOCRED) {
340				if (cred != NOCRED)
341					crhold(cred);
342				rabp->b_rcred = cred;
343			}
344			vfs_busy_pages(rabp, 0);
345			VOP_STRATEGY(rabp);
346		} else {
347			brelse(rabp);
348		}
349	}
350
351	if (readwait) {
352		rv = biowait(bp);
353	}
354	return (rv);
355}
356
357/*
358 * Write, release buffer on completion.  (Done by iodone
359 * if async.)
360 */
361int
362bwrite(struct buf * bp)
363{
364	int oldflags = bp->b_flags;
365
366	if (bp->b_flags & B_INVAL) {
367		brelse(bp);
368		return (0);
369	}
370#if !defined(MAX_PERF)
371	if (!(bp->b_flags & B_BUSY))
372		panic("bwrite: buffer is not busy???");
373#endif
374
375	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
376	bp->b_flags |= B_WRITEINPROG;
377
378	if ((oldflags & B_DELWRI) == B_DELWRI) {
379		--numdirtybuffers;
380		reassignbuf(bp, bp->b_vp);
381	}
382
383	bp->b_vp->v_numoutput++;
384	vfs_busy_pages(bp, 1);
385	if (curproc != NULL)
386		curproc->p_stats->p_ru.ru_oublock++;
387	VOP_STRATEGY(bp);
388
389	if ((oldflags & B_ASYNC) == 0) {
390		int rtval = biowait(bp);
391
392		if (oldflags & B_DELWRI) {
393			reassignbuf(bp, bp->b_vp);
394		}
395		brelse(bp);
396		return (rtval);
397	}
398	return (0);
399}
400
401inline void
402vfs_bio_need_satisfy(void) {
403	++numfreebuffers;
404	if (!needsbuffer)
405		return;
406	if (numdirtybuffers < lodirtybuffers) {
407		needsbuffer &= ~(VFS_BIO_NEED_ANY | VFS_BIO_NEED_LOWLIMIT);
408	} else {
409		needsbuffer &= ~VFS_BIO_NEED_ANY;
410	}
411	if (numfreebuffers >= hifreebuffers) {
412		needsbuffer &= ~VFS_BIO_NEED_FREE;
413	}
414	wakeup(&needsbuffer);
415}
416
417/*
418 * Delayed write. (Buffer is marked dirty).
419 */
420void
421bdwrite(struct buf * bp)
422{
423
424#if !defined(MAX_PERF)
425	if ((bp->b_flags & B_BUSY) == 0) {
426		panic("bdwrite: buffer is not busy");
427	}
428#endif
429
430	if (bp->b_flags & B_INVAL) {
431		brelse(bp);
432		return;
433	}
434	if (bp->b_flags & B_TAPE) {
435		bawrite(bp);
436		return;
437	}
438	bp->b_flags &= ~(B_READ|B_RELBUF);
439	if ((bp->b_flags & B_DELWRI) == 0) {
440		bp->b_flags |= B_DONE | B_DELWRI;
441		reassignbuf(bp, bp->b_vp);
442		++numdirtybuffers;
443	}
444
445	/*
446	 * This bmap keeps the system from needing to do the bmap later,
447	 * perhaps when the system is attempting to do a sync.  Since it
448	 * is likely that the indirect block -- or whatever other datastructure
449	 * that the filesystem needs is still in memory now, it is a good
450	 * thing to do this.  Note also, that if the pageout daemon is
451	 * requesting a sync -- there might not be enough memory to do
452	 * the bmap then...  So, this is important to do.
453	 */
454	if (bp->b_lblkno == bp->b_blkno) {
455		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
456	}
457
458	/*
459	 * Set the *dirty* buffer range based upon the VM system dirty pages.
460	 */
461	vfs_setdirty(bp);
462
463	/*
464	 * We need to do this here to satisfy the vnode_pager and the
465	 * pageout daemon, so that it thinks that the pages have been
466	 * "cleaned".  Note that since the pages are in a delayed write
467	 * buffer -- the VFS layer "will" see that the pages get written
468	 * out on the next sync, or perhaps the cluster will be completed.
469	 */
470	vfs_clean_pages(bp);
471	bqrelse(bp);
472
473	if (numdirtybuffers >= hidirtybuffers)
474		flushdirtybuffers(0, 0);
475
476	return;
477}
478
479/*
480 * Asynchronous write.
481 * Start output on a buffer, but do not wait for it to complete.
482 * The buffer is released when the output completes.
483 */
484void
485bawrite(struct buf * bp)
486{
487	bp->b_flags |= B_ASYNC;
488	(void) VOP_BWRITE(bp);
489}
490
491/*
492 * Ordered write.
493 * Start output on a buffer, but only wait for it to complete if the
494 * output device cannot guarantee ordering in some other way.  Devices
495 * that can perform asynchronous ordered writes will set the B_ASYNC
496 * flag in their strategy routine.
497 * The buffer is released when the output completes.
498 */
499int
500bowrite(struct buf * bp)
501{
502	/*
503	 * XXX Add in B_ASYNC once the SCSI
504	 *     layer can deal with ordered
505	 *     writes properly.
506	 */
507	bp->b_flags |= B_ORDERED;
508	return (VOP_BWRITE(bp));
509}
510
511/*
512 * Release a buffer.
513 */
514void
515brelse(struct buf * bp)
516{
517	int s;
518
519	if (bp->b_flags & B_CLUSTER) {
520		relpbuf(bp);
521		return;
522	}
523
524	s = splbio();
525
526	/* anyone need this block? */
527	if (bp->b_flags & B_WANTED) {
528		bp->b_flags &= ~(B_WANTED | B_AGE);
529		wakeup(bp);
530	}
531
532	if (bp->b_flags & B_LOCKED)
533		bp->b_flags &= ~B_ERROR;
534
535	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
536	    (bp->b_bufsize <= 0)) {
537		bp->b_flags |= B_INVAL;
538		if (bp->b_flags & B_DELWRI)
539			--numdirtybuffers;
540		bp->b_flags &= ~(B_DELWRI | B_CACHE);
541		if ((bp->b_flags & B_VMIO) == 0) {
542			if (bp->b_bufsize)
543				allocbuf(bp, 0);
544			if (bp->b_vp)
545				brelvp(bp);
546		}
547	}
548
549	/*
550	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
551	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
552	 * but the VM object is kept around.  The B_NOCACHE flag is used to
553	 * invalidate the pages in the VM object.
554	 *
555	 * If the buffer is a partially filled NFS buffer, keep it
556	 * since invalidating it now will lose informatio.  The valid
557	 * flags in the vm_pages have only DEV_BSIZE resolution but
558	 * the b_validoff, b_validend fields have byte resolution.
559	 * This can avoid unnecessary re-reads of the buffer.
560	 * XXX this seems to cause performance problems.
561	 */
562	if ((bp->b_flags & B_VMIO)
563	    && !(bp->b_vp->v_tag == VT_NFS &&
564		 bp->b_vp->v_type != VBLK &&
565		 (bp->b_flags & B_DELWRI) != 0)
566#ifdef notdef
567	    && (bp->b_vp->v_tag != VT_NFS
568		|| bp->b_vp->v_type == VBLK
569		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
570		|| bp->b_validend == 0
571		|| (bp->b_validoff == 0
572		    && bp->b_validend == bp->b_bufsize))
573#endif
574	    ) {
575
576		int i, j, resid;
577		vm_page_t m;
578		off_t foff;
579		vm_pindex_t poff;
580		vm_object_t obj;
581		struct vnode *vp;
582		int blksize;
583
584		vp = bp->b_vp;
585
586		if (vp->v_type == VBLK)
587			blksize = DEV_BSIZE;
588		else
589			blksize = vp->v_mount->mnt_stat.f_iosize;
590
591		resid = bp->b_bufsize;
592		foff = -1LL;
593
594		for (i = 0; i < bp->b_npages; i++) {
595			m = bp->b_pages[i];
596			if (m == bogus_page) {
597
598				obj = (vm_object_t) vp->v_object;
599
600				foff = (off_t) bp->b_lblkno * blksize;
601				poff = OFF_TO_IDX(foff);
602
603				for (j = i; j < bp->b_npages; j++) {
604					m = bp->b_pages[j];
605					if (m == bogus_page) {
606						m = vm_page_lookup(obj, poff + j);
607#if !defined(MAX_PERF)
608						if (!m) {
609							panic("brelse: page missing\n");
610						}
611#endif
612						bp->b_pages[j] = m;
613					}
614				}
615
616				if ((bp->b_flags & B_INVAL) == 0) {
617					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
618				}
619				break;
620			}
621			if (bp->b_flags & (B_NOCACHE|B_ERROR)) {
622				if ((blksize & PAGE_MASK) == 0) {
623					vm_page_set_invalid(m, 0, resid);
624				} else {
625					if (foff == -1LL)
626						foff = (off_t) bp->b_lblkno * blksize;
627					vm_page_set_invalid(m, (vm_offset_t) foff, resid);
628				}
629			}
630			resid -= PAGE_SIZE;
631		}
632
633		if (bp->b_flags & (B_INVAL | B_RELBUF))
634			vfs_vmio_release(bp);
635
636	} else if (bp->b_flags & B_VMIO) {
637
638		if (bp->b_flags & (B_INVAL | B_RELBUF))
639			vfs_vmio_release(bp);
640
641	}
642
643#if !defined(MAX_PERF)
644	if (bp->b_qindex != QUEUE_NONE)
645		panic("brelse: free buffer onto another queue???");
646#endif
647
648	/* enqueue */
649	/* buffers with no memory */
650	if (bp->b_bufsize == 0) {
651		bp->b_flags |= B_INVAL;
652		bp->b_qindex = QUEUE_EMPTY;
653		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
654		LIST_REMOVE(bp, b_hash);
655		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
656		bp->b_dev = NODEV;
657		kvafreespace += bp->b_kvasize;
658		bp->b_generation++;
659
660	/* buffers with junk contents */
661	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
662		bp->b_flags |= B_INVAL;
663		bp->b_qindex = QUEUE_AGE;
664		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
665		LIST_REMOVE(bp, b_hash);
666		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
667		bp->b_dev = NODEV;
668		bp->b_generation++;
669
670	/* buffers that are locked */
671	} else if (bp->b_flags & B_LOCKED) {
672		bp->b_qindex = QUEUE_LOCKED;
673		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
674
675	/* buffers with stale but valid contents */
676	} else if (bp->b_flags & B_AGE) {
677		bp->b_qindex = QUEUE_AGE;
678		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
679
680	/* buffers with valid and quite potentially reuseable contents */
681	} else {
682		bp->b_qindex = QUEUE_LRU;
683		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
684	}
685
686	if ((bp->b_flags & B_INVAL) ||
687		(bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
688		if (bp->b_flags & B_DELWRI) {
689			--numdirtybuffers;
690			bp->b_flags &= ~B_DELWRI;
691		}
692		vfs_bio_need_satisfy();
693	}
694
695	/* unlock */
696	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
697				B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
698	splx(s);
699}
700
701/*
702 * Release a buffer.
703 */
704void
705bqrelse(struct buf * bp)
706{
707	int s;
708
709	s = splbio();
710
711	/* anyone need this block? */
712	if (bp->b_flags & B_WANTED) {
713		bp->b_flags &= ~(B_WANTED | B_AGE);
714		wakeup(bp);
715	}
716
717#if !defined(MAX_PERF)
718	if (bp->b_qindex != QUEUE_NONE)
719		panic("bqrelse: free buffer onto another queue???");
720#endif
721
722	if (bp->b_flags & B_LOCKED) {
723		bp->b_flags &= ~B_ERROR;
724		bp->b_qindex = QUEUE_LOCKED;
725		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
726		/* buffers with stale but valid contents */
727	} else {
728		bp->b_qindex = QUEUE_LRU;
729		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
730	}
731
732	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
733		vfs_bio_need_satisfy();
734	}
735
736	/* unlock */
737	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
738		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
739	splx(s);
740}
741
742static void
743vfs_vmio_release(bp)
744	struct buf *bp;
745{
746	int i;
747	vm_page_t m;
748
749	for (i = 0; i < bp->b_npages; i++) {
750		m = bp->b_pages[i];
751		bp->b_pages[i] = NULL;
752		vm_page_unwire(m);
753
754		/*
755		 * We don't mess with busy pages, it is
756		 * the responsibility of the process that
757		 * busied the pages to deal with them.
758		 */
759		if ((m->flags & PG_BUSY) || (m->busy != 0))
760			continue;
761
762		if (m->wire_count == 0) {
763
764			/*
765			 * If this is an async free -- we cannot place
766			 * pages onto the cache queue.  If it is an
767			 * async free, then we don't modify any queues.
768			 * This is probably in error (for perf reasons),
769			 * and we will eventually need to build
770			 * a more complete infrastructure to support I/O
771			 * rundown.
772			 */
773			if ((bp->b_flags & B_ASYNC) == 0) {
774
775			/*
776			 * In the case of sync buffer frees, we can do pretty much
777			 * anything to any of the memory queues.  Specifically,
778			 * the cache queue is okay to be modified.
779			 */
780				if (m->valid) {
781					if(m->dirty == 0)
782						vm_page_test_dirty(m);
783					/*
784					 * this keeps pressure off of the process memory
785					 */
786					if (m->dirty == 0 && m->hold_count == 0)
787						vm_page_cache(m);
788					else
789						vm_page_deactivate(m);
790				} else if (m->hold_count == 0) {
791					m->flags |= PG_BUSY;
792					vm_page_protect(m, VM_PROT_NONE);
793					vm_page_free(m);
794				}
795			} else {
796				/*
797				 * If async, then at least we clear the
798				 * act_count.
799				 */
800				m->act_count = 0;
801			}
802		}
803	}
804	bufspace -= bp->b_bufsize;
805	vmiospace -= bp->b_bufsize;
806	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
807	bp->b_npages = 0;
808	bp->b_bufsize = 0;
809	bp->b_flags &= ~B_VMIO;
810	if (bp->b_vp)
811		brelvp(bp);
812}
813
814/*
815 * Check to see if a block is currently memory resident.
816 */
817struct buf *
818gbincore(struct vnode * vp, daddr_t blkno)
819{
820	struct buf *bp;
821	struct bufhashhdr *bh;
822
823	bh = BUFHASH(vp, blkno);
824	bp = bh->lh_first;
825
826	/* Search hash chain */
827	while (bp != NULL) {
828		/* hit */
829		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
830		    (bp->b_flags & B_INVAL) == 0) {
831			break;
832		}
833		bp = bp->b_hash.le_next;
834	}
835	return (bp);
836}
837
838/*
839 * this routine implements clustered async writes for
840 * clearing out B_DELWRI buffers...  This is much better
841 * than the old way of writing only one buffer at a time.
842 */
843int
844vfs_bio_awrite(struct buf * bp)
845{
846	int i;
847	daddr_t lblkno = bp->b_lblkno;
848	struct vnode *vp = bp->b_vp;
849	int s;
850	int ncl;
851	struct buf *bpa;
852	int nwritten;
853	int size;
854	int maxcl;
855
856	s = splbio();
857	/*
858	 * right now we support clustered writing only to regular files
859	 */
860	if ((vp->v_type == VREG) &&
861	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
862	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
863
864		size = vp->v_mount->mnt_stat.f_iosize;
865		maxcl = MAXPHYS / size;
866
867		for (i = 1; i < maxcl; i++) {
868			if ((bpa = gbincore(vp, lblkno + i)) &&
869			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
870			    (B_DELWRI | B_CLUSTEROK)) &&
871			    (bpa->b_bufsize == size)) {
872				if ((bpa->b_blkno == bpa->b_lblkno) ||
873				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
874					break;
875			} else {
876				break;
877			}
878		}
879		ncl = i;
880		/*
881		 * this is a possible cluster write
882		 */
883		if (ncl != 1) {
884			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
885			splx(s);
886			return nwritten;
887		}
888	}
889
890	bremfree(bp);
891	splx(s);
892	/*
893	 * default (old) behavior, writing out only one block
894	 */
895	bp->b_flags |= B_BUSY | B_ASYNC;
896	nwritten = bp->b_bufsize;
897	(void) VOP_BWRITE(bp);
898	return nwritten;
899}
900
901
902/*
903 * Find a buffer header which is available for use.
904 */
905static struct buf *
906getnewbuf(struct vnode *vp, daddr_t blkno,
907	int slpflag, int slptimeo, int size, int maxsize)
908{
909	struct buf *bp, *bp1;
910	int nbyteswritten = 0;
911	vm_offset_t addr;
912	static int writerecursion = 0;
913
914start:
915	if (bufspace >= maxbufspace)
916		goto trytofreespace;
917
918	/* can we constitute a new buffer? */
919	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
920#if !defined(MAX_PERF)
921		if (bp->b_qindex != QUEUE_EMPTY)
922			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
923			    bp->b_qindex);
924#endif
925		bp->b_flags |= B_BUSY;
926		bremfree(bp);
927		goto fillbuf;
928	}
929trytofreespace:
930	/*
931	 * We keep the file I/O from hogging metadata I/O
932	 * This is desirable because file data is cached in the
933	 * VM/Buffer cache even if a buffer is freed.
934	 */
935	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
936#if !defined(MAX_PERF)
937		if (bp->b_qindex != QUEUE_AGE)
938			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
939			    bp->b_qindex);
940#endif
941	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
942#if !defined(MAX_PERF)
943		if (bp->b_qindex != QUEUE_LRU)
944			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
945			    bp->b_qindex);
946#endif
947	}
948	if (!bp) {
949		/* wait for a free buffer of any kind */
950		needsbuffer |= VFS_BIO_NEED_ANY;
951		do
952			tsleep(&needsbuffer, (PRIBIO + 1) | slpflag, "newbuf",
953			    slptimeo);
954		while (needsbuffer & VFS_BIO_NEED_ANY);
955		return (0);
956	}
957
958#if defined(DIAGNOSTIC)
959	if (bp->b_flags & B_BUSY) {
960		panic("getnewbuf: busy buffer on free list\n");
961	}
962#endif
963
964	/*
965	 * We are fairly aggressive about freeing VMIO buffers, but since
966	 * the buffering is intact without buffer headers, there is not
967	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
968	 */
969	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
970		if ((bp->b_flags & B_VMIO) == 0 ||
971			(vmiospace < maxvmiobufspace)) {
972			--bp->b_usecount;
973			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
974			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
975				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
976				goto start;
977			}
978			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
979		}
980	}
981
982
983	/* if we are a delayed write, convert to an async write */
984	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
985
986		/*
987		 * If our delayed write is likely to be used soon, then
988		 * recycle back onto the LRU queue.
989		 */
990		if (vp && (bp->b_vp == vp) && (bp->b_qindex == QUEUE_LRU) &&
991			(bp->b_lblkno >= blkno) && (maxsize > 0)) {
992
993			if (bp->b_usecount > 0) {
994				if (bp->b_lblkno < blkno + (MAXPHYS / maxsize)) {
995
996					TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
997
998					if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
999						TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1000						bp->b_usecount--;
1001						goto start;
1002					}
1003					TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
1004				}
1005			}
1006		}
1007
1008		/*
1009		 * Certain layered filesystems can recursively re-enter the vfs_bio
1010		 * code, due to delayed writes.  This helps keep the system from
1011		 * deadlocking.
1012		 */
1013		if (writerecursion > 0) {
1014			bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1015			while (bp) {
1016				if ((bp->b_flags & B_DELWRI) == 0)
1017					break;
1018				bp = TAILQ_NEXT(bp, b_freelist);
1019			}
1020			if (bp == NULL) {
1021				bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1022				while (bp) {
1023					if ((bp->b_flags & B_DELWRI) == 0)
1024						break;
1025					bp = TAILQ_NEXT(bp, b_freelist);
1026				}
1027			}
1028			if (bp == NULL)
1029				panic("getnewbuf: cannot get buffer, infinite recursion failure");
1030		} else {
1031			++writerecursion;
1032			nbyteswritten += vfs_bio_awrite(bp);
1033			--writerecursion;
1034			if (!slpflag && !slptimeo) {
1035				return (0);
1036			}
1037			goto start;
1038		}
1039	}
1040
1041	if (bp->b_flags & B_WANTED) {
1042		bp->b_flags &= ~B_WANTED;
1043		wakeup(bp);
1044	}
1045	bremfree(bp);
1046	bp->b_flags |= B_BUSY;
1047
1048	if (bp->b_flags & B_VMIO) {
1049		bp->b_flags &= ~B_ASYNC;
1050		vfs_vmio_release(bp);
1051	}
1052
1053	if (bp->b_vp)
1054		brelvp(bp);
1055
1056fillbuf:
1057	bp->b_generation++;
1058
1059	/* we are not free, nor do we contain interesting data */
1060	if (bp->b_rcred != NOCRED) {
1061		crfree(bp->b_rcred);
1062		bp->b_rcred = NOCRED;
1063	}
1064	if (bp->b_wcred != NOCRED) {
1065		crfree(bp->b_wcred);
1066		bp->b_wcred = NOCRED;
1067	}
1068
1069	LIST_REMOVE(bp, b_hash);
1070	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1071	if (bp->b_bufsize) {
1072		allocbuf(bp, 0);
1073	}
1074	bp->b_flags = B_BUSY;
1075	bp->b_dev = NODEV;
1076	bp->b_vp = NULL;
1077	bp->b_blkno = bp->b_lblkno = 0;
1078	bp->b_iodone = 0;
1079	bp->b_error = 0;
1080	bp->b_resid = 0;
1081	bp->b_bcount = 0;
1082	bp->b_npages = 0;
1083	bp->b_dirtyoff = bp->b_dirtyend = 0;
1084	bp->b_validoff = bp->b_validend = 0;
1085	bp->b_usecount = 5;
1086
1087	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1088
1089	/*
1090	 * we assume that buffer_map is not at address 0
1091	 */
1092	addr = 0;
1093	if (maxsize != bp->b_kvasize) {
1094		bfreekva(bp);
1095
1096findkvaspace:
1097		/*
1098		 * See if we have buffer kva space
1099		 */
1100		if (vm_map_findspace(buffer_map,
1101			vm_map_min(buffer_map), maxsize, &addr)) {
1102			if (kvafreespace > 0) {
1103				int totfree = 0, freed;
1104				do {
1105					freed = 0;
1106					for (bp1 = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1107						bp1 != NULL; bp1 = TAILQ_NEXT(bp1, b_freelist)) {
1108						if (bp1->b_kvasize != 0) {
1109							totfree += bp1->b_kvasize;
1110							freed = bp1->b_kvasize;
1111							bremfree(bp1);
1112							bfreekva(bp1);
1113							brelse(bp1);
1114							break;
1115						}
1116					}
1117				} while (freed);
1118				/*
1119				 * if we found free space, then retry with the same buffer.
1120				 */
1121				if (totfree)
1122					goto findkvaspace;
1123			}
1124			bp->b_flags |= B_INVAL;
1125			brelse(bp);
1126			goto trytofreespace;
1127		}
1128	}
1129
1130	/*
1131	 * See if we are below are allocated minimum
1132	 */
1133	if (bufspace >= (maxbufspace + nbyteswritten)) {
1134		bp->b_flags |= B_INVAL;
1135		brelse(bp);
1136		goto trytofreespace;
1137	}
1138
1139	/*
1140	 * create a map entry for the buffer -- in essence
1141	 * reserving the kva space.
1142	 */
1143	if (addr) {
1144		vm_map_insert(buffer_map, NULL, 0,
1145			addr, addr + maxsize,
1146			VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1147
1148		bp->b_kvabase = (caddr_t) addr;
1149		bp->b_kvasize = maxsize;
1150	}
1151	bp->b_data = bp->b_kvabase;
1152
1153	return (bp);
1154}
1155
1156static void
1157waitfreebuffers(int slpflag, int slptimeo) {
1158	while (numfreebuffers < hifreebuffers) {
1159		flushdirtybuffers(slpflag, slptimeo);
1160		if (numfreebuffers < hifreebuffers)
1161			break;
1162		needsbuffer |= VFS_BIO_NEED_FREE;
1163		if (tsleep(&needsbuffer, PRIBIO|slpflag, "biofre", slptimeo))
1164			break;
1165	}
1166}
1167
1168static void
1169flushdirtybuffers(int slpflag, int slptimeo) {
1170	int s;
1171	static pid_t flushing = 0;
1172
1173	s = splbio();
1174
1175	if (flushing) {
1176		if (flushing == curproc->p_pid) {
1177			splx(s);
1178			return;
1179		}
1180		while (flushing) {
1181			if (tsleep(&flushing, PRIBIO|slpflag, "biofls", slptimeo)) {
1182				splx(s);
1183				return;
1184			}
1185		}
1186	}
1187	flushing = curproc->p_pid;
1188
1189	while (numdirtybuffers > lodirtybuffers) {
1190		struct buf *bp;
1191		needsbuffer |= VFS_BIO_NEED_LOWLIMIT;
1192		bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1193		if (bp == NULL)
1194			bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1195
1196		while (bp && ((bp->b_flags & B_DELWRI) == 0)) {
1197			bp = TAILQ_NEXT(bp, b_freelist);
1198		}
1199
1200		if (bp) {
1201			vfs_bio_awrite(bp);
1202			continue;
1203		}
1204		break;
1205	}
1206
1207	flushing = 0;
1208	wakeup(&flushing);
1209	splx(s);
1210}
1211
1212/*
1213 * Check to see if a block is currently memory resident.
1214 */
1215struct buf *
1216incore(struct vnode * vp, daddr_t blkno)
1217{
1218	struct buf *bp;
1219
1220	int s = splbio();
1221	bp = gbincore(vp, blkno);
1222	splx(s);
1223	return (bp);
1224}
1225
1226/*
1227 * Returns true if no I/O is needed to access the
1228 * associated VM object.  This is like incore except
1229 * it also hunts around in the VM system for the data.
1230 */
1231
1232int
1233inmem(struct vnode * vp, daddr_t blkno)
1234{
1235	vm_object_t obj;
1236	vm_offset_t toff, tinc;
1237	vm_page_t m;
1238	vm_ooffset_t off;
1239
1240	if (incore(vp, blkno))
1241		return 1;
1242	if (vp->v_mount == NULL)
1243		return 0;
1244	if ((vp->v_object == NULL) || (vp->v_flag & VOBJBUF) == 0)
1245		return 0;
1246
1247	obj = vp->v_object;
1248	tinc = PAGE_SIZE;
1249	if (tinc > vp->v_mount->mnt_stat.f_iosize)
1250		tinc = vp->v_mount->mnt_stat.f_iosize;
1251	off = blkno * vp->v_mount->mnt_stat.f_iosize;
1252
1253	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1254
1255		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1256		if (!m)
1257			return 0;
1258		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
1259			return 0;
1260	}
1261	return 1;
1262}
1263
1264/*
1265 * now we set the dirty range for the buffer --
1266 * for NFS -- if the file is mapped and pages have
1267 * been written to, let it know.  We want the
1268 * entire range of the buffer to be marked dirty if
1269 * any of the pages have been written to for consistancy
1270 * with the b_validoff, b_validend set in the nfs write
1271 * code, and used by the nfs read code.
1272 */
1273static void
1274vfs_setdirty(struct buf *bp) {
1275	int i;
1276	vm_object_t object;
1277	vm_offset_t boffset, offset;
1278	/*
1279	 * We qualify the scan for modified pages on whether the
1280	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1281	 * is not cleared simply by protecting pages off.
1282	 */
1283	if ((bp->b_flags & B_VMIO) &&
1284		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1285		/*
1286		 * test the pages to see if they have been modified directly
1287		 * by users through the VM system.
1288		 */
1289		for (i = 0; i < bp->b_npages; i++)
1290			vm_page_test_dirty(bp->b_pages[i]);
1291
1292		/*
1293		 * scan forwards for the first page modified
1294		 */
1295		for (i = 0; i < bp->b_npages; i++) {
1296			if (bp->b_pages[i]->dirty) {
1297				break;
1298			}
1299		}
1300		boffset = (i << PAGE_SHIFT);
1301		if (boffset < bp->b_dirtyoff) {
1302			bp->b_dirtyoff = boffset;
1303		}
1304
1305		/*
1306		 * scan backwards for the last page modified
1307		 */
1308		for (i = bp->b_npages - 1; i >= 0; --i) {
1309			if (bp->b_pages[i]->dirty) {
1310				break;
1311			}
1312		}
1313		boffset = (i + 1);
1314		offset = boffset + bp->b_pages[0]->pindex;
1315		if (offset >= object->size)
1316			boffset = object->size - bp->b_pages[0]->pindex;
1317		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
1318			bp->b_dirtyend = (boffset << PAGE_SHIFT);
1319	}
1320}
1321
1322/*
1323 * Get a block given a specified block and offset into a file/device.
1324 */
1325struct buf *
1326getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1327{
1328	struct buf *bp;
1329	int i, s;
1330	struct bufhashhdr *bh;
1331	int maxsize;
1332	int generation;
1333
1334	if (vp->v_mount) {
1335		maxsize = vp->v_mount->mnt_stat.f_iosize;
1336		/*
1337		 * This happens on mount points.
1338		 */
1339		if (maxsize < size)
1340			maxsize = size;
1341	} else {
1342		maxsize = size;
1343	}
1344
1345#if !defined(MAX_PERF)
1346	if (size > MAXBSIZE)
1347		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1348#endif
1349
1350	s = splbio();
1351loop:
1352	if (numfreebuffers < lofreebuffers) {
1353		waitfreebuffers(slpflag, slptimeo);
1354	}
1355
1356	if ((bp = gbincore(vp, blkno))) {
1357loop1:
1358		generation = bp->b_generation;
1359		if (bp->b_flags & B_BUSY) {
1360			bp->b_flags |= B_WANTED;
1361			if (bp->b_usecount < BUF_MAXUSE)
1362				++bp->b_usecount;
1363			if (!tsleep(bp,
1364				(PRIBIO + 1) | slpflag, "getblk", slptimeo)) {
1365				if (bp->b_generation != generation)
1366					goto loop;
1367				goto loop1;
1368			} else {
1369				splx(s);
1370				return (struct buf *) NULL;
1371			}
1372		}
1373		bp->b_flags |= B_BUSY | B_CACHE;
1374		bremfree(bp);
1375
1376		/*
1377		 * check for size inconsistancies (note that they shouldn't
1378		 * happen but do when filesystems don't handle the size changes
1379		 * correctly.) We are conservative on metadata and don't just
1380		 * extend the buffer but write and re-constitute it.
1381		 */
1382
1383		if (bp->b_bcount != size) {
1384			bp->b_generation++;
1385			if ((bp->b_flags & B_VMIO) && (size <= bp->b_kvasize)) {
1386				allocbuf(bp, size);
1387			} else {
1388				bp->b_flags |= B_NOCACHE;
1389				VOP_BWRITE(bp);
1390				goto loop;
1391			}
1392		}
1393
1394		if (bp->b_usecount < BUF_MAXUSE)
1395			++bp->b_usecount;
1396		splx(s);
1397		return (bp);
1398	} else {
1399		vm_object_t obj;
1400
1401		if ((bp = getnewbuf(vp, blkno,
1402			slpflag, slptimeo, size, maxsize)) == 0) {
1403			if (slpflag || slptimeo) {
1404				splx(s);
1405				return NULL;
1406			}
1407			goto loop;
1408		}
1409
1410		/*
1411		 * This code is used to make sure that a buffer is not
1412		 * created while the getnewbuf routine is blocked.
1413		 * Normally the vnode is locked so this isn't a problem.
1414		 * VBLK type I/O requests, however, don't lock the vnode.
1415		 */
1416		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1417			bp->b_flags |= B_INVAL;
1418			brelse(bp);
1419			goto loop;
1420		}
1421
1422		/*
1423		 * Insert the buffer into the hash, so that it can
1424		 * be found by incore.
1425		 */
1426		bp->b_blkno = bp->b_lblkno = blkno;
1427		bgetvp(vp, bp);
1428		LIST_REMOVE(bp, b_hash);
1429		bh = BUFHASH(vp, blkno);
1430		LIST_INSERT_HEAD(bh, bp, b_hash);
1431
1432		if ((obj = vp->v_object) && (vp->v_flag & VOBJBUF)) {
1433			bp->b_flags |= (B_VMIO | B_CACHE);
1434#if defined(VFS_BIO_DEBUG)
1435			if (vp->v_type != VREG && vp->v_type != VBLK)
1436				printf("getblk: vmioing file type %d???\n", vp->v_type);
1437#endif
1438		} else {
1439			bp->b_flags &= ~B_VMIO;
1440		}
1441
1442		allocbuf(bp, size);
1443
1444		splx(s);
1445#ifdef	PC98
1446		/*
1447		 * 1024byte/sector support
1448		 */
1449#define B_XXX2 0x8000000
1450		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1451#endif
1452		return (bp);
1453	}
1454}
1455
1456/*
1457 * Get an empty, disassociated buffer of given size.
1458 */
1459struct buf *
1460geteblk(int size)
1461{
1462	struct buf *bp;
1463	int s;
1464
1465	s = splbio();
1466	while ((bp = getnewbuf(0, (daddr_t) 0, 0, 0, size, MAXBSIZE)) == 0);
1467	splx(s);
1468	allocbuf(bp, size);
1469	bp->b_flags |= B_INVAL;
1470	return (bp);
1471}
1472
1473
1474/*
1475 * This code constitutes the buffer memory from either anonymous system
1476 * memory (in the case of non-VMIO operations) or from an associated
1477 * VM object (in the case of VMIO operations).
1478 *
1479 * Note that this code is tricky, and has many complications to resolve
1480 * deadlock or inconsistant data situations.  Tread lightly!!!
1481 *
1482 * Modify the length of a buffer's underlying buffer storage without
1483 * destroying information (unless, of course the buffer is shrinking).
1484 */
1485int
1486allocbuf(struct buf * bp, int size)
1487{
1488
1489	int s;
1490	int newbsize, mbsize;
1491	int i;
1492
1493#if !defined(MAX_PERF)
1494	if (!(bp->b_flags & B_BUSY))
1495		panic("allocbuf: buffer not busy");
1496
1497	if (bp->b_kvasize < size)
1498		panic("allocbuf: buffer too small");
1499#endif
1500
1501	if ((bp->b_flags & B_VMIO) == 0) {
1502		caddr_t origbuf;
1503		int origbufsize;
1504		/*
1505		 * Just get anonymous memory from the kernel
1506		 */
1507		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1508#if !defined(NO_B_MALLOC)
1509		if (bp->b_flags & B_MALLOC)
1510			newbsize = mbsize;
1511		else
1512#endif
1513			newbsize = round_page(size);
1514
1515		if (newbsize < bp->b_bufsize) {
1516#if !defined(NO_B_MALLOC)
1517			/*
1518			 * malloced buffers are not shrunk
1519			 */
1520			if (bp->b_flags & B_MALLOC) {
1521				if (newbsize) {
1522					bp->b_bcount = size;
1523				} else {
1524					free(bp->b_data, M_BIOBUF);
1525					bufspace -= bp->b_bufsize;
1526					bufmallocspace -= bp->b_bufsize;
1527					bp->b_data = bp->b_kvabase;
1528					bp->b_bufsize = 0;
1529					bp->b_bcount = 0;
1530					bp->b_flags &= ~B_MALLOC;
1531				}
1532				return 1;
1533			}
1534#endif
1535			vm_hold_free_pages(
1536			    bp,
1537			    (vm_offset_t) bp->b_data + newbsize,
1538			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1539		} else if (newbsize > bp->b_bufsize) {
1540#if !defined(NO_B_MALLOC)
1541			/*
1542			 * We only use malloced memory on the first allocation.
1543			 * and revert to page-allocated memory when the buffer grows.
1544			 */
1545			if ( (bufmallocspace < maxbufmallocspace) &&
1546				(bp->b_bufsize == 0) &&
1547				(mbsize <= PAGE_SIZE/2)) {
1548
1549				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1550				bp->b_bufsize = mbsize;
1551				bp->b_bcount = size;
1552				bp->b_flags |= B_MALLOC;
1553				bufspace += mbsize;
1554				bufmallocspace += mbsize;
1555				return 1;
1556			}
1557#endif
1558			origbuf = NULL;
1559			origbufsize = 0;
1560#if !defined(NO_B_MALLOC)
1561			/*
1562			 * If the buffer is growing on it's other-than-first allocation,
1563			 * then we revert to the page-allocation scheme.
1564			 */
1565			if (bp->b_flags & B_MALLOC) {
1566				origbuf = bp->b_data;
1567				origbufsize = bp->b_bufsize;
1568				bp->b_data = bp->b_kvabase;
1569				bufspace -= bp->b_bufsize;
1570				bufmallocspace -= bp->b_bufsize;
1571				bp->b_bufsize = 0;
1572				bp->b_flags &= ~B_MALLOC;
1573				newbsize = round_page(newbsize);
1574			}
1575#endif
1576			vm_hold_load_pages(
1577			    bp,
1578			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1579			    (vm_offset_t) bp->b_data + newbsize);
1580#if !defined(NO_B_MALLOC)
1581			if (origbuf) {
1582				bcopy(origbuf, bp->b_data, origbufsize);
1583				free(origbuf, M_BIOBUF);
1584			}
1585#endif
1586		}
1587	} else {
1588		vm_page_t m;
1589		int desiredpages;
1590
1591		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1592		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1593
1594#if !defined(NO_B_MALLOC)
1595		if (bp->b_flags & B_MALLOC)
1596			panic("allocbuf: VMIO buffer can't be malloced");
1597#endif
1598
1599		if (newbsize < bp->b_bufsize) {
1600			if (desiredpages < bp->b_npages) {
1601				for (i = desiredpages; i < bp->b_npages; i++) {
1602					/*
1603					 * the page is not freed here -- it
1604					 * is the responsibility of vnode_pager_setsize
1605					 */
1606					m = bp->b_pages[i];
1607#if defined(DIAGNOSTIC)
1608					if (m == bogus_page)
1609						panic("allocbuf: bogus page found");
1610#endif
1611					vm_page_sleep(m, "biodep", &m->busy);
1612
1613					bp->b_pages[i] = NULL;
1614					vm_page_unwire(m);
1615				}
1616				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1617				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1618				bp->b_npages = desiredpages;
1619			}
1620		} else if (newbsize > bp->b_bufsize) {
1621			vm_object_t obj;
1622			vm_offset_t tinc, toff;
1623			vm_ooffset_t off;
1624			vm_pindex_t objoff;
1625			int pageindex, curbpnpages;
1626			struct vnode *vp;
1627			int bsize;
1628			int orig_validoff = bp->b_validoff;
1629			int orig_validend = bp->b_validend;
1630
1631			vp = bp->b_vp;
1632
1633			if (vp->v_type == VBLK)
1634				bsize = DEV_BSIZE;
1635			else
1636				bsize = vp->v_mount->mnt_stat.f_iosize;
1637
1638			if (bp->b_npages < desiredpages) {
1639				obj = vp->v_object;
1640				tinc = PAGE_SIZE;
1641				if (tinc > bsize)
1642					tinc = bsize;
1643				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1644				curbpnpages = bp->b_npages;
1645		doretry:
1646				bp->b_validoff = orig_validoff;
1647				bp->b_validend = orig_validend;
1648				bp->b_flags |= B_CACHE;
1649				for (toff = 0; toff < newbsize; toff += tinc) {
1650					int bytesinpage;
1651
1652					pageindex = toff >> PAGE_SHIFT;
1653					objoff = OFF_TO_IDX(off + toff);
1654					if (pageindex < curbpnpages) {
1655
1656						m = bp->b_pages[pageindex];
1657#ifdef VFS_BIO_DIAG
1658						if (m->pindex != objoff)
1659							panic("allocbuf: page changed offset??!!!?");
1660#endif
1661						bytesinpage = tinc;
1662						if (tinc > (newbsize - toff))
1663							bytesinpage = newbsize - toff;
1664						if (bp->b_flags & B_CACHE)
1665							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1666						continue;
1667					}
1668					m = vm_page_lookup(obj, objoff);
1669					if (!m) {
1670						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1671						if (!m) {
1672							VM_WAIT;
1673							vm_pageout_deficit += (desiredpages - bp->b_npages);
1674							goto doretry;
1675						}
1676
1677						vm_page_wire(m);
1678						m->flags &= ~PG_BUSY;
1679						bp->b_flags &= ~B_CACHE;
1680
1681					} else if (m->flags & PG_BUSY) {
1682						s = splvm();
1683						if (m->flags & PG_BUSY) {
1684							m->flags |= PG_WANTED;
1685							tsleep(m, PVM, "pgtblk", 0);
1686						}
1687						splx(s);
1688						goto doretry;
1689					} else {
1690						if ((curproc != pageproc) &&
1691							((m->queue - m->pc) == PQ_CACHE) &&
1692						    ((cnt.v_free_count + cnt.v_cache_count) <
1693								(cnt.v_free_min + cnt.v_cache_min))) {
1694							pagedaemon_wakeup();
1695						}
1696						bytesinpage = tinc;
1697						if (tinc > (newbsize - toff))
1698							bytesinpage = newbsize - toff;
1699						if (bp->b_flags & B_CACHE)
1700							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1701						vm_page_wire(m);
1702					}
1703					bp->b_pages[pageindex] = m;
1704					curbpnpages = pageindex + 1;
1705				}
1706				if (vp->v_tag == VT_NFS &&
1707				    vp->v_type != VBLK) {
1708					if (bp->b_dirtyend > 0) {
1709						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
1710						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
1711					}
1712					if (bp->b_validend == 0)
1713						bp->b_flags &= ~B_CACHE;
1714				}
1715				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1716				bp->b_npages = curbpnpages;
1717				pmap_qenter((vm_offset_t) bp->b_data,
1718					bp->b_pages, bp->b_npages);
1719				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1720			}
1721		}
1722	}
1723	if (bp->b_flags & B_VMIO)
1724		vmiospace += (newbsize - bp->b_bufsize);
1725	bufspace += (newbsize - bp->b_bufsize);
1726	bp->b_bufsize = newbsize;
1727	bp->b_bcount = size;
1728	return 1;
1729}
1730
1731/*
1732 * Wait for buffer I/O completion, returning error status.
1733 */
1734int
1735biowait(register struct buf * bp)
1736{
1737	int s;
1738
1739	s = splbio();
1740	while ((bp->b_flags & B_DONE) == 0)
1741#if defined(NO_SCHEDULE_MODS)
1742		tsleep(bp, PRIBIO, "biowait", 0);
1743#else
1744		if (bp->b_flags & B_READ)
1745			tsleep(bp, PRIBIO, "biord", 0);
1746		else
1747			tsleep(bp, curproc->p_usrpri, "biowr", 0);
1748#endif
1749	splx(s);
1750	if (bp->b_flags & B_EINTR) {
1751		bp->b_flags &= ~B_EINTR;
1752		return (EINTR);
1753	}
1754	if (bp->b_flags & B_ERROR) {
1755		return (bp->b_error ? bp->b_error : EIO);
1756	} else {
1757		return (0);
1758	}
1759}
1760
1761/*
1762 * Finish I/O on a buffer, calling an optional function.
1763 * This is usually called from interrupt level, so process blocking
1764 * is not *a good idea*.
1765 */
1766void
1767biodone(register struct buf * bp)
1768{
1769	int s;
1770
1771	s = splbio();
1772
1773#if !defined(MAX_PERF)
1774	if (!(bp->b_flags & B_BUSY))
1775		panic("biodone: buffer not busy");
1776#endif
1777
1778	if (bp->b_flags & B_DONE) {
1779		splx(s);
1780#if !defined(MAX_PERF)
1781		printf("biodone: buffer already done\n");
1782#endif
1783		return;
1784	}
1785	bp->b_flags |= B_DONE;
1786
1787	if ((bp->b_flags & B_READ) == 0) {
1788		vwakeup(bp);
1789	}
1790#ifdef BOUNCE_BUFFERS
1791	if (bp->b_flags & B_BOUNCE)
1792		vm_bounce_free(bp);
1793#endif
1794
1795	/* call optional completion function if requested */
1796	if (bp->b_flags & B_CALL) {
1797		bp->b_flags &= ~B_CALL;
1798		(*bp->b_iodone) (bp);
1799		splx(s);
1800		return;
1801	}
1802	if (bp->b_flags & B_VMIO) {
1803		int i, resid;
1804		vm_ooffset_t foff;
1805		vm_page_t m;
1806		vm_object_t obj;
1807		int iosize;
1808		struct vnode *vp = bp->b_vp;
1809
1810		obj = vp->v_object;
1811
1812#if defined(VFS_BIO_DEBUG)
1813		if (vp->v_usecount == 0) {
1814			panic("biodone: zero vnode ref count");
1815		}
1816
1817		if (vp->v_object == NULL) {
1818			panic("biodone: missing VM object");
1819		}
1820
1821		if ((vp->v_flag & VOBJBUF) == 0) {
1822			panic("biodone: vnode is not setup for merged cache");
1823		}
1824#endif
1825
1826		if (vp->v_type == VBLK)
1827			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1828		else
1829			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1830#if !defined(MAX_PERF)
1831		if (!obj) {
1832			panic("biodone: no object");
1833		}
1834#endif
1835#if defined(VFS_BIO_DEBUG)
1836		if (obj->paging_in_progress < bp->b_npages) {
1837			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1838			    obj->paging_in_progress, bp->b_npages);
1839		}
1840#endif
1841		iosize = bp->b_bufsize;
1842		for (i = 0; i < bp->b_npages; i++) {
1843			int bogusflag = 0;
1844			m = bp->b_pages[i];
1845			if (m == bogus_page) {
1846				bogusflag = 1;
1847				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1848				if (!m) {
1849#if defined(VFS_BIO_DEBUG)
1850					printf("biodone: page disappeared\n");
1851#endif
1852					--obj->paging_in_progress;
1853					continue;
1854				}
1855				bp->b_pages[i] = m;
1856				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1857			}
1858#if defined(VFS_BIO_DEBUG)
1859			if (OFF_TO_IDX(foff) != m->pindex) {
1860				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1861			}
1862#endif
1863			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1864			if (resid > iosize)
1865				resid = iosize;
1866			/*
1867			 * In the write case, the valid and clean bits are
1868			 * already changed correctly, so we only need to do this
1869			 * here in the read case.
1870			 */
1871			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1872				vfs_page_set_valid(bp, foff, i, m);
1873			}
1874
1875			/*
1876			 * when debugging new filesystems or buffer I/O methods, this
1877			 * is the most common error that pops up.  if you see this, you
1878			 * have not set the page busy flag correctly!!!
1879			 */
1880			if (m->busy == 0) {
1881#if !defined(MAX_PERF)
1882				printf("biodone: page busy < 0, "
1883				    "pindex: %d, foff: 0x(%x,%x), "
1884				    "resid: %d, index: %d\n",
1885				    (int) m->pindex, (int)(foff >> 32),
1886						(int) foff & 0xffffffff, resid, i);
1887#endif
1888				if (vp->v_type != VBLK)
1889#if !defined(MAX_PERF)
1890					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1891					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1892					    (int) bp->b_lblkno,
1893					    bp->b_flags, bp->b_npages);
1894				else
1895					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1896					    (int) bp->b_lblkno,
1897					    bp->b_flags, bp->b_npages);
1898				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1899				    m->valid, m->dirty, m->wire_count);
1900#endif
1901				panic("biodone: page busy < 0\n");
1902			}
1903			PAGE_BWAKEUP(m);
1904			--obj->paging_in_progress;
1905			foff += resid;
1906			iosize -= resid;
1907		}
1908		if (obj &&
1909			(obj->paging_in_progress == 0) &&
1910		    (obj->flags & OBJ_PIPWNT)) {
1911			obj->flags &= ~OBJ_PIPWNT;
1912			wakeup(obj);
1913		}
1914	}
1915	/*
1916	 * For asynchronous completions, release the buffer now. The brelse
1917	 * checks for B_WANTED and will do the wakeup there if necessary - so
1918	 * no need to do a wakeup here in the async case.
1919	 */
1920
1921	if (bp->b_flags & B_ASYNC) {
1922		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1923			brelse(bp);
1924		else
1925			bqrelse(bp);
1926	} else {
1927		bp->b_flags &= ~B_WANTED;
1928		wakeup(bp);
1929	}
1930	splx(s);
1931}
1932
1933static int
1934count_lock_queue()
1935{
1936	int count;
1937	struct buf *bp;
1938
1939	count = 0;
1940	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1941	    bp != NULL;
1942	    bp = TAILQ_NEXT(bp, b_freelist))
1943		count++;
1944	return (count);
1945}
1946
1947static int vfs_update_interval = 30;
1948
1949static void
1950vfs_update()
1951{
1952	while (1) {
1953		tsleep(&vfs_update_wakeup, PUSER, "update",
1954		    hz * vfs_update_interval);
1955		vfs_update_wakeup = 0;
1956		sync(curproc, NULL);
1957	}
1958}
1959
1960static int
1961sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1962{
1963	int error = sysctl_handle_int(oidp,
1964		oidp->oid_arg1, oidp->oid_arg2, req);
1965	if (!error)
1966		wakeup(&vfs_update_wakeup);
1967	return error;
1968}
1969
1970SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1971	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1972
1973
1974/*
1975 * This routine is called in lieu of iodone in the case of
1976 * incomplete I/O.  This keeps the busy status for pages
1977 * consistant.
1978 */
1979void
1980vfs_unbusy_pages(struct buf * bp)
1981{
1982	int i;
1983
1984	if (bp->b_flags & B_VMIO) {
1985		struct vnode *vp = bp->b_vp;
1986		vm_object_t obj = vp->v_object;
1987		vm_ooffset_t foff;
1988
1989		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1990
1991		for (i = 0; i < bp->b_npages; i++) {
1992			vm_page_t m = bp->b_pages[i];
1993
1994			if (m == bogus_page) {
1995				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1996#if !defined(MAX_PERF)
1997				if (!m) {
1998					panic("vfs_unbusy_pages: page missing\n");
1999				}
2000#endif
2001				bp->b_pages[i] = m;
2002				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
2003			}
2004			--obj->paging_in_progress;
2005			PAGE_BWAKEUP(m);
2006		}
2007		if (obj->paging_in_progress == 0 &&
2008		    (obj->flags & OBJ_PIPWNT)) {
2009			obj->flags &= ~OBJ_PIPWNT;
2010			wakeup(obj);
2011		}
2012	}
2013}
2014
2015/*
2016 * Set NFS' b_validoff and b_validend fields from the valid bits
2017 * of a page.  If the consumer is not NFS, and the page is not
2018 * valid for the entire range, clear the B_CACHE flag to force
2019 * the consumer to re-read the page.
2020 */
2021static void
2022vfs_buf_set_valid(struct buf *bp,
2023		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
2024		  vm_page_t m)
2025{
2026	if (bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK) {
2027		vm_offset_t svalid, evalid;
2028		int validbits = m->valid;
2029
2030		/*
2031		 * This only bothers with the first valid range in the
2032		 * page.
2033		 */
2034		svalid = off;
2035		while (validbits && !(validbits & 1)) {
2036			svalid += DEV_BSIZE;
2037			validbits >>= 1;
2038		}
2039		evalid = svalid;
2040		while (validbits & 1) {
2041			evalid += DEV_BSIZE;
2042			validbits >>= 1;
2043		}
2044		/*
2045		 * Make sure this range is contiguous with the range
2046		 * built up from previous pages.  If not, then we will
2047		 * just use the range from the previous pages.
2048		 */
2049		if (svalid == bp->b_validend) {
2050			bp->b_validoff = min(bp->b_validoff, svalid);
2051			bp->b_validend = max(bp->b_validend, evalid);
2052		}
2053	} else if (!vm_page_is_valid(m,
2054				     (vm_offset_t) ((foff + off) & PAGE_MASK),
2055				     size)) {
2056		bp->b_flags &= ~B_CACHE;
2057	}
2058}
2059
2060/*
2061 * Set the valid bits in a page, taking care of the b_validoff,
2062 * b_validend fields which NFS uses to optimise small reads.  Off is
2063 * the offset within the file and pageno is the page index within the buf.
2064 */
2065static void
2066vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2067{
2068	struct vnode *vp = bp->b_vp;
2069	vm_ooffset_t soff, eoff;
2070
2071	soff = off;
2072	eoff = off + min(PAGE_SIZE, bp->b_bufsize);
2073	vm_page_set_invalid(m,
2074			    (vm_offset_t) (soff & PAGE_MASK),
2075			    (vm_offset_t) (eoff - soff));
2076	if (vp->v_tag == VT_NFS && vp->v_type != VBLK) {
2077		vm_ooffset_t sv, ev;
2078		off = off - pageno * PAGE_SIZE;
2079		sv = off + ((bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1));
2080		ev = off + ((bp->b_validend + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1));
2081		soff = max(sv, soff);
2082		eoff = min(ev, eoff);
2083	}
2084	if (eoff > soff)
2085		vm_page_set_validclean(m,
2086				       (vm_offset_t) (soff & PAGE_MASK),
2087				       (vm_offset_t) (eoff - soff));
2088}
2089
2090/*
2091 * This routine is called before a device strategy routine.
2092 * It is used to tell the VM system that paging I/O is in
2093 * progress, and treat the pages associated with the buffer
2094 * almost as being PG_BUSY.  Also the object paging_in_progress
2095 * flag is handled to make sure that the object doesn't become
2096 * inconsistant.
2097 */
2098void
2099vfs_busy_pages(struct buf * bp, int clear_modify)
2100{
2101	int i,s;
2102
2103	if (bp->b_flags & B_VMIO) {
2104		struct vnode *vp = bp->b_vp;
2105		vm_object_t obj = vp->v_object;
2106		vm_ooffset_t foff;
2107
2108		if (vp->v_type == VBLK)
2109			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
2110		else
2111			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
2112
2113		vfs_setdirty(bp);
2114
2115retry:
2116		for (i = 0; i < bp->b_npages; i++) {
2117			vm_page_t m = bp->b_pages[i];
2118			if (vm_page_sleep(m, "vbpage", NULL))
2119				goto retry;
2120		}
2121
2122		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2123			vm_page_t m = bp->b_pages[i];
2124
2125			if ((bp->b_flags & B_CLUSTER) == 0) {
2126				obj->paging_in_progress++;
2127				m->busy++;
2128			}
2129
2130			vm_page_protect(m, VM_PROT_NONE);
2131			if (clear_modify)
2132				vfs_page_set_valid(bp, foff, i, m);
2133			else if (bp->b_bcount >= PAGE_SIZE) {
2134				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
2135					bp->b_pages[i] = bogus_page;
2136					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
2137				}
2138			}
2139		}
2140	}
2141}
2142
2143/*
2144 * Tell the VM system that the pages associated with this buffer
2145 * are clean.  This is used for delayed writes where the data is
2146 * going to go to disk eventually without additional VM intevention.
2147 */
2148void
2149vfs_clean_pages(struct buf * bp)
2150{
2151	int i;
2152
2153	if (bp->b_flags & B_VMIO) {
2154		struct vnode *vp = bp->b_vp;
2155		vm_ooffset_t foff;
2156
2157		if (vp->v_type == VBLK)
2158			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
2159		else
2160			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
2161		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2162			vm_page_t m = bp->b_pages[i];
2163
2164			vfs_page_set_valid(bp, foff, i, m);
2165		}
2166	}
2167}
2168
2169void
2170vfs_bio_clrbuf(struct buf *bp) {
2171	int i;
2172	if( bp->b_flags & B_VMIO) {
2173		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
2174			int mask;
2175			mask = 0;
2176			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
2177				mask |= (1 << (i/DEV_BSIZE));
2178			if( bp->b_pages[0]->valid != mask) {
2179				bzero(bp->b_data, bp->b_bufsize);
2180			}
2181			bp->b_pages[0]->valid = mask;
2182			bp->b_resid = 0;
2183			return;
2184		}
2185		for(i=0;i<bp->b_npages;i++) {
2186			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
2187				continue;
2188			if( bp->b_pages[i]->valid == 0) {
2189				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2190					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
2191				}
2192			} else {
2193				int j;
2194				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
2195					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
2196						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
2197				}
2198			}
2199			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
2200		}
2201		bp->b_resid = 0;
2202	} else {
2203		clrbuf(bp);
2204	}
2205}
2206
2207/*
2208 * vm_hold_load_pages and vm_hold_unload pages get pages into
2209 * a buffers address space.  The pages are anonymous and are
2210 * not associated with a file object.
2211 */
2212void
2213vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2214{
2215	vm_offset_t pg;
2216	vm_page_t p;
2217	int index;
2218
2219	to = round_page(to);
2220	from = round_page(from);
2221	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2222
2223	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2224
2225tryagain:
2226
2227		p = vm_page_alloc(kernel_object,
2228			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
2229		    VM_ALLOC_NORMAL);
2230		if (!p) {
2231			vm_pageout_deficit += (to - from) >> PAGE_SHIFT;
2232			VM_WAIT;
2233			goto tryagain;
2234		}
2235		vm_page_wire(p);
2236		p->valid = VM_PAGE_BITS_ALL;
2237		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
2238		bp->b_pages[index] = p;
2239		PAGE_WAKEUP(p);
2240	}
2241	bp->b_npages = index;
2242}
2243
2244void
2245vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2246{
2247	vm_offset_t pg;
2248	vm_page_t p;
2249	int index, newnpages;
2250
2251	from = round_page(from);
2252	to = round_page(to);
2253	newnpages = index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2254
2255	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2256		p = bp->b_pages[index];
2257		if (p && (index < bp->b_npages)) {
2258#if !defined(MAX_PERF)
2259			if (p->busy) {
2260				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2261					bp->b_blkno, bp->b_lblkno);
2262			}
2263#endif
2264			bp->b_pages[index] = NULL;
2265			pmap_kremove(pg);
2266			p->flags |= PG_BUSY;
2267			vm_page_unwire(p);
2268			vm_page_free(p);
2269		}
2270	}
2271	bp->b_npages = newnpages;
2272}
2273
2274
2275#include "opt_ddb.h"
2276#ifdef DDB
2277#include <ddb/ddb.h>
2278
2279DB_SHOW_COMMAND(buffer, db_show_buffer)
2280{
2281	/* get args */
2282	struct buf *bp = (struct buf *)addr;
2283
2284	if (!have_addr) {
2285		db_printf("usage: show buffer <addr>\n");
2286		return;
2287	}
2288
2289	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2290		  bp->b_flags, "\20\40bounce\37cluster\36vmio\35ram\34ordered"
2291		  "\33paging\32xxx\31writeinprog\30wanted\27relbuf\26tape"
2292		  "\25read\24raw\23phys\22clusterok\21malloc\20nocache"
2293		  "\17locked\16inval\15gathered\14error\13eintr\12done\11dirty"
2294		  "\10delwri\7call\6cache\5busy\4bad\3async\2needcommit\1age");
2295	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2296		  "b_resid = %ld\nb_dev = 0x%x, b_data = %p, "
2297		  "b_blkno = %d, b_pblkno = %d\n",
2298		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2299		  bp->b_dev, bp->b_data, bp->b_blkno, bp->b_pblkno);
2300	if (bp->b_npages) {
2301		int i;
2302		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
2303		for (i = 0; i < bp->b_npages; i++) {
2304			vm_page_t m;
2305			m = bp->b_pages[i];
2306			db_printf("(0x%x, 0x%x, 0x%x)", m->object, m->pindex,
2307				VM_PAGE_TO_PHYS(m));
2308			if ((i + 1) < bp->b_npages)
2309				db_printf(",");
2310		}
2311		db_printf("\n");
2312	}
2313}
2314#endif /* DDB */
2315