vfs_bio.c revision 31016
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.133 1997/11/06 19:29:29 phk Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#include "opt_bounce.h"
36
37#define VMIO
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/vmmeter.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_prot.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_pageout.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_extern.h>
54#include <vm/vm_map.h>
55#include <sys/buf.h>
56#include <sys/mount.h>
57#include <sys/malloc.h>
58#include <sys/resourcevar.h>
59
60static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
61
62static void vfs_update __P((void));
63static struct	proc *updateproc;
64static struct kproc_desc up_kp = {
65	"update",
66	vfs_update,
67	&updateproc
68};
69SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
70
71struct buf *buf;		/* buffer header pool */
72struct swqueue bswlist;
73
74int count_lock_queue __P((void));
75static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
78		vm_offset_t to);
79static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
80			      vm_offset_t off, vm_offset_t size,
81			      vm_page_t m);
82static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
83			       int pageno, vm_page_t m);
84static void vfs_clean_pages(struct buf * bp);
85static void vfs_setdirty(struct buf *bp);
86static void vfs_vmio_release(struct buf *bp);
87static void flushdirtybuffers(int slpflag, int slptimeo);
88
89int needsbuffer;
90
91/*
92 * Internal update daemon, process 3
93 *	The variable vfs_update_wakeup allows for internal syncs.
94 */
95int vfs_update_wakeup;
96
97
98/*
99 * buffers base kva
100 */
101
102/*
103 * bogus page -- for I/O to/from partially complete buffers
104 * this is a temporary solution to the problem, but it is not
105 * really that bad.  it would be better to split the buffer
106 * for input in the case of buffers partially already in memory,
107 * but the code is intricate enough already.
108 */
109vm_page_t bogus_page;
110static vm_offset_t bogus_offset;
111
112static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
113	bufmallocspace, maxbufmallocspace;
114int numdirtybuffers, lodirtybuffers, hidirtybuffers;
115static int numfreebuffers, lofreebuffers, hifreebuffers;
116
117SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
118	&numdirtybuffers, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
120	&lodirtybuffers, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
122	&hidirtybuffers, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
124	&numfreebuffers, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
126	&lofreebuffers, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
128	&hifreebuffers, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
130	&maxbufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132	&bufspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
134	&maxvmiobufspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
136	&vmiospace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
138	&maxbufmallocspace, 0, "");
139SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
140	&bufmallocspace, 0, "");
141
142static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
143static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
144
145extern int vm_swap_size;
146
147#define BUF_MAXUSE 24
148
149#define VFS_BIO_NEED_ANY 1
150#define VFS_BIO_NEED_LOWLIMIT 2
151#define VFS_BIO_NEED_FREE 4
152
153/*
154 * Initialize buffer headers and related structures.
155 */
156void
157bufinit()
158{
159	struct buf *bp;
160	int i;
161
162	TAILQ_INIT(&bswlist);
163	LIST_INIT(&invalhash);
164
165	/* first, make a null hash table */
166	for (i = 0; i < BUFHSZ; i++)
167		LIST_INIT(&bufhashtbl[i]);
168
169	/* next, make a null set of free lists */
170	for (i = 0; i < BUFFER_QUEUES; i++)
171		TAILQ_INIT(&bufqueues[i]);
172
173	/* finally, initialize each buffer header and stick on empty q */
174	for (i = 0; i < nbuf; i++) {
175		bp = &buf[i];
176		bzero(bp, sizeof *bp);
177		bp->b_flags = B_INVAL;	/* we're just an empty header */
178		bp->b_dev = NODEV;
179		bp->b_rcred = NOCRED;
180		bp->b_wcred = NOCRED;
181		bp->b_qindex = QUEUE_EMPTY;
182		bp->b_vnbufs.le_next = NOLIST;
183		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
184		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
185	}
186/*
187 * maxbufspace is currently calculated to support all filesystem blocks
188 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
189 * cache is still the same as it would be for 8K filesystems.  This
190 * keeps the size of the buffer cache "in check" for big block filesystems.
191 */
192	maxbufspace = (nbuf + 8) * DFLTBSIZE;
193/*
194 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
195 */
196	maxvmiobufspace = 2 * maxbufspace / 3;
197/*
198 * Limit the amount of malloc memory since it is wired permanently into
199 * the kernel space.  Even though this is accounted for in the buffer
200 * allocation, we don't want the malloced region to grow uncontrolled.
201 * The malloc scheme improves memory utilization significantly on average
202 * (small) directories.
203 */
204	maxbufmallocspace = maxbufspace / 20;
205
206/*
207 * Remove the probability of deadlock conditions by limiting the
208 * number of dirty buffers.
209 */
210	hidirtybuffers = nbuf / 6 + 20;
211	lodirtybuffers = nbuf / 12 + 10;
212	numdirtybuffers = 0;
213	lofreebuffers = nbuf / 18 + 5;
214	hifreebuffers = 2 * lofreebuffers;
215	numfreebuffers = nbuf;
216
217	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
218	bogus_page = vm_page_alloc(kernel_object,
219			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
220			VM_ALLOC_NORMAL);
221
222}
223
224/*
225 * Free the kva allocation for a buffer
226 * Must be called only at splbio or higher,
227 *  as this is the only locking for buffer_map.
228 */
229static void
230bfreekva(struct buf * bp)
231{
232	if (bp->b_kvasize == 0)
233		return;
234
235	vm_map_delete(buffer_map,
236		(vm_offset_t) bp->b_kvabase,
237		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
238
239	bp->b_kvasize = 0;
240
241}
242
243/*
244 * remove the buffer from the appropriate free list
245 */
246void
247bremfree(struct buf * bp)
248{
249	int s = splbio();
250
251	if (bp->b_qindex != QUEUE_NONE) {
252		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
253		bp->b_qindex = QUEUE_NONE;
254	} else {
255#if !defined(MAX_PERF)
256		panic("bremfree: removing a buffer when not on a queue");
257#endif
258	}
259	if ((bp->b_flags & B_INVAL) ||
260		(bp->b_flags & (B_DELWRI|B_LOCKED)) == 0)
261		--numfreebuffers;
262	splx(s);
263}
264
265/*
266 * Get a buffer with the specified data.  Look in the cache first.
267 */
268int
269bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
270    struct buf ** bpp)
271{
272	struct buf *bp;
273
274	bp = getblk(vp, blkno, size, 0, 0);
275	*bpp = bp;
276
277	/* if not found in cache, do some I/O */
278	if ((bp->b_flags & B_CACHE) == 0) {
279		if (curproc != NULL)
280			curproc->p_stats->p_ru.ru_inblock++;
281		bp->b_flags |= B_READ;
282		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
283		if (bp->b_rcred == NOCRED) {
284			if (cred != NOCRED)
285				crhold(cred);
286			bp->b_rcred = cred;
287		}
288		vfs_busy_pages(bp, 0);
289		VOP_STRATEGY(bp);
290		return (biowait(bp));
291	}
292	return (0);
293}
294
295/*
296 * Operates like bread, but also starts asynchronous I/O on
297 * read-ahead blocks.
298 */
299int
300breadn(struct vnode * vp, daddr_t blkno, int size,
301    daddr_t * rablkno, int *rabsize,
302    int cnt, struct ucred * cred, struct buf ** bpp)
303{
304	struct buf *bp, *rabp;
305	int i;
306	int rv = 0, readwait = 0;
307
308	*bpp = bp = getblk(vp, blkno, size, 0, 0);
309
310	/* if not found in cache, do some I/O */
311	if ((bp->b_flags & B_CACHE) == 0) {
312		if (curproc != NULL)
313			curproc->p_stats->p_ru.ru_inblock++;
314		bp->b_flags |= B_READ;
315		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
316		if (bp->b_rcred == NOCRED) {
317			if (cred != NOCRED)
318				crhold(cred);
319			bp->b_rcred = cred;
320		}
321		vfs_busy_pages(bp, 0);
322		VOP_STRATEGY(bp);
323		++readwait;
324	}
325	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
326		if (inmem(vp, *rablkno))
327			continue;
328		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
329
330		if ((rabp->b_flags & B_CACHE) == 0) {
331			if (curproc != NULL)
332				curproc->p_stats->p_ru.ru_inblock++;
333			rabp->b_flags |= B_READ | B_ASYNC;
334			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
335			if (rabp->b_rcred == NOCRED) {
336				if (cred != NOCRED)
337					crhold(cred);
338				rabp->b_rcred = cred;
339			}
340			vfs_busy_pages(rabp, 0);
341			VOP_STRATEGY(rabp);
342		} else {
343			brelse(rabp);
344		}
345	}
346
347	if (readwait) {
348		rv = biowait(bp);
349	}
350	return (rv);
351}
352
353/*
354 * Write, release buffer on completion.  (Done by iodone
355 * if async.)
356 */
357int
358bwrite(struct buf * bp)
359{
360	int oldflags = bp->b_flags;
361
362	if (bp->b_flags & B_INVAL) {
363		brelse(bp);
364		return (0);
365	}
366#if !defined(MAX_PERF)
367	if (!(bp->b_flags & B_BUSY))
368		panic("bwrite: buffer is not busy???");
369#endif
370
371	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
372	bp->b_flags |= B_WRITEINPROG;
373
374	if ((oldflags & B_DELWRI) == B_DELWRI) {
375		--numdirtybuffers;
376		reassignbuf(bp, bp->b_vp);
377	}
378
379	bp->b_vp->v_numoutput++;
380	vfs_busy_pages(bp, 1);
381	if (curproc != NULL)
382		curproc->p_stats->p_ru.ru_oublock++;
383	VOP_STRATEGY(bp);
384
385	if ((oldflags & B_ASYNC) == 0) {
386		int rtval = biowait(bp);
387
388		if (oldflags & B_DELWRI) {
389			reassignbuf(bp, bp->b_vp);
390		}
391		brelse(bp);
392		return (rtval);
393	}
394	return (0);
395}
396
397void
398vfs_bio_need_satisfy(void) {
399	++numfreebuffers;
400	if (!needsbuffer)
401		return;
402	if (numdirtybuffers < lodirtybuffers) {
403		needsbuffer &= ~(VFS_BIO_NEED_ANY | VFS_BIO_NEED_LOWLIMIT);
404	} else {
405		needsbuffer &= ~VFS_BIO_NEED_ANY;
406	}
407	if (numfreebuffers >= hifreebuffers) {
408		needsbuffer &= ~VFS_BIO_NEED_FREE;
409	}
410	wakeup(&needsbuffer);
411}
412
413/*
414 * Delayed write. (Buffer is marked dirty).
415 */
416void
417bdwrite(struct buf * bp)
418{
419
420#if !defined(MAX_PERF)
421	if ((bp->b_flags & B_BUSY) == 0) {
422		panic("bdwrite: buffer is not busy");
423	}
424#endif
425
426	if (bp->b_flags & B_INVAL) {
427		brelse(bp);
428		return;
429	}
430	if (bp->b_flags & B_TAPE) {
431		bawrite(bp);
432		return;
433	}
434	bp->b_flags &= ~(B_READ|B_RELBUF);
435	if ((bp->b_flags & B_DELWRI) == 0) {
436		bp->b_flags |= B_DONE | B_DELWRI;
437		reassignbuf(bp, bp->b_vp);
438		++numdirtybuffers;
439	}
440
441	/*
442	 * This bmap keeps the system from needing to do the bmap later,
443	 * perhaps when the system is attempting to do a sync.  Since it
444	 * is likely that the indirect block -- or whatever other datastructure
445	 * that the filesystem needs is still in memory now, it is a good
446	 * thing to do this.  Note also, that if the pageout daemon is
447	 * requesting a sync -- there might not be enough memory to do
448	 * the bmap then...  So, this is important to do.
449	 */
450	if (bp->b_lblkno == bp->b_blkno) {
451		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
452	}
453
454	/*
455	 * Set the *dirty* buffer range based upon the VM system dirty pages.
456	 */
457	vfs_setdirty(bp);
458
459	/*
460	 * We need to do this here to satisfy the vnode_pager and the
461	 * pageout daemon, so that it thinks that the pages have been
462	 * "cleaned".  Note that since the pages are in a delayed write
463	 * buffer -- the VFS layer "will" see that the pages get written
464	 * out on the next sync, or perhaps the cluster will be completed.
465	 */
466	vfs_clean_pages(bp);
467	bqrelse(bp);
468
469	if (numdirtybuffers >= hidirtybuffers)
470		flushdirtybuffers(0, 0);
471
472	return;
473}
474
475/*
476 * Asynchronous write.
477 * Start output on a buffer, but do not wait for it to complete.
478 * The buffer is released when the output completes.
479 */
480void
481bawrite(struct buf * bp)
482{
483	bp->b_flags |= B_ASYNC;
484	(void) VOP_BWRITE(bp);
485}
486
487/*
488 * Ordered write.
489 * Start output on a buffer, but only wait for it to complete if the
490 * output device cannot guarantee ordering in some other way.  Devices
491 * that can perform asynchronous ordered writes will set the B_ASYNC
492 * flag in their strategy routine.
493 * The buffer is released when the output completes.
494 */
495int
496bowrite(struct buf * bp)
497{
498	/*
499	 * XXX Add in B_ASYNC once the SCSI
500	 *     layer can deal with ordered
501	 *     writes properly.
502	 */
503	bp->b_flags |= B_ORDERED;
504	return (VOP_BWRITE(bp));
505}
506
507/*
508 * Release a buffer.
509 */
510void
511brelse(struct buf * bp)
512{
513	int s;
514
515	if (bp->b_flags & B_CLUSTER) {
516		relpbuf(bp);
517		return;
518	}
519	/* anyone need a "free" block? */
520	s = splbio();
521
522	/* anyone need this block? */
523	if (bp->b_flags & B_WANTED) {
524		bp->b_flags &= ~(B_WANTED | B_AGE);
525		wakeup(bp);
526	}
527
528	if (bp->b_flags & B_LOCKED)
529		bp->b_flags &= ~B_ERROR;
530
531	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
532	    (bp->b_bufsize <= 0)) {
533		bp->b_flags |= B_INVAL;
534		if (bp->b_flags & B_DELWRI)
535			--numdirtybuffers;
536		bp->b_flags &= ~(B_DELWRI | B_CACHE);
537		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
538			if (bp->b_bufsize)
539				allocbuf(bp, 0);
540			brelvp(bp);
541		}
542	}
543
544	/*
545	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
546	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
547	 * but the VM object is kept around.  The B_NOCACHE flag is used to
548	 * invalidate the pages in the VM object.
549	 *
550	 * If the buffer is a partially filled NFS buffer, keep it
551	 * since invalidating it now will lose informatio.  The valid
552	 * flags in the vm_pages have only DEV_BSIZE resolution but
553	 * the b_validoff, b_validend fields have byte resolution.
554	 * This can avoid unnecessary re-reads of the buffer.
555	 * XXX this seems to cause performance problems.
556	 */
557	if ((bp->b_flags & B_VMIO)
558	    && !(bp->b_vp->v_tag == VT_NFS &&
559		 bp->b_vp->v_type != VBLK &&
560		 (bp->b_flags & B_DELWRI) != 0)
561#ifdef notdef
562	    && (bp->b_vp->v_tag != VT_NFS
563		|| bp->b_vp->v_type == VBLK
564		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
565		|| bp->b_validend == 0
566		|| (bp->b_validoff == 0
567		    && bp->b_validend == bp->b_bufsize))
568#endif
569	    ) {
570		vm_ooffset_t foff;
571		vm_object_t obj;
572		int i, resid;
573		vm_page_t m;
574		struct vnode *vp;
575		int iototal = bp->b_bufsize;
576
577		vp = bp->b_vp;
578
579#if !defined(MAX_PERF)
580		if (!vp)
581			panic("brelse: missing vp");
582#endif
583
584		if (bp->b_npages) {
585			vm_pindex_t poff;
586			obj = (vm_object_t) vp->v_object;
587			if (vp->v_type == VBLK)
588				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
589			else
590				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
591			poff = OFF_TO_IDX(foff);
592			for (i = 0; i < bp->b_npages; i++) {
593				m = bp->b_pages[i];
594				if (m == bogus_page) {
595					m = vm_page_lookup(obj, poff + i);
596#if !defined(MAX_PERF)
597					if (!m) {
598						panic("brelse: page missing\n");
599					}
600#endif
601					bp->b_pages[i] = m;
602					pmap_qenter(trunc_page(bp->b_data),
603						bp->b_pages, bp->b_npages);
604				}
605				resid = IDX_TO_OFF(m->pindex+1) - foff;
606				if (resid > iototal)
607					resid = iototal;
608				if (resid > 0) {
609					/*
610					 * Don't invalidate the page if the local machine has already
611					 * modified it.  This is the lesser of two evils, and should
612					 * be fixed.
613					 */
614					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
615						vm_page_test_dirty(m);
616						if (m->dirty == 0) {
617							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
618							if (m->valid == 0)
619								vm_page_protect(m, VM_PROT_NONE);
620						}
621					}
622					if (resid >= PAGE_SIZE) {
623						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
624							bp->b_flags |= B_INVAL;
625						}
626					} else {
627						if (!vm_page_is_valid(m,
628							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
629							bp->b_flags |= B_INVAL;
630						}
631					}
632				}
633				foff += resid;
634				iototal -= resid;
635			}
636		}
637		if (bp->b_flags & (B_INVAL | B_RELBUF))
638			vfs_vmio_release(bp);
639	}
640#if !defined(MAX_PERF)
641	if (bp->b_qindex != QUEUE_NONE)
642		panic("brelse: free buffer onto another queue???");
643#endif
644
645	/* enqueue */
646	/* buffers with no memory */
647	if (bp->b_bufsize == 0) {
648		bp->b_flags |= B_INVAL;
649		bp->b_qindex = QUEUE_EMPTY;
650		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
651		LIST_REMOVE(bp, b_hash);
652		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
653		bp->b_dev = NODEV;
654		/*
655		 * Get rid of the kva allocation *now*
656		 */
657		bfreekva(bp);
658
659	/* buffers with junk contents */
660	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
661		bp->b_flags |= B_INVAL;
662		bp->b_qindex = QUEUE_AGE;
663		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
664		LIST_REMOVE(bp, b_hash);
665		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
666		bp->b_dev = NODEV;
667
668	/* buffers that are locked */
669	} else if (bp->b_flags & B_LOCKED) {
670		bp->b_qindex = QUEUE_LOCKED;
671		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
672
673	/* buffers with stale but valid contents */
674	} else if (bp->b_flags & B_AGE) {
675		bp->b_qindex = QUEUE_AGE;
676		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
677
678	/* buffers with valid and quite potentially reuseable contents */
679	} else {
680		bp->b_qindex = QUEUE_LRU;
681		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
682	}
683
684	if ((bp->b_flags & B_INVAL) ||
685		(bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
686		if (bp->b_flags & B_DELWRI) {
687			--numdirtybuffers;
688			bp->b_flags &= ~B_DELWRI;
689		}
690		vfs_bio_need_satisfy();
691	}
692
693	/* unlock */
694	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
695				B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
696	splx(s);
697}
698
699/*
700 * Release a buffer.
701 */
702void
703bqrelse(struct buf * bp)
704{
705	int s;
706
707	s = splbio();
708
709	/* anyone need this block? */
710	if (bp->b_flags & B_WANTED) {
711		bp->b_flags &= ~(B_WANTED | B_AGE);
712		wakeup(bp);
713	}
714
715#if !defined(MAX_PERF)
716	if (bp->b_qindex != QUEUE_NONE)
717		panic("bqrelse: free buffer onto another queue???");
718#endif
719
720	if (bp->b_flags & B_LOCKED) {
721		bp->b_flags &= ~B_ERROR;
722		bp->b_qindex = QUEUE_LOCKED;
723		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
724		/* buffers with stale but valid contents */
725	} else {
726		bp->b_qindex = QUEUE_LRU;
727		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
728	}
729
730	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
731		vfs_bio_need_satisfy();
732	}
733
734	/* unlock */
735	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
736		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
737	splx(s);
738}
739
740static void
741vfs_vmio_release(bp)
742	struct buf *bp;
743{
744	int i;
745	vm_page_t m;
746
747	for (i = 0; i < bp->b_npages; i++) {
748		m = bp->b_pages[i];
749		bp->b_pages[i] = NULL;
750		vm_page_unwire(m);
751		/*
752		 * We don't mess with busy pages, it is
753		 * the responsibility of the process that
754		 * busied the pages to deal with them.
755		 */
756		if ((m->flags & PG_BUSY) || (m->busy != 0))
757			continue;
758
759		if (m->wire_count == 0) {
760
761			if (m->flags & PG_WANTED) {
762				m->flags &= ~PG_WANTED;
763				wakeup(m);
764			}
765
766			/*
767			 * If this is an async free -- we cannot place
768			 * pages onto the cache queue.  If it is an
769			 * async free, then we don't modify any queues.
770			 * This is probably in error (for perf reasons),
771			 * and we will eventually need to build
772			 * a more complete infrastructure to support I/O
773			 * rundown.
774			 */
775			if ((bp->b_flags & B_ASYNC) == 0) {
776
777			/*
778			 * In the case of sync buffer frees, we can do pretty much
779			 * anything to any of the memory queues.  Specifically,
780			 * the cache queue is okay to be modified.
781			 */
782				if (m->valid) {
783					if(m->dirty == 0)
784						vm_page_test_dirty(m);
785					/*
786					 * this keeps pressure off of the process memory
787					 */
788					if (m->dirty == 0 && m->hold_count == 0)
789						vm_page_cache(m);
790					else
791						vm_page_deactivate(m);
792				} else if (m->hold_count == 0) {
793					vm_page_protect(m, VM_PROT_NONE);
794					vm_page_free(m);
795				}
796			} else {
797				/*
798				 * If async, then at least we clear the
799				 * act_count.
800				 */
801				m->act_count = 0;
802			}
803		}
804	}
805	bufspace -= bp->b_bufsize;
806	vmiospace -= bp->b_bufsize;
807	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
808	bp->b_npages = 0;
809	bp->b_bufsize = 0;
810	bp->b_flags &= ~B_VMIO;
811	if (bp->b_vp)
812		brelvp(bp);
813}
814
815/*
816 * Check to see if a block is currently memory resident.
817 */
818struct buf *
819gbincore(struct vnode * vp, daddr_t blkno)
820{
821	struct buf *bp;
822	struct bufhashhdr *bh;
823
824	bh = BUFHASH(vp, blkno);
825	bp = bh->lh_first;
826
827	/* Search hash chain */
828	while (bp != NULL) {
829		/* hit */
830		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
831		    (bp->b_flags & B_INVAL) == 0) {
832			break;
833		}
834		bp = bp->b_hash.le_next;
835	}
836	return (bp);
837}
838
839/*
840 * this routine implements clustered async writes for
841 * clearing out B_DELWRI buffers...  This is much better
842 * than the old way of writing only one buffer at a time.
843 */
844int
845vfs_bio_awrite(struct buf * bp)
846{
847	int i;
848	daddr_t lblkno = bp->b_lblkno;
849	struct vnode *vp = bp->b_vp;
850	int s;
851	int ncl;
852	struct buf *bpa;
853	int nwritten;
854
855	s = splbio();
856	/*
857	 * right now we support clustered writing only to regular files
858	 */
859	if ((vp->v_type == VREG) &&
860	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
861	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
862		int size;
863		int maxcl;
864
865		size = vp->v_mount->mnt_stat.f_iosize;
866		maxcl = MAXPHYS / size;
867
868		for (i = 1; i < maxcl; i++) {
869			if ((bpa = gbincore(vp, lblkno + i)) &&
870			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
871			    (B_DELWRI | B_CLUSTEROK)) &&
872			    (bpa->b_bufsize == size)) {
873				if ((bpa->b_blkno == bpa->b_lblkno) ||
874				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
875					break;
876			} else {
877				break;
878			}
879		}
880		ncl = i;
881		/*
882		 * this is a possible cluster write
883		 */
884		if (ncl != 1) {
885			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
886			splx(s);
887			return nwritten;
888		}
889	}
890	bremfree(bp);
891	splx(s);
892	/*
893	 * default (old) behavior, writing out only one block
894	 */
895	bp->b_flags |= B_BUSY | B_ASYNC;
896	nwritten = bp->b_bufsize;
897	(void) VOP_BWRITE(bp);
898	return nwritten;
899}
900
901
902/*
903 * Find a buffer header which is available for use.
904 */
905static struct buf *
906getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize)
907{
908	struct buf *bp;
909	int nbyteswritten = 0;
910	vm_offset_t addr;
911	static int writerecursion = 0;
912
913start:
914	if (bufspace >= maxbufspace)
915		goto trytofreespace;
916
917	/* can we constitute a new buffer? */
918	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
919#if !defined(MAX_PERF)
920		if (bp->b_qindex != QUEUE_EMPTY)
921			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
922			    bp->b_qindex);
923#endif
924		bp->b_flags |= B_BUSY;
925		bremfree(bp);
926		goto fillbuf;
927	}
928trytofreespace:
929	/*
930	 * We keep the file I/O from hogging metadata I/O
931	 * This is desirable because file data is cached in the
932	 * VM/Buffer cache even if a buffer is freed.
933	 */
934	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
935#if !defined(MAX_PERF)
936		if (bp->b_qindex != QUEUE_AGE)
937			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
938			    bp->b_qindex);
939#endif
940	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
941#if !defined(MAX_PERF)
942		if (bp->b_qindex != QUEUE_LRU)
943			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
944			    bp->b_qindex);
945#endif
946	}
947	if (!bp) {
948		/* wait for a free buffer of any kind */
949		needsbuffer |= VFS_BIO_NEED_ANY;
950		do
951			tsleep(&needsbuffer, (PRIBIO + 1) | slpflag, "newbuf",
952			    slptimeo);
953		while (needsbuffer & VFS_BIO_NEED_ANY);
954		return (0);
955	}
956
957#if defined(DIAGNOSTIC)
958	if (bp->b_flags & B_BUSY) {
959		panic("getnewbuf: busy buffer on free list\n");
960	}
961#endif
962
963	/*
964	 * We are fairly aggressive about freeing VMIO buffers, but since
965	 * the buffering is intact without buffer headers, there is not
966	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
967	 */
968	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
969		if ((bp->b_flags & B_VMIO) == 0 ||
970			(vmiospace < maxvmiobufspace)) {
971			--bp->b_usecount;
972			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
973			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
974				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
975				goto start;
976			}
977			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
978		}
979	}
980
981
982	/* if we are a delayed write, convert to an async write */
983	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
984
985		if (writerecursion > 0) {
986			bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
987			while (bp) {
988				if ((bp->b_flags & B_DELWRI) == 0)
989					break;
990				bp = TAILQ_NEXT(bp, b_freelist);
991			}
992			if (bp == NULL) {
993				bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
994				while (bp) {
995					if ((bp->b_flags & B_DELWRI) == 0)
996						break;
997					bp = TAILQ_NEXT(bp, b_freelist);
998				}
999			}
1000			if (bp == NULL)
1001				panic("getnewbuf: cannot get buffer, infinite recursion failure");
1002		} else {
1003			++writerecursion;
1004			nbyteswritten += vfs_bio_awrite(bp);
1005			--writerecursion;
1006			if (!slpflag && !slptimeo) {
1007				return (0);
1008			}
1009			goto start;
1010		}
1011	}
1012
1013	if (bp->b_flags & B_WANTED) {
1014		bp->b_flags &= ~B_WANTED;
1015		wakeup(bp);
1016	}
1017	bremfree(bp);
1018	bp->b_flags |= B_BUSY;
1019
1020	if (bp->b_flags & B_VMIO) {
1021		bp->b_flags &= ~B_ASYNC;
1022		vfs_vmio_release(bp);
1023	}
1024
1025	if (bp->b_vp)
1026		brelvp(bp);
1027
1028fillbuf:
1029	/* we are not free, nor do we contain interesting data */
1030	if (bp->b_rcred != NOCRED) {
1031		crfree(bp->b_rcred);
1032		bp->b_rcred = NOCRED;
1033	}
1034	if (bp->b_wcred != NOCRED) {
1035		crfree(bp->b_wcred);
1036		bp->b_wcred = NOCRED;
1037	}
1038
1039	LIST_REMOVE(bp, b_hash);
1040	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1041	if (bp->b_bufsize) {
1042		allocbuf(bp, 0);
1043	}
1044	bp->b_flags = B_BUSY;
1045	bp->b_dev = NODEV;
1046	bp->b_vp = NULL;
1047	bp->b_blkno = bp->b_lblkno = 0;
1048	bp->b_iodone = 0;
1049	bp->b_error = 0;
1050	bp->b_resid = 0;
1051	bp->b_bcount = 0;
1052	bp->b_npages = 0;
1053	bp->b_dirtyoff = bp->b_dirtyend = 0;
1054	bp->b_validoff = bp->b_validend = 0;
1055	bp->b_usecount = 4;
1056
1057	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1058
1059	/*
1060	 * we assume that buffer_map is not at address 0
1061	 */
1062	addr = 0;
1063	if (maxsize != bp->b_kvasize) {
1064		bfreekva(bp);
1065
1066		/*
1067		 * See if we have buffer kva space
1068		 */
1069		if (vm_map_findspace(buffer_map,
1070			vm_map_min(buffer_map), maxsize, &addr)) {
1071			bp->b_flags |= B_INVAL;
1072			brelse(bp);
1073			goto trytofreespace;
1074		}
1075	}
1076
1077	/*
1078	 * See if we are below are allocated minimum
1079	 */
1080	if (bufspace >= (maxbufspace + nbyteswritten)) {
1081		bp->b_flags |= B_INVAL;
1082		brelse(bp);
1083		goto trytofreespace;
1084	}
1085
1086	/*
1087	 * create a map entry for the buffer -- in essence
1088	 * reserving the kva space.
1089	 */
1090	if (addr) {
1091		vm_map_insert(buffer_map, NULL, 0,
1092			addr, addr + maxsize,
1093			VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1094
1095		bp->b_kvabase = (caddr_t) addr;
1096		bp->b_kvasize = maxsize;
1097	}
1098	bp->b_data = bp->b_kvabase;
1099
1100	return (bp);
1101}
1102
1103static void
1104waitfreebuffers(int slpflag, int slptimeo) {
1105	while (numfreebuffers < hifreebuffers) {
1106		flushdirtybuffers(slpflag, slptimeo);
1107		if (numfreebuffers < hifreebuffers)
1108			break;
1109		needsbuffer |= VFS_BIO_NEED_FREE;
1110		if (tsleep(&needsbuffer, PRIBIO|slpflag, "biofre", slptimeo))
1111			break;
1112	}
1113}
1114
1115static void
1116flushdirtybuffers(int slpflag, int slptimeo) {
1117	int s;
1118	static pid_t flushing = 0;
1119
1120	s = splbio();
1121
1122	if (flushing) {
1123		if (flushing == curproc->p_pid) {
1124			splx(s);
1125			return;
1126		}
1127		while (flushing) {
1128			if (tsleep(&flushing, PRIBIO|slpflag, "biofls", slptimeo)) {
1129				splx(s);
1130				return;
1131			}
1132		}
1133	}
1134	flushing = curproc->p_pid;
1135
1136	while (numdirtybuffers > lodirtybuffers) {
1137		struct buf *bp;
1138		needsbuffer |= VFS_BIO_NEED_LOWLIMIT;
1139		bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1140		if (bp == NULL)
1141			bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1142
1143		while (bp && ((bp->b_flags & B_DELWRI) == 0)) {
1144			bp = TAILQ_NEXT(bp, b_freelist);
1145		}
1146
1147		if (bp) {
1148			splx(s);
1149			vfs_bio_awrite(bp);
1150			s = splbio();
1151			continue;
1152		}
1153		break;
1154	}
1155
1156	flushing = 0;
1157	wakeup(&flushing);
1158	splx(s);
1159}
1160
1161/*
1162 * Check to see if a block is currently memory resident.
1163 */
1164struct buf *
1165incore(struct vnode * vp, daddr_t blkno)
1166{
1167	struct buf *bp;
1168
1169	int s = splbio();
1170	bp = gbincore(vp, blkno);
1171	splx(s);
1172	return (bp);
1173}
1174
1175/*
1176 * Returns true if no I/O is needed to access the
1177 * associated VM object.  This is like incore except
1178 * it also hunts around in the VM system for the data.
1179 */
1180
1181int
1182inmem(struct vnode * vp, daddr_t blkno)
1183{
1184	vm_object_t obj;
1185	vm_offset_t toff, tinc;
1186	vm_page_t m;
1187	vm_ooffset_t off;
1188
1189	if (incore(vp, blkno))
1190		return 1;
1191	if (vp->v_mount == NULL)
1192		return 0;
1193	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
1194		return 0;
1195
1196	obj = vp->v_object;
1197	tinc = PAGE_SIZE;
1198	if (tinc > vp->v_mount->mnt_stat.f_iosize)
1199		tinc = vp->v_mount->mnt_stat.f_iosize;
1200	off = blkno * vp->v_mount->mnt_stat.f_iosize;
1201
1202	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1203
1204		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1205		if (!m)
1206			return 0;
1207		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
1208			return 0;
1209	}
1210	return 1;
1211}
1212
1213/*
1214 * now we set the dirty range for the buffer --
1215 * for NFS -- if the file is mapped and pages have
1216 * been written to, let it know.  We want the
1217 * entire range of the buffer to be marked dirty if
1218 * any of the pages have been written to for consistancy
1219 * with the b_validoff, b_validend set in the nfs write
1220 * code, and used by the nfs read code.
1221 */
1222static void
1223vfs_setdirty(struct buf *bp) {
1224	int i;
1225	vm_object_t object;
1226	vm_offset_t boffset, offset;
1227	/*
1228	 * We qualify the scan for modified pages on whether the
1229	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1230	 * is not cleared simply by protecting pages off.
1231	 */
1232	if ((bp->b_flags & B_VMIO) &&
1233		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1234		/*
1235		 * test the pages to see if they have been modified directly
1236		 * by users through the VM system.
1237		 */
1238		for (i = 0; i < bp->b_npages; i++)
1239			vm_page_test_dirty(bp->b_pages[i]);
1240
1241		/*
1242		 * scan forwards for the first page modified
1243		 */
1244		for (i = 0; i < bp->b_npages; i++) {
1245			if (bp->b_pages[i]->dirty) {
1246				break;
1247			}
1248		}
1249		boffset = (i << PAGE_SHIFT);
1250		if (boffset < bp->b_dirtyoff) {
1251			bp->b_dirtyoff = boffset;
1252		}
1253
1254		/*
1255		 * scan backwards for the last page modified
1256		 */
1257		for (i = bp->b_npages - 1; i >= 0; --i) {
1258			if (bp->b_pages[i]->dirty) {
1259				break;
1260			}
1261		}
1262		boffset = (i + 1);
1263		offset = boffset + bp->b_pages[0]->pindex;
1264		if (offset >= object->size)
1265			boffset = object->size - bp->b_pages[0]->pindex;
1266		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
1267			bp->b_dirtyend = (boffset << PAGE_SHIFT);
1268	}
1269}
1270
1271/*
1272 * Get a block given a specified block and offset into a file/device.
1273 */
1274struct buf *
1275getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1276{
1277	struct buf *bp;
1278	int s;
1279	struct bufhashhdr *bh;
1280	int maxsize;
1281
1282	if (vp->v_mount) {
1283		maxsize = vp->v_mount->mnt_stat.f_iosize;
1284		/*
1285		 * This happens on mount points.
1286		 */
1287		if (maxsize < size)
1288			maxsize = size;
1289	} else {
1290		maxsize = size;
1291	}
1292
1293#if !defined(MAX_PERF)
1294	if (size > MAXBSIZE)
1295		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1296#endif
1297
1298	s = splbio();
1299loop:
1300	if (numfreebuffers < lofreebuffers) {
1301		waitfreebuffers(slpflag, slptimeo);
1302	}
1303
1304	if ((bp = gbincore(vp, blkno))) {
1305		if (bp->b_flags & B_BUSY) {
1306			bp->b_flags |= B_WANTED;
1307			if (bp->b_usecount < BUF_MAXUSE)
1308				++bp->b_usecount;
1309			if (!tsleep(bp,
1310				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
1311				goto loop;
1312
1313			splx(s);
1314			return (struct buf *) NULL;
1315		}
1316		bp->b_flags |= B_BUSY | B_CACHE;
1317		bremfree(bp);
1318
1319		/*
1320		 * check for size inconsistancies (note that they shouldn't
1321		 * happen but do when filesystems don't handle the size changes
1322		 * correctly.) We are conservative on metadata and don't just
1323		 * extend the buffer but write and re-constitute it.
1324		 */
1325
1326		if (bp->b_bcount != size) {
1327			if ((bp->b_flags & B_VMIO) && (size <= bp->b_kvasize)) {
1328				allocbuf(bp, size);
1329			} else {
1330				bp->b_flags |= B_NOCACHE;
1331				VOP_BWRITE(bp);
1332				goto loop;
1333			}
1334		}
1335
1336		if (bp->b_usecount < BUF_MAXUSE)
1337			++bp->b_usecount;
1338		splx(s);
1339		return (bp);
1340	} else {
1341		vm_object_t obj;
1342
1343		if ((bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize)) == 0) {
1344			if (slpflag || slptimeo) {
1345				splx(s);
1346				return NULL;
1347			}
1348			goto loop;
1349		}
1350
1351		/*
1352		 * This code is used to make sure that a buffer is not
1353		 * created while the getnewbuf routine is blocked.
1354		 * Normally the vnode is locked so this isn't a problem.
1355		 * VBLK type I/O requests, however, don't lock the vnode.
1356		 */
1357		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1358			bp->b_flags |= B_INVAL;
1359			brelse(bp);
1360			goto loop;
1361		}
1362
1363		/*
1364		 * Insert the buffer into the hash, so that it can
1365		 * be found by incore.
1366		 */
1367		bp->b_blkno = bp->b_lblkno = blkno;
1368		bgetvp(vp, bp);
1369		LIST_REMOVE(bp, b_hash);
1370		bh = BUFHASH(vp, blkno);
1371		LIST_INSERT_HEAD(bh, bp, b_hash);
1372
1373		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1374			bp->b_flags |= (B_VMIO | B_CACHE);
1375#if defined(VFS_BIO_DEBUG)
1376			if (vp->v_type != VREG && vp->v_type != VBLK)
1377				printf("getblk: vmioing file type %d???\n", vp->v_type);
1378#endif
1379		} else {
1380			bp->b_flags &= ~B_VMIO;
1381		}
1382		splx(s);
1383
1384		allocbuf(bp, size);
1385#ifdef	PC98
1386		/*
1387		 * 1024byte/sector support
1388		 */
1389#define B_XXX2 0x8000000
1390		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1391#endif
1392		return (bp);
1393	}
1394}
1395
1396/*
1397 * Get an empty, disassociated buffer of given size.
1398 */
1399struct buf *
1400geteblk(int size)
1401{
1402	struct buf *bp;
1403	int s;
1404
1405	s = splbio();
1406	while ((bp = getnewbuf(0, 0, 0, size, MAXBSIZE)) == 0);
1407	splx(s);
1408	allocbuf(bp, size);
1409	bp->b_flags |= B_INVAL;
1410	return (bp);
1411}
1412
1413
1414/*
1415 * This code constitutes the buffer memory from either anonymous system
1416 * memory (in the case of non-VMIO operations) or from an associated
1417 * VM object (in the case of VMIO operations).
1418 *
1419 * Note that this code is tricky, and has many complications to resolve
1420 * deadlock or inconsistant data situations.  Tread lightly!!!
1421 *
1422 * Modify the length of a buffer's underlying buffer storage without
1423 * destroying information (unless, of course the buffer is shrinking).
1424 */
1425int
1426allocbuf(struct buf * bp, int size)
1427{
1428
1429	int s;
1430	int newbsize, mbsize;
1431	int i;
1432
1433#if !defined(MAX_PERF)
1434	if (!(bp->b_flags & B_BUSY))
1435		panic("allocbuf: buffer not busy");
1436
1437	if (bp->b_kvasize < size)
1438		panic("allocbuf: buffer too small");
1439#endif
1440
1441	if ((bp->b_flags & B_VMIO) == 0) {
1442		caddr_t origbuf;
1443		int origbufsize;
1444		/*
1445		 * Just get anonymous memory from the kernel
1446		 */
1447		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1448#if !defined(NO_B_MALLOC)
1449		if (bp->b_flags & B_MALLOC)
1450			newbsize = mbsize;
1451		else
1452#endif
1453			newbsize = round_page(size);
1454
1455		if (newbsize < bp->b_bufsize) {
1456#if !defined(NO_B_MALLOC)
1457			/*
1458			 * malloced buffers are not shrunk
1459			 */
1460			if (bp->b_flags & B_MALLOC) {
1461				if (newbsize) {
1462					bp->b_bcount = size;
1463				} else {
1464					free(bp->b_data, M_BIOBUF);
1465					bufspace -= bp->b_bufsize;
1466					bufmallocspace -= bp->b_bufsize;
1467					bp->b_data = bp->b_kvabase;
1468					bp->b_bufsize = 0;
1469					bp->b_bcount = 0;
1470					bp->b_flags &= ~B_MALLOC;
1471				}
1472				return 1;
1473			}
1474#endif
1475			vm_hold_free_pages(
1476			    bp,
1477			    (vm_offset_t) bp->b_data + newbsize,
1478			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1479		} else if (newbsize > bp->b_bufsize) {
1480#if !defined(NO_B_MALLOC)
1481			/*
1482			 * We only use malloced memory on the first allocation.
1483			 * and revert to page-allocated memory when the buffer grows.
1484			 */
1485			if ( (bufmallocspace < maxbufmallocspace) &&
1486				(bp->b_bufsize == 0) &&
1487				(mbsize <= PAGE_SIZE/2)) {
1488
1489				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1490				bp->b_bufsize = mbsize;
1491				bp->b_bcount = size;
1492				bp->b_flags |= B_MALLOC;
1493				bufspace += mbsize;
1494				bufmallocspace += mbsize;
1495				return 1;
1496			}
1497#endif
1498			origbuf = NULL;
1499			origbufsize = 0;
1500#if !defined(NO_B_MALLOC)
1501			/*
1502			 * If the buffer is growing on it's other-than-first allocation,
1503			 * then we revert to the page-allocation scheme.
1504			 */
1505			if (bp->b_flags & B_MALLOC) {
1506				origbuf = bp->b_data;
1507				origbufsize = bp->b_bufsize;
1508				bp->b_data = bp->b_kvabase;
1509				bufspace -= bp->b_bufsize;
1510				bufmallocspace -= bp->b_bufsize;
1511				bp->b_bufsize = 0;
1512				bp->b_flags &= ~B_MALLOC;
1513				newbsize = round_page(newbsize);
1514			}
1515#endif
1516			vm_hold_load_pages(
1517			    bp,
1518			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1519			    (vm_offset_t) bp->b_data + newbsize);
1520#if !defined(NO_B_MALLOC)
1521			if (origbuf) {
1522				bcopy(origbuf, bp->b_data, origbufsize);
1523				free(origbuf, M_BIOBUF);
1524			}
1525#endif
1526		}
1527	} else {
1528		vm_page_t m;
1529		int desiredpages;
1530
1531		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1532		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1533
1534#if !defined(NO_B_MALLOC)
1535		if (bp->b_flags & B_MALLOC)
1536			panic("allocbuf: VMIO buffer can't be malloced");
1537#endif
1538
1539		if (newbsize < bp->b_bufsize) {
1540			if (desiredpages < bp->b_npages) {
1541				for (i = desiredpages; i < bp->b_npages; i++) {
1542					/*
1543					 * the page is not freed here -- it
1544					 * is the responsibility of vnode_pager_setsize
1545					 */
1546					m = bp->b_pages[i];
1547#if defined(DIAGNOSTIC)
1548					if (m == bogus_page)
1549						panic("allocbuf: bogus page found");
1550#endif
1551					s = splvm();
1552					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1553						m->flags |= PG_WANTED;
1554						tsleep(m, PVM, "biodep", 0);
1555					}
1556					splx(s);
1557
1558					bp->b_pages[i] = NULL;
1559					vm_page_unwire(m);
1560				}
1561				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1562				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1563				bp->b_npages = desiredpages;
1564			}
1565		} else if (newbsize > bp->b_bufsize) {
1566			vm_object_t obj;
1567			vm_offset_t tinc, toff;
1568			vm_ooffset_t off;
1569			vm_pindex_t objoff;
1570			int pageindex, curbpnpages;
1571			struct vnode *vp;
1572			int bsize;
1573
1574			vp = bp->b_vp;
1575
1576			if (vp->v_type == VBLK)
1577				bsize = DEV_BSIZE;
1578			else
1579				bsize = vp->v_mount->mnt_stat.f_iosize;
1580
1581			if (bp->b_npages < desiredpages) {
1582				obj = vp->v_object;
1583				tinc = PAGE_SIZE;
1584				if (tinc > bsize)
1585					tinc = bsize;
1586				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1587				curbpnpages = bp->b_npages;
1588		doretry:
1589				bp->b_flags |= B_CACHE;
1590				bp->b_validoff = bp->b_validend = 0;
1591				for (toff = 0; toff < newbsize; toff += tinc) {
1592					int bytesinpage;
1593
1594					pageindex = toff >> PAGE_SHIFT;
1595					objoff = OFF_TO_IDX(off + toff);
1596					if (pageindex < curbpnpages) {
1597
1598						m = bp->b_pages[pageindex];
1599#ifdef VFS_BIO_DIAG
1600						if (m->pindex != objoff)
1601							panic("allocbuf: page changed offset??!!!?");
1602#endif
1603						bytesinpage = tinc;
1604						if (tinc > (newbsize - toff))
1605							bytesinpage = newbsize - toff;
1606						if (bp->b_flags & B_CACHE)
1607							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1608						continue;
1609					}
1610					m = vm_page_lookup(obj, objoff);
1611					if (!m) {
1612						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1613						if (!m) {
1614							VM_WAIT;
1615							goto doretry;
1616						}
1617						/*
1618						 * Normally it is unwise to clear PG_BUSY without
1619						 * PAGE_WAKEUP -- but it is okay here, as there is
1620						 * no chance for blocking between here and vm_page_alloc
1621						 */
1622						m->flags &= ~PG_BUSY;
1623						vm_page_wire(m);
1624						bp->b_flags &= ~B_CACHE;
1625					} else if (m->flags & PG_BUSY) {
1626						s = splvm();
1627						if (m->flags & PG_BUSY) {
1628							m->flags |= PG_WANTED;
1629							tsleep(m, PVM, "pgtblk", 0);
1630						}
1631						splx(s);
1632						goto doretry;
1633					} else {
1634						if ((curproc != pageproc) &&
1635							((m->queue - m->pc) == PQ_CACHE) &&
1636						    ((cnt.v_free_count + cnt.v_cache_count) <
1637								(cnt.v_free_min + cnt.v_cache_min))) {
1638							pagedaemon_wakeup();
1639						}
1640						bytesinpage = tinc;
1641						if (tinc > (newbsize - toff))
1642							bytesinpage = newbsize - toff;
1643						if (bp->b_flags & B_CACHE)
1644							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1645						vm_page_wire(m);
1646					}
1647					bp->b_pages[pageindex] = m;
1648					curbpnpages = pageindex + 1;
1649				}
1650				if (vp->v_tag == VT_NFS &&
1651				    vp->v_type != VBLK) {
1652					if (bp->b_dirtyend > 0) {
1653						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
1654						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
1655					}
1656					if (bp->b_validend == 0)
1657						bp->b_flags &= ~B_CACHE;
1658				}
1659				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1660				bp->b_npages = curbpnpages;
1661				pmap_qenter((vm_offset_t) bp->b_data,
1662					bp->b_pages, bp->b_npages);
1663				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1664			}
1665		}
1666	}
1667	if (bp->b_flags & B_VMIO)
1668		vmiospace += (newbsize - bp->b_bufsize);
1669	bufspace += (newbsize - bp->b_bufsize);
1670	bp->b_bufsize = newbsize;
1671	bp->b_bcount = size;
1672	return 1;
1673}
1674
1675/*
1676 * Wait for buffer I/O completion, returning error status.
1677 */
1678int
1679biowait(register struct buf * bp)
1680{
1681	int s;
1682
1683	s = splbio();
1684	while ((bp->b_flags & B_DONE) == 0)
1685#if defined(NO_SCHEDULE_MODS)
1686		tsleep(bp, PRIBIO, "biowait", 0);
1687#else
1688		tsleep(bp, curproc->p_usrpri, "biowait", 0);
1689#endif
1690	splx(s);
1691	if (bp->b_flags & B_EINTR) {
1692		bp->b_flags &= ~B_EINTR;
1693		return (EINTR);
1694	}
1695	if (bp->b_flags & B_ERROR) {
1696		return (bp->b_error ? bp->b_error : EIO);
1697	} else {
1698		return (0);
1699	}
1700}
1701
1702/*
1703 * Finish I/O on a buffer, calling an optional function.
1704 * This is usually called from interrupt level, so process blocking
1705 * is not *a good idea*.
1706 */
1707void
1708biodone(register struct buf * bp)
1709{
1710	int s;
1711
1712	s = splbio();
1713
1714#if !defined(MAX_PERF)
1715	if (!(bp->b_flags & B_BUSY))
1716		panic("biodone: buffer not busy");
1717#endif
1718
1719	if (bp->b_flags & B_DONE) {
1720		splx(s);
1721#if !defined(MAX_PERF)
1722		printf("biodone: buffer already done\n");
1723#endif
1724		return;
1725	}
1726	bp->b_flags |= B_DONE;
1727
1728	if ((bp->b_flags & B_READ) == 0) {
1729		vwakeup(bp);
1730	}
1731#ifdef BOUNCE_BUFFERS
1732	if (bp->b_flags & B_BOUNCE)
1733		vm_bounce_free(bp);
1734#endif
1735
1736	/* call optional completion function if requested */
1737	if (bp->b_flags & B_CALL) {
1738		bp->b_flags &= ~B_CALL;
1739		(*bp->b_iodone) (bp);
1740		splx(s);
1741		return;
1742	}
1743	if (bp->b_flags & B_VMIO) {
1744		int i, resid;
1745		vm_ooffset_t foff;
1746		vm_page_t m;
1747		vm_object_t obj;
1748		int iosize;
1749		struct vnode *vp = bp->b_vp;
1750
1751		obj = vp->v_object;
1752
1753#if defined(VFS_BIO_DEBUG)
1754		if (vp->v_usecount == 0) {
1755			panic("biodone: zero vnode ref count");
1756		}
1757
1758		if (vp->v_object == NULL) {
1759			panic("biodone: missing VM object");
1760		}
1761
1762		if ((vp->v_flag & VVMIO) == 0) {
1763			panic("biodone: vnode is not setup for merged cache");
1764		}
1765#endif
1766
1767		if (vp->v_type == VBLK)
1768			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1769		else
1770			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1771#if !defined(MAX_PERF)
1772		if (!obj) {
1773			panic("biodone: no object");
1774		}
1775#endif
1776#if defined(VFS_BIO_DEBUG)
1777		if (obj->paging_in_progress < bp->b_npages) {
1778			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1779			    obj->paging_in_progress, bp->b_npages);
1780		}
1781#endif
1782		iosize = bp->b_bufsize;
1783		for (i = 0; i < bp->b_npages; i++) {
1784			int bogusflag = 0;
1785			m = bp->b_pages[i];
1786			if (m == bogus_page) {
1787				bogusflag = 1;
1788				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1789				if (!m) {
1790#if defined(VFS_BIO_DEBUG)
1791					printf("biodone: page disappeared\n");
1792#endif
1793					--obj->paging_in_progress;
1794					continue;
1795				}
1796				bp->b_pages[i] = m;
1797				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1798			}
1799#if defined(VFS_BIO_DEBUG)
1800			if (OFF_TO_IDX(foff) != m->pindex) {
1801				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1802			}
1803#endif
1804			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1805			if (resid > iosize)
1806				resid = iosize;
1807			/*
1808			 * In the write case, the valid and clean bits are
1809			 * already changed correctly, so we only need to do this
1810			 * here in the read case.
1811			 */
1812			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1813				vfs_page_set_valid(bp, foff, i, m);
1814			}
1815
1816			/*
1817			 * when debugging new filesystems or buffer I/O methods, this
1818			 * is the most common error that pops up.  if you see this, you
1819			 * have not set the page busy flag correctly!!!
1820			 */
1821			if (m->busy == 0) {
1822#if !defined(MAX_PERF)
1823				printf("biodone: page busy < 0, "
1824				    "pindex: %d, foff: 0x(%x,%x), "
1825				    "resid: %d, index: %d\n",
1826				    (int) m->pindex, (int)(foff >> 32),
1827						(int) foff & 0xffffffff, resid, i);
1828#endif
1829				if (vp->v_type != VBLK)
1830#if !defined(MAX_PERF)
1831					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1832					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1833					    (int) bp->b_lblkno,
1834					    bp->b_flags, bp->b_npages);
1835				else
1836					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1837					    (int) bp->b_lblkno,
1838					    bp->b_flags, bp->b_npages);
1839				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1840				    m->valid, m->dirty, m->wire_count);
1841#endif
1842				panic("biodone: page busy < 0\n");
1843			}
1844			--m->busy;
1845			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1846				m->flags &= ~PG_WANTED;
1847				wakeup(m);
1848			}
1849			--obj->paging_in_progress;
1850			foff += resid;
1851			iosize -= resid;
1852		}
1853		if (obj && obj->paging_in_progress == 0 &&
1854		    (obj->flags & OBJ_PIPWNT)) {
1855			obj->flags &= ~OBJ_PIPWNT;
1856			wakeup(obj);
1857		}
1858	}
1859	/*
1860	 * For asynchronous completions, release the buffer now. The brelse
1861	 * checks for B_WANTED and will do the wakeup there if necessary - so
1862	 * no need to do a wakeup here in the async case.
1863	 */
1864
1865	if (bp->b_flags & B_ASYNC) {
1866		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1867			brelse(bp);
1868		else
1869			bqrelse(bp);
1870	} else {
1871		bp->b_flags &= ~B_WANTED;
1872		wakeup(bp);
1873	}
1874	splx(s);
1875}
1876
1877int
1878count_lock_queue()
1879{
1880	int count;
1881	struct buf *bp;
1882
1883	count = 0;
1884	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1885	    bp != NULL;
1886	    bp = TAILQ_NEXT(bp, b_freelist))
1887		count++;
1888	return (count);
1889}
1890
1891int vfs_update_interval = 30;
1892
1893static void
1894vfs_update()
1895{
1896	while (1) {
1897		tsleep(&vfs_update_wakeup, PUSER, "update",
1898		    hz * vfs_update_interval);
1899		vfs_update_wakeup = 0;
1900		sync(curproc, NULL);
1901	}
1902}
1903
1904static int
1905sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1906{
1907	int error = sysctl_handle_int(oidp,
1908		oidp->oid_arg1, oidp->oid_arg2, req);
1909	if (!error)
1910		wakeup(&vfs_update_wakeup);
1911	return error;
1912}
1913
1914SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1915	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1916
1917
1918/*
1919 * This routine is called in lieu of iodone in the case of
1920 * incomplete I/O.  This keeps the busy status for pages
1921 * consistant.
1922 */
1923void
1924vfs_unbusy_pages(struct buf * bp)
1925{
1926	int i;
1927
1928	if (bp->b_flags & B_VMIO) {
1929		struct vnode *vp = bp->b_vp;
1930		vm_object_t obj = vp->v_object;
1931		vm_ooffset_t foff;
1932
1933		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1934
1935		for (i = 0; i < bp->b_npages; i++) {
1936			vm_page_t m = bp->b_pages[i];
1937
1938			if (m == bogus_page) {
1939				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1940#if !defined(MAX_PERF)
1941				if (!m) {
1942					panic("vfs_unbusy_pages: page missing\n");
1943				}
1944#endif
1945				bp->b_pages[i] = m;
1946				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1947			}
1948			--obj->paging_in_progress;
1949			--m->busy;
1950			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1951				m->flags &= ~PG_WANTED;
1952				wakeup(m);
1953			}
1954		}
1955		if (obj->paging_in_progress == 0 &&
1956		    (obj->flags & OBJ_PIPWNT)) {
1957			obj->flags &= ~OBJ_PIPWNT;
1958			wakeup(obj);
1959		}
1960	}
1961}
1962
1963/*
1964 * Set NFS' b_validoff and b_validend fields from the valid bits
1965 * of a page.  If the consumer is not NFS, and the page is not
1966 * valid for the entire range, clear the B_CACHE flag to force
1967 * the consumer to re-read the page.
1968 */
1969static void
1970vfs_buf_set_valid(struct buf *bp,
1971		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
1972		  vm_page_t m)
1973{
1974	if (bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK) {
1975		vm_offset_t svalid, evalid;
1976		int validbits = m->valid;
1977
1978		/*
1979		 * This only bothers with the first valid range in the
1980		 * page.
1981		 */
1982		svalid = off;
1983		while (validbits && !(validbits & 1)) {
1984			svalid += DEV_BSIZE;
1985			validbits >>= 1;
1986		}
1987		evalid = svalid;
1988		while (validbits & 1) {
1989			evalid += DEV_BSIZE;
1990			validbits >>= 1;
1991		}
1992		/*
1993		 * Make sure this range is contiguous with the range
1994		 * built up from previous pages.  If not, then we will
1995		 * just use the range from the previous pages.
1996		 */
1997		if (svalid == bp->b_validend) {
1998			bp->b_validoff = min(bp->b_validoff, svalid);
1999			bp->b_validend = max(bp->b_validend, evalid);
2000		}
2001	} else if (!vm_page_is_valid(m,
2002				     (vm_offset_t) ((foff + off) & PAGE_MASK),
2003				     size)) {
2004		bp->b_flags &= ~B_CACHE;
2005	}
2006}
2007
2008/*
2009 * Set the valid bits in a page, taking care of the b_validoff,
2010 * b_validend fields which NFS uses to optimise small reads.  Off is
2011 * the offset within the file and pageno is the page index within the buf.
2012 */
2013static void
2014vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2015{
2016	struct vnode *vp = bp->b_vp;
2017	vm_ooffset_t soff, eoff;
2018
2019	soff = off;
2020	eoff = off + min(PAGE_SIZE, bp->b_bufsize);
2021	vm_page_set_invalid(m,
2022			    (vm_offset_t) (soff & PAGE_MASK),
2023			    (vm_offset_t) (eoff - soff));
2024	if (vp->v_tag == VT_NFS && vp->v_type != VBLK) {
2025		vm_ooffset_t sv, ev;
2026		off = off - pageno * PAGE_SIZE;
2027		sv = off + ((bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1));
2028		ev = off + (bp->b_validend & ~(DEV_BSIZE - 1));
2029		soff = max(sv, soff);
2030		eoff = min(ev, eoff);
2031	}
2032	if (eoff > soff)
2033		vm_page_set_validclean(m,
2034				       (vm_offset_t) (soff & PAGE_MASK),
2035				       (vm_offset_t) (eoff - soff));
2036}
2037
2038/*
2039 * This routine is called before a device strategy routine.
2040 * It is used to tell the VM system that paging I/O is in
2041 * progress, and treat the pages associated with the buffer
2042 * almost as being PG_BUSY.  Also the object paging_in_progress
2043 * flag is handled to make sure that the object doesn't become
2044 * inconsistant.
2045 */
2046void
2047vfs_busy_pages(struct buf * bp, int clear_modify)
2048{
2049	int i;
2050
2051	if (bp->b_flags & B_VMIO) {
2052		struct vnode *vp = bp->b_vp;
2053		vm_object_t obj = vp->v_object;
2054		vm_ooffset_t foff;
2055
2056		if (vp->v_type == VBLK)
2057			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
2058		else
2059			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
2060		vfs_setdirty(bp);
2061		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2062			vm_page_t m = bp->b_pages[i];
2063
2064			if ((bp->b_flags & B_CLUSTER) == 0) {
2065				obj->paging_in_progress++;
2066				m->busy++;
2067			}
2068			vm_page_protect(m, VM_PROT_NONE);
2069			if (clear_modify)
2070				vfs_page_set_valid(bp, foff, i, m);
2071			else if (bp->b_bcount >= PAGE_SIZE) {
2072				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
2073					bp->b_pages[i] = bogus_page;
2074					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
2075				}
2076			}
2077		}
2078	}
2079}
2080
2081/*
2082 * Tell the VM system that the pages associated with this buffer
2083 * are clean.  This is used for delayed writes where the data is
2084 * going to go to disk eventually without additional VM intevention.
2085 */
2086void
2087vfs_clean_pages(struct buf * bp)
2088{
2089	int i;
2090
2091	if (bp->b_flags & B_VMIO) {
2092		struct vnode *vp = bp->b_vp;
2093		vm_ooffset_t foff;
2094
2095		if (vp->v_type == VBLK)
2096			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
2097		else
2098			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
2099		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2100			vm_page_t m = bp->b_pages[i];
2101
2102			vfs_page_set_valid(bp, foff, i, m);
2103		}
2104	}
2105}
2106
2107void
2108vfs_bio_clrbuf(struct buf *bp) {
2109	int i;
2110	if( bp->b_flags & B_VMIO) {
2111		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
2112			int mask;
2113			mask = 0;
2114			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
2115				mask |= (1 << (i/DEV_BSIZE));
2116			if( bp->b_pages[0]->valid != mask) {
2117				bzero(bp->b_data, bp->b_bufsize);
2118			}
2119			bp->b_pages[0]->valid = mask;
2120			bp->b_resid = 0;
2121			return;
2122		}
2123		for(i=0;i<bp->b_npages;i++) {
2124			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
2125				continue;
2126			if( bp->b_pages[i]->valid == 0) {
2127				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2128					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
2129				}
2130			} else {
2131				int j;
2132				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
2133					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
2134						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
2135				}
2136			}
2137			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
2138		}
2139		bp->b_resid = 0;
2140	} else {
2141		clrbuf(bp);
2142	}
2143}
2144
2145/*
2146 * vm_hold_load_pages and vm_hold_unload pages get pages into
2147 * a buffers address space.  The pages are anonymous and are
2148 * not associated with a file object.
2149 */
2150void
2151vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2152{
2153	vm_offset_t pg;
2154	vm_page_t p;
2155	int index;
2156
2157	to = round_page(to);
2158	from = round_page(from);
2159	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2160
2161	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2162
2163tryagain:
2164
2165		p = vm_page_alloc(kernel_object,
2166			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
2167		    VM_ALLOC_NORMAL);
2168		if (!p) {
2169			VM_WAIT;
2170			goto tryagain;
2171		}
2172		vm_page_wire(p);
2173		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
2174		bp->b_pages[index] = p;
2175		PAGE_WAKEUP(p);
2176	}
2177	bp->b_npages = index;
2178}
2179
2180void
2181vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2182{
2183	vm_offset_t pg;
2184	vm_page_t p;
2185	int index, newnpages;
2186
2187	from = round_page(from);
2188	to = round_page(to);
2189	newnpages = index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2190
2191	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2192		p = bp->b_pages[index];
2193		if (p && (index < bp->b_npages)) {
2194#if !defined(MAX_PERF)
2195			if (p->busy) {
2196				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2197					bp->b_blkno, bp->b_lblkno);
2198			}
2199#endif
2200			bp->b_pages[index] = NULL;
2201			pmap_kremove(pg);
2202			vm_page_unwire(p);
2203			vm_page_free(p);
2204		}
2205	}
2206	bp->b_npages = newnpages;
2207}
2208
2209
2210#include "opt_ddb.h"
2211#ifdef DDB
2212#include <ddb/ddb.h>
2213
2214DB_SHOW_COMMAND(buffer, db_show_buffer)
2215{
2216	/* get args */
2217	struct buf *bp = (struct buf *)addr;
2218
2219	if (!have_addr) {
2220		db_printf("usage: show buffer <addr>\n");
2221		return;
2222	}
2223
2224	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2225		  bp->b_flags, "\20\40bounce\37cluster\36vmio\35ram\34ordered"
2226		  "\33paging\32xxx\31writeinprog\30wanted\27relbuf\26tape"
2227		  "\25read\24raw\23phys\22clusterok\21malloc\20nocache"
2228		  "\17locked\16inval\15gathered\14error\13eintr\12done\11dirty"
2229		  "\10delwri\7call\6cache\5busy\4bad\3async\2needcommit\1age");
2230	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2231		  "b_resid = %ld\nb_dev = 0x%x, b_un.b_addr = %p, "
2232		  "b_blkno = %d, b_pblkno = %d\n",
2233		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2234		  bp->b_dev, bp->b_un.b_addr, bp->b_blkno, bp->b_pblkno);
2235	if (bp->b_npages) {
2236		int i;
2237		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
2238		for (i = 0; i < bp->b_npages; i++) {
2239			vm_page_t m;
2240			m = bp->b_pages[i];
2241			db_printf("(0x%x, 0x%x, 0x%x)", m->object, m->pindex,
2242				VM_PAGE_TO_PHYS(m));
2243			if ((i + 1) < bp->b_npages)
2244				db_printf(",");
2245		}
2246		db_printf("\n");
2247	}
2248}
2249#endif /* DDB */
2250