vfs_bio.c revision 29680
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.127 1997/09/21 04:49:30 dyson Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#include "opt_bounce.h"
36
37#define VMIO
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/vmmeter.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_prot.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_pageout.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_extern.h>
54#include <vm/vm_map.h>
55#include <sys/buf.h>
56#include <sys/mount.h>
57#include <sys/malloc.h>
58#include <sys/resourcevar.h>
59#include <sys/proc.h>
60
61#include <miscfs/specfs/specdev.h>
62
63static void vfs_update __P((void));
64static struct	proc *updateproc;
65static struct kproc_desc up_kp = {
66	"update",
67	vfs_update,
68	&updateproc
69};
70SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
71
72struct buf *buf;		/* buffer header pool */
73struct swqueue bswlist;
74
75int count_lock_queue __P((void));
76static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
77		vm_offset_t to);
78static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
79		vm_offset_t to);
80static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
81			      vm_offset_t off, vm_offset_t size,
82			      vm_page_t m);
83static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
84			       int pageno, vm_page_t m);
85static void vfs_clean_pages(struct buf * bp);
86static void vfs_setdirty(struct buf *bp);
87static void vfs_vmio_release(struct buf *bp);
88static void flushdirtybuffers(int slpflag, int slptimeo);
89
90int needsbuffer;
91
92/*
93 * Internal update daemon, process 3
94 *	The variable vfs_update_wakeup allows for internal syncs.
95 */
96int vfs_update_wakeup;
97
98
99/*
100 * buffers base kva
101 */
102
103/*
104 * bogus page -- for I/O to/from partially complete buffers
105 * this is a temporary solution to the problem, but it is not
106 * really that bad.  it would be better to split the buffer
107 * for input in the case of buffers partially already in memory,
108 * but the code is intricate enough already.
109 */
110vm_page_t bogus_page;
111static vm_offset_t bogus_offset;
112
113static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
114	bufmallocspace, maxbufmallocspace;
115int numdirtybuffers, lodirtybuffers, hidirtybuffers;
116static int numfreebuffers, lofreebuffers, hifreebuffers;
117
118SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD,
119	&numdirtybuffers, 0, "");
120SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW,
121	&lodirtybuffers, 0, "");
122SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW,
123	&hidirtybuffers, 0, "");
124SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD,
125	&numfreebuffers, 0, "");
126SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW,
127	&lofreebuffers, 0, "");
128SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW,
129	&hifreebuffers, 0, "");
130SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RW,
131	&maxbufspace, 0, "");
132SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD,
133	&bufspace, 0, "");
134SYSCTL_INT(_vfs, OID_AUTO, maxvmiobufspace, CTLFLAG_RW,
135	&maxvmiobufspace, 0, "");
136SYSCTL_INT(_vfs, OID_AUTO, vmiospace, CTLFLAG_RD,
137	&vmiospace, 0, "");
138SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW,
139	&maxbufmallocspace, 0, "");
140SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD,
141	&bufmallocspace, 0, "");
142
143static LIST_HEAD(bufhashhdr, buf) bufhashtbl[BUFHSZ], invalhash;
144static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES];
145
146extern int vm_swap_size;
147
148#define BUF_MAXUSE 24
149
150#define VFS_BIO_NEED_ANY 1
151#define VFS_BIO_NEED_LOWLIMIT 2
152#define VFS_BIO_NEED_FREE 4
153
154/*
155 * Initialize buffer headers and related structures.
156 */
157void
158bufinit()
159{
160	struct buf *bp;
161	int i;
162
163	TAILQ_INIT(&bswlist);
164	LIST_INIT(&invalhash);
165
166	/* first, make a null hash table */
167	for (i = 0; i < BUFHSZ; i++)
168		LIST_INIT(&bufhashtbl[i]);
169
170	/* next, make a null set of free lists */
171	for (i = 0; i < BUFFER_QUEUES; i++)
172		TAILQ_INIT(&bufqueues[i]);
173
174	/* finally, initialize each buffer header and stick on empty q */
175	for (i = 0; i < nbuf; i++) {
176		bp = &buf[i];
177		bzero(bp, sizeof *bp);
178		bp->b_flags = B_INVAL;	/* we're just an empty header */
179		bp->b_dev = NODEV;
180		bp->b_rcred = NOCRED;
181		bp->b_wcred = NOCRED;
182		bp->b_qindex = QUEUE_EMPTY;
183		bp->b_vnbufs.le_next = NOLIST;
184		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
185		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
186	}
187/*
188 * maxbufspace is currently calculated to support all filesystem blocks
189 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
190 * cache is still the same as it would be for 8K filesystems.  This
191 * keeps the size of the buffer cache "in check" for big block filesystems.
192 */
193	maxbufspace = (nbuf + 8) * DFLTBSIZE;
194/*
195 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
196 */
197	maxvmiobufspace = 2 * maxbufspace / 3;
198/*
199 * Limit the amount of malloc memory since it is wired permanently into
200 * the kernel space.  Even though this is accounted for in the buffer
201 * allocation, we don't want the malloced region to grow uncontrolled.
202 * The malloc scheme improves memory utilization significantly on average
203 * (small) directories.
204 */
205	maxbufmallocspace = maxbufspace / 20;
206
207/*
208 * Remove the probability of deadlock conditions by limiting the
209 * number of dirty buffers.
210 */
211	hidirtybuffers = nbuf / 6 + 20;
212	lodirtybuffers = nbuf / 12 + 10;
213	numdirtybuffers = 0;
214	lofreebuffers = nbuf / 18 + 5;
215	hifreebuffers = 2 * lofreebuffers;
216	numfreebuffers = nbuf;
217
218	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
219	bogus_page = vm_page_alloc(kernel_object,
220			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
221			VM_ALLOC_NORMAL);
222
223}
224
225/*
226 * Free the kva allocation for a buffer
227 * Must be called only at splbio or higher,
228 *  as this is the only locking for buffer_map.
229 */
230static void
231bfreekva(struct buf * bp)
232{
233	if (bp->b_kvasize == 0)
234		return;
235
236	vm_map_delete(buffer_map,
237		(vm_offset_t) bp->b_kvabase,
238		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
239
240	bp->b_kvasize = 0;
241
242}
243
244/*
245 * remove the buffer from the appropriate free list
246 */
247void
248bremfree(struct buf * bp)
249{
250	int s = splbio();
251
252	if (bp->b_qindex != QUEUE_NONE) {
253		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
254		bp->b_qindex = QUEUE_NONE;
255	} else {
256#if !defined(MAX_PERF)
257		panic("bremfree: removing a buffer when not on a queue");
258#endif
259	}
260	if ((bp->b_flags & B_INVAL) ||
261		(bp->b_flags & (B_DELWRI|B_LOCKED)) == 0)
262		--numfreebuffers;
263	splx(s);
264}
265
266/*
267 * Get a buffer with the specified data.  Look in the cache first.
268 */
269int
270bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
271    struct buf ** bpp)
272{
273	struct buf *bp;
274
275	bp = getblk(vp, blkno, size, 0, 0);
276	*bpp = bp;
277
278	/* if not found in cache, do some I/O */
279	if ((bp->b_flags & B_CACHE) == 0) {
280		if (curproc != NULL)
281			curproc->p_stats->p_ru.ru_inblock++;
282		bp->b_flags |= B_READ;
283		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
284		if (bp->b_rcred == NOCRED) {
285			if (cred != NOCRED)
286				crhold(cred);
287			bp->b_rcred = cred;
288		}
289		vfs_busy_pages(bp, 0);
290		VOP_STRATEGY(bp);
291		return (biowait(bp));
292	}
293	return (0);
294}
295
296/*
297 * Operates like bread, but also starts asynchronous I/O on
298 * read-ahead blocks.
299 */
300int
301breadn(struct vnode * vp, daddr_t blkno, int size,
302    daddr_t * rablkno, int *rabsize,
303    int cnt, struct ucred * cred, struct buf ** bpp)
304{
305	struct buf *bp, *rabp;
306	int i;
307	int rv = 0, readwait = 0;
308
309	*bpp = bp = getblk(vp, blkno, size, 0, 0);
310
311	/* if not found in cache, do some I/O */
312	if ((bp->b_flags & B_CACHE) == 0) {
313		if (curproc != NULL)
314			curproc->p_stats->p_ru.ru_inblock++;
315		bp->b_flags |= B_READ;
316		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
317		if (bp->b_rcred == NOCRED) {
318			if (cred != NOCRED)
319				crhold(cred);
320			bp->b_rcred = cred;
321		}
322		vfs_busy_pages(bp, 0);
323		VOP_STRATEGY(bp);
324		++readwait;
325	}
326	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
327		if (inmem(vp, *rablkno))
328			continue;
329		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
330
331		if ((rabp->b_flags & B_CACHE) == 0) {
332			if (curproc != NULL)
333				curproc->p_stats->p_ru.ru_inblock++;
334			rabp->b_flags |= B_READ | B_ASYNC;
335			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
336			if (rabp->b_rcred == NOCRED) {
337				if (cred != NOCRED)
338					crhold(cred);
339				rabp->b_rcred = cred;
340			}
341			vfs_busy_pages(rabp, 0);
342			VOP_STRATEGY(rabp);
343		} else {
344			brelse(rabp);
345		}
346	}
347
348	if (readwait) {
349		rv = biowait(bp);
350	}
351	return (rv);
352}
353
354/*
355 * Write, release buffer on completion.  (Done by iodone
356 * if async.)
357 */
358int
359bwrite(struct buf * bp)
360{
361	int oldflags = bp->b_flags;
362
363	if (bp->b_flags & B_INVAL) {
364		brelse(bp);
365		return (0);
366	}
367#if !defined(MAX_PERF)
368	if (!(bp->b_flags & B_BUSY))
369		panic("bwrite: buffer is not busy???");
370#endif
371
372	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
373	bp->b_flags |= B_WRITEINPROG;
374
375	if ((oldflags & B_DELWRI) == B_DELWRI) {
376		--numdirtybuffers;
377		reassignbuf(bp, bp->b_vp);
378	}
379
380	bp->b_vp->v_numoutput++;
381	vfs_busy_pages(bp, 1);
382	if (curproc != NULL)
383		curproc->p_stats->p_ru.ru_oublock++;
384	VOP_STRATEGY(bp);
385
386	if ((oldflags & B_ASYNC) == 0) {
387		int rtval = biowait(bp);
388
389		if (oldflags & B_DELWRI) {
390			reassignbuf(bp, bp->b_vp);
391		}
392		brelse(bp);
393		return (rtval);
394	}
395	return (0);
396}
397
398int
399vn_bwrite(ap)
400	struct vop_bwrite_args *ap;
401{
402	return (bwrite(ap->a_bp));
403}
404
405void
406vfs_bio_need_satisfy(void) {
407	++numfreebuffers;
408	if (!needsbuffer)
409		return;
410	if (numdirtybuffers < lodirtybuffers) {
411		needsbuffer &= ~(VFS_BIO_NEED_ANY | VFS_BIO_NEED_LOWLIMIT);
412	} else {
413		needsbuffer &= ~VFS_BIO_NEED_ANY;
414	}
415	if (numfreebuffers >= hifreebuffers) {
416		needsbuffer &= ~VFS_BIO_NEED_FREE;
417	}
418	wakeup(&needsbuffer);
419}
420
421/*
422 * Delayed write. (Buffer is marked dirty).
423 */
424void
425bdwrite(struct buf * bp)
426{
427
428#if !defined(MAX_PERF)
429	if ((bp->b_flags & B_BUSY) == 0) {
430		panic("bdwrite: buffer is not busy");
431	}
432#endif
433
434	if (bp->b_flags & B_INVAL) {
435		brelse(bp);
436		return;
437	}
438	if (bp->b_flags & B_TAPE) {
439		bawrite(bp);
440		return;
441	}
442	bp->b_flags &= ~(B_READ|B_RELBUF);
443	if ((bp->b_flags & B_DELWRI) == 0) {
444		bp->b_flags |= B_DONE | B_DELWRI;
445		reassignbuf(bp, bp->b_vp);
446		++numdirtybuffers;
447	}
448
449	/*
450	 * This bmap keeps the system from needing to do the bmap later,
451	 * perhaps when the system is attempting to do a sync.  Since it
452	 * is likely that the indirect block -- or whatever other datastructure
453	 * that the filesystem needs is still in memory now, it is a good
454	 * thing to do this.  Note also, that if the pageout daemon is
455	 * requesting a sync -- there might not be enough memory to do
456	 * the bmap then...  So, this is important to do.
457	 */
458	if (bp->b_lblkno == bp->b_blkno) {
459		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
460	}
461
462	/*
463	 * Set the *dirty* buffer range based upon the VM system dirty pages.
464	 */
465	vfs_setdirty(bp);
466
467	/*
468	 * We need to do this here to satisfy the vnode_pager and the
469	 * pageout daemon, so that it thinks that the pages have been
470	 * "cleaned".  Note that since the pages are in a delayed write
471	 * buffer -- the VFS layer "will" see that the pages get written
472	 * out on the next sync, or perhaps the cluster will be completed.
473	 */
474	vfs_clean_pages(bp);
475	bqrelse(bp);
476
477	if (numdirtybuffers >= hidirtybuffers)
478		flushdirtybuffers(0, 0);
479
480	return;
481}
482
483/*
484 * Asynchronous write.
485 * Start output on a buffer, but do not wait for it to complete.
486 * The buffer is released when the output completes.
487 */
488void
489bawrite(struct buf * bp)
490{
491	bp->b_flags |= B_ASYNC;
492	(void) VOP_BWRITE(bp);
493}
494
495/*
496 * Ordered write.
497 * Start output on a buffer, but only wait for it to complete if the
498 * output device cannot guarantee ordering in some other way.  Devices
499 * that can perform asynchronous ordered writes will set the B_ASYNC
500 * flag in their strategy routine.
501 * The buffer is released when the output completes.
502 */
503int
504bowrite(struct buf * bp)
505{
506	/*
507	 * XXX Add in B_ASYNC once the SCSI
508	 *     layer can deal with ordered
509	 *     writes properly.
510	 */
511	bp->b_flags |= B_ORDERED;
512	return (VOP_BWRITE(bp));
513}
514
515/*
516 * Release a buffer.
517 */
518void
519brelse(struct buf * bp)
520{
521	int s;
522
523	if (bp->b_flags & B_CLUSTER) {
524		relpbuf(bp);
525		return;
526	}
527	/* anyone need a "free" block? */
528	s = splbio();
529
530	/* anyone need this block? */
531	if (bp->b_flags & B_WANTED) {
532		bp->b_flags &= ~(B_WANTED | B_AGE);
533		wakeup(bp);
534	}
535
536	if (bp->b_flags & B_LOCKED)
537		bp->b_flags &= ~B_ERROR;
538
539	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
540	    (bp->b_bufsize <= 0)) {
541		bp->b_flags |= B_INVAL;
542		if (bp->b_flags & B_DELWRI)
543			--numdirtybuffers;
544		bp->b_flags &= ~(B_DELWRI | B_CACHE);
545		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
546			if (bp->b_bufsize)
547				allocbuf(bp, 0);
548			brelvp(bp);
549		}
550	}
551
552	/*
553	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
554	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
555	 * but the VM object is kept around.  The B_NOCACHE flag is used to
556	 * invalidate the pages in the VM object.
557	 *
558	 * If the buffer is a partially filled NFS buffer, keep it
559	 * since invalidating it now will lose informatio.  The valid
560	 * flags in the vm_pages have only DEV_BSIZE resolution but
561	 * the b_validoff, b_validend fields have byte resolution.
562	 * This can avoid unnecessary re-reads of the buffer.
563	 * XXX this seems to cause performance problems.
564	 */
565	if ((bp->b_flags & B_VMIO)
566	    && !(bp->b_vp->v_tag == VT_NFS &&
567		 bp->b_vp->v_type != VBLK &&
568		 (bp->b_flags & B_DELWRI) != 0)
569#ifdef notdef
570	    && (bp->b_vp->v_tag != VT_NFS
571		|| bp->b_vp->v_type == VBLK
572		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
573		|| bp->b_validend == 0
574		|| (bp->b_validoff == 0
575		    && bp->b_validend == bp->b_bufsize))
576#endif
577	    ) {
578		vm_ooffset_t foff;
579		vm_object_t obj;
580		int i, resid;
581		vm_page_t m;
582		struct vnode *vp;
583		int iototal = bp->b_bufsize;
584
585		vp = bp->b_vp;
586
587#if !defined(MAX_PERF)
588		if (!vp)
589			panic("brelse: missing vp");
590#endif
591
592		if (bp->b_npages) {
593			vm_pindex_t poff;
594			obj = (vm_object_t) vp->v_object;
595			if (vp->v_type == VBLK)
596				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
597			else
598				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
599			poff = OFF_TO_IDX(foff);
600			for (i = 0; i < bp->b_npages; i++) {
601				m = bp->b_pages[i];
602				if (m == bogus_page) {
603					m = vm_page_lookup(obj, poff + i);
604#if !defined(MAX_PERF)
605					if (!m) {
606						panic("brelse: page missing\n");
607					}
608#endif
609					bp->b_pages[i] = m;
610					pmap_qenter(trunc_page(bp->b_data),
611						bp->b_pages, bp->b_npages);
612				}
613				resid = IDX_TO_OFF(m->pindex+1) - foff;
614				if (resid > iototal)
615					resid = iototal;
616				if (resid > 0) {
617					/*
618					 * Don't invalidate the page if the local machine has already
619					 * modified it.  This is the lesser of two evils, and should
620					 * be fixed.
621					 */
622					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
623						vm_page_test_dirty(m);
624						if (m->dirty == 0) {
625							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
626							if (m->valid == 0)
627								vm_page_protect(m, VM_PROT_NONE);
628						}
629					}
630					if (resid >= PAGE_SIZE) {
631						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
632							bp->b_flags |= B_INVAL;
633						}
634					} else {
635						if (!vm_page_is_valid(m,
636							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
637							bp->b_flags |= B_INVAL;
638						}
639					}
640				}
641				foff += resid;
642				iototal -= resid;
643			}
644		}
645		if (bp->b_flags & (B_INVAL | B_RELBUF))
646			vfs_vmio_release(bp);
647	}
648#if !defined(MAX_PERF)
649	if (bp->b_qindex != QUEUE_NONE)
650		panic("brelse: free buffer onto another queue???");
651#endif
652
653	/* enqueue */
654	/* buffers with no memory */
655	if (bp->b_bufsize == 0) {
656		bp->b_flags |= B_INVAL;
657		bp->b_qindex = QUEUE_EMPTY;
658		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
659		LIST_REMOVE(bp, b_hash);
660		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
661		bp->b_dev = NODEV;
662		/*
663		 * Get rid of the kva allocation *now*
664		 */
665		bfreekva(bp);
666
667	/* buffers with junk contents */
668	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
669		bp->b_flags |= B_INVAL;
670		bp->b_qindex = QUEUE_AGE;
671		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
672		LIST_REMOVE(bp, b_hash);
673		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
674		bp->b_dev = NODEV;
675
676	/* buffers that are locked */
677	} else if (bp->b_flags & B_LOCKED) {
678		bp->b_qindex = QUEUE_LOCKED;
679		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
680
681	/* buffers with stale but valid contents */
682	} else if (bp->b_flags & B_AGE) {
683		bp->b_qindex = QUEUE_AGE;
684		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
685
686	/* buffers with valid and quite potentially reuseable contents */
687	} else {
688		bp->b_qindex = QUEUE_LRU;
689		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
690	}
691
692	if ((bp->b_flags & B_INVAL) ||
693		(bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
694		if (bp->b_flags & B_DELWRI) {
695			--numdirtybuffers;
696			bp->b_flags &= ~B_DELWRI;
697		}
698		vfs_bio_need_satisfy();
699	}
700
701	/* unlock */
702	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
703				B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
704	splx(s);
705}
706
707/*
708 * Release a buffer.
709 */
710void
711bqrelse(struct buf * bp)
712{
713	int s;
714
715	s = splbio();
716
717	/* anyone need this block? */
718	if (bp->b_flags & B_WANTED) {
719		bp->b_flags &= ~(B_WANTED | B_AGE);
720		wakeup(bp);
721	}
722
723#if !defined(MAX_PERF)
724	if (bp->b_qindex != QUEUE_NONE)
725		panic("bqrelse: free buffer onto another queue???");
726#endif
727
728	if (bp->b_flags & B_LOCKED) {
729		bp->b_flags &= ~B_ERROR;
730		bp->b_qindex = QUEUE_LOCKED;
731		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
732		/* buffers with stale but valid contents */
733	} else {
734		bp->b_qindex = QUEUE_LRU;
735		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
736	}
737
738	if ((bp->b_flags & (B_LOCKED|B_DELWRI)) == 0) {
739		vfs_bio_need_satisfy();
740	}
741
742	/* unlock */
743	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
744		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
745	splx(s);
746}
747
748static void
749vfs_vmio_release(bp)
750	struct buf *bp;
751{
752	int i;
753	vm_page_t m;
754
755	for (i = 0; i < bp->b_npages; i++) {
756		m = bp->b_pages[i];
757		bp->b_pages[i] = NULL;
758		vm_page_unwire(m);
759		/*
760		 * We don't mess with busy pages, it is
761		 * the responsibility of the process that
762		 * busied the pages to deal with them.
763		 */
764		if ((m->flags & PG_BUSY) || (m->busy != 0))
765			continue;
766
767		if (m->wire_count == 0) {
768
769			if (m->flags & PG_WANTED) {
770				m->flags &= ~PG_WANTED;
771				wakeup(m);
772			}
773
774			/*
775			 * If this is an async free -- we cannot place
776			 * pages onto the cache queue.  If it is an
777			 * async free, then we don't modify any queues.
778			 * This is probably in error (for perf reasons),
779			 * and we will eventually need to build
780			 * a more complete infrastructure to support I/O
781			 * rundown.
782			 */
783			if ((bp->b_flags & B_ASYNC) == 0) {
784
785			/*
786			 * In the case of sync buffer frees, we can do pretty much
787			 * anything to any of the memory queues.  Specifically,
788			 * the cache queue is okay to be modified.
789			 */
790				if (m->valid) {
791					if(m->dirty == 0)
792						vm_page_test_dirty(m);
793					/*
794					 * this keeps pressure off of the process memory
795					 */
796					if (m->dirty == 0 && m->hold_count == 0)
797						vm_page_cache(m);
798					else
799						vm_page_deactivate(m);
800				} else if (m->hold_count == 0) {
801					vm_page_protect(m, VM_PROT_NONE);
802					vm_page_free(m);
803				}
804			} else {
805				/*
806				 * If async, then at least we clear the
807				 * act_count.
808				 */
809				m->act_count = 0;
810			}
811		}
812	}
813	bufspace -= bp->b_bufsize;
814	vmiospace -= bp->b_bufsize;
815	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
816	bp->b_npages = 0;
817	bp->b_bufsize = 0;
818	bp->b_flags &= ~B_VMIO;
819	if (bp->b_vp)
820		brelvp(bp);
821}
822
823/*
824 * Check to see if a block is currently memory resident.
825 */
826struct buf *
827gbincore(struct vnode * vp, daddr_t blkno)
828{
829	struct buf *bp;
830	struct bufhashhdr *bh;
831
832	bh = BUFHASH(vp, blkno);
833	bp = bh->lh_first;
834
835	/* Search hash chain */
836	while (bp != NULL) {
837		/* hit */
838		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
839		    (bp->b_flags & B_INVAL) == 0) {
840			break;
841		}
842		bp = bp->b_hash.le_next;
843	}
844	return (bp);
845}
846
847/*
848 * this routine implements clustered async writes for
849 * clearing out B_DELWRI buffers...  This is much better
850 * than the old way of writing only one buffer at a time.
851 */
852int
853vfs_bio_awrite(struct buf * bp)
854{
855	int i;
856	daddr_t lblkno = bp->b_lblkno;
857	struct vnode *vp = bp->b_vp;
858	int s;
859	int ncl;
860	struct buf *bpa;
861	int nwritten;
862
863	s = splbio();
864	/*
865	 * right now we support clustered writing only to regular files
866	 */
867	if ((vp->v_type == VREG) &&
868	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
869	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
870		int size;
871		int maxcl;
872
873		size = vp->v_mount->mnt_stat.f_iosize;
874		maxcl = MAXPHYS / size;
875
876		for (i = 1; i < maxcl; i++) {
877			if ((bpa = gbincore(vp, lblkno + i)) &&
878			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
879			    (B_DELWRI | B_CLUSTEROK)) &&
880			    (bpa->b_bufsize == size)) {
881				if ((bpa->b_blkno == bpa->b_lblkno) ||
882				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
883					break;
884			} else {
885				break;
886			}
887		}
888		ncl = i;
889		/*
890		 * this is a possible cluster write
891		 */
892		if (ncl != 1) {
893			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
894			splx(s);
895			return nwritten;
896		}
897	}
898	bremfree(bp);
899	splx(s);
900	/*
901	 * default (old) behavior, writing out only one block
902	 */
903	bp->b_flags |= B_BUSY | B_ASYNC;
904	nwritten = bp->b_bufsize;
905	(void) VOP_BWRITE(bp);
906	return nwritten;
907}
908
909
910/*
911 * Find a buffer header which is available for use.
912 */
913static struct buf *
914getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize)
915{
916	struct buf *bp;
917	int nbyteswritten = 0;
918	vm_offset_t addr;
919	static int writerecursion = 0;
920
921start:
922	if (bufspace >= maxbufspace)
923		goto trytofreespace;
924
925	/* can we constitute a new buffer? */
926	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
927#if !defined(MAX_PERF)
928		if (bp->b_qindex != QUEUE_EMPTY)
929			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
930			    bp->b_qindex);
931#endif
932		bp->b_flags |= B_BUSY;
933		bremfree(bp);
934		goto fillbuf;
935	}
936trytofreespace:
937	/*
938	 * We keep the file I/O from hogging metadata I/O
939	 * This is desirable because file data is cached in the
940	 * VM/Buffer cache even if a buffer is freed.
941	 */
942	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
943#if !defined(MAX_PERF)
944		if (bp->b_qindex != QUEUE_AGE)
945			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
946			    bp->b_qindex);
947#endif
948	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
949#if !defined(MAX_PERF)
950		if (bp->b_qindex != QUEUE_LRU)
951			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
952			    bp->b_qindex);
953#endif
954	}
955	if (!bp) {
956		/* wait for a free buffer of any kind */
957		needsbuffer |= VFS_BIO_NEED_ANY;
958		do
959			tsleep(&needsbuffer, (PRIBIO + 1) | slpflag, "newbuf",
960			    slptimeo);
961		while (needsbuffer & VFS_BIO_NEED_ANY);
962		return (0);
963	}
964
965#if defined(DIAGNOSTIC)
966	if (bp->b_flags & B_BUSY) {
967		panic("getnewbuf: busy buffer on free list\n");
968	}
969#endif
970
971	/*
972	 * We are fairly aggressive about freeing VMIO buffers, but since
973	 * the buffering is intact without buffer headers, there is not
974	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
975	 */
976	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
977		if ((bp->b_flags & B_VMIO) == 0 ||
978			(vmiospace < maxvmiobufspace)) {
979			--bp->b_usecount;
980			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
981			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
982				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
983				goto start;
984			}
985			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
986		}
987	}
988
989
990	/* if we are a delayed write, convert to an async write */
991	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
992
993		if (writerecursion > 0) {
994			bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
995			while (bp) {
996				if ((bp->b_flags & B_DELWRI) == 0)
997					break;
998				bp = TAILQ_NEXT(bp, b_freelist);
999			}
1000			if (bp == NULL) {
1001				bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1002				while (bp) {
1003					if ((bp->b_flags & B_DELWRI) == 0)
1004						break;
1005					bp = TAILQ_NEXT(bp, b_freelist);
1006				}
1007			}
1008			if (bp == NULL)
1009				panic("getnewbuf: cannot get buffer, infinite recursion failure");
1010		} else {
1011			++writerecursion;
1012			nbyteswritten += vfs_bio_awrite(bp);
1013			--writerecursion;
1014			if (!slpflag && !slptimeo) {
1015				return (0);
1016			}
1017			goto start;
1018		}
1019	}
1020
1021	if (bp->b_flags & B_WANTED) {
1022		bp->b_flags &= ~B_WANTED;
1023		wakeup(bp);
1024	}
1025	bremfree(bp);
1026	bp->b_flags |= B_BUSY;
1027
1028	if (bp->b_flags & B_VMIO) {
1029		bp->b_flags &= ~B_ASYNC;
1030		vfs_vmio_release(bp);
1031	}
1032
1033	if (bp->b_vp)
1034		brelvp(bp);
1035
1036fillbuf:
1037	/* we are not free, nor do we contain interesting data */
1038	if (bp->b_rcred != NOCRED) {
1039		crfree(bp->b_rcred);
1040		bp->b_rcred = NOCRED;
1041	}
1042	if (bp->b_wcred != NOCRED) {
1043		crfree(bp->b_wcred);
1044		bp->b_wcred = NOCRED;
1045	}
1046
1047	LIST_REMOVE(bp, b_hash);
1048	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
1049	if (bp->b_bufsize) {
1050		allocbuf(bp, 0);
1051	}
1052	bp->b_flags = B_BUSY;
1053	bp->b_dev = NODEV;
1054	bp->b_vp = NULL;
1055	bp->b_blkno = bp->b_lblkno = 0;
1056	bp->b_iodone = 0;
1057	bp->b_error = 0;
1058	bp->b_resid = 0;
1059	bp->b_bcount = 0;
1060	bp->b_npages = 0;
1061	bp->b_dirtyoff = bp->b_dirtyend = 0;
1062	bp->b_validoff = bp->b_validend = 0;
1063	bp->b_usecount = 4;
1064
1065	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
1066
1067	/*
1068	 * we assume that buffer_map is not at address 0
1069	 */
1070	addr = 0;
1071	if (maxsize != bp->b_kvasize) {
1072		bfreekva(bp);
1073
1074		/*
1075		 * See if we have buffer kva space
1076		 */
1077		if (vm_map_findspace(buffer_map,
1078			vm_map_min(buffer_map), maxsize, &addr)) {
1079			bp->b_flags |= B_INVAL;
1080			brelse(bp);
1081			goto trytofreespace;
1082		}
1083	}
1084
1085	/*
1086	 * See if we are below are allocated minimum
1087	 */
1088	if (bufspace >= (maxbufspace + nbyteswritten)) {
1089		bp->b_flags |= B_INVAL;
1090		brelse(bp);
1091		goto trytofreespace;
1092	}
1093
1094	/*
1095	 * create a map entry for the buffer -- in essence
1096	 * reserving the kva space.
1097	 */
1098	if (addr) {
1099		vm_map_insert(buffer_map, NULL, 0,
1100			addr, addr + maxsize,
1101			VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1102
1103		bp->b_kvabase = (caddr_t) addr;
1104		bp->b_kvasize = maxsize;
1105	}
1106	bp->b_data = bp->b_kvabase;
1107
1108	return (bp);
1109}
1110
1111static void
1112waitfreebuffers(int slpflag, int slptimeo) {
1113	while (numfreebuffers < hifreebuffers) {
1114		flushdirtybuffers(slpflag, slptimeo);
1115		if (numfreebuffers < hifreebuffers)
1116			break;
1117		needsbuffer |= VFS_BIO_NEED_FREE;
1118		if (tsleep(&needsbuffer, PRIBIO|slpflag, "biofre", slptimeo))
1119			break;
1120	}
1121}
1122
1123static void
1124flushdirtybuffers(int slpflag, int slptimeo) {
1125	int s;
1126	static pid_t flushing = 0;
1127
1128	s = splbio();
1129
1130	if (flushing) {
1131		if (flushing == curproc->p_pid) {
1132			splx(s);
1133			return;
1134		}
1135		while (flushing) {
1136			if (tsleep(&flushing, PRIBIO|slpflag, "biofls", slptimeo)) {
1137				splx(s);
1138				return;
1139			}
1140		}
1141	}
1142	flushing = curproc->p_pid;
1143
1144	while (numdirtybuffers > lodirtybuffers) {
1145		struct buf *bp;
1146		needsbuffer |= VFS_BIO_NEED_LOWLIMIT;
1147		bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]);
1148		if (bp == NULL)
1149			bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]);
1150
1151		while (bp && ((bp->b_flags & B_DELWRI) == 0)) {
1152			bp = TAILQ_NEXT(bp, b_freelist);
1153		}
1154
1155		if (bp) {
1156			splx(s);
1157			vfs_bio_awrite(bp);
1158			s = splbio();
1159			continue;
1160		}
1161		break;
1162	}
1163
1164	flushing = 0;
1165	wakeup(&flushing);
1166	splx(s);
1167}
1168
1169/*
1170 * Check to see if a block is currently memory resident.
1171 */
1172struct buf *
1173incore(struct vnode * vp, daddr_t blkno)
1174{
1175	struct buf *bp;
1176
1177	int s = splbio();
1178	bp = gbincore(vp, blkno);
1179	splx(s);
1180	return (bp);
1181}
1182
1183/*
1184 * Returns true if no I/O is needed to access the
1185 * associated VM object.  This is like incore except
1186 * it also hunts around in the VM system for the data.
1187 */
1188
1189int
1190inmem(struct vnode * vp, daddr_t blkno)
1191{
1192	vm_object_t obj;
1193	vm_offset_t toff, tinc;
1194	vm_page_t m;
1195	vm_ooffset_t off;
1196
1197	if (incore(vp, blkno))
1198		return 1;
1199	if (vp->v_mount == NULL)
1200		return 0;
1201	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
1202		return 0;
1203
1204	obj = vp->v_object;
1205	tinc = PAGE_SIZE;
1206	if (tinc > vp->v_mount->mnt_stat.f_iosize)
1207		tinc = vp->v_mount->mnt_stat.f_iosize;
1208	off = blkno * vp->v_mount->mnt_stat.f_iosize;
1209
1210	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1211
1212		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1213		if (!m)
1214			return 0;
1215		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
1216			return 0;
1217	}
1218	return 1;
1219}
1220
1221/*
1222 * now we set the dirty range for the buffer --
1223 * for NFS -- if the file is mapped and pages have
1224 * been written to, let it know.  We want the
1225 * entire range of the buffer to be marked dirty if
1226 * any of the pages have been written to for consistancy
1227 * with the b_validoff, b_validend set in the nfs write
1228 * code, and used by the nfs read code.
1229 */
1230static void
1231vfs_setdirty(struct buf *bp) {
1232	int i;
1233	vm_object_t object;
1234	vm_offset_t boffset, offset;
1235	/*
1236	 * We qualify the scan for modified pages on whether the
1237	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1238	 * is not cleared simply by protecting pages off.
1239	 */
1240	if ((bp->b_flags & B_VMIO) &&
1241		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1242		/*
1243		 * test the pages to see if they have been modified directly
1244		 * by users through the VM system.
1245		 */
1246		for (i = 0; i < bp->b_npages; i++)
1247			vm_page_test_dirty(bp->b_pages[i]);
1248
1249		/*
1250		 * scan forwards for the first page modified
1251		 */
1252		for (i = 0; i < bp->b_npages; i++) {
1253			if (bp->b_pages[i]->dirty) {
1254				break;
1255			}
1256		}
1257		boffset = (i << PAGE_SHIFT);
1258		if (boffset < bp->b_dirtyoff) {
1259			bp->b_dirtyoff = boffset;
1260		}
1261
1262		/*
1263		 * scan backwards for the last page modified
1264		 */
1265		for (i = bp->b_npages - 1; i >= 0; --i) {
1266			if (bp->b_pages[i]->dirty) {
1267				break;
1268			}
1269		}
1270		boffset = (i + 1);
1271		offset = boffset + bp->b_pages[0]->pindex;
1272		if (offset >= object->size)
1273			boffset = object->size - bp->b_pages[0]->pindex;
1274		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
1275			bp->b_dirtyend = (boffset << PAGE_SHIFT);
1276	}
1277}
1278
1279/*
1280 * Get a block given a specified block and offset into a file/device.
1281 */
1282struct buf *
1283getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1284{
1285	struct buf *bp;
1286	int s;
1287	struct bufhashhdr *bh;
1288	int maxsize;
1289	static pid_t flushing = 0;
1290
1291	if (vp->v_mount) {
1292		maxsize = vp->v_mount->mnt_stat.f_iosize;
1293		/*
1294		 * This happens on mount points.
1295		 */
1296		if (maxsize < size)
1297			maxsize = size;
1298	} else {
1299		maxsize = size;
1300	}
1301
1302#if !defined(MAX_PERF)
1303	if (size > MAXBSIZE)
1304		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1305#endif
1306
1307	s = splbio();
1308loop:
1309	if (numfreebuffers < lofreebuffers) {
1310		waitfreebuffers(slpflag, slptimeo);
1311	}
1312
1313	if ((bp = gbincore(vp, blkno))) {
1314		if (bp->b_flags & B_BUSY) {
1315			bp->b_flags |= B_WANTED;
1316			if (bp->b_usecount < BUF_MAXUSE)
1317				++bp->b_usecount;
1318			if (!tsleep(bp,
1319				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
1320				goto loop;
1321
1322			splx(s);
1323			return (struct buf *) NULL;
1324		}
1325		bp->b_flags |= B_BUSY | B_CACHE;
1326		bremfree(bp);
1327
1328		/*
1329		 * check for size inconsistancies (note that they shouldn't
1330		 * happen but do when filesystems don't handle the size changes
1331		 * correctly.) We are conservative on metadata and don't just
1332		 * extend the buffer but write and re-constitute it.
1333		 */
1334
1335		if (bp->b_bcount != size) {
1336			if ((bp->b_flags & B_VMIO) && (size <= bp->b_kvasize)) {
1337				allocbuf(bp, size);
1338			} else {
1339				bp->b_flags |= B_NOCACHE;
1340				VOP_BWRITE(bp);
1341				goto loop;
1342			}
1343		}
1344
1345		if (bp->b_usecount < BUF_MAXUSE)
1346			++bp->b_usecount;
1347		splx(s);
1348		return (bp);
1349	} else {
1350		vm_object_t obj;
1351
1352		if ((bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize)) == 0) {
1353			if (slpflag || slptimeo) {
1354				splx(s);
1355				return NULL;
1356			}
1357			goto loop;
1358		}
1359
1360		/*
1361		 * This code is used to make sure that a buffer is not
1362		 * created while the getnewbuf routine is blocked.
1363		 * Normally the vnode is locked so this isn't a problem.
1364		 * VBLK type I/O requests, however, don't lock the vnode.
1365		 */
1366		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1367			bp->b_flags |= B_INVAL;
1368			brelse(bp);
1369			goto loop;
1370		}
1371
1372		/*
1373		 * Insert the buffer into the hash, so that it can
1374		 * be found by incore.
1375		 */
1376		bp->b_blkno = bp->b_lblkno = blkno;
1377		bgetvp(vp, bp);
1378		LIST_REMOVE(bp, b_hash);
1379		bh = BUFHASH(vp, blkno);
1380		LIST_INSERT_HEAD(bh, bp, b_hash);
1381
1382		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1383			bp->b_flags |= (B_VMIO | B_CACHE);
1384#if defined(VFS_BIO_DEBUG)
1385			if (vp->v_type != VREG && vp->v_type != VBLK)
1386				printf("getblk: vmioing file type %d???\n", vp->v_type);
1387#endif
1388		} else {
1389			bp->b_flags &= ~B_VMIO;
1390		}
1391		splx(s);
1392
1393		allocbuf(bp, size);
1394#ifdef	PC98
1395		/*
1396		 * 1024byte/sector support
1397		 */
1398#define B_XXX2 0x8000000
1399		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1400#endif
1401		return (bp);
1402	}
1403}
1404
1405/*
1406 * Get an empty, disassociated buffer of given size.
1407 */
1408struct buf *
1409geteblk(int size)
1410{
1411	struct buf *bp;
1412	int s;
1413
1414	s = splbio();
1415	while ((bp = getnewbuf(0, 0, 0, size, MAXBSIZE)) == 0);
1416	splx(s);
1417	allocbuf(bp, size);
1418	bp->b_flags |= B_INVAL;
1419	return (bp);
1420}
1421
1422
1423/*
1424 * This code constitutes the buffer memory from either anonymous system
1425 * memory (in the case of non-VMIO operations) or from an associated
1426 * VM object (in the case of VMIO operations).
1427 *
1428 * Note that this code is tricky, and has many complications to resolve
1429 * deadlock or inconsistant data situations.  Tread lightly!!!
1430 *
1431 * Modify the length of a buffer's underlying buffer storage without
1432 * destroying information (unless, of course the buffer is shrinking).
1433 */
1434int
1435allocbuf(struct buf * bp, int size)
1436{
1437
1438	int s;
1439	int newbsize, mbsize;
1440	int i;
1441
1442#if !defined(MAX_PERF)
1443	if (!(bp->b_flags & B_BUSY))
1444		panic("allocbuf: buffer not busy");
1445
1446	if (bp->b_kvasize < size)
1447		panic("allocbuf: buffer too small");
1448#endif
1449
1450	if ((bp->b_flags & B_VMIO) == 0) {
1451		caddr_t origbuf;
1452		int origbufsize;
1453		/*
1454		 * Just get anonymous memory from the kernel
1455		 */
1456		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1457#if !defined(NO_B_MALLOC)
1458		if (bp->b_flags & B_MALLOC)
1459			newbsize = mbsize;
1460		else
1461#endif
1462			newbsize = round_page(size);
1463
1464		if (newbsize < bp->b_bufsize) {
1465#if !defined(NO_B_MALLOC)
1466			/*
1467			 * malloced buffers are not shrunk
1468			 */
1469			if (bp->b_flags & B_MALLOC) {
1470				if (newbsize) {
1471					bp->b_bcount = size;
1472				} else {
1473					free(bp->b_data, M_BIOBUF);
1474					bufspace -= bp->b_bufsize;
1475					bufmallocspace -= bp->b_bufsize;
1476					bp->b_data = bp->b_kvabase;
1477					bp->b_bufsize = 0;
1478					bp->b_bcount = 0;
1479					bp->b_flags &= ~B_MALLOC;
1480				}
1481				return 1;
1482			}
1483#endif
1484			vm_hold_free_pages(
1485			    bp,
1486			    (vm_offset_t) bp->b_data + newbsize,
1487			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1488		} else if (newbsize > bp->b_bufsize) {
1489#if !defined(NO_B_MALLOC)
1490			/*
1491			 * We only use malloced memory on the first allocation.
1492			 * and revert to page-allocated memory when the buffer grows.
1493			 */
1494			if ( (bufmallocspace < maxbufmallocspace) &&
1495				(bp->b_bufsize == 0) &&
1496				(mbsize <= PAGE_SIZE/2)) {
1497
1498				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1499				bp->b_bufsize = mbsize;
1500				bp->b_bcount = size;
1501				bp->b_flags |= B_MALLOC;
1502				bufspace += mbsize;
1503				bufmallocspace += mbsize;
1504				return 1;
1505			}
1506#endif
1507			origbuf = NULL;
1508			origbufsize = 0;
1509#if !defined(NO_B_MALLOC)
1510			/*
1511			 * If the buffer is growing on it's other-than-first allocation,
1512			 * then we revert to the page-allocation scheme.
1513			 */
1514			if (bp->b_flags & B_MALLOC) {
1515				origbuf = bp->b_data;
1516				origbufsize = bp->b_bufsize;
1517				bp->b_data = bp->b_kvabase;
1518				bufspace -= bp->b_bufsize;
1519				bufmallocspace -= bp->b_bufsize;
1520				bp->b_bufsize = 0;
1521				bp->b_flags &= ~B_MALLOC;
1522				newbsize = round_page(newbsize);
1523			}
1524#endif
1525			vm_hold_load_pages(
1526			    bp,
1527			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1528			    (vm_offset_t) bp->b_data + newbsize);
1529#if !defined(NO_B_MALLOC)
1530			if (origbuf) {
1531				bcopy(origbuf, bp->b_data, origbufsize);
1532				free(origbuf, M_BIOBUF);
1533			}
1534#endif
1535		}
1536	} else {
1537		vm_page_t m;
1538		int desiredpages;
1539
1540		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1541		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1542
1543#if !defined(NO_B_MALLOC)
1544		if (bp->b_flags & B_MALLOC)
1545			panic("allocbuf: VMIO buffer can't be malloced");
1546#endif
1547
1548		if (newbsize < bp->b_bufsize) {
1549			if (desiredpages < bp->b_npages) {
1550				for (i = desiredpages; i < bp->b_npages; i++) {
1551					/*
1552					 * the page is not freed here -- it
1553					 * is the responsibility of vnode_pager_setsize
1554					 */
1555					m = bp->b_pages[i];
1556#if defined(DIAGNOSTIC)
1557					if (m == bogus_page)
1558						panic("allocbuf: bogus page found");
1559#endif
1560					s = splvm();
1561					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1562						m->flags |= PG_WANTED;
1563						tsleep(m, PVM, "biodep", 0);
1564					}
1565					splx(s);
1566
1567					bp->b_pages[i] = NULL;
1568					vm_page_unwire(m);
1569				}
1570				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1571				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1572				bp->b_npages = desiredpages;
1573			}
1574		} else if (newbsize > bp->b_bufsize) {
1575			vm_object_t obj;
1576			vm_offset_t tinc, toff;
1577			vm_ooffset_t off;
1578			vm_pindex_t objoff;
1579			int pageindex, curbpnpages;
1580			struct vnode *vp;
1581			int bsize;
1582
1583			vp = bp->b_vp;
1584
1585			if (vp->v_type == VBLK)
1586				bsize = DEV_BSIZE;
1587			else
1588				bsize = vp->v_mount->mnt_stat.f_iosize;
1589
1590			if (bp->b_npages < desiredpages) {
1591				obj = vp->v_object;
1592				tinc = PAGE_SIZE;
1593				if (tinc > bsize)
1594					tinc = bsize;
1595				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1596				curbpnpages = bp->b_npages;
1597		doretry:
1598				bp->b_flags |= B_CACHE;
1599				bp->b_validoff = bp->b_validend = 0;
1600				for (toff = 0; toff < newbsize; toff += tinc) {
1601					int bytesinpage;
1602
1603					pageindex = toff >> PAGE_SHIFT;
1604					objoff = OFF_TO_IDX(off + toff);
1605					if (pageindex < curbpnpages) {
1606
1607						m = bp->b_pages[pageindex];
1608#ifdef VFS_BIO_DIAG
1609						if (m->pindex != objoff)
1610							panic("allocbuf: page changed offset??!!!?");
1611#endif
1612						bytesinpage = tinc;
1613						if (tinc > (newbsize - toff))
1614							bytesinpage = newbsize - toff;
1615						if (bp->b_flags & B_CACHE)
1616							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1617						continue;
1618					}
1619					m = vm_page_lookup(obj, objoff);
1620					if (!m) {
1621						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1622						if (!m) {
1623							VM_WAIT;
1624							goto doretry;
1625						}
1626						/*
1627						 * Normally it is unwise to clear PG_BUSY without
1628						 * PAGE_WAKEUP -- but it is okay here, as there is
1629						 * no chance for blocking between here and vm_page_alloc
1630						 */
1631						m->flags &= ~PG_BUSY;
1632						vm_page_wire(m);
1633						bp->b_flags &= ~B_CACHE;
1634					} else if (m->flags & PG_BUSY) {
1635						s = splvm();
1636						if (m->flags & PG_BUSY) {
1637							m->flags |= PG_WANTED;
1638							tsleep(m, PVM, "pgtblk", 0);
1639						}
1640						splx(s);
1641						goto doretry;
1642					} else {
1643						if ((curproc != pageproc) &&
1644							((m->queue - m->pc) == PQ_CACHE) &&
1645						    ((cnt.v_free_count + cnt.v_cache_count) <
1646								(cnt.v_free_min + cnt.v_cache_min))) {
1647							pagedaemon_wakeup();
1648						}
1649						bytesinpage = tinc;
1650						if (tinc > (newbsize - toff))
1651							bytesinpage = newbsize - toff;
1652						if (bp->b_flags & B_CACHE)
1653							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1654						vm_page_wire(m);
1655					}
1656					bp->b_pages[pageindex] = m;
1657					curbpnpages = pageindex + 1;
1658				}
1659				if (vp->v_tag == VT_NFS &&
1660				    vp->v_type != VBLK) {
1661					if (bp->b_dirtyend > 0) {
1662						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
1663						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
1664					}
1665					if (bp->b_validend == 0)
1666						bp->b_flags &= ~B_CACHE;
1667				}
1668				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1669				bp->b_npages = curbpnpages;
1670				pmap_qenter((vm_offset_t) bp->b_data,
1671					bp->b_pages, bp->b_npages);
1672				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1673			}
1674		}
1675	}
1676	if (bp->b_flags & B_VMIO)
1677		vmiospace += (newbsize - bp->b_bufsize);
1678	bufspace += (newbsize - bp->b_bufsize);
1679	bp->b_bufsize = newbsize;
1680	bp->b_bcount = size;
1681	return 1;
1682}
1683
1684/*
1685 * Wait for buffer I/O completion, returning error status.
1686 */
1687int
1688biowait(register struct buf * bp)
1689{
1690	int s;
1691
1692	s = splbio();
1693	while ((bp->b_flags & B_DONE) == 0)
1694#if defined(NO_SCHEDULE_MODS)
1695		tsleep(bp, PRIBIO, "biowait", 0);
1696#else
1697		tsleep(bp, curproc->p_usrpri, "biowait", 0);
1698#endif
1699	splx(s);
1700	if (bp->b_flags & B_EINTR) {
1701		bp->b_flags &= ~B_EINTR;
1702		return (EINTR);
1703	}
1704	if (bp->b_flags & B_ERROR) {
1705		return (bp->b_error ? bp->b_error : EIO);
1706	} else {
1707		return (0);
1708	}
1709}
1710
1711/*
1712 * Finish I/O on a buffer, calling an optional function.
1713 * This is usually called from interrupt level, so process blocking
1714 * is not *a good idea*.
1715 */
1716void
1717biodone(register struct buf * bp)
1718{
1719	int s;
1720
1721	s = splbio();
1722
1723#if !defined(MAX_PERF)
1724	if (!(bp->b_flags & B_BUSY))
1725		panic("biodone: buffer not busy");
1726#endif
1727
1728	if (bp->b_flags & B_DONE) {
1729		splx(s);
1730#if !defined(MAX_PERF)
1731		printf("biodone: buffer already done\n");
1732#endif
1733		return;
1734	}
1735	bp->b_flags |= B_DONE;
1736
1737	if ((bp->b_flags & B_READ) == 0) {
1738		vwakeup(bp);
1739	}
1740#ifdef BOUNCE_BUFFERS
1741	if (bp->b_flags & B_BOUNCE)
1742		vm_bounce_free(bp);
1743#endif
1744
1745	/* call optional completion function if requested */
1746	if (bp->b_flags & B_CALL) {
1747		bp->b_flags &= ~B_CALL;
1748		(*bp->b_iodone) (bp);
1749		splx(s);
1750		return;
1751	}
1752	if (bp->b_flags & B_VMIO) {
1753		int i, resid;
1754		vm_ooffset_t foff;
1755		vm_page_t m;
1756		vm_object_t obj;
1757		int iosize;
1758		struct vnode *vp = bp->b_vp;
1759
1760		obj = vp->v_object;
1761
1762#if defined(VFS_BIO_DEBUG)
1763		if (vp->v_usecount == 0) {
1764			panic("biodone: zero vnode ref count");
1765		}
1766
1767		if (vp->v_object == NULL) {
1768			panic("biodone: missing VM object");
1769		}
1770
1771		if ((vp->v_flag & VVMIO) == 0) {
1772			panic("biodone: vnode is not setup for merged cache");
1773		}
1774#endif
1775
1776		if (vp->v_type == VBLK)
1777			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1778		else
1779			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1780#if !defined(MAX_PERF)
1781		if (!obj) {
1782			panic("biodone: no object");
1783		}
1784#endif
1785#if defined(VFS_BIO_DEBUG)
1786		if (obj->paging_in_progress < bp->b_npages) {
1787			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1788			    obj->paging_in_progress, bp->b_npages);
1789		}
1790#endif
1791		iosize = bp->b_bufsize;
1792		for (i = 0; i < bp->b_npages; i++) {
1793			int bogusflag = 0;
1794			m = bp->b_pages[i];
1795			if (m == bogus_page) {
1796				bogusflag = 1;
1797				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1798				if (!m) {
1799#if defined(VFS_BIO_DEBUG)
1800					printf("biodone: page disappeared\n");
1801#endif
1802					--obj->paging_in_progress;
1803					continue;
1804				}
1805				bp->b_pages[i] = m;
1806				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1807			}
1808#if defined(VFS_BIO_DEBUG)
1809			if (OFF_TO_IDX(foff) != m->pindex) {
1810				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1811			}
1812#endif
1813			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1814			if (resid > iosize)
1815				resid = iosize;
1816			/*
1817			 * In the write case, the valid and clean bits are
1818			 * already changed correctly, so we only need to do this
1819			 * here in the read case.
1820			 */
1821			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1822				vfs_page_set_valid(bp, foff, i, m);
1823			}
1824
1825			/*
1826			 * when debugging new filesystems or buffer I/O methods, this
1827			 * is the most common error that pops up.  if you see this, you
1828			 * have not set the page busy flag correctly!!!
1829			 */
1830			if (m->busy == 0) {
1831#if !defined(MAX_PERF)
1832				printf("biodone: page busy < 0, "
1833				    "pindex: %d, foff: 0x(%x,%x), "
1834				    "resid: %d, index: %d\n",
1835				    (int) m->pindex, (int)(foff >> 32),
1836						(int) foff & 0xffffffff, resid, i);
1837#endif
1838				if (vp->v_type != VBLK)
1839#if !defined(MAX_PERF)
1840					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1841					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1842					    (int) bp->b_lblkno,
1843					    bp->b_flags, bp->b_npages);
1844				else
1845					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1846					    (int) bp->b_lblkno,
1847					    bp->b_flags, bp->b_npages);
1848				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1849				    m->valid, m->dirty, m->wire_count);
1850#endif
1851				panic("biodone: page busy < 0\n");
1852			}
1853			--m->busy;
1854			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1855				m->flags &= ~PG_WANTED;
1856				wakeup(m);
1857			}
1858			--obj->paging_in_progress;
1859			foff += resid;
1860			iosize -= resid;
1861		}
1862		if (obj && obj->paging_in_progress == 0 &&
1863		    (obj->flags & OBJ_PIPWNT)) {
1864			obj->flags &= ~OBJ_PIPWNT;
1865			wakeup(obj);
1866		}
1867	}
1868	/*
1869	 * For asynchronous completions, release the buffer now. The brelse
1870	 * checks for B_WANTED and will do the wakeup there if necessary - so
1871	 * no need to do a wakeup here in the async case.
1872	 */
1873
1874	if (bp->b_flags & B_ASYNC) {
1875		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1876			brelse(bp);
1877		else
1878			bqrelse(bp);
1879	} else {
1880		bp->b_flags &= ~B_WANTED;
1881		wakeup(bp);
1882	}
1883	splx(s);
1884}
1885
1886int
1887count_lock_queue()
1888{
1889	int count;
1890	struct buf *bp;
1891
1892	count = 0;
1893	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1894	    bp != NULL;
1895	    bp = TAILQ_NEXT(bp, b_freelist))
1896		count++;
1897	return (count);
1898}
1899
1900int vfs_update_interval = 30;
1901
1902static void
1903vfs_update()
1904{
1905	while (1) {
1906		tsleep(&vfs_update_wakeup, PUSER, "update",
1907		    hz * vfs_update_interval);
1908		vfs_update_wakeup = 0;
1909		sync(curproc, NULL, NULL);
1910	}
1911}
1912
1913static int
1914sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1915{
1916	int error = sysctl_handle_int(oidp,
1917		oidp->oid_arg1, oidp->oid_arg2, req);
1918	if (!error)
1919		wakeup(&vfs_update_wakeup);
1920	return error;
1921}
1922
1923SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1924	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1925
1926
1927/*
1928 * This routine is called in lieu of iodone in the case of
1929 * incomplete I/O.  This keeps the busy status for pages
1930 * consistant.
1931 */
1932void
1933vfs_unbusy_pages(struct buf * bp)
1934{
1935	int i;
1936
1937	if (bp->b_flags & B_VMIO) {
1938		struct vnode *vp = bp->b_vp;
1939		vm_object_t obj = vp->v_object;
1940		vm_ooffset_t foff;
1941
1942		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1943
1944		for (i = 0; i < bp->b_npages; i++) {
1945			vm_page_t m = bp->b_pages[i];
1946
1947			if (m == bogus_page) {
1948				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1949#if !defined(MAX_PERF)
1950				if (!m) {
1951					panic("vfs_unbusy_pages: page missing\n");
1952				}
1953#endif
1954				bp->b_pages[i] = m;
1955				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1956			}
1957			--obj->paging_in_progress;
1958			--m->busy;
1959			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1960				m->flags &= ~PG_WANTED;
1961				wakeup(m);
1962			}
1963		}
1964		if (obj->paging_in_progress == 0 &&
1965		    (obj->flags & OBJ_PIPWNT)) {
1966			obj->flags &= ~OBJ_PIPWNT;
1967			wakeup(obj);
1968		}
1969	}
1970}
1971
1972/*
1973 * Set NFS' b_validoff and b_validend fields from the valid bits
1974 * of a page.  If the consumer is not NFS, and the page is not
1975 * valid for the entire range, clear the B_CACHE flag to force
1976 * the consumer to re-read the page.
1977 */
1978static void
1979vfs_buf_set_valid(struct buf *bp,
1980		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
1981		  vm_page_t m)
1982{
1983	if (bp->b_vp->v_tag == VT_NFS && bp->b_vp->v_type != VBLK) {
1984		vm_offset_t svalid, evalid;
1985		int validbits = m->valid;
1986
1987		/*
1988		 * This only bothers with the first valid range in the
1989		 * page.
1990		 */
1991		svalid = off;
1992		while (validbits && !(validbits & 1)) {
1993			svalid += DEV_BSIZE;
1994			validbits >>= 1;
1995		}
1996		evalid = svalid;
1997		while (validbits & 1) {
1998			evalid += DEV_BSIZE;
1999			validbits >>= 1;
2000		}
2001		/*
2002		 * Make sure this range is contiguous with the range
2003		 * built up from previous pages.  If not, then we will
2004		 * just use the range from the previous pages.
2005		 */
2006		if (svalid == bp->b_validend) {
2007			bp->b_validoff = min(bp->b_validoff, svalid);
2008			bp->b_validend = max(bp->b_validend, evalid);
2009		}
2010	} else if (!vm_page_is_valid(m,
2011				     (vm_offset_t) ((foff + off) & PAGE_MASK),
2012				     size)) {
2013		bp->b_flags &= ~B_CACHE;
2014	}
2015}
2016
2017/*
2018 * Set the valid bits in a page, taking care of the b_validoff,
2019 * b_validend fields which NFS uses to optimise small reads.  Off is
2020 * the offset within the file and pageno is the page index within the buf.
2021 */
2022static void
2023vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
2024{
2025	struct vnode *vp = bp->b_vp;
2026	vm_ooffset_t soff, eoff;
2027
2028	soff = off;
2029	eoff = off + min(PAGE_SIZE, bp->b_bufsize);
2030	vm_page_set_invalid(m,
2031			    (vm_offset_t) (soff & PAGE_MASK),
2032			    (vm_offset_t) (eoff - soff));
2033	if (vp->v_tag == VT_NFS && vp->v_type != VBLK) {
2034		vm_ooffset_t sv, ev;
2035		off = off - pageno * PAGE_SIZE;
2036		sv = off + ((bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1));
2037		ev = off + (bp->b_validend & ~(DEV_BSIZE - 1));
2038		soff = max(sv, soff);
2039		eoff = min(ev, eoff);
2040	}
2041	if (eoff > soff)
2042		vm_page_set_validclean(m,
2043				       (vm_offset_t) (soff & PAGE_MASK),
2044				       (vm_offset_t) (eoff - soff));
2045}
2046
2047/*
2048 * This routine is called before a device strategy routine.
2049 * It is used to tell the VM system that paging I/O is in
2050 * progress, and treat the pages associated with the buffer
2051 * almost as being PG_BUSY.  Also the object paging_in_progress
2052 * flag is handled to make sure that the object doesn't become
2053 * inconsistant.
2054 */
2055void
2056vfs_busy_pages(struct buf * bp, int clear_modify)
2057{
2058	int i;
2059
2060	if (bp->b_flags & B_VMIO) {
2061		struct vnode *vp = bp->b_vp;
2062		vm_object_t obj = vp->v_object;
2063		vm_ooffset_t foff;
2064
2065		if (vp->v_type == VBLK)
2066			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
2067		else
2068			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
2069		vfs_setdirty(bp);
2070		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2071			vm_page_t m = bp->b_pages[i];
2072
2073			if ((bp->b_flags & B_CLUSTER) == 0) {
2074				obj->paging_in_progress++;
2075				m->busy++;
2076			}
2077			vm_page_protect(m, VM_PROT_NONE);
2078			if (clear_modify)
2079				vfs_page_set_valid(bp, foff, i, m);
2080			else if (bp->b_bcount >= PAGE_SIZE) {
2081				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
2082					bp->b_pages[i] = bogus_page;
2083					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
2084				}
2085			}
2086		}
2087	}
2088}
2089
2090/*
2091 * Tell the VM system that the pages associated with this buffer
2092 * are clean.  This is used for delayed writes where the data is
2093 * going to go to disk eventually without additional VM intevention.
2094 */
2095void
2096vfs_clean_pages(struct buf * bp)
2097{
2098	int i;
2099
2100	if (bp->b_flags & B_VMIO) {
2101		struct vnode *vp = bp->b_vp;
2102		vm_object_t obj = vp->v_object;
2103		vm_ooffset_t foff;
2104
2105		if (vp->v_type == VBLK)
2106			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
2107		else
2108			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
2109		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
2110			vm_page_t m = bp->b_pages[i];
2111
2112			vfs_page_set_valid(bp, foff, i, m);
2113		}
2114	}
2115}
2116
2117void
2118vfs_bio_clrbuf(struct buf *bp) {
2119	int i;
2120	if( bp->b_flags & B_VMIO) {
2121		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
2122			int mask;
2123			mask = 0;
2124			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
2125				mask |= (1 << (i/DEV_BSIZE));
2126			if( bp->b_pages[0]->valid != mask) {
2127				bzero(bp->b_data, bp->b_bufsize);
2128			}
2129			bp->b_pages[0]->valid = mask;
2130			bp->b_resid = 0;
2131			return;
2132		}
2133		for(i=0;i<bp->b_npages;i++) {
2134			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
2135				continue;
2136			if( bp->b_pages[i]->valid == 0) {
2137				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
2138					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
2139				}
2140			} else {
2141				int j;
2142				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
2143					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
2144						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
2145				}
2146			}
2147			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
2148		}
2149		bp->b_resid = 0;
2150	} else {
2151		clrbuf(bp);
2152	}
2153}
2154
2155/*
2156 * vm_hold_load_pages and vm_hold_unload pages get pages into
2157 * a buffers address space.  The pages are anonymous and are
2158 * not associated with a file object.
2159 */
2160void
2161vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2162{
2163	vm_offset_t pg;
2164	vm_page_t p;
2165	int index;
2166
2167	to = round_page(to);
2168	from = round_page(from);
2169	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2170
2171	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2172
2173tryagain:
2174
2175		p = vm_page_alloc(kernel_object,
2176			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
2177		    VM_ALLOC_NORMAL);
2178		if (!p) {
2179			VM_WAIT;
2180			goto tryagain;
2181		}
2182		vm_page_wire(p);
2183		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
2184		bp->b_pages[index] = p;
2185		PAGE_WAKEUP(p);
2186	}
2187	bp->b_npages = index;
2188}
2189
2190void
2191vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2192{
2193	vm_offset_t pg;
2194	vm_page_t p;
2195	int index, newnpages;
2196
2197	from = round_page(from);
2198	to = round_page(to);
2199	newnpages = index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2200
2201	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2202		p = bp->b_pages[index];
2203		if (p && (index < bp->b_npages)) {
2204#if !defined(MAX_PERF)
2205			if (p->busy) {
2206				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2207					bp->b_blkno, bp->b_lblkno);
2208			}
2209#endif
2210			bp->b_pages[index] = NULL;
2211			pmap_kremove(pg);
2212			vm_page_unwire(p);
2213			vm_page_free(p);
2214		}
2215	}
2216	bp->b_npages = newnpages;
2217}
2218
2219
2220#include "opt_ddb.h"
2221#ifdef DDB
2222#include <ddb/ddb.h>
2223
2224DB_SHOW_COMMAND(buffer, db_show_buffer)
2225{
2226	/* get args */
2227	struct buf *bp = (struct buf *)addr;
2228
2229	if (!have_addr) {
2230		db_printf("usage: show buffer <addr>\n");
2231		return;
2232	}
2233
2234	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2235		  bp->b_flags, "\20\40bounce\37cluster\36vmio\35ram\34ordered"
2236		  "\33paging\32xxx\31writeinprog\30wanted\27relbuf\26tape"
2237		  "\25read\24raw\23phys\22clusterok\21malloc\20nocache"
2238		  "\17locked\16inval\15gathered\14error\13eintr\12done\11dirty"
2239		  "\10delwri\7call\6cache\5busy\4bad\3async\2needcommit\1age");
2240	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2241		  "b_resid = %ld\nb_dev = 0x%x, b_un.b_addr = %p, "
2242		  "b_blkno = %d, b_pblkno = %d\n",
2243		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2244		  bp->b_dev, bp->b_un.b_addr, bp->b_blkno, bp->b_pblkno);
2245	if (bp->b_npages) {
2246		int i;
2247		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
2248		for (i = 0; i < bp->b_npages; i++) {
2249			vm_page_t m;
2250			m = bp->b_pages[i];
2251			db_printf("(0x%x, 0x%x, 0x%x)", m->object, m->pindex,
2252				VM_PAGE_TO_PHYS(m));
2253			if ((i + 1) < bp->b_npages)
2254				db_printf(",");
2255		}
2256		db_printf("\n");
2257	}
2258}
2259#endif /* DDB */
2260