vfs_bio.c revision 26471
1231200Smm/*
2231200Smm * Copyright (c) 1994 John S. Dyson
3231200Smm * All rights reserved.
4232153Smm *
5231200Smm * Redistribution and use in source and binary forms, with or without
6231200Smm * modification, are permitted provided that the following conditions
7231200Smm * are met:
8231200Smm * 1. Redistributions of source code must retain the above copyright
9231200Smm *    notice immediately at the beginning of the file, without modification,
10231200Smm *    this list of conditions, and the following disclaimer.
11231200Smm * 2. Redistributions in binary form must reproduce the above copyright
12231200Smm *    notice, this list of conditions and the following disclaimer in the
13231200Smm *    documentation and/or other materials provided with the distribution.
14231200Smm * 3. Absolutely no warranty of function or purpose is made by the author
15231200Smm *    John S. Dyson.
16231200Smm * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17231200Smm *    is allowed if this notation is included.
18231200Smm * 5. Modifications may be freely made to this file if the above conditions
19231200Smm *    are met.
20231200Smm *
21231200Smm * $Id: vfs_bio.c,v 1.118 1997/06/03 09:42:43 dfr Exp $
22231200Smm */
23231200Smm
24231200Smm/*
25231200Smm * this file contains a new buffer I/O scheme implementing a coherent
26231200Smm * VM object and buffer cache scheme.  Pains have been taken to make
27231200Smm * sure that the performance degradation associated with schemes such
28231200Smm * as this is not realized.
29231200Smm *
30231200Smm * Author:  John S. Dyson
31231200Smm * Significant help during the development and debugging phases
32231200Smm * had been provided by David Greenman, also of the FreeBSD core team.
33231200Smm */
34231200Smm
35231200Smm#include "opt_bounce.h"
36231200Smm
37231200Smm#define VMIO
38231200Smm#include <sys/param.h>
39231200Smm#include <sys/systm.h>
40231200Smm#include <sys/sysproto.h>
41231200Smm#include <sys/kernel.h>
42231200Smm#include <sys/sysctl.h>
43231200Smm#include <sys/proc.h>
44231200Smm#include <sys/vnode.h>
45231200Smm#include <sys/vmmeter.h>
46231200Smm#include <vm/vm.h>
47231200Smm#include <vm/vm_param.h>
48231200Smm#include <vm/vm_prot.h>
49231200Smm#include <vm/vm_kern.h>
50231200Smm#include <vm/vm_pageout.h>
51231200Smm#include <vm/vm_page.h>
52231200Smm#include <vm/vm_object.h>
53231200Smm#include <vm/vm_extern.h>
54231200Smm#include <vm/vm_map.h>
55231200Smm#include <sys/buf.h>
56231200Smm#include <sys/mount.h>
57231200Smm#include <sys/malloc.h>
58231200Smm#include <sys/resourcevar.h>
59231200Smm#include <sys/proc.h>
60231200Smm
61231200Smm#include <miscfs/specfs/specdev.h>
62231200Smm
63231200Smmstatic void vfs_update __P((void));
64231200Smmstatic struct	proc *updateproc;
65231200Smmstatic struct kproc_desc up_kp = {
66231200Smm	"update",
67231200Smm	vfs_update,
68231200Smm	&updateproc
69231200Smm};
70231200SmmSYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
71231200Smm
72231200Smmstruct buf *buf;		/* buffer header pool */
73231200Smmstruct swqueue bswlist;
74231200Smm
75231200Smmint count_lock_queue __P((void));
76231200Smmstatic void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
77231200Smm		vm_offset_t to);
78231200Smmstatic void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
79231200Smm		vm_offset_t to);
80231200Smmstatic void vfs_buf_set_valid(struct buf *bp, vm_ooffset_t foff,
81231200Smm			      vm_offset_t off, vm_offset_t size,
82231200Smm			      vm_page_t m);
83231200Smmstatic void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
84231200Smm			       int pageno, vm_page_t m);
85231200Smmstatic void vfs_clean_pages(struct buf * bp);
86231200Smmstatic void vfs_setdirty(struct buf *bp);
87231200Smmstatic void vfs_vmio_release(struct buf *bp);
88231200Smm
89231200Smmint needsbuffer;
90231200Smm
91231200Smm/*
92231200Smm * Internal update daemon, process 3
93231200Smm *	The variable vfs_update_wakeup allows for internal syncs.
94231200Smm */
95231200Smmint vfs_update_wakeup;
96231200Smm
97231200Smm
98231200Smm/*
99231200Smm * buffers base kva
100231200Smm */
101231200Smm
102231200Smm/*
103231200Smm * bogus page -- for I/O to/from partially complete buffers
104231200Smm * this is a temporary solution to the problem, but it is not
105231200Smm * really that bad.  it would be better to split the buffer
106231200Smm * for input in the case of buffers partially already in memory,
107231200Smm * but the code is intricate enough already.
108231200Smm */
109231200Smmvm_page_t bogus_page;
110231200Smmstatic vm_offset_t bogus_offset;
111231200Smm
112231200Smmstatic int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
113231200Smm	bufmallocspace, maxbufmallocspace;
114231200Smm
115231200Smmstatic struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
116231200Smmstatic struct bqueues bufqueues[BUFFER_QUEUES];
117231200Smm
118231200Smmextern int vm_swap_size;
119231200Smm
120231200Smm#define BUF_MAXUSE 16
121231200Smm
122231200Smm/*
123231200Smm * Initialize buffer headers and related structures.
124231200Smm */
125231200Smmvoid
126231200Smmbufinit()
127231200Smm{
128231200Smm	struct buf *bp;
129231200Smm	int i;
130231200Smm
131231200Smm	TAILQ_INIT(&bswlist);
132231200Smm	LIST_INIT(&invalhash);
133231200Smm
134231200Smm	/* first, make a null hash table */
135231200Smm	for (i = 0; i < BUFHSZ; i++)
136231200Smm		LIST_INIT(&bufhashtbl[i]);
137231200Smm
138231200Smm	/* next, make a null set of free lists */
139231200Smm	for (i = 0; i < BUFFER_QUEUES; i++)
140231200Smm		TAILQ_INIT(&bufqueues[i]);
141231200Smm
142231200Smm	/* finally, initialize each buffer header and stick on empty q */
143231200Smm	for (i = 0; i < nbuf; i++) {
144231200Smm		bp = &buf[i];
145231200Smm		bzero(bp, sizeof *bp);
146231200Smm		bp->b_flags = B_INVAL;	/* we're just an empty header */
147231200Smm		bp->b_dev = NODEV;
148231200Smm		bp->b_rcred = NOCRED;
149231200Smm		bp->b_wcred = NOCRED;
150231200Smm		bp->b_qindex = QUEUE_EMPTY;
151231200Smm		bp->b_vnbufs.le_next = NOLIST;
152231200Smm		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
153231200Smm		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
154231200Smm	}
155231200Smm/*
156231200Smm * maxbufspace is currently calculated to support all filesystem blocks
157231200Smm * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
158231200Smm * cache is still the same as it would be for 8K filesystems.  This
159231200Smm * keeps the size of the buffer cache "in check" for big block filesystems.
160231200Smm */
161231200Smm	maxbufspace = (nbuf + 8) * DFLTBSIZE;
162231200Smm/*
163231200Smm * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
164231200Smm */
165231200Smm	maxvmiobufspace = 2 * maxbufspace / 3;
166231200Smm/*
167231200Smm * Limit the amount of malloc memory since it is wired permanently into
168231200Smm * the kernel space.  Even though this is accounted for in the buffer
169231200Smm * allocation, we don't want the malloced region to grow uncontrolled.
170231200Smm * The malloc scheme improves memory utilization significantly on average
171231200Smm * (small) directories.
172231200Smm */
173231200Smm	maxbufmallocspace = maxbufspace / 20;
174231200Smm
175231200Smm	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
176231200Smm	bogus_page = vm_page_alloc(kernel_object,
177231200Smm			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
178231200Smm			VM_ALLOC_NORMAL);
179231200Smm
180232153Smm}
181232153Smm
182231200Smm/*
183231200Smm * Free the kva allocation for a buffer
184231200Smm * Must be called only at splbio or higher,
185231200Smm *  as this is the only locking for buffer_map.
186231200Smm */
187231200Smmstatic void
188231200Smmbfreekva(struct buf * bp)
189231200Smm{
190231200Smm	if (bp->b_kvasize == 0)
191231200Smm		return;
192231200Smm
193231200Smm	vm_map_delete(buffer_map,
194231200Smm		(vm_offset_t) bp->b_kvabase,
195231200Smm		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
196231200Smm
197231200Smm	bp->b_kvasize = 0;
198231200Smm
199231200Smm}
200231200Smm
201231200Smm/*
202231200Smm * remove the buffer from the appropriate free list
203231200Smm */
204231200Smmvoid
205231200Smmbremfree(struct buf * bp)
206231200Smm{
207231200Smm	int s = splbio();
208231200Smm
209231200Smm	if (bp->b_qindex != QUEUE_NONE) {
210231200Smm		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
211231200Smm		bp->b_qindex = QUEUE_NONE;
212231200Smm	} else {
213231200Smm		panic("bremfree: removing a buffer when not on a queue");
214231200Smm	}
215231200Smm	splx(s);
216231200Smm}
217232153Smm
218232153Smm/*
219231200Smm * Get a buffer with the specified data.  Look in the cache first.
220232153Smm */
221232153Smmint
222232153Smmbread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
223232153Smm    struct buf ** bpp)
224231200Smm{
225231200Smm	struct buf *bp;
226231200Smm
227231200Smm	bp = getblk(vp, blkno, size, 0, 0);
228231200Smm	*bpp = bp;
229231200Smm
230231200Smm	/* if not found in cache, do some I/O */
231231200Smm	if ((bp->b_flags & B_CACHE) == 0) {
232231200Smm		if (curproc != NULL)
233231200Smm			curproc->p_stats->p_ru.ru_inblock++;
234231200Smm		bp->b_flags |= B_READ;
235231200Smm		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
236231200Smm		if (bp->b_rcred == NOCRED) {
237231200Smm			if (cred != NOCRED)
238231200Smm				crhold(cred);
239231200Smm			bp->b_rcred = cred;
240231200Smm		}
241231200Smm		vfs_busy_pages(bp, 0);
242231200Smm		VOP_STRATEGY(bp);
243231200Smm		return (biowait(bp));
244231200Smm	}
245231200Smm	return (0);
246231200Smm}
247231200Smm
248231200Smm/*
249231200Smm * Operates like bread, but also starts asynchronous I/O on
250231200Smm * read-ahead blocks.
251231200Smm */
252231200Smmint
253231200Smmbreadn(struct vnode * vp, daddr_t blkno, int size,
254231200Smm    daddr_t * rablkno, int *rabsize,
255231200Smm    int cnt, struct ucred * cred, struct buf ** bpp)
256231200Smm{
257231200Smm	struct buf *bp, *rabp;
258231200Smm	int i;
259231200Smm	int rv = 0, readwait = 0;
260231200Smm
261231200Smm	*bpp = bp = getblk(vp, blkno, size, 0, 0);
262231200Smm
263231200Smm	/* if not found in cache, do some I/O */
264231200Smm	if ((bp->b_flags & B_CACHE) == 0) {
265231200Smm		if (curproc != NULL)
266231200Smm			curproc->p_stats->p_ru.ru_inblock++;
267231200Smm		bp->b_flags |= B_READ;
268231200Smm		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
269231200Smm		if (bp->b_rcred == NOCRED) {
270231200Smm			if (cred != NOCRED)
271231200Smm				crhold(cred);
272231200Smm			bp->b_rcred = cred;
273231200Smm		}
274231200Smm		vfs_busy_pages(bp, 0);
275231200Smm		VOP_STRATEGY(bp);
276231200Smm		++readwait;
277231200Smm	}
278231200Smm	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
279231200Smm		if (inmem(vp, *rablkno))
280231200Smm			continue;
281232153Smm		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
282231200Smm
283231200Smm		if ((rabp->b_flags & B_CACHE) == 0) {
284231200Smm			if (curproc != NULL)
285231200Smm				curproc->p_stats->p_ru.ru_inblock++;
286231200Smm			rabp->b_flags |= B_READ | B_ASYNC;
287231200Smm			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
288231200Smm			if (rabp->b_rcred == NOCRED) {
289231200Smm				if (cred != NOCRED)
290231200Smm					crhold(cred);
291231200Smm				rabp->b_rcred = cred;
292231200Smm			}
293231200Smm			vfs_busy_pages(rabp, 0);
294231200Smm			VOP_STRATEGY(rabp);
295231200Smm		} else {
296231200Smm			brelse(rabp);
297231200Smm		}
298231200Smm	}
299231200Smm
300231200Smm	if (readwait) {
301231200Smm		rv = biowait(bp);
302231200Smm	}
303231200Smm	return (rv);
304231200Smm}
305232153Smm
306231200Smm/*
307231200Smm * Write, release buffer on completion.  (Done by iodone
308231200Smm * if async.)
309231200Smm */
310232153Smmint
311232153Smmbwrite(struct buf * bp)
312232153Smm{
313232153Smm	int oldflags = bp->b_flags;
314232153Smm
315232153Smm	if (bp->b_flags & B_INVAL) {
316232153Smm		brelse(bp);
317232153Smm		return (0);
318232153Smm	}
319232153Smm	if (!(bp->b_flags & B_BUSY))
320232153Smm		panic("bwrite: buffer is not busy???");
321231200Smm
322232153Smm	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
323232153Smm	bp->b_flags |= B_WRITEINPROG;
324231200Smm
325231200Smm	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
326232153Smm		reassignbuf(bp, bp->b_vp);
327232153Smm	}
328232153Smm
329232153Smm	bp->b_vp->v_numoutput++;
330232153Smm	vfs_busy_pages(bp, 1);
331232153Smm	if (curproc != NULL)
332232153Smm		curproc->p_stats->p_ru.ru_oublock++;
333232153Smm	VOP_STRATEGY(bp);
334232153Smm
335232153Smm	/*
336232153Smm	 * Handle ordered writes here.
337232153Smm	 * If the write was originally flagged as ordered,
338232153Smm	 * then we check to see if it was converted to async.
339232153Smm	 * If it was converted to async, and is done now, then
340232153Smm	 * we release the buffer.  Otherwise we clear the
341232153Smm	 * ordered flag because it is not needed anymore.
342232153Smm	 *
343232153Smm 	 * Note that biodone has been modified so that it does
344232153Smm	 * not release ordered buffers.  This allows us to have
345232153Smm	 * a chance to determine whether or not the driver
346232153Smm	 * has set the async flag in the strategy routine.  Otherwise
347232153Smm	 * if biodone was not modified, then the buffer may have been
348232153Smm	 * reused before we have had a chance to check the flag.
349232153Smm	 */
350232153Smm
351232153Smm	if ((oldflags & B_ORDERED) == B_ORDERED) {
352232153Smm		int s;
353232153Smm		s = splbio();
354232153Smm		if (bp->b_flags & B_ASYNC)  {
355232153Smm			if ((bp->b_flags & B_DONE)) {
356232153Smm				if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
357232153Smm					brelse(bp);
358232153Smm				else
359232153Smm					bqrelse(bp);
360232153Smm			}
361232153Smm			splx(s);
362232153Smm			return (0);
363232153Smm		} else {
364232153Smm			bp->b_flags &= ~B_ORDERED;
365232153Smm		}
366232153Smm		splx(s);
367231200Smm	}
368231200Smm
369231200Smm	if ((oldflags & B_ASYNC) == 0) {
370232153Smm		int rtval = biowait(bp);
371232153Smm
372232153Smm		if (oldflags & B_DELWRI) {
373232153Smm			reassignbuf(bp, bp->b_vp);
374232153Smm		}
375232153Smm		brelse(bp);
376232153Smm		return (rtval);
377232153Smm	}
378232153Smm	return (0);
379232153Smm}
380232153Smm
381232153Smmint
382232153Smmvn_bwrite(ap)
383232153Smm	struct vop_bwrite_args *ap;
384232153Smm{
385232153Smm	return (bwrite(ap->a_bp));
386231200Smm}
387231200Smm
388231200Smm/*
389231200Smm * Delayed write. (Buffer is marked dirty).
390231200Smm */
391231200Smmvoid
392232153Smmbdwrite(struct buf * bp)
393232153Smm{
394231200Smm
395231200Smm	if ((bp->b_flags & B_BUSY) == 0) {
396231200Smm		panic("bdwrite: buffer is not busy");
397231200Smm	}
398231200Smm	if (bp->b_flags & B_INVAL) {
399231200Smm		brelse(bp);
400231200Smm		return;
401231200Smm	}
402231200Smm	if (bp->b_flags & B_TAPE) {
403231200Smm		bawrite(bp);
404231200Smm		return;
405231200Smm	}
406231200Smm	bp->b_flags &= ~(B_READ|B_RELBUF);
407232153Smm	if ((bp->b_flags & B_DELWRI) == 0) {
408232153Smm		bp->b_flags |= B_DONE | B_DELWRI;
409231200Smm		reassignbuf(bp, bp->b_vp);
410231200Smm	}
411231200Smm
412231200Smm	/*
413231200Smm	 * This bmap keeps the system from needing to do the bmap later,
414231200Smm	 * perhaps when the system is attempting to do a sync.  Since it
415231200Smm	 * is likely that the indirect block -- or whatever other datastructure
416231200Smm	 * that the filesystem needs is still in memory now, it is a good
417231200Smm	 * thing to do this.  Note also, that if the pageout daemon is
418231200Smm	 * requesting a sync -- there might not be enough memory to do
419231200Smm	 * the bmap then...  So, this is important to do.
420231200Smm	 */
421231200Smm	if( bp->b_lblkno == bp->b_blkno) {
422231200Smm		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
423232153Smm	}
424232153Smm
425231200Smm	/*
426231200Smm	 * Set the *dirty* buffer range based upon the VM system dirty pages.
427231200Smm	 */
428231200Smm	vfs_setdirty(bp);
429231200Smm
430231200Smm	/*
431231200Smm	 * We need to do this here to satisfy the vnode_pager and the
432231200Smm	 * pageout daemon, so that it thinks that the pages have been
433231200Smm	 * "cleaned".  Note that since the pages are in a delayed write
434231200Smm	 * buffer -- the VFS layer "will" see that the pages get written
435231200Smm	 * out on the next sync, or perhaps the cluster will be completed.
436231200Smm	 */
437231200Smm	vfs_clean_pages(bp);
438231200Smm	bqrelse(bp);
439231200Smm	return;
440231200Smm}
441232153Smm
442232153Smm/*
443231200Smm * Asynchronous write.
444231200Smm * Start output on a buffer, but do not wait for it to complete.
445231200Smm * The buffer is released when the output completes.
446231200Smm */
447231200Smmvoid
448231200Smmbawrite(struct buf * bp)
449231200Smm{
450231200Smm	bp->b_flags |= B_ASYNC;
451231200Smm	(void) VOP_BWRITE(bp);
452231200Smm}
453231200Smm
454231200Smm/*
455231200Smm * Ordered write.
456231200Smm * Start output on a buffer, but only wait for it to complete if the
457231200Smm * output device cannot guarantee ordering in some other way.  Devices
458232153Smm * that can perform asynchronous ordered writes will set the B_ASYNC
459232153Smm * flag in their strategy routine.
460231200Smm * The buffer is released when the output completes.
461231200Smm */
462231200Smmint
463231200Smmbowrite(struct buf * bp)
464231200Smm{
465231200Smm	bp->b_flags |= B_ORDERED;
466231200Smm	return (VOP_BWRITE(bp));
467231200Smm}
468231200Smm
469231200Smm/*
470231200Smm * Release a buffer.
471231200Smm */
472231200Smmvoid
473231200Smmbrelse(struct buf * bp)
474231200Smm{
475231200Smm	int s;
476231200Smm
477231200Smm	if (bp->b_flags & B_CLUSTER) {
478231200Smm		relpbuf(bp);
479231200Smm		return;
480231200Smm	}
481231200Smm	/* anyone need a "free" block? */
482232153Smm	s = splbio();
483231200Smm
484231200Smm	/* anyone need this block? */
485232153Smm	if (bp->b_flags & B_WANTED) {
486231200Smm		bp->b_flags &= ~(B_WANTED | B_AGE);
487231200Smm		wakeup(bp);
488231200Smm	}
489231200Smm
490232153Smm	if (bp->b_flags & B_LOCKED)
491231200Smm		bp->b_flags &= ~B_ERROR;
492231200Smm
493232153Smm	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
494231200Smm	    (bp->b_bufsize <= 0)) {
495231200Smm		bp->b_flags |= B_INVAL;
496231200Smm		bp->b_flags &= ~(B_DELWRI | B_CACHE);
497231200Smm		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
498231200Smm			if (bp->b_bufsize)
499231200Smm				allocbuf(bp, 0);
500231200Smm			brelvp(bp);
501231200Smm		}
502231200Smm	}
503231200Smm
504231200Smm	/*
505231200Smm	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
506231200Smm	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
507231200Smm	 * but the VM object is kept around.  The B_NOCACHE flag is used to
508231200Smm	 * invalidate the pages in the VM object.
509231200Smm	 *
510231200Smm	 * If the buffer is a partially filled NFS buffer, keep it
511232153Smm	 * since invalidating it now will lose informatio.  The valid
512231200Smm	 * flags in the vm_pages have only DEV_BSIZE resolution but
513231200Smm	 * the b_validoff, b_validend fields have byte resolution.
514232153Smm	 * This can avoid unnecessary re-reads of the buffer.
515231200Smm	 * XXX this seems to cause performance problems.
516231200Smm	 */
517231200Smm	if ((bp->b_flags & B_VMIO)
518231200Smm	    && !(bp->b_vp->v_tag == VT_NFS &&
519232153Smm		 (bp->b_flags & B_DELWRI) != 0)
520231200Smm#ifdef notdef
521231200Smm	    && (bp->b_vp->v_tag != VT_NFS
522232153Smm		|| (bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR))
523231200Smm		|| bp->b_validend == 0
524231200Smm		|| (bp->b_validoff == 0
525231200Smm		    && bp->b_validend == bp->b_bufsize))
526231200Smm#endif
527231200Smm	    ) {
528231200Smm		vm_ooffset_t foff;
529231200Smm		vm_object_t obj;
530231200Smm		int i, resid;
531231200Smm		vm_page_t m;
532231200Smm		struct vnode *vp;
533231200Smm		int iototal = bp->b_bufsize;
534231200Smm
535231200Smm		vp = bp->b_vp;
536231200Smm		if (!vp)
537231200Smm			panic("brelse: missing vp");
538231200Smm
539232153Smm		if (bp->b_npages) {
540232153Smm			vm_pindex_t poff;
541231200Smm			obj = (vm_object_t) vp->v_object;
542231200Smm			if (vp->v_type == VBLK)
543231200Smm				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
544231200Smm			else
545231200Smm				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
546232153Smm			poff = OFF_TO_IDX(foff);
547232153Smm			for (i = 0; i < bp->b_npages; i++) {
548231200Smm				m = bp->b_pages[i];
549231200Smm				if (m == bogus_page) {
550231200Smm					m = vm_page_lookup(obj, poff + i);
551231200Smm					if (!m) {
552232153Smm						panic("brelse: page missing\n");
553231200Smm					}
554231200Smm					bp->b_pages[i] = m;
555231200Smm					pmap_qenter(trunc_page(bp->b_data),
556232153Smm						bp->b_pages, bp->b_npages);
557232153Smm				}
558232153Smm				resid = IDX_TO_OFF(m->pindex+1) - foff;
559232153Smm				if (resid > iototal)
560231200Smm					resid = iototal;
561231200Smm				if (resid > 0) {
562231200Smm					/*
563231200Smm					 * Don't invalidate the page if the local machine has already
564231200Smm					 * modified it.  This is the lesser of two evils, and should
565232153Smm					 * be fixed.
566232153Smm					 */
567232153Smm					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
568231200Smm						vm_page_test_dirty(m);
569231200Smm						if (m->dirty == 0) {
570231200Smm							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
571231200Smm							if (m->valid == 0)
572231200Smm								vm_page_protect(m, VM_PROT_NONE);
573231200Smm						}
574231200Smm					}
575231200Smm					if (resid >= PAGE_SIZE) {
576231200Smm						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
577231200Smm							bp->b_flags |= B_INVAL;
578231200Smm						}
579231200Smm					} else {
580231200Smm						if (!vm_page_is_valid(m,
581231200Smm							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
582231200Smm							bp->b_flags |= B_INVAL;
583231200Smm						}
584231200Smm					}
585231200Smm				}
586231200Smm				foff += resid;
587231200Smm				iototal -= resid;
588231200Smm			}
589231200Smm		}
590231200Smm		if (bp->b_flags & (B_INVAL | B_RELBUF))
591231200Smm			vfs_vmio_release(bp);
592231200Smm	}
593231200Smm	if (bp->b_qindex != QUEUE_NONE)
594231200Smm		panic("brelse: free buffer onto another queue???");
595231200Smm
596231200Smm	/* enqueue */
597231200Smm	/* buffers with no memory */
598231200Smm	if (bp->b_bufsize == 0) {
599231200Smm		bp->b_qindex = QUEUE_EMPTY;
600231200Smm		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
601231200Smm		LIST_REMOVE(bp, b_hash);
602231200Smm		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
603231200Smm		bp->b_dev = NODEV;
604231200Smm		/*
605231200Smm		 * Get rid of the kva allocation *now*
606231200Smm		 */
607231200Smm		bfreekva(bp);
608231200Smm		if (needsbuffer) {
609231200Smm			wakeup(&needsbuffer);
610231200Smm			needsbuffer=0;
611231200Smm		}
612231200Smm		/* buffers with junk contents */
613231200Smm	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
614231200Smm		bp->b_qindex = QUEUE_AGE;
615231200Smm		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
616231200Smm		LIST_REMOVE(bp, b_hash);
617231200Smm		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
618231200Smm		bp->b_dev = NODEV;
619231200Smm		if (needsbuffer) {
620231200Smm			wakeup(&needsbuffer);
621231200Smm			needsbuffer=0;
622231200Smm		}
623231200Smm		/* buffers that are locked */
624231200Smm	} else if (bp->b_flags & B_LOCKED) {
625231200Smm		bp->b_qindex = QUEUE_LOCKED;
626231200Smm		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
627231200Smm		/* buffers with stale but valid contents */
628231200Smm	} else if (bp->b_flags & B_AGE) {
629231200Smm		bp->b_qindex = QUEUE_AGE;
630231200Smm		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
631231200Smm		if (needsbuffer) {
632231200Smm			wakeup(&needsbuffer);
633231200Smm			needsbuffer=0;
634231200Smm		}
635231200Smm		/* buffers with valid and quite potentially reuseable contents */
636231200Smm	} else {
637231200Smm		bp->b_qindex = QUEUE_LRU;
638231200Smm		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
639231200Smm		if (needsbuffer) {
640231200Smm			wakeup(&needsbuffer);
641231200Smm			needsbuffer=0;
642231200Smm		}
643231200Smm	}
644231200Smm
645231200Smm	/* unlock */
646231200Smm	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
647231200Smm				B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
648231200Smm	splx(s);
649231200Smm}
650231200Smm
651231200Smm/*
652231200Smm * Release a buffer.
653231200Smm */
654231200Smmvoid
655231200Smmbqrelse(struct buf * bp)
656231200Smm{
657231200Smm	int s;
658231200Smm
659231200Smm	s = splbio();
660231200Smm
661231200Smm
662231200Smm	/* anyone need this block? */
663231200Smm	if (bp->b_flags & B_WANTED) {
664231200Smm		bp->b_flags &= ~(B_WANTED | B_AGE);
665231200Smm		wakeup(bp);
666231200Smm	}
667231200Smm
668231200Smm	if (bp->b_qindex != QUEUE_NONE)
669231200Smm		panic("bqrelse: free buffer onto another queue???");
670231200Smm
671231200Smm	if (bp->b_flags & B_LOCKED) {
672231200Smm		bp->b_flags &= ~B_ERROR;
673231200Smm		bp->b_qindex = QUEUE_LOCKED;
674231200Smm		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
675231200Smm		/* buffers with stale but valid contents */
676231200Smm	} else {
677231200Smm		bp->b_qindex = QUEUE_LRU;
678231200Smm		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
679231200Smm		if (needsbuffer) {
680231200Smm			wakeup(&needsbuffer);
681231200Smm			needsbuffer=0;
682231200Smm		}
683231200Smm	}
684231200Smm
685231200Smm	/* unlock */
686231200Smm	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
687231200Smm		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
688231200Smm	splx(s);
689231200Smm}
690231200Smm
691231200Smmstatic void
692231200Smmvfs_vmio_release(bp)
693231200Smm	struct buf *bp;
694231200Smm{
695231200Smm	int i;
696231200Smm	vm_page_t m;
697231200Smm
698231200Smm	for (i = 0; i < bp->b_npages; i++) {
699231200Smm		m = bp->b_pages[i];
700231200Smm		bp->b_pages[i] = NULL;
701231200Smm		vm_page_unwire(m);
702231200Smm		/*
703231200Smm		 * We don't mess with busy pages, it is
704231200Smm		 * the responsibility of the process that
705231200Smm		 * busied the pages to deal with them.
706231200Smm		 */
707231200Smm		if ((m->flags & PG_BUSY) || (m->busy != 0))
708231200Smm			continue;
709231200Smm
710231200Smm		if (m->wire_count == 0) {
711231200Smm
712231200Smm			if (m->flags & PG_WANTED) {
713231200Smm				m->flags &= ~PG_WANTED;
714231200Smm				wakeup(m);
715231200Smm			}
716231200Smm
717231200Smm			/*
718231200Smm			 * If this is an async free -- we cannot place
719231200Smm			 * pages onto the cache queue.  If it is an
720231200Smm			 * async free, then we don't modify any queues.
721231200Smm			 * This is probably in error (for perf reasons),
722231200Smm			 * and we will eventually need to build
723231200Smm			 * a more complete infrastructure to support I/O
724231200Smm			 * rundown.
725231200Smm			 */
726231200Smm			if ((bp->b_flags & B_ASYNC) == 0) {
727231200Smm
728231200Smm			/*
729231200Smm			 * In the case of sync buffer frees, we can do pretty much
730231200Smm			 * anything to any of the memory queues.  Specifically,
731231200Smm			 * the cache queue is okay to be modified.
732231200Smm			 */
733231200Smm				if (m->valid) {
734231200Smm					if(m->dirty == 0)
735231200Smm						vm_page_test_dirty(m);
736231200Smm					/*
737231200Smm					 * this keeps pressure off of the process memory
738231200Smm					 */
739231200Smm					if (m->dirty == 0 && m->hold_count == 0)
740231200Smm						vm_page_cache(m);
741231200Smm					else
742231200Smm						vm_page_deactivate(m);
743231200Smm				} else if (m->hold_count == 0) {
744231200Smm					vm_page_protect(m, VM_PROT_NONE);
745231200Smm					vm_page_free(m);
746231200Smm				}
747231200Smm			} else {
748231200Smm				/*
749231200Smm				 * If async, then at least we clear the
750231200Smm				 * act_count.
751231200Smm				 */
752231200Smm				m->act_count = 0;
753231200Smm			}
754231200Smm		}
755231200Smm	}
756231200Smm	bufspace -= bp->b_bufsize;
757231200Smm	vmiospace -= bp->b_bufsize;
758231200Smm	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
759231200Smm	bp->b_npages = 0;
760231200Smm	bp->b_bufsize = 0;
761231200Smm	bp->b_flags &= ~B_VMIO;
762	if (bp->b_vp)
763		brelvp(bp);
764}
765
766/*
767 * Check to see if a block is currently memory resident.
768 */
769struct buf *
770gbincore(struct vnode * vp, daddr_t blkno)
771{
772	struct buf *bp;
773	struct bufhashhdr *bh;
774
775	bh = BUFHASH(vp, blkno);
776	bp = bh->lh_first;
777
778	/* Search hash chain */
779	while (bp != NULL) {
780		/* hit */
781		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
782		    (bp->b_flags & B_INVAL) == 0) {
783			break;
784		}
785		bp = bp->b_hash.le_next;
786	}
787	return (bp);
788}
789
790/*
791 * this routine implements clustered async writes for
792 * clearing out B_DELWRI buffers...  This is much better
793 * than the old way of writing only one buffer at a time.
794 */
795int
796vfs_bio_awrite(struct buf * bp)
797{
798	int i;
799	daddr_t lblkno = bp->b_lblkno;
800	struct vnode *vp = bp->b_vp;
801	int s;
802	int ncl;
803	struct buf *bpa;
804	int nwritten;
805
806	s = splbio();
807	/*
808	 * right now we support clustered writing only to regular files
809	 */
810	if ((vp->v_type == VREG) &&
811	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
812	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
813		int size;
814		int maxcl;
815
816		size = vp->v_mount->mnt_stat.f_iosize;
817		maxcl = MAXPHYS / size;
818
819		for (i = 1; i < maxcl; i++) {
820			if ((bpa = gbincore(vp, lblkno + i)) &&
821			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
822			    (B_DELWRI | B_CLUSTEROK)) &&
823			    (bpa->b_bufsize == size)) {
824				if ((bpa->b_blkno == bpa->b_lblkno) ||
825				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
826					break;
827			} else {
828				break;
829			}
830		}
831		ncl = i;
832		/*
833		 * this is a possible cluster write
834		 */
835		if (ncl != 1) {
836			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
837			splx(s);
838			return nwritten;
839		}
840	}
841	bremfree(bp);
842	splx(s);
843	/*
844	 * default (old) behavior, writing out only one block
845	 */
846	bp->b_flags |= B_BUSY | B_ASYNC;
847	nwritten = bp->b_bufsize;
848	(void) VOP_BWRITE(bp);
849	return nwritten;
850}
851
852
853/*
854 * Find a buffer header which is available for use.
855 */
856static struct buf *
857getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
858{
859	struct buf *bp;
860	int nbyteswritten = 0;
861	vm_offset_t addr;
862
863start:
864	if (bufspace >= maxbufspace)
865		goto trytofreespace;
866
867	/* can we constitute a new buffer? */
868	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
869		if (bp->b_qindex != QUEUE_EMPTY)
870			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
871			    bp->b_qindex);
872		bp->b_flags |= B_BUSY;
873		bremfree(bp);
874		goto fillbuf;
875	}
876trytofreespace:
877	/*
878	 * We keep the file I/O from hogging metadata I/O
879	 * This is desirable because file data is cached in the
880	 * VM/Buffer cache even if a buffer is freed.
881	 */
882	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
883		if (bp->b_qindex != QUEUE_AGE)
884			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
885			    bp->b_qindex);
886	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
887		if (bp->b_qindex != QUEUE_LRU)
888			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
889			    bp->b_qindex);
890	}
891	if (!bp) {
892		/* wait for a free buffer of any kind */
893		needsbuffer = 1;
894		tsleep(&needsbuffer,
895			(PRIBIO + 1) | slpflag, "newbuf", slptimeo);
896		return (0);
897	}
898
899#if defined(DIAGNOSTIC)
900	if (bp->b_flags & B_BUSY) {
901		panic("getnewbuf: busy buffer on free list\n");
902	}
903#endif
904
905	/*
906	 * We are fairly aggressive about freeing VMIO buffers, but since
907	 * the buffering is intact without buffer headers, there is not
908	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
909	 */
910	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
911		if ((bp->b_flags & B_VMIO) == 0 ||
912			(vmiospace < maxvmiobufspace)) {
913			--bp->b_usecount;
914			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
915			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
916				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
917				goto start;
918			}
919			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
920		}
921	}
922
923	/* if we are a delayed write, convert to an async write */
924	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
925		nbyteswritten += vfs_bio_awrite(bp);
926		if (!slpflag && !slptimeo) {
927			return (0);
928		}
929		goto start;
930	}
931
932	if (bp->b_flags & B_WANTED) {
933		bp->b_flags &= ~B_WANTED;
934		wakeup(bp);
935	}
936	bremfree(bp);
937	bp->b_flags |= B_BUSY;
938
939	if (bp->b_flags & B_VMIO) {
940		bp->b_flags &= ~B_ASYNC;
941		vfs_vmio_release(bp);
942	}
943
944	if (bp->b_vp)
945		brelvp(bp);
946
947fillbuf:
948	/* we are not free, nor do we contain interesting data */
949	if (bp->b_rcred != NOCRED) {
950		crfree(bp->b_rcred);
951		bp->b_rcred = NOCRED;
952	}
953	if (bp->b_wcred != NOCRED) {
954		crfree(bp->b_wcred);
955		bp->b_wcred = NOCRED;
956	}
957
958	LIST_REMOVE(bp, b_hash);
959	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
960	if (bp->b_bufsize) {
961		allocbuf(bp, 0);
962	}
963	bp->b_flags = B_BUSY;
964	bp->b_dev = NODEV;
965	bp->b_vp = NULL;
966	bp->b_blkno = bp->b_lblkno = 0;
967	bp->b_iodone = 0;
968	bp->b_error = 0;
969	bp->b_resid = 0;
970	bp->b_bcount = 0;
971	bp->b_npages = 0;
972	bp->b_dirtyoff = bp->b_dirtyend = 0;
973	bp->b_validoff = bp->b_validend = 0;
974	bp->b_usecount = 4;
975
976	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
977
978	/*
979	 * we assume that buffer_map is not at address 0
980	 */
981	addr = 0;
982	if (maxsize != bp->b_kvasize) {
983		bfreekva(bp);
984
985		/*
986		 * See if we have buffer kva space
987		 */
988		if (vm_map_findspace(buffer_map,
989			vm_map_min(buffer_map), maxsize, &addr)) {
990			bp->b_flags |= B_INVAL;
991			brelse(bp);
992			goto trytofreespace;
993		}
994	}
995
996	/*
997	 * See if we are below are allocated minimum
998	 */
999	if (bufspace >= (maxbufspace + nbyteswritten)) {
1000		bp->b_flags |= B_INVAL;
1001		brelse(bp);
1002		goto trytofreespace;
1003	}
1004
1005	/*
1006	 * create a map entry for the buffer -- in essence
1007	 * reserving the kva space.
1008	 */
1009	if (addr) {
1010		vm_map_insert(buffer_map, NULL, 0,
1011			addr, addr + maxsize,
1012			VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1013
1014		bp->b_kvabase = (caddr_t) addr;
1015		bp->b_kvasize = maxsize;
1016	}
1017	bp->b_data = bp->b_kvabase;
1018
1019	return (bp);
1020}
1021
1022/*
1023 * Check to see if a block is currently memory resident.
1024 */
1025struct buf *
1026incore(struct vnode * vp, daddr_t blkno)
1027{
1028	struct buf *bp;
1029
1030	int s = splbio();
1031	bp = gbincore(vp, blkno);
1032	splx(s);
1033	return (bp);
1034}
1035
1036/*
1037 * Returns true if no I/O is needed to access the
1038 * associated VM object.  This is like incore except
1039 * it also hunts around in the VM system for the data.
1040 */
1041
1042int
1043inmem(struct vnode * vp, daddr_t blkno)
1044{
1045	vm_object_t obj;
1046	vm_offset_t toff, tinc;
1047	vm_page_t m;
1048	vm_ooffset_t off;
1049
1050	if (incore(vp, blkno))
1051		return 1;
1052	if (vp->v_mount == NULL)
1053		return 0;
1054	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
1055		return 0;
1056
1057	obj = vp->v_object;
1058	tinc = PAGE_SIZE;
1059	if (tinc > vp->v_mount->mnt_stat.f_iosize)
1060		tinc = vp->v_mount->mnt_stat.f_iosize;
1061	off = blkno * vp->v_mount->mnt_stat.f_iosize;
1062
1063	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1064
1065		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1066		if (!m)
1067			return 0;
1068		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
1069			return 0;
1070	}
1071	return 1;
1072}
1073
1074/*
1075 * now we set the dirty range for the buffer --
1076 * for NFS -- if the file is mapped and pages have
1077 * been written to, let it know.  We want the
1078 * entire range of the buffer to be marked dirty if
1079 * any of the pages have been written to for consistancy
1080 * with the b_validoff, b_validend set in the nfs write
1081 * code, and used by the nfs read code.
1082 */
1083static void
1084vfs_setdirty(struct buf *bp) {
1085	int i;
1086	vm_object_t object;
1087	vm_offset_t boffset, offset;
1088	/*
1089	 * We qualify the scan for modified pages on whether the
1090	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1091	 * is not cleared simply by protecting pages off.
1092	 */
1093	if ((bp->b_flags & B_VMIO) &&
1094		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1095		/*
1096		 * test the pages to see if they have been modified directly
1097		 * by users through the VM system.
1098		 */
1099		for (i = 0; i < bp->b_npages; i++)
1100			vm_page_test_dirty(bp->b_pages[i]);
1101
1102		/*
1103		 * scan forwards for the first page modified
1104		 */
1105		for (i = 0; i < bp->b_npages; i++) {
1106			if (bp->b_pages[i]->dirty) {
1107				break;
1108			}
1109		}
1110		boffset = (i << PAGE_SHIFT);
1111		if (boffset < bp->b_dirtyoff) {
1112			bp->b_dirtyoff = boffset;
1113		}
1114
1115		/*
1116		 * scan backwards for the last page modified
1117		 */
1118		for (i = bp->b_npages - 1; i >= 0; --i) {
1119			if (bp->b_pages[i]->dirty) {
1120				break;
1121			}
1122		}
1123		boffset = (i + 1);
1124		offset = boffset + bp->b_pages[0]->pindex;
1125		if (offset >= object->size)
1126			boffset = object->size - bp->b_pages[0]->pindex;
1127		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
1128			bp->b_dirtyend = (boffset << PAGE_SHIFT);
1129	}
1130}
1131
1132/*
1133 * Get a block given a specified block and offset into a file/device.
1134 */
1135struct buf *
1136getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1137{
1138	struct buf *bp;
1139	int s;
1140	struct bufhashhdr *bh;
1141	int maxsize;
1142
1143	if (vp->v_mount) {
1144		maxsize = vp->v_mount->mnt_stat.f_iosize;
1145		/*
1146		 * This happens on mount points.
1147		 */
1148		if (maxsize < size)
1149			maxsize = size;
1150	} else {
1151		maxsize = size;
1152	}
1153
1154	if (size > MAXBSIZE)
1155		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1156
1157	s = splbio();
1158loop:
1159	if ((bp = gbincore(vp, blkno))) {
1160		if (bp->b_flags & B_BUSY) {
1161			bp->b_flags |= B_WANTED;
1162			if (bp->b_usecount < BUF_MAXUSE)
1163				++bp->b_usecount;
1164			if (!tsleep(bp,
1165				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
1166				goto loop;
1167
1168			splx(s);
1169			return (struct buf *) NULL;
1170		}
1171		bp->b_flags |= B_BUSY | B_CACHE;
1172		bremfree(bp);
1173
1174		/*
1175		 * check for size inconsistancies (note that they shouldn't happen
1176		 * but do when filesystems don't handle the size changes correctly.)
1177		 * We are conservative on metadata and don't just extend the buffer
1178		 * but write and re-constitute it.
1179		 */
1180
1181		if (bp->b_bcount != size) {
1182			if ((bp->b_flags & B_VMIO) && (size <= bp->b_kvasize)) {
1183				allocbuf(bp, size);
1184			} else {
1185				bp->b_flags |= B_NOCACHE;
1186				VOP_BWRITE(bp);
1187				goto loop;
1188			}
1189		}
1190
1191		if (bp->b_usecount < BUF_MAXUSE)
1192			++bp->b_usecount;
1193		splx(s);
1194		return (bp);
1195	} else {
1196		vm_object_t obj;
1197
1198		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == 0) {
1199			if (slpflag || slptimeo) {
1200				splx(s);
1201				return NULL;
1202			}
1203			goto loop;
1204		}
1205
1206		/*
1207		 * This code is used to make sure that a buffer is not
1208		 * created while the getnewbuf routine is blocked.
1209		 * Normally the vnode is locked so this isn't a problem.
1210		 * VBLK type I/O requests, however, don't lock the vnode.
1211		 */
1212		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1213			bp->b_flags |= B_INVAL;
1214			brelse(bp);
1215			goto loop;
1216		}
1217
1218		/*
1219		 * Insert the buffer into the hash, so that it can
1220		 * be found by incore.
1221		 */
1222		bp->b_blkno = bp->b_lblkno = blkno;
1223		bgetvp(vp, bp);
1224		LIST_REMOVE(bp, b_hash);
1225		bh = BUFHASH(vp, blkno);
1226		LIST_INSERT_HEAD(bh, bp, b_hash);
1227
1228		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1229			bp->b_flags |= (B_VMIO | B_CACHE);
1230#if defined(VFS_BIO_DEBUG)
1231			if (vp->v_type != VREG && vp->v_type != VBLK)
1232				printf("getblk: vmioing file type %d???\n", vp->v_type);
1233#endif
1234		} else {
1235			bp->b_flags &= ~B_VMIO;
1236		}
1237		splx(s);
1238
1239		allocbuf(bp, size);
1240#ifdef	PC98
1241		/*
1242		 * 1024byte/sector support
1243		 */
1244#define B_XXX2 0x8000000
1245		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1246#endif
1247		return (bp);
1248	}
1249}
1250
1251/*
1252 * Get an empty, disassociated buffer of given size.
1253 */
1254struct buf *
1255geteblk(int size)
1256{
1257	struct buf *bp;
1258	int s;
1259
1260	s = splbio();
1261	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
1262	splx(s);
1263	allocbuf(bp, size);
1264	bp->b_flags |= B_INVAL;
1265	return (bp);
1266}
1267
1268
1269/*
1270 * This code constitutes the buffer memory from either anonymous system
1271 * memory (in the case of non-VMIO operations) or from an associated
1272 * VM object (in the case of VMIO operations).
1273 *
1274 * Note that this code is tricky, and has many complications to resolve
1275 * deadlock or inconsistant data situations.  Tread lightly!!!
1276 *
1277 * Modify the length of a buffer's underlying buffer storage without
1278 * destroying information (unless, of course the buffer is shrinking).
1279 */
1280int
1281allocbuf(struct buf * bp, int size)
1282{
1283
1284	int s;
1285	int newbsize, mbsize;
1286	int i;
1287
1288	if (!(bp->b_flags & B_BUSY))
1289		panic("allocbuf: buffer not busy");
1290
1291	if (bp->b_kvasize < size)
1292		panic("allocbuf: buffer too small");
1293
1294	if ((bp->b_flags & B_VMIO) == 0) {
1295		caddr_t origbuf;
1296		int origbufsize;
1297		/*
1298		 * Just get anonymous memory from the kernel
1299		 */
1300		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1301#if !defined(NO_B_MALLOC)
1302		if (bp->b_flags & B_MALLOC)
1303			newbsize = mbsize;
1304		else
1305#endif
1306			newbsize = round_page(size);
1307
1308		if (newbsize < bp->b_bufsize) {
1309#if !defined(NO_B_MALLOC)
1310			/*
1311			 * malloced buffers are not shrunk
1312			 */
1313			if (bp->b_flags & B_MALLOC) {
1314				if (newbsize) {
1315					bp->b_bcount = size;
1316				} else {
1317					free(bp->b_data, M_BIOBUF);
1318					bufspace -= bp->b_bufsize;
1319					bufmallocspace -= bp->b_bufsize;
1320					bp->b_data = bp->b_kvabase;
1321					bp->b_bufsize = 0;
1322					bp->b_bcount = 0;
1323					bp->b_flags &= ~B_MALLOC;
1324				}
1325				return 1;
1326			}
1327#endif
1328			vm_hold_free_pages(
1329			    bp,
1330			    (vm_offset_t) bp->b_data + newbsize,
1331			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1332		} else if (newbsize > bp->b_bufsize) {
1333#if !defined(NO_B_MALLOC)
1334			/*
1335			 * We only use malloced memory on the first allocation.
1336			 * and revert to page-allocated memory when the buffer grows.
1337			 */
1338			if ( (bufmallocspace < maxbufmallocspace) &&
1339				(bp->b_bufsize == 0) &&
1340				(mbsize <= PAGE_SIZE/2)) {
1341
1342				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1343				bp->b_bufsize = mbsize;
1344				bp->b_bcount = size;
1345				bp->b_flags |= B_MALLOC;
1346				bufspace += mbsize;
1347				bufmallocspace += mbsize;
1348				return 1;
1349			}
1350#endif
1351			origbuf = NULL;
1352			origbufsize = 0;
1353#if !defined(NO_B_MALLOC)
1354			/*
1355			 * If the buffer is growing on it's other-than-first allocation,
1356			 * then we revert to the page-allocation scheme.
1357			 */
1358			if (bp->b_flags & B_MALLOC) {
1359				origbuf = bp->b_data;
1360				origbufsize = bp->b_bufsize;
1361				bp->b_data = bp->b_kvabase;
1362				bufspace -= bp->b_bufsize;
1363				bufmallocspace -= bp->b_bufsize;
1364				bp->b_bufsize = 0;
1365				bp->b_flags &= ~B_MALLOC;
1366				newbsize = round_page(newbsize);
1367			}
1368#endif
1369			vm_hold_load_pages(
1370			    bp,
1371			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1372			    (vm_offset_t) bp->b_data + newbsize);
1373#if !defined(NO_B_MALLOC)
1374			if (origbuf) {
1375				bcopy(origbuf, bp->b_data, origbufsize);
1376				free(origbuf, M_BIOBUF);
1377			}
1378#endif
1379		}
1380	} else {
1381		vm_page_t m;
1382		int desiredpages;
1383
1384		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1385		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1386
1387#if !defined(NO_B_MALLOC)
1388		if (bp->b_flags & B_MALLOC)
1389			panic("allocbuf: VMIO buffer can't be malloced");
1390#endif
1391
1392		if (newbsize < bp->b_bufsize) {
1393			if (desiredpages < bp->b_npages) {
1394				for (i = desiredpages; i < bp->b_npages; i++) {
1395					/*
1396					 * the page is not freed here -- it
1397					 * is the responsibility of vnode_pager_setsize
1398					 */
1399					m = bp->b_pages[i];
1400#if defined(DIAGNOSTIC)
1401					if (m == bogus_page)
1402						panic("allocbuf: bogus page found");
1403#endif
1404					s = splvm();
1405					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1406						m->flags |= PG_WANTED;
1407						tsleep(m, PVM, "biodep", 0);
1408					}
1409					splx(s);
1410
1411					bp->b_pages[i] = NULL;
1412					vm_page_unwire(m);
1413				}
1414				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1415				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1416				bp->b_npages = desiredpages;
1417			}
1418		} else if (newbsize > bp->b_bufsize) {
1419			vm_object_t obj;
1420			vm_offset_t tinc, toff;
1421			vm_ooffset_t off;
1422			vm_pindex_t objoff;
1423			int pageindex, curbpnpages;
1424			struct vnode *vp;
1425			int bsize;
1426
1427			vp = bp->b_vp;
1428
1429			if (vp->v_type == VBLK)
1430				bsize = DEV_BSIZE;
1431			else
1432				bsize = vp->v_mount->mnt_stat.f_iosize;
1433
1434			if (bp->b_npages < desiredpages) {
1435				obj = vp->v_object;
1436				tinc = PAGE_SIZE;
1437				if (tinc > bsize)
1438					tinc = bsize;
1439				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1440				curbpnpages = bp->b_npages;
1441		doretry:
1442				bp->b_flags |= B_CACHE;
1443				bp->b_validoff = bp->b_validend = 0;
1444				for (toff = 0; toff < newbsize; toff += tinc) {
1445					int bytesinpage;
1446
1447					pageindex = toff >> PAGE_SHIFT;
1448					objoff = OFF_TO_IDX(off + toff);
1449					if (pageindex < curbpnpages) {
1450
1451						m = bp->b_pages[pageindex];
1452#ifdef VFS_BIO_DIAG
1453						if (m->pindex != objoff)
1454							panic("allocbuf: page changed offset??!!!?");
1455#endif
1456						bytesinpage = tinc;
1457						if (tinc > (newbsize - toff))
1458							bytesinpage = newbsize - toff;
1459						if (bp->b_flags & B_CACHE)
1460							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1461						continue;
1462					}
1463					m = vm_page_lookup(obj, objoff);
1464					if (!m) {
1465						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1466						if (!m) {
1467							VM_WAIT;
1468							goto doretry;
1469						}
1470						/*
1471						 * Normally it is unwise to clear PG_BUSY without
1472						 * PAGE_WAKEUP -- but it is okay here, as there is
1473						 * no chance for blocking between here and vm_page_alloc
1474						 */
1475						m->flags &= ~PG_BUSY;
1476						vm_page_wire(m);
1477						bp->b_flags &= ~B_CACHE;
1478					} else if (m->flags & PG_BUSY) {
1479						s = splvm();
1480						if (m->flags & PG_BUSY) {
1481							m->flags |= PG_WANTED;
1482							tsleep(m, PVM, "pgtblk", 0);
1483						}
1484						splx(s);
1485						goto doretry;
1486					} else {
1487						if ((curproc != pageproc) &&
1488							((m->queue - m->pc) == PQ_CACHE) &&
1489						    ((cnt.v_free_count + cnt.v_cache_count) <
1490								(cnt.v_free_min + cnt.v_cache_min))) {
1491							pagedaemon_wakeup();
1492						}
1493						bytesinpage = tinc;
1494						if (tinc > (newbsize - toff))
1495							bytesinpage = newbsize - toff;
1496						if (bp->b_flags & B_CACHE)
1497							vfs_buf_set_valid(bp, off, toff, bytesinpage, m);
1498						vm_page_wire(m);
1499					}
1500					bp->b_pages[pageindex] = m;
1501					curbpnpages = pageindex + 1;
1502				}
1503				if (vp->v_tag == VT_NFS) {
1504					if (bp->b_dirtyend > 0) {
1505						bp->b_validoff = min(bp->b_validoff, bp->b_dirtyoff);
1506						bp->b_validend = max(bp->b_validend, bp->b_dirtyend);
1507					}
1508					if (bp->b_validend == 0)
1509						bp->b_flags &= ~B_CACHE;
1510				}
1511				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1512				bp->b_npages = curbpnpages;
1513				pmap_qenter((vm_offset_t) bp->b_data,
1514					bp->b_pages, bp->b_npages);
1515				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1516			}
1517		}
1518	}
1519	if (bp->b_flags & B_VMIO)
1520		vmiospace += bp->b_bufsize;
1521	bufspace += (newbsize - bp->b_bufsize);
1522	bp->b_bufsize = newbsize;
1523	bp->b_bcount = size;
1524	return 1;
1525}
1526
1527/*
1528 * Wait for buffer I/O completion, returning error status.
1529 */
1530int
1531biowait(register struct buf * bp)
1532{
1533	int s;
1534
1535	s = splbio();
1536	while ((bp->b_flags & B_DONE) == 0)
1537		tsleep(bp, PRIBIO, "biowait", 0);
1538	splx(s);
1539	if (bp->b_flags & B_EINTR) {
1540		bp->b_flags &= ~B_EINTR;
1541		return (EINTR);
1542	}
1543	if (bp->b_flags & B_ERROR) {
1544		return (bp->b_error ? bp->b_error : EIO);
1545	} else {
1546		return (0);
1547	}
1548}
1549
1550/*
1551 * Finish I/O on a buffer, calling an optional function.
1552 * This is usually called from interrupt level, so process blocking
1553 * is not *a good idea*.
1554 */
1555void
1556biodone(register struct buf * bp)
1557{
1558	int s;
1559
1560	s = splbio();
1561	if (!(bp->b_flags & B_BUSY))
1562		panic("biodone: buffer not busy");
1563
1564	if (bp->b_flags & B_DONE) {
1565		splx(s);
1566		printf("biodone: buffer already done\n");
1567		return;
1568	}
1569	bp->b_flags |= B_DONE;
1570
1571	if ((bp->b_flags & B_READ) == 0) {
1572		vwakeup(bp);
1573	}
1574#ifdef BOUNCE_BUFFERS
1575	if (bp->b_flags & B_BOUNCE)
1576		vm_bounce_free(bp);
1577#endif
1578
1579	/* call optional completion function if requested */
1580	if (bp->b_flags & B_CALL) {
1581		bp->b_flags &= ~B_CALL;
1582		(*bp->b_iodone) (bp);
1583		splx(s);
1584		return;
1585	}
1586	if (bp->b_flags & B_VMIO) {
1587		int i, resid;
1588		vm_ooffset_t foff;
1589		vm_page_t m;
1590		vm_object_t obj;
1591		int iosize;
1592		struct vnode *vp = bp->b_vp;
1593
1594		if (vp->v_type == VBLK)
1595			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1596		else
1597			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1598		obj = vp->v_object;
1599		if (!obj) {
1600			panic("biodone: no object");
1601		}
1602#if defined(VFS_BIO_DEBUG)
1603		if (obj->paging_in_progress < bp->b_npages) {
1604			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1605			    obj->paging_in_progress, bp->b_npages);
1606		}
1607#endif
1608		iosize = bp->b_bufsize;
1609		for (i = 0; i < bp->b_npages; i++) {
1610			int bogusflag = 0;
1611			m = bp->b_pages[i];
1612			if (m == bogus_page) {
1613				bogusflag = 1;
1614				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1615				if (!m) {
1616#if defined(VFS_BIO_DEBUG)
1617					printf("biodone: page disappeared\n");
1618#endif
1619					--obj->paging_in_progress;
1620					continue;
1621				}
1622				bp->b_pages[i] = m;
1623				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1624			}
1625#if defined(VFS_BIO_DEBUG)
1626			if (OFF_TO_IDX(foff) != m->pindex) {
1627				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1628			}
1629#endif
1630			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1631			if (resid > iosize)
1632				resid = iosize;
1633			/*
1634			 * In the write case, the valid and clean bits are
1635			 * already changed correctly, so we only need to do this
1636			 * here in the read case.
1637			 */
1638			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1639				vfs_page_set_valid(bp, foff, i, m);
1640			}
1641
1642			/*
1643			 * when debugging new filesystems or buffer I/O methods, this
1644			 * is the most common error that pops up.  if you see this, you
1645			 * have not set the page busy flag correctly!!!
1646			 */
1647			if (m->busy == 0) {
1648				printf("biodone: page busy < 0, "
1649				    "pindex: %d, foff: 0x(%x,%x), "
1650				    "resid: %d, index: %d\n",
1651				    (int) m->pindex, (int)(foff >> 32),
1652						(int) foff & 0xffffffff, resid, i);
1653				if (vp->v_type != VBLK)
1654					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1655					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1656					    (int) bp->b_lblkno,
1657					    bp->b_flags, bp->b_npages);
1658				else
1659					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1660					    (int) bp->b_lblkno,
1661					    bp->b_flags, bp->b_npages);
1662				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1663				    m->valid, m->dirty, m->wire_count);
1664				panic("biodone: page busy < 0\n");
1665			}
1666			--m->busy;
1667			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1668				m->flags &= ~PG_WANTED;
1669				wakeup(m);
1670			}
1671			--obj->paging_in_progress;
1672			foff += resid;
1673			iosize -= resid;
1674		}
1675		if (obj && obj->paging_in_progress == 0 &&
1676		    (obj->flags & OBJ_PIPWNT)) {
1677			obj->flags &= ~OBJ_PIPWNT;
1678			wakeup(obj);
1679		}
1680	}
1681	/*
1682	 * For asynchronous completions, release the buffer now. The brelse
1683	 * checks for B_WANTED and will do the wakeup there if necessary - so
1684	 * no need to do a wakeup here in the async case.
1685	 */
1686
1687	if (bp->b_flags & B_ASYNC) {
1688		if ((bp->b_flags & B_ORDERED) == 0) {
1689			if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1690				brelse(bp);
1691			else
1692				bqrelse(bp);
1693		}
1694	} else {
1695		bp->b_flags &= ~B_WANTED;
1696		wakeup(bp);
1697	}
1698	splx(s);
1699}
1700
1701int
1702count_lock_queue()
1703{
1704	int count;
1705	struct buf *bp;
1706
1707	count = 0;
1708	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1709	    bp != NULL;
1710	    bp = TAILQ_NEXT(bp, b_freelist))
1711		count++;
1712	return (count);
1713}
1714
1715int vfs_update_interval = 30;
1716
1717static void
1718vfs_update()
1719{
1720	while (1) {
1721		tsleep(&vfs_update_wakeup, PUSER, "update",
1722		    hz * vfs_update_interval);
1723		vfs_update_wakeup = 0;
1724		sync(curproc, NULL, NULL);
1725	}
1726}
1727
1728static int
1729sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1730{
1731	int error = sysctl_handle_int(oidp,
1732		oidp->oid_arg1, oidp->oid_arg2, req);
1733	if (!error)
1734		wakeup(&vfs_update_wakeup);
1735	return error;
1736}
1737
1738SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1739	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1740
1741
1742/*
1743 * This routine is called in lieu of iodone in the case of
1744 * incomplete I/O.  This keeps the busy status for pages
1745 * consistant.
1746 */
1747void
1748vfs_unbusy_pages(struct buf * bp)
1749{
1750	int i;
1751
1752	if (bp->b_flags & B_VMIO) {
1753		struct vnode *vp = bp->b_vp;
1754		vm_object_t obj = vp->v_object;
1755		vm_ooffset_t foff;
1756
1757		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1758
1759		for (i = 0; i < bp->b_npages; i++) {
1760			vm_page_t m = bp->b_pages[i];
1761
1762			if (m == bogus_page) {
1763				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1764				if (!m) {
1765					panic("vfs_unbusy_pages: page missing\n");
1766				}
1767				bp->b_pages[i] = m;
1768				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1769			}
1770			--obj->paging_in_progress;
1771			--m->busy;
1772			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1773				m->flags &= ~PG_WANTED;
1774				wakeup(m);
1775			}
1776		}
1777		if (obj->paging_in_progress == 0 &&
1778		    (obj->flags & OBJ_PIPWNT)) {
1779			obj->flags &= ~OBJ_PIPWNT;
1780			wakeup(obj);
1781		}
1782	}
1783}
1784
1785/*
1786 * Set NFS' b_validoff and b_validend fields from the valid bits
1787 * of a page.  If the consumer is not NFS, and the page is not
1788 * valid for the entire range, clear the B_CACHE flag to force
1789 * the consumer to re-read the page.
1790 */
1791static void
1792vfs_buf_set_valid(struct buf *bp,
1793		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
1794		  vm_page_t m)
1795{
1796	if (bp->b_vp->v_tag == VT_NFS) {
1797		vm_offset_t svalid, evalid;
1798		int validbits = m->valid;
1799
1800		/*
1801		 * This only bothers with the first valid range in the
1802		 * page.
1803		 */
1804		svalid = off;
1805		while (validbits && !(validbits & 1)) {
1806			svalid += DEV_BSIZE;
1807			validbits >>= 1;
1808		}
1809		evalid = svalid;
1810		while (validbits & 1) {
1811			evalid += DEV_BSIZE;
1812			validbits >>= 1;
1813		}
1814		/*
1815		 * Make sure this range is contiguous with the range
1816		 * built up from previous pages.  If not, then we will
1817		 * just use the range from the previous pages.
1818		 */
1819		if (svalid == bp->b_validend) {
1820			bp->b_validoff = min(bp->b_validoff, svalid);
1821			bp->b_validend = max(bp->b_validend, evalid);
1822		}
1823	} else if (!vm_page_is_valid(m,
1824				     (vm_offset_t) ((foff + off) & PAGE_MASK),
1825				     size)) {
1826		bp->b_flags &= ~B_CACHE;
1827	}
1828}
1829
1830/*
1831 * Set the valid bits in a page, taking care of the b_validoff,
1832 * b_validend fields which NFS uses to optimise small reads.  Off is
1833 * the offset within the file and pageno is the page index within the buf.
1834 */
1835static void
1836vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
1837{
1838	struct vnode *vp = bp->b_vp;
1839	vm_ooffset_t soff, eoff;
1840
1841	soff = off;
1842	eoff = off + min(PAGE_SIZE, bp->b_bufsize);
1843	vm_page_set_invalid(m,
1844			    (vm_offset_t) (soff & PAGE_MASK),
1845			    (vm_offset_t) (eoff - soff));
1846	if (vp->v_tag == VT_NFS) {
1847		vm_ooffset_t sv, ev;
1848		off = off - pageno * PAGE_SIZE;
1849		sv = off + ((bp->b_validoff + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1));
1850		ev = off + (bp->b_validend & ~(DEV_BSIZE - 1));
1851		soff = max(sv, soff);
1852		eoff = min(ev, eoff);
1853	}
1854	if (eoff > soff)
1855		vm_page_set_validclean(m,
1856				       (vm_offset_t) (soff & PAGE_MASK),
1857				       (vm_offset_t) (eoff - soff));
1858}
1859
1860/*
1861 * This routine is called before a device strategy routine.
1862 * It is used to tell the VM system that paging I/O is in
1863 * progress, and treat the pages associated with the buffer
1864 * almost as being PG_BUSY.  Also the object paging_in_progress
1865 * flag is handled to make sure that the object doesn't become
1866 * inconsistant.
1867 */
1868void
1869vfs_busy_pages(struct buf * bp, int clear_modify)
1870{
1871	int i;
1872
1873	if (bp->b_flags & B_VMIO) {
1874		struct vnode *vp = bp->b_vp;
1875		vm_object_t obj = vp->v_object;
1876		vm_ooffset_t foff;
1877
1878		if (vp->v_type == VBLK)
1879			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1880		else
1881			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1882		vfs_setdirty(bp);
1883		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
1884			vm_page_t m = bp->b_pages[i];
1885
1886			if ((bp->b_flags & B_CLUSTER) == 0) {
1887				obj->paging_in_progress++;
1888				m->busy++;
1889			}
1890			vm_page_protect(m, VM_PROT_NONE);
1891			if (clear_modify)
1892				vfs_page_set_valid(bp, foff, i, m);
1893			else if (bp->b_bcount >= PAGE_SIZE) {
1894				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1895					bp->b_pages[i] = bogus_page;
1896					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1897				}
1898			}
1899		}
1900	}
1901}
1902
1903/*
1904 * Tell the VM system that the pages associated with this buffer
1905 * are clean.  This is used for delayed writes where the data is
1906 * going to go to disk eventually without additional VM intevention.
1907 */
1908void
1909vfs_clean_pages(struct buf * bp)
1910{
1911	int i;
1912
1913	if (bp->b_flags & B_VMIO) {
1914		struct vnode *vp = bp->b_vp;
1915		vm_object_t obj = vp->v_object;
1916		vm_ooffset_t foff;
1917
1918		if (vp->v_type == VBLK)
1919			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1920		else
1921			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1922		for (i = 0; i < bp->b_npages; i++, foff += PAGE_SIZE) {
1923			vm_page_t m = bp->b_pages[i];
1924
1925			vfs_page_set_valid(bp, foff, i, m);
1926		}
1927	}
1928}
1929
1930void
1931vfs_bio_clrbuf(struct buf *bp) {
1932	int i;
1933	if( bp->b_flags & B_VMIO) {
1934		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1935			int mask;
1936			mask = 0;
1937			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
1938				mask |= (1 << (i/DEV_BSIZE));
1939			if( bp->b_pages[0]->valid != mask) {
1940				bzero(bp->b_data, bp->b_bufsize);
1941			}
1942			bp->b_pages[0]->valid = mask;
1943			bp->b_resid = 0;
1944			return;
1945		}
1946		for(i=0;i<bp->b_npages;i++) {
1947			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1948				continue;
1949			if( bp->b_pages[i]->valid == 0) {
1950				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
1951					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
1952				}
1953			} else {
1954				int j;
1955				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1956					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1957						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
1958				}
1959			}
1960			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
1961		}
1962		bp->b_resid = 0;
1963	} else {
1964		clrbuf(bp);
1965	}
1966}
1967
1968/*
1969 * vm_hold_load_pages and vm_hold_unload pages get pages into
1970 * a buffers address space.  The pages are anonymous and are
1971 * not associated with a file object.
1972 */
1973void
1974vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1975{
1976	vm_offset_t pg;
1977	vm_page_t p;
1978	int index;
1979
1980	to = round_page(to);
1981	from = round_page(from);
1982	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1983
1984	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1985
1986tryagain:
1987
1988		p = vm_page_alloc(kernel_object, ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
1989		    VM_ALLOC_NORMAL);
1990		if (!p) {
1991			VM_WAIT;
1992			goto tryagain;
1993		}
1994		vm_page_wire(p);
1995		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1996		bp->b_pages[index] = p;
1997		PAGE_WAKEUP(p);
1998	}
1999	bp->b_npages = to >> PAGE_SHIFT;
2000}
2001
2002void
2003vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
2004{
2005	vm_offset_t pg;
2006	vm_page_t p;
2007	int index;
2008
2009	from = round_page(from);
2010	to = round_page(to);
2011	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
2012
2013	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
2014		p = bp->b_pages[index];
2015		if (p && (index < bp->b_npages)) {
2016			if (p->busy) {
2017				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
2018					bp->b_blkno, bp->b_lblkno);
2019			}
2020			bp->b_pages[index] = NULL;
2021			pmap_kremove(pg);
2022			vm_page_unwire(p);
2023			vm_page_free(p);
2024		}
2025	}
2026	bp->b_npages = from >> PAGE_SHIFT;
2027}
2028
2029
2030#include "opt_ddb.h"
2031#ifdef DDB
2032#include <ddb/ddb.h>
2033
2034DB_SHOW_COMMAND(buffer, db_show_buffer)
2035{
2036	/* get args */
2037	struct buf *bp = (struct buf *)addr;
2038
2039	if (!have_addr) {
2040		db_printf("usage: show buffer <addr>\n");
2041		return;
2042	}
2043
2044	db_printf("b_proc = %p,\nb_flags = 0x%b\n", (void *)bp->b_proc,
2045		  bp->b_flags, "\20\40bounce\37cluster\36vmio\35ram\34ordered"
2046		  "\33paging\32xxx\31writeinprog\30wanted\27relbuf\26tape"
2047		  "\25read\24raw\23phys\22clusterok\21malloc\20nocache"
2048		  "\17locked\16inval\15gathered\14error\13eintr\12done\11dirty"
2049		  "\10delwri\7call\6cache\5busy\4bad\3async\2needcommit\1age");
2050	db_printf("b_error = %d, b_bufsize = %ld, b_bcount = %ld, "
2051		  "b_resid = %ld\nb_dev = 0x%x, b_un.b_addr = %p, "
2052		  "b_blkno = %d, b_pblkno = %d\n",
2053		  bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
2054		  bp->b_dev, bp->b_un.b_addr, bp->b_blkno, bp->b_pblkno);
2055}
2056#endif /* DDB */
2057