vfs_bio.c revision 31561
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.137 1997/12/02 21:06:45 phk Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#include "opt_bounce.h"
36
37#define VMIO
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/lock.h>
43#include <sys/sysctl.h>
44#include <sys/proc.h>
45#include <sys/vnode.h>
46#include <sys/vmmeter.h>
47#include <vm/vm.h>
48#include <vm/vm_param.h>
49#include <vm/vm_prot.h>
50#include <vm/vm_kern.h>
51#include <vm/vm_pageout.h>
52#include <vm/vm_page.h>
53#include <vm/vm_object.h>
54#include <vm/vm_extern.h>
55#include <vm/vm_map.h>
56#include <sys/buf.h>
57#include <sys/mount.h>
58#include <sys/malloc.h>
59#include <sys/resourcevar.h>
60
61static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
62
63static void vfs_update __P((void));
64static struct	proc *updateproc;
65static struct kproc_desc up_kp = {
66	"update",
67	vfs_update,
68	&updateproc
69};
70SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
71
72struct buf *buf;		/* buffer header pool */
73struct swqueue bswlist;
74
75int count_lock_queue __P((void));
76static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
77		vm_offset_t to);
78static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
79		vm_offset_t to);
80static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
81			      vm_offset_t off, vm_offset_t size,
82			      vm_page_t m);
83static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
84			       int pageno, vm_page_t m);
85static void vfs_clean_pages(struct buf * bp);
86static void vfs_setdirty(struct buf *bp);
87static void vfs_vmio_release(struct buf *bp);
88static void flushdirtybuffers(int slpflag, int slptimeo);
89
90int needsbuffer;
91
92/*
93 * Internal update daemon, process 3
94 *	The variable vfs_update_wakeup allows for internal syncs.
95 */
96int vfs_update_wakeup;
97
98
99/*
100 * buffers base kva
101 */
102
103/*
104 * bogus page -- for I/O to/from partially complete buffers
105 * this is a temporary solution to the problem, but it is not
106 * really that bad.  it would be better to split the buffer
107 * for input in the case of buffers partially already in memory,
108 * but the code is intricate enough already.
109 */
110vm_page_t bogus_page;
111static vm_offset_t bogus_offset;
112
113static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
114	bufmallocspace, maxbufmallocspace;
115int numdirtybuffers, lodirtybuffers, hidirtybuffers;
116static int numfreebuffers, lofreebuffers, hifreebuffers;
117
118SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
119	&numdirtybuffers, 0, "");
120SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
121	&lodirtybuffers, 0, "");
122SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
123	&hidirtybuffers, 0, "");
124SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
125	&numfreebuffers, 0, "");
126SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
127	&lofreebuffers, 0, "");
128SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
129	&hifreebuffers, 0, "");
130SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
131	&maxbufspace, 0, "");
132SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
133	&bufspace, 0, "");
134SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
135	&maxvmiobufspace, 0, "");
136SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
137	&vmiospace, 0, "");
138SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
139	&maxbufmallocspace, 0, "");
140SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
141	&bufmallocspace, 0, "");
142
143static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
144static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
145
146extern int vm_swap_size;
147
148#define BUF_MAXUSE 24
149
150#define VFS_BIO_NEED_ANY 1
151#define VFS_BIO_NEED_LOWLIMIT 2
152#define VFS_BIO_NEED_FREE 4
153
154/*
155 * Initialize buffer headers and related structures.
156 */
157void
158bufinit()
159{
160	struct buf *bp;
161	int i;
162
163	TAILQ_INIT(&bswlist);
164	LIST_INIT(&invalhash);
165
166	/* first, make a null hash table */
167	for (i = 0; i < BUFHSZ; i++)
168		LIST_INIT(&bufhashtbl[i]);
169
170	/* next, make a null set of free lists */
171	for (i = 0; i < BUFFER_QUEUES; i++)
172		TAILQ_INIT(&bufqueues[i]);
173
174	/* finally, initialize each buffer header and stick on empty q */
175	for (i = 0; i < nbuf; i++) {
176		bp = &buf[i];
177		bzero(bp, sizeof *bp);
178		bp->b_flags = B_INVAL;	/* we're just an empty header */
179		bp->b_dev = NODEV;
180		bp->b_rcred = NOCRED;
181		bp->b_wcred = NOCRED;
182		bp->b_qindex = QUEUE_EMPTY;
183		bp->b_vnbufs.le_next = NOLIST;
184		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
185		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
186	}
187/*
188 * maxbufspace is currently calculated to support all filesystem blocks
189 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
190 * cache is still the same as it would be for 8K filesystems.  This
191 * keeps the size of the buffer cache "in check" for big block filesystems.
192 */
193	maxbufspace = (nbuf + 8) * DFLTBSIZE;
194/*
195 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
196 */
197	maxvmiobufspace = 2 * maxbufspace / 3;
198/*
199 * Limit the amount of malloc memory since it is wired permanently into
200 * the kernel space.  Even though this is accounted for in the buffer
201 * allocation, we don't want the malloced region to grow uncontrolled.
202 * The malloc scheme improves memory utilization significantly on average
203 * (small) directories.
204 */
205	maxbufmallocspace = maxbufspace / 20;
206
207/*
208 * Remove the probability of deadlock conditions by limiting the
209 * number of dirty buffers.
210 */
211	hidirtybuffers = nbuf / 6 + 20;
212	lodirtybuffers = nbuf / 12 + 10;
213	numdirtybuffers = 0;
214	lofreebuffers = nbuf / 18 + 5;
215	hifreebuffers = 2 * lofreebuffers;
216	numfreebuffers = nbuf;
217
218	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
219	bogus_page = vm_page_alloc(kernel_object,
220			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
221			VM_ALLOC_NORMAL);
222
223}
224
225/*
226 * Free the kva allocation for a buffer
227 * Must be called only at splbio or higher,
228 *  as this is the only locking for buffer_map.
229 */
230static void
231bfreekva(struct buf * bp)
232{
233	if (bp->b_kvasize == 0)
234		return;
235
236	vm_map_delete(buffer_map,
237		(vm_offset_t) bp->b_kvabase,
238		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
239
240	bp->b_kvasize = 0;
241
242}
243
244/*
245 * remove the buffer from the appropriate free list
246 */
247void
248bremfree(struct buf * bp)
249{
250	int s = splbio();
251
252	if (bp->b_qindex != QUEUE_NONE) {
253		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
254		bp->b_qindex = QUEUE_NONE;
255	} else {
256#if !defined(MAX_PERF)
257		panic("bremfree: removing a buffer when not on a queue");
258#endif
259	}
260	if ((bp->b_flags & B_INVAL) ||
261		(bp->b_flags & (B_DELWRI|B_LOCKED)) == 0)
262		--numfreebuffers;
263	splx(s);
264}
265
266/*
267 * Get a buffer with the specified data.  Look in the cache first.
268 */
269int
270bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
271    struct buf ** bpp)
272{
273	struct buf *bp;
274
275	bp = getblk(vp, blkno, size, 0, 0);
276	*bpp = bp;
277
278	/* if not found in cache, do some I/O */
279	if ((bp->b_flags & B_CACHE) == 0) {
280		if (curproc != NULL)
281			curproc->p_stats->p_ru.ru_inblock++;
282		bp->b_flags |= B_READ;
283		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
284		if (bp->b_rcred == NOCRED) {
285			if (cred != NOCRED)
286				crhold(cred);
287			bp->b_rcred = cred;
288		}
289		vfs_busy_pages(bp, 0);
290		VOP_STRATEGY(bp);
291		return (biowait(bp));
292	}
293	return (0);
294}
295
296/*
297 * Operates like bread, but also starts asynchronous I/O on
298 * read-ahead blocks.
299 */
300int
301breadn(struct vnode * vp, daddr_t blkno, int size,
302    daddr_t * rablkno, int *rabsize,
303    int cnt, struct ucred * cred, struct buf ** bpp)
304{
305	struct buf *bp, *rabp;
306	int i;
307	int rv = 0, readwait = 0;
308
309	*bpp = bp = getblk(vp, blkno, size, 0, 0);
310
311	/* if not found in cache, do some I/O */
312	if ((bp->b_flags & B_CACHE) == 0) {
313		if (curproc != NULL)
314			curproc->p_stats->p_ru.ru_inblock++;
315		bp->b_flags |= B_READ;
316		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
317		if (bp->b_rcred == NOCRED) {
318			if (cred != NOCRED)
319				crhold(cred);
320			bp->b_rcred = cred;
321		}
322		vfs_busy_pages(bp, 0);
323		VOP_STRATEGY(bp);
324		++readwait;
325	}
326	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
327		if (inmem(vp, *rablkno))
328			continue;
329		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
330
331		if ((rabp->b_flags & B_CACHE) == 0) {
332			if (curproc != NULL)
333				curproc->p_stats->p_ru.ru_inblock++;
334			rabp->b_flags |= B_READ | B_ASYNC;
335			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
336			if (rabp->b_rcred == NOCRED) {
337				if (cred != NOCRED)
338					crhold(cred);
339				rabp->b_rcred = cred;
340			}
341			vfs_busy_pages(rabp, 0);
342			VOP_STRATEGY(rabp);
343		} else {
344			brelse(rabp);
345		}
346	}
347
348	if (readwait) {
349		rv = biowait(bp);
350	}
351	return (rv);
352}
353
354/*
355 * Write, release buffer on completion.  (Done by iodone
356 * if async.)
357 */
358int
359bwrite(struct buf * bp)
360{
361	int oldflags = bp->b_flags;
362
363	if (bp->b_flags & B_INVAL) {
364		brelse(bp);
365		return (0);
366	}
367#if !defined(MAX_PERF)
368	if (!(bp->b_flags & B_BUSY))
369		panic("bwrite: buffer is not busy???");
370#endif
371
372	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
373	bp->b_flags |= B_WRITEINPROG;
374
375	if ((oldflags & B_DELWRI) == B_DELWRI) {
376		--numdirtybuffers;
377		reassignbuf(bp, bp->b_vp);
378	}
379
380	bp->b_vp->v_numoutput++;
381	vfs_busy_pages(bp, 1);
382	if (curproc != NULL)
383		curproc->p_stats->p_ru.ru_oublock++;
384	VOP_STRATEGY(bp);
385
386	if ((oldflags & B_ASYNC) == 0) {
387		int rtval = biowait(bp);
388
389		if (oldflags & B_DELWRI) {
390			reassignbuf(bp, bp->b_vp);
391		}
392		brelse(bp);
393		return (rtval);
394	}
395	return (0);
396}
397
398void
399vfs_bio_need_satisfy(void) {
400	++numfreebuffers;
401	if (!needsbuffer)
402		return;
403	if (numdirtybuffers < lodirtybuffers) {
404		needsbuffer &= ~(VFS_BIO_NEED_ANY | VFS_BIO_NEED_LOWLIMIT);
405	} else {
406		needsbuffer &= ~VFS_BIO_NEED_ANY;
407	}
408	if (numfreebuffers >= hifreebuffers) {
409		needsbuffer &= ~VFS_BIO_NEED_FREE;
410	}
411	wakeup(&needsbuffer);
412}
413
414/*
415 * Delayed write. (Buffer is marked dirty).
416 */
417void
418bdwrite(struct buf * bp)
419{
420
421#if !defined(MAX_PERF)
422	if ((bp->b_flags & B_BUSY) == 0) {
423		panic("bdwrite: buffer is not busy");
424	}
425#endif
426
427	if (bp->b_flags & B_INVAL) {
428		brelse(bp);
429		return;
430	}
431	if (bp->b_flags & B_TAPE) {
432		bawrite(bp);
433		return;
434	}
435	bp->b_flags &= ~(B_READ|B_RELBUF);
436	if ((bp->b_flags & B_DELWRI) == 0) {
437		bp->b_flags |= B_DONE | B_DELWRI;
438		reassignbuf(bp, bp->b_vp);
439		++numdirtybuffers;
440	}
441
442	/*
443	 * This bmap keeps the system from needing to do the bmap later,
444	 * perhaps when the system is attempting to do a sync.  Since it
445	 * is likely that the indirect block -- or whatever other datastructure
446	 * that the filesystem needs is still in memory now, it is a good
447	 * thing to do this.  Note also, that if the pageout daemon is
448	 * requesting a sync -- there might not be enough memory to do
449	 * the bmap then...  So, this is important to do.
450	 */
451	if (bp->b_lblkno == bp->b_blkno) {
452		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
453	}
454
455	/*
456	 * Set the *dirty* buffer range based upon the VM system dirty pages.
457	 */
458	vfs_setdirty(bp);
459
460	/*
461	 * We need to do this here to satisfy the vnode_pager and the
462	 * pageout daemon, so that it thinks that the pages have been
463	 * "cleaned".  Note that since the pages are in a delayed write
464	 * buffer -- the VFS layer "will" see that the pages get written
465	 * out on the next sync, or perhaps the cluster will be completed.
466	 */
467	vfs_clean_pages(bp);
468	bqrelse(bp);
469
470	if (numdirtybuffers >= hidirtybuffers)
471		flushdirtybuffers(0, 0);
472
473	return;
474}
475
476/*
477 * Asynchronous write.
478 * Start output on a buffer, but do not wait for it to complete.
479 * The buffer is released when the output completes.
480 */
481void
482bawrite(struct buf * bp)
483{
484	bp->b_flags |= B_ASYNC;
485	(void) VOP_BWRITE(bp);
486}
487
488/*
489 * Ordered write.
490 * Start output on a buffer, but only wait for it to complete if the
491 * output device cannot guarantee ordering in some other way.  Devices
492 * that can perform asynchronous ordered writes will set the B_ASYNC
493 * flag in their strategy routine.
494 * The buffer is released when the output completes.
495 */
496int
497bowrite(struct buf * bp)
498{
499	/*
500	 * XXX Add in B_ASYNC once the SCSI
501	 *     layer can deal with ordered
502	 *     writes properly.
503	 */
504	bp->b_flags |= B_ORDERED;
505	return (VOP_BWRITE(bp));
506}
507
508/*
509 * Release a buffer.
510 */
511void
512brelse(struct buf * bp)
513{
514	int s;
515
516	if (bp->b_flags & B_CLUSTER) {
517		relpbuf(bp);
518		return;
519	}
520	/* anyone need a "free" block? */
521	s = splbio();
522
523	/* anyone need this block? */
524	if (bp->b_flags & B_WANTED) {
525		bp->b_flags &= ~(B_WANTED | B_AGE);
526		wakeup(bp);
527	}
528
529	if (bp->b_flags & B_LOCKED)
530		bp->b_flags &= ~B_ERROR;
531
532	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
533	    (bp->b_bufsize <= 0)) {
534		bp->b_flags |= B_INVAL;
535		if (bp->b_flags & B_DELWRI)
536			--numdirtybuffers;
537		bp->b_flags &= ~(B_DELWRI | B_CACHE);
538		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
539			if (bp->b_bufsize)
540				allocbuf(bp, 0);
541			brelvp(bp);
542		}
543	}
544
545	/*
546	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
547	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
548	 * but the VM object is kept around.  The B_NOCACHE flag is used to
549	 * invalidate the pages in the VM object.
550	 *
551	 * If the buffer is a partially filled NFS buffer, keep it
552	 * since invalidating it now will lose informatio.  The valid
553	 * flags in the vm_pages have only DEV_BSIZE resolution but
554	 * the b_validoff, b_validend fields have byte resolution.
555	 * This can avoid unnecessary re-reads of the buffer.
556	 * XXX this seems to cause performance problems.
557	 */
558	if ((bp->b_flags & B_VMIO)
559	    && !(bp->b_vp->v_tag == VT_NFS &&
560		 bp->b_vp->v_type != VBLK &&
561		 (bp->b_flags & B_DELWRI) != 0)
562#ifdef notdef
563	    && (bp->b_vp->v_tag != VT_NFS
564		|| bp->b_vp->v_type == VBLK
565		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
566		|| bp->b_validend == 0
567		|| (bp->b_validoff == 0
568		    && bp->b_validend == bp->b_bufsize))
569#endif
570	    ) {
571		vm_ooffset_t foff;
572		vm_object_t obj;
573		int i, resid;
574		vm_page_t m;
575		struct vnode *vp;
576		int iototal = bp->b_bufsize;
577
578		vp = bp->b_vp;
579
580#if !defined(MAX_PERF)
581		if (!vp)
582			panic("brelse: missing vp");
583#endif
584
585		if (bp->b_npages) {
586			vm_pindex_t poff;
587			obj = (vm_object_t) vp->v_object;
588			if (vp->v_type == VBLK)
589				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
590			else
591				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
592			poff = OFF_TO_IDX(foff);
593			for (i = 0; i < bp->b_npages; i++) {
594				m = bp->b_pages[i];
595				if (m == bogus_page) {
596					m = vm_page_lookup(obj, poff + i);
597#if !defined(MAX_PERF)
598					if (!m) {
599						panic("brelse: page missing\n");
600					}
601#endif
602					bp->b_pages[i] = m;
603					pmap_qenter(trunc_page(bp->b_data),
604						bp->b_pages, bp->b_npages);
605				}
606				resid = IDX_TO_OFF(m->pindex+1) - foff;
607				if (resid > iototal)
608					resid = iototal;
609				if (resid > 0) {
610					/*
611					 * Don't invalidate the page if the local machine has already
612					 * modified it.  This is the lesser of two evils, and should
613					 * be fixed.
614					 */
615					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
616						vm_page_test_dirty(m);
617						if (m->dirty == 0) {
618							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
619							if (m->valid == 0)
620								vm_page_protect(m, VM_PROT_NONE);
621						}
622					}
623					if (resid >= PAGE_SIZE) {
624						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
625							bp->b_flags |= B_INVAL;
626						}
627					} else {
628						if (!vm_page_is_valid(m,
629							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
630							bp->b_flags |= B_INVAL;
631						}
632					}
633				}
634				foff += resid;
635				iototal -= resid;
636			}
637		}
638		if (bp->b_flags & (B_INVAL | B_RELBUF))
639			vfs_vmio_release(bp);
640	}
641#if !defined(MAX_PERF)
642	if (bp->b_qindex != QUEUE_NONE)
643		panic("brelse: free buffer onto another queue???");
644#endif
645
646	/* enqueue */
647	/* buffers with no memory */
648	if (bp->b_bufsize == 0) {
649		bp->b_flags |= B_INVAL;
650		bp->b_qindex = QUEUE_EMPTY;
651		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
652		LIST_REMOVE(bp, b_hash);
653		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
654		bp->b_dev = NODEV;
655
656	/* buffers with junk contents */
657	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
658		bp->b_flags |= B_INVAL;
659		bp->b_qindex = QUEUE_AGE;
660		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
661		LIST_REMOVE(bp, b_hash);
662		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
663		bp->b_dev = NODEV;
664
665	/* buffers that are locked */
666	} else if (bp->b_flags & B_LOCKED) {
667		bp->b_qindex = QUEUE_LOCKED;
668		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
669
670	/* buffers with stale but valid contents */
671	} else if (bp->b_flags & B_AGE) {
672		bp->b_qindex = QUEUE_AGE;
673		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
674
675	/* buffers with valid and quite potentially reuseable contents */
676	} else {
677		bp->b_qindex = QUEUE_LRU;
678		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
679	}
680
681	if ((bp->b_flags & B_INVAL) ||
682		(bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
683		if (bp->b_flags & B_DELWRI) {
684			--numdirtybuffers;
685			bp->b_flags &= ~B_DELWRI;
686		}
687		vfs_bio_need_satisfy();
688	}
689
690	/* unlock */
691	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
692				B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
693	splx(s);
694}
695
696/*
697 * Release a buffer.
698 */
699void
700bqrelse(struct buf * bp)
701{
702	int s;
703
704	s = splbio();
705
706	/* anyone need this block? */
707	if (bp->b_flags & B_WANTED) {
708		bp->b_flags &= ~(B_WANTED | B_AGE);
709		wakeup(bp);
710	}
711
712#if !defined(MAX_PERF)
713	if (bp->b_qindex != QUEUE_NONE)
714		panic("bqrelse: free buffer onto another queue???");
715#endif
716
717	if (bp->b_flags & B_LOCKED) {
718		bp->b_flags &= ~B_ERROR;
719		bp->b_qindex = QUEUE_LOCKED;
720		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
721		/* buffers with stale but valid contents */
722	} else {
723		bp->b_qindex = QUEUE_LRU;
724		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
725	}
726
727	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
728		vfs_bio_need_satisfy();
729	}
730
731	/* unlock */
732	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
733		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
734	splx(s);
735}
736
737static void
738vfs_vmio_release(bp)
739	struct buf *bp;
740{
741	int i;
742	vm_page_t m;
743
744	for (i = 0; i < bp->b_npages; i++) {
745		m = bp->b_pages[i];
746		bp->b_pages[i] = NULL;
747		vm_page_unwire(m);
748		/*
749		 * We don't mess with busy pages, it is
750		 * the responsibility of the process that
751		 * busied the pages to deal with them.
752		 */
753		if ((m->flags & PG_BUSY) || (m->busy != 0))
754			continue;
755
756		if (m->wire_count == 0) {
757
758			if (m->flags & PG_WANTED) {
759				m->flags &= ~PG_WANTED;
760				wakeup(m);
761			}
762
763			/*
764			 * If this is an async free -- we cannot place
765			 * pages onto the cache queue.  If it is an
766			 * async free, then we don't modify any queues.
767			 * This is probably in error (for perf reasons),
768			 * and we will eventually need to build
769			 * a more complete infrastructure to support I/O
770			 * rundown.
771			 */
772			if ((bp->b_flags & B_ASYNC) == 0) {
773
774			/*
775			 * In the case of sync buffer frees, we can do pretty much
776			 * anything to any of the memory queues.  Specifically,
777			 * the cache queue is okay to be modified.
778			 */
779				if (m->valid) {
780					if(m->dirty == 0)
781						vm_page_test_dirty(m);
782					/*
783					 * this keeps pressure off of the process memory
784					 */
785					if (m->dirty == 0 && m->hold_count == 0)
786						vm_page_cache(m);
787					else
788						vm_page_deactivate(m);
789				} else if (m->hold_count == 0) {
790					vm_page_protect(m, VM_PROT_NONE);
791					vm_page_free(m);
792				}
793			} else {
794				/*
795				 * If async, then at least we clear the
796				 * act_count.
797				 */
798				m->act_count = 0;
799			}
800		}
801	}
802	bufspace -= bp->b_bufsize;
803	vmiospace -= bp->b_bufsize;
804	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
805	bp->b_npages = 0;
806	bp->b_bufsize = 0;
807	bp->b_flags &= ~B_VMIO;
808	if (bp->b_vp)
809		brelvp(bp);
810}
811
812/*
813 * Check to see if a block is currently memory resident.
814 */
815struct buf *
816gbincore(struct vnode * vp, daddr_t blkno)
817{
818	struct buf *bp;
819	struct bufhashhdr *bh;
820
821	bh = BUFHASH(vp, blkno);
822	bp = bh->lh_first;
823
824	/* Search hash chain */
825	while (bp != NULL) {
826		/* hit */
827		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
828		    (bp->b_flags & B_INVAL) == 0) {
829			break;
830		}
831		bp = bp->b_hash.le_next;
832	}
833	return (bp);
834}
835
836/*
837 * this routine implements clustered async writes for
838 * clearing out B_DELWRI buffers...  This is much better
839 * than the old way of writing only one buffer at a time.
840 */
841int
842vfs_bio_awrite(struct buf * bp)
843{
844	int i;
845	daddr_t lblkno = bp->b_lblkno;
846	struct vnode *vp = bp->b_vp;
847	int s;
848	int ncl;
849	struct buf *bpa;
850	int nwritten;
851
852	s = splbio();
853	/*
854	 * right now we support clustered writing only to regular files
855	 */
856	if ((vp->v_type == VREG) &&
857	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
858	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
859		int size;
860		int maxcl;
861
862		size = vp->v_mount->mnt_stat.f_iosize;
863		maxcl = MAXPHYS / size;
864
865		for (i = 1; i < maxcl; i++) {
866			if ((bpa = gbincore(vp, lblkno + i)) &&
867			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
868			    (B_DELWRI | B_CLUSTEROK)) &&
869			    (bpa->b_bufsize == size)) {
870				if ((bpa->b_blkno == bpa->b_lblkno) ||
871				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
872					break;
873			} else {
874				break;
875			}
876		}
877		ncl = i;
878		/*
879		 * this is a possible cluster write
880		 */
881		if (ncl != 1) {
882			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
883			splx(s);
884			return nwritten;
885		}
886	}
887	bremfree(bp);
888	splx(s);
889	/*
890	 * default (old) behavior, writing out only one block
891	 */
892	bp->b_flags |= B_BUSY | B_ASYNC;
893	nwritten = bp->b_bufsize;
894	(void) VOP_BWRITE(bp);
895	return nwritten;
896}
897
898
899/*
900 * Find a buffer header which is available for use.
901 */
902static struct buf *
903getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize)
904{
905	struct buf *bp, *bp1;
906	int nbyteswritten = 0;
907	vm_offset_t addr;
908	static int writerecursion = 0;
909
910start:
911	if (bufspace >= maxbufspace)
912		goto trytofreespace;
913
914	/* can we constitute a new buffer? */
915	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
916#if !defined(MAX_PERF)
917		if (bp->b_qindex != QUEUE_EMPTY)
918			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
919			    bp->b_qindex);
920#endif
921		bp->b_flags |= B_BUSY;
922		bremfree(bp);
923		goto fillbuf;
924	}
925trytofreespace:
926	/*
927	 * We keep the file I/O from hogging metadata I/O
928	 * This is desirable because file data is cached in the
929	 * VM/Buffer cache even if a buffer is freed.
930	 */
931	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
932#if !defined(MAX_PERF)
933		if (bp->b_qindex != QUEUE_AGE)
934			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
935			    bp->b_qindex);
936#endif
937	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
938#if !defined(MAX_PERF)
939		if (bp->b_qindex != QUEUE_LRU)
940			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
941			    bp->b_qindex);
942#endif
943	}
944	if (!bp) {
945		/* wait for a free buffer of any kind */
946		needsbuffer |= VFS_BIO_NEED_ANY;
947		do
948			tsleep(&needsbuffer, (PRIBIO + 1) | slpflag, "newbuf",
949			    slptimeo);
950		while (needsbuffer & VFS_BIO_NEED_ANY);
951		return (0);
952	}
953
954#if defined(DIAGNOSTIC)
955	if (bp->b_flags & B_BUSY) {
956		panic("getnewbuf: busy buffer on free list\n");
957	}
958#endif
959
960	/*
961	 * We are fairly aggressive about freeing VMIO buffers, but since
962	 * the buffering is intact without buffer headers, there is not
963	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
964	 */
965	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
966		if ((bp->b_flags & B_VMIO) == 0 ||
967			(vmiospace < maxvmiobufspace)) {
968			--bp->b_usecount;
969			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
970			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
971				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
972				goto start;
973			}
974			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
975		}
976	}
977
978
979	/* if we are a delayed write, convert to an async write */
980	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
981
982		if (writerecursion > 0) {
983			bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
984			while (bp) {
985				if ((bp->b_flags & B_DELWRI) == 0)
986					break;
987				bp = TAILQ_NEXT(bp, b_freelist);
988			}
989			if (bp == NULL) {
990				bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
991				while (bp) {
992					if ((bp->b_flags & B_DELWRI) == 0)
993						break;
994					bp = TAILQ_NEXT(bp, b_freelist);
995				}
996			}
997			if (bp == NULL)
998				panic("getnewbuf: cannot get buffer, infinite recursion failure");
999		} else {
1000			++writerecursion;
1001			nbyteswritten += vfs_bio_awrite(bp);
1002			--writerecursion;
1003			if (!slpflag && !slptimeo) {
1004				return (0);
1005			}
1006			goto start;
1007		}
1008	}
1009
1010	if (bp->b_flags & B_WANTED) {
1011		bp->b_flags &= ~B_WANTED;
1012		wakeup(bp);
1013	}
1014	bremfree(bp);
1015	bp->b_flags |= B_BUSY;
1016
1017	if (bp->b_flags & B_VMIO) {
1018		bp->b_flags &= ~B_ASYNC;
1019		vfs_vmio_release(bp);
1020	}
1021
1022	if (bp->b_vp)
1023		brelvp(bp);
1024
1025fillbuf:
1026	/* we are not free, nor do we contain interesting data */
1027	if (bp->b_rcred != NOCRED) {
1028		crfree(bp->b_rcred);
1029		bp->b_rcred = NOCRED;
1030	}
1031	if (bp->b_wcred != NOCRED) {
1032		crfree(bp->b_wcred);
1033		bp->b_wcred = NOCRED;
1034	}
1035
1036	LIST_REMOVE(bp, b_hash);
1037	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1038	if (bp->b_bufsize) {
1039		allocbuf(bp, 0);
1040	}
1041	bp->b_flags = B_BUSY;
1042	bp->b_dev = NODEV;
1043	bp->b_vp = NULL;
1044	bp->b_blkno = bp->b_lblkno = 0;
1045	bp->b_iodone = 0;
1046	bp->b_error = 0;
1047	bp->b_resid = 0;
1048	bp->b_bcount = 0;
1049	bp->b_npages = 0;
1050	bp->b_dirtyoff = bp->b_dirtyend = 0;
1051	bp->b_validoff = bp->b_validend = 0;
1052	bp->b_usecount = 4;
1053
1054	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1055
1056	/*
1057	 * we assume that buffer_map is not at address 0
1058	 */
1059	addr = 0;
1060	if (maxsize != bp->b_kvasize) {
1061		bfreekva(bp);
1062
1063findkvaspace:
1064		/*
1065		 * See if we have buffer kva space
1066		 */
1067		if (vm_map_findspace(buffer_map,
1068			vm_map_min(buffer_map), maxsize, &addr)) {
1069			for (bp1 = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1070			    bp1 != NULL; bp1 = TAILQ_NEXT(bp1, b_freelist))
1071				if (bp1->b_kvasize != 0) {
1072					bremfree(bp1);
1073					bfreekva(bp1);
1074					brelse(bp1);
1075					goto findkvaspace;
1076				}
1077			bp->b_flags |= B_INVAL;
1078			brelse(bp);
1079			goto trytofreespace;
1080		}
1081	}
1082
1083	/*
1084	 * See if we are below are allocated minimum
1085	 */
1086	if (bufspace >= (maxbufspace + nbyteswritten)) {
1087		bp->b_flags |= B_INVAL;
1088		brelse(bp);
1089		goto trytofreespace;
1090	}
1091
1092	/*
1093	 * create a map entry for the buffer -- in essence
1094	 * reserving the kva space.
1095	 */
1096	if (addr) {
1097		vm_map_insert(buffer_map, NULL, 0,
1098			addr, addr + maxsize,
1099			VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1100
1101		bp->b_kvabase = (caddr_t) addr;
1102		bp->b_kvasize = maxsize;
1103	}
1104	bp->b_data = bp->b_kvabase;
1105
1106	return (bp);
1107}
1108
1109static void
1110waitfreebuffers(int slpflag, int slptimeo) {
1111	while (numfreebuffers < hifreebuffers) {
1112		flushdirtybuffers(slpflag, slptimeo);
1113		if (numfreebuffers < hifreebuffers)
1114			break;
1115		needsbuffer |= VFS_BIO_NEED_FREE;
1116		if (tsleep(&needsbuffer, PRIBIO|slpflag, "biofre", slptimeo))
1117			break;
1118	}
1119}
1120
1121static void
1122flushdirtybuffers(int slpflag, int slptimeo) {
1123	int s;
1124	static pid_t flushing = 0;
1125
1126	s = splbio();
1127
1128	if (flushing) {
1129		if (flushing == curproc->p_pid) {
1130			splx(s);
1131			return;
1132		}
1133		while (flushing) {
1134			if (tsleep(&flushing, PRIBIO|slpflag, "biofls", slptimeo)) {
1135				splx(s);
1136				return;
1137			}
1138		}
1139	}
1140	flushing = curproc->p_pid;
1141
1142	while (numdirtybuffers > lodirtybuffers) {
1143		struct buf *bp;
1144		needsbuffer |= VFS_BIO_NEED_LOWLIMIT;
1145		bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1146		if (bp == NULL)
1147			bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1148
1149		while (bp && ((bp->b_flags & B_DELWRI) == 0)) {
1150			bp = TAILQ_NEXT(bp, b_freelist);
1151		}
1152
1153		if (bp) {
1154			splx(s);
1155			vfs_bio_awrite(bp);
1156			s = splbio();
1157			continue;
1158		}
1159		break;
1160	}
1161
1162	flushing = 0;
1163	wakeup(&flushing);
1164	splx(s);
1165}
1166
1167/*
1168 * Check to see if a block is currently memory resident.
1169 */
1170struct buf *
1171incore(struct vnode * vp, daddr_t blkno)
1172{
1173	struct buf *bp;
1174
1175	int s = splbio();
1176	bp = gbincore(vp, blkno);
1177	splx(s);
1178	return (bp);
1179}
1180
1181/*
1182 * Returns true if no I/O is needed to access the
1183 * associated VM object.  This is like incore except
1184 * it also hunts around in the VM system for the data.
1185 */
1186
1187int
1188inmem(struct vnode * vp, daddr_t blkno)
1189{
1190	vm_object_t obj;
1191	vm_offset_t toff, tinc;
1192	vm_page_t m;
1193	vm_ooffset_t off;
1194
1195	if (incore(vp, blkno))
1196		return 1;
1197	if (vp->v_mount == NULL)
1198		return 0;
1199	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
1200		return 0;
1201
1202	obj = vp->v_object;
1203	tinc = PAGE_SIZE;
1204	if (tinc > vp->v_mount->mnt_stat.f_iosize)
1205		tinc = vp->v_mount->mnt_stat.f_iosize;
1206	off = blkno * vp->v_mount->mnt_stat.f_iosize;
1207
1208	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1209
1210		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1211		if (!m)
1212			return 0;
1213		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
1214			return 0;
1215	}
1216	return 1;
1217}
1218
1219/*
1220 * now we set the dirty range for the buffer --
1221 * for NFS -- if the file is mapped and pages have
1222 * been written to, let it know.  We want the
1223 * entire range of the buffer to be marked dirty if
1224 * any of the pages have been written to for consistancy
1225 * with the b_validoff, b_validend set in the nfs write
1226 * code, and used by the nfs read code.
1227 */
1228static void
1229vfs_setdirty(struct buf *bp) {
1230	int i;
1231	vm_object_t object;
1232	vm_offset_t boffset, offset;
1233	/*
1234	 * We qualify the scan for modified pages on whether the
1235	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1236	 * is not cleared simply by protecting pages off.
1237	 */
1238	if ((bp->b_flags & B_VMIO) &&
1239		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1240		/*
1241		 * test the pages to see if they have been modified directly
1242		 * by users through the VM system.
1243		 */
1244		for (i = 0; i < bp->b_npages; i++)
1245			vm_page_test_dirty(bp->b_pages[i]);
1246
1247		/*
1248		 * scan forwards for the first page modified
1249		 */
1250		for (i = 0; i < bp->b_npages; i++) {
1251			if (bp->b_pages[i]->dirty) {
1252				break;
1253			}
1254		}
1255		boffset = (i << PAGE_SHIFT);
1256		if (boffset < bp->b_dirtyoff) {
1257			bp->b_dirtyoff = boffset;
1258		}
1259
1260		/*
1261		 * scan backwards for the last page modified
1262		 */
1263		for (i = bp->b_npages - 1; i >= 0; --i) {
1264			if (bp->b_pages[i]->dirty) {
1265				break;
1266			}
1267		}
1268		boffset = (i + 1);
1269		offset = boffset + bp->b_pages[0]->pindex;
1270		if (offset >= object->size)
1271			boffset = object->size - bp->b_pages[0]->pindex;
1272		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
1273			bp->b_dirtyend = (boffset << PAGE_SHIFT);
1274	}
1275}
1276
1277/*
1278 * Get a block given a specified block and offset into a file/device.
1279 */
1280struct buf *
1281getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1282{
1283	struct buf *bp;
1284	int s;
1285	struct bufhashhdr *bh;
1286	int maxsize;
1287
1288	if (vp->v_mount) {
1289		maxsize = vp->v_mount->mnt_stat.f_iosize;
1290		/*
1291		 * This happens on mount points.
1292		 */
1293		if (maxsize < size)
1294			maxsize = size;
1295	} else {
1296		maxsize = size;
1297	}
1298
1299#if !defined(MAX_PERF)
1300	if (size > MAXBSIZE)
1301		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1302#endif
1303
1304	s = splbio();
1305loop:
1306	if (numfreebuffers < lofreebuffers) {
1307		waitfreebuffers(slpflag, slptimeo);
1308	}
1309
1310	if ((bp = gbincore(vp, blkno))) {
1311		if (bp->b_flags & B_BUSY) {
1312			bp->b_flags |= B_WANTED;
1313			if (bp->b_usecount < BUF_MAXUSE)
1314				++bp->b_usecount;
1315			if (!tsleep(bp,
1316				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
1317				goto loop;
1318
1319			splx(s);
1320			return (struct buf *) NULL;
1321		}
1322		bp->b_flags |= B_BUSY | B_CACHE;
1323		bremfree(bp);
1324
1325		/*
1326		 * check for size inconsistancies (note that they shouldn't
1327		 * happen but do when filesystems don't handle the size changes
1328		 * correctly.) We are conservative on metadata and don't just
1329		 * extend the buffer but write and re-constitute it.
1330		 */
1331
1332		if (bp->b_bcount != size) {
1333			if ((bp->b_flags & B_VMIO) && (size <= bp->b_kvasize)) {
1334				allocbuf(bp, size);
1335			} else {
1336				bp->b_flags |= B_NOCACHE;
1337				VOP_BWRITE(bp);
1338				goto loop;
1339			}
1340		}
1341
1342		if (bp->b_usecount < BUF_MAXUSE)
1343			++bp->b_usecount;
1344		splx(s);
1345		return (bp);
1346	} else {
1347		vm_object_t obj;
1348
1349		if ((bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize)) == 0) {
1350			if (slpflag || slptimeo) {
1351				splx(s);
1352				return NULL;
1353			}
1354			goto loop;
1355		}
1356
1357		/*
1358		 * This code is used to make sure that a buffer is not
1359		 * created while the getnewbuf routine is blocked.
1360		 * Normally the vnode is locked so this isn't a problem.
1361		 * VBLK type I/O requests, however, don't lock the vnode.
1362		 */
1363		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1364			bp->b_flags |= B_INVAL;
1365			brelse(bp);
1366			goto loop;
1367		}
1368
1369		/*
1370		 * Insert the buffer into the hash, so that it can
1371		 * be found by incore.
1372		 */
1373		bp->b_blkno = bp->b_lblkno = blkno;
1374		bgetvp(vp, bp);
1375		LIST_REMOVE(bp, b_hash);
1376		bh = BUFHASH(vp, blkno);
1377		LIST_INSERT_HEAD(bh, bp, b_hash);
1378
1379		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1380			bp->b_flags |= (B_VMIO | B_CACHE);
1381#if defined(VFS_BIO_DEBUG)
1382			if (vp->v_type != VREG && vp->v_type != VBLK)
1383				printf("getblk: vmioing file type %d???\n", vp->v_type);
1384#endif
1385		} else {
1386			bp->b_flags &= ~B_VMIO;
1387		}
1388		splx(s);
1389
1390		allocbuf(bp, size);
1391#ifdef	PC98
1392		/*
1393		 * 1024byte/sector support
1394		 */
1395#define B_XXX2 0x8000000
1396		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1397#endif
1398		return (bp);
1399	}
1400}
1401
1402/*
1403 * Get an empty, disassociated buffer of given size.
1404 */
1405struct buf *
1406geteblk(int size)
1407{
1408	struct buf *bp;
1409	int s;
1410
1411	s = splbio();
1412	while ((bp = getnewbuf(0, 0, 0, size, MAXBSIZE)) == 0);
1413	splx(s);
1414	allocbuf(bp, size);
1415	bp->b_flags |= B_INVAL;
1416	return (bp);
1417}
1418
1419
1420/*
1421 * This code constitutes the buffer memory from either anonymous system
1422 * memory (in the case of non-VMIO operations) or from an associated
1423 * VM object (in the case of VMIO operations).
1424 *
1425 * Note that this code is tricky, and has many complications to resolve
1426 * deadlock or inconsistant data situations.  Tread lightly!!!
1427 *
1428 * Modify the length of a buffer's underlying buffer storage without
1429 * destroying information (unless, of course the buffer is shrinking).
1430 */
1431int
1432allocbuf(struct buf * bp, int size)
1433{
1434
1435	int s;
1436	int newbsize, mbsize;
1437	int i;
1438
1439#if !defined(MAX_PERF)
1440	if (!(bp->b_flags & B_BUSY))
1441		panic("allocbuf: buffer not busy");
1442
1443	if (bp->b_kvasize < size)
1444		panic("allocbuf: buffer too small");
1445#endif
1446
1447	if ((bp->b_flags & B_VMIO) == 0) {
1448		caddr_t origbuf;
1449		int origbufsize;
1450		/*
1451		 * Just get anonymous memory from the kernel
1452		 */
1453		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1454#if !defined(NO_B_MALLOC)
1455		if (bp->b_flags & B_MALLOC)
1456			newbsize = mbsize;
1457		else
1458#endif
1459			newbsize = round_page(size);
1460
1461		if (newbsize < bp->b_bufsize) {
1462#if !defined(NO_B_MALLOC)
1463			/*
1464			 * malloced buffers are not shrunk
1465			 */
1466			if (bp->b_flags & B_MALLOC) {
1467				if (newbsize) {
1468					bp->b_bcount = size;
1469				} else {
1470					free(bp->b_data, M_BIOBUF);
1471					bufspace -= bp->b_bufsize;
1472					bufmallocspace -= bp->b_bufsize;
1473					bp->b_data = bp->b_kvabase;
1474					bp->b_bufsize = 0;
1475					bp->b_bcount = 0;
1476					bp->b_flags &= ~B_MALLOC;
1477				}
1478				return 1;
1479			}
1480#endif
1481			vm_hold_free_pages(
1482			    bp,
1483			    (vm_offset_t) bp->b_data + newbsize,
1484			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1485		} else if (newbsize > bp->b_bufsize) {
1486#if !defined(NO_B_MALLOC)
1487			/*
1488			 * We only use malloced memory on the first allocation.
1489			 * and revert to page-allocated memory when the buffer grows.
1490			 */
1491			if ( (bufmallocspace < maxbufmallocspace) &&
1492				(bp->b_bufsize == 0) &&
1493				(mbsize <= PAGE_SIZE/2)) {
1494
1495				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1496				bp->b_bufsize = mbsize;
1497				bp->b_bcount = size;
1498				bp->b_flags |= B_MALLOC;
1499				bufspace += mbsize;
1500				bufmallocspace += mbsize;
1501				return 1;
1502			}
1503#endif
1504			origbuf = NULL;
1505			origbufsize = 0;
1506#if !defined(NO_B_MALLOC)
1507			/*
1508			 * If the buffer is growing on it's other-than-first allocation,
1509			 * then we revert to the page-allocation scheme.
1510			 */
1511			if (bp->b_flags & B_MALLOC) {
1512				origbuf = bp->b_data;
1513				origbufsize = bp->b_bufsize;
1514				bp->b_data = bp->b_kvabase;
1515				bufspace -= bp->b_bufsize;
1516				bufmallocspace -= bp->b_bufsize;
1517				bp->b_bufsize = 0;
1518				bp->b_flags &= ~B_MALLOC;
1519				newbsize = round_page(newbsize);
1520			}
1521#endif
1522			vm_hold_load_pages(
1523			    bp,
1524			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1525			    (vm_offset_t) bp->b_data + newbsize);
1526#if !defined(NO_B_MALLOC)
1527			if (origbuf) {
1528				bcopy(origbuf, bp->b_data, origbufsize);
1529				free(origbuf, M_BIOBUF);
1530			}
1531#endif
1532		}
1533	} else {
1534		vm_page_t m;
1535		int desiredpages;
1536
1537		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1538		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1539
1540#if !defined(NO_B_MALLOC)
1541		if (bp->b_flags & B_MALLOC)
1542			panic("allocbuf: VMIO buffer can't be malloced");
1543#endif
1544
1545		if (newbsize < bp->b_bufsize) {
1546			if (desiredpages < bp->b_npages) {
1547				for (i = desiredpages; i < bp->b_npages; i++) {
1548					/*
1549					 * the page is not freed here -- it
1550					 * is the responsibility of vnode_pager_setsize
1551					 */
1552					m = bp->b_pages[i];
1553#if defined(DIAGNOSTIC)
1554					if (m == bogus_page)
1555						panic("allocbuf: bogus page found");
1556#endif
1557					s = splvm();
1558					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1559						m->flags |= PG_WANTED;
1560						tsleep(m, PVM, "biodep", 0);
1561					}
1562					splx(s);
1563
1564					bp->b_pages[i] = NULL;
1565					vm_page_unwire(m);
1566				}
1567				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1568				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1569				bp->b_npages = desiredpages;
1570			}
1571		} else if (newbsize > bp->b_bufsize) {
1572			vm_object_t obj;
1573			vm_offset_t tinc, toff;
1574			vm_ooffset_t off;
1575			vm_pindex_t objoff;
1576			int pageindex, curbpnpages;
1577			struct vnode *vp;
1578			int bsize;
1579
1580			vp = bp->b_vp;
1581
1582			if (vp->v_type == VBLK)
1583				bsize = DEV_BSIZE;
1584			else
1585				bsize = vp->v_mount->mnt_stat.f_iosize;
1586
1587			if (bp->b_npages < desiredpages) {
1588				obj = vp->v_object;
1589				tinc = PAGE_SIZE;
1590				if (tinc > bsize)
1591					tinc = bsize;
1592				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1593				curbpnpages = bp->b_npages;
1594		doretry:
1595				bp->b_flags |= B_CACHE;
1596				bp->b_validoff = bp->b_validend = 0;
1597				for (toff = 0; toff < newbsize; toff += tinc) {
1598					int bytesinpage;
1599
1600					pageindex = toff >> PAGE_SHIFT;
1601					objoff = OFF_TO_IDX(off + toff);
1602					if (pageindex < curbpnpages) {
1603
1604						m = bp->b_pages[pageindex];
1605#ifdef VFS_BIO_DIAG
1606						if (m->pindex != objoff)
1607							panic("allocbuf: page changed offset??!!!?");
1608#endif
1609						bytesinpage = tinc;
1610						if (tinc > (newbsize - toff))
1611							bytesinpage = newbsize - toff;
1612						if (bp->b_flags & B_CACHE)
1613							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1614						continue;
1615					}
1616					m = vm_page_lookup(obj, objoff);
1617					if (!m) {
1618						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1619						if (!m) {
1620							VM_WAIT;
1621							goto doretry;
1622						}
1623						/*
1624						 * Normally it is unwise to clear PG_BUSY without
1625						 * PAGE_WAKEUP -- but it is okay here, as there is
1626						 * no chance for blocking between here and vm_page_alloc
1627						 */
1628						m->flags &= ~PG_BUSY;
1629						vm_page_wire(m);
1630						bp->b_flags &= ~B_CACHE;
1631					} else if (m->flags & PG_BUSY) {
1632						s = splvm();
1633						if (m->flags & PG_BUSY) {
1634							m->flags |= PG_WANTED;
1635							tsleep(m, PVM, "pgtblk", 0);
1636						}
1637						splx(s);
1638						goto doretry;
1639					} else {
1640						if ((curproc != pageproc) &&
1641							((m->queue - m->pc) == PQ_CACHE) &&
1642						    ((cnt.v_free_count + cnt.v_cache_count) <
1643								(cnt.v_free_min + cnt.v_cache_min))) {
1644							pagedaemon_wakeup();
1645						}
1646						bytesinpage = tinc;
1647						if (tinc > (newbsize - toff))
1648							bytesinpage = newbsize - toff;
1649						if (bp->b_flags & B_CACHE)
1650							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1651						vm_page_wire(m);
1652					}
1653					bp->b_pages[pageindex] = m;
1654					curbpnpages = pageindex + 1;
1655				}
1656				if (vp->v_tag == VT_NFS &&
1657				    vp->v_type != VBLK) {
1658					if (bp->b_dirtyend > 0) {
1659						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
1660						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
1661					}
1662					if (bp->b_validend == 0)
1663						bp->b_flags &= ~B_CACHE;
1664				}
1665				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1666				bp->b_npages = curbpnpages;
1667				pmap_qenter((vm_offset_t) bp->b_data,
1668					bp->b_pages, bp->b_npages);
1669				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1670			}
1671		}
1672	}
1673	if (bp->b_flags & B_VMIO)
1674		vmiospace += (newbsize - bp->b_bufsize);
1675	bufspace += (newbsize - bp->b_bufsize);
1676	bp->b_bufsize = newbsize;
1677	bp->b_bcount = size;
1678	return 1;
1679}
1680
1681/*
1682 * Wait for buffer I/O completion, returning error status.
1683 */
1684int
1685biowait(register struct buf * bp)
1686{
1687	int s;
1688
1689	s = splbio();
1690	while ((bp->b_flags & B_DONE) == 0)
1691#if defined(NO_SCHEDULE_MODS)
1692		tsleep(bp, PRIBIO, "biowait", 0);
1693#else
1694		tsleep(bp, curproc->p_usrpri, "biowait", 0);
1695#endif
1696	splx(s);
1697	if (bp->b_flags & B_EINTR) {
1698		bp->b_flags &= ~B_EINTR;
1699		return (EINTR);
1700	}
1701	if (bp->b_flags & B_ERROR) {
1702		return (bp->b_error ? bp->b_error : EIO);
1703	} else {
1704		return (0);
1705	}
1706}
1707
1708/*
1709 * Finish I/O on a buffer, calling an optional function.
1710 * This is usually called from interrupt level, so process blocking
1711 * is not *a good idea*.
1712 */
1713void
1714biodone(register struct buf * bp)
1715{
1716	int s;
1717
1718	s = splbio();
1719
1720#if !defined(MAX_PERF)
1721	if (!(bp->b_flags & B_BUSY))
1722		panic("biodone: buffer not busy");
1723#endif
1724
1725	if (bp->b_flags & B_DONE) {
1726		splx(s);
1727#if !defined(MAX_PERF)
1728		printf("biodone: buffer already done\n");
1729#endif
1730		return;
1731	}
1732	bp->b_flags |= B_DONE;
1733
1734	if ((bp->b_flags & B_READ) == 0) {
1735		vwakeup(bp);
1736	}
1737#ifdef BOUNCE_BUFFERS
1738	if (bp->b_flags & B_BOUNCE)
1739		vm_bounce_free(bp);
1740#endif
1741
1742	/* call optional completion function if requested */
1743	if (bp->b_flags & B_CALL) {
1744		bp->b_flags &= ~B_CALL;
1745		(*bp->b_iodone) (bp);
1746		splx(s);
1747		return;
1748	}
1749	if (bp->b_flags & B_VMIO) {
1750		int i, resid;
1751		vm_ooffset_t foff;
1752		vm_page_t m;
1753		vm_object_t obj;
1754		int iosize;
1755		struct vnode *vp = bp->b_vp;
1756
1757		obj = vp->v_object;
1758
1759#if defined(VFS_BIO_DEBUG)
1760		if (vp->v_usecount == 0) {
1761			panic("biodone: zero vnode ref count");
1762		}
1763
1764		if (vp->v_object == NULL) {
1765			panic("biodone: missing VM object");
1766		}
1767
1768		if ((vp->v_flag & VVMIO) == 0) {
1769			panic("biodone: vnode is not setup for merged cache");
1770		}
1771#endif
1772
1773		if (vp->v_type == VBLK)
1774			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1775		else
1776			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1777#if !defined(MAX_PERF)
1778		if (!obj) {
1779			panic("biodone: no object");
1780		}
1781#endif
1782#if defined(VFS_BIO_DEBUG)
1783		if (obj->paging_in_progress < bp->b_npages) {
1784			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1785			    obj->paging_in_progress, bp->b_npages);
1786		}
1787#endif
1788		iosize = bp->b_bufsize;
1789		for (i = 0; i < bp->b_npages; i++) {
1790			int bogusflag = 0;
1791			m = bp->b_pages[i];
1792			if (m == bogus_page) {
1793				bogusflag = 1;
1794				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1795				if (!m) {
1796#if defined(VFS_BIO_DEBUG)
1797					printf("biodone: page disappeared\n");
1798#endif
1799					--obj->paging_in_progress;
1800					continue;
1801				}
1802				bp->b_pages[i] = m;
1803				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1804			}
1805#if defined(VFS_BIO_DEBUG)
1806			if (OFF_TO_IDX(foff) != m->pindex) {
1807				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1808			}
1809#endif
1810			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1811			if (resid > iosize)
1812				resid = iosize;
1813			/*
1814			 * In the write case, the valid and clean bits are
1815			 * already changed correctly, so we only need to do this
1816			 * here in the read case.
1817			 */
1818			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1819				vfs_page_set_valid(bp, foff, i, m);
1820			}
1821
1822			/*
1823			 * when debugging new filesystems or buffer I/O methods, this
1824			 * is the most common error that pops up.  if you see this, you
1825			 * have not set the page busy flag correctly!!!
1826			 */
1827			if (m->busy == 0) {
1828#if !defined(MAX_PERF)
1829				printf("biodone: page busy < 0, "
1830				    "pindex: %d, foff: 0x(%x,%x), "
1831				    "resid: %d, index: %d\n",
1832				    (int) m->pindex, (int)(foff >> 32),
1833						(int) foff & 0xffffffff, resid, i);
1834#endif
1835				if (vp->v_type != VBLK)
1836#if !defined(MAX_PERF)
1837					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1838					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1839					    (int) bp->b_lblkno,
1840					    bp->b_flags, bp->b_npages);
1841				else
1842					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1843					    (int) bp->b_lblkno,
1844					    bp->b_flags, bp->b_npages);
1845				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1846				    m->valid, m->dirty, m->wire_count);
1847#endif
1848				panic("biodone: page busy < 0\n");
1849			}
1850			--m->busy;
1851			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1852				m->flags &= ~PG_WANTED;
1853				wakeup(m);
1854			}
1855			--obj->paging_in_progress;
1856			foff += resid;
1857			iosize -= resid;
1858		}
1859		if (obj && obj->paging_in_progress == 0 &&
1860		    (obj->flags & OBJ_PIPWNT)) {
1861			obj->flags &= ~OBJ_PIPWNT;
1862			wakeup(obj);
1863		}
1864	}
1865	/*
1866	 * For asynchronous completions, release the buffer now. The brelse
1867	 * checks for B_WANTED and will do the wakeup there if necessary - so
1868	 * no need to do a wakeup here in the async case.
1869	 */
1870
1871	if (bp->b_flags & B_ASYNC) {
1872		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1873			brelse(bp);
1874		else
1875			bqrelse(bp);
1876	} else {
1877		bp->b_flags &= ~B_WANTED;
1878		wakeup(bp);
1879	}
1880	splx(s);
1881}
1882
1883int
1884count_lock_queue()
1885{
1886	int count;
1887	struct buf *bp;
1888
1889	count = 0;
1890	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1891	    bp != NULL;
1892	    bp = TAILQ_NEXT(bp, b_freelist))
1893		count++;
1894	return (count);
1895}
1896
1897int vfs_update_interval = 30;
1898
1899static void
1900vfs_update()
1901{
1902	while (1) {
1903		tsleep(&vfs_update_wakeup, PUSER, "update",
1904		    hz * vfs_update_interval);
1905		vfs_update_wakeup = 0;
1906		sync(curproc, NULL);
1907	}
1908}
1909
1910static int
1911sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1912{
1913	int error = sysctl_handle_int(oidp,
1914		oidp->oid_arg1, oidp->oid_arg2, req);
1915	if (!error)
1916		wakeup(&vfs_update_wakeup);
1917	return error;
1918}
1919
1920SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1921	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1922
1923
1924/*
1925 * This routine is called in lieu of iodone in the case of
1926 * incomplete I/O.  This keeps the busy status for pages
1927 * consistant.
1928 */
1929void
1930vfs_unbusy_pages(struct buf * bp)
1931{
1932	int i;
1933
1934	if (bp->b_flags & B_VMIO) {
1935		struct vnode *vp = bp->b_vp;
1936		vm_object_t obj = vp->v_object;
1937		vm_ooffset_t foff;
1938
1939		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1940
1941		for (i = 0; i < bp->b_npages; i++) {
1942			vm_page_t m = bp->b_pages[i];
1943
1944			if (m == bogus_page) {
1945				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1946#if !defined(MAX_PERF)
1947				if (!m) {
1948					panic("vfs_unbusy_pages: page missing\n");
1949				}
1950#endif
1951				bp->b_pages[i] = m;
1952				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1953			}
1954			--obj->paging_in_progress;
1955			--m->busy;
1956			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1957				m->flags &= ~PG_WANTED;
1958				wakeup(m);
1959			}
1960		}
1961		if (obj->paging_in_progress == 0 &&
1962		    (obj->flags & OBJ_PIPWNT)) {
1963			obj->flags &= ~OBJ_PIPWNT;
1964			wakeup(obj);
1965		}
1966	}
1967}
1968
1969/*
1970 * Set NFS' b_validoff and b_validend fields from the valid bits
1971 * of a page.  If the consumer is not NFS, and the page is not
1972 * valid for the entire range, clear the B_CACHE flag to force
1973 * the consumer to re-read the page.
1974 */
1975static void
1976vfs_buf_set_valid(struct buf *bp,
1977		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
1978		  vm_page_t m)
1979{
1980	if (bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK) {
1981		vm_offset_t svalid, evalid;
1982		int validbits = m->valid;
1983
1984		/*
1985		 * This only bothers with the first valid range in the
1986		 * page.
1987		 */
1988		svalid = off;
1989		while (validbits && !(validbits & 1)) {
1990			svalid += DEV_BSIZE;
1991			validbits >>= 1;
1992		}
1993		evalid = svalid;
1994		while (validbits & 1) {
1995			evalid += DEV_BSIZE;
1996			validbits >>= 1;
1997		}
1998		/*
1999		 * Make sure this range is contiguous with the range
2000		 * built up from previous pages.  If not, then we will
2001		 * just use the range from the previous pages.
2002		 */
2003		if (svalid == bp->b_validend) {
2004			bp->b_validoff = min(bp->b_validoff, svalid);
2005			bp->b_validend = max(bp->b_validend, evalid);
2006		}
2007	} else if (!vm_page_is_valid(m,
2008				     (vm_offset_t) ((foff + off) & PAGE_MASK),
2009				     size)) {
2010		bp->b_flags &= ~B_CACHE;
2011	}
2012}
2013
2014/*
2015 * Set the valid bits in a page, taking care of the b_validoff,
2016 * b_validend fields which NFS uses to optimise small reads.  Off is
2017 * the offset within the file and pageno is the page index within the buf.
2018 */
2019static void
2020vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2021{
2022	struct vnode *vp = bp->b_vp;
2023	vm_ooffset_t soff, eoff;
2024
2025	soff = off;
2026	eoff = off + min(PAGE_SIZE, bp->b_bufsize);
2027	vm_page_set_invalid(m,
2028			    (vm_offset_t) (soff & PAGE_MASK),
2029			    (vm_offset_t) (eoff - soff));
2030	if (vp->v_tag == VT_NFS && vp->v_type != VBLK) {
2031		vm_ooffset_t sv, ev;
2032		off = off - pageno * PAGE_SIZE;
2033		sv = off + ((bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1));
2034		ev = off + (bp->b_validend & ~(DEV_BSIZE - 1));
2035		soff = max(sv, soff);
2036		eoff = min(ev, eoff);
2037	}
2038	if (eoff > soff)
2039		vm_page_set_validclean(m,
2040				       (vm_offset_t) (soff & PAGE_MASK),
2041				       (vm_offset_t) (eoff - soff));
2042}
2043
2044/*
2045 * This routine is called before a device strategy routine.
2046 * It is used to tell the VM system that paging I/O is in
2047 * progress, and treat the pages associated with the buffer
2048 * almost as being PG_BUSY.  Also the object paging_in_progress
2049 * flag is handled to make sure that the object doesn't become
2050 * inconsistant.
2051 */
2052void
2053vfs_busy_pages(struct buf * bp, int clear_modify)
2054{
2055	int i;
2056
2057	if (bp->b_flags & B_VMIO) {
2058		struct vnode *vp = bp->b_vp;
2059		vm_object_t obj = vp->v_object;
2060		vm_ooffset_t foff;
2061
2062		if (vp->v_type == VBLK)
2063			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
2064		else
2065			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
2066		vfs_setdirty(bp);
2067		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2068			vm_page_t m = bp->b_pages[i];
2069
2070			if ((bp->b_flags & B_CLUSTER) == 0) {
2071				obj->paging_in_progress++;
2072				m->busy++;
2073			}
2074			vm_page_protect(m, VM_PROT_NONE);
2075			if (clear_modify)
2076				vfs_page_set_valid(bp, foff, i, m);
2077			else if (bp->b_bcount >= PAGE_SIZE) {
2078				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
2079					bp->b_pages[i] = bogus_page;
2080					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
2081				}
2082			}
2083		}
2084	}
2085}
2086
2087/*
2088 * Tell the VM system that the pages associated with this buffer
2089 * are clean.  This is used for delayed writes where the data is
2090 * going to go to disk eventually without additional VM intevention.
2091 */
2092void
2093vfs_clean_pages(struct buf * bp)
2094{
2095	int i;
2096
2097	if (bp->b_flags & B_VMIO) {
2098		struct vnode *vp = bp->b_vp;
2099		vm_ooffset_t foff;
2100
2101		if (vp->v_type == VBLK)
2102			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
2103		else
2104			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
2105		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2106			vm_page_t m = bp->b_pages[i];
2107
2108			vfs_page_set_valid(bp, foff, i, m);
2109		}
2110	}
2111}
2112
2113void
2114vfs_bio_clrbuf(struct buf *bp) {
2115	int i;
2116	if( bp->b_flags & B_VMIO) {
2117		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
2118			int mask;
2119			mask = 0;
2120			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
2121				mask |= (1 << (i/DEV_BSIZE));
2122			if( bp->b_pages[0]->valid != mask) {
2123				bzero(bp->b_data, bp->b_bufsize);
2124			}
2125			bp->b_pages[0]->valid = mask;
2126			bp->b_resid = 0;
2127			return;
2128		}
2129		for(i=0;i<bp->b_npages;i++) {
2130			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
2131				continue;
2132			if( bp->b_pages[i]->valid == 0) {
2133				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2134					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
2135				}
2136			} else {
2137				int j;
2138				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
2139					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
2140						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
2141				}
2142			}
2143			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
2144		}
2145		bp->b_resid = 0;
2146	} else {
2147		clrbuf(bp);
2148	}
2149}
2150
2151/*
2152 * vm_hold_load_pages and vm_hold_unload pages get pages into
2153 * a buffers address space.  The pages are anonymous and are
2154 * not associated with a file object.
2155 */
2156void
2157vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2158{
2159	vm_offset_t pg;
2160	vm_page_t p;
2161	int index;
2162
2163	to = round_page(to);
2164	from = round_page(from);
2165	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2166
2167	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2168
2169tryagain:
2170
2171		p = vm_page_alloc(kernel_object,
2172			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
2173		    VM_ALLOC_NORMAL);
2174		if (!p) {
2175			VM_WAIT;
2176			goto tryagain;
2177		}
2178		vm_page_wire(p);
2179		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
2180		bp->b_pages[index] = p;
2181		PAGE_WAKEUP(p);
2182	}
2183	bp->b_npages = index;
2184}
2185
2186void
2187vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2188{
2189	vm_offset_t pg;
2190	vm_page_t p;
2191	int index, newnpages;
2192
2193	from = round_page(from);
2194	to = round_page(to);
2195	newnpages = index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2196
2197	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2198		p = bp->b_pages[index];
2199		if (p && (index < bp->b_npages)) {
2200#if !defined(MAX_PERF)
2201			if (p->busy) {
2202				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2203					bp->b_blkno, bp->b_lblkno);
2204			}
2205#endif
2206			bp->b_pages[index] = NULL;
2207			pmap_kremove(pg);
2208			vm_page_unwire(p);
2209			vm_page_free(p);
2210		}
2211	}
2212	bp->b_npages = newnpages;
2213}
2214
2215
2216#include "opt_ddb.h"
2217#ifdef DDB
2218#include <ddb/ddb.h>
2219
2220DB_SHOW_COMMAND(buffer, db_show_buffer)
2221{
2222	/* get args */
2223	struct buf *bp = (struct buf *)addr;
2224
2225	if (!have_addr) {
2226		db_printf("usage: show buffer <addr>\n");
2227		return;
2228	}
2229
2230	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2231		  bp->b_flags, "\20\40bounce\37cluster\36vmio\35ram\34ordered"
2232		  "\33paging\32xxx\31writeinprog\30wanted\27relbuf\26tape"
2233		  "\25read\24raw\23phys\22clusterok\21malloc\20nocache"
2234		  "\17locked\16inval\15gathered\14error\13eintr\12done\11dirty"
2235		  "\10delwri\7call\6cache\5busy\4bad\3async\2needcommit\1age");
2236	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2237		  "b_resid = %ld\nb_dev = 0x%x, b_data = %p, "
2238		  "b_blkno = %d, b_pblkno = %d\n",
2239		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2240		  bp->b_dev, bp->b_data, bp->b_blkno, bp->b_pblkno);
2241	if (bp->b_npages) {
2242		int i;
2243		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
2244		for (i = 0; i < bp->b_npages; i++) {
2245			vm_page_t m;
2246			m = bp->b_pages[i];
2247			db_printf("(0x%x, 0x%x, 0x%x)", m->object, m->pindex,
2248				VM_PAGE_TO_PHYS(m));
2249			if ((i + 1) < bp->b_npages)
2250				db_printf(",");
2251		}
2252		db_printf("\n");
2253	}
2254}
2255#endif /* DDB */
2256