vfs_bio.c revision 255986
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * Copyright (c) 2013 The FreeBSD Foundation
5 * All rights reserved.
6 *
7 * Portions of this software were developed by Konstantin Belousov
8 * under sponsorship from the FreeBSD Foundation.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 *    notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 *    notice, this list of conditions and the following disclaimer in the
17 *    documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32/*
33 * this file contains a new buffer I/O scheme implementing a coherent
34 * VM object and buffer cache scheme.  Pains have been taken to make
35 * sure that the performance degradation associated with schemes such
36 * as this is not realized.
37 *
38 * Author:  John S. Dyson
39 * Significant help during the development and debugging phases
40 * had been provided by David Greenman, also of the FreeBSD core team.
41 *
42 * see man buf(9) for more info.
43 */
44
45#include <sys/cdefs.h>
46__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 255986 2013-10-02 06:00:34Z kib $");
47
48#include <sys/param.h>
49#include <sys/systm.h>
50#include <sys/bio.h>
51#include <sys/conf.h>
52#include <sys/buf.h>
53#include <sys/devicestat.h>
54#include <sys/eventhandler.h>
55#include <sys/fail.h>
56#include <sys/limits.h>
57#include <sys/lock.h>
58#include <sys/malloc.h>
59#include <sys/mount.h>
60#include <sys/mutex.h>
61#include <sys/kernel.h>
62#include <sys/kthread.h>
63#include <sys/proc.h>
64#include <sys/resourcevar.h>
65#include <sys/rwlock.h>
66#include <sys/sysctl.h>
67#include <sys/vmem.h>
68#include <sys/vmmeter.h>
69#include <sys/vnode.h>
70#include <geom/geom.h>
71#include <vm/vm.h>
72#include <vm/vm_param.h>
73#include <vm/vm_kern.h>
74#include <vm/vm_pageout.h>
75#include <vm/vm_page.h>
76#include <vm/vm_object.h>
77#include <vm/vm_extern.h>
78#include <vm/vm_map.h>
79#include "opt_compat.h"
80#include "opt_directio.h"
81#include "opt_swap.h"
82
83static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
84
85struct	bio_ops bioops;		/* I/O operation notification */
86
87struct	buf_ops buf_ops_bio = {
88	.bop_name	=	"buf_ops_bio",
89	.bop_write	=	bufwrite,
90	.bop_strategy	=	bufstrategy,
91	.bop_sync	=	bufsync,
92	.bop_bdflush	=	bufbdflush,
93};
94
95/*
96 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
97 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
98 */
99struct buf *buf;		/* buffer header pool */
100caddr_t unmapped_buf;
101
102static struct proc *bufdaemonproc;
103
104static int inmem(struct vnode *vp, daddr_t blkno);
105static void vm_hold_free_pages(struct buf *bp, int newbsize);
106static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
107		vm_offset_t to);
108static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
109static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
110		vm_page_t m);
111static void vfs_clean_pages_dirty_buf(struct buf *bp);
112static void vfs_setdirty_locked_object(struct buf *bp);
113static void vfs_vmio_release(struct buf *bp);
114static int vfs_bio_clcheck(struct vnode *vp, int size,
115		daddr_t lblkno, daddr_t blkno);
116static int buf_flush(int);
117static int flushbufqueues(int, int);
118static void buf_daemon(void);
119static void bremfreel(struct buf *bp);
120static __inline void bd_wakeup(void);
121#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
122    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
123static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
124#endif
125
126int vmiodirenable = TRUE;
127SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
128    "Use the VM system for directory writes");
129long runningbufspace;
130SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
131    "Amount of presently outstanding async buffer io");
132static long bufspace;
133#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
134    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
135SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
136    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
137#else
138SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
139    "Virtual memory used for buffers");
140#endif
141static long unmapped_bufspace;
142SYSCTL_LONG(_vfs, OID_AUTO, unmapped_bufspace, CTLFLAG_RD,
143    &unmapped_bufspace, 0,
144    "Amount of unmapped buffers, inclusive in the bufspace");
145static long maxbufspace;
146SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
147    "Maximum allowed value of bufspace (including buf_daemon)");
148static long bufmallocspace;
149SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
150    "Amount of malloced memory for buffers");
151static long maxbufmallocspace;
152SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
153    "Maximum amount of malloced memory for buffers");
154static long lobufspace;
155SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
156    "Minimum amount of buffers we want to have");
157long hibufspace;
158SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
159    "Maximum allowed value of bufspace (excluding buf_daemon)");
160static int bufreusecnt;
161SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
162    "Number of times we have reused a buffer");
163static int buffreekvacnt;
164SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
165    "Number of times we have freed the KVA space from some buffer");
166static int bufdefragcnt;
167SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
168    "Number of times we have had to repeat buffer allocation to defragment");
169static long lorunningspace;
170SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
171    "Minimum preferred space used for in-progress I/O");
172static long hirunningspace;
173SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
174    "Maximum amount of space to use for in-progress I/O");
175int dirtybufferflushes;
176SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
177    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
178int bdwriteskip;
179SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
180    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
181int altbufferflushes;
182SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
183    0, "Number of fsync flushes to limit dirty buffers");
184static int recursiveflushes;
185SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
186    0, "Number of flushes skipped due to being recursive");
187static int numdirtybuffers;
188SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
189    "Number of buffers that are dirty (has unwritten changes) at the moment");
190static int lodirtybuffers;
191SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
192    "How many buffers we want to have free before bufdaemon can sleep");
193static int hidirtybuffers;
194SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
195    "When the number of dirty buffers is considered severe");
196int dirtybufthresh;
197SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
198    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
199static int numfreebuffers;
200SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
201    "Number of free buffers");
202static int lofreebuffers;
203SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
204   "XXX Unused");
205static int hifreebuffers;
206SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
207   "XXX Complicatedly unused");
208static int getnewbufcalls;
209SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
210   "Number of calls to getnewbuf");
211static int getnewbufrestarts;
212SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
213    "Number of times getnewbuf has had to restart a buffer aquisition");
214static int mappingrestarts;
215SYSCTL_INT(_vfs, OID_AUTO, mappingrestarts, CTLFLAG_RW, &mappingrestarts, 0,
216    "Number of times getblk has had to restart a buffer mapping for "
217    "unmapped buffer");
218static int flushbufqtarget = 100;
219SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
220    "Amount of work to do in flushbufqueues when helping bufdaemon");
221static long notbufdflushes;
222SYSCTL_LONG(_vfs, OID_AUTO, notbufdflushes, CTLFLAG_RD, &notbufdflushes, 0,
223    "Number of dirty buffer flushes done by the bufdaemon helpers");
224static long barrierwrites;
225SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
226    "Number of barrier writes");
227SYSCTL_INT(_vfs, OID_AUTO, unmapped_buf_allowed, CTLFLAG_RD,
228    &unmapped_buf_allowed, 0,
229    "Permit the use of the unmapped i/o");
230
231/*
232 * Lock for the non-dirty bufqueues
233 */
234static struct mtx_padalign bqclean;
235
236/*
237 * Lock for the dirty queue.
238 */
239static struct mtx_padalign bqdirty;
240
241/*
242 * This lock synchronizes access to bd_request.
243 */
244static struct mtx_padalign bdlock;
245
246/*
247 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
248 * waitrunningbufspace().
249 */
250static struct mtx_padalign rbreqlock;
251
252/*
253 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
254 */
255static struct mtx_padalign nblock;
256
257/*
258 * Lock that protects bdirtywait.
259 */
260static struct mtx_padalign bdirtylock;
261
262/*
263 * Wakeup point for bufdaemon, as well as indicator of whether it is already
264 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
265 * is idling.
266 */
267static int bd_request;
268
269/*
270 * Request for the buf daemon to write more buffers than is indicated by
271 * lodirtybuf.  This may be necessary to push out excess dependencies or
272 * defragment the address space where a simple count of the number of dirty
273 * buffers is insufficient to characterize the demand for flushing them.
274 */
275static int bd_speedupreq;
276
277/*
278 * bogus page -- for I/O to/from partially complete buffers
279 * this is a temporary solution to the problem, but it is not
280 * really that bad.  it would be better to split the buffer
281 * for input in the case of buffers partially already in memory,
282 * but the code is intricate enough already.
283 */
284vm_page_t bogus_page;
285
286/*
287 * Synchronization (sleep/wakeup) variable for active buffer space requests.
288 * Set when wait starts, cleared prior to wakeup().
289 * Used in runningbufwakeup() and waitrunningbufspace().
290 */
291static int runningbufreq;
292
293/*
294 * Synchronization (sleep/wakeup) variable for buffer requests.
295 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
296 * by and/or.
297 * Used in numdirtywakeup(), bufspacewakeup(), bufcountadd(), bwillwrite(),
298 * getnewbuf(), and getblk().
299 */
300static int needsbuffer;
301
302/*
303 * Synchronization for bwillwrite() waiters.
304 */
305static int bdirtywait;
306
307/*
308 * Definitions for the buffer free lists.
309 */
310#define BUFFER_QUEUES	5	/* number of free buffer queues */
311
312#define QUEUE_NONE	0	/* on no queue */
313#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
314#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
315#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
316#define QUEUE_EMPTY	4	/* empty buffer headers */
317#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
318
319/* Queues for free buffers with various properties */
320static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
321#ifdef INVARIANTS
322static int bq_len[BUFFER_QUEUES];
323#endif
324
325/*
326 * Single global constant for BUF_WMESG, to avoid getting multiple references.
327 * buf_wmesg is referred from macros.
328 */
329const char *buf_wmesg = BUF_WMESG;
330
331#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
332#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
333#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
334
335#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
336    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
337static int
338sysctl_bufspace(SYSCTL_HANDLER_ARGS)
339{
340	long lvalue;
341	int ivalue;
342
343	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
344		return (sysctl_handle_long(oidp, arg1, arg2, req));
345	lvalue = *(long *)arg1;
346	if (lvalue > INT_MAX)
347		/* On overflow, still write out a long to trigger ENOMEM. */
348		return (sysctl_handle_long(oidp, &lvalue, 0, req));
349	ivalue = lvalue;
350	return (sysctl_handle_int(oidp, &ivalue, 0, req));
351}
352#endif
353
354#ifdef DIRECTIO
355extern void ffs_rawread_setup(void);
356#endif /* DIRECTIO */
357
358/*
359 *	bqlock:
360 *
361 *	Return the appropriate queue lock based on the index.
362 */
363static inline struct mtx *
364bqlock(int qindex)
365{
366
367	if (qindex == QUEUE_DIRTY)
368		return (struct mtx *)(&bqdirty);
369	return (struct mtx *)(&bqclean);
370}
371
372/*
373 *	bdirtywakeup:
374 *
375 *	Wakeup any bwillwrite() waiters.
376 */
377static void
378bdirtywakeup(void)
379{
380	mtx_lock(&bdirtylock);
381	if (bdirtywait) {
382		bdirtywait = 0;
383		wakeup(&bdirtywait);
384	}
385	mtx_unlock(&bdirtylock);
386}
387
388/*
389 *	bdirtysub:
390 *
391 *	Decrement the numdirtybuffers count by one and wakeup any
392 *	threads blocked in bwillwrite().
393 */
394static void
395bdirtysub(void)
396{
397
398	if (atomic_fetchadd_int(&numdirtybuffers, -1) ==
399	    (lodirtybuffers + hidirtybuffers) / 2)
400		bdirtywakeup();
401}
402
403/*
404 *	bdirtyadd:
405 *
406 *	Increment the numdirtybuffers count by one and wakeup the buf
407 *	daemon if needed.
408 */
409static void
410bdirtyadd(void)
411{
412
413	/*
414	 * Only do the wakeup once as we cross the boundary.  The
415	 * buf daemon will keep running until the condition clears.
416	 */
417	if (atomic_fetchadd_int(&numdirtybuffers, 1) ==
418	    (lodirtybuffers + hidirtybuffers) / 2)
419		bd_wakeup();
420}
421
422/*
423 *	bufspacewakeup:
424 *
425 *	Called when buffer space is potentially available for recovery.
426 *	getnewbuf() will block on this flag when it is unable to free
427 *	sufficient buffer space.  Buffer space becomes recoverable when
428 *	bp's get placed back in the queues.
429 */
430
431static __inline void
432bufspacewakeup(void)
433{
434
435	/*
436	 * If someone is waiting for BUF space, wake them up.  Even
437	 * though we haven't freed the kva space yet, the waiting
438	 * process will be able to now.
439	 */
440	mtx_lock(&nblock);
441	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
442		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
443		wakeup(&needsbuffer);
444	}
445	mtx_unlock(&nblock);
446}
447
448/*
449 *	runningwakeup:
450 *
451 *	Wake up processes that are waiting on asynchronous writes to fall
452 *	below lorunningspace.
453 */
454static void
455runningwakeup(void)
456{
457
458	mtx_lock(&rbreqlock);
459	if (runningbufreq) {
460		runningbufreq = 0;
461		wakeup(&runningbufreq);
462	}
463	mtx_unlock(&rbreqlock);
464}
465
466/*
467 *	runningbufwakeup:
468 *
469 *	Decrement the outstanding write count according.
470 */
471void
472runningbufwakeup(struct buf *bp)
473{
474	long space, bspace;
475
476	bspace = bp->b_runningbufspace;
477	if (bspace == 0)
478		return;
479	space = atomic_fetchadd_long(&runningbufspace, -bspace);
480	KASSERT(space >= bspace, ("runningbufspace underflow %ld %ld",
481	    space, bspace));
482	bp->b_runningbufspace = 0;
483	/*
484	 * Only acquire the lock and wakeup on the transition from exceeding
485	 * the threshold to falling below it.
486	 */
487	if (space < lorunningspace)
488		return;
489	if (space - bspace > lorunningspace)
490		return;
491	runningwakeup();
492}
493
494/*
495 *	bufcountadd:
496 *
497 *	Called when a buffer has been added to one of the free queues to
498 *	account for the buffer and to wakeup anyone waiting for free buffers.
499 *	This typically occurs when large amounts of metadata are being handled
500 *	by the buffer cache ( else buffer space runs out first, usually ).
501 */
502static __inline void
503bufcountadd(struct buf *bp)
504{
505	int old;
506
507	KASSERT((bp->b_flags & B_INFREECNT) == 0,
508	    ("buf %p already counted as free", bp));
509	bp->b_flags |= B_INFREECNT;
510	old = atomic_fetchadd_int(&numfreebuffers, 1);
511	KASSERT(old >= 0 && old < nbuf,
512	    ("numfreebuffers climbed to %d", old + 1));
513	mtx_lock(&nblock);
514	if (needsbuffer) {
515		needsbuffer &= ~VFS_BIO_NEED_ANY;
516		if (numfreebuffers >= hifreebuffers)
517			needsbuffer &= ~VFS_BIO_NEED_FREE;
518		wakeup(&needsbuffer);
519	}
520	mtx_unlock(&nblock);
521}
522
523/*
524 *	bufcountsub:
525 *
526 *	Decrement the numfreebuffers count as needed.
527 */
528static void
529bufcountsub(struct buf *bp)
530{
531	int old;
532
533	/*
534	 * Fixup numfreebuffers count.  If the buffer is invalid or not
535	 * delayed-write, the buffer was free and we must decrement
536	 * numfreebuffers.
537	 */
538	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
539		KASSERT((bp->b_flags & B_INFREECNT) != 0,
540		    ("buf %p not counted in numfreebuffers", bp));
541		bp->b_flags &= ~B_INFREECNT;
542		old = atomic_fetchadd_int(&numfreebuffers, -1);
543		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
544	}
545}
546
547/*
548 *	waitrunningbufspace()
549 *
550 *	runningbufspace is a measure of the amount of I/O currently
551 *	running.  This routine is used in async-write situations to
552 *	prevent creating huge backups of pending writes to a device.
553 *	Only asynchronous writes are governed by this function.
554 *
555 *	This does NOT turn an async write into a sync write.  It waits
556 *	for earlier writes to complete and generally returns before the
557 *	caller's write has reached the device.
558 */
559void
560waitrunningbufspace(void)
561{
562
563	mtx_lock(&rbreqlock);
564	while (runningbufspace > hirunningspace) {
565		runningbufreq = 1;
566		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
567	}
568	mtx_unlock(&rbreqlock);
569}
570
571
572/*
573 *	vfs_buf_test_cache:
574 *
575 *	Called when a buffer is extended.  This function clears the B_CACHE
576 *	bit if the newly extended portion of the buffer does not contain
577 *	valid data.
578 */
579static __inline
580void
581vfs_buf_test_cache(struct buf *bp,
582		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
583		  vm_page_t m)
584{
585
586	VM_OBJECT_ASSERT_LOCKED(m->object);
587	if (bp->b_flags & B_CACHE) {
588		int base = (foff + off) & PAGE_MASK;
589		if (vm_page_is_valid(m, base, size) == 0)
590			bp->b_flags &= ~B_CACHE;
591	}
592}
593
594/* Wake up the buffer daemon if necessary */
595static __inline void
596bd_wakeup(void)
597{
598
599	mtx_lock(&bdlock);
600	if (bd_request == 0) {
601		bd_request = 1;
602		wakeup(&bd_request);
603	}
604	mtx_unlock(&bdlock);
605}
606
607/*
608 * bd_speedup - speedup the buffer cache flushing code
609 */
610void
611bd_speedup(void)
612{
613	int needwake;
614
615	mtx_lock(&bdlock);
616	needwake = 0;
617	if (bd_speedupreq == 0 || bd_request == 0)
618		needwake = 1;
619	bd_speedupreq = 1;
620	bd_request = 1;
621	if (needwake)
622		wakeup(&bd_request);
623	mtx_unlock(&bdlock);
624}
625
626#ifdef __i386__
627#define	TRANSIENT_DENOM	5
628#else
629#define	TRANSIENT_DENOM 10
630#endif
631
632/*
633 * Calculating buffer cache scaling values and reserve space for buffer
634 * headers.  This is called during low level kernel initialization and
635 * may be called more then once.  We CANNOT write to the memory area
636 * being reserved at this time.
637 */
638caddr_t
639kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
640{
641	int tuned_nbuf;
642	long maxbuf, maxbuf_sz, buf_sz,	biotmap_sz;
643
644	/*
645	 * physmem_est is in pages.  Convert it to kilobytes (assumes
646	 * PAGE_SIZE is >= 1K)
647	 */
648	physmem_est = physmem_est * (PAGE_SIZE / 1024);
649
650	/*
651	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
652	 * For the first 64MB of ram nominally allocate sufficient buffers to
653	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
654	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
655	 * the buffer cache we limit the eventual kva reservation to
656	 * maxbcache bytes.
657	 *
658	 * factor represents the 1/4 x ram conversion.
659	 */
660	if (nbuf == 0) {
661		int factor = 4 * BKVASIZE / 1024;
662
663		nbuf = 50;
664		if (physmem_est > 4096)
665			nbuf += min((physmem_est - 4096) / factor,
666			    65536 / factor);
667		if (physmem_est > 65536)
668			nbuf += min((physmem_est - 65536) * 2 / (factor * 5),
669			    32 * 1024 * 1024 / (factor * 5));
670
671		if (maxbcache && nbuf > maxbcache / BKVASIZE)
672			nbuf = maxbcache / BKVASIZE;
673		tuned_nbuf = 1;
674	} else
675		tuned_nbuf = 0;
676
677	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
678	maxbuf = (LONG_MAX / 3) / BKVASIZE;
679	if (nbuf > maxbuf) {
680		if (!tuned_nbuf)
681			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
682			    maxbuf);
683		nbuf = maxbuf;
684	}
685
686	/*
687	 * Ideal allocation size for the transient bio submap if 10%
688	 * of the maximal space buffer map.  This roughly corresponds
689	 * to the amount of the buffer mapped for typical UFS load.
690	 *
691	 * Clip the buffer map to reserve space for the transient
692	 * BIOs, if its extent is bigger than 90% (80% on i386) of the
693	 * maximum buffer map extent on the platform.
694	 *
695	 * The fall-back to the maxbuf in case of maxbcache unset,
696	 * allows to not trim the buffer KVA for the architectures
697	 * with ample KVA space.
698	 */
699	if (bio_transient_maxcnt == 0 && unmapped_buf_allowed) {
700		maxbuf_sz = maxbcache != 0 ? maxbcache : maxbuf * BKVASIZE;
701		buf_sz = (long)nbuf * BKVASIZE;
702		if (buf_sz < maxbuf_sz / TRANSIENT_DENOM *
703		    (TRANSIENT_DENOM - 1)) {
704			/*
705			 * There is more KVA than memory.  Do not
706			 * adjust buffer map size, and assign the rest
707			 * of maxbuf to transient map.
708			 */
709			biotmap_sz = maxbuf_sz - buf_sz;
710		} else {
711			/*
712			 * Buffer map spans all KVA we could afford on
713			 * this platform.  Give 10% (20% on i386) of
714			 * the buffer map to the transient bio map.
715			 */
716			biotmap_sz = buf_sz / TRANSIENT_DENOM;
717			buf_sz -= biotmap_sz;
718		}
719		if (biotmap_sz / INT_MAX > MAXPHYS)
720			bio_transient_maxcnt = INT_MAX;
721		else
722			bio_transient_maxcnt = biotmap_sz / MAXPHYS;
723		/*
724		 * Artifically limit to 1024 simultaneous in-flight I/Os
725		 * using the transient mapping.
726		 */
727		if (bio_transient_maxcnt > 1024)
728			bio_transient_maxcnt = 1024;
729		if (tuned_nbuf)
730			nbuf = buf_sz / BKVASIZE;
731	}
732
733	/*
734	 * swbufs are used as temporary holders for I/O, such as paging I/O.
735	 * We have no less then 16 and no more then 256.
736	 */
737	nswbuf = max(min(nbuf/4, 256), 16);
738#ifdef NSWBUF_MIN
739	if (nswbuf < NSWBUF_MIN)
740		nswbuf = NSWBUF_MIN;
741#endif
742#ifdef DIRECTIO
743	ffs_rawread_setup();
744#endif
745
746	/*
747	 * Reserve space for the buffer cache buffers
748	 */
749	swbuf = (void *)v;
750	v = (caddr_t)(swbuf + nswbuf);
751	buf = (void *)v;
752	v = (caddr_t)(buf + nbuf);
753
754	return(v);
755}
756
757/* Initialize the buffer subsystem.  Called before use of any buffers. */
758void
759bufinit(void)
760{
761	struct buf *bp;
762	int i;
763
764	mtx_init(&bqclean, "bufq clean lock", NULL, MTX_DEF);
765	mtx_init(&bqdirty, "bufq dirty lock", NULL, MTX_DEF);
766	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
767	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
768	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
769	mtx_init(&bdirtylock, "dirty buf lock", NULL, MTX_DEF);
770
771	/* next, make a null set of free lists */
772	for (i = 0; i < BUFFER_QUEUES; i++)
773		TAILQ_INIT(&bufqueues[i]);
774
775	/* finally, initialize each buffer header and stick on empty q */
776	for (i = 0; i < nbuf; i++) {
777		bp = &buf[i];
778		bzero(bp, sizeof *bp);
779		bp->b_flags = B_INVAL | B_INFREECNT;
780		bp->b_rcred = NOCRED;
781		bp->b_wcred = NOCRED;
782		bp->b_qindex = QUEUE_EMPTY;
783		bp->b_xflags = 0;
784		LIST_INIT(&bp->b_dep);
785		BUF_LOCKINIT(bp);
786		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
787#ifdef INVARIANTS
788		bq_len[QUEUE_EMPTY]++;
789#endif
790	}
791
792	/*
793	 * maxbufspace is the absolute maximum amount of buffer space we are
794	 * allowed to reserve in KVM and in real terms.  The absolute maximum
795	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
796	 * used by most other processes.  The differential is required to
797	 * ensure that buf_daemon is able to run when other processes might
798	 * be blocked waiting for buffer space.
799	 *
800	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
801	 * this may result in KVM fragmentation which is not handled optimally
802	 * by the system.
803	 */
804	maxbufspace = (long)nbuf * BKVASIZE;
805	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
806	lobufspace = hibufspace - MAXBSIZE;
807
808	/*
809	 * Note: The 16 MiB upper limit for hirunningspace was chosen
810	 * arbitrarily and may need further tuning. It corresponds to
811	 * 128 outstanding write IO requests (if IO size is 128 KiB),
812	 * which fits with many RAID controllers' tagged queuing limits.
813	 * The lower 1 MiB limit is the historical upper limit for
814	 * hirunningspace.
815	 */
816	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
817	    16 * 1024 * 1024), 1024 * 1024);
818	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
819
820/*
821 * Limit the amount of malloc memory since it is wired permanently into
822 * the kernel space.  Even though this is accounted for in the buffer
823 * allocation, we don't want the malloced region to grow uncontrolled.
824 * The malloc scheme improves memory utilization significantly on average
825 * (small) directories.
826 */
827	maxbufmallocspace = hibufspace / 20;
828
829/*
830 * Reduce the chance of a deadlock occuring by limiting the number
831 * of delayed-write dirty buffers we allow to stack up.
832 */
833	hidirtybuffers = nbuf / 4 + 20;
834	dirtybufthresh = hidirtybuffers * 9 / 10;
835	numdirtybuffers = 0;
836/*
837 * To support extreme low-memory systems, make sure hidirtybuffers cannot
838 * eat up all available buffer space.  This occurs when our minimum cannot
839 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
840 * BKVASIZE'd buffers.
841 */
842	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
843		hidirtybuffers >>= 1;
844	}
845	lodirtybuffers = hidirtybuffers / 2;
846
847/*
848 * Try to keep the number of free buffers in the specified range,
849 * and give special processes (e.g. like buf_daemon) access to an
850 * emergency reserve.
851 */
852	lofreebuffers = nbuf / 18 + 5;
853	hifreebuffers = 2 * lofreebuffers;
854	numfreebuffers = nbuf;
855
856	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
857	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
858	unmapped_buf = (caddr_t)kva_alloc(MAXPHYS);
859}
860
861#ifdef INVARIANTS
862static inline void
863vfs_buf_check_mapped(struct buf *bp)
864{
865
866	KASSERT((bp->b_flags & B_UNMAPPED) == 0,
867	    ("mapped buf %p %x", bp, bp->b_flags));
868	KASSERT(bp->b_kvabase != unmapped_buf,
869	    ("mapped buf: b_kvabase was not updated %p", bp));
870	KASSERT(bp->b_data != unmapped_buf,
871	    ("mapped buf: b_data was not updated %p", bp));
872}
873
874static inline void
875vfs_buf_check_unmapped(struct buf *bp)
876{
877
878	KASSERT((bp->b_flags & B_UNMAPPED) == B_UNMAPPED,
879	    ("unmapped buf %p %x", bp, bp->b_flags));
880	KASSERT(bp->b_kvabase == unmapped_buf,
881	    ("unmapped buf: corrupted b_kvabase %p", bp));
882	KASSERT(bp->b_data == unmapped_buf,
883	    ("unmapped buf: corrupted b_data %p", bp));
884}
885
886#define	BUF_CHECK_MAPPED(bp) vfs_buf_check_mapped(bp)
887#define	BUF_CHECK_UNMAPPED(bp) vfs_buf_check_unmapped(bp)
888#else
889#define	BUF_CHECK_MAPPED(bp) do {} while (0)
890#define	BUF_CHECK_UNMAPPED(bp) do {} while (0)
891#endif
892
893static void
894bpmap_qenter(struct buf *bp)
895{
896
897	BUF_CHECK_MAPPED(bp);
898
899	/*
900	 * bp->b_data is relative to bp->b_offset, but
901	 * bp->b_offset may be offset into the first page.
902	 */
903	bp->b_data = (caddr_t)trunc_page((vm_offset_t)bp->b_data);
904	pmap_qenter((vm_offset_t)bp->b_data, bp->b_pages, bp->b_npages);
905	bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
906	    (vm_offset_t)(bp->b_offset & PAGE_MASK));
907}
908
909/*
910 * bfreekva() - free the kva allocation for a buffer.
911 *
912 *	Since this call frees up buffer space, we call bufspacewakeup().
913 */
914static void
915bfreekva(struct buf *bp)
916{
917
918	if (bp->b_kvasize == 0)
919		return;
920
921	atomic_add_int(&buffreekvacnt, 1);
922	atomic_subtract_long(&bufspace, bp->b_kvasize);
923	if ((bp->b_flags & B_UNMAPPED) == 0) {
924		BUF_CHECK_MAPPED(bp);
925		vmem_free(buffer_arena, (vm_offset_t)bp->b_kvabase,
926		    bp->b_kvasize);
927	} else {
928		BUF_CHECK_UNMAPPED(bp);
929		if ((bp->b_flags & B_KVAALLOC) != 0) {
930			vmem_free(buffer_arena, (vm_offset_t)bp->b_kvaalloc,
931			    bp->b_kvasize);
932		}
933		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
934		bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
935	}
936	bp->b_kvasize = 0;
937	bufspacewakeup();
938}
939
940/*
941 *	binsfree:
942 *
943 *	Insert the buffer into the appropriate free list.
944 */
945static void
946binsfree(struct buf *bp, int qindex)
947{
948	struct mtx *olock, *nlock;
949
950	BUF_ASSERT_XLOCKED(bp);
951
952	olock = bqlock(bp->b_qindex);
953	nlock = bqlock(qindex);
954	mtx_lock(olock);
955	/* Handle delayed bremfree() processing. */
956	if (bp->b_flags & B_REMFREE)
957		bremfreel(bp);
958
959	if (bp->b_qindex != QUEUE_NONE)
960		panic("binsfree: free buffer onto another queue???");
961
962	bp->b_qindex = qindex;
963	if (olock != nlock) {
964		mtx_unlock(olock);
965		mtx_lock(nlock);
966	}
967	if (bp->b_flags & B_AGE)
968		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
969	else
970		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
971#ifdef INVARIANTS
972	bq_len[bp->b_qindex]++;
973#endif
974	mtx_unlock(nlock);
975
976	/*
977	 * Something we can maybe free or reuse.
978	 */
979	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
980		bufspacewakeup();
981
982	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
983		bufcountadd(bp);
984}
985
986/*
987 *	bremfree:
988 *
989 *	Mark the buffer for removal from the appropriate free list.
990 *
991 */
992void
993bremfree(struct buf *bp)
994{
995
996	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
997	KASSERT((bp->b_flags & B_REMFREE) == 0,
998	    ("bremfree: buffer %p already marked for delayed removal.", bp));
999	KASSERT(bp->b_qindex != QUEUE_NONE,
1000	    ("bremfree: buffer %p not on a queue.", bp));
1001	BUF_ASSERT_XLOCKED(bp);
1002
1003	bp->b_flags |= B_REMFREE;
1004	bufcountsub(bp);
1005}
1006
1007/*
1008 *	bremfreef:
1009 *
1010 *	Force an immediate removal from a free list.  Used only in nfs when
1011 *	it abuses the b_freelist pointer.
1012 */
1013void
1014bremfreef(struct buf *bp)
1015{
1016	struct mtx *qlock;
1017
1018	qlock = bqlock(bp->b_qindex);
1019	mtx_lock(qlock);
1020	bremfreel(bp);
1021	mtx_unlock(qlock);
1022}
1023
1024/*
1025 *	bremfreel:
1026 *
1027 *	Removes a buffer from the free list, must be called with the
1028 *	correct qlock held.
1029 */
1030static void
1031bremfreel(struct buf *bp)
1032{
1033
1034	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
1035	    bp, bp->b_vp, bp->b_flags);
1036	KASSERT(bp->b_qindex != QUEUE_NONE,
1037	    ("bremfreel: buffer %p not on a queue.", bp));
1038	BUF_ASSERT_XLOCKED(bp);
1039	mtx_assert(bqlock(bp->b_qindex), MA_OWNED);
1040
1041	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
1042#ifdef INVARIANTS
1043	KASSERT(bq_len[bp->b_qindex] >= 1, ("queue %d underflow",
1044	    bp->b_qindex));
1045	bq_len[bp->b_qindex]--;
1046#endif
1047	bp->b_qindex = QUEUE_NONE;
1048	/*
1049	 * If this was a delayed bremfree() we only need to remove the buffer
1050	 * from the queue and return the stats are already done.
1051	 */
1052	if (bp->b_flags & B_REMFREE) {
1053		bp->b_flags &= ~B_REMFREE;
1054		return;
1055	}
1056	bufcountsub(bp);
1057}
1058
1059/*
1060 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
1061 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
1062 * the buffer is valid and we do not have to do anything.
1063 */
1064void
1065breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
1066    int cnt, struct ucred * cred)
1067{
1068	struct buf *rabp;
1069	int i;
1070
1071	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
1072		if (inmem(vp, *rablkno))
1073			continue;
1074		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
1075
1076		if ((rabp->b_flags & B_CACHE) == 0) {
1077			if (!TD_IS_IDLETHREAD(curthread))
1078				curthread->td_ru.ru_inblock++;
1079			rabp->b_flags |= B_ASYNC;
1080			rabp->b_flags &= ~B_INVAL;
1081			rabp->b_ioflags &= ~BIO_ERROR;
1082			rabp->b_iocmd = BIO_READ;
1083			if (rabp->b_rcred == NOCRED && cred != NOCRED)
1084				rabp->b_rcred = crhold(cred);
1085			vfs_busy_pages(rabp, 0);
1086			BUF_KERNPROC(rabp);
1087			rabp->b_iooffset = dbtob(rabp->b_blkno);
1088			bstrategy(rabp);
1089		} else {
1090			brelse(rabp);
1091		}
1092	}
1093}
1094
1095/*
1096 * Entry point for bread() and breadn() via #defines in sys/buf.h.
1097 *
1098 * Get a buffer with the specified data.  Look in the cache first.  We
1099 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
1100 * is set, the buffer is valid and we do not have to do anything, see
1101 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
1102 */
1103int
1104breadn_flags(struct vnode *vp, daddr_t blkno, int size, daddr_t *rablkno,
1105    int *rabsize, int cnt, struct ucred *cred, int flags, struct buf **bpp)
1106{
1107	struct buf *bp;
1108	int rv = 0, readwait = 0;
1109
1110	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
1111	/*
1112	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
1113	 */
1114	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
1115	if (bp == NULL)
1116		return (EBUSY);
1117
1118	/* if not found in cache, do some I/O */
1119	if ((bp->b_flags & B_CACHE) == 0) {
1120		if (!TD_IS_IDLETHREAD(curthread))
1121			curthread->td_ru.ru_inblock++;
1122		bp->b_iocmd = BIO_READ;
1123		bp->b_flags &= ~B_INVAL;
1124		bp->b_ioflags &= ~BIO_ERROR;
1125		if (bp->b_rcred == NOCRED && cred != NOCRED)
1126			bp->b_rcred = crhold(cred);
1127		vfs_busy_pages(bp, 0);
1128		bp->b_iooffset = dbtob(bp->b_blkno);
1129		bstrategy(bp);
1130		++readwait;
1131	}
1132
1133	breada(vp, rablkno, rabsize, cnt, cred);
1134
1135	if (readwait) {
1136		rv = bufwait(bp);
1137	}
1138	return (rv);
1139}
1140
1141/*
1142 * Write, release buffer on completion.  (Done by iodone
1143 * if async).  Do not bother writing anything if the buffer
1144 * is invalid.
1145 *
1146 * Note that we set B_CACHE here, indicating that buffer is
1147 * fully valid and thus cacheable.  This is true even of NFS
1148 * now so we set it generally.  This could be set either here
1149 * or in biodone() since the I/O is synchronous.  We put it
1150 * here.
1151 */
1152int
1153bufwrite(struct buf *bp)
1154{
1155	int oldflags;
1156	struct vnode *vp;
1157	long space;
1158	int vp_md;
1159
1160	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1161	if (bp->b_flags & B_INVAL) {
1162		brelse(bp);
1163		return (0);
1164	}
1165
1166	if (bp->b_flags & B_BARRIER)
1167		barrierwrites++;
1168
1169	oldflags = bp->b_flags;
1170
1171	BUF_ASSERT_HELD(bp);
1172
1173	if (bp->b_pin_count > 0)
1174		bunpin_wait(bp);
1175
1176	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
1177	    ("FFS background buffer should not get here %p", bp));
1178
1179	vp = bp->b_vp;
1180	if (vp)
1181		vp_md = vp->v_vflag & VV_MD;
1182	else
1183		vp_md = 0;
1184
1185	/*
1186	 * Mark the buffer clean.  Increment the bufobj write count
1187	 * before bundirty() call, to prevent other thread from seeing
1188	 * empty dirty list and zero counter for writes in progress,
1189	 * falsely indicating that the bufobj is clean.
1190	 */
1191	bufobj_wref(bp->b_bufobj);
1192	bundirty(bp);
1193
1194	bp->b_flags &= ~B_DONE;
1195	bp->b_ioflags &= ~BIO_ERROR;
1196	bp->b_flags |= B_CACHE;
1197	bp->b_iocmd = BIO_WRITE;
1198
1199	vfs_busy_pages(bp, 1);
1200
1201	/*
1202	 * Normal bwrites pipeline writes
1203	 */
1204	bp->b_runningbufspace = bp->b_bufsize;
1205	space = atomic_fetchadd_long(&runningbufspace, bp->b_runningbufspace);
1206
1207	if (!TD_IS_IDLETHREAD(curthread))
1208		curthread->td_ru.ru_oublock++;
1209	if (oldflags & B_ASYNC)
1210		BUF_KERNPROC(bp);
1211	bp->b_iooffset = dbtob(bp->b_blkno);
1212	bstrategy(bp);
1213
1214	if ((oldflags & B_ASYNC) == 0) {
1215		int rtval = bufwait(bp);
1216		brelse(bp);
1217		return (rtval);
1218	} else if (space > hirunningspace) {
1219		/*
1220		 * don't allow the async write to saturate the I/O
1221		 * system.  We will not deadlock here because
1222		 * we are blocking waiting for I/O that is already in-progress
1223		 * to complete. We do not block here if it is the update
1224		 * or syncer daemon trying to clean up as that can lead
1225		 * to deadlock.
1226		 */
1227		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
1228			waitrunningbufspace();
1229	}
1230
1231	return (0);
1232}
1233
1234void
1235bufbdflush(struct bufobj *bo, struct buf *bp)
1236{
1237	struct buf *nbp;
1238
1239	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1240		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
1241		altbufferflushes++;
1242	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1243		BO_LOCK(bo);
1244		/*
1245		 * Try to find a buffer to flush.
1246		 */
1247		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1248			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1249			    BUF_LOCK(nbp,
1250				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
1251				continue;
1252			if (bp == nbp)
1253				panic("bdwrite: found ourselves");
1254			BO_UNLOCK(bo);
1255			/* Don't countdeps with the bo lock held. */
1256			if (buf_countdeps(nbp, 0)) {
1257				BO_LOCK(bo);
1258				BUF_UNLOCK(nbp);
1259				continue;
1260			}
1261			if (nbp->b_flags & B_CLUSTEROK) {
1262				vfs_bio_awrite(nbp);
1263			} else {
1264				bremfree(nbp);
1265				bawrite(nbp);
1266			}
1267			dirtybufferflushes++;
1268			break;
1269		}
1270		if (nbp == NULL)
1271			BO_UNLOCK(bo);
1272	}
1273}
1274
1275/*
1276 * Delayed write. (Buffer is marked dirty).  Do not bother writing
1277 * anything if the buffer is marked invalid.
1278 *
1279 * Note that since the buffer must be completely valid, we can safely
1280 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1281 * biodone() in order to prevent getblk from writing the buffer
1282 * out synchronously.
1283 */
1284void
1285bdwrite(struct buf *bp)
1286{
1287	struct thread *td = curthread;
1288	struct vnode *vp;
1289	struct bufobj *bo;
1290
1291	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1292	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1293	KASSERT((bp->b_flags & B_BARRIER) == 0,
1294	    ("Barrier request in delayed write %p", bp));
1295	BUF_ASSERT_HELD(bp);
1296
1297	if (bp->b_flags & B_INVAL) {
1298		brelse(bp);
1299		return;
1300	}
1301
1302	/*
1303	 * If we have too many dirty buffers, don't create any more.
1304	 * If we are wildly over our limit, then force a complete
1305	 * cleanup. Otherwise, just keep the situation from getting
1306	 * out of control. Note that we have to avoid a recursive
1307	 * disaster and not try to clean up after our own cleanup!
1308	 */
1309	vp = bp->b_vp;
1310	bo = bp->b_bufobj;
1311	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1312		td->td_pflags |= TDP_INBDFLUSH;
1313		BO_BDFLUSH(bo, bp);
1314		td->td_pflags &= ~TDP_INBDFLUSH;
1315	} else
1316		recursiveflushes++;
1317
1318	bdirty(bp);
1319	/*
1320	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1321	 * true even of NFS now.
1322	 */
1323	bp->b_flags |= B_CACHE;
1324
1325	/*
1326	 * This bmap keeps the system from needing to do the bmap later,
1327	 * perhaps when the system is attempting to do a sync.  Since it
1328	 * is likely that the indirect block -- or whatever other datastructure
1329	 * that the filesystem needs is still in memory now, it is a good
1330	 * thing to do this.  Note also, that if the pageout daemon is
1331	 * requesting a sync -- there might not be enough memory to do
1332	 * the bmap then...  So, this is important to do.
1333	 */
1334	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1335		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1336	}
1337
1338	/*
1339	 * Set the *dirty* buffer range based upon the VM system dirty
1340	 * pages.
1341	 *
1342	 * Mark the buffer pages as clean.  We need to do this here to
1343	 * satisfy the vnode_pager and the pageout daemon, so that it
1344	 * thinks that the pages have been "cleaned".  Note that since
1345	 * the pages are in a delayed write buffer -- the VFS layer
1346	 * "will" see that the pages get written out on the next sync,
1347	 * or perhaps the cluster will be completed.
1348	 */
1349	vfs_clean_pages_dirty_buf(bp);
1350	bqrelse(bp);
1351
1352	/*
1353	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1354	 * due to the softdep code.
1355	 */
1356}
1357
1358/*
1359 *	bdirty:
1360 *
1361 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1362 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1363 *	itself to properly update it in the dirty/clean lists.  We mark it
1364 *	B_DONE to ensure that any asynchronization of the buffer properly
1365 *	clears B_DONE ( else a panic will occur later ).
1366 *
1367 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1368 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1369 *	should only be called if the buffer is known-good.
1370 *
1371 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1372 *	count.
1373 *
1374 *	The buffer must be on QUEUE_NONE.
1375 */
1376void
1377bdirty(struct buf *bp)
1378{
1379
1380	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1381	    bp, bp->b_vp, bp->b_flags);
1382	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1383	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1384	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1385	BUF_ASSERT_HELD(bp);
1386	bp->b_flags &= ~(B_RELBUF);
1387	bp->b_iocmd = BIO_WRITE;
1388
1389	if ((bp->b_flags & B_DELWRI) == 0) {
1390		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1391		reassignbuf(bp);
1392		bdirtyadd();
1393	}
1394}
1395
1396/*
1397 *	bundirty:
1398 *
1399 *	Clear B_DELWRI for buffer.
1400 *
1401 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1402 *	count.
1403 *
1404 *	The buffer must be on QUEUE_NONE.
1405 */
1406
1407void
1408bundirty(struct buf *bp)
1409{
1410
1411	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1412	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1413	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1414	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1415	BUF_ASSERT_HELD(bp);
1416
1417	if (bp->b_flags & B_DELWRI) {
1418		bp->b_flags &= ~B_DELWRI;
1419		reassignbuf(bp);
1420		bdirtysub();
1421	}
1422	/*
1423	 * Since it is now being written, we can clear its deferred write flag.
1424	 */
1425	bp->b_flags &= ~B_DEFERRED;
1426}
1427
1428/*
1429 *	bawrite:
1430 *
1431 *	Asynchronous write.  Start output on a buffer, but do not wait for
1432 *	it to complete.  The buffer is released when the output completes.
1433 *
1434 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1435 *	B_INVAL buffers.  Not us.
1436 */
1437void
1438bawrite(struct buf *bp)
1439{
1440
1441	bp->b_flags |= B_ASYNC;
1442	(void) bwrite(bp);
1443}
1444
1445/*
1446 *	babarrierwrite:
1447 *
1448 *	Asynchronous barrier write.  Start output on a buffer, but do not
1449 *	wait for it to complete.  Place a write barrier after this write so
1450 *	that this buffer and all buffers written before it are committed to
1451 *	the disk before any buffers written after this write are committed
1452 *	to the disk.  The buffer is released when the output completes.
1453 */
1454void
1455babarrierwrite(struct buf *bp)
1456{
1457
1458	bp->b_flags |= B_ASYNC | B_BARRIER;
1459	(void) bwrite(bp);
1460}
1461
1462/*
1463 *	bbarrierwrite:
1464 *
1465 *	Synchronous barrier write.  Start output on a buffer and wait for
1466 *	it to complete.  Place a write barrier after this write so that
1467 *	this buffer and all buffers written before it are committed to
1468 *	the disk before any buffers written after this write are committed
1469 *	to the disk.  The buffer is released when the output completes.
1470 */
1471int
1472bbarrierwrite(struct buf *bp)
1473{
1474
1475	bp->b_flags |= B_BARRIER;
1476	return (bwrite(bp));
1477}
1478
1479/*
1480 *	bwillwrite:
1481 *
1482 *	Called prior to the locking of any vnodes when we are expecting to
1483 *	write.  We do not want to starve the buffer cache with too many
1484 *	dirty buffers so we block here.  By blocking prior to the locking
1485 *	of any vnodes we attempt to avoid the situation where a locked vnode
1486 *	prevents the various system daemons from flushing related buffers.
1487 */
1488void
1489bwillwrite(void)
1490{
1491
1492	if (numdirtybuffers >= hidirtybuffers) {
1493		mtx_lock(&bdirtylock);
1494		while (numdirtybuffers >= hidirtybuffers) {
1495			bdirtywait = 1;
1496			msleep(&bdirtywait, &bdirtylock, (PRIBIO + 4),
1497			    "flswai", 0);
1498		}
1499		mtx_unlock(&bdirtylock);
1500	}
1501}
1502
1503/*
1504 * Return true if we have too many dirty buffers.
1505 */
1506int
1507buf_dirty_count_severe(void)
1508{
1509
1510	return(numdirtybuffers >= hidirtybuffers);
1511}
1512
1513static __noinline int
1514buf_vm_page_count_severe(void)
1515{
1516
1517	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1518
1519	return vm_page_count_severe();
1520}
1521
1522/*
1523 *	brelse:
1524 *
1525 *	Release a busy buffer and, if requested, free its resources.  The
1526 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1527 *	to be accessed later as a cache entity or reused for other purposes.
1528 */
1529void
1530brelse(struct buf *bp)
1531{
1532	int qindex;
1533
1534	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1535	    bp, bp->b_vp, bp->b_flags);
1536	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1537	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1538
1539	if (BUF_LOCKRECURSED(bp)) {
1540		/*
1541		 * Do not process, in particular, do not handle the
1542		 * B_INVAL/B_RELBUF and do not release to free list.
1543		 */
1544		BUF_UNLOCK(bp);
1545		return;
1546	}
1547
1548	if (bp->b_flags & B_MANAGED) {
1549		bqrelse(bp);
1550		return;
1551	}
1552
1553	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1554	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1555		/*
1556		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1557		 * pages from being scrapped.  If the error is anything
1558		 * other than an I/O error (EIO), assume that retrying
1559		 * is futile.
1560		 */
1561		bp->b_ioflags &= ~BIO_ERROR;
1562		bdirty(bp);
1563	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1564	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1565		/*
1566		 * Either a failed I/O or we were asked to free or not
1567		 * cache the buffer.
1568		 */
1569		bp->b_flags |= B_INVAL;
1570		if (!LIST_EMPTY(&bp->b_dep))
1571			buf_deallocate(bp);
1572		if (bp->b_flags & B_DELWRI)
1573			bdirtysub();
1574		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1575		if ((bp->b_flags & B_VMIO) == 0) {
1576			if (bp->b_bufsize)
1577				allocbuf(bp, 0);
1578			if (bp->b_vp)
1579				brelvp(bp);
1580		}
1581	}
1582
1583	/*
1584	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1585	 * is called with B_DELWRI set, the underlying pages may wind up
1586	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1587	 * because pages associated with a B_DELWRI bp are marked clean.
1588	 *
1589	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1590	 * if B_DELWRI is set.
1591	 *
1592	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1593	 * on pages to return pages to the VM page queues.
1594	 */
1595	if (bp->b_flags & B_DELWRI)
1596		bp->b_flags &= ~B_RELBUF;
1597	else if (buf_vm_page_count_severe()) {
1598		/*
1599		 * BKGRDINPROG can only be set with the buf and bufobj
1600		 * locks both held.  We tolerate a race to clear it here.
1601		 */
1602		if (!(bp->b_vflags & BV_BKGRDINPROG))
1603			bp->b_flags |= B_RELBUF;
1604	}
1605
1606	/*
1607	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1608	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1609	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1610	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1611	 *
1612	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1613	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1614	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1615	 *
1616	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1617	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1618	 * the commit state and we cannot afford to lose the buffer. If the
1619	 * buffer has a background write in progress, we need to keep it
1620	 * around to prevent it from being reconstituted and starting a second
1621	 * background write.
1622	 */
1623	if ((bp->b_flags & B_VMIO)
1624	    && !(bp->b_vp->v_mount != NULL &&
1625		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1626		 !vn_isdisk(bp->b_vp, NULL) &&
1627		 (bp->b_flags & B_DELWRI))
1628	    ) {
1629
1630		int i, j, resid;
1631		vm_page_t m;
1632		off_t foff;
1633		vm_pindex_t poff;
1634		vm_object_t obj;
1635
1636		obj = bp->b_bufobj->bo_object;
1637
1638		/*
1639		 * Get the base offset and length of the buffer.  Note that
1640		 * in the VMIO case if the buffer block size is not
1641		 * page-aligned then b_data pointer may not be page-aligned.
1642		 * But our b_pages[] array *IS* page aligned.
1643		 *
1644		 * block sizes less then DEV_BSIZE (usually 512) are not
1645		 * supported due to the page granularity bits (m->valid,
1646		 * m->dirty, etc...).
1647		 *
1648		 * See man buf(9) for more information
1649		 */
1650		resid = bp->b_bufsize;
1651		foff = bp->b_offset;
1652		for (i = 0; i < bp->b_npages; i++) {
1653			int had_bogus = 0;
1654
1655			m = bp->b_pages[i];
1656
1657			/*
1658			 * If we hit a bogus page, fixup *all* the bogus pages
1659			 * now.
1660			 */
1661			if (m == bogus_page) {
1662				poff = OFF_TO_IDX(bp->b_offset);
1663				had_bogus = 1;
1664
1665				VM_OBJECT_RLOCK(obj);
1666				for (j = i; j < bp->b_npages; j++) {
1667					vm_page_t mtmp;
1668					mtmp = bp->b_pages[j];
1669					if (mtmp == bogus_page) {
1670						mtmp = vm_page_lookup(obj, poff + j);
1671						if (!mtmp) {
1672							panic("brelse: page missing\n");
1673						}
1674						bp->b_pages[j] = mtmp;
1675					}
1676				}
1677				VM_OBJECT_RUNLOCK(obj);
1678
1679				if ((bp->b_flags & (B_INVAL | B_UNMAPPED)) == 0) {
1680					BUF_CHECK_MAPPED(bp);
1681					pmap_qenter(
1682					    trunc_page((vm_offset_t)bp->b_data),
1683					    bp->b_pages, bp->b_npages);
1684				}
1685				m = bp->b_pages[i];
1686			}
1687			if ((bp->b_flags & B_NOCACHE) ||
1688			    (bp->b_ioflags & BIO_ERROR &&
1689			     bp->b_iocmd == BIO_READ)) {
1690				int poffset = foff & PAGE_MASK;
1691				int presid = resid > (PAGE_SIZE - poffset) ?
1692					(PAGE_SIZE - poffset) : resid;
1693
1694				KASSERT(presid >= 0, ("brelse: extra page"));
1695				VM_OBJECT_WLOCK(obj);
1696				while (vm_page_xbusied(m)) {
1697					vm_page_lock(m);
1698					VM_OBJECT_WUNLOCK(obj);
1699					vm_page_busy_sleep(m, "mbncsh");
1700					VM_OBJECT_WLOCK(obj);
1701				}
1702				if (pmap_page_wired_mappings(m) == 0)
1703					vm_page_set_invalid(m, poffset, presid);
1704				VM_OBJECT_WUNLOCK(obj);
1705				if (had_bogus)
1706					printf("avoided corruption bug in bogus_page/brelse code\n");
1707			}
1708			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1709			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1710		}
1711		if (bp->b_flags & (B_INVAL | B_RELBUF))
1712			vfs_vmio_release(bp);
1713
1714	} else if (bp->b_flags & B_VMIO) {
1715
1716		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1717			vfs_vmio_release(bp);
1718		}
1719
1720	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1721		if (bp->b_bufsize != 0)
1722			allocbuf(bp, 0);
1723		if (bp->b_vp != NULL)
1724			brelvp(bp);
1725	}
1726
1727	/*
1728	 * If the buffer has junk contents signal it and eventually
1729	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1730	 * doesn't find it.
1731	 */
1732	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1733	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1734		bp->b_flags |= B_INVAL;
1735	if (bp->b_flags & B_INVAL) {
1736		if (bp->b_flags & B_DELWRI)
1737			bundirty(bp);
1738		if (bp->b_vp)
1739			brelvp(bp);
1740	}
1741
1742	/* buffers with no memory */
1743	if (bp->b_bufsize == 0) {
1744		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1745		if (bp->b_vflags & BV_BKGRDINPROG)
1746			panic("losing buffer 1");
1747		if (bp->b_kvasize)
1748			qindex = QUEUE_EMPTYKVA;
1749		else
1750			qindex = QUEUE_EMPTY;
1751		bp->b_flags |= B_AGE;
1752	/* buffers with junk contents */
1753	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1754	    (bp->b_ioflags & BIO_ERROR)) {
1755		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1756		if (bp->b_vflags & BV_BKGRDINPROG)
1757			panic("losing buffer 2");
1758		qindex = QUEUE_CLEAN;
1759		bp->b_flags |= B_AGE;
1760	/* remaining buffers */
1761	} else if (bp->b_flags & B_DELWRI)
1762		qindex = QUEUE_DIRTY;
1763	else
1764		qindex = QUEUE_CLEAN;
1765
1766	binsfree(bp, qindex);
1767
1768	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1769	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1770		panic("brelse: not dirty");
1771	/* unlock */
1772	BUF_UNLOCK(bp);
1773}
1774
1775/*
1776 * Release a buffer back to the appropriate queue but do not try to free
1777 * it.  The buffer is expected to be used again soon.
1778 *
1779 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1780 * biodone() to requeue an async I/O on completion.  It is also used when
1781 * known good buffers need to be requeued but we think we may need the data
1782 * again soon.
1783 *
1784 * XXX we should be able to leave the B_RELBUF hint set on completion.
1785 */
1786void
1787bqrelse(struct buf *bp)
1788{
1789	int qindex;
1790
1791	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1792	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1793	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1794
1795	if (BUF_LOCKRECURSED(bp)) {
1796		/* do not release to free list */
1797		BUF_UNLOCK(bp);
1798		return;
1799	}
1800	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1801
1802	if (bp->b_flags & B_MANAGED) {
1803		if (bp->b_flags & B_REMFREE)
1804			bremfreef(bp);
1805		goto out;
1806	}
1807
1808	/* buffers with stale but valid contents */
1809	if (bp->b_flags & B_DELWRI) {
1810		qindex = QUEUE_DIRTY;
1811	} else {
1812		if ((bp->b_flags & B_DELWRI) == 0 &&
1813		    (bp->b_xflags & BX_VNDIRTY))
1814			panic("bqrelse: not dirty");
1815		/*
1816		 * BKGRDINPROG can only be set with the buf and bufobj
1817		 * locks both held.  We tolerate a race to clear it here.
1818		 */
1819		if (buf_vm_page_count_severe() &&
1820		    (bp->b_vflags & BV_BKGRDINPROG) == 0) {
1821			/*
1822			 * We are too low on memory, we have to try to free
1823			 * the buffer (most importantly: the wired pages
1824			 * making up its backing store) *now*.
1825			 */
1826			brelse(bp);
1827			return;
1828		}
1829		qindex = QUEUE_CLEAN;
1830	}
1831	binsfree(bp, qindex);
1832
1833out:
1834	/* unlock */
1835	BUF_UNLOCK(bp);
1836}
1837
1838/* Give pages used by the bp back to the VM system (where possible) */
1839static void
1840vfs_vmio_release(struct buf *bp)
1841{
1842	int i;
1843	vm_page_t m;
1844
1845	if ((bp->b_flags & B_UNMAPPED) == 0) {
1846		BUF_CHECK_MAPPED(bp);
1847		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
1848	} else
1849		BUF_CHECK_UNMAPPED(bp);
1850	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
1851	for (i = 0; i < bp->b_npages; i++) {
1852		m = bp->b_pages[i];
1853		bp->b_pages[i] = NULL;
1854		/*
1855		 * In order to keep page LRU ordering consistent, put
1856		 * everything on the inactive queue.
1857		 */
1858		vm_page_lock(m);
1859		vm_page_unwire(m, 0);
1860
1861		/*
1862		 * Might as well free the page if we can and it has
1863		 * no valid data.  We also free the page if the
1864		 * buffer was used for direct I/O
1865		 */
1866		if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
1867			if (m->wire_count == 0 && !vm_page_busied(m))
1868				vm_page_free(m);
1869		} else if (bp->b_flags & B_DIRECT)
1870			vm_page_try_to_free(m);
1871		else if (buf_vm_page_count_severe())
1872			vm_page_try_to_cache(m);
1873		vm_page_unlock(m);
1874	}
1875	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
1876
1877	if (bp->b_bufsize) {
1878		bufspacewakeup();
1879		bp->b_bufsize = 0;
1880	}
1881	bp->b_npages = 0;
1882	bp->b_flags &= ~B_VMIO;
1883	if (bp->b_vp)
1884		brelvp(bp);
1885}
1886
1887/*
1888 * Check to see if a block at a particular lbn is available for a clustered
1889 * write.
1890 */
1891static int
1892vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1893{
1894	struct buf *bpa;
1895	int match;
1896
1897	match = 0;
1898
1899	/* If the buf isn't in core skip it */
1900	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1901		return (0);
1902
1903	/* If the buf is busy we don't want to wait for it */
1904	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1905		return (0);
1906
1907	/* Only cluster with valid clusterable delayed write buffers */
1908	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1909	    (B_DELWRI | B_CLUSTEROK))
1910		goto done;
1911
1912	if (bpa->b_bufsize != size)
1913		goto done;
1914
1915	/*
1916	 * Check to see if it is in the expected place on disk and that the
1917	 * block has been mapped.
1918	 */
1919	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1920		match = 1;
1921done:
1922	BUF_UNLOCK(bpa);
1923	return (match);
1924}
1925
1926/*
1927 *	vfs_bio_awrite:
1928 *
1929 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1930 *	This is much better then the old way of writing only one buffer at
1931 *	a time.  Note that we may not be presented with the buffers in the
1932 *	correct order, so we search for the cluster in both directions.
1933 */
1934int
1935vfs_bio_awrite(struct buf *bp)
1936{
1937	struct bufobj *bo;
1938	int i;
1939	int j;
1940	daddr_t lblkno = bp->b_lblkno;
1941	struct vnode *vp = bp->b_vp;
1942	int ncl;
1943	int nwritten;
1944	int size;
1945	int maxcl;
1946	int gbflags;
1947
1948	bo = &vp->v_bufobj;
1949	gbflags = (bp->b_flags & B_UNMAPPED) != 0 ? GB_UNMAPPED : 0;
1950	/*
1951	 * right now we support clustered writing only to regular files.  If
1952	 * we find a clusterable block we could be in the middle of a cluster
1953	 * rather then at the beginning.
1954	 */
1955	if ((vp->v_type == VREG) &&
1956	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1957	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1958
1959		size = vp->v_mount->mnt_stat.f_iosize;
1960		maxcl = MAXPHYS / size;
1961
1962		BO_RLOCK(bo);
1963		for (i = 1; i < maxcl; i++)
1964			if (vfs_bio_clcheck(vp, size, lblkno + i,
1965			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1966				break;
1967
1968		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1969			if (vfs_bio_clcheck(vp, size, lblkno - j,
1970			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1971				break;
1972		BO_RUNLOCK(bo);
1973		--j;
1974		ncl = i + j;
1975		/*
1976		 * this is a possible cluster write
1977		 */
1978		if (ncl != 1) {
1979			BUF_UNLOCK(bp);
1980			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl,
1981			    gbflags);
1982			return (nwritten);
1983		}
1984	}
1985	bremfree(bp);
1986	bp->b_flags |= B_ASYNC;
1987	/*
1988	 * default (old) behavior, writing out only one block
1989	 *
1990	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1991	 */
1992	nwritten = bp->b_bufsize;
1993	(void) bwrite(bp);
1994
1995	return (nwritten);
1996}
1997
1998static void
1999setbufkva(struct buf *bp, vm_offset_t addr, int maxsize, int gbflags)
2000{
2001
2002	KASSERT((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2003	    bp->b_kvasize == 0, ("call bfreekva(%p)", bp));
2004	if ((gbflags & GB_UNMAPPED) == 0) {
2005		bp->b_kvabase = (caddr_t)addr;
2006	} else if ((gbflags & GB_KVAALLOC) != 0) {
2007		KASSERT((gbflags & GB_UNMAPPED) != 0,
2008		    ("GB_KVAALLOC without GB_UNMAPPED"));
2009		bp->b_kvaalloc = (caddr_t)addr;
2010		bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2011		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2012	}
2013	bp->b_kvasize = maxsize;
2014}
2015
2016/*
2017 * Allocate the buffer KVA and set b_kvasize. Also set b_kvabase if
2018 * needed.
2019 */
2020static int
2021allocbufkva(struct buf *bp, int maxsize, int gbflags)
2022{
2023	vm_offset_t addr;
2024
2025	bfreekva(bp);
2026	addr = 0;
2027
2028	if (vmem_alloc(buffer_arena, maxsize, M_BESTFIT | M_NOWAIT, &addr)) {
2029		/*
2030		 * Buffer map is too fragmented.  Request the caller
2031		 * to defragment the map.
2032		 */
2033		atomic_add_int(&bufdefragcnt, 1);
2034		return (1);
2035	}
2036	setbufkva(bp, addr, maxsize, gbflags);
2037	atomic_add_long(&bufspace, bp->b_kvasize);
2038	return (0);
2039}
2040
2041/*
2042 * Ask the bufdaemon for help, or act as bufdaemon itself, when a
2043 * locked vnode is supplied.
2044 */
2045static void
2046getnewbuf_bufd_help(struct vnode *vp, int gbflags, int slpflag, int slptimeo,
2047    int defrag)
2048{
2049	struct thread *td;
2050	char *waitmsg;
2051	int cnt, error, flags, norunbuf, wait;
2052
2053	mtx_assert(&bqclean, MA_OWNED);
2054
2055	if (defrag) {
2056		flags = VFS_BIO_NEED_BUFSPACE;
2057		waitmsg = "nbufkv";
2058	} else if (bufspace >= hibufspace) {
2059		waitmsg = "nbufbs";
2060		flags = VFS_BIO_NEED_BUFSPACE;
2061	} else {
2062		waitmsg = "newbuf";
2063		flags = VFS_BIO_NEED_ANY;
2064	}
2065	mtx_lock(&nblock);
2066	needsbuffer |= flags;
2067	mtx_unlock(&nblock);
2068	mtx_unlock(&bqclean);
2069
2070	bd_speedup();	/* heeeelp */
2071	if ((gbflags & GB_NOWAIT_BD) != 0)
2072		return;
2073
2074	td = curthread;
2075	cnt = 0;
2076	wait = MNT_NOWAIT;
2077	mtx_lock(&nblock);
2078	while (needsbuffer & flags) {
2079		if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2080			mtx_unlock(&nblock);
2081
2082			/*
2083			 * getblk() is called with a vnode locked, and
2084			 * some majority of the dirty buffers may as
2085			 * well belong to the vnode.  Flushing the
2086			 * buffers there would make a progress that
2087			 * cannot be achieved by the buf_daemon, that
2088			 * cannot lock the vnode.
2089			 */
2090			if (cnt++ > 2)
2091				wait = MNT_WAIT;
2092			ASSERT_VOP_LOCKED(vp, "bufd_helper");
2093			error = VOP_ISLOCKED(vp) == LK_EXCLUSIVE ? 0 :
2094			    vn_lock(vp, LK_TRYUPGRADE);
2095			if (error == 0) {
2096				/* play bufdaemon */
2097				norunbuf = curthread_pflags_set(TDP_BUFNEED |
2098				    TDP_NORUNNINGBUF);
2099				VOP_FSYNC(vp, wait, td);
2100				atomic_add_long(&notbufdflushes, 1);
2101				curthread_pflags_restore(norunbuf);
2102			}
2103			mtx_lock(&nblock);
2104			if ((needsbuffer & flags) == 0)
2105				break;
2106		}
2107		if (msleep(&needsbuffer, &nblock, (PRIBIO + 4) | slpflag,
2108		    waitmsg, slptimeo))
2109			break;
2110	}
2111	mtx_unlock(&nblock);
2112}
2113
2114static void
2115getnewbuf_reuse_bp(struct buf *bp, int qindex)
2116{
2117
2118	CTR6(KTR_BUF, "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
2119	    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
2120	     bp->b_kvasize, bp->b_bufsize, qindex);
2121	mtx_assert(&bqclean, MA_NOTOWNED);
2122
2123	/*
2124	 * Note: we no longer distinguish between VMIO and non-VMIO
2125	 * buffers.
2126	 */
2127	KASSERT((bp->b_flags & B_DELWRI) == 0,
2128	    ("delwri buffer %p found in queue %d", bp, qindex));
2129
2130	if (qindex == QUEUE_CLEAN) {
2131		if (bp->b_flags & B_VMIO) {
2132			bp->b_flags &= ~B_ASYNC;
2133			vfs_vmio_release(bp);
2134		}
2135		if (bp->b_vp != NULL)
2136			brelvp(bp);
2137	}
2138
2139	/*
2140	 * Get the rest of the buffer freed up.  b_kva* is still valid
2141	 * after this operation.
2142	 */
2143
2144	if (bp->b_rcred != NOCRED) {
2145		crfree(bp->b_rcred);
2146		bp->b_rcred = NOCRED;
2147	}
2148	if (bp->b_wcred != NOCRED) {
2149		crfree(bp->b_wcred);
2150		bp->b_wcred = NOCRED;
2151	}
2152	if (!LIST_EMPTY(&bp->b_dep))
2153		buf_deallocate(bp);
2154	if (bp->b_vflags & BV_BKGRDINPROG)
2155		panic("losing buffer 3");
2156	KASSERT(bp->b_vp == NULL, ("bp: %p still has vnode %p.  qindex: %d",
2157	    bp, bp->b_vp, qindex));
2158	KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
2159	    ("bp: %p still on a buffer list. xflags %X", bp, bp->b_xflags));
2160
2161	if (bp->b_bufsize)
2162		allocbuf(bp, 0);
2163
2164	bp->b_flags &= B_UNMAPPED | B_KVAALLOC;
2165	bp->b_ioflags = 0;
2166	bp->b_xflags = 0;
2167	KASSERT((bp->b_flags & B_INFREECNT) == 0,
2168	    ("buf %p still counted as free?", bp));
2169	bp->b_vflags = 0;
2170	bp->b_vp = NULL;
2171	bp->b_blkno = bp->b_lblkno = 0;
2172	bp->b_offset = NOOFFSET;
2173	bp->b_iodone = 0;
2174	bp->b_error = 0;
2175	bp->b_resid = 0;
2176	bp->b_bcount = 0;
2177	bp->b_npages = 0;
2178	bp->b_dirtyoff = bp->b_dirtyend = 0;
2179	bp->b_bufobj = NULL;
2180	bp->b_pin_count = 0;
2181	bp->b_fsprivate1 = NULL;
2182	bp->b_fsprivate2 = NULL;
2183	bp->b_fsprivate3 = NULL;
2184
2185	LIST_INIT(&bp->b_dep);
2186}
2187
2188static int flushingbufs;
2189
2190static struct buf *
2191getnewbuf_scan(int maxsize, int defrag, int unmapped, int metadata)
2192{
2193	struct buf *bp, *nbp;
2194	int nqindex, qindex, pass;
2195
2196	KASSERT(!unmapped || !defrag, ("both unmapped and defrag"));
2197
2198	pass = 1;
2199restart:
2200	atomic_add_int(&getnewbufrestarts, 1);
2201
2202	/*
2203	 * Setup for scan.  If we do not have enough free buffers,
2204	 * we setup a degenerate case that immediately fails.  Note
2205	 * that if we are specially marked process, we are allowed to
2206	 * dip into our reserves.
2207	 *
2208	 * The scanning sequence is nominally: EMPTY->EMPTYKVA->CLEAN
2209	 * for the allocation of the mapped buffer.  For unmapped, the
2210	 * easiest is to start with EMPTY outright.
2211	 *
2212	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
2213	 * However, there are a number of cases (defragging, reusing, ...)
2214	 * where we cannot backup.
2215	 */
2216	nbp = NULL;
2217	mtx_lock(&bqclean);
2218	if (!defrag && unmapped) {
2219		nqindex = QUEUE_EMPTY;
2220		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2221	}
2222	if (nbp == NULL) {
2223		nqindex = QUEUE_EMPTYKVA;
2224		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2225	}
2226
2227	/*
2228	 * If no EMPTYKVA buffers and we are either defragging or
2229	 * reusing, locate a CLEAN buffer to free or reuse.  If
2230	 * bufspace useage is low skip this step so we can allocate a
2231	 * new buffer.
2232	 */
2233	if (nbp == NULL && (defrag || bufspace >= lobufspace)) {
2234		nqindex = QUEUE_CLEAN;
2235		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2236	}
2237
2238	/*
2239	 * If we could not find or were not allowed to reuse a CLEAN
2240	 * buffer, check to see if it is ok to use an EMPTY buffer.
2241	 * We can only use an EMPTY buffer if allocating its KVA would
2242	 * not otherwise run us out of buffer space.  No KVA is needed
2243	 * for the unmapped allocation.
2244	 */
2245	if (nbp == NULL && defrag == 0 && (bufspace + maxsize < hibufspace ||
2246	    metadata)) {
2247		nqindex = QUEUE_EMPTY;
2248		nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
2249	}
2250
2251	/*
2252	 * All available buffers might be clean, retry ignoring the
2253	 * lobufspace as the last resort.
2254	 */
2255	if (nbp == NULL && !TAILQ_EMPTY(&bufqueues[QUEUE_CLEAN])) {
2256		nqindex = QUEUE_CLEAN;
2257		nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2258	}
2259
2260	/*
2261	 * Run scan, possibly freeing data and/or kva mappings on the fly
2262	 * depending.
2263	 */
2264	while ((bp = nbp) != NULL) {
2265		qindex = nqindex;
2266
2267		/*
2268		 * Calculate next bp (we can only use it if we do not
2269		 * block or do other fancy things).
2270		 */
2271		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
2272			switch (qindex) {
2273			case QUEUE_EMPTY:
2274				nqindex = QUEUE_EMPTYKVA;
2275				nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
2276				if (nbp != NULL)
2277					break;
2278				/* FALLTHROUGH */
2279			case QUEUE_EMPTYKVA:
2280				nqindex = QUEUE_CLEAN;
2281				nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
2282				if (nbp != NULL)
2283					break;
2284				/* FALLTHROUGH */
2285			case QUEUE_CLEAN:
2286				if (metadata && pass == 1) {
2287					pass = 2;
2288					nqindex = QUEUE_EMPTY;
2289					nbp = TAILQ_FIRST(
2290					    &bufqueues[QUEUE_EMPTY]);
2291				}
2292				/*
2293				 * nbp is NULL.
2294				 */
2295				break;
2296			}
2297		}
2298		/*
2299		 * If we are defragging then we need a buffer with
2300		 * b_kvasize != 0.  XXX this situation should no longer
2301		 * occur, if defrag is non-zero the buffer's b_kvasize
2302		 * should also be non-zero at this point.  XXX
2303		 */
2304		if (defrag && bp->b_kvasize == 0) {
2305			printf("Warning: defrag empty buffer %p\n", bp);
2306			continue;
2307		}
2308
2309		/*
2310		 * Start freeing the bp.  This is somewhat involved.  nbp
2311		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
2312		 */
2313		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2314			continue;
2315		/*
2316		 * BKGRDINPROG can only be set with the buf and bufobj
2317		 * locks both held.  We tolerate a race to clear it here.
2318		 */
2319		if (bp->b_vflags & BV_BKGRDINPROG) {
2320			BUF_UNLOCK(bp);
2321			continue;
2322		}
2323
2324		KASSERT(bp->b_qindex == qindex,
2325		    ("getnewbuf: inconsistent queue %d bp %p", qindex, bp));
2326
2327		bremfreel(bp);
2328		mtx_unlock(&bqclean);
2329		/*
2330		 * NOTE:  nbp is now entirely invalid.  We can only restart
2331		 * the scan from this point on.
2332		 */
2333
2334		getnewbuf_reuse_bp(bp, qindex);
2335		mtx_assert(&bqclean, MA_NOTOWNED);
2336
2337		/*
2338		 * If we are defragging then free the buffer.
2339		 */
2340		if (defrag) {
2341			bp->b_flags |= B_INVAL;
2342			bfreekva(bp);
2343			brelse(bp);
2344			defrag = 0;
2345			goto restart;
2346		}
2347
2348		/*
2349		 * Notify any waiters for the buffer lock about
2350		 * identity change by freeing the buffer.
2351		 */
2352		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2353			bp->b_flags |= B_INVAL;
2354			bfreekva(bp);
2355			brelse(bp);
2356			goto restart;
2357		}
2358
2359		if (metadata)
2360			break;
2361
2362		/*
2363		 * If we are overcomitted then recover the buffer and its
2364		 * KVM space.  This occurs in rare situations when multiple
2365		 * processes are blocked in getnewbuf() or allocbuf().
2366		 */
2367		if (bufspace >= hibufspace)
2368			flushingbufs = 1;
2369		if (flushingbufs && bp->b_kvasize != 0) {
2370			bp->b_flags |= B_INVAL;
2371			bfreekva(bp);
2372			brelse(bp);
2373			goto restart;
2374		}
2375		if (bufspace < lobufspace)
2376			flushingbufs = 0;
2377		break;
2378	}
2379	return (bp);
2380}
2381
2382/*
2383 *	getnewbuf:
2384 *
2385 *	Find and initialize a new buffer header, freeing up existing buffers
2386 *	in the bufqueues as necessary.  The new buffer is returned locked.
2387 *
2388 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
2389 *	buffer away, the caller must set B_INVAL prior to calling brelse().
2390 *
2391 *	We block if:
2392 *		We have insufficient buffer headers
2393 *		We have insufficient buffer space
2394 *		buffer_arena is too fragmented ( space reservation fails )
2395 *		If we have to flush dirty buffers ( but we try to avoid this )
2396 */
2397static struct buf *
2398getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
2399    int gbflags)
2400{
2401	struct buf *bp;
2402	int defrag, metadata;
2403
2404	KASSERT((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
2405	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
2406	if (!unmapped_buf_allowed)
2407		gbflags &= ~(GB_UNMAPPED | GB_KVAALLOC);
2408
2409	defrag = 0;
2410	if (vp == NULL || (vp->v_vflag & (VV_MD | VV_SYSTEM)) != 0 ||
2411	    vp->v_type == VCHR)
2412		metadata = 1;
2413	else
2414		metadata = 0;
2415	/*
2416	 * We can't afford to block since we might be holding a vnode lock,
2417	 * which may prevent system daemons from running.  We deal with
2418	 * low-memory situations by proactively returning memory and running
2419	 * async I/O rather then sync I/O.
2420	 */
2421	atomic_add_int(&getnewbufcalls, 1);
2422	atomic_subtract_int(&getnewbufrestarts, 1);
2423restart:
2424	bp = getnewbuf_scan(maxsize, defrag, (gbflags & (GB_UNMAPPED |
2425	    GB_KVAALLOC)) == GB_UNMAPPED, metadata);
2426	if (bp != NULL)
2427		defrag = 0;
2428
2429	/*
2430	 * If we exhausted our list, sleep as appropriate.  We may have to
2431	 * wakeup various daemons and write out some dirty buffers.
2432	 *
2433	 * Generally we are sleeping due to insufficient buffer space.
2434	 */
2435	if (bp == NULL) {
2436		mtx_assert(&bqclean, MA_OWNED);
2437		getnewbuf_bufd_help(vp, gbflags, slpflag, slptimeo, defrag);
2438		mtx_assert(&bqclean, MA_NOTOWNED);
2439	} else if ((gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == GB_UNMAPPED) {
2440		mtx_assert(&bqclean, MA_NOTOWNED);
2441
2442		bfreekva(bp);
2443		bp->b_flags |= B_UNMAPPED;
2444		bp->b_kvabase = bp->b_data = unmapped_buf;
2445		bp->b_kvasize = maxsize;
2446		atomic_add_long(&bufspace, bp->b_kvasize);
2447		atomic_add_long(&unmapped_bufspace, bp->b_kvasize);
2448		atomic_add_int(&bufreusecnt, 1);
2449	} else {
2450		mtx_assert(&bqclean, MA_NOTOWNED);
2451
2452		/*
2453		 * We finally have a valid bp.  We aren't quite out of the
2454		 * woods, we still have to reserve kva space.  In order
2455		 * to keep fragmentation sane we only allocate kva in
2456		 * BKVASIZE chunks.
2457		 */
2458		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2459
2460		if (maxsize != bp->b_kvasize || (bp->b_flags & (B_UNMAPPED |
2461		    B_KVAALLOC)) == B_UNMAPPED) {
2462			if (allocbufkva(bp, maxsize, gbflags)) {
2463				defrag = 1;
2464				bp->b_flags |= B_INVAL;
2465				brelse(bp);
2466				goto restart;
2467			}
2468			atomic_add_int(&bufreusecnt, 1);
2469		} else if ((bp->b_flags & B_KVAALLOC) != 0 &&
2470		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == 0) {
2471			/*
2472			 * If the reused buffer has KVA allocated,
2473			 * reassign b_kvaalloc to b_kvabase.
2474			 */
2475			bp->b_kvabase = bp->b_kvaalloc;
2476			bp->b_flags &= ~B_KVAALLOC;
2477			atomic_subtract_long(&unmapped_bufspace,
2478			    bp->b_kvasize);
2479			atomic_add_int(&bufreusecnt, 1);
2480		} else if ((bp->b_flags & (B_UNMAPPED | B_KVAALLOC)) == 0 &&
2481		    (gbflags & (GB_UNMAPPED | GB_KVAALLOC)) == (GB_UNMAPPED |
2482		    GB_KVAALLOC)) {
2483			/*
2484			 * The case of reused buffer already have KVA
2485			 * mapped, but the request is for unmapped
2486			 * buffer with KVA allocated.
2487			 */
2488			bp->b_kvaalloc = bp->b_kvabase;
2489			bp->b_data = bp->b_kvabase = unmapped_buf;
2490			bp->b_flags |= B_UNMAPPED | B_KVAALLOC;
2491			atomic_add_long(&unmapped_bufspace,
2492			    bp->b_kvasize);
2493			atomic_add_int(&bufreusecnt, 1);
2494		}
2495		if ((gbflags & GB_UNMAPPED) == 0) {
2496			bp->b_saveaddr = bp->b_kvabase;
2497			bp->b_data = bp->b_saveaddr;
2498			bp->b_flags &= ~B_UNMAPPED;
2499			BUF_CHECK_MAPPED(bp);
2500		}
2501	}
2502	return (bp);
2503}
2504
2505/*
2506 *	buf_daemon:
2507 *
2508 *	buffer flushing daemon.  Buffers are normally flushed by the
2509 *	update daemon but if it cannot keep up this process starts to
2510 *	take the load in an attempt to prevent getnewbuf() from blocking.
2511 */
2512
2513static struct kproc_desc buf_kp = {
2514	"bufdaemon",
2515	buf_daemon,
2516	&bufdaemonproc
2517};
2518SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2519
2520static int
2521buf_flush(int target)
2522{
2523	int flushed;
2524
2525	flushed = flushbufqueues(target, 0);
2526	if (flushed == 0) {
2527		/*
2528		 * Could not find any buffers without rollback
2529		 * dependencies, so just write the first one
2530		 * in the hopes of eventually making progress.
2531		 */
2532		flushed = flushbufqueues(target, 1);
2533	}
2534	return (flushed);
2535}
2536
2537static void
2538buf_daemon()
2539{
2540	int lodirty;
2541
2542	/*
2543	 * This process needs to be suspended prior to shutdown sync.
2544	 */
2545	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2546	    SHUTDOWN_PRI_LAST);
2547
2548	/*
2549	 * This process is allowed to take the buffer cache to the limit
2550	 */
2551	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2552	mtx_lock(&bdlock);
2553	for (;;) {
2554		bd_request = 0;
2555		mtx_unlock(&bdlock);
2556
2557		kproc_suspend_check(bufdaemonproc);
2558		lodirty = lodirtybuffers;
2559		if (bd_speedupreq) {
2560			lodirty = numdirtybuffers / 2;
2561			bd_speedupreq = 0;
2562		}
2563		/*
2564		 * Do the flush.  Limit the amount of in-transit I/O we
2565		 * allow to build up, otherwise we would completely saturate
2566		 * the I/O system.
2567		 */
2568		while (numdirtybuffers > lodirty) {
2569			if (buf_flush(numdirtybuffers - lodirty) == 0)
2570				break;
2571			kern_yield(PRI_USER);
2572		}
2573
2574		/*
2575		 * Only clear bd_request if we have reached our low water
2576		 * mark.  The buf_daemon normally waits 1 second and
2577		 * then incrementally flushes any dirty buffers that have
2578		 * built up, within reason.
2579		 *
2580		 * If we were unable to hit our low water mark and couldn't
2581		 * find any flushable buffers, we sleep for a short period
2582		 * to avoid endless loops on unlockable buffers.
2583		 */
2584		mtx_lock(&bdlock);
2585		if (numdirtybuffers <= lodirtybuffers) {
2586			/*
2587			 * We reached our low water mark, reset the
2588			 * request and sleep until we are needed again.
2589			 * The sleep is just so the suspend code works.
2590			 */
2591			bd_request = 0;
2592			/*
2593			 * Do an extra wakeup in case dirty threshold
2594			 * changed via sysctl and the explicit transition
2595			 * out of shortfall was missed.
2596			 */
2597			bdirtywakeup();
2598			if (runningbufspace <= lorunningspace)
2599				runningwakeup();
2600			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2601		} else {
2602			/*
2603			 * We couldn't find any flushable dirty buffers but
2604			 * still have too many dirty buffers, we
2605			 * have to sleep and try again.  (rare)
2606			 */
2607			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2608		}
2609	}
2610}
2611
2612/*
2613 *	flushbufqueues:
2614 *
2615 *	Try to flush a buffer in the dirty queue.  We must be careful to
2616 *	free up B_INVAL buffers instead of write them, which NFS is
2617 *	particularly sensitive to.
2618 */
2619static int flushwithdeps = 0;
2620SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2621    0, "Number of buffers flushed with dependecies that require rollbacks");
2622
2623static int
2624flushbufqueues(int target, int flushdeps)
2625{
2626	struct buf *sentinel;
2627	struct vnode *vp;
2628	struct mount *mp;
2629	struct buf *bp;
2630	int hasdeps;
2631	int flushed;
2632	int queue;
2633	int error;
2634
2635	flushed = 0;
2636	queue = QUEUE_DIRTY;
2637	bp = NULL;
2638	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2639	sentinel->b_qindex = QUEUE_SENTINEL;
2640	mtx_lock(&bqdirty);
2641	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2642	mtx_unlock(&bqdirty);
2643	while (flushed != target) {
2644		maybe_yield();
2645		mtx_lock(&bqdirty);
2646		bp = TAILQ_NEXT(sentinel, b_freelist);
2647		if (bp != NULL) {
2648			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2649			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2650			    b_freelist);
2651		} else {
2652			mtx_unlock(&bqdirty);
2653			break;
2654		}
2655		KASSERT(bp->b_qindex != QUEUE_SENTINEL,
2656		    ("parallel calls to flushbufqueues() bp %p", bp));
2657		error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL);
2658		mtx_unlock(&bqdirty);
2659		if (error != 0)
2660			continue;
2661		if (bp->b_pin_count > 0) {
2662			BUF_UNLOCK(bp);
2663			continue;
2664		}
2665		/*
2666		 * BKGRDINPROG can only be set with the buf and bufobj
2667		 * locks both held.  We tolerate a race to clear it here.
2668		 */
2669		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2670		    (bp->b_flags & B_DELWRI) == 0) {
2671			BUF_UNLOCK(bp);
2672			continue;
2673		}
2674		if (bp->b_flags & B_INVAL) {
2675			bremfreef(bp);
2676			brelse(bp);
2677			flushed++;
2678			continue;
2679		}
2680
2681		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2682			if (flushdeps == 0) {
2683				BUF_UNLOCK(bp);
2684				continue;
2685			}
2686			hasdeps = 1;
2687		} else
2688			hasdeps = 0;
2689		/*
2690		 * We must hold the lock on a vnode before writing
2691		 * one of its buffers. Otherwise we may confuse, or
2692		 * in the case of a snapshot vnode, deadlock the
2693		 * system.
2694		 *
2695		 * The lock order here is the reverse of the normal
2696		 * of vnode followed by buf lock.  This is ok because
2697		 * the NOWAIT will prevent deadlock.
2698		 */
2699		vp = bp->b_vp;
2700		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2701			BUF_UNLOCK(bp);
2702			continue;
2703		}
2704		error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT);
2705		if (error == 0) {
2706			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2707			    bp, bp->b_vp, bp->b_flags);
2708			vfs_bio_awrite(bp);
2709			vn_finished_write(mp);
2710			VOP_UNLOCK(vp, 0);
2711			flushwithdeps += hasdeps;
2712			flushed++;
2713			if (runningbufspace > hirunningspace)
2714				waitrunningbufspace();
2715			continue;
2716		}
2717		vn_finished_write(mp);
2718		BUF_UNLOCK(bp);
2719	}
2720	mtx_lock(&bqdirty);
2721	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2722	mtx_unlock(&bqdirty);
2723	free(sentinel, M_TEMP);
2724	return (flushed);
2725}
2726
2727/*
2728 * Check to see if a block is currently memory resident.
2729 */
2730struct buf *
2731incore(struct bufobj *bo, daddr_t blkno)
2732{
2733	struct buf *bp;
2734
2735	BO_RLOCK(bo);
2736	bp = gbincore(bo, blkno);
2737	BO_RUNLOCK(bo);
2738	return (bp);
2739}
2740
2741/*
2742 * Returns true if no I/O is needed to access the
2743 * associated VM object.  This is like incore except
2744 * it also hunts around in the VM system for the data.
2745 */
2746
2747static int
2748inmem(struct vnode * vp, daddr_t blkno)
2749{
2750	vm_object_t obj;
2751	vm_offset_t toff, tinc, size;
2752	vm_page_t m;
2753	vm_ooffset_t off;
2754
2755	ASSERT_VOP_LOCKED(vp, "inmem");
2756
2757	if (incore(&vp->v_bufobj, blkno))
2758		return 1;
2759	if (vp->v_mount == NULL)
2760		return 0;
2761	obj = vp->v_object;
2762	if (obj == NULL)
2763		return (0);
2764
2765	size = PAGE_SIZE;
2766	if (size > vp->v_mount->mnt_stat.f_iosize)
2767		size = vp->v_mount->mnt_stat.f_iosize;
2768	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2769
2770	VM_OBJECT_RLOCK(obj);
2771	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2772		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2773		if (!m)
2774			goto notinmem;
2775		tinc = size;
2776		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2777			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2778		if (vm_page_is_valid(m,
2779		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2780			goto notinmem;
2781	}
2782	VM_OBJECT_RUNLOCK(obj);
2783	return 1;
2784
2785notinmem:
2786	VM_OBJECT_RUNLOCK(obj);
2787	return (0);
2788}
2789
2790/*
2791 * Set the dirty range for a buffer based on the status of the dirty
2792 * bits in the pages comprising the buffer.  The range is limited
2793 * to the size of the buffer.
2794 *
2795 * Tell the VM system that the pages associated with this buffer
2796 * are clean.  This is used for delayed writes where the data is
2797 * going to go to disk eventually without additional VM intevention.
2798 *
2799 * Note that while we only really need to clean through to b_bcount, we
2800 * just go ahead and clean through to b_bufsize.
2801 */
2802static void
2803vfs_clean_pages_dirty_buf(struct buf *bp)
2804{
2805	vm_ooffset_t foff, noff, eoff;
2806	vm_page_t m;
2807	int i;
2808
2809	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2810		return;
2811
2812	foff = bp->b_offset;
2813	KASSERT(bp->b_offset != NOOFFSET,
2814	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2815
2816	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
2817	vfs_drain_busy_pages(bp);
2818	vfs_setdirty_locked_object(bp);
2819	for (i = 0; i < bp->b_npages; i++) {
2820		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2821		eoff = noff;
2822		if (eoff > bp->b_offset + bp->b_bufsize)
2823			eoff = bp->b_offset + bp->b_bufsize;
2824		m = bp->b_pages[i];
2825		vfs_page_set_validclean(bp, foff, m);
2826		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2827		foff = noff;
2828	}
2829	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
2830}
2831
2832static void
2833vfs_setdirty_locked_object(struct buf *bp)
2834{
2835	vm_object_t object;
2836	int i;
2837
2838	object = bp->b_bufobj->bo_object;
2839	VM_OBJECT_ASSERT_WLOCKED(object);
2840
2841	/*
2842	 * We qualify the scan for modified pages on whether the
2843	 * object has been flushed yet.
2844	 */
2845	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
2846		vm_offset_t boffset;
2847		vm_offset_t eoffset;
2848
2849		/*
2850		 * test the pages to see if they have been modified directly
2851		 * by users through the VM system.
2852		 */
2853		for (i = 0; i < bp->b_npages; i++)
2854			vm_page_test_dirty(bp->b_pages[i]);
2855
2856		/*
2857		 * Calculate the encompassing dirty range, boffset and eoffset,
2858		 * (eoffset - boffset) bytes.
2859		 */
2860
2861		for (i = 0; i < bp->b_npages; i++) {
2862			if (bp->b_pages[i]->dirty)
2863				break;
2864		}
2865		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2866
2867		for (i = bp->b_npages - 1; i >= 0; --i) {
2868			if (bp->b_pages[i]->dirty) {
2869				break;
2870			}
2871		}
2872		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2873
2874		/*
2875		 * Fit it to the buffer.
2876		 */
2877
2878		if (eoffset > bp->b_bcount)
2879			eoffset = bp->b_bcount;
2880
2881		/*
2882		 * If we have a good dirty range, merge with the existing
2883		 * dirty range.
2884		 */
2885
2886		if (boffset < eoffset) {
2887			if (bp->b_dirtyoff > boffset)
2888				bp->b_dirtyoff = boffset;
2889			if (bp->b_dirtyend < eoffset)
2890				bp->b_dirtyend = eoffset;
2891		}
2892	}
2893}
2894
2895/*
2896 * Allocate the KVA mapping for an existing buffer. It handles the
2897 * cases of both B_UNMAPPED buffer, and buffer with the preallocated
2898 * KVA which is not mapped (B_KVAALLOC).
2899 */
2900static void
2901bp_unmapped_get_kva(struct buf *bp, daddr_t blkno, int size, int gbflags)
2902{
2903	struct buf *scratch_bp;
2904	int bsize, maxsize, need_mapping, need_kva;
2905	off_t offset;
2906
2907	need_mapping = (bp->b_flags & B_UNMAPPED) != 0 &&
2908	    (gbflags & GB_UNMAPPED) == 0;
2909	need_kva = (bp->b_flags & (B_KVAALLOC | B_UNMAPPED)) == B_UNMAPPED &&
2910	    (gbflags & GB_KVAALLOC) != 0;
2911	if (!need_mapping && !need_kva)
2912		return;
2913
2914	BUF_CHECK_UNMAPPED(bp);
2915
2916	if (need_mapping && (bp->b_flags & B_KVAALLOC) != 0) {
2917		/*
2918		 * Buffer is not mapped, but the KVA was already
2919		 * reserved at the time of the instantiation.  Use the
2920		 * allocated space.
2921		 */
2922		bp->b_flags &= ~B_KVAALLOC;
2923		KASSERT(bp->b_kvaalloc != 0, ("kvaalloc == 0"));
2924		bp->b_kvabase = bp->b_kvaalloc;
2925		atomic_subtract_long(&unmapped_bufspace, bp->b_kvasize);
2926		goto has_addr;
2927	}
2928
2929	/*
2930	 * Calculate the amount of the address space we would reserve
2931	 * if the buffer was mapped.
2932	 */
2933	bsize = vn_isdisk(bp->b_vp, NULL) ? DEV_BSIZE : bp->b_bufobj->bo_bsize;
2934	offset = blkno * bsize;
2935	maxsize = size + (offset & PAGE_MASK);
2936	maxsize = imax(maxsize, bsize);
2937
2938mapping_loop:
2939	if (allocbufkva(bp, maxsize, gbflags)) {
2940		/*
2941		 * Request defragmentation. getnewbuf() returns us the
2942		 * allocated space by the scratch buffer KVA.
2943		 */
2944		scratch_bp = getnewbuf(bp->b_vp, 0, 0, size, maxsize, gbflags |
2945		    (GB_UNMAPPED | GB_KVAALLOC));
2946		if (scratch_bp == NULL) {
2947			if ((gbflags & GB_NOWAIT_BD) != 0) {
2948				/*
2949				 * XXXKIB: defragmentation cannot
2950				 * succeed, not sure what else to do.
2951				 */
2952				panic("GB_NOWAIT_BD and B_UNMAPPED %p", bp);
2953			}
2954			atomic_add_int(&mappingrestarts, 1);
2955			goto mapping_loop;
2956		}
2957		KASSERT((scratch_bp->b_flags & B_KVAALLOC) != 0,
2958		    ("scratch bp !B_KVAALLOC %p", scratch_bp));
2959		setbufkva(bp, (vm_offset_t)scratch_bp->b_kvaalloc,
2960		    scratch_bp->b_kvasize, gbflags);
2961
2962		/* Get rid of the scratch buffer. */
2963		scratch_bp->b_kvasize = 0;
2964		scratch_bp->b_flags |= B_INVAL;
2965		scratch_bp->b_flags &= ~(B_UNMAPPED | B_KVAALLOC);
2966		brelse(scratch_bp);
2967	}
2968	if (!need_mapping)
2969		return;
2970
2971has_addr:
2972	bp->b_saveaddr = bp->b_kvabase;
2973	bp->b_data = bp->b_saveaddr; /* b_offset is handled by bpmap_qenter */
2974	bp->b_flags &= ~B_UNMAPPED;
2975	BUF_CHECK_MAPPED(bp);
2976	bpmap_qenter(bp);
2977}
2978
2979/*
2980 *	getblk:
2981 *
2982 *	Get a block given a specified block and offset into a file/device.
2983 *	The buffers B_DONE bit will be cleared on return, making it almost
2984 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2985 *	return.  The caller should clear B_INVAL prior to initiating a
2986 *	READ.
2987 *
2988 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2989 *	an existing buffer.
2990 *
2991 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2992 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2993 *	and then cleared based on the backing VM.  If the previous buffer is
2994 *	non-0-sized but invalid, B_CACHE will be cleared.
2995 *
2996 *	If getblk() must create a new buffer, the new buffer is returned with
2997 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2998 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2999 *	backing VM.
3000 *
3001 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
3002 *	B_CACHE bit is clear.
3003 *
3004 *	What this means, basically, is that the caller should use B_CACHE to
3005 *	determine whether the buffer is fully valid or not and should clear
3006 *	B_INVAL prior to issuing a read.  If the caller intends to validate
3007 *	the buffer by loading its data area with something, the caller needs
3008 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
3009 *	the caller should set B_CACHE ( as an optimization ), else the caller
3010 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
3011 *	a write attempt or if it was a successfull read.  If the caller
3012 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
3013 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
3014 */
3015struct buf *
3016getblk(struct vnode *vp, daddr_t blkno, int size, int slpflag, int slptimeo,
3017    int flags)
3018{
3019	struct buf *bp;
3020	struct bufobj *bo;
3021	int bsize, error, maxsize, vmio;
3022	off_t offset;
3023
3024	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
3025	KASSERT((flags & (GB_UNMAPPED | GB_KVAALLOC)) != GB_KVAALLOC,
3026	    ("GB_KVAALLOC only makes sense with GB_UNMAPPED"));
3027	ASSERT_VOP_LOCKED(vp, "getblk");
3028	if (size > MAXBSIZE)
3029		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
3030	if (!unmapped_buf_allowed)
3031		flags &= ~(GB_UNMAPPED | GB_KVAALLOC);
3032
3033	bo = &vp->v_bufobj;
3034loop:
3035	BO_RLOCK(bo);
3036	bp = gbincore(bo, blkno);
3037	if (bp != NULL) {
3038		int lockflags;
3039		/*
3040		 * Buffer is in-core.  If the buffer is not busy nor managed,
3041		 * it must be on a queue.
3042		 */
3043		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
3044
3045		if (flags & GB_LOCK_NOWAIT)
3046			lockflags |= LK_NOWAIT;
3047
3048		error = BUF_TIMELOCK(bp, lockflags,
3049		    BO_LOCKPTR(bo), "getblk", slpflag, slptimeo);
3050
3051		/*
3052		 * If we slept and got the lock we have to restart in case
3053		 * the buffer changed identities.
3054		 */
3055		if (error == ENOLCK)
3056			goto loop;
3057		/* We timed out or were interrupted. */
3058		else if (error)
3059			return (NULL);
3060		/* If recursed, assume caller knows the rules. */
3061		else if (BUF_LOCKRECURSED(bp))
3062			goto end;
3063
3064		/*
3065		 * The buffer is locked.  B_CACHE is cleared if the buffer is
3066		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
3067		 * and for a VMIO buffer B_CACHE is adjusted according to the
3068		 * backing VM cache.
3069		 */
3070		if (bp->b_flags & B_INVAL)
3071			bp->b_flags &= ~B_CACHE;
3072		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
3073			bp->b_flags |= B_CACHE;
3074		if (bp->b_flags & B_MANAGED)
3075			MPASS(bp->b_qindex == QUEUE_NONE);
3076		else
3077			bremfree(bp);
3078
3079		/*
3080		 * check for size inconsistencies for non-VMIO case.
3081		 */
3082		if (bp->b_bcount != size) {
3083			if ((bp->b_flags & B_VMIO) == 0 ||
3084			    (size > bp->b_kvasize)) {
3085				if (bp->b_flags & B_DELWRI) {
3086					/*
3087					 * If buffer is pinned and caller does
3088					 * not want sleep  waiting for it to be
3089					 * unpinned, bail out
3090					 * */
3091					if (bp->b_pin_count > 0) {
3092						if (flags & GB_LOCK_NOWAIT) {
3093							bqrelse(bp);
3094							return (NULL);
3095						} else {
3096							bunpin_wait(bp);
3097						}
3098					}
3099					bp->b_flags |= B_NOCACHE;
3100					bwrite(bp);
3101				} else {
3102					if (LIST_EMPTY(&bp->b_dep)) {
3103						bp->b_flags |= B_RELBUF;
3104						brelse(bp);
3105					} else {
3106						bp->b_flags |= B_NOCACHE;
3107						bwrite(bp);
3108					}
3109				}
3110				goto loop;
3111			}
3112		}
3113
3114		/*
3115		 * Handle the case of unmapped buffer which should
3116		 * become mapped, or the buffer for which KVA
3117		 * reservation is requested.
3118		 */
3119		bp_unmapped_get_kva(bp, blkno, size, flags);
3120
3121		/*
3122		 * If the size is inconsistant in the VMIO case, we can resize
3123		 * the buffer.  This might lead to B_CACHE getting set or
3124		 * cleared.  If the size has not changed, B_CACHE remains
3125		 * unchanged from its previous state.
3126		 */
3127		if (bp->b_bcount != size)
3128			allocbuf(bp, size);
3129
3130		KASSERT(bp->b_offset != NOOFFSET,
3131		    ("getblk: no buffer offset"));
3132
3133		/*
3134		 * A buffer with B_DELWRI set and B_CACHE clear must
3135		 * be committed before we can return the buffer in
3136		 * order to prevent the caller from issuing a read
3137		 * ( due to B_CACHE not being set ) and overwriting
3138		 * it.
3139		 *
3140		 * Most callers, including NFS and FFS, need this to
3141		 * operate properly either because they assume they
3142		 * can issue a read if B_CACHE is not set, or because
3143		 * ( for example ) an uncached B_DELWRI might loop due
3144		 * to softupdates re-dirtying the buffer.  In the latter
3145		 * case, B_CACHE is set after the first write completes,
3146		 * preventing further loops.
3147		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
3148		 * above while extending the buffer, we cannot allow the
3149		 * buffer to remain with B_CACHE set after the write
3150		 * completes or it will represent a corrupt state.  To
3151		 * deal with this we set B_NOCACHE to scrap the buffer
3152		 * after the write.
3153		 *
3154		 * We might be able to do something fancy, like setting
3155		 * B_CACHE in bwrite() except if B_DELWRI is already set,
3156		 * so the below call doesn't set B_CACHE, but that gets real
3157		 * confusing.  This is much easier.
3158		 */
3159
3160		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
3161			bp->b_flags |= B_NOCACHE;
3162			bwrite(bp);
3163			goto loop;
3164		}
3165		bp->b_flags &= ~B_DONE;
3166	} else {
3167		/*
3168		 * Buffer is not in-core, create new buffer.  The buffer
3169		 * returned by getnewbuf() is locked.  Note that the returned
3170		 * buffer is also considered valid (not marked B_INVAL).
3171		 */
3172		BO_RUNLOCK(bo);
3173		/*
3174		 * If the user does not want us to create the buffer, bail out
3175		 * here.
3176		 */
3177		if (flags & GB_NOCREAT)
3178			return NULL;
3179		if (numfreebuffers == 0 && TD_IS_IDLETHREAD(curthread))
3180			return NULL;
3181
3182		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
3183		offset = blkno * bsize;
3184		vmio = vp->v_object != NULL;
3185		if (vmio) {
3186			maxsize = size + (offset & PAGE_MASK);
3187		} else {
3188			maxsize = size;
3189			/* Do not allow non-VMIO notmapped buffers. */
3190			flags &= ~GB_UNMAPPED;
3191		}
3192		maxsize = imax(maxsize, bsize);
3193
3194		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
3195		if (bp == NULL) {
3196			if (slpflag || slptimeo)
3197				return NULL;
3198			goto loop;
3199		}
3200
3201		/*
3202		 * This code is used to make sure that a buffer is not
3203		 * created while the getnewbuf routine is blocked.
3204		 * This can be a problem whether the vnode is locked or not.
3205		 * If the buffer is created out from under us, we have to
3206		 * throw away the one we just created.
3207		 *
3208		 * Note: this must occur before we associate the buffer
3209		 * with the vp especially considering limitations in
3210		 * the splay tree implementation when dealing with duplicate
3211		 * lblkno's.
3212		 */
3213		BO_LOCK(bo);
3214		if (gbincore(bo, blkno)) {
3215			BO_UNLOCK(bo);
3216			bp->b_flags |= B_INVAL;
3217			brelse(bp);
3218			goto loop;
3219		}
3220
3221		/*
3222		 * Insert the buffer into the hash, so that it can
3223		 * be found by incore.
3224		 */
3225		bp->b_blkno = bp->b_lblkno = blkno;
3226		bp->b_offset = offset;
3227		bgetvp(vp, bp);
3228		BO_UNLOCK(bo);
3229
3230		/*
3231		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
3232		 * buffer size starts out as 0, B_CACHE will be set by
3233		 * allocbuf() for the VMIO case prior to it testing the
3234		 * backing store for validity.
3235		 */
3236
3237		if (vmio) {
3238			bp->b_flags |= B_VMIO;
3239			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
3240			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
3241			    bp, vp->v_object, bp->b_bufobj->bo_object));
3242		} else {
3243			bp->b_flags &= ~B_VMIO;
3244			KASSERT(bp->b_bufobj->bo_object == NULL,
3245			    ("ARGH! has b_bufobj->bo_object %p %p\n",
3246			    bp, bp->b_bufobj->bo_object));
3247			BUF_CHECK_MAPPED(bp);
3248		}
3249
3250		allocbuf(bp, size);
3251		bp->b_flags &= ~B_DONE;
3252	}
3253	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
3254	BUF_ASSERT_HELD(bp);
3255end:
3256	KASSERT(bp->b_bufobj == bo,
3257	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
3258	return (bp);
3259}
3260
3261/*
3262 * Get an empty, disassociated buffer of given size.  The buffer is initially
3263 * set to B_INVAL.
3264 */
3265struct buf *
3266geteblk(int size, int flags)
3267{
3268	struct buf *bp;
3269	int maxsize;
3270
3271	maxsize = (size + BKVAMASK) & ~BKVAMASK;
3272	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
3273		if ((flags & GB_NOWAIT_BD) &&
3274		    (curthread->td_pflags & TDP_BUFNEED) != 0)
3275			return (NULL);
3276	}
3277	allocbuf(bp, size);
3278	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
3279	BUF_ASSERT_HELD(bp);
3280	return (bp);
3281}
3282
3283
3284/*
3285 * This code constitutes the buffer memory from either anonymous system
3286 * memory (in the case of non-VMIO operations) or from an associated
3287 * VM object (in the case of VMIO operations).  This code is able to
3288 * resize a buffer up or down.
3289 *
3290 * Note that this code is tricky, and has many complications to resolve
3291 * deadlock or inconsistant data situations.  Tread lightly!!!
3292 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
3293 * the caller.  Calling this code willy nilly can result in the loss of data.
3294 *
3295 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
3296 * B_CACHE for the non-VMIO case.
3297 */
3298
3299int
3300allocbuf(struct buf *bp, int size)
3301{
3302	int newbsize, mbsize;
3303	int i;
3304
3305	BUF_ASSERT_HELD(bp);
3306
3307	if (bp->b_kvasize < size)
3308		panic("allocbuf: buffer too small");
3309
3310	if ((bp->b_flags & B_VMIO) == 0) {
3311		caddr_t origbuf;
3312		int origbufsize;
3313		/*
3314		 * Just get anonymous memory from the kernel.  Don't
3315		 * mess with B_CACHE.
3316		 */
3317		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3318		if (bp->b_flags & B_MALLOC)
3319			newbsize = mbsize;
3320		else
3321			newbsize = round_page(size);
3322
3323		if (newbsize < bp->b_bufsize) {
3324			/*
3325			 * malloced buffers are not shrunk
3326			 */
3327			if (bp->b_flags & B_MALLOC) {
3328				if (newbsize) {
3329					bp->b_bcount = size;
3330				} else {
3331					free(bp->b_data, M_BIOBUF);
3332					if (bp->b_bufsize) {
3333						atomic_subtract_long(
3334						    &bufmallocspace,
3335						    bp->b_bufsize);
3336						bufspacewakeup();
3337						bp->b_bufsize = 0;
3338					}
3339					bp->b_saveaddr = bp->b_kvabase;
3340					bp->b_data = bp->b_saveaddr;
3341					bp->b_bcount = 0;
3342					bp->b_flags &= ~B_MALLOC;
3343				}
3344				return 1;
3345			}
3346			vm_hold_free_pages(bp, newbsize);
3347		} else if (newbsize > bp->b_bufsize) {
3348			/*
3349			 * We only use malloced memory on the first allocation.
3350			 * and revert to page-allocated memory when the buffer
3351			 * grows.
3352			 */
3353			/*
3354			 * There is a potential smp race here that could lead
3355			 * to bufmallocspace slightly passing the max.  It
3356			 * is probably extremely rare and not worth worrying
3357			 * over.
3358			 */
3359			if ( (bufmallocspace < maxbufmallocspace) &&
3360				(bp->b_bufsize == 0) &&
3361				(mbsize <= PAGE_SIZE/2)) {
3362
3363				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
3364				bp->b_bufsize = mbsize;
3365				bp->b_bcount = size;
3366				bp->b_flags |= B_MALLOC;
3367				atomic_add_long(&bufmallocspace, mbsize);
3368				return 1;
3369			}
3370			origbuf = NULL;
3371			origbufsize = 0;
3372			/*
3373			 * If the buffer is growing on its other-than-first allocation,
3374			 * then we revert to the page-allocation scheme.
3375			 */
3376			if (bp->b_flags & B_MALLOC) {
3377				origbuf = bp->b_data;
3378				origbufsize = bp->b_bufsize;
3379				bp->b_data = bp->b_kvabase;
3380				if (bp->b_bufsize) {
3381					atomic_subtract_long(&bufmallocspace,
3382					    bp->b_bufsize);
3383					bufspacewakeup();
3384					bp->b_bufsize = 0;
3385				}
3386				bp->b_flags &= ~B_MALLOC;
3387				newbsize = round_page(newbsize);
3388			}
3389			vm_hold_load_pages(
3390			    bp,
3391			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3392			    (vm_offset_t) bp->b_data + newbsize);
3393			if (origbuf) {
3394				bcopy(origbuf, bp->b_data, origbufsize);
3395				free(origbuf, M_BIOBUF);
3396			}
3397		}
3398	} else {
3399		int desiredpages;
3400
3401		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3402		desiredpages = (size == 0) ? 0 :
3403			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3404
3405		if (bp->b_flags & B_MALLOC)
3406			panic("allocbuf: VMIO buffer can't be malloced");
3407		/*
3408		 * Set B_CACHE initially if buffer is 0 length or will become
3409		 * 0-length.
3410		 */
3411		if (size == 0 || bp->b_bufsize == 0)
3412			bp->b_flags |= B_CACHE;
3413
3414		if (newbsize < bp->b_bufsize) {
3415			/*
3416			 * DEV_BSIZE aligned new buffer size is less then the
3417			 * DEV_BSIZE aligned existing buffer size.  Figure out
3418			 * if we have to remove any pages.
3419			 */
3420			if (desiredpages < bp->b_npages) {
3421				vm_page_t m;
3422
3423				if ((bp->b_flags & B_UNMAPPED) == 0) {
3424					BUF_CHECK_MAPPED(bp);
3425					pmap_qremove((vm_offset_t)trunc_page(
3426					    (vm_offset_t)bp->b_data) +
3427					    (desiredpages << PAGE_SHIFT),
3428					    (bp->b_npages - desiredpages));
3429				} else
3430					BUF_CHECK_UNMAPPED(bp);
3431				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3432				for (i = desiredpages; i < bp->b_npages; i++) {
3433					/*
3434					 * the page is not freed here -- it
3435					 * is the responsibility of
3436					 * vnode_pager_setsize
3437					 */
3438					m = bp->b_pages[i];
3439					KASSERT(m != bogus_page,
3440					    ("allocbuf: bogus page found"));
3441					while (vm_page_sleep_if_busy(m,
3442					    "biodep"))
3443						continue;
3444
3445					bp->b_pages[i] = NULL;
3446					vm_page_lock(m);
3447					vm_page_unwire(m, 0);
3448					vm_page_unlock(m);
3449				}
3450				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3451				bp->b_npages = desiredpages;
3452			}
3453		} else if (size > bp->b_bcount) {
3454			/*
3455			 * We are growing the buffer, possibly in a
3456			 * byte-granular fashion.
3457			 */
3458			vm_object_t obj;
3459			vm_offset_t toff;
3460			vm_offset_t tinc;
3461
3462			/*
3463			 * Step 1, bring in the VM pages from the object,
3464			 * allocating them if necessary.  We must clear
3465			 * B_CACHE if these pages are not valid for the
3466			 * range covered by the buffer.
3467			 */
3468
3469			obj = bp->b_bufobj->bo_object;
3470
3471			VM_OBJECT_WLOCK(obj);
3472			while (bp->b_npages < desiredpages) {
3473				vm_page_t m;
3474
3475				/*
3476				 * We must allocate system pages since blocking
3477				 * here could interfere with paging I/O, no
3478				 * matter which process we are.
3479				 *
3480				 * Only exclusive busy can be tested here.
3481				 * Blocking on shared busy might lead to
3482				 * deadlocks once allocbuf() is called after
3483				 * pages are vfs_busy_pages().
3484				 */
3485				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3486				    bp->b_npages, VM_ALLOC_NOBUSY |
3487				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3488				    VM_ALLOC_IGN_SBUSY |
3489				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3490				if (m->valid == 0)
3491					bp->b_flags &= ~B_CACHE;
3492				bp->b_pages[bp->b_npages] = m;
3493				++bp->b_npages;
3494			}
3495
3496			/*
3497			 * Step 2.  We've loaded the pages into the buffer,
3498			 * we have to figure out if we can still have B_CACHE
3499			 * set.  Note that B_CACHE is set according to the
3500			 * byte-granular range ( bcount and size ), new the
3501			 * aligned range ( newbsize ).
3502			 *
3503			 * The VM test is against m->valid, which is DEV_BSIZE
3504			 * aligned.  Needless to say, the validity of the data
3505			 * needs to also be DEV_BSIZE aligned.  Note that this
3506			 * fails with NFS if the server or some other client
3507			 * extends the file's EOF.  If our buffer is resized,
3508			 * B_CACHE may remain set! XXX
3509			 */
3510
3511			toff = bp->b_bcount;
3512			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3513
3514			while ((bp->b_flags & B_CACHE) && toff < size) {
3515				vm_pindex_t pi;
3516
3517				if (tinc > (size - toff))
3518					tinc = size - toff;
3519
3520				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3521				    PAGE_SHIFT;
3522
3523				vfs_buf_test_cache(
3524				    bp,
3525				    bp->b_offset,
3526				    toff,
3527				    tinc,
3528				    bp->b_pages[pi]
3529				);
3530				toff += tinc;
3531				tinc = PAGE_SIZE;
3532			}
3533			VM_OBJECT_WUNLOCK(obj);
3534
3535			/*
3536			 * Step 3, fixup the KVM pmap.
3537			 */
3538			if ((bp->b_flags & B_UNMAPPED) == 0)
3539				bpmap_qenter(bp);
3540			else
3541				BUF_CHECK_UNMAPPED(bp);
3542		}
3543	}
3544	if (newbsize < bp->b_bufsize)
3545		bufspacewakeup();
3546	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3547	bp->b_bcount = size;		/* requested buffer size	*/
3548	return 1;
3549}
3550
3551extern int inflight_transient_maps;
3552
3553void
3554biodone(struct bio *bp)
3555{
3556	struct mtx *mtxp;
3557	void (*done)(struct bio *);
3558	vm_offset_t start, end;
3559	int transient;
3560
3561	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3562	mtx_lock(mtxp);
3563	bp->bio_flags |= BIO_DONE;
3564	if ((bp->bio_flags & BIO_TRANSIENT_MAPPING) != 0) {
3565		start = trunc_page((vm_offset_t)bp->bio_data);
3566		end = round_page((vm_offset_t)bp->bio_data + bp->bio_length);
3567		transient = 1;
3568	} else {
3569		transient = 0;
3570		start = end = 0;
3571	}
3572	done = bp->bio_done;
3573	if (done == NULL)
3574		wakeup(bp);
3575	mtx_unlock(mtxp);
3576	if (done != NULL)
3577		done(bp);
3578	if (transient) {
3579		pmap_qremove(start, OFF_TO_IDX(end - start));
3580		vmem_free(transient_arena, start, end - start);
3581		atomic_add_int(&inflight_transient_maps, -1);
3582	}
3583}
3584
3585/*
3586 * Wait for a BIO to finish.
3587 *
3588 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3589 * case is not yet clear.
3590 */
3591int
3592biowait(struct bio *bp, const char *wchan)
3593{
3594	struct mtx *mtxp;
3595
3596	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3597	mtx_lock(mtxp);
3598	while ((bp->bio_flags & BIO_DONE) == 0)
3599		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3600	mtx_unlock(mtxp);
3601	if (bp->bio_error != 0)
3602		return (bp->bio_error);
3603	if (!(bp->bio_flags & BIO_ERROR))
3604		return (0);
3605	return (EIO);
3606}
3607
3608void
3609biofinish(struct bio *bp, struct devstat *stat, int error)
3610{
3611
3612	if (error) {
3613		bp->bio_error = error;
3614		bp->bio_flags |= BIO_ERROR;
3615	}
3616	if (stat != NULL)
3617		devstat_end_transaction_bio(stat, bp);
3618	biodone(bp);
3619}
3620
3621/*
3622 *	bufwait:
3623 *
3624 *	Wait for buffer I/O completion, returning error status.  The buffer
3625 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3626 *	error and cleared.
3627 */
3628int
3629bufwait(struct buf *bp)
3630{
3631	if (bp->b_iocmd == BIO_READ)
3632		bwait(bp, PRIBIO, "biord");
3633	else
3634		bwait(bp, PRIBIO, "biowr");
3635	if (bp->b_flags & B_EINTR) {
3636		bp->b_flags &= ~B_EINTR;
3637		return (EINTR);
3638	}
3639	if (bp->b_ioflags & BIO_ERROR) {
3640		return (bp->b_error ? bp->b_error : EIO);
3641	} else {
3642		return (0);
3643	}
3644}
3645
3646 /*
3647  * Call back function from struct bio back up to struct buf.
3648  */
3649static void
3650bufdonebio(struct bio *bip)
3651{
3652	struct buf *bp;
3653
3654	bp = bip->bio_caller2;
3655	bp->b_resid = bp->b_bcount - bip->bio_completed;
3656	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3657	bp->b_ioflags = bip->bio_flags;
3658	bp->b_error = bip->bio_error;
3659	if (bp->b_error)
3660		bp->b_ioflags |= BIO_ERROR;
3661	bufdone(bp);
3662	g_destroy_bio(bip);
3663}
3664
3665void
3666dev_strategy(struct cdev *dev, struct buf *bp)
3667{
3668	struct cdevsw *csw;
3669	int ref;
3670
3671	KASSERT(dev->si_refcount > 0,
3672	    ("dev_strategy on un-referenced struct cdev *(%s) %p",
3673	    devtoname(dev), dev));
3674
3675	csw = dev_refthread(dev, &ref);
3676	dev_strategy_csw(dev, csw, bp);
3677	dev_relthread(dev, ref);
3678}
3679
3680void
3681dev_strategy_csw(struct cdev *dev, struct cdevsw *csw, struct buf *bp)
3682{
3683	struct bio *bip;
3684
3685	KASSERT(bp->b_iocmd == BIO_READ || bp->b_iocmd == BIO_WRITE,
3686	    ("b_iocmd botch"));
3687	KASSERT(((dev->si_flags & SI_ETERNAL) != 0 && csw != NULL) ||
3688	    dev->si_threadcount > 0,
3689	    ("dev_strategy_csw threadcount cdev *(%s) %p", devtoname(dev),
3690	    dev));
3691	if (csw == NULL) {
3692		bp->b_error = ENXIO;
3693		bp->b_ioflags = BIO_ERROR;
3694		bufdone(bp);
3695		return;
3696	}
3697	for (;;) {
3698		bip = g_new_bio();
3699		if (bip != NULL)
3700			break;
3701		/* Try again later */
3702		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3703	}
3704	bip->bio_cmd = bp->b_iocmd;
3705	bip->bio_offset = bp->b_iooffset;
3706	bip->bio_length = bp->b_bcount;
3707	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3708	bdata2bio(bp, bip);
3709	bip->bio_done = bufdonebio;
3710	bip->bio_caller2 = bp;
3711	bip->bio_dev = dev;
3712	(*csw->d_strategy)(bip);
3713}
3714
3715/*
3716 *	bufdone:
3717 *
3718 *	Finish I/O on a buffer, optionally calling a completion function.
3719 *	This is usually called from an interrupt so process blocking is
3720 *	not allowed.
3721 *
3722 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3723 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3724 *	assuming B_INVAL is clear.
3725 *
3726 *	For the VMIO case, we set B_CACHE if the op was a read and no
3727 *	read error occured, or if the op was a write.  B_CACHE is never
3728 *	set if the buffer is invalid or otherwise uncacheable.
3729 *
3730 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3731 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3732 *	in the biodone routine.
3733 */
3734void
3735bufdone(struct buf *bp)
3736{
3737	struct bufobj *dropobj;
3738	void    (*biodone)(struct buf *);
3739
3740	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3741	dropobj = NULL;
3742
3743	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3744	BUF_ASSERT_HELD(bp);
3745
3746	runningbufwakeup(bp);
3747	if (bp->b_iocmd == BIO_WRITE)
3748		dropobj = bp->b_bufobj;
3749	/* call optional completion function if requested */
3750	if (bp->b_iodone != NULL) {
3751		biodone = bp->b_iodone;
3752		bp->b_iodone = NULL;
3753		(*biodone) (bp);
3754		if (dropobj)
3755			bufobj_wdrop(dropobj);
3756		return;
3757	}
3758
3759	bufdone_finish(bp);
3760
3761	if (dropobj)
3762		bufobj_wdrop(dropobj);
3763}
3764
3765void
3766bufdone_finish(struct buf *bp)
3767{
3768	BUF_ASSERT_HELD(bp);
3769
3770	if (!LIST_EMPTY(&bp->b_dep))
3771		buf_complete(bp);
3772
3773	if (bp->b_flags & B_VMIO) {
3774		vm_ooffset_t foff;
3775		vm_page_t m;
3776		vm_object_t obj;
3777		struct vnode *vp;
3778		int bogus, i, iosize;
3779
3780		obj = bp->b_bufobj->bo_object;
3781		KASSERT(obj->paging_in_progress >= bp->b_npages,
3782		    ("biodone_finish: paging in progress(%d) < b_npages(%d)",
3783		    obj->paging_in_progress, bp->b_npages));
3784
3785		vp = bp->b_vp;
3786		KASSERT(vp->v_holdcnt > 0,
3787		    ("biodone_finish: vnode %p has zero hold count", vp));
3788		KASSERT(vp->v_object != NULL,
3789		    ("biodone_finish: vnode %p has no vm_object", vp));
3790
3791		foff = bp->b_offset;
3792		KASSERT(bp->b_offset != NOOFFSET,
3793		    ("biodone_finish: bp %p has no buffer offset", bp));
3794
3795		/*
3796		 * Set B_CACHE if the op was a normal read and no error
3797		 * occured.  B_CACHE is set for writes in the b*write()
3798		 * routines.
3799		 */
3800		iosize = bp->b_bcount - bp->b_resid;
3801		if (bp->b_iocmd == BIO_READ &&
3802		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3803		    !(bp->b_ioflags & BIO_ERROR)) {
3804			bp->b_flags |= B_CACHE;
3805		}
3806		bogus = 0;
3807		VM_OBJECT_WLOCK(obj);
3808		for (i = 0; i < bp->b_npages; i++) {
3809			int bogusflag = 0;
3810			int resid;
3811
3812			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3813			if (resid > iosize)
3814				resid = iosize;
3815
3816			/*
3817			 * cleanup bogus pages, restoring the originals
3818			 */
3819			m = bp->b_pages[i];
3820			if (m == bogus_page) {
3821				bogus = bogusflag = 1;
3822				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3823				if (m == NULL)
3824					panic("biodone: page disappeared!");
3825				bp->b_pages[i] = m;
3826			}
3827			KASSERT(OFF_TO_IDX(foff) == m->pindex,
3828			    ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
3829			    (intmax_t)foff, (uintmax_t)m->pindex));
3830
3831			/*
3832			 * In the write case, the valid and clean bits are
3833			 * already changed correctly ( see bdwrite() ), so we
3834			 * only need to do this here in the read case.
3835			 */
3836			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3837				KASSERT((m->dirty & vm_page_bits(foff &
3838				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3839				    " page %p has unexpected dirty bits", m));
3840				vfs_page_set_valid(bp, foff, m);
3841			}
3842
3843			vm_page_sunbusy(m);
3844			vm_object_pip_subtract(obj, 1);
3845			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3846			iosize -= resid;
3847		}
3848		vm_object_pip_wakeupn(obj, 0);
3849		VM_OBJECT_WUNLOCK(obj);
3850		if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
3851			BUF_CHECK_MAPPED(bp);
3852			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3853			    bp->b_pages, bp->b_npages);
3854		}
3855	}
3856
3857	/*
3858	 * For asynchronous completions, release the buffer now. The brelse
3859	 * will do a wakeup there if necessary - so no need to do a wakeup
3860	 * here in the async case. The sync case always needs to do a wakeup.
3861	 */
3862
3863	if (bp->b_flags & B_ASYNC) {
3864		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3865			brelse(bp);
3866		else
3867			bqrelse(bp);
3868	} else
3869		bdone(bp);
3870}
3871
3872/*
3873 * This routine is called in lieu of iodone in the case of
3874 * incomplete I/O.  This keeps the busy status for pages
3875 * consistant.
3876 */
3877void
3878vfs_unbusy_pages(struct buf *bp)
3879{
3880	int i;
3881	vm_object_t obj;
3882	vm_page_t m;
3883
3884	runningbufwakeup(bp);
3885	if (!(bp->b_flags & B_VMIO))
3886		return;
3887
3888	obj = bp->b_bufobj->bo_object;
3889	VM_OBJECT_WLOCK(obj);
3890	for (i = 0; i < bp->b_npages; i++) {
3891		m = bp->b_pages[i];
3892		if (m == bogus_page) {
3893			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3894			if (!m)
3895				panic("vfs_unbusy_pages: page missing\n");
3896			bp->b_pages[i] = m;
3897			if ((bp->b_flags & B_UNMAPPED) == 0) {
3898				BUF_CHECK_MAPPED(bp);
3899				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3900				    bp->b_pages, bp->b_npages);
3901			} else
3902				BUF_CHECK_UNMAPPED(bp);
3903		}
3904		vm_object_pip_subtract(obj, 1);
3905		vm_page_sunbusy(m);
3906	}
3907	vm_object_pip_wakeupn(obj, 0);
3908	VM_OBJECT_WUNLOCK(obj);
3909}
3910
3911/*
3912 * vfs_page_set_valid:
3913 *
3914 *	Set the valid bits in a page based on the supplied offset.   The
3915 *	range is restricted to the buffer's size.
3916 *
3917 *	This routine is typically called after a read completes.
3918 */
3919static void
3920vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3921{
3922	vm_ooffset_t eoff;
3923
3924	/*
3925	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3926	 * page boundary and eoff is not greater than the end of the buffer.
3927	 * The end of the buffer, in this case, is our file EOF, not the
3928	 * allocation size of the buffer.
3929	 */
3930	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3931	if (eoff > bp->b_offset + bp->b_bcount)
3932		eoff = bp->b_offset + bp->b_bcount;
3933
3934	/*
3935	 * Set valid range.  This is typically the entire buffer and thus the
3936	 * entire page.
3937	 */
3938	if (eoff > off)
3939		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
3940}
3941
3942/*
3943 * vfs_page_set_validclean:
3944 *
3945 *	Set the valid bits and clear the dirty bits in a page based on the
3946 *	supplied offset.   The range is restricted to the buffer's size.
3947 */
3948static void
3949vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3950{
3951	vm_ooffset_t soff, eoff;
3952
3953	/*
3954	 * Start and end offsets in buffer.  eoff - soff may not cross a
3955	 * page boundry or cross the end of the buffer.  The end of the
3956	 * buffer, in this case, is our file EOF, not the allocation size
3957	 * of the buffer.
3958	 */
3959	soff = off;
3960	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3961	if (eoff > bp->b_offset + bp->b_bcount)
3962		eoff = bp->b_offset + bp->b_bcount;
3963
3964	/*
3965	 * Set valid range.  This is typically the entire buffer and thus the
3966	 * entire page.
3967	 */
3968	if (eoff > soff) {
3969		vm_page_set_validclean(
3970		    m,
3971		   (vm_offset_t) (soff & PAGE_MASK),
3972		   (vm_offset_t) (eoff - soff)
3973		);
3974	}
3975}
3976
3977/*
3978 * Ensure that all buffer pages are not exclusive busied.  If any page is
3979 * exclusive busy, drain it.
3980 */
3981void
3982vfs_drain_busy_pages(struct buf *bp)
3983{
3984	vm_page_t m;
3985	int i, last_busied;
3986
3987	VM_OBJECT_ASSERT_WLOCKED(bp->b_bufobj->bo_object);
3988	last_busied = 0;
3989	for (i = 0; i < bp->b_npages; i++) {
3990		m = bp->b_pages[i];
3991		if (vm_page_xbusied(m)) {
3992			for (; last_busied < i; last_busied++)
3993				vm_page_sbusy(bp->b_pages[last_busied]);
3994			while (vm_page_xbusied(m)) {
3995				vm_page_lock(m);
3996				VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
3997				vm_page_busy_sleep(m, "vbpage");
3998				VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
3999			}
4000		}
4001	}
4002	for (i = 0; i < last_busied; i++)
4003		vm_page_sunbusy(bp->b_pages[i]);
4004}
4005
4006/*
4007 * This routine is called before a device strategy routine.
4008 * It is used to tell the VM system that paging I/O is in
4009 * progress, and treat the pages associated with the buffer
4010 * almost as being exclusive busy.  Also the object paging_in_progress
4011 * flag is handled to make sure that the object doesn't become
4012 * inconsistant.
4013 *
4014 * Since I/O has not been initiated yet, certain buffer flags
4015 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
4016 * and should be ignored.
4017 */
4018void
4019vfs_busy_pages(struct buf *bp, int clear_modify)
4020{
4021	int i, bogus;
4022	vm_object_t obj;
4023	vm_ooffset_t foff;
4024	vm_page_t m;
4025
4026	if (!(bp->b_flags & B_VMIO))
4027		return;
4028
4029	obj = bp->b_bufobj->bo_object;
4030	foff = bp->b_offset;
4031	KASSERT(bp->b_offset != NOOFFSET,
4032	    ("vfs_busy_pages: no buffer offset"));
4033	VM_OBJECT_WLOCK(obj);
4034	vfs_drain_busy_pages(bp);
4035	if (bp->b_bufsize != 0)
4036		vfs_setdirty_locked_object(bp);
4037	bogus = 0;
4038	for (i = 0; i < bp->b_npages; i++) {
4039		m = bp->b_pages[i];
4040
4041		if ((bp->b_flags & B_CLUSTER) == 0) {
4042			vm_object_pip_add(obj, 1);
4043			vm_page_sbusy(m);
4044		}
4045		/*
4046		 * When readying a buffer for a read ( i.e
4047		 * clear_modify == 0 ), it is important to do
4048		 * bogus_page replacement for valid pages in
4049		 * partially instantiated buffers.  Partially
4050		 * instantiated buffers can, in turn, occur when
4051		 * reconstituting a buffer from its VM backing store
4052		 * base.  We only have to do this if B_CACHE is
4053		 * clear ( which causes the I/O to occur in the
4054		 * first place ).  The replacement prevents the read
4055		 * I/O from overwriting potentially dirty VM-backed
4056		 * pages.  XXX bogus page replacement is, uh, bogus.
4057		 * It may not work properly with small-block devices.
4058		 * We need to find a better way.
4059		 */
4060		if (clear_modify) {
4061			pmap_remove_write(m);
4062			vfs_page_set_validclean(bp, foff, m);
4063		} else if (m->valid == VM_PAGE_BITS_ALL &&
4064		    (bp->b_flags & B_CACHE) == 0) {
4065			bp->b_pages[i] = bogus_page;
4066			bogus++;
4067		}
4068		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
4069	}
4070	VM_OBJECT_WUNLOCK(obj);
4071	if (bogus && (bp->b_flags & B_UNMAPPED) == 0) {
4072		BUF_CHECK_MAPPED(bp);
4073		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
4074		    bp->b_pages, bp->b_npages);
4075	}
4076}
4077
4078/*
4079 *	vfs_bio_set_valid:
4080 *
4081 *	Set the range within the buffer to valid.  The range is
4082 *	relative to the beginning of the buffer, b_offset.  Note that
4083 *	b_offset itself may be offset from the beginning of the first
4084 *	page.
4085 */
4086void
4087vfs_bio_set_valid(struct buf *bp, int base, int size)
4088{
4089	int i, n;
4090	vm_page_t m;
4091
4092	if (!(bp->b_flags & B_VMIO))
4093		return;
4094
4095	/*
4096	 * Fixup base to be relative to beginning of first page.
4097	 * Set initial n to be the maximum number of bytes in the
4098	 * first page that can be validated.
4099	 */
4100	base += (bp->b_offset & PAGE_MASK);
4101	n = PAGE_SIZE - (base & PAGE_MASK);
4102
4103	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4104	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4105		m = bp->b_pages[i];
4106		if (n > size)
4107			n = size;
4108		vm_page_set_valid_range(m, base & PAGE_MASK, n);
4109		base += n;
4110		size -= n;
4111		n = PAGE_SIZE;
4112	}
4113	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4114}
4115
4116/*
4117 *	vfs_bio_clrbuf:
4118 *
4119 *	If the specified buffer is a non-VMIO buffer, clear the entire
4120 *	buffer.  If the specified buffer is a VMIO buffer, clear and
4121 *	validate only the previously invalid portions of the buffer.
4122 *	This routine essentially fakes an I/O, so we need to clear
4123 *	BIO_ERROR and B_INVAL.
4124 *
4125 *	Note that while we only theoretically need to clear through b_bcount,
4126 *	we go ahead and clear through b_bufsize.
4127 */
4128void
4129vfs_bio_clrbuf(struct buf *bp)
4130{
4131	int i, j, mask, sa, ea, slide;
4132
4133	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
4134		clrbuf(bp);
4135		return;
4136	}
4137	bp->b_flags &= ~B_INVAL;
4138	bp->b_ioflags &= ~BIO_ERROR;
4139	VM_OBJECT_WLOCK(bp->b_bufobj->bo_object);
4140	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
4141	    (bp->b_offset & PAGE_MASK) == 0) {
4142		if (bp->b_pages[0] == bogus_page)
4143			goto unlock;
4144		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
4145		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[0]->object);
4146		if ((bp->b_pages[0]->valid & mask) == mask)
4147			goto unlock;
4148		if ((bp->b_pages[0]->valid & mask) == 0) {
4149			pmap_zero_page_area(bp->b_pages[0], 0, bp->b_bufsize);
4150			bp->b_pages[0]->valid |= mask;
4151			goto unlock;
4152		}
4153	}
4154	sa = bp->b_offset & PAGE_MASK;
4155	slide = 0;
4156	for (i = 0; i < bp->b_npages; i++, sa = 0) {
4157		slide = imin(slide + PAGE_SIZE, bp->b_offset + bp->b_bufsize);
4158		ea = slide & PAGE_MASK;
4159		if (ea == 0)
4160			ea = PAGE_SIZE;
4161		if (bp->b_pages[i] == bogus_page)
4162			continue;
4163		j = sa / DEV_BSIZE;
4164		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
4165		VM_OBJECT_ASSERT_WLOCKED(bp->b_pages[i]->object);
4166		if ((bp->b_pages[i]->valid & mask) == mask)
4167			continue;
4168		if ((bp->b_pages[i]->valid & mask) == 0)
4169			pmap_zero_page_area(bp->b_pages[i], sa, ea - sa);
4170		else {
4171			for (; sa < ea; sa += DEV_BSIZE, j++) {
4172				if ((bp->b_pages[i]->valid & (1 << j)) == 0) {
4173					pmap_zero_page_area(bp->b_pages[i],
4174					    sa, DEV_BSIZE);
4175				}
4176			}
4177		}
4178		bp->b_pages[i]->valid |= mask;
4179	}
4180unlock:
4181	VM_OBJECT_WUNLOCK(bp->b_bufobj->bo_object);
4182	bp->b_resid = 0;
4183}
4184
4185void
4186vfs_bio_bzero_buf(struct buf *bp, int base, int size)
4187{
4188	vm_page_t m;
4189	int i, n;
4190
4191	if ((bp->b_flags & B_UNMAPPED) == 0) {
4192		BUF_CHECK_MAPPED(bp);
4193		bzero(bp->b_data + base, size);
4194	} else {
4195		BUF_CHECK_UNMAPPED(bp);
4196		n = PAGE_SIZE - (base & PAGE_MASK);
4197		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
4198			m = bp->b_pages[i];
4199			if (n > size)
4200				n = size;
4201			pmap_zero_page_area(m, base & PAGE_MASK, n);
4202			base += n;
4203			size -= n;
4204			n = PAGE_SIZE;
4205		}
4206	}
4207}
4208
4209/*
4210 * vm_hold_load_pages and vm_hold_free_pages get pages into
4211 * a buffers address space.  The pages are anonymous and are
4212 * not associated with a file object.
4213 */
4214static void
4215vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
4216{
4217	vm_offset_t pg;
4218	vm_page_t p;
4219	int index;
4220
4221	BUF_CHECK_MAPPED(bp);
4222
4223	to = round_page(to);
4224	from = round_page(from);
4225	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4226
4227	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
4228tryagain:
4229		/*
4230		 * note: must allocate system pages since blocking here
4231		 * could interfere with paging I/O, no matter which
4232		 * process we are.
4233		 */
4234		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
4235		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
4236		if (p == NULL) {
4237			VM_WAIT;
4238			goto tryagain;
4239		}
4240		pmap_qenter(pg, &p, 1);
4241		bp->b_pages[index] = p;
4242	}
4243	bp->b_npages = index;
4244}
4245
4246/* Return pages associated with this buf to the vm system */
4247static void
4248vm_hold_free_pages(struct buf *bp, int newbsize)
4249{
4250	vm_offset_t from;
4251	vm_page_t p;
4252	int index, newnpages;
4253
4254	BUF_CHECK_MAPPED(bp);
4255
4256	from = round_page((vm_offset_t)bp->b_data + newbsize);
4257	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
4258	if (bp->b_npages > newnpages)
4259		pmap_qremove(from, bp->b_npages - newnpages);
4260	for (index = newnpages; index < bp->b_npages; index++) {
4261		p = bp->b_pages[index];
4262		bp->b_pages[index] = NULL;
4263		if (vm_page_sbusied(p))
4264			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
4265			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
4266		p->wire_count--;
4267		vm_page_free(p);
4268		atomic_subtract_int(&cnt.v_wire_count, 1);
4269	}
4270	bp->b_npages = newnpages;
4271}
4272
4273/*
4274 * Map an IO request into kernel virtual address space.
4275 *
4276 * All requests are (re)mapped into kernel VA space.
4277 * Notice that we use b_bufsize for the size of the buffer
4278 * to be mapped.  b_bcount might be modified by the driver.
4279 *
4280 * Note that even if the caller determines that the address space should
4281 * be valid, a race or a smaller-file mapped into a larger space may
4282 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
4283 * check the return value.
4284 */
4285int
4286vmapbuf(struct buf *bp, int mapbuf)
4287{
4288	caddr_t kva;
4289	vm_prot_t prot;
4290	int pidx;
4291
4292	if (bp->b_bufsize < 0)
4293		return (-1);
4294	prot = VM_PROT_READ;
4295	if (bp->b_iocmd == BIO_READ)
4296		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
4297	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
4298	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
4299	    btoc(MAXPHYS))) < 0)
4300		return (-1);
4301	bp->b_npages = pidx;
4302	if (mapbuf || !unmapped_buf_allowed) {
4303		pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
4304		kva = bp->b_saveaddr;
4305		bp->b_saveaddr = bp->b_data;
4306		bp->b_data = kva + (((vm_offset_t)bp->b_data) & PAGE_MASK);
4307		bp->b_flags &= ~B_UNMAPPED;
4308	} else {
4309		bp->b_flags |= B_UNMAPPED;
4310		bp->b_offset = ((vm_offset_t)bp->b_data) & PAGE_MASK;
4311		bp->b_saveaddr = bp->b_data;
4312		bp->b_data = unmapped_buf;
4313	}
4314	return(0);
4315}
4316
4317/*
4318 * Free the io map PTEs associated with this IO operation.
4319 * We also invalidate the TLB entries and restore the original b_addr.
4320 */
4321void
4322vunmapbuf(struct buf *bp)
4323{
4324	int npages;
4325
4326	npages = bp->b_npages;
4327	if (bp->b_flags & B_UNMAPPED)
4328		bp->b_flags &= ~B_UNMAPPED;
4329	else
4330		pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
4331	vm_page_unhold_pages(bp->b_pages, npages);
4332
4333	bp->b_data = bp->b_saveaddr;
4334}
4335
4336void
4337bdone(struct buf *bp)
4338{
4339	struct mtx *mtxp;
4340
4341	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4342	mtx_lock(mtxp);
4343	bp->b_flags |= B_DONE;
4344	wakeup(bp);
4345	mtx_unlock(mtxp);
4346}
4347
4348void
4349bwait(struct buf *bp, u_char pri, const char *wchan)
4350{
4351	struct mtx *mtxp;
4352
4353	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4354	mtx_lock(mtxp);
4355	while ((bp->b_flags & B_DONE) == 0)
4356		msleep(bp, mtxp, pri, wchan, 0);
4357	mtx_unlock(mtxp);
4358}
4359
4360int
4361bufsync(struct bufobj *bo, int waitfor)
4362{
4363
4364	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
4365}
4366
4367void
4368bufstrategy(struct bufobj *bo, struct buf *bp)
4369{
4370	int i = 0;
4371	struct vnode *vp;
4372
4373	vp = bp->b_vp;
4374	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
4375	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
4376	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
4377	i = VOP_STRATEGY(vp, bp);
4378	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
4379}
4380
4381void
4382bufobj_wrefl(struct bufobj *bo)
4383{
4384
4385	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4386	ASSERT_BO_WLOCKED(bo);
4387	bo->bo_numoutput++;
4388}
4389
4390void
4391bufobj_wref(struct bufobj *bo)
4392{
4393
4394	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
4395	BO_LOCK(bo);
4396	bo->bo_numoutput++;
4397	BO_UNLOCK(bo);
4398}
4399
4400void
4401bufobj_wdrop(struct bufobj *bo)
4402{
4403
4404	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
4405	BO_LOCK(bo);
4406	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
4407	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
4408		bo->bo_flag &= ~BO_WWAIT;
4409		wakeup(&bo->bo_numoutput);
4410	}
4411	BO_UNLOCK(bo);
4412}
4413
4414int
4415bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
4416{
4417	int error;
4418
4419	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
4420	ASSERT_BO_WLOCKED(bo);
4421	error = 0;
4422	while (bo->bo_numoutput) {
4423		bo->bo_flag |= BO_WWAIT;
4424		error = msleep(&bo->bo_numoutput, BO_LOCKPTR(bo),
4425		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
4426		if (error)
4427			break;
4428	}
4429	return (error);
4430}
4431
4432void
4433bpin(struct buf *bp)
4434{
4435	struct mtx *mtxp;
4436
4437	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4438	mtx_lock(mtxp);
4439	bp->b_pin_count++;
4440	mtx_unlock(mtxp);
4441}
4442
4443void
4444bunpin(struct buf *bp)
4445{
4446	struct mtx *mtxp;
4447
4448	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4449	mtx_lock(mtxp);
4450	if (--bp->b_pin_count == 0)
4451		wakeup(bp);
4452	mtx_unlock(mtxp);
4453}
4454
4455void
4456bunpin_wait(struct buf *bp)
4457{
4458	struct mtx *mtxp;
4459
4460	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4461	mtx_lock(mtxp);
4462	while (bp->b_pin_count > 0)
4463		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4464	mtx_unlock(mtxp);
4465}
4466
4467/*
4468 * Set bio_data or bio_ma for struct bio from the struct buf.
4469 */
4470void
4471bdata2bio(struct buf *bp, struct bio *bip)
4472{
4473
4474	if ((bp->b_flags & B_UNMAPPED) != 0) {
4475		KASSERT(unmapped_buf_allowed, ("unmapped"));
4476		bip->bio_ma = bp->b_pages;
4477		bip->bio_ma_n = bp->b_npages;
4478		bip->bio_data = unmapped_buf;
4479		bip->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
4480		bip->bio_flags |= BIO_UNMAPPED;
4481		KASSERT(round_page(bip->bio_ma_offset + bip->bio_length) /
4482		    PAGE_SIZE == bp->b_npages,
4483		    ("Buffer %p too short: %d %lld %d", bp, bip->bio_ma_offset,
4484		    (long long)bip->bio_length, bip->bio_ma_n));
4485	} else {
4486		bip->bio_data = bp->b_data;
4487		bip->bio_ma = NULL;
4488	}
4489}
4490
4491#include "opt_ddb.h"
4492#ifdef DDB
4493#include <ddb/ddb.h>
4494
4495/* DDB command to show buffer data */
4496DB_SHOW_COMMAND(buffer, db_show_buffer)
4497{
4498	/* get args */
4499	struct buf *bp = (struct buf *)addr;
4500
4501	if (!have_addr) {
4502		db_printf("usage: show buffer <addr>\n");
4503		return;
4504	}
4505
4506	db_printf("buf at %p\n", bp);
4507	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4508	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4509	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4510	db_printf(
4511	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4512	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4513	    "b_dep = %p\n",
4514	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4515	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4516	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4517	if (bp->b_npages) {
4518		int i;
4519		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4520		for (i = 0; i < bp->b_npages; i++) {
4521			vm_page_t m;
4522			m = bp->b_pages[i];
4523			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4524			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4525			if ((i + 1) < bp->b_npages)
4526				db_printf(",");
4527		}
4528		db_printf("\n");
4529	}
4530	db_printf(" ");
4531	BUF_LOCKPRINTINFO(bp);
4532}
4533
4534DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4535{
4536	struct buf *bp;
4537	int i;
4538
4539	for (i = 0; i < nbuf; i++) {
4540		bp = &buf[i];
4541		if (BUF_ISLOCKED(bp)) {
4542			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4543			db_printf("\n");
4544		}
4545	}
4546}
4547
4548DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4549{
4550	struct vnode *vp;
4551	struct buf *bp;
4552
4553	if (!have_addr) {
4554		db_printf("usage: show vnodebufs <addr>\n");
4555		return;
4556	}
4557	vp = (struct vnode *)addr;
4558	db_printf("Clean buffers:\n");
4559	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4560		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4561		db_printf("\n");
4562	}
4563	db_printf("Dirty buffers:\n");
4564	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4565		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4566		db_printf("\n");
4567	}
4568}
4569
4570DB_COMMAND(countfreebufs, db_coundfreebufs)
4571{
4572	struct buf *bp;
4573	int i, used = 0, nfree = 0;
4574
4575	if (have_addr) {
4576		db_printf("usage: countfreebufs\n");
4577		return;
4578	}
4579
4580	for (i = 0; i < nbuf; i++) {
4581		bp = &buf[i];
4582		if ((bp->b_flags & B_INFREECNT) != 0)
4583			nfree++;
4584		else
4585			used++;
4586	}
4587
4588	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4589	    nfree + used);
4590	db_printf("numfreebuffers is %d\n", numfreebuffers);
4591}
4592#endif /* DDB */
4593