vfs_bio.c revision 30994
1169689Skan/*
2169689Skan * Copyright (c) 1994 John S. Dyson
3169689Skan * All rights reserved.
4169689Skan *
5169689Skan * Redistribution and use in source and binary forms, with or without
6169689Skan * modification, are permitted provided that the following conditions
7169689Skan * are met:
8169689Skan * 1. Redistributions of source code must retain the above copyright
9169689Skan *    notice immediately at the beginning of the file, without modification,
10169689Skan *    this list of conditions, and the following disclaimer.
11169689Skan * 2. Redistributions in binary form must reproduce the above copyright
12169689Skan *    notice, this list of conditions and the following disclaimer in the
13169689Skan *    documentation and/or other materials provided with the distribution.
14169689Skan * 3. Absolutely no warranty of function or purpose is made by the author
15169689Skan *    John S. Dyson.
16169689Skan * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17169689Skan *    is allowed if this notation is included.
18169689Skan * 5. Modifications may be freely made to this file if the above conditions
19169689Skan *    are met.
20169689Skan *
21169689Skan * $Id: vfs_bio.c,v 1.132 1997/10/28 15:58:24 bde Exp $
22169689Skan */
23169689Skan
24169689Skan/*
25169689Skan * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#include "opt_bounce.h"
36
37#define VMIO
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/vmmeter.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_prot.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_pageout.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_extern.h>
54#include <vm/vm_map.h>
55#include <sys/buf.h>
56#include <sys/mount.h>
57#include <sys/malloc.h>
58#include <sys/resourcevar.h>
59
60static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
61
62static void vfs_update __P((void));
63static struct	proc *updateproc;
64static struct kproc_desc up_kp = {
65	"update",
66	vfs_update,
67	&updateproc
68};
69SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
70
71struct buf *buf;		/* buffer header pool */
72struct swqueue bswlist;
73
74int count_lock_queue __P((void));
75static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
78		vm_offset_t to);
79static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
80			      vm_offset_t off, vm_offset_t size,
81			      vm_page_t m);
82static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
83			       int pageno, vm_page_t m);
84static void vfs_clean_pages(struct buf * bp);
85static void vfs_setdirty(struct buf *bp);
86static void vfs_vmio_release(struct buf *bp);
87static void flushdirtybuffers(int slpflag, int slptimeo);
88
89int needsbuffer;
90
91/*
92 * Internal update daemon, process 3
93 *	The variable vfs_update_wakeup allows for internal syncs.
94 */
95int vfs_update_wakeup;
96
97
98/*
99 * buffers base kva
100 */
101
102/*
103 * bogus page -- for I/O to/from partially complete buffers
104 * this is a temporary solution to the problem, but it is not
105 * really that bad.  it would be better to split the buffer
106 * for input in the case of buffers partially already in memory,
107 * but the code is intricate enough already.
108 */
109vm_page_t bogus_page;
110static vm_offset_t bogus_offset;
111
112static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
113	bufmallocspace, maxbufmallocspace;
114int numdirtybuffers, lodirtybuffers, hidirtybuffers;
115static int numfreebuffers, lofreebuffers, hifreebuffers;
116
117SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
118	&numdirtybuffers, 0, "");
119SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
120	&lodirtybuffers, 0, "");
121SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
122	&hidirtybuffers, 0, "");
123SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
124	&numfreebuffers, 0, "");
125SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
126	&lofreebuffers, 0, "");
127SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
128	&hifreebuffers, 0, "");
129SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
130	&maxbufspace, 0, "");
131SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
132	&bufspace, 0, "");
133SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
134	&maxvmiobufspace, 0, "");
135SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
136	&vmiospace, 0, "");
137SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
138	&maxbufmallocspace, 0, "");
139SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
140	&bufmallocspace, 0, "");
141
142static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
143static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
144
145extern int vm_swap_size;
146
147#define BUF_MAXUSE 24
148
149#define VFS_BIO_NEED_ANY 1
150#define VFS_BIO_NEED_LOWLIMIT 2
151#define VFS_BIO_NEED_FREE 4
152
153/*
154 * Initialize buffer headers and related structures.
155 */
156void
157bufinit()
158{
159	struct buf *bp;
160	int i;
161
162	TAILQ_INIT(&bswlist);
163	LIST_INIT(&invalhash);
164
165	/* first, make a null hash table */
166	for (i = 0; i < BUFHSZ; i++)
167		LIST_INIT(&bufhashtbl[i]);
168
169	/* next, make a null set of free lists */
170	for (i = 0; i < BUFFER_QUEUES; i++)
171		TAILQ_INIT(&bufqueues[i]);
172
173	/* finally, initialize each buffer header and stick on empty q */
174	for (i = 0; i < nbuf; i++) {
175		bp = &buf[i];
176		bzero(bp, sizeof *bp);
177		bp->b_flags = B_INVAL;	/* we're just an empty header */
178		bp->b_dev = NODEV;
179		bp->b_rcred = NOCRED;
180		bp->b_wcred = NOCRED;
181		bp->b_qindex = QUEUE_EMPTY;
182		bp->b_vnbufs.le_next = NOLIST;
183		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
184		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
185	}
186/*
187 * maxbufspace is currently calculated to support all filesystem blocks
188 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
189 * cache is still the same as it would be for 8K filesystems.  This
190 * keeps the size of the buffer cache "in check" for big block filesystems.
191 */
192	maxbufspace = (nbuf + 8) * DFLTBSIZE;
193/*
194 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
195 */
196	maxvmiobufspace = 2 * maxbufspace / 3;
197/*
198 * Limit the amount of malloc memory since it is wired permanently into
199 * the kernel space.  Even though this is accounted for in the buffer
200 * allocation, we don't want the malloced region to grow uncontrolled.
201 * The malloc scheme improves memory utilization significantly on average
202 * (small) directories.
203 */
204	maxbufmallocspace = maxbufspace / 20;
205
206/*
207 * Remove the probability of deadlock conditions by limiting the
208 * number of dirty buffers.
209 */
210	hidirtybuffers = nbuf / 6 + 20;
211	lodirtybuffers = nbuf / 12 + 10;
212	numdirtybuffers = 0;
213	lofreebuffers = nbuf / 18 + 5;
214	hifreebuffers = 2 * lofreebuffers;
215	numfreebuffers = nbuf;
216
217	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
218	bogus_page = vm_page_alloc(kernel_object,
219			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
220			VM_ALLOC_NORMAL);
221
222}
223
224/*
225 * Free the kva allocation for a buffer
226 * Must be called only at splbio or higher,
227 *  as this is the only locking for buffer_map.
228 */
229static void
230bfreekva(struct buf * bp)
231{
232	if (bp->b_kvasize == 0)
233		return;
234
235	vm_map_delete(buffer_map,
236		(vm_offset_t) bp->b_kvabase,
237		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
238
239	bp->b_kvasize = 0;
240
241}
242
243/*
244 * remove the buffer from the appropriate free list
245 */
246void
247bremfree(struct buf * bp)
248{
249	int s = splbio();
250
251	if (bp->b_qindex != QUEUE_NONE) {
252		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
253		bp->b_qindex = QUEUE_NONE;
254	} else {
255#if !defined(MAX_PERF)
256		panic("bremfree: removing a buffer when not on a queue");
257#endif
258	}
259	if ((bp->b_flags & B_INVAL) ||
260		(bp->b_flags & (B_DELWRI|B_LOCKED)) == 0)
261		--numfreebuffers;
262	splx(s);
263}
264
265/*
266 * Get a buffer with the specified data.  Look in the cache first.
267 */
268int
269bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
270    struct buf ** bpp)
271{
272	struct buf *bp;
273
274	bp = getblk(vp, blkno, size, 0, 0);
275	*bpp = bp;
276
277	/* if not found in cache, do some I/O */
278	if ((bp->b_flags & B_CACHE) == 0) {
279		if (curproc != NULL)
280			curproc->p_stats->p_ru.ru_inblock++;
281		bp->b_flags |= B_READ;
282		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
283		if (bp->b_rcred == NOCRED) {
284			if (cred != NOCRED)
285				crhold(cred);
286			bp->b_rcred = cred;
287		}
288		vfs_busy_pages(bp, 0);
289		VOP_STRATEGY(bp);
290		return (biowait(bp));
291	}
292	return (0);
293}
294
295/*
296 * Operates like bread, but also starts asynchronous I/O on
297 * read-ahead blocks.
298 */
299int
300breadn(struct vnode * vp, daddr_t blkno, int size,
301    daddr_t * rablkno, int *rabsize,
302    int cnt, struct ucred * cred, struct buf ** bpp)
303{
304	struct buf *bp, *rabp;
305	int i;
306	int rv = 0, readwait = 0;
307
308	*bpp = bp = getblk(vp, blkno, size, 0, 0);
309
310	/* if not found in cache, do some I/O */
311	if ((bp->b_flags & B_CACHE) == 0) {
312		if (curproc != NULL)
313			curproc->p_stats->p_ru.ru_inblock++;
314		bp->b_flags |= B_READ;
315		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
316		if (bp->b_rcred == NOCRED) {
317			if (cred != NOCRED)
318				crhold(cred);
319			bp->b_rcred = cred;
320		}
321		vfs_busy_pages(bp, 0);
322		VOP_STRATEGY(bp);
323		++readwait;
324	}
325	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
326		if (inmem(vp, *rablkno))
327			continue;
328		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
329
330		if ((rabp->b_flags & B_CACHE) == 0) {
331			if (curproc != NULL)
332				curproc->p_stats->p_ru.ru_inblock++;
333			rabp->b_flags |= B_READ | B_ASYNC;
334			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
335			if (rabp->b_rcred == NOCRED) {
336				if (cred != NOCRED)
337					crhold(cred);
338				rabp->b_rcred = cred;
339			}
340			vfs_busy_pages(rabp, 0);
341			VOP_STRATEGY(rabp);
342		} else {
343			brelse(rabp);
344		}
345	}
346
347	if (readwait) {
348		rv = biowait(bp);
349	}
350	return (rv);
351}
352
353/*
354 * Write, release buffer on completion.  (Done by iodone
355 * if async.)
356 */
357int
358bwrite(struct buf * bp)
359{
360	int oldflags = bp->b_flags;
361
362	if (bp->b_flags & B_INVAL) {
363		brelse(bp);
364		return (0);
365	}
366#if !defined(MAX_PERF)
367	if (!(bp->b_flags & B_BUSY))
368		panic("bwrite: buffer is not busy???");
369#endif
370
371	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
372	bp->b_flags |= B_WRITEINPROG;
373
374	if ((oldflags & B_DELWRI) == B_DELWRI) {
375		--numdirtybuffers;
376		reassignbuf(bp, bp->b_vp);
377	}
378
379	bp->b_vp->v_numoutput++;
380	vfs_busy_pages(bp, 1);
381	if (curproc != NULL)
382		curproc->p_stats->p_ru.ru_oublock++;
383	VOP_STRATEGY(bp);
384
385	if ((oldflags & B_ASYNC) == 0) {
386		int rtval = biowait(bp);
387
388		if (oldflags & B_DELWRI) {
389			reassignbuf(bp, bp->b_vp);
390		}
391		brelse(bp);
392		return (rtval);
393	}
394	return (0);
395}
396
397void
398vfs_bio_need_satisfy(void) {
399	++numfreebuffers;
400	if (!needsbuffer)
401		return;
402	if (numdirtybuffers < lodirtybuffers) {
403		needsbuffer &= ~(VFS_BIO_NEED_ANY | VFS_BIO_NEED_LOWLIMIT);
404	} else {
405		needsbuffer &= ~VFS_BIO_NEED_ANY;
406	}
407	if (numfreebuffers >= hifreebuffers) {
408		needsbuffer &= ~VFS_BIO_NEED_FREE;
409	}
410	wakeup(&needsbuffer);
411}
412
413/*
414 * Delayed write. (Buffer is marked dirty).
415 */
416void
417bdwrite(struct buf * bp)
418{
419
420#if !defined(MAX_PERF)
421	if ((bp->b_flags & B_BUSY) == 0) {
422		panic("bdwrite: buffer is not busy");
423	}
424#endif
425
426	if (bp->b_flags & B_INVAL) {
427		brelse(bp);
428		return;
429	}
430	if (bp->b_flags & B_TAPE) {
431		bawrite(bp);
432		return;
433	}
434	bp->b_flags &= ~(B_READ|B_RELBUF);
435	if ((bp->b_flags & B_DELWRI) == 0) {
436		bp->b_flags |= B_DONE | B_DELWRI;
437		reassignbuf(bp, bp->b_vp);
438		++numdirtybuffers;
439	}
440
441	/*
442	 * This bmap keeps the system from needing to do the bmap later,
443	 * perhaps when the system is attempting to do a sync.  Since it
444	 * is likely that the indirect block -- or whatever other datastructure
445	 * that the filesystem needs is still in memory now, it is a good
446	 * thing to do this.  Note also, that if the pageout daemon is
447	 * requesting a sync -- there might not be enough memory to do
448	 * the bmap then...  So, this is important to do.
449	 */
450	if (bp->b_lblkno == bp->b_blkno) {
451		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
452	}
453
454	/*
455	 * Set the *dirty* buffer range based upon the VM system dirty pages.
456	 */
457	vfs_setdirty(bp);
458
459	/*
460	 * We need to do this here to satisfy the vnode_pager and the
461	 * pageout daemon, so that it thinks that the pages have been
462	 * "cleaned".  Note that since the pages are in a delayed write
463	 * buffer -- the VFS layer "will" see that the pages get written
464	 * out on the next sync, or perhaps the cluster will be completed.
465	 */
466	vfs_clean_pages(bp);
467	bqrelse(bp);
468
469	if (numdirtybuffers >= hidirtybuffers)
470		flushdirtybuffers(0, 0);
471
472	return;
473}
474
475/*
476 * Asynchronous write.
477 * Start output on a buffer, but do not wait for it to complete.
478 * The buffer is released when the output completes.
479 */
480void
481bawrite(struct buf * bp)
482{
483	bp->b_flags |= B_ASYNC;
484	(void) VOP_BWRITE(bp);
485}
486
487/*
488 * Ordered write.
489 * Start output on a buffer, but only wait for it to complete if the
490 * output device cannot guarantee ordering in some other way.  Devices
491 * that can perform asynchronous ordered writes will set the B_ASYNC
492 * flag in their strategy routine.
493 * The buffer is released when the output completes.
494 */
495int
496bowrite(struct buf * bp)
497{
498	/*
499	 * XXX Add in B_ASYNC once the SCSI
500	 *     layer can deal with ordered
501	 *     writes properly.
502	 */
503	bp->b_flags |= B_ORDERED;
504	return (VOP_BWRITE(bp));
505}
506
507/*
508 * Release a buffer.
509 */
510void
511brelse(struct buf * bp)
512{
513	int s;
514
515	if (bp->b_flags & B_CLUSTER) {
516		relpbuf(bp);
517		return;
518	}
519	/* anyone need a "free" block? */
520	s = splbio();
521
522	/* anyone need this block? */
523	if (bp->b_flags & B_WANTED) {
524		bp->b_flags &= ~(B_WANTED | B_AGE);
525		wakeup(bp);
526	}
527
528	if (bp->b_flags & B_LOCKED)
529		bp->b_flags &= ~B_ERROR;
530
531	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
532	    (bp->b_bufsize <= 0)) {
533		bp->b_flags |= B_INVAL;
534		if (bp->b_flags & B_DELWRI)
535			--numdirtybuffers;
536		bp->b_flags &= ~(B_DELWRI | B_CACHE);
537		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
538			if (bp->b_bufsize)
539				allocbuf(bp, 0);
540			brelvp(bp);
541		}
542	}
543
544	/*
545	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
546	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
547	 * but the VM object is kept around.  The B_NOCACHE flag is used to
548	 * invalidate the pages in the VM object.
549	 *
550	 * If the buffer is a partially filled NFS buffer, keep it
551	 * since invalidating it now will lose informatio.  The valid
552	 * flags in the vm_pages have only DEV_BSIZE resolution but
553	 * the b_validoff, b_validend fields have byte resolution.
554	 * This can avoid unnecessary re-reads of the buffer.
555	 * XXX this seems to cause performance problems.
556	 */
557	if ((bp->b_flags & B_VMIO)
558	    && !(bp->b_vp->v_tag == VT_NFS &&
559		 bp->b_vp->v_type != VBLK &&
560		 (bp->b_flags & B_DELWRI) != 0)
561#ifdef notdef
562	    && (bp->b_vp->v_tag != VT_NFS
563		|| bp->b_vp->v_type == VBLK
564		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
565		|| bp->b_validend == 0
566		|| (bp->b_validoff == 0
567		    && bp->b_validend == bp->b_bufsize))
568#endif
569	    ) {
570		vm_ooffset_t foff;
571		vm_object_t obj;
572		int i, resid;
573		vm_page_t m;
574		struct vnode *vp;
575		int iototal = bp->b_bufsize;
576
577		vp = bp->b_vp;
578
579#if !defined(MAX_PERF)
580		if (!vp)
581			panic("brelse: missing vp");
582#endif
583
584		if (bp->b_npages) {
585			vm_pindex_t poff;
586			obj = (vm_object_t) vp->v_object;
587			if (vp->v_type == VBLK)
588				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
589			else
590				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
591			poff = OFF_TO_IDX(foff);
592			for (i = 0; i < bp->b_npages; i++) {
593				m = bp->b_pages[i];
594				if (m == bogus_page) {
595					m = vm_page_lookup(obj, poff + i);
596#if !defined(MAX_PERF)
597					if (!m) {
598						panic("brelse: page missing\n");
599					}
600#endif
601					bp->b_pages[i] = m;
602					pmap_qenter(trunc_page(bp->b_data),
603						bp->b_pages, bp->b_npages);
604				}
605				resid = IDX_TO_OFF(m->pindex+1) - foff;
606				if (resid > iototal)
607					resid = iototal;
608				if (resid > 0) {
609					/*
610					 * Don't invalidate the page if the local machine has already
611					 * modified it.  This is the lesser of two evils, and should
612					 * be fixed.
613					 */
614					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
615						vm_page_test_dirty(m);
616						if (m->dirty == 0) {
617							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
618							if (m->valid == 0)
619								vm_page_protect(m, VM_PROT_NONE);
620						}
621					}
622					if (resid >= PAGE_SIZE) {
623						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
624							bp->b_flags |= B_INVAL;
625						}
626					} else {
627						if (!vm_page_is_valid(m,
628							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
629							bp->b_flags |= B_INVAL;
630						}
631					}
632				}
633				foff += resid;
634				iototal -= resid;
635			}
636		}
637		if (bp->b_flags & (B_INVAL | B_RELBUF))
638			vfs_vmio_release(bp);
639	}
640#if !defined(MAX_PERF)
641	if (bp->b_qindex != QUEUE_NONE)
642		panic("brelse: free buffer onto another queue???");
643#endif
644
645	/* enqueue */
646	/* buffers with no memory */
647	if (bp->b_bufsize == 0) {
648		bp->b_flags |= B_INVAL;
649		bp->b_qindex = QUEUE_EMPTY;
650		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
651		LIST_REMOVE(bp, b_hash);
652		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
653		bp->b_dev = NODEV;
654		/*
655		 * Get rid of the kva allocation *now*
656		 */
657		bfreekva(bp);
658
659	/* buffers with junk contents */
660	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
661		bp->b_flags |= B_INVAL;
662		bp->b_qindex = QUEUE_AGE;
663		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
664		LIST_REMOVE(bp, b_hash);
665		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
666		bp->b_dev = NODEV;
667
668	/* buffers that are locked */
669	} else if (bp->b_flags & B_LOCKED) {
670		bp->b_qindex = QUEUE_LOCKED;
671		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
672
673	/* buffers with stale but valid contents */
674	} else if (bp->b_flags & B_AGE) {
675		bp->b_qindex = QUEUE_AGE;
676		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
677
678	/* buffers with valid and quite potentially reuseable contents */
679	} else {
680		bp->b_qindex = QUEUE_LRU;
681		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
682	}
683
684	if ((bp->b_flags & B_INVAL) ||
685		(bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
686		if (bp->b_flags & B_DELWRI) {
687			--numdirtybuffers;
688			bp->b_flags &= ~B_DELWRI;
689		}
690		vfs_bio_need_satisfy();
691	}
692
693	/* unlock */
694	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
695				B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
696	splx(s);
697}
698
699/*
700 * Release a buffer.
701 */
702void
703bqrelse(struct buf * bp)
704{
705	int s;
706
707	s = splbio();
708
709	/* anyone need this block? */
710	if (bp->b_flags & B_WANTED) {
711		bp->b_flags &= ~(B_WANTED | B_AGE);
712		wakeup(bp);
713	}
714
715#if !defined(MAX_PERF)
716	if (bp->b_qindex != QUEUE_NONE)
717		panic("bqrelse: free buffer onto another queue???");
718#endif
719
720	if (bp->b_flags & B_LOCKED) {
721		bp->b_flags &= ~B_ERROR;
722		bp->b_qindex = QUEUE_LOCKED;
723		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
724		/* buffers with stale but valid contents */
725	} else {
726		bp->b_qindex = QUEUE_LRU;
727		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
728	}
729
730	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
731		vfs_bio_need_satisfy();
732	}
733
734	/* unlock */
735	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
736		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
737	splx(s);
738}
739
740static void
741vfs_vmio_release(bp)
742	struct buf *bp;
743{
744	int i;
745	vm_page_t m;
746
747	for (i = 0; i < bp->b_npages; i++) {
748		m = bp->b_pages[i];
749		bp->b_pages[i] = NULL;
750		vm_page_unwire(m);
751		/*
752		 * We don't mess with busy pages, it is
753		 * the responsibility of the process that
754		 * busied the pages to deal with them.
755		 */
756		if ((m->flags & PG_BUSY) || (m->busy != 0))
757			continue;
758
759		if (m->wire_count == 0) {
760
761			if (m->flags & PG_WANTED) {
762				m->flags &= ~PG_WANTED;
763				wakeup(m);
764			}
765
766			/*
767			 * If this is an async free -- we cannot place
768			 * pages onto the cache queue.  If it is an
769			 * async free, then we don't modify any queues.
770			 * This is probably in error (for perf reasons),
771			 * and we will eventually need to build
772			 * a more complete infrastructure to support I/O
773			 * rundown.
774			 */
775			if ((bp->b_flags & B_ASYNC) == 0) {
776
777			/*
778			 * In the case of sync buffer frees, we can do pretty much
779			 * anything to any of the memory queues.  Specifically,
780			 * the cache queue is okay to be modified.
781			 */
782				if (m->valid) {
783					if(m->dirty == 0)
784						vm_page_test_dirty(m);
785					/*
786					 * this keeps pressure off of the process memory
787					 */
788					if (m->dirty == 0 && m->hold_count == 0)
789						vm_page_cache(m);
790					else
791						vm_page_deactivate(m);
792				} else if (m->hold_count == 0) {
793					vm_page_protect(m, VM_PROT_NONE);
794					vm_page_free(m);
795				}
796			} else {
797				/*
798				 * If async, then at least we clear the
799				 * act_count.
800				 */
801				m->act_count = 0;
802			}
803		}
804	}
805	bufspace -= bp->b_bufsize;
806	vmiospace -= bp->b_bufsize;
807	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
808	bp->b_npages = 0;
809	bp->b_bufsize = 0;
810	bp->b_flags &= ~B_VMIO;
811	if (bp->b_vp)
812		brelvp(bp);
813}
814
815/*
816 * Check to see if a block is currently memory resident.
817 */
818struct buf *
819gbincore(struct vnode * vp, daddr_t blkno)
820{
821	struct buf *bp;
822	struct bufhashhdr *bh;
823
824	bh = BUFHASH(vp, blkno);
825	bp = bh->lh_first;
826
827	/* Search hash chain */
828	while (bp != NULL) {
829		/* hit */
830		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
831		    (bp->b_flags & B_INVAL) == 0) {
832			break;
833		}
834		bp = bp->b_hash.le_next;
835	}
836	return (bp);
837}
838
839/*
840 * this routine implements clustered async writes for
841 * clearing out B_DELWRI buffers...  This is much better
842 * than the old way of writing only one buffer at a time.
843 */
844int
845vfs_bio_awrite(struct buf * bp)
846{
847	int i;
848	daddr_t lblkno = bp->b_lblkno;
849	struct vnode *vp = bp->b_vp;
850	int s;
851	int ncl;
852	struct buf *bpa;
853	int nwritten;
854
855	s = splbio();
856	/*
857	 * right now we support clustered writing only to regular files
858	 */
859	if ((vp->v_type == VREG) &&
860	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
861	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
862		int size;
863		int maxcl;
864
865		size = vp->v_mount->mnt_stat.f_iosize;
866		maxcl = MAXPHYS / size;
867
868		for (i = 1; i < maxcl; i++) {
869			if ((bpa = gbincore(vp, lblkno + i)) &&
870			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
871			    (B_DELWRI | B_CLUSTEROK)) &&
872			    (bpa->b_bufsize == size)) {
873				if ((bpa->b_blkno == bpa->b_lblkno) ||
874				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
875					break;
876			} else {
877				break;
878			}
879		}
880		ncl = i;
881		/*
882		 * this is a possible cluster write
883		 */
884		if (ncl != 1) {
885			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
886			splx(s);
887			return nwritten;
888		}
889	}
890	bremfree(bp);
891	splx(s);
892	/*
893	 * default (old) behavior, writing out only one block
894	 */
895	bp->b_flags |= B_BUSY | B_ASYNC;
896	nwritten = bp->b_bufsize;
897	(void) VOP_BWRITE(bp);
898	return nwritten;
899}
900
901
902/*
903 * Find a buffer header which is available for use.
904 */
905static struct buf *
906getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize)
907{
908	struct buf *bp;
909	int nbyteswritten = 0;
910	vm_offset_t addr;
911	static int writerecursion = 0;
912
913start:
914	if (bufspace >= maxbufspace)
915		goto trytofreespace;
916
917	/* can we constitute a new buffer? */
918	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
919#if !defined(MAX_PERF)
920		if (bp->b_qindex != QUEUE_EMPTY)
921			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
922			    bp->b_qindex);
923#endif
924		bp->b_flags |= B_BUSY;
925		bremfree(bp);
926		goto fillbuf;
927	}
928trytofreespace:
929	/*
930	 * We keep the file I/O from hogging metadata I/O
931	 * This is desirable because file data is cached in the
932	 * VM/Buffer cache even if a buffer is freed.
933	 */
934	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
935#if !defined(MAX_PERF)
936		if (bp->b_qindex != QUEUE_AGE)
937			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
938			    bp->b_qindex);
939#endif
940	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
941#if !defined(MAX_PERF)
942		if (bp->b_qindex != QUEUE_LRU)
943			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
944			    bp->b_qindex);
945#endif
946	}
947	if (!bp) {
948		/* wait for a free buffer of any kind */
949		needsbuffer |= VFS_BIO_NEED_ANY;
950		do
951			tsleep(&needsbuffer, (PRIBIO + 1) | slpflag, "newbuf",
952			    slptimeo);
953		while (needsbuffer & VFS_BIO_NEED_ANY);
954		return (0);
955	}
956
957#if defined(DIAGNOSTIC)
958	if (bp->b_flags & B_BUSY) {
959		panic("getnewbuf: busy buffer on free list\n");
960	}
961#endif
962
963	/*
964	 * We are fairly aggressive about freeing VMIO buffers, but since
965	 * the buffering is intact without buffer headers, there is not
966	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
967	 */
968	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
969		if ((bp->b_flags & B_VMIO) == 0 ||
970			(vmiospace < maxvmiobufspace)) {
971			--bp->b_usecount;
972			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
973			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
974				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
975				goto start;
976			}
977			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
978		}
979	}
980
981
982	/* if we are a delayed write, convert to an async write */
983	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
984
985		if (writerecursion > 0) {
986			bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
987			while (bp) {
988				if ((bp->b_flags & B_DELWRI) == 0)
989					break;
990				bp = TAILQ_NEXT(bp, b_freelist);
991			}
992			if (bp == NULL) {
993				bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
994				while (bp) {
995					if ((bp->b_flags & B_DELWRI) == 0)
996						break;
997					bp = TAILQ_NEXT(bp, b_freelist);
998				}
999			}
1000			if (bp == NULL)
1001				panic("getnewbuf: cannot get buffer, infinite recursion failure");
1002		} else {
1003			++writerecursion;
1004			nbyteswritten += vfs_bio_awrite(bp);
1005			--writerecursion;
1006			if (!slpflag && !slptimeo) {
1007				return (0);
1008			}
1009			goto start;
1010		}
1011	}
1012
1013	if (bp->b_flags & B_WANTED) {
1014		bp->b_flags &= ~B_WANTED;
1015		wakeup(bp);
1016	}
1017	bremfree(bp);
1018	bp->b_flags |= B_BUSY;
1019
1020	if (bp->b_flags & B_VMIO) {
1021		bp->b_flags &= ~B_ASYNC;
1022		vfs_vmio_release(bp);
1023	}
1024
1025	if (bp->b_vp)
1026		brelvp(bp);
1027
1028fillbuf:
1029	/* we are not free, nor do we contain interesting data */
1030	if (bp->b_rcred != NOCRED) {
1031		crfree(bp->b_rcred);
1032		bp->b_rcred = NOCRED;
1033	}
1034	if (bp->b_wcred != NOCRED) {
1035		crfree(bp->b_wcred);
1036		bp->b_wcred = NOCRED;
1037	}
1038
1039	LIST_REMOVE(bp, b_hash);
1040	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1041	if (bp->b_bufsize) {
1042		allocbuf(bp, 0);
1043	}
1044	bp->b_flags = B_BUSY;
1045	bp->b_dev = NODEV;
1046	bp->b_vp = NULL;
1047	bp->b_blkno = bp->b_lblkno = 0;
1048	bp->b_iodone = 0;
1049	bp->b_error = 0;
1050	bp->b_resid = 0;
1051	bp->b_bcount = 0;
1052	bp->b_npages = 0;
1053	bp->b_dirtyoff = bp->b_dirtyend = 0;
1054	bp->b_validoff = bp->b_validend = 0;
1055	bp->b_usecount = 4;
1056
1057	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1058
1059	/*
1060	 * we assume that buffer_map is not at address 0
1061	 */
1062	addr = 0;
1063	if (maxsize != bp->b_kvasize) {
1064		bfreekva(bp);
1065
1066		/*
1067		 * See if we have buffer kva space
1068		 */
1069		if (vm_map_findspace(buffer_map,
1070			vm_map_min(buffer_map), maxsize, &addr)) {
1071			bp->b_flags |= B_INVAL;
1072			brelse(bp);
1073			goto trytofreespace;
1074		}
1075	}
1076
1077	/*
1078	 * See if we are below are allocated minimum
1079	 */
1080	if (bufspace >= (maxbufspace + nbyteswritten)) {
1081		bp->b_flags |= B_INVAL;
1082		brelse(bp);
1083		goto trytofreespace;
1084	}
1085
1086	/*
1087	 * create a map entry for the buffer -- in essence
1088	 * reserving the kva space.
1089	 */
1090	if (addr) {
1091		vm_map_insert(buffer_map, NULL, 0,
1092			addr, addr + maxsize,
1093			VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1094
1095		bp->b_kvabase = (caddr_t) addr;
1096		bp->b_kvasize = maxsize;
1097	}
1098	bp->b_data = bp->b_kvabase;
1099
1100	return (bp);
1101}
1102
1103static void
1104waitfreebuffers(int slpflag, int slptimeo) {
1105	while (numfreebuffers < hifreebuffers) {
1106		flushdirtybuffers(slpflag, slptimeo);
1107		if (numfreebuffers < hifreebuffers)
1108			break;
1109		needsbuffer |= VFS_BIO_NEED_FREE;
1110		if (tsleep(&needsbuffer, PRIBIO|slpflag, "biofre", slptimeo))
1111			break;
1112	}
1113}
1114
1115static void
1116flushdirtybuffers(int slpflag, int slptimeo) {
1117	int s;
1118	static pid_t flushing = 0;
1119
1120	s = splbio();
1121
1122	if (flushing) {
1123		if (flushing == curproc->p_pid) {
1124			splx(s);
1125			return;
1126		}
1127		while (flushing) {
1128			if (tsleep(&flushing, PRIBIO|slpflag, "biofls", slptimeo)) {
1129				splx(s);
1130				return;
1131			}
1132		}
1133	}
1134	flushing = curproc->p_pid;
1135
1136	while (numdirtybuffers > lodirtybuffers) {
1137		struct buf *bp;
1138		needsbuffer |= VFS_BIO_NEED_LOWLIMIT;
1139		bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1140		if (bp == NULL)
1141			bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1142
1143		while (bp && ((bp->b_flags & B_DELWRI) == 0)) {
1144			bp = TAILQ_NEXT(bp, b_freelist);
1145		}
1146
1147		if (bp) {
1148			splx(s);
1149			vfs_bio_awrite(bp);
1150			s = splbio();
1151			continue;
1152		}
1153		break;
1154	}
1155
1156	flushing = 0;
1157	wakeup(&flushing);
1158	splx(s);
1159}
1160
1161/*
1162 * Check to see if a block is currently memory resident.
1163 */
1164struct buf *
1165incore(struct vnode * vp, daddr_t blkno)
1166{
1167	struct buf *bp;
1168
1169	int s = splbio();
1170	bp = gbincore(vp, blkno);
1171	splx(s);
1172	return (bp);
1173}
1174
1175/*
1176 * Returns true if no I/O is needed to access the
1177 * associated VM object.  This is like incore except
1178 * it also hunts around in the VM system for the data.
1179 */
1180
1181int
1182inmem(struct vnode * vp, daddr_t blkno)
1183{
1184	vm_object_t obj;
1185	vm_offset_t toff, tinc;
1186	vm_page_t m;
1187	vm_ooffset_t off;
1188
1189	if (incore(vp, blkno))
1190		return 1;
1191	if (vp->v_mount == NULL)
1192		return 0;
1193	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
1194		return 0;
1195
1196	obj = vp->v_object;
1197	tinc = PAGE_SIZE;
1198	if (tinc > vp->v_mount->mnt_stat.f_iosize)
1199		tinc = vp->v_mount->mnt_stat.f_iosize;
1200	off = blkno * vp->v_mount->mnt_stat.f_iosize;
1201
1202	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1203
1204		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1205		if (!m)
1206			return 0;
1207		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
1208			return 0;
1209	}
1210	return 1;
1211}
1212
1213/*
1214 * now we set the dirty range for the buffer --
1215 * for NFS -- if the file is mapped and pages have
1216 * been written to, let it know.  We want the
1217 * entire range of the buffer to be marked dirty if
1218 * any of the pages have been written to for consistancy
1219 * with the b_validoff, b_validend set in the nfs write
1220 * code, and used by the nfs read code.
1221 */
1222static void
1223vfs_setdirty(struct buf *bp) {
1224	int i;
1225	vm_object_t object;
1226	vm_offset_t boffset, offset;
1227	/*
1228	 * We qualify the scan for modified pages on whether the
1229	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1230	 * is not cleared simply by protecting pages off.
1231	 */
1232	if ((bp->b_flags & B_VMIO) &&
1233		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1234		/*
1235		 * test the pages to see if they have been modified directly
1236		 * by users through the VM system.
1237		 */
1238		for (i = 0; i < bp->b_npages; i++)
1239			vm_page_test_dirty(bp->b_pages[i]);
1240
1241		/*
1242		 * scan forwards for the first page modified
1243		 */
1244		for (i = 0; i < bp->b_npages; i++) {
1245			if (bp->b_pages[i]->dirty) {
1246				break;
1247			}
1248		}
1249		boffset = (i << PAGE_SHIFT);
1250		if (boffset < bp->b_dirtyoff) {
1251			bp->b_dirtyoff = boffset;
1252		}
1253
1254		/*
1255		 * scan backwards for the last page modified
1256		 */
1257		for (i = bp->b_npages - 1; i >= 0; --i) {
1258			if (bp->b_pages[i]->dirty) {
1259				break;
1260			}
1261		}
1262		boffset = (i + 1);
1263		offset = boffset + bp->b_pages[0]->pindex;
1264		if (offset >= object->size)
1265			boffset = object->size - bp->b_pages[0]->pindex;
1266		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
1267			bp->b_dirtyend = (boffset << PAGE_SHIFT);
1268	}
1269}
1270
1271/*
1272 * Get a block given a specified block and offset into a file/device.
1273 */
1274struct buf *
1275getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1276{
1277	struct buf *bp;
1278	int s;
1279	struct bufhashhdr *bh;
1280	int maxsize;
1281	static pid_t flushing = 0;
1282
1283	if (vp->v_mount) {
1284		maxsize = vp->v_mount->mnt_stat.f_iosize;
1285		/*
1286		 * This happens on mount points.
1287		 */
1288		if (maxsize < size)
1289			maxsize = size;
1290	} else {
1291		maxsize = size;
1292	}
1293
1294#if !defined(MAX_PERF)
1295	if (size > MAXBSIZE)
1296		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1297#endif
1298
1299	s = splbio();
1300loop:
1301	if (numfreebuffers < lofreebuffers) {
1302		waitfreebuffers(slpflag, slptimeo);
1303	}
1304
1305	if ((bp = gbincore(vp, blkno))) {
1306		if (bp->b_flags & B_BUSY) {
1307			bp->b_flags |= B_WANTED;
1308			if (bp->b_usecount < BUF_MAXUSE)
1309				++bp->b_usecount;
1310			if (!tsleep(bp,
1311				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
1312				goto loop;
1313
1314			splx(s);
1315			return (struct buf *) NULL;
1316		}
1317		bp->b_flags |= B_BUSY | B_CACHE;
1318		bremfree(bp);
1319
1320		/*
1321		 * check for size inconsistancies (note that they shouldn't
1322		 * happen but do when filesystems don't handle the size changes
1323		 * correctly.) We are conservative on metadata and don't just
1324		 * extend the buffer but write and re-constitute it.
1325		 */
1326
1327		if (bp->b_bcount != size) {
1328			if ((bp->b_flags & B_VMIO) && (size <= bp->b_kvasize)) {
1329				allocbuf(bp, size);
1330			} else {
1331				bp->b_flags |= B_NOCACHE;
1332				VOP_BWRITE(bp);
1333				goto loop;
1334			}
1335		}
1336
1337		if (bp->b_usecount < BUF_MAXUSE)
1338			++bp->b_usecount;
1339		splx(s);
1340		return (bp);
1341	} else {
1342		vm_object_t obj;
1343
1344		if ((bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize)) == 0) {
1345			if (slpflag || slptimeo) {
1346				splx(s);
1347				return NULL;
1348			}
1349			goto loop;
1350		}
1351
1352		/*
1353		 * This code is used to make sure that a buffer is not
1354		 * created while the getnewbuf routine is blocked.
1355		 * Normally the vnode is locked so this isn't a problem.
1356		 * VBLK type I/O requests, however, don't lock the vnode.
1357		 */
1358		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1359			bp->b_flags |= B_INVAL;
1360			brelse(bp);
1361			goto loop;
1362		}
1363
1364		/*
1365		 * Insert the buffer into the hash, so that it can
1366		 * be found by incore.
1367		 */
1368		bp->b_blkno = bp->b_lblkno = blkno;
1369		bgetvp(vp, bp);
1370		LIST_REMOVE(bp, b_hash);
1371		bh = BUFHASH(vp, blkno);
1372		LIST_INSERT_HEAD(bh, bp, b_hash);
1373
1374		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1375			bp->b_flags |= (B_VMIO | B_CACHE);
1376#if defined(VFS_BIO_DEBUG)
1377			if (vp->v_type != VREG && vp->v_type != VBLK)
1378				printf("getblk: vmioing file type %d???\n", vp->v_type);
1379#endif
1380		} else {
1381			bp->b_flags &= ~B_VMIO;
1382		}
1383		splx(s);
1384
1385		allocbuf(bp, size);
1386#ifdef	PC98
1387		/*
1388		 * 1024byte/sector support
1389		 */
1390#define B_XXX2 0x8000000
1391		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1392#endif
1393		return (bp);
1394	}
1395}
1396
1397/*
1398 * Get an empty, disassociated buffer of given size.
1399 */
1400struct buf *
1401geteblk(int size)
1402{
1403	struct buf *bp;
1404	int s;
1405
1406	s = splbio();
1407	while ((bp = getnewbuf(0, 0, 0, size, MAXBSIZE)) == 0);
1408	splx(s);
1409	allocbuf(bp, size);
1410	bp->b_flags |= B_INVAL;
1411	return (bp);
1412}
1413
1414
1415/*
1416 * This code constitutes the buffer memory from either anonymous system
1417 * memory (in the case of non-VMIO operations) or from an associated
1418 * VM object (in the case of VMIO operations).
1419 *
1420 * Note that this code is tricky, and has many complications to resolve
1421 * deadlock or inconsistant data situations.  Tread lightly!!!
1422 *
1423 * Modify the length of a buffer's underlying buffer storage without
1424 * destroying information (unless, of course the buffer is shrinking).
1425 */
1426int
1427allocbuf(struct buf * bp, int size)
1428{
1429
1430	int s;
1431	int newbsize, mbsize;
1432	int i;
1433
1434#if !defined(MAX_PERF)
1435	if (!(bp->b_flags & B_BUSY))
1436		panic("allocbuf: buffer not busy");
1437
1438	if (bp->b_kvasize < size)
1439		panic("allocbuf: buffer too small");
1440#endif
1441
1442	if ((bp->b_flags & B_VMIO) == 0) {
1443		caddr_t origbuf;
1444		int origbufsize;
1445		/*
1446		 * Just get anonymous memory from the kernel
1447		 */
1448		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1449#if !defined(NO_B_MALLOC)
1450		if (bp->b_flags & B_MALLOC)
1451			newbsize = mbsize;
1452		else
1453#endif
1454			newbsize = round_page(size);
1455
1456		if (newbsize < bp->b_bufsize) {
1457#if !defined(NO_B_MALLOC)
1458			/*
1459			 * malloced buffers are not shrunk
1460			 */
1461			if (bp->b_flags & B_MALLOC) {
1462				if (newbsize) {
1463					bp->b_bcount = size;
1464				} else {
1465					free(bp->b_data, M_BIOBUF);
1466					bufspace -= bp->b_bufsize;
1467					bufmallocspace -= bp->b_bufsize;
1468					bp->b_data = bp->b_kvabase;
1469					bp->b_bufsize = 0;
1470					bp->b_bcount = 0;
1471					bp->b_flags &= ~B_MALLOC;
1472				}
1473				return 1;
1474			}
1475#endif
1476			vm_hold_free_pages(
1477			    bp,
1478			    (vm_offset_t) bp->b_data + newbsize,
1479			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1480		} else if (newbsize > bp->b_bufsize) {
1481#if !defined(NO_B_MALLOC)
1482			/*
1483			 * We only use malloced memory on the first allocation.
1484			 * and revert to page-allocated memory when the buffer grows.
1485			 */
1486			if ( (bufmallocspace < maxbufmallocspace) &&
1487				(bp->b_bufsize == 0) &&
1488				(mbsize <= PAGE_SIZE/2)) {
1489
1490				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1491				bp->b_bufsize = mbsize;
1492				bp->b_bcount = size;
1493				bp->b_flags |= B_MALLOC;
1494				bufspace += mbsize;
1495				bufmallocspace += mbsize;
1496				return 1;
1497			}
1498#endif
1499			origbuf = NULL;
1500			origbufsize = 0;
1501#if !defined(NO_B_MALLOC)
1502			/*
1503			 * If the buffer is growing on it's other-than-first allocation,
1504			 * then we revert to the page-allocation scheme.
1505			 */
1506			if (bp->b_flags & B_MALLOC) {
1507				origbuf = bp->b_data;
1508				origbufsize = bp->b_bufsize;
1509				bp->b_data = bp->b_kvabase;
1510				bufspace -= bp->b_bufsize;
1511				bufmallocspace -= bp->b_bufsize;
1512				bp->b_bufsize = 0;
1513				bp->b_flags &= ~B_MALLOC;
1514				newbsize = round_page(newbsize);
1515			}
1516#endif
1517			vm_hold_load_pages(
1518			    bp,
1519			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1520			    (vm_offset_t) bp->b_data + newbsize);
1521#if !defined(NO_B_MALLOC)
1522			if (origbuf) {
1523				bcopy(origbuf, bp->b_data, origbufsize);
1524				free(origbuf, M_BIOBUF);
1525			}
1526#endif
1527		}
1528	} else {
1529		vm_page_t m;
1530		int desiredpages;
1531
1532		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1533		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1534
1535#if !defined(NO_B_MALLOC)
1536		if (bp->b_flags & B_MALLOC)
1537			panic("allocbuf: VMIO buffer can't be malloced");
1538#endif
1539
1540		if (newbsize < bp->b_bufsize) {
1541			if (desiredpages < bp->b_npages) {
1542				for (i = desiredpages; i < bp->b_npages; i++) {
1543					/*
1544					 * the page is not freed here -- it
1545					 * is the responsibility of vnode_pager_setsize
1546					 */
1547					m = bp->b_pages[i];
1548#if defined(DIAGNOSTIC)
1549					if (m == bogus_page)
1550						panic("allocbuf: bogus page found");
1551#endif
1552					s = splvm();
1553					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1554						m->flags |= PG_WANTED;
1555						tsleep(m, PVM, "biodep", 0);
1556					}
1557					splx(s);
1558
1559					bp->b_pages[i] = NULL;
1560					vm_page_unwire(m);
1561				}
1562				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1563				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1564				bp->b_npages = desiredpages;
1565			}
1566		} else if (newbsize > bp->b_bufsize) {
1567			vm_object_t obj;
1568			vm_offset_t tinc, toff;
1569			vm_ooffset_t off;
1570			vm_pindex_t objoff;
1571			int pageindex, curbpnpages;
1572			struct vnode *vp;
1573			int bsize;
1574
1575			vp = bp->b_vp;
1576
1577			if (vp->v_type == VBLK)
1578				bsize = DEV_BSIZE;
1579			else
1580				bsize = vp->v_mount->mnt_stat.f_iosize;
1581
1582			if (bp->b_npages < desiredpages) {
1583				obj = vp->v_object;
1584				tinc = PAGE_SIZE;
1585				if (tinc > bsize)
1586					tinc = bsize;
1587				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1588				curbpnpages = bp->b_npages;
1589		doretry:
1590				bp->b_flags |= B_CACHE;
1591				bp->b_validoff = bp->b_validend = 0;
1592				for (toff = 0; toff < newbsize; toff += tinc) {
1593					int bytesinpage;
1594
1595					pageindex = toff >> PAGE_SHIFT;
1596					objoff = OFF_TO_IDX(off + toff);
1597					if (pageindex < curbpnpages) {
1598
1599						m = bp->b_pages[pageindex];
1600#ifdef VFS_BIO_DIAG
1601						if (m->pindex != objoff)
1602							panic("allocbuf: page changed offset??!!!?");
1603#endif
1604						bytesinpage = tinc;
1605						if (tinc > (newbsize - toff))
1606							bytesinpage = newbsize - toff;
1607						if (bp->b_flags & B_CACHE)
1608							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1609						continue;
1610					}
1611					m = vm_page_lookup(obj, objoff);
1612					if (!m) {
1613						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1614						if (!m) {
1615							VM_WAIT;
1616							goto doretry;
1617						}
1618						/*
1619						 * Normally it is unwise to clear PG_BUSY without
1620						 * PAGE_WAKEUP -- but it is okay here, as there is
1621						 * no chance for blocking between here and vm_page_alloc
1622						 */
1623						m->flags &= ~PG_BUSY;
1624						vm_page_wire(m);
1625						bp->b_flags &= ~B_CACHE;
1626					} else if (m->flags & PG_BUSY) {
1627						s = splvm();
1628						if (m->flags & PG_BUSY) {
1629							m->flags |= PG_WANTED;
1630							tsleep(m, PVM, "pgtblk", 0);
1631						}
1632						splx(s);
1633						goto doretry;
1634					} else {
1635						if ((curproc != pageproc) &&
1636							((m->queue - m->pc) == PQ_CACHE) &&
1637						    ((cnt.v_free_count + cnt.v_cache_count) <
1638								(cnt.v_free_min + cnt.v_cache_min))) {
1639							pagedaemon_wakeup();
1640						}
1641						bytesinpage = tinc;
1642						if (tinc > (newbsize - toff))
1643							bytesinpage = newbsize - toff;
1644						if (bp->b_flags & B_CACHE)
1645							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1646						vm_page_wire(m);
1647					}
1648					bp->b_pages[pageindex] = m;
1649					curbpnpages = pageindex + 1;
1650				}
1651				if (vp->v_tag == VT_NFS &&
1652				    vp->v_type != VBLK) {
1653					if (bp->b_dirtyend > 0) {
1654						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
1655						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
1656					}
1657					if (bp->b_validend == 0)
1658						bp->b_flags &= ~B_CACHE;
1659				}
1660				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1661				bp->b_npages = curbpnpages;
1662				pmap_qenter((vm_offset_t) bp->b_data,
1663					bp->b_pages, bp->b_npages);
1664				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1665			}
1666		}
1667	}
1668	if (bp->b_flags & B_VMIO)
1669		vmiospace += (newbsize - bp->b_bufsize);
1670	bufspace += (newbsize - bp->b_bufsize);
1671	bp->b_bufsize = newbsize;
1672	bp->b_bcount = size;
1673	return 1;
1674}
1675
1676/*
1677 * Wait for buffer I/O completion, returning error status.
1678 */
1679int
1680biowait(register struct buf * bp)
1681{
1682	int s;
1683
1684	s = splbio();
1685	while ((bp->b_flags & B_DONE) == 0)
1686#if defined(NO_SCHEDULE_MODS)
1687		tsleep(bp, PRIBIO, "biowait", 0);
1688#else
1689		tsleep(bp, curproc->p_usrpri, "biowait", 0);
1690#endif
1691	splx(s);
1692	if (bp->b_flags & B_EINTR) {
1693		bp->b_flags &= ~B_EINTR;
1694		return (EINTR);
1695	}
1696	if (bp->b_flags & B_ERROR) {
1697		return (bp->b_error ? bp->b_error : EIO);
1698	} else {
1699		return (0);
1700	}
1701}
1702
1703/*
1704 * Finish I/O on a buffer, calling an optional function.
1705 * This is usually called from interrupt level, so process blocking
1706 * is not *a good idea*.
1707 */
1708void
1709biodone(register struct buf * bp)
1710{
1711	int s;
1712
1713	s = splbio();
1714
1715#if !defined(MAX_PERF)
1716	if (!(bp->b_flags & B_BUSY))
1717		panic("biodone: buffer not busy");
1718#endif
1719
1720	if (bp->b_flags & B_DONE) {
1721		splx(s);
1722#if !defined(MAX_PERF)
1723		printf("biodone: buffer already done\n");
1724#endif
1725		return;
1726	}
1727	bp->b_flags |= B_DONE;
1728
1729	if ((bp->b_flags & B_READ) == 0) {
1730		vwakeup(bp);
1731	}
1732#ifdef BOUNCE_BUFFERS
1733	if (bp->b_flags & B_BOUNCE)
1734		vm_bounce_free(bp);
1735#endif
1736
1737	/* call optional completion function if requested */
1738	if (bp->b_flags & B_CALL) {
1739		bp->b_flags &= ~B_CALL;
1740		(*bp->b_iodone) (bp);
1741		splx(s);
1742		return;
1743	}
1744	if (bp->b_flags & B_VMIO) {
1745		int i, resid;
1746		vm_ooffset_t foff;
1747		vm_page_t m;
1748		vm_object_t obj;
1749		int iosize;
1750		struct vnode *vp = bp->b_vp;
1751
1752		obj = vp->v_object;
1753
1754#if defined(VFS_BIO_DEBUG)
1755		if (vp->v_usecount == 0) {
1756			panic("biodone: zero vnode ref count");
1757		}
1758
1759		if (vp->v_object == NULL) {
1760			panic("biodone: missing VM object");
1761		}
1762
1763		if ((vp->v_flag & VVMIO) == 0) {
1764			panic("biodone: vnode is not setup for merged cache");
1765		}
1766#endif
1767
1768		if (vp->v_type == VBLK)
1769			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1770		else
1771			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1772#if !defined(MAX_PERF)
1773		if (!obj) {
1774			panic("biodone: no object");
1775		}
1776#endif
1777#if defined(VFS_BIO_DEBUG)
1778		if (obj->paging_in_progress < bp->b_npages) {
1779			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1780			    obj->paging_in_progress, bp->b_npages);
1781		}
1782#endif
1783		iosize = bp->b_bufsize;
1784		for (i = 0; i < bp->b_npages; i++) {
1785			int bogusflag = 0;
1786			m = bp->b_pages[i];
1787			if (m == bogus_page) {
1788				bogusflag = 1;
1789				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1790				if (!m) {
1791#if defined(VFS_BIO_DEBUG)
1792					printf("biodone: page disappeared\n");
1793#endif
1794					--obj->paging_in_progress;
1795					continue;
1796				}
1797				bp->b_pages[i] = m;
1798				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1799			}
1800#if defined(VFS_BIO_DEBUG)
1801			if (OFF_TO_IDX(foff) != m->pindex) {
1802				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1803			}
1804#endif
1805			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1806			if (resid > iosize)
1807				resid = iosize;
1808			/*
1809			 * In the write case, the valid and clean bits are
1810			 * already changed correctly, so we only need to do this
1811			 * here in the read case.
1812			 */
1813			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1814				vfs_page_set_valid(bp, foff, i, m);
1815			}
1816
1817			/*
1818			 * when debugging new filesystems or buffer I/O methods, this
1819			 * is the most common error that pops up.  if you see this, you
1820			 * have not set the page busy flag correctly!!!
1821			 */
1822			if (m->busy == 0) {
1823#if !defined(MAX_PERF)
1824				printf("biodone: page busy < 0, "
1825				    "pindex: %d, foff: 0x(%x,%x), "
1826				    "resid: %d, index: %d\n",
1827				    (int) m->pindex, (int)(foff >> 32),
1828						(int) foff & 0xffffffff, resid, i);
1829#endif
1830				if (vp->v_type != VBLK)
1831#if !defined(MAX_PERF)
1832					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1833					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1834					    (int) bp->b_lblkno,
1835					    bp->b_flags, bp->b_npages);
1836				else
1837					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1838					    (int) bp->b_lblkno,
1839					    bp->b_flags, bp->b_npages);
1840				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1841				    m->valid, m->dirty, m->wire_count);
1842#endif
1843				panic("biodone: page busy < 0\n");
1844			}
1845			--m->busy;
1846			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1847				m->flags &= ~PG_WANTED;
1848				wakeup(m);
1849			}
1850			--obj->paging_in_progress;
1851			foff += resid;
1852			iosize -= resid;
1853		}
1854		if (obj && obj->paging_in_progress == 0 &&
1855		    (obj->flags & OBJ_PIPWNT)) {
1856			obj->flags &= ~OBJ_PIPWNT;
1857			wakeup(obj);
1858		}
1859	}
1860	/*
1861	 * For asynchronous completions, release the buffer now. The brelse
1862	 * checks for B_WANTED and will do the wakeup there if necessary - so
1863	 * no need to do a wakeup here in the async case.
1864	 */
1865
1866	if (bp->b_flags & B_ASYNC) {
1867		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1868			brelse(bp);
1869		else
1870			bqrelse(bp);
1871	} else {
1872		bp->b_flags &= ~B_WANTED;
1873		wakeup(bp);
1874	}
1875	splx(s);
1876}
1877
1878int
1879count_lock_queue()
1880{
1881	int count;
1882	struct buf *bp;
1883
1884	count = 0;
1885	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1886	    bp != NULL;
1887	    bp = TAILQ_NEXT(bp, b_freelist))
1888		count++;
1889	return (count);
1890}
1891
1892int vfs_update_interval = 30;
1893
1894static void
1895vfs_update()
1896{
1897	while (1) {
1898		tsleep(&vfs_update_wakeup, PUSER, "update",
1899		    hz * vfs_update_interval);
1900		vfs_update_wakeup = 0;
1901		sync(curproc, NULL);
1902	}
1903}
1904
1905static int
1906sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1907{
1908	int error = sysctl_handle_int(oidp,
1909		oidp->oid_arg1, oidp->oid_arg2, req);
1910	if (!error)
1911		wakeup(&vfs_update_wakeup);
1912	return error;
1913}
1914
1915SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1916	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1917
1918
1919/*
1920 * This routine is called in lieu of iodone in the case of
1921 * incomplete I/O.  This keeps the busy status for pages
1922 * consistant.
1923 */
1924void
1925vfs_unbusy_pages(struct buf * bp)
1926{
1927	int i;
1928
1929	if (bp->b_flags & B_VMIO) {
1930		struct vnode *vp = bp->b_vp;
1931		vm_object_t obj = vp->v_object;
1932		vm_ooffset_t foff;
1933
1934		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1935
1936		for (i = 0; i < bp->b_npages; i++) {
1937			vm_page_t m = bp->b_pages[i];
1938
1939			if (m == bogus_page) {
1940				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1941#if !defined(MAX_PERF)
1942				if (!m) {
1943					panic("vfs_unbusy_pages: page missing\n");
1944				}
1945#endif
1946				bp->b_pages[i] = m;
1947				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1948			}
1949			--obj->paging_in_progress;
1950			--m->busy;
1951			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1952				m->flags &= ~PG_WANTED;
1953				wakeup(m);
1954			}
1955		}
1956		if (obj->paging_in_progress == 0 &&
1957		    (obj->flags & OBJ_PIPWNT)) {
1958			obj->flags &= ~OBJ_PIPWNT;
1959			wakeup(obj);
1960		}
1961	}
1962}
1963
1964/*
1965 * Set NFS' b_validoff and b_validend fields from the valid bits
1966 * of a page.  If the consumer is not NFS, and the page is not
1967 * valid for the entire range, clear the B_CACHE flag to force
1968 * the consumer to re-read the page.
1969 */
1970static void
1971vfs_buf_set_valid(struct buf *bp,
1972		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
1973		  vm_page_t m)
1974{
1975	if (bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK) {
1976		vm_offset_t svalid, evalid;
1977		int validbits = m->valid;
1978
1979		/*
1980		 * This only bothers with the first valid range in the
1981		 * page.
1982		 */
1983		svalid = off;
1984		while (validbits && !(validbits & 1)) {
1985			svalid += DEV_BSIZE;
1986			validbits >>= 1;
1987		}
1988		evalid = svalid;
1989		while (validbits & 1) {
1990			evalid += DEV_BSIZE;
1991			validbits >>= 1;
1992		}
1993		/*
1994		 * Make sure this range is contiguous with the range
1995		 * built up from previous pages.  If not, then we will
1996		 * just use the range from the previous pages.
1997		 */
1998		if (svalid == bp->b_validend) {
1999			bp->b_validoff = min(bp->b_validoff, svalid);
2000			bp->b_validend = max(bp->b_validend, evalid);
2001		}
2002	} else if (!vm_page_is_valid(m,
2003				     (vm_offset_t) ((foff + off) & PAGE_MASK),
2004				     size)) {
2005		bp->b_flags &= ~B_CACHE;
2006	}
2007}
2008
2009/*
2010 * Set the valid bits in a page, taking care of the b_validoff,
2011 * b_validend fields which NFS uses to optimise small reads.  Off is
2012 * the offset within the file and pageno is the page index within the buf.
2013 */
2014static void
2015vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2016{
2017	struct vnode *vp = bp->b_vp;
2018	vm_ooffset_t soff, eoff;
2019
2020	soff = off;
2021	eoff = off + min(PAGE_SIZE, bp->b_bufsize);
2022	vm_page_set_invalid(m,
2023			    (vm_offset_t) (soff & PAGE_MASK),
2024			    (vm_offset_t) (eoff - soff));
2025	if (vp->v_tag == VT_NFS && vp->v_type != VBLK) {
2026		vm_ooffset_t sv, ev;
2027		off = off - pageno * PAGE_SIZE;
2028		sv = off + ((bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1));
2029		ev = off + (bp->b_validend & ~(DEV_BSIZE - 1));
2030		soff = max(sv, soff);
2031		eoff = min(ev, eoff);
2032	}
2033	if (eoff > soff)
2034		vm_page_set_validclean(m,
2035				       (vm_offset_t) (soff & PAGE_MASK),
2036				       (vm_offset_t) (eoff - soff));
2037}
2038
2039/*
2040 * This routine is called before a device strategy routine.
2041 * It is used to tell the VM system that paging I/O is in
2042 * progress, and treat the pages associated with the buffer
2043 * almost as being PG_BUSY.  Also the object paging_in_progress
2044 * flag is handled to make sure that the object doesn't become
2045 * inconsistant.
2046 */
2047void
2048vfs_busy_pages(struct buf * bp, int clear_modify)
2049{
2050	int i;
2051
2052	if (bp->b_flags & B_VMIO) {
2053		struct vnode *vp = bp->b_vp;
2054		vm_object_t obj = vp->v_object;
2055		vm_ooffset_t foff;
2056
2057		if (vp->v_type == VBLK)
2058			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
2059		else
2060			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
2061		vfs_setdirty(bp);
2062		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2063			vm_page_t m = bp->b_pages[i];
2064
2065			if ((bp->b_flags & B_CLUSTER) == 0) {
2066				obj->paging_in_progress++;
2067				m->busy++;
2068			}
2069			vm_page_protect(m, VM_PROT_NONE);
2070			if (clear_modify)
2071				vfs_page_set_valid(bp, foff, i, m);
2072			else if (bp->b_bcount >= PAGE_SIZE) {
2073				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
2074					bp->b_pages[i] = bogus_page;
2075					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
2076				}
2077			}
2078		}
2079	}
2080}
2081
2082/*
2083 * Tell the VM system that the pages associated with this buffer
2084 * are clean.  This is used for delayed writes where the data is
2085 * going to go to disk eventually without additional VM intevention.
2086 */
2087void
2088vfs_clean_pages(struct buf * bp)
2089{
2090	int i;
2091
2092	if (bp->b_flags & B_VMIO) {
2093		struct vnode *vp = bp->b_vp;
2094		vm_object_t obj = vp->v_object;
2095		vm_ooffset_t foff;
2096
2097		if (vp->v_type == VBLK)
2098			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
2099		else
2100			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
2101		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2102			vm_page_t m = bp->b_pages[i];
2103
2104			vfs_page_set_valid(bp, foff, i, m);
2105		}
2106	}
2107}
2108
2109void
2110vfs_bio_clrbuf(struct buf *bp) {
2111	int i;
2112	if( bp->b_flags & B_VMIO) {
2113		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
2114			int mask;
2115			mask = 0;
2116			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
2117				mask |= (1 << (i/DEV_BSIZE));
2118			if( bp->b_pages[0]->valid != mask) {
2119				bzero(bp->b_data, bp->b_bufsize);
2120			}
2121			bp->b_pages[0]->valid = mask;
2122			bp->b_resid = 0;
2123			return;
2124		}
2125		for(i=0;i<bp->b_npages;i++) {
2126			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
2127				continue;
2128			if( bp->b_pages[i]->valid == 0) {
2129				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2130					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
2131				}
2132			} else {
2133				int j;
2134				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
2135					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
2136						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
2137				}
2138			}
2139			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
2140		}
2141		bp->b_resid = 0;
2142	} else {
2143		clrbuf(bp);
2144	}
2145}
2146
2147/*
2148 * vm_hold_load_pages and vm_hold_unload pages get pages into
2149 * a buffers address space.  The pages are anonymous and are
2150 * not associated with a file object.
2151 */
2152void
2153vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2154{
2155	vm_offset_t pg;
2156	vm_page_t p;
2157	int index;
2158
2159	to = round_page(to);
2160	from = round_page(from);
2161	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2162
2163	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2164
2165tryagain:
2166
2167		p = vm_page_alloc(kernel_object,
2168			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
2169		    VM_ALLOC_NORMAL);
2170		if (!p) {
2171			VM_WAIT;
2172			goto tryagain;
2173		}
2174		vm_page_wire(p);
2175		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
2176		bp->b_pages[index] = p;
2177		PAGE_WAKEUP(p);
2178	}
2179	bp->b_npages = index;
2180}
2181
2182void
2183vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2184{
2185	vm_offset_t pg;
2186	vm_page_t p;
2187	int index, newnpages;
2188
2189	from = round_page(from);
2190	to = round_page(to);
2191	newnpages = index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2192
2193	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2194		p = bp->b_pages[index];
2195		if (p && (index < bp->b_npages)) {
2196#if !defined(MAX_PERF)
2197			if (p->busy) {
2198				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2199					bp->b_blkno, bp->b_lblkno);
2200			}
2201#endif
2202			bp->b_pages[index] = NULL;
2203			pmap_kremove(pg);
2204			vm_page_unwire(p);
2205			vm_page_free(p);
2206		}
2207	}
2208	bp->b_npages = newnpages;
2209}
2210
2211
2212#include "opt_ddb.h"
2213#ifdef DDB
2214#include <ddb/ddb.h>
2215
2216DB_SHOW_COMMAND(buffer, db_show_buffer)
2217{
2218	/* get args */
2219	struct buf *bp = (struct buf *)addr;
2220
2221	if (!have_addr) {
2222		db_printf("usage: show buffer <addr>\n");
2223		return;
2224	}
2225
2226	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2227		  bp->b_flags, "\20\40bounce\37cluster\36vmio\35ram\34ordered"
2228		  "\33paging\32xxx\31writeinprog\30wanted\27relbuf\26tape"
2229		  "\25read\24raw\23phys\22clusterok\21malloc\20nocache"
2230		  "\17locked\16inval\15gathered\14error\13eintr\12done\11dirty"
2231		  "\10delwri\7call\6cache\5busy\4bad\3async\2needcommit\1age");
2232	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2233		  "b_resid = %ld\nb_dev = 0x%x, b_un.b_addr = %p, "
2234		  "b_blkno = %d, b_pblkno = %d\n",
2235		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2236		  bp->b_dev, bp->b_un.b_addr, bp->b_blkno, bp->b_pblkno);
2237	if (bp->b_npages) {
2238		int i;
2239		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
2240		for (i = 0; i < bp->b_npages; i++) {
2241			vm_page_t m;
2242			m = bp->b_pages[i];
2243			db_printf("(0x%x, 0x%x, 0x%x)", m->object, m->pindex,
2244				VM_PAGE_TO_PHYS(m));
2245			if ((i + 1) < bp->b_npages)
2246				db_printf(",");
2247		}
2248		db_printf("\n");
2249	}
2250}
2251#endif /* DDB */
2252