vfs_bio.c revision 26599
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.119 1997/06/06 09:04:28 dfr Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#include "opt_bounce.h"
36
37#define VMIO
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/vmmeter.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_prot.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_pageout.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_extern.h>
54#include <vm/vm_map.h>
55#include <sys/buf.h>
56#include <sys/mount.h>
57#include <sys/malloc.h>
58#include <sys/resourcevar.h>
59#include <sys/proc.h>
60
61#include <miscfs/specfs/specdev.h>
62
63static void vfs_update __P((void));
64static struct	proc *updateproc;
65static struct kproc_desc up_kp = {
66	"update",
67	vfs_update,
68	&updateproc
69};
70SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
71
72struct buf *buf;		/* buffer header pool */
73struct swqueue bswlist;
74
75int count_lock_queue __P((void));
76static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
77		vm_offset_t to);
78static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
79		vm_offset_t to);
80static void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
81			      vm_offset_t off, vm_offset_t size,
82			      vm_page_t m);
83static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
84			       int pageno, vm_page_t m);
85static void vfs_clean_pages(struct buf * bp);
86static void vfs_setdirty(struct buf *bp);
87static void vfs_vmio_release(struct buf *bp);
88
89int needsbuffer;
90
91/*
92 * Internal update daemon, process 3
93 *	The variable vfs_update_wakeup allows for internal syncs.
94 */
95int vfs_update_wakeup;
96
97
98/*
99 * buffers base kva
100 */
101
102/*
103 * bogus page -- for I/O to/from partially complete buffers
104 * this is a temporary solution to the problem, but it is not
105 * really that bad.  it would be better to split the buffer
106 * for input in the case of buffers partially already in memory,
107 * but the code is intricate enough already.
108 */
109vm_page_t bogus_page;
110static vm_offset_t bogus_offset;
111
112static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
113	bufmallocspace, maxbufmallocspace;
114
115static struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
116static struct bqueues bufqueues[BUFFER_QUEUES];
117
118extern int vm_swap_size;
119
120#define BUF_MAXUSE 16
121
122/*
123 * Initialize buffer headers and related structures.
124 */
125void
126bufinit()
127{
128	struct buf *bp;
129	int i;
130
131	TAILQ_INIT(&bswlist);
132	LIST_INIT(&invalhash);
133
134	/* first, make a null hash table */
135	for (i = 0; i < BUFHSZ; i++)
136		LIST_INIT(&bufhashtbl[i]);
137
138	/* next, make a null set of free lists */
139	for (i = 0; i < BUFFER_QUEUES; i++)
140		TAILQ_INIT(&bufqueues[i]);
141
142	/* finally, initialize each buffer header and stick on empty q */
143	for (i = 0; i < nbuf; i++) {
144		bp = &buf[i];
145		bzero(bp, sizeof *bp);
146		bp->b_flags = B_INVAL;	/* we're just an empty header */
147		bp->b_dev = NODEV;
148		bp->b_rcred = NOCRED;
149		bp->b_wcred = NOCRED;
150		bp->b_qindex = QUEUE_EMPTY;
151		bp->b_vnbufs.le_next = NOLIST;
152		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
153		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
154	}
155/*
156 * maxbufspace is currently calculated to support all filesystem blocks
157 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
158 * cache is still the same as it would be for 8K filesystems.  This
159 * keeps the size of the buffer cache "in check" for big block filesystems.
160 */
161	maxbufspace = (nbuf + 8) * DFLTBSIZE;
162/*
163 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
164 */
165	maxvmiobufspace = 2 * maxbufspace / 3;
166/*
167 * Limit the amount of malloc memory since it is wired permanently into
168 * the kernel space.  Even though this is accounted for in the buffer
169 * allocation, we don't want the malloced region to grow uncontrolled.
170 * The malloc scheme improves memory utilization significantly on average
171 * (small) directories.
172 */
173	maxbufmallocspace = maxbufspace / 20;
174
175	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
176	bogus_page = vm_page_alloc(kernel_object,
177			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
178			VM_ALLOC_NORMAL);
179
180}
181
182/*
183 * Free the kva allocation for a buffer
184 * Must be called only at splbio or higher,
185 *  as this is the only locking for buffer_map.
186 */
187static void
188bfreekva(struct buf * bp)
189{
190	if (bp->b_kvasize == 0)
191		return;
192
193	vm_map_delete(buffer_map,
194		(vm_offset_t) bp->b_kvabase,
195		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
196
197	bp->b_kvasize = 0;
198
199}
200
201/*
202 * remove the buffer from the appropriate free list
203 */
204void
205bremfree(struct buf * bp)
206{
207	int s = splbio();
208
209	if (bp->b_qindex != QUEUE_NONE) {
210		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
211		bp->b_qindex = QUEUE_NONE;
212	} else {
213		panic("bremfree: removing a buffer when not on a queue");
214	}
215	splx(s);
216}
217
218/*
219 * Get a buffer with the specified data.  Look in the cache first.
220 */
221int
222bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
223    struct buf ** bpp)
224{
225	struct buf *bp;
226
227	bp = getblk(vp, blkno, size, 0, 0);
228	*bpp = bp;
229
230	/* if not found in cache, do some I/O */
231	if ((bp->b_flags & B_CACHE) == 0) {
232		if (curproc != NULL)
233			curproc->p_stats->p_ru.ru_inblock++;
234		bp->b_flags |= B_READ;
235		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
236		if (bp->b_rcred == NOCRED) {
237			if (cred != NOCRED)
238				crhold(cred);
239			bp->b_rcred = cred;
240		}
241		vfs_busy_pages(bp, 0);
242		VOP_STRATEGY(bp);
243		return (biowait(bp));
244	}
245	return (0);
246}
247
248/*
249 * Operates like bread, but also starts asynchronous I/O on
250 * read-ahead blocks.
251 */
252int
253breadn(struct vnode * vp, daddr_t blkno, int size,
254    daddr_t * rablkno, int *rabsize,
255    int cnt, struct ucred * cred, struct buf ** bpp)
256{
257	struct buf *bp, *rabp;
258	int i;
259	int rv = 0, readwait = 0;
260
261	*bpp = bp = getblk(vp, blkno, size, 0, 0);
262
263	/* if not found in cache, do some I/O */
264	if ((bp->b_flags & B_CACHE) == 0) {
265		if (curproc != NULL)
266			curproc->p_stats->p_ru.ru_inblock++;
267		bp->b_flags |= B_READ;
268		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
269		if (bp->b_rcred == NOCRED) {
270			if (cred != NOCRED)
271				crhold(cred);
272			bp->b_rcred = cred;
273		}
274		vfs_busy_pages(bp, 0);
275		VOP_STRATEGY(bp);
276		++readwait;
277	}
278	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
279		if (inmem(vp, *rablkno))
280			continue;
281		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
282
283		if ((rabp->b_flags & B_CACHE) == 0) {
284			if (curproc != NULL)
285				curproc->p_stats->p_ru.ru_inblock++;
286			rabp->b_flags |= B_READ | B_ASYNC;
287			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
288			if (rabp->b_rcred == NOCRED) {
289				if (cred != NOCRED)
290					crhold(cred);
291				rabp->b_rcred = cred;
292			}
293			vfs_busy_pages(rabp, 0);
294			VOP_STRATEGY(rabp);
295		} else {
296			brelse(rabp);
297		}
298	}
299
300	if (readwait) {
301		rv = biowait(bp);
302	}
303	return (rv);
304}
305
306/*
307 * Write, release buffer on completion.  (Done by iodone
308 * if async.)
309 */
310int
311bwrite(struct buf * bp)
312{
313	int oldflags = bp->b_flags;
314
315	if (bp->b_flags & B_INVAL) {
316		brelse(bp);
317		return (0);
318	}
319	if (!(bp->b_flags & B_BUSY))
320		panic("bwrite: buffer is not busy???");
321
322	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
323	bp->b_flags |= B_WRITEINPROG;
324
325	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
326		reassignbuf(bp, bp->b_vp);
327	}
328
329	bp->b_vp->v_numoutput++;
330	vfs_busy_pages(bp, 1);
331	if (curproc != NULL)
332		curproc->p_stats->p_ru.ru_oublock++;
333	VOP_STRATEGY(bp);
334
335	/*
336	 * Handle ordered writes here.
337	 * If the write was originally flagged as ordered,
338	 * then we check to see if it was converted to async.
339	 * If it was converted to async, and is done now, then
340	 * we release the buffer.  Otherwise we clear the
341	 * ordered flag because it is not needed anymore.
342	 *
343 	 * Note that biodone has been modified so that it does
344	 * not release ordered buffers.  This allows us to have
345	 * a chance to determine whether or not the driver
346	 * has set the async flag in the strategy routine.  Otherwise
347	 * if biodone was not modified, then the buffer may have been
348	 * reused before we have had a chance to check the flag.
349	 */
350
351	if ((oldflags & B_ORDERED) == B_ORDERED) {
352		int s;
353		s = splbio();
354		if (bp->b_flags & B_ASYNC)  {
355			if ((bp->b_flags & B_DONE)) {
356				if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
357					brelse(bp);
358				else
359					bqrelse(bp);
360			}
361			splx(s);
362			return (0);
363		} else {
364			bp->b_flags &= ~B_ORDERED;
365		}
366		splx(s);
367	}
368
369	if ((oldflags & B_ASYNC) == 0) {
370		int rtval = biowait(bp);
371
372		if (oldflags & B_DELWRI) {
373			reassignbuf(bp, bp->b_vp);
374		}
375		brelse(bp);
376		return (rtval);
377	}
378	return (0);
379}
380
381int
382vn_bwrite(ap)
383	struct vop_bwrite_args *ap;
384{
385	return (bwrite(ap->a_bp));
386}
387
388/*
389 * Delayed write. (Buffer is marked dirty).
390 */
391void
392bdwrite(struct buf * bp)
393{
394
395	if ((bp->b_flags & B_BUSY) == 0) {
396		panic("bdwrite: buffer is not busy");
397	}
398	if (bp->b_flags & B_INVAL) {
399		brelse(bp);
400		return;
401	}
402	if (bp->b_flags & B_TAPE) {
403		bawrite(bp);
404		return;
405	}
406	bp->b_flags &= ~(B_READ|B_RELBUF);
407	if ((bp->b_flags & B_DELWRI) == 0) {
408		bp->b_flags |= B_DONE | B_DELWRI;
409		reassignbuf(bp, bp->b_vp);
410	}
411
412	/*
413	 * This bmap keeps the system from needing to do the bmap later,
414	 * perhaps when the system is attempting to do a sync.  Since it
415	 * is likely that the indirect block -- or whatever other datastructure
416	 * that the filesystem needs is still in memory now, it is a good
417	 * thing to do this.  Note also, that if the pageout daemon is
418	 * requesting a sync -- there might not be enough memory to do
419	 * the bmap then...  So, this is important to do.
420	 */
421	if( bp->b_lblkno == bp->b_blkno) {
422		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
423	}
424
425	/*
426	 * Set the *dirty* buffer range based upon the VM system dirty pages.
427	 */
428	vfs_setdirty(bp);
429
430	/*
431	 * We need to do this here to satisfy the vnode_pager and the
432	 * pageout daemon, so that it thinks that the pages have been
433	 * "cleaned".  Note that since the pages are in a delayed write
434	 * buffer -- the VFS layer "will" see that the pages get written
435	 * out on the next sync, or perhaps the cluster will be completed.
436	 */
437	vfs_clean_pages(bp);
438	bqrelse(bp);
439	return;
440}
441
442/*
443 * Asynchronous write.
444 * Start output on a buffer, but do not wait for it to complete.
445 * The buffer is released when the output completes.
446 */
447void
448bawrite(struct buf * bp)
449{
450	bp->b_flags |= B_ASYNC;
451	(void) VOP_BWRITE(bp);
452}
453
454/*
455 * Ordered write.
456 * Start output on a buffer, but only wait for it to complete if the
457 * output device cannot guarantee ordering in some other way.  Devices
458 * that can perform asynchronous ordered writes will set the B_ASYNC
459 * flag in their strategy routine.
460 * The buffer is released when the output completes.
461 */
462int
463bowrite(struct buf * bp)
464{
465	bp->b_flags |= B_ORDERED;
466	return (VOP_BWRITE(bp));
467}
468
469/*
470 * Release a buffer.
471 */
472void
473brelse(struct buf * bp)
474{
475	int s;
476
477	if (bp->b_flags & B_CLUSTER) {
478		relpbuf(bp);
479		return;
480	}
481	/* anyone need a "free" block? */
482	s = splbio();
483
484	/* anyone need this block? */
485	if (bp->b_flags & B_WANTED) {
486		bp->b_flags &= ~(B_WANTED | B_AGE);
487		wakeup(bp);
488	}
489
490	if (bp->b_flags & B_LOCKED)
491		bp->b_flags &= ~B_ERROR;
492
493	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
494	    (bp->b_bufsize <= 0)) {
495		bp->b_flags |= B_INVAL;
496		bp->b_flags &= ~(B_DELWRI | B_CACHE);
497		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
498			if (bp->b_bufsize)
499				allocbuf(bp, 0);
500			brelvp(bp);
501		}
502	}
503
504	/*
505	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
506	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
507	 * but the VM object is kept around.  The B_NOCACHE flag is used to
508	 * invalidate the pages in the VM object.
509	 *
510	 * If the buffer is a partially filled NFS buffer, keep it
511	 * since invalidating it now will lose informatio.  The valid
512	 * flags in the vm_pages have only DEV_BSIZE resolution but
513	 * the b_validoff, b_validend fields have byte resolution.
514	 * This can avoid unnecessary re-reads of the buffer.
515	 * XXX this seems to cause performance problems.
516	 */
517	if ((bp->b_flags & B_VMIO)
518	    && !(bp->b_vp->v_tag == VT_NFS &&
519		 (bp->b_flags & B_DELWRI) != 0)
520#ifdef notdef
521	    && (bp->b_vp->v_tag != VT_NFS
522		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
523		|| bp->b_validend == 0
524		|| (bp->b_validoff == 0
525		    && bp->b_validend == bp->b_bufsize))
526#endif
527	    ) {
528		vm_ooffset_t foff;
529		vm_object_t obj;
530		int i, resid;
531		vm_page_t m;
532		struct vnode *vp;
533		int iototal = bp->b_bufsize;
534
535		vp = bp->b_vp;
536		if (!vp)
537			panic("brelse: missing vp");
538
539		if (bp->b_npages) {
540			vm_pindex_t poff;
541			obj = (vm_object_t) vp->v_object;
542			if (vp->v_type == VBLK)
543				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
544			else
545				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
546			poff = OFF_TO_IDX(foff);
547			for (i = 0; i < bp->b_npages; i++) {
548				m = bp->b_pages[i];
549				if (m == bogus_page) {
550					m = vm_page_lookup(obj, poff + i);
551					if (!m) {
552						panic("brelse: page missing\n");
553					}
554					bp->b_pages[i] = m;
555					pmap_qenter(trunc_page(bp->b_data),
556						bp->b_pages, bp->b_npages);
557				}
558				resid = IDX_TO_OFF(m->pindex+1) - foff;
559				if (resid > iototal)
560					resid = iototal;
561				if (resid > 0) {
562					/*
563					 * Don't invalidate the page if the local machine has already
564					 * modified it.  This is the lesser of two evils, and should
565					 * be fixed.
566					 */
567					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
568						vm_page_test_dirty(m);
569						if (m->dirty == 0) {
570							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
571							if (m->valid == 0)
572								vm_page_protect(m, VM_PROT_NONE);
573						}
574					}
575					if (resid >= PAGE_SIZE) {
576						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
577							bp->b_flags |= B_INVAL;
578						}
579					} else {
580						if (!vm_page_is_valid(m,
581							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
582							bp->b_flags |= B_INVAL;
583						}
584					}
585				}
586				foff += resid;
587				iototal -= resid;
588			}
589		}
590		if (bp->b_flags & (B_INVAL | B_RELBUF))
591			vfs_vmio_release(bp);
592	}
593	if (bp->b_qindex != QUEUE_NONE)
594		panic("brelse: free buffer onto another queue???");
595
596	/* enqueue */
597	/* buffers with no memory */
598	if (bp->b_bufsize == 0) {
599		bp->b_qindex = QUEUE_EMPTY;
600		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
601		LIST_REMOVE(bp, b_hash);
602		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
603		bp->b_dev = NODEV;
604		/*
605		 * Get rid of the kva allocation *now*
606		 */
607		bfreekva(bp);
608		if (needsbuffer) {
609			wakeup(&needsbuffer);
610			needsbuffer=0;
611		}
612		/* buffers with junk contents */
613	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
614		bp->b_qindex = QUEUE_AGE;
615		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
616		LIST_REMOVE(bp, b_hash);
617		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
618		bp->b_dev = NODEV;
619		if (needsbuffer) {
620			wakeup(&needsbuffer);
621			needsbuffer=0;
622		}
623		/* buffers that are locked */
624	} else if (bp->b_flags & B_LOCKED) {
625		bp->b_qindex = QUEUE_LOCKED;
626		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
627		/* buffers with stale but valid contents */
628	} else if (bp->b_flags & B_AGE) {
629		bp->b_qindex = QUEUE_AGE;
630		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
631		if (needsbuffer) {
632			wakeup(&needsbuffer);
633			needsbuffer=0;
634		}
635		/* buffers with valid and quite potentially reuseable contents */
636	} else {
637		bp->b_qindex = QUEUE_LRU;
638		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
639		if (needsbuffer) {
640			wakeup(&needsbuffer);
641			needsbuffer=0;
642		}
643	}
644
645	/* unlock */
646	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
647				B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
648	splx(s);
649}
650
651/*
652 * Release a buffer.
653 */
654void
655bqrelse(struct buf * bp)
656{
657	int s;
658
659	s = splbio();
660
661
662	/* anyone need this block? */
663	if (bp->b_flags & B_WANTED) {
664		bp->b_flags &= ~(B_WANTED | B_AGE);
665		wakeup(bp);
666	}
667
668	if (bp->b_qindex != QUEUE_NONE)
669		panic("bqrelse: free buffer onto another queue???");
670
671	if (bp->b_flags & B_LOCKED) {
672		bp->b_flags &= ~B_ERROR;
673		bp->b_qindex = QUEUE_LOCKED;
674		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
675		/* buffers with stale but valid contents */
676	} else {
677		bp->b_qindex = QUEUE_LRU;
678		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
679		if (needsbuffer) {
680			wakeup(&needsbuffer);
681			needsbuffer=0;
682		}
683	}
684
685	/* unlock */
686	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
687		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
688	splx(s);
689}
690
691static void
692vfs_vmio_release(bp)
693	struct buf *bp;
694{
695	int i;
696	vm_page_t m;
697
698	for (i = 0; i < bp->b_npages; i++) {
699		m = bp->b_pages[i];
700		bp->b_pages[i] = NULL;
701		vm_page_unwire(m);
702		/*
703		 * We don't mess with busy pages, it is
704		 * the responsibility of the process that
705		 * busied the pages to deal with them.
706		 */
707		if ((m->flags & PG_BUSY) || (m->busy != 0))
708			continue;
709
710		if (m->wire_count == 0) {
711
712			if (m->flags & PG_WANTED) {
713				m->flags &= ~PG_WANTED;
714				wakeup(m);
715			}
716
717			/*
718			 * If this is an async free -- we cannot place
719			 * pages onto the cache queue.  If it is an
720			 * async free, then we don't modify any queues.
721			 * This is probably in error (for perf reasons),
722			 * and we will eventually need to build
723			 * a more complete infrastructure to support I/O
724			 * rundown.
725			 */
726			if ((bp->b_flags & B_ASYNC) == 0) {
727
728			/*
729			 * In the case of sync buffer frees, we can do pretty much
730			 * anything to any of the memory queues.  Specifically,
731			 * the cache queue is okay to be modified.
732			 */
733				if (m->valid) {
734					if(m->dirty == 0)
735						vm_page_test_dirty(m);
736					/*
737					 * this keeps pressure off of the process memory
738					 */
739					if (m->dirty == 0 && m->hold_count == 0)
740						vm_page_cache(m);
741					else
742						vm_page_deactivate(m);
743				} else if (m->hold_count == 0) {
744					vm_page_protect(m, VM_PROT_NONE);
745					vm_page_free(m);
746				}
747			} else {
748				/*
749				 * If async, then at least we clear the
750				 * act_count.
751				 */
752				m->act_count = 0;
753			}
754		}
755	}
756	bufspace -= bp->b_bufsize;
757	vmiospace -= bp->b_bufsize;
758	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
759	bp->b_npages = 0;
760	bp->b_bufsize = 0;
761	bp->b_flags &= ~B_VMIO;
762	if (bp->b_vp)
763		brelvp(bp);
764}
765
766/*
767 * Check to see if a block is currently memory resident.
768 */
769struct buf *
770gbincore(struct vnode * vp, daddr_t blkno)
771{
772	struct buf *bp;
773	struct bufhashhdr *bh;
774
775	bh = BUFHASH(vp, blkno);
776	bp = bh->lh_first;
777
778	/* Search hash chain */
779	while (bp != NULL) {
780		/* hit */
781		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
782		    (bp->b_flags & B_INVAL) == 0) {
783			break;
784		}
785		bp = bp->b_hash.le_next;
786	}
787	return (bp);
788}
789
790/*
791 * this routine implements clustered async writes for
792 * clearing out B_DELWRI buffers...  This is much better
793 * than the old way of writing only one buffer at a time.
794 */
795int
796vfs_bio_awrite(struct buf * bp)
797{
798	int i;
799	daddr_t lblkno = bp->b_lblkno;
800	struct vnode *vp = bp->b_vp;
801	int s;
802	int ncl;
803	struct buf *bpa;
804	int nwritten;
805
806	s = splbio();
807	/*
808	 * right now we support clustered writing only to regular files
809	 */
810	if ((vp->v_type == VREG) &&
811	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
812	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
813		int size;
814		int maxcl;
815
816		size = vp->v_mount->mnt_stat.f_iosize;
817		maxcl = MAXPHYS / size;
818
819		for (i = 1; i < maxcl; i++) {
820			if ((bpa = gbincore(vp, lblkno + i)) &&
821			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
822			    (B_DELWRI | B_CLUSTEROK)) &&
823			    (bpa->b_bufsize == size)) {
824				if ((bpa->b_blkno == bpa->b_lblkno) ||
825				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
826					break;
827			} else {
828				break;
829			}
830		}
831		ncl = i;
832		/*
833		 * this is a possible cluster write
834		 */
835		if (ncl != 1) {
836			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
837			splx(s);
838			return nwritten;
839		}
840	}
841	bremfree(bp);
842	splx(s);
843	/*
844	 * default (old) behavior, writing out only one block
845	 */
846	bp->b_flags |= B_BUSY | B_ASYNC;
847	nwritten = bp->b_bufsize;
848	(void) VOP_BWRITE(bp);
849	return nwritten;
850}
851
852
853/*
854 * Find a buffer header which is available for use.
855 */
856static struct buf *
857getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
858{
859	struct buf *bp;
860	int nbyteswritten = 0;
861	vm_offset_t addr;
862
863start:
864	if (bufspace >= maxbufspace)
865		goto trytofreespace;
866
867	/* can we constitute a new buffer? */
868	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
869		if (bp->b_qindex != QUEUE_EMPTY)
870			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
871			    bp->b_qindex);
872		bp->b_flags |= B_BUSY;
873		bremfree(bp);
874		goto fillbuf;
875	}
876trytofreespace:
877	/*
878	 * We keep the file I/O from hogging metadata I/O
879	 * This is desirable because file data is cached in the
880	 * VM/Buffer cache even if a buffer is freed.
881	 */
882	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
883		if (bp->b_qindex != QUEUE_AGE)
884			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
885			    bp->b_qindex);
886	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
887		if (bp->b_qindex != QUEUE_LRU)
888			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
889			    bp->b_qindex);
890	}
891	if (!bp) {
892		/* wait for a free buffer of any kind */
893		needsbuffer = 1;
894		do
895			tsleep(&needsbuffer, (PRIBIO + 1) | slpflag, "newbuf",
896			    slptimeo);
897		while (needsbuffer);
898		return (0);
899	}
900
901#if defined(DIAGNOSTIC)
902	if (bp->b_flags & B_BUSY) {
903		panic("getnewbuf: busy buffer on free list\n");
904	}
905#endif
906
907	/*
908	 * We are fairly aggressive about freeing VMIO buffers, but since
909	 * the buffering is intact without buffer headers, there is not
910	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
911	 */
912	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
913		if ((bp->b_flags & B_VMIO) == 0 ||
914			(vmiospace < maxvmiobufspace)) {
915			--bp->b_usecount;
916			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
917			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
918				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
919				goto start;
920			}
921			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
922		}
923	}
924
925	/* if we are a delayed write, convert to an async write */
926	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
927		nbyteswritten += vfs_bio_awrite(bp);
928		if (!slpflag && !slptimeo) {
929			return (0);
930		}
931		goto start;
932	}
933
934	if (bp->b_flags & B_WANTED) {
935		bp->b_flags &= ~B_WANTED;
936		wakeup(bp);
937	}
938	bremfree(bp);
939	bp->b_flags |= B_BUSY;
940
941	if (bp->b_flags & B_VMIO) {
942		bp->b_flags &= ~B_ASYNC;
943		vfs_vmio_release(bp);
944	}
945
946	if (bp->b_vp)
947		brelvp(bp);
948
949fillbuf:
950	/* we are not free, nor do we contain interesting data */
951	if (bp->b_rcred != NOCRED) {
952		crfree(bp->b_rcred);
953		bp->b_rcred = NOCRED;
954	}
955	if (bp->b_wcred != NOCRED) {
956		crfree(bp->b_wcred);
957		bp->b_wcred = NOCRED;
958	}
959
960	LIST_REMOVE(bp, b_hash);
961	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
962	if (bp->b_bufsize) {
963		allocbuf(bp, 0);
964	}
965	bp->b_flags = B_BUSY;
966	bp->b_dev = NODEV;
967	bp->b_vp = NULL;
968	bp->b_blkno = bp->b_lblkno = 0;
969	bp->b_iodone = 0;
970	bp->b_error = 0;
971	bp->b_resid = 0;
972	bp->b_bcount = 0;
973	bp->b_npages = 0;
974	bp->b_dirtyoff = bp->b_dirtyend = 0;
975	bp->b_validoff = bp->b_validend = 0;
976	bp->b_usecount = 4;
977
978	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
979
980	/*
981	 * we assume that buffer_map is not at address 0
982	 */
983	addr = 0;
984	if (maxsize != bp->b_kvasize) {
985		bfreekva(bp);
986
987		/*
988		 * See if we have buffer kva space
989		 */
990		if (vm_map_findspace(buffer_map,
991			vm_map_min(buffer_map), maxsize, &addr)) {
992			bp->b_flags |= B_INVAL;
993			brelse(bp);
994			goto trytofreespace;
995		}
996	}
997
998	/*
999	 * See if we are below are allocated minimum
1000	 */
1001	if (bufspace >= (maxbufspace + nbyteswritten)) {
1002		bp->b_flags |= B_INVAL;
1003		brelse(bp);
1004		goto trytofreespace;
1005	}
1006
1007	/*
1008	 * create a map entry for the buffer -- in essence
1009	 * reserving the kva space.
1010	 */
1011	if (addr) {
1012		vm_map_insert(buffer_map, NULL, 0,
1013			addr, addr + maxsize,
1014			VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1015
1016		bp->b_kvabase = (caddr_t) addr;
1017		bp->b_kvasize = maxsize;
1018	}
1019	bp->b_data = bp->b_kvabase;
1020
1021	return (bp);
1022}
1023
1024/*
1025 * Check to see if a block is currently memory resident.
1026 */
1027struct buf *
1028incore(struct vnode * vp, daddr_t blkno)
1029{
1030	struct buf *bp;
1031
1032	int s = splbio();
1033	bp = gbincore(vp, blkno);
1034	splx(s);
1035	return (bp);
1036}
1037
1038/*
1039 * Returns true if no I/O is needed to access the
1040 * associated VM object.  This is like incore except
1041 * it also hunts around in the VM system for the data.
1042 */
1043
1044int
1045inmem(struct vnode * vp, daddr_t blkno)
1046{
1047	vm_object_t obj;
1048	vm_offset_t toff, tinc;
1049	vm_page_t m;
1050	vm_ooffset_t off;
1051
1052	if (incore(vp, blkno))
1053		return 1;
1054	if (vp->v_mount == NULL)
1055		return 0;
1056	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
1057		return 0;
1058
1059	obj = vp->v_object;
1060	tinc = PAGE_SIZE;
1061	if (tinc > vp->v_mount->mnt_stat.f_iosize)
1062		tinc = vp->v_mount->mnt_stat.f_iosize;
1063	off = blkno * vp->v_mount->mnt_stat.f_iosize;
1064
1065	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1066
1067		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1068		if (!m)
1069			return 0;
1070		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
1071			return 0;
1072	}
1073	return 1;
1074}
1075
1076/*
1077 * now we set the dirty range for the buffer --
1078 * for NFS -- if the file is mapped and pages have
1079 * been written to, let it know.  We want the
1080 * entire range of the buffer to be marked dirty if
1081 * any of the pages have been written to for consistancy
1082 * with the b_validoff, b_validend set in the nfs write
1083 * code, and used by the nfs read code.
1084 */
1085static void
1086vfs_setdirty(struct buf *bp) {
1087	int i;
1088	vm_object_t object;
1089	vm_offset_t boffset, offset;
1090	/*
1091	 * We qualify the scan for modified pages on whether the
1092	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1093	 * is not cleared simply by protecting pages off.
1094	 */
1095	if ((bp->b_flags & B_VMIO) &&
1096		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1097		/*
1098		 * test the pages to see if they have been modified directly
1099		 * by users through the VM system.
1100		 */
1101		for (i = 0; i < bp->b_npages; i++)
1102			vm_page_test_dirty(bp->b_pages[i]);
1103
1104		/*
1105		 * scan forwards for the first page modified
1106		 */
1107		for (i = 0; i < bp->b_npages; i++) {
1108			if (bp->b_pages[i]->dirty) {
1109				break;
1110			}
1111		}
1112		boffset = (i << PAGE_SHIFT);
1113		if (boffset < bp->b_dirtyoff) {
1114			bp->b_dirtyoff = boffset;
1115		}
1116
1117		/*
1118		 * scan backwards for the last page modified
1119		 */
1120		for (i = bp->b_npages - 1; i >= 0; --i) {
1121			if (bp->b_pages[i]->dirty) {
1122				break;
1123			}
1124		}
1125		boffset = (i + 1);
1126		offset = boffset + bp->b_pages[0]->pindex;
1127		if (offset >= object->size)
1128			boffset = object->size - bp->b_pages[0]->pindex;
1129		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
1130			bp->b_dirtyend = (boffset << PAGE_SHIFT);
1131	}
1132}
1133
1134/*
1135 * Get a block given a specified block and offset into a file/device.
1136 */
1137struct buf *
1138getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1139{
1140	struct buf *bp;
1141	int s;
1142	struct bufhashhdr *bh;
1143	int maxsize;
1144
1145	if (vp->v_mount) {
1146		maxsize = vp->v_mount->mnt_stat.f_iosize;
1147		/*
1148		 * This happens on mount points.
1149		 */
1150		if (maxsize < size)
1151			maxsize = size;
1152	} else {
1153		maxsize = size;
1154	}
1155
1156	if (size > MAXBSIZE)
1157		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1158
1159	s = splbio();
1160loop:
1161	if ((bp = gbincore(vp, blkno))) {
1162		if (bp->b_flags & B_BUSY) {
1163			bp->b_flags |= B_WANTED;
1164			if (bp->b_usecount < BUF_MAXUSE)
1165				++bp->b_usecount;
1166			if (!tsleep(bp,
1167				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
1168				goto loop;
1169
1170			splx(s);
1171			return (struct buf *) NULL;
1172		}
1173		bp->b_flags |= B_BUSY | B_CACHE;
1174		bremfree(bp);
1175
1176		/*
1177		 * check for size inconsistancies (note that they shouldn't happen
1178		 * but do when filesystems don't handle the size changes correctly.)
1179		 * We are conservative on metadata and don't just extend the buffer
1180		 * but write and re-constitute it.
1181		 */
1182
1183		if (bp->b_bcount != size) {
1184			if ((bp->b_flags & B_VMIO) && (size <= bp->b_kvasize)) {
1185				allocbuf(bp, size);
1186			} else {
1187				bp->b_flags |= B_NOCACHE;
1188				VOP_BWRITE(bp);
1189				goto loop;
1190			}
1191		}
1192
1193		if (bp->b_usecount < BUF_MAXUSE)
1194			++bp->b_usecount;
1195		splx(s);
1196		return (bp);
1197	} else {
1198		vm_object_t obj;
1199
1200		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == 0) {
1201			if (slpflag || slptimeo) {
1202				splx(s);
1203				return NULL;
1204			}
1205			goto loop;
1206		}
1207
1208		/*
1209		 * This code is used to make sure that a buffer is not
1210		 * created while the getnewbuf routine is blocked.
1211		 * Normally the vnode is locked so this isn't a problem.
1212		 * VBLK type I/O requests, however, don't lock the vnode.
1213		 */
1214		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1215			bp->b_flags |= B_INVAL;
1216			brelse(bp);
1217			goto loop;
1218		}
1219
1220		/*
1221		 * Insert the buffer into the hash, so that it can
1222		 * be found by incore.
1223		 */
1224		bp->b_blkno = bp->b_lblkno = blkno;
1225		bgetvp(vp, bp);
1226		LIST_REMOVE(bp, b_hash);
1227		bh = BUFHASH(vp, blkno);
1228		LIST_INSERT_HEAD(bh, bp, b_hash);
1229
1230		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1231			bp->b_flags |= (B_VMIO | B_CACHE);
1232#if defined(VFS_BIO_DEBUG)
1233			if (vp->v_type != VREG && vp->v_type != VBLK)
1234				printf("getblk: vmioing file type %d???\n", vp->v_type);
1235#endif
1236		} else {
1237			bp->b_flags &= ~B_VMIO;
1238		}
1239		splx(s);
1240
1241		allocbuf(bp, size);
1242#ifdef	PC98
1243		/*
1244		 * 1024byte/sector support
1245		 */
1246#define B_XXX2 0x8000000
1247		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1248#endif
1249		return (bp);
1250	}
1251}
1252
1253/*
1254 * Get an empty, disassociated buffer of given size.
1255 */
1256struct buf *
1257geteblk(int size)
1258{
1259	struct buf *bp;
1260	int s;
1261
1262	s = splbio();
1263	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
1264	splx(s);
1265	allocbuf(bp, size);
1266	bp->b_flags |= B_INVAL;
1267	return (bp);
1268}
1269
1270
1271/*
1272 * This code constitutes the buffer memory from either anonymous system
1273 * memory (in the case of non-VMIO operations) or from an associated
1274 * VM object (in the case of VMIO operations).
1275 *
1276 * Note that this code is tricky, and has many complications to resolve
1277 * deadlock or inconsistant data situations.  Tread lightly!!!
1278 *
1279 * Modify the length of a buffer's underlying buffer storage without
1280 * destroying information (unless, of course the buffer is shrinking).
1281 */
1282int
1283allocbuf(struct buf * bp, int size)
1284{
1285
1286	int s;
1287	int newbsize, mbsize;
1288	int i;
1289
1290	if (!(bp->b_flags & B_BUSY))
1291		panic("allocbuf: buffer not busy");
1292
1293	if (bp->b_kvasize < size)
1294		panic("allocbuf: buffer too small");
1295
1296	if ((bp->b_flags & B_VMIO) == 0) {
1297		caddr_t origbuf;
1298		int origbufsize;
1299		/*
1300		 * Just get anonymous memory from the kernel
1301		 */
1302		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1303#if !defined(NO_B_MALLOC)
1304		if (bp->b_flags & B_MALLOC)
1305			newbsize = mbsize;
1306		else
1307#endif
1308			newbsize = round_page(size);
1309
1310		if (newbsize < bp->b_bufsize) {
1311#if !defined(NO_B_MALLOC)
1312			/*
1313			 * malloced buffers are not shrunk
1314			 */
1315			if (bp->b_flags & B_MALLOC) {
1316				if (newbsize) {
1317					bp->b_bcount = size;
1318				} else {
1319					free(bp->b_data, M_BIOBUF);
1320					bufspace -= bp->b_bufsize;
1321					bufmallocspace -= bp->b_bufsize;
1322					bp->b_data = bp->b_kvabase;
1323					bp->b_bufsize = 0;
1324					bp->b_bcount = 0;
1325					bp->b_flags &= ~B_MALLOC;
1326				}
1327				return 1;
1328			}
1329#endif
1330			vm_hold_free_pages(
1331			    bp,
1332			    (vm_offset_t) bp->b_data + newbsize,
1333			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1334		} else if (newbsize > bp->b_bufsize) {
1335#if !defined(NO_B_MALLOC)
1336			/*
1337			 * We only use malloced memory on the first allocation.
1338			 * and revert to page-allocated memory when the buffer grows.
1339			 */
1340			if ( (bufmallocspace < maxbufmallocspace) &&
1341				(bp->b_bufsize == 0) &&
1342				(mbsize <= PAGE_SIZE/2)) {
1343
1344				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1345				bp->b_bufsize = mbsize;
1346				bp->b_bcount = size;
1347				bp->b_flags |= B_MALLOC;
1348				bufspace += mbsize;
1349				bufmallocspace += mbsize;
1350				return 1;
1351			}
1352#endif
1353			origbuf = NULL;
1354			origbufsize = 0;
1355#if !defined(NO_B_MALLOC)
1356			/*
1357			 * If the buffer is growing on it's other-than-first allocation,
1358			 * then we revert to the page-allocation scheme.
1359			 */
1360			if (bp->b_flags & B_MALLOC) {
1361				origbuf = bp->b_data;
1362				origbufsize = bp->b_bufsize;
1363				bp->b_data = bp->b_kvabase;
1364				bufspace -= bp->b_bufsize;
1365				bufmallocspace -= bp->b_bufsize;
1366				bp->b_bufsize = 0;
1367				bp->b_flags &= ~B_MALLOC;
1368				newbsize = round_page(newbsize);
1369			}
1370#endif
1371			vm_hold_load_pages(
1372			    bp,
1373			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1374			    (vm_offset_t) bp->b_data + newbsize);
1375#if !defined(NO_B_MALLOC)
1376			if (origbuf) {
1377				bcopy(origbuf, bp->b_data, origbufsize);
1378				free(origbuf, M_BIOBUF);
1379			}
1380#endif
1381		}
1382	} else {
1383		vm_page_t m;
1384		int desiredpages;
1385
1386		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1387		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1388
1389#if !defined(NO_B_MALLOC)
1390		if (bp->b_flags & B_MALLOC)
1391			panic("allocbuf: VMIO buffer can't be malloced");
1392#endif
1393
1394		if (newbsize < bp->b_bufsize) {
1395			if (desiredpages < bp->b_npages) {
1396				for (i = desiredpages; i < bp->b_npages; i++) {
1397					/*
1398					 * the page is not freed here -- it
1399					 * is the responsibility of vnode_pager_setsize
1400					 */
1401					m = bp->b_pages[i];
1402#if defined(DIAGNOSTIC)
1403					if (m == bogus_page)
1404						panic("allocbuf: bogus page found");
1405#endif
1406					s = splvm();
1407					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1408						m->flags |= PG_WANTED;
1409						tsleep(m, PVM, "biodep", 0);
1410					}
1411					splx(s);
1412
1413					bp->b_pages[i] = NULL;
1414					vm_page_unwire(m);
1415				}
1416				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1417				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1418				bp->b_npages = desiredpages;
1419			}
1420		} else if (newbsize > bp->b_bufsize) {
1421			vm_object_t obj;
1422			vm_offset_t tinc, toff;
1423			vm_ooffset_t off;
1424			vm_pindex_t objoff;
1425			int pageindex, curbpnpages;
1426			struct vnode *vp;
1427			int bsize;
1428
1429			vp = bp->b_vp;
1430
1431			if (vp->v_type == VBLK)
1432				bsize = DEV_BSIZE;
1433			else
1434				bsize = vp->v_mount->mnt_stat.f_iosize;
1435
1436			if (bp->b_npages < desiredpages) {
1437				obj = vp->v_object;
1438				tinc = PAGE_SIZE;
1439				if (tinc > bsize)
1440					tinc = bsize;
1441				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1442				curbpnpages = bp->b_npages;
1443		doretry:
1444				bp->b_flags |= B_CACHE;
1445				bp->b_validoff = bp->b_validend = 0;
1446				for (toff = 0; toff < newbsize; toff += tinc) {
1447					int bytesinpage;
1448
1449					pageindex = toff >> PAGE_SHIFT;
1450					objoff = OFF_TO_IDX(off + toff);
1451					if (pageindex < curbpnpages) {
1452
1453						m = bp->b_pages[pageindex];
1454#ifdef VFS_BIO_DIAG
1455						if (m->pindex != objoff)
1456							panic("allocbuf: page changed offset??!!!?");
1457#endif
1458						bytesinpage = tinc;
1459						if (tinc > (newbsize - toff))
1460							bytesinpage = newbsize - toff;
1461						if (bp->b_flags & B_CACHE)
1462							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1463						continue;
1464					}
1465					m = vm_page_lookup(obj, objoff);
1466					if (!m) {
1467						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1468						if (!m) {
1469							VM_WAIT;
1470							goto doretry;
1471						}
1472						/*
1473						 * Normally it is unwise to clear PG_BUSY without
1474						 * PAGE_WAKEUP -- but it is okay here, as there is
1475						 * no chance for blocking between here and vm_page_alloc
1476						 */
1477						m->flags &= ~PG_BUSY;
1478						vm_page_wire(m);
1479						bp->b_flags &= ~B_CACHE;
1480					} else if (m->flags & PG_BUSY) {
1481						s = splvm();
1482						if (m->flags & PG_BUSY) {
1483							m->flags |= PG_WANTED;
1484							tsleep(m, PVM, "pgtblk", 0);
1485						}
1486						splx(s);
1487						goto doretry;
1488					} else {
1489						if ((curproc != pageproc) &&
1490							((m->queue - m->pc) == PQ_CACHE) &&
1491						    ((cnt.v_free_count + cnt.v_cache_count) <
1492								(cnt.v_free_min + cnt.v_cache_min))) {
1493							pagedaemon_wakeup();
1494						}
1495						bytesinpage = tinc;
1496						if (tinc > (newbsize - toff))
1497							bytesinpage = newbsize - toff;
1498						if (bp->b_flags & B_CACHE)
1499							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1500						vm_page_wire(m);
1501					}
1502					bp->b_pages[pageindex] = m;
1503					curbpnpages = pageindex + 1;
1504				}
1505				if (vp->v_tag == VT_NFS) {
1506					if (bp->b_dirtyend > 0) {
1507						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
1508						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
1509					}
1510					if (bp->b_validend == 0)
1511						bp->b_flags &= ~B_CACHE;
1512				}
1513				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1514				bp->b_npages = curbpnpages;
1515				pmap_qenter((vm_offset_t) bp->b_data,
1516					bp->b_pages, bp->b_npages);
1517				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1518			}
1519		}
1520	}
1521	if (bp->b_flags & B_VMIO)
1522		vmiospace += bp->b_bufsize;
1523	bufspace += (newbsize - bp->b_bufsize);
1524	bp->b_bufsize = newbsize;
1525	bp->b_bcount = size;
1526	return 1;
1527}
1528
1529/*
1530 * Wait for buffer I/O completion, returning error status.
1531 */
1532int
1533biowait(register struct buf * bp)
1534{
1535	int s;
1536
1537	s = splbio();
1538	while ((bp->b_flags & B_DONE) == 0)
1539		tsleep(bp, PRIBIO, "biowait", 0);
1540	splx(s);
1541	if (bp->b_flags & B_EINTR) {
1542		bp->b_flags &= ~B_EINTR;
1543		return (EINTR);
1544	}
1545	if (bp->b_flags & B_ERROR) {
1546		return (bp->b_error ? bp->b_error : EIO);
1547	} else {
1548		return (0);
1549	}
1550}
1551
1552/*
1553 * Finish I/O on a buffer, calling an optional function.
1554 * This is usually called from interrupt level, so process blocking
1555 * is not *a good idea*.
1556 */
1557void
1558biodone(register struct buf * bp)
1559{
1560	int s;
1561
1562	s = splbio();
1563	if (!(bp->b_flags & B_BUSY))
1564		panic("biodone: buffer not busy");
1565
1566	if (bp->b_flags & B_DONE) {
1567		splx(s);
1568		printf("biodone: buffer already done\n");
1569		return;
1570	}
1571	bp->b_flags |= B_DONE;
1572
1573	if ((bp->b_flags & B_READ) == 0) {
1574		vwakeup(bp);
1575	}
1576#ifdef BOUNCE_BUFFERS
1577	if (bp->b_flags & B_BOUNCE)
1578		vm_bounce_free(bp);
1579#endif
1580
1581	/* call optional completion function if requested */
1582	if (bp->b_flags & B_CALL) {
1583		bp->b_flags &= ~B_CALL;
1584		(*bp->b_iodone) (bp);
1585		splx(s);
1586		return;
1587	}
1588	if (bp->b_flags & B_VMIO) {
1589		int i, resid;
1590		vm_ooffset_t foff;
1591		vm_page_t m;
1592		vm_object_t obj;
1593		int iosize;
1594		struct vnode *vp = bp->b_vp;
1595
1596		if (vp->v_type == VBLK)
1597			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1598		else
1599			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1600		obj = vp->v_object;
1601		if (!obj) {
1602			panic("biodone: no object");
1603		}
1604#if defined(VFS_BIO_DEBUG)
1605		if (obj->paging_in_progress < bp->b_npages) {
1606			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1607			    obj->paging_in_progress, bp->b_npages);
1608		}
1609#endif
1610		iosize = bp->b_bufsize;
1611		for (i = 0; i < bp->b_npages; i++) {
1612			int bogusflag = 0;
1613			m = bp->b_pages[i];
1614			if (m == bogus_page) {
1615				bogusflag = 1;
1616				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1617				if (!m) {
1618#if defined(VFS_BIO_DEBUG)
1619					printf("biodone: page disappeared\n");
1620#endif
1621					--obj->paging_in_progress;
1622					continue;
1623				}
1624				bp->b_pages[i] = m;
1625				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1626			}
1627#if defined(VFS_BIO_DEBUG)
1628			if (OFF_TO_IDX(foff) != m->pindex) {
1629				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1630			}
1631#endif
1632			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1633			if (resid > iosize)
1634				resid = iosize;
1635			/*
1636			 * In the write case, the valid and clean bits are
1637			 * already changed correctly, so we only need to do this
1638			 * here in the read case.
1639			 */
1640			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1641				vfs_page_set_valid(bp, foff, i, m);
1642			}
1643
1644			/*
1645			 * when debugging new filesystems or buffer I/O methods, this
1646			 * is the most common error that pops up.  if you see this, you
1647			 * have not set the page busy flag correctly!!!
1648			 */
1649			if (m->busy == 0) {
1650				printf("biodone: page busy < 0, "
1651				    "pindex: %d, foff: 0x(%x,%x), "
1652				    "resid: %d, index: %d\n",
1653				    (int) m->pindex, (int)(foff >> 32),
1654						(int) foff & 0xffffffff, resid, i);
1655				if (vp->v_type != VBLK)
1656					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1657					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1658					    (int) bp->b_lblkno,
1659					    bp->b_flags, bp->b_npages);
1660				else
1661					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1662					    (int) bp->b_lblkno,
1663					    bp->b_flags, bp->b_npages);
1664				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1665				    m->valid, m->dirty, m->wire_count);
1666				panic("biodone: page busy < 0\n");
1667			}
1668			--m->busy;
1669			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1670				m->flags &= ~PG_WANTED;
1671				wakeup(m);
1672			}
1673			--obj->paging_in_progress;
1674			foff += resid;
1675			iosize -= resid;
1676		}
1677		if (obj && obj->paging_in_progress == 0 &&
1678		    (obj->flags & OBJ_PIPWNT)) {
1679			obj->flags &= ~OBJ_PIPWNT;
1680			wakeup(obj);
1681		}
1682	}
1683	/*
1684	 * For asynchronous completions, release the buffer now. The brelse
1685	 * checks for B_WANTED and will do the wakeup there if necessary - so
1686	 * no need to do a wakeup here in the async case.
1687	 */
1688
1689	if (bp->b_flags & B_ASYNC) {
1690		if ((bp->b_flags & B_ORDERED) == 0) {
1691			if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1692				brelse(bp);
1693			else
1694				bqrelse(bp);
1695		}
1696	} else {
1697		bp->b_flags &= ~B_WANTED;
1698		wakeup(bp);
1699	}
1700	splx(s);
1701}
1702
1703int
1704count_lock_queue()
1705{
1706	int count;
1707	struct buf *bp;
1708
1709	count = 0;
1710	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1711	    bp != NULL;
1712	    bp = TAILQ_NEXT(bp, b_freelist))
1713		count++;
1714	return (count);
1715}
1716
1717int vfs_update_interval = 30;
1718
1719static void
1720vfs_update()
1721{
1722	while (1) {
1723		tsleep(&vfs_update_wakeup, PUSER, "update",
1724		    hz * vfs_update_interval);
1725		vfs_update_wakeup = 0;
1726		sync(curproc, NULL, NULL);
1727	}
1728}
1729
1730static int
1731sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1732{
1733	int error = sysctl_handle_int(oidp,
1734		oidp->oid_arg1, oidp->oid_arg2, req);
1735	if (!error)
1736		wakeup(&vfs_update_wakeup);
1737	return error;
1738}
1739
1740SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1741	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1742
1743
1744/*
1745 * This routine is called in lieu of iodone in the case of
1746 * incomplete I/O.  This keeps the busy status for pages
1747 * consistant.
1748 */
1749void
1750vfs_unbusy_pages(struct buf * bp)
1751{
1752	int i;
1753
1754	if (bp->b_flags & B_VMIO) {
1755		struct vnode *vp = bp->b_vp;
1756		vm_object_t obj = vp->v_object;
1757		vm_ooffset_t foff;
1758
1759		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1760
1761		for (i = 0; i < bp->b_npages; i++) {
1762			vm_page_t m = bp->b_pages[i];
1763
1764			if (m == bogus_page) {
1765				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1766				if (!m) {
1767					panic("vfs_unbusy_pages: page missing\n");
1768				}
1769				bp->b_pages[i] = m;
1770				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1771			}
1772			--obj->paging_in_progress;
1773			--m->busy;
1774			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1775				m->flags &= ~PG_WANTED;
1776				wakeup(m);
1777			}
1778		}
1779		if (obj->paging_in_progress == 0 &&
1780		    (obj->flags & OBJ_PIPWNT)) {
1781			obj->flags &= ~OBJ_PIPWNT;
1782			wakeup(obj);
1783		}
1784	}
1785}
1786
1787/*
1788 * Set NFS' b_validoff and b_validend fields from the valid bits
1789 * of a page.  If the consumer is not NFS, and the page is not
1790 * valid for the entire range, clear the B_CACHE flag to force
1791 * the consumer to re-read the page.
1792 */
1793static void
1794vfs_buf_set_valid(struct buf *bp,
1795		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
1796		  vm_page_t m)
1797{
1798	if (bp->b_vp->v_tag == VT_NFS) {
1799		vm_offset_t svalid, evalid;
1800		int validbits = m->valid;
1801
1802		/*
1803		 * This only bothers with the first valid range in the
1804		 * page.
1805		 */
1806		svalid = off;
1807		while (validbits && !(validbits & 1)) {
1808			svalid += DEV_BSIZE;
1809			validbits >>= 1;
1810		}
1811		evalid = svalid;
1812		while (validbits & 1) {
1813			evalid += DEV_BSIZE;
1814			validbits >>= 1;
1815		}
1816		/*
1817		 * Make sure this range is contiguous with the range
1818		 * built up from previous pages.  If not, then we will
1819		 * just use the range from the previous pages.
1820		 */
1821		if (svalid == bp->b_validend) {
1822			bp->b_validoff = min(bp->b_validoff, svalid);
1823			bp->b_validend = max(bp->b_validend, evalid);
1824		}
1825	} else if (!vm_page_is_valid(m,
1826				     (vm_offset_t) ((foff + off) & PAGE_MASK),
1827				     size)) {
1828		bp->b_flags &= ~B_CACHE;
1829	}
1830}
1831
1832/*
1833 * Set the valid bits in a page, taking care of the b_validoff,
1834 * b_validend fields which NFS uses to optimise small reads.  Off is
1835 * the offset within the file and pageno is the page index within the buf.
1836 */
1837static void
1838vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
1839{
1840	struct vnode *vp = bp->b_vp;
1841	vm_ooffset_t soff, eoff;
1842
1843	soff = off;
1844	eoff = off + min(PAGE_SIZE, bp->b_bufsize);
1845	vm_page_set_invalid(m,
1846			    (vm_offset_t) (soff & PAGE_MASK),
1847			    (vm_offset_t) (eoff - soff));
1848	if (vp->v_tag == VT_NFS) {
1849		vm_ooffset_t sv, ev;
1850		off = off - pageno * PAGE_SIZE;
1851		sv = off + ((bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1));
1852		ev = off + (bp->b_validend & ~(DEV_BSIZE - 1));
1853		soff = max(sv, soff);
1854		eoff = min(ev, eoff);
1855	}
1856	if (eoff > soff)
1857		vm_page_set_validclean(m,
1858				       (vm_offset_t) (soff & PAGE_MASK),
1859				       (vm_offset_t) (eoff - soff));
1860}
1861
1862/*
1863 * This routine is called before a device strategy routine.
1864 * It is used to tell the VM system that paging I/O is in
1865 * progress, and treat the pages associated with the buffer
1866 * almost as being PG_BUSY.  Also the object paging_in_progress
1867 * flag is handled to make sure that the object doesn't become
1868 * inconsistant.
1869 */
1870void
1871vfs_busy_pages(struct buf * bp, int clear_modify)
1872{
1873	int i;
1874
1875	if (bp->b_flags & B_VMIO) {
1876		struct vnode *vp = bp->b_vp;
1877		vm_object_t obj = vp->v_object;
1878		vm_ooffset_t foff;
1879
1880		if (vp->v_type == VBLK)
1881			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1882		else
1883			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1884		vfs_setdirty(bp);
1885		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
1886			vm_page_t m = bp->b_pages[i];
1887
1888			if ((bp->b_flags & B_CLUSTER) == 0) {
1889				obj->paging_in_progress++;
1890				m->busy++;
1891			}
1892			vm_page_protect(m, VM_PROT_NONE);
1893			if (clear_modify)
1894				vfs_page_set_valid(bp, foff, i, m);
1895			else if (bp->b_bcount >= PAGE_SIZE) {
1896				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1897					bp->b_pages[i] = bogus_page;
1898					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1899				}
1900			}
1901		}
1902	}
1903}
1904
1905/*
1906 * Tell the VM system that the pages associated with this buffer
1907 * are clean.  This is used for delayed writes where the data is
1908 * going to go to disk eventually without additional VM intevention.
1909 */
1910void
1911vfs_clean_pages(struct buf * bp)
1912{
1913	int i;
1914
1915	if (bp->b_flags & B_VMIO) {
1916		struct vnode *vp = bp->b_vp;
1917		vm_object_t obj = vp->v_object;
1918		vm_ooffset_t foff;
1919
1920		if (vp->v_type == VBLK)
1921			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1922		else
1923			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1924		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
1925			vm_page_t m = bp->b_pages[i];
1926
1927			vfs_page_set_valid(bp, foff, i, m);
1928		}
1929	}
1930}
1931
1932void
1933vfs_bio_clrbuf(struct buf *bp) {
1934	int i;
1935	if( bp->b_flags & B_VMIO) {
1936		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1937			int mask;
1938			mask = 0;
1939			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
1940				mask |= (1 << (i/DEV_BSIZE));
1941			if( bp->b_pages[0]->valid != mask) {
1942				bzero(bp->b_data, bp->b_bufsize);
1943			}
1944			bp->b_pages[0]->valid = mask;
1945			bp->b_resid = 0;
1946			return;
1947		}
1948		for(i=0;i<bp->b_npages;i++) {
1949			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1950				continue;
1951			if( bp->b_pages[i]->valid == 0) {
1952				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
1953					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
1954				}
1955			} else {
1956				int j;
1957				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1958					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1959						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
1960				}
1961			}
1962			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
1963		}
1964		bp->b_resid = 0;
1965	} else {
1966		clrbuf(bp);
1967	}
1968}
1969
1970/*
1971 * vm_hold_load_pages and vm_hold_unload pages get pages into
1972 * a buffers address space.  The pages are anonymous and are
1973 * not associated with a file object.
1974 */
1975void
1976vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1977{
1978	vm_offset_t pg;
1979	vm_page_t p;
1980	int index;
1981
1982	to = round_page(to);
1983	from = round_page(from);
1984	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1985
1986	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1987
1988tryagain:
1989
1990		p = vm_page_alloc(kernel_object, ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
1991		    VM_ALLOC_NORMAL);
1992		if (!p) {
1993			VM_WAIT;
1994			goto tryagain;
1995		}
1996		vm_page_wire(p);
1997		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1998		bp->b_pages[index] = p;
1999		PAGE_WAKEUP(p);
2000	}
2001	bp->b_npages = to >> PAGE_SHIFT;
2002}
2003
2004void
2005vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2006{
2007	vm_offset_t pg;
2008	vm_page_t p;
2009	int index;
2010
2011	from = round_page(from);
2012	to = round_page(to);
2013	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2014
2015	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2016		p = bp->b_pages[index];
2017		if (p && (index < bp->b_npages)) {
2018			if (p->busy) {
2019				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2020					bp->b_blkno, bp->b_lblkno);
2021			}
2022			bp->b_pages[index] = NULL;
2023			pmap_kremove(pg);
2024			vm_page_unwire(p);
2025			vm_page_free(p);
2026		}
2027	}
2028	bp->b_npages = from >> PAGE_SHIFT;
2029}
2030
2031
2032#include "opt_ddb.h"
2033#ifdef DDB
2034#include <ddb/ddb.h>
2035
2036DB_SHOW_COMMAND(buffer, db_show_buffer)
2037{
2038	/* get args */
2039	struct buf *bp = (struct buf *)addr;
2040
2041	if (!have_addr) {
2042		db_printf("usage: show buffer <addr>\n");
2043		return;
2044	}
2045
2046	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2047		  bp->b_flags, "\20\40bounce\37cluster\36vmio\35ram\34ordered"
2048		  "\33paging\32xxx\31writeinprog\30wanted\27relbuf\26tape"
2049		  "\25read\24raw\23phys\22clusterok\21malloc\20nocache"
2050		  "\17locked\16inval\15gathered\14error\13eintr\12done\11dirty"
2051		  "\10delwri\7call\6cache\5busy\4bad\3async\2needcommit\1age");
2052	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2053		  "b_resid = %ld\nb_dev = 0x%x, b_un.b_addr = %p, "
2054		  "b_blkno = %d, b_pblkno = %d\n",
2055		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2056		  bp->b_dev, bp->b_un.b_addr, bp->b_blkno, bp->b_pblkno);
2057}
2058#endif /* DDB */
2059