vfs_bio.c revision 247389
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 247389 2013-02-27 07:34:09Z kib $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/fail.h>
52#include <sys/limits.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mount.h>
56#include <sys/mutex.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/proc.h>
60#include <sys/resourcevar.h>
61#include <sys/sysctl.h>
62#include <sys/vmmeter.h>
63#include <sys/vnode.h>
64#include <geom/geom.h>
65#include <vm/vm.h>
66#include <vm/vm_param.h>
67#include <vm/vm_kern.h>
68#include <vm/vm_pageout.h>
69#include <vm/vm_page.h>
70#include <vm/vm_object.h>
71#include <vm/vm_extern.h>
72#include <vm/vm_map.h>
73#include "opt_compat.h"
74#include "opt_directio.h"
75#include "opt_swap.h"
76
77static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
78
79struct	bio_ops bioops;		/* I/O operation notification */
80
81struct	buf_ops buf_ops_bio = {
82	.bop_name	=	"buf_ops_bio",
83	.bop_write	=	bufwrite,
84	.bop_strategy	=	bufstrategy,
85	.bop_sync	=	bufsync,
86	.bop_bdflush	=	bufbdflush,
87};
88
89/*
90 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
91 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
92 */
93struct buf *buf;		/* buffer header pool */
94
95static struct proc *bufdaemonproc;
96
97static int inmem(struct vnode *vp, daddr_t blkno);
98static void vm_hold_free_pages(struct buf *bp, int newbsize);
99static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
100		vm_offset_t to);
101static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
102static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
103		vm_page_t m);
104static void vfs_drain_busy_pages(struct buf *bp);
105static void vfs_clean_pages_dirty_buf(struct buf *bp);
106static void vfs_setdirty_locked_object(struct buf *bp);
107static void vfs_vmio_release(struct buf *bp);
108static int vfs_bio_clcheck(struct vnode *vp, int size,
109		daddr_t lblkno, daddr_t blkno);
110static int buf_do_flush(struct vnode *vp);
111static int flushbufqueues(struct vnode *, int, int);
112static void buf_daemon(void);
113static void bremfreel(struct buf *bp);
114#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
115    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
116static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
117#endif
118
119int vmiodirenable = TRUE;
120SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
121    "Use the VM system for directory writes");
122long runningbufspace;
123SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
124    "Amount of presently outstanding async buffer io");
125static long bufspace;
126#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
127    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
128SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
129    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
130#else
131SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
132    "Virtual memory used for buffers");
133#endif
134static long maxbufspace;
135SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
136    "Maximum allowed value of bufspace (including buf_daemon)");
137static long bufmallocspace;
138SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
139    "Amount of malloced memory for buffers");
140static long maxbufmallocspace;
141SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
142    "Maximum amount of malloced memory for buffers");
143static long lobufspace;
144SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
145    "Minimum amount of buffers we want to have");
146long hibufspace;
147SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
148    "Maximum allowed value of bufspace (excluding buf_daemon)");
149static int bufreusecnt;
150SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
151    "Number of times we have reused a buffer");
152static int buffreekvacnt;
153SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
154    "Number of times we have freed the KVA space from some buffer");
155static int bufdefragcnt;
156SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
157    "Number of times we have had to repeat buffer allocation to defragment");
158static long lorunningspace;
159SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
160    "Minimum preferred space used for in-progress I/O");
161static long hirunningspace;
162SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
163    "Maximum amount of space to use for in-progress I/O");
164int dirtybufferflushes;
165SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
166    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
167int bdwriteskip;
168SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
169    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
170int altbufferflushes;
171SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
172    0, "Number of fsync flushes to limit dirty buffers");
173static int recursiveflushes;
174SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
175    0, "Number of flushes skipped due to being recursive");
176static int numdirtybuffers;
177SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
178    "Number of buffers that are dirty (has unwritten changes) at the moment");
179static int lodirtybuffers;
180SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
181    "How many buffers we want to have free before bufdaemon can sleep");
182static int hidirtybuffers;
183SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
184    "When the number of dirty buffers is considered severe");
185int dirtybufthresh;
186SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
187    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
188static int numfreebuffers;
189SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
190    "Number of free buffers");
191static int lofreebuffers;
192SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
193   "XXX Unused");
194static int hifreebuffers;
195SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
196   "XXX Complicatedly unused");
197static int getnewbufcalls;
198SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
199   "Number of calls to getnewbuf");
200static int getnewbufrestarts;
201SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
202    "Number of times getnewbuf has had to restart a buffer aquisition");
203static int flushbufqtarget = 100;
204SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
205    "Amount of work to do in flushbufqueues when helping bufdaemon");
206static long notbufdflashes;
207SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
208    "Number of dirty buffer flushes done by the bufdaemon helpers");
209static long barrierwrites;
210SYSCTL_LONG(_vfs, OID_AUTO, barrierwrites, CTLFLAG_RW, &barrierwrites, 0,
211    "Number of barrier writes");
212
213/*
214 * Wakeup point for bufdaemon, as well as indicator of whether it is already
215 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
216 * is idling.
217 */
218static int bd_request;
219
220/*
221 * Request for the buf daemon to write more buffers than is indicated by
222 * lodirtybuf.  This may be necessary to push out excess dependencies or
223 * defragment the address space where a simple count of the number of dirty
224 * buffers is insufficient to characterize the demand for flushing them.
225 */
226static int bd_speedupreq;
227
228/*
229 * This lock synchronizes access to bd_request.
230 */
231static struct mtx bdlock;
232
233/*
234 * bogus page -- for I/O to/from partially complete buffers
235 * this is a temporary solution to the problem, but it is not
236 * really that bad.  it would be better to split the buffer
237 * for input in the case of buffers partially already in memory,
238 * but the code is intricate enough already.
239 */
240vm_page_t bogus_page;
241
242/*
243 * Synchronization (sleep/wakeup) variable for active buffer space requests.
244 * Set when wait starts, cleared prior to wakeup().
245 * Used in runningbufwakeup() and waitrunningbufspace().
246 */
247static int runningbufreq;
248
249/*
250 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
251 * waitrunningbufspace().
252 */
253static struct mtx rbreqlock;
254
255/*
256 * Synchronization (sleep/wakeup) variable for buffer requests.
257 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
258 * by and/or.
259 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
260 * getnewbuf(), and getblk().
261 */
262static int needsbuffer;
263
264/*
265 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
266 */
267static struct mtx nblock;
268
269/*
270 * Definitions for the buffer free lists.
271 */
272#define BUFFER_QUEUES	5	/* number of free buffer queues */
273
274#define QUEUE_NONE	0	/* on no queue */
275#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
276#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
277#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
278#define QUEUE_EMPTY	4	/* empty buffer headers */
279#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
280
281/* Queues for free buffers with various properties */
282static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
283
284/* Lock for the bufqueues */
285static struct mtx bqlock;
286
287/*
288 * Single global constant for BUF_WMESG, to avoid getting multiple references.
289 * buf_wmesg is referred from macros.
290 */
291const char *buf_wmesg = BUF_WMESG;
292
293#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
294#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
295#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
296#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
297
298#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
299    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
300static int
301sysctl_bufspace(SYSCTL_HANDLER_ARGS)
302{
303	long lvalue;
304	int ivalue;
305
306	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
307		return (sysctl_handle_long(oidp, arg1, arg2, req));
308	lvalue = *(long *)arg1;
309	if (lvalue > INT_MAX)
310		/* On overflow, still write out a long to trigger ENOMEM. */
311		return (sysctl_handle_long(oidp, &lvalue, 0, req));
312	ivalue = lvalue;
313	return (sysctl_handle_int(oidp, &ivalue, 0, req));
314}
315#endif
316
317#ifdef DIRECTIO
318extern void ffs_rawread_setup(void);
319#endif /* DIRECTIO */
320/*
321 *	numdirtywakeup:
322 *
323 *	If someone is blocked due to there being too many dirty buffers,
324 *	and numdirtybuffers is now reasonable, wake them up.
325 */
326
327static __inline void
328numdirtywakeup(int level)
329{
330
331	if (numdirtybuffers <= level) {
332		mtx_lock(&nblock);
333		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
334			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
335			wakeup(&needsbuffer);
336		}
337		mtx_unlock(&nblock);
338	}
339}
340
341/*
342 *	bufspacewakeup:
343 *
344 *	Called when buffer space is potentially available for recovery.
345 *	getnewbuf() will block on this flag when it is unable to free
346 *	sufficient buffer space.  Buffer space becomes recoverable when
347 *	bp's get placed back in the queues.
348 */
349
350static __inline void
351bufspacewakeup(void)
352{
353
354	/*
355	 * If someone is waiting for BUF space, wake them up.  Even
356	 * though we haven't freed the kva space yet, the waiting
357	 * process will be able to now.
358	 */
359	mtx_lock(&nblock);
360	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
361		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
362		wakeup(&needsbuffer);
363	}
364	mtx_unlock(&nblock);
365}
366
367/*
368 * runningbufwakeup() - in-progress I/O accounting.
369 *
370 */
371void
372runningbufwakeup(struct buf *bp)
373{
374
375	if (bp->b_runningbufspace) {
376		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
377		bp->b_runningbufspace = 0;
378		mtx_lock(&rbreqlock);
379		if (runningbufreq && runningbufspace <= lorunningspace) {
380			runningbufreq = 0;
381			wakeup(&runningbufreq);
382		}
383		mtx_unlock(&rbreqlock);
384	}
385}
386
387/*
388 *	bufcountwakeup:
389 *
390 *	Called when a buffer has been added to one of the free queues to
391 *	account for the buffer and to wakeup anyone waiting for free buffers.
392 *	This typically occurs when large amounts of metadata are being handled
393 *	by the buffer cache ( else buffer space runs out first, usually ).
394 */
395
396static __inline void
397bufcountwakeup(struct buf *bp)
398{
399	int old;
400
401	KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
402	    ("buf %p already counted as free", bp));
403	if (bp->b_bufobj != NULL)
404		mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
405	bp->b_vflags |= BV_INFREECNT;
406	old = atomic_fetchadd_int(&numfreebuffers, 1);
407	KASSERT(old >= 0 && old < nbuf,
408	    ("numfreebuffers climbed to %d", old + 1));
409	mtx_lock(&nblock);
410	if (needsbuffer) {
411		needsbuffer &= ~VFS_BIO_NEED_ANY;
412		if (numfreebuffers >= hifreebuffers)
413			needsbuffer &= ~VFS_BIO_NEED_FREE;
414		wakeup(&needsbuffer);
415	}
416	mtx_unlock(&nblock);
417}
418
419/*
420 *	waitrunningbufspace()
421 *
422 *	runningbufspace is a measure of the amount of I/O currently
423 *	running.  This routine is used in async-write situations to
424 *	prevent creating huge backups of pending writes to a device.
425 *	Only asynchronous writes are governed by this function.
426 *
427 *	Reads will adjust runningbufspace, but will not block based on it.
428 *	The read load has a side effect of reducing the allowed write load.
429 *
430 *	This does NOT turn an async write into a sync write.  It waits
431 *	for earlier writes to complete and generally returns before the
432 *	caller's write has reached the device.
433 */
434void
435waitrunningbufspace(void)
436{
437
438	mtx_lock(&rbreqlock);
439	while (runningbufspace > hirunningspace) {
440		++runningbufreq;
441		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
442	}
443	mtx_unlock(&rbreqlock);
444}
445
446
447/*
448 *	vfs_buf_test_cache:
449 *
450 *	Called when a buffer is extended.  This function clears the B_CACHE
451 *	bit if the newly extended portion of the buffer does not contain
452 *	valid data.
453 */
454static __inline
455void
456vfs_buf_test_cache(struct buf *bp,
457		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
458		  vm_page_t m)
459{
460
461	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
462	if (bp->b_flags & B_CACHE) {
463		int base = (foff + off) & PAGE_MASK;
464		if (vm_page_is_valid(m, base, size) == 0)
465			bp->b_flags &= ~B_CACHE;
466	}
467}
468
469/* Wake up the buffer daemon if necessary */
470static __inline
471void
472bd_wakeup(int dirtybuflevel)
473{
474
475	mtx_lock(&bdlock);
476	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
477		bd_request = 1;
478		wakeup(&bd_request);
479	}
480	mtx_unlock(&bdlock);
481}
482
483/*
484 * bd_speedup - speedup the buffer cache flushing code
485 */
486
487void
488bd_speedup(void)
489{
490	int needwake;
491
492	mtx_lock(&bdlock);
493	needwake = 0;
494	if (bd_speedupreq == 0 || bd_request == 0)
495		needwake = 1;
496	bd_speedupreq = 1;
497	bd_request = 1;
498	if (needwake)
499		wakeup(&bd_request);
500	mtx_unlock(&bdlock);
501}
502
503/*
504 * Calculating buffer cache scaling values and reserve space for buffer
505 * headers.  This is called during low level kernel initialization and
506 * may be called more then once.  We CANNOT write to the memory area
507 * being reserved at this time.
508 */
509caddr_t
510kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
511{
512	int tuned_nbuf;
513	long maxbuf;
514
515	/*
516	 * physmem_est is in pages.  Convert it to kilobytes (assumes
517	 * PAGE_SIZE is >= 1K)
518	 */
519	physmem_est = physmem_est * (PAGE_SIZE / 1024);
520
521	/*
522	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
523	 * For the first 64MB of ram nominally allocate sufficient buffers to
524	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
525	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
526	 * the buffer cache we limit the eventual kva reservation to
527	 * maxbcache bytes.
528	 *
529	 * factor represents the 1/4 x ram conversion.
530	 */
531	if (nbuf == 0) {
532		int factor = 4 * BKVASIZE / 1024;
533
534		nbuf = 50;
535		if (physmem_est > 4096)
536			nbuf += min((physmem_est - 4096) / factor,
537			    65536 / factor);
538		if (physmem_est > 65536)
539			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
540
541		if (maxbcache && nbuf > maxbcache / BKVASIZE)
542			nbuf = maxbcache / BKVASIZE;
543		tuned_nbuf = 1;
544	} else
545		tuned_nbuf = 0;
546
547	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
548	maxbuf = (LONG_MAX / 3) / BKVASIZE;
549	if (nbuf > maxbuf) {
550		if (!tuned_nbuf)
551			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
552			    maxbuf);
553		nbuf = maxbuf;
554	}
555
556	/*
557	 * swbufs are used as temporary holders for I/O, such as paging I/O.
558	 * We have no less then 16 and no more then 256.
559	 */
560	nswbuf = max(min(nbuf/4, 256), 16);
561#ifdef NSWBUF_MIN
562	if (nswbuf < NSWBUF_MIN)
563		nswbuf = NSWBUF_MIN;
564#endif
565#ifdef DIRECTIO
566	ffs_rawread_setup();
567#endif
568
569	/*
570	 * Reserve space for the buffer cache buffers
571	 */
572	swbuf = (void *)v;
573	v = (caddr_t)(swbuf + nswbuf);
574	buf = (void *)v;
575	v = (caddr_t)(buf + nbuf);
576
577	return(v);
578}
579
580/* Initialize the buffer subsystem.  Called before use of any buffers. */
581void
582bufinit(void)
583{
584	struct buf *bp;
585	int i;
586
587	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
588	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
589	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
590	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
591
592	/* next, make a null set of free lists */
593	for (i = 0; i < BUFFER_QUEUES; i++)
594		TAILQ_INIT(&bufqueues[i]);
595
596	/* finally, initialize each buffer header and stick on empty q */
597	for (i = 0; i < nbuf; i++) {
598		bp = &buf[i];
599		bzero(bp, sizeof *bp);
600		bp->b_flags = B_INVAL;	/* we're just an empty header */
601		bp->b_rcred = NOCRED;
602		bp->b_wcred = NOCRED;
603		bp->b_qindex = QUEUE_EMPTY;
604		bp->b_vflags = BV_INFREECNT;	/* buf is counted as free */
605		bp->b_xflags = 0;
606		LIST_INIT(&bp->b_dep);
607		BUF_LOCKINIT(bp);
608		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
609	}
610
611	/*
612	 * maxbufspace is the absolute maximum amount of buffer space we are
613	 * allowed to reserve in KVM and in real terms.  The absolute maximum
614	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
615	 * used by most other processes.  The differential is required to
616	 * ensure that buf_daemon is able to run when other processes might
617	 * be blocked waiting for buffer space.
618	 *
619	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
620	 * this may result in KVM fragmentation which is not handled optimally
621	 * by the system.
622	 */
623	maxbufspace = (long)nbuf * BKVASIZE;
624	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
625	lobufspace = hibufspace - MAXBSIZE;
626
627	/*
628	 * Note: The 16 MiB upper limit for hirunningspace was chosen
629	 * arbitrarily and may need further tuning. It corresponds to
630	 * 128 outstanding write IO requests (if IO size is 128 KiB),
631	 * which fits with many RAID controllers' tagged queuing limits.
632	 * The lower 1 MiB limit is the historical upper limit for
633	 * hirunningspace.
634	 */
635	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
636	    16 * 1024 * 1024), 1024 * 1024);
637	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
638
639/*
640 * Limit the amount of malloc memory since it is wired permanently into
641 * the kernel space.  Even though this is accounted for in the buffer
642 * allocation, we don't want the malloced region to grow uncontrolled.
643 * The malloc scheme improves memory utilization significantly on average
644 * (small) directories.
645 */
646	maxbufmallocspace = hibufspace / 20;
647
648/*
649 * Reduce the chance of a deadlock occuring by limiting the number
650 * of delayed-write dirty buffers we allow to stack up.
651 */
652	hidirtybuffers = nbuf / 4 + 20;
653	dirtybufthresh = hidirtybuffers * 9 / 10;
654	numdirtybuffers = 0;
655/*
656 * To support extreme low-memory systems, make sure hidirtybuffers cannot
657 * eat up all available buffer space.  This occurs when our minimum cannot
658 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
659 * BKVASIZE'd buffers.
660 */
661	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
662		hidirtybuffers >>= 1;
663	}
664	lodirtybuffers = hidirtybuffers / 2;
665
666/*
667 * Try to keep the number of free buffers in the specified range,
668 * and give special processes (e.g. like buf_daemon) access to an
669 * emergency reserve.
670 */
671	lofreebuffers = nbuf / 18 + 5;
672	hifreebuffers = 2 * lofreebuffers;
673	numfreebuffers = nbuf;
674
675	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
676	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
677}
678
679/*
680 * bfreekva() - free the kva allocation for a buffer.
681 *
682 *	Since this call frees up buffer space, we call bufspacewakeup().
683 */
684static void
685bfreekva(struct buf *bp)
686{
687
688	if (bp->b_kvasize) {
689		atomic_add_int(&buffreekvacnt, 1);
690		atomic_subtract_long(&bufspace, bp->b_kvasize);
691		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
692		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
693		bp->b_kvasize = 0;
694		bufspacewakeup();
695	}
696}
697
698/*
699 *	bremfree:
700 *
701 *	Mark the buffer for removal from the appropriate free list in brelse.
702 *
703 */
704void
705bremfree(struct buf *bp)
706{
707	int old;
708
709	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
710	KASSERT((bp->b_flags & B_REMFREE) == 0,
711	    ("bremfree: buffer %p already marked for delayed removal.", bp));
712	KASSERT(bp->b_qindex != QUEUE_NONE,
713	    ("bremfree: buffer %p not on a queue.", bp));
714	BUF_ASSERT_HELD(bp);
715
716	bp->b_flags |= B_REMFREE;
717	/* Fixup numfreebuffers count.  */
718	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
719		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
720		    ("buf %p not counted in numfreebuffers", bp));
721		if (bp->b_bufobj != NULL)
722			mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
723		bp->b_vflags &= ~BV_INFREECNT;
724		old = atomic_fetchadd_int(&numfreebuffers, -1);
725		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
726	}
727}
728
729/*
730 *	bremfreef:
731 *
732 *	Force an immediate removal from a free list.  Used only in nfs when
733 *	it abuses the b_freelist pointer.
734 */
735void
736bremfreef(struct buf *bp)
737{
738	mtx_lock(&bqlock);
739	bremfreel(bp);
740	mtx_unlock(&bqlock);
741}
742
743/*
744 *	bremfreel:
745 *
746 *	Removes a buffer from the free list, must be called with the
747 *	bqlock held.
748 */
749static void
750bremfreel(struct buf *bp)
751{
752	int old;
753
754	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
755	    bp, bp->b_vp, bp->b_flags);
756	KASSERT(bp->b_qindex != QUEUE_NONE,
757	    ("bremfreel: buffer %p not on a queue.", bp));
758	BUF_ASSERT_HELD(bp);
759	mtx_assert(&bqlock, MA_OWNED);
760
761	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
762	bp->b_qindex = QUEUE_NONE;
763	/*
764	 * If this was a delayed bremfree() we only need to remove the buffer
765	 * from the queue and return the stats are already done.
766	 */
767	if (bp->b_flags & B_REMFREE) {
768		bp->b_flags &= ~B_REMFREE;
769		return;
770	}
771	/*
772	 * Fixup numfreebuffers count.  If the buffer is invalid or not
773	 * delayed-write, the buffer was free and we must decrement
774	 * numfreebuffers.
775	 */
776	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
777		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
778		    ("buf %p not counted in numfreebuffers", bp));
779		if (bp->b_bufobj != NULL)
780			mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
781		bp->b_vflags &= ~BV_INFREECNT;
782		old = atomic_fetchadd_int(&numfreebuffers, -1);
783		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
784	}
785}
786
787/*
788 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
789 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
790 * the buffer is valid and we do not have to do anything.
791 */
792void
793breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
794    int cnt, struct ucred * cred)
795{
796	struct buf *rabp;
797	int i;
798
799	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
800		if (inmem(vp, *rablkno))
801			continue;
802		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
803
804		if ((rabp->b_flags & B_CACHE) == 0) {
805			if (!TD_IS_IDLETHREAD(curthread))
806				curthread->td_ru.ru_inblock++;
807			rabp->b_flags |= B_ASYNC;
808			rabp->b_flags &= ~B_INVAL;
809			rabp->b_ioflags &= ~BIO_ERROR;
810			rabp->b_iocmd = BIO_READ;
811			if (rabp->b_rcred == NOCRED && cred != NOCRED)
812				rabp->b_rcred = crhold(cred);
813			vfs_busy_pages(rabp, 0);
814			BUF_KERNPROC(rabp);
815			rabp->b_iooffset = dbtob(rabp->b_blkno);
816			bstrategy(rabp);
817		} else {
818			brelse(rabp);
819		}
820	}
821}
822
823/*
824 * Entry point for bread() and breadn() via #defines in sys/buf.h.
825 *
826 * Get a buffer with the specified data.  Look in the cache first.  We
827 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
828 * is set, the buffer is valid and we do not have to do anything, see
829 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
830 */
831int
832breadn_flags(struct vnode * vp, daddr_t blkno, int size,
833    daddr_t * rablkno, int *rabsize, int cnt,
834    struct ucred * cred, int flags, struct buf **bpp)
835{
836	struct buf *bp;
837	int rv = 0, readwait = 0;
838
839	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
840	/*
841	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
842	 */
843	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
844	if (bp == NULL)
845		return (EBUSY);
846
847	/* if not found in cache, do some I/O */
848	if ((bp->b_flags & B_CACHE) == 0) {
849		if (!TD_IS_IDLETHREAD(curthread))
850			curthread->td_ru.ru_inblock++;
851		bp->b_iocmd = BIO_READ;
852		bp->b_flags &= ~B_INVAL;
853		bp->b_ioflags &= ~BIO_ERROR;
854		if (bp->b_rcred == NOCRED && cred != NOCRED)
855			bp->b_rcred = crhold(cred);
856		vfs_busy_pages(bp, 0);
857		bp->b_iooffset = dbtob(bp->b_blkno);
858		bstrategy(bp);
859		++readwait;
860	}
861
862	breada(vp, rablkno, rabsize, cnt, cred);
863
864	if (readwait) {
865		rv = bufwait(bp);
866	}
867	return (rv);
868}
869
870/*
871 * Write, release buffer on completion.  (Done by iodone
872 * if async).  Do not bother writing anything if the buffer
873 * is invalid.
874 *
875 * Note that we set B_CACHE here, indicating that buffer is
876 * fully valid and thus cacheable.  This is true even of NFS
877 * now so we set it generally.  This could be set either here
878 * or in biodone() since the I/O is synchronous.  We put it
879 * here.
880 */
881int
882bufwrite(struct buf *bp)
883{
884	int oldflags;
885	struct vnode *vp;
886	int vp_md;
887
888	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
889	if (bp->b_flags & B_INVAL) {
890		brelse(bp);
891		return (0);
892	}
893
894	if (bp->b_flags & B_BARRIER)
895		barrierwrites++;
896
897	oldflags = bp->b_flags;
898
899	BUF_ASSERT_HELD(bp);
900
901	if (bp->b_pin_count > 0)
902		bunpin_wait(bp);
903
904	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
905	    ("FFS background buffer should not get here %p", bp));
906
907	vp = bp->b_vp;
908	if (vp)
909		vp_md = vp->v_vflag & VV_MD;
910	else
911		vp_md = 0;
912
913	/* Mark the buffer clean */
914	bundirty(bp);
915
916	bp->b_flags &= ~B_DONE;
917	bp->b_ioflags &= ~BIO_ERROR;
918	bp->b_flags |= B_CACHE;
919	bp->b_iocmd = BIO_WRITE;
920
921	bufobj_wref(bp->b_bufobj);
922	vfs_busy_pages(bp, 1);
923
924	/*
925	 * Normal bwrites pipeline writes
926	 */
927	bp->b_runningbufspace = bp->b_bufsize;
928	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
929
930	if (!TD_IS_IDLETHREAD(curthread))
931		curthread->td_ru.ru_oublock++;
932	if (oldflags & B_ASYNC)
933		BUF_KERNPROC(bp);
934	bp->b_iooffset = dbtob(bp->b_blkno);
935	bstrategy(bp);
936
937	if ((oldflags & B_ASYNC) == 0) {
938		int rtval = bufwait(bp);
939		brelse(bp);
940		return (rtval);
941	} else {
942		/*
943		 * don't allow the async write to saturate the I/O
944		 * system.  We will not deadlock here because
945		 * we are blocking waiting for I/O that is already in-progress
946		 * to complete. We do not block here if it is the update
947		 * or syncer daemon trying to clean up as that can lead
948		 * to deadlock.
949		 */
950		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
951			waitrunningbufspace();
952	}
953
954	return (0);
955}
956
957void
958bufbdflush(struct bufobj *bo, struct buf *bp)
959{
960	struct buf *nbp;
961
962	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
963		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
964		altbufferflushes++;
965	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
966		BO_LOCK(bo);
967		/*
968		 * Try to find a buffer to flush.
969		 */
970		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
971			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
972			    BUF_LOCK(nbp,
973				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
974				continue;
975			if (bp == nbp)
976				panic("bdwrite: found ourselves");
977			BO_UNLOCK(bo);
978			/* Don't countdeps with the bo lock held. */
979			if (buf_countdeps(nbp, 0)) {
980				BO_LOCK(bo);
981				BUF_UNLOCK(nbp);
982				continue;
983			}
984			if (nbp->b_flags & B_CLUSTEROK) {
985				vfs_bio_awrite(nbp);
986			} else {
987				bremfree(nbp);
988				bawrite(nbp);
989			}
990			dirtybufferflushes++;
991			break;
992		}
993		if (nbp == NULL)
994			BO_UNLOCK(bo);
995	}
996}
997
998/*
999 * Delayed write. (Buffer is marked dirty).  Do not bother writing
1000 * anything if the buffer is marked invalid.
1001 *
1002 * Note that since the buffer must be completely valid, we can safely
1003 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
1004 * biodone() in order to prevent getblk from writing the buffer
1005 * out synchronously.
1006 */
1007void
1008bdwrite(struct buf *bp)
1009{
1010	struct thread *td = curthread;
1011	struct vnode *vp;
1012	struct bufobj *bo;
1013
1014	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1015	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1016	KASSERT((bp->b_flags & B_BARRIER) == 0,
1017	    ("Barrier request in delayed write %p", bp));
1018	BUF_ASSERT_HELD(bp);
1019
1020	if (bp->b_flags & B_INVAL) {
1021		brelse(bp);
1022		return;
1023	}
1024
1025	/*
1026	 * If we have too many dirty buffers, don't create any more.
1027	 * If we are wildly over our limit, then force a complete
1028	 * cleanup. Otherwise, just keep the situation from getting
1029	 * out of control. Note that we have to avoid a recursive
1030	 * disaster and not try to clean up after our own cleanup!
1031	 */
1032	vp = bp->b_vp;
1033	bo = bp->b_bufobj;
1034	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1035		td->td_pflags |= TDP_INBDFLUSH;
1036		BO_BDFLUSH(bo, bp);
1037		td->td_pflags &= ~TDP_INBDFLUSH;
1038	} else
1039		recursiveflushes++;
1040
1041	bdirty(bp);
1042	/*
1043	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1044	 * true even of NFS now.
1045	 */
1046	bp->b_flags |= B_CACHE;
1047
1048	/*
1049	 * This bmap keeps the system from needing to do the bmap later,
1050	 * perhaps when the system is attempting to do a sync.  Since it
1051	 * is likely that the indirect block -- or whatever other datastructure
1052	 * that the filesystem needs is still in memory now, it is a good
1053	 * thing to do this.  Note also, that if the pageout daemon is
1054	 * requesting a sync -- there might not be enough memory to do
1055	 * the bmap then...  So, this is important to do.
1056	 */
1057	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1058		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1059	}
1060
1061	/*
1062	 * Set the *dirty* buffer range based upon the VM system dirty
1063	 * pages.
1064	 *
1065	 * Mark the buffer pages as clean.  We need to do this here to
1066	 * satisfy the vnode_pager and the pageout daemon, so that it
1067	 * thinks that the pages have been "cleaned".  Note that since
1068	 * the pages are in a delayed write buffer -- the VFS layer
1069	 * "will" see that the pages get written out on the next sync,
1070	 * or perhaps the cluster will be completed.
1071	 */
1072	vfs_clean_pages_dirty_buf(bp);
1073	bqrelse(bp);
1074
1075	/*
1076	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1077	 * buffers (midpoint between our recovery point and our stall
1078	 * point).
1079	 */
1080	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1081
1082	/*
1083	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1084	 * due to the softdep code.
1085	 */
1086}
1087
1088/*
1089 *	bdirty:
1090 *
1091 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1092 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1093 *	itself to properly update it in the dirty/clean lists.  We mark it
1094 *	B_DONE to ensure that any asynchronization of the buffer properly
1095 *	clears B_DONE ( else a panic will occur later ).
1096 *
1097 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1098 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1099 *	should only be called if the buffer is known-good.
1100 *
1101 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1102 *	count.
1103 *
1104 *	The buffer must be on QUEUE_NONE.
1105 */
1106void
1107bdirty(struct buf *bp)
1108{
1109
1110	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1111	    bp, bp->b_vp, bp->b_flags);
1112	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1113	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1114	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1115	BUF_ASSERT_HELD(bp);
1116	bp->b_flags &= ~(B_RELBUF);
1117	bp->b_iocmd = BIO_WRITE;
1118
1119	if ((bp->b_flags & B_DELWRI) == 0) {
1120		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1121		reassignbuf(bp);
1122		atomic_add_int(&numdirtybuffers, 1);
1123		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1124	}
1125}
1126
1127/*
1128 *	bundirty:
1129 *
1130 *	Clear B_DELWRI for buffer.
1131 *
1132 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1133 *	count.
1134 *
1135 *	The buffer must be on QUEUE_NONE.
1136 */
1137
1138void
1139bundirty(struct buf *bp)
1140{
1141
1142	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1143	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1144	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1145	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1146	BUF_ASSERT_HELD(bp);
1147
1148	if (bp->b_flags & B_DELWRI) {
1149		bp->b_flags &= ~B_DELWRI;
1150		reassignbuf(bp);
1151		atomic_subtract_int(&numdirtybuffers, 1);
1152		numdirtywakeup(lodirtybuffers);
1153	}
1154	/*
1155	 * Since it is now being written, we can clear its deferred write flag.
1156	 */
1157	bp->b_flags &= ~B_DEFERRED;
1158}
1159
1160/*
1161 *	bawrite:
1162 *
1163 *	Asynchronous write.  Start output on a buffer, but do not wait for
1164 *	it to complete.  The buffer is released when the output completes.
1165 *
1166 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1167 *	B_INVAL buffers.  Not us.
1168 */
1169void
1170bawrite(struct buf *bp)
1171{
1172
1173	bp->b_flags |= B_ASYNC;
1174	(void) bwrite(bp);
1175}
1176
1177/*
1178 *	babarrierwrite:
1179 *
1180 *	Asynchronous barrier write.  Start output on a buffer, but do not
1181 *	wait for it to complete.  Place a write barrier after this write so
1182 *	that this buffer and all buffers written before it are committed to
1183 *	the disk before any buffers written after this write are committed
1184 *	to the disk.  The buffer is released when the output completes.
1185 */
1186void
1187babarrierwrite(struct buf *bp)
1188{
1189
1190	bp->b_flags |= B_ASYNC | B_BARRIER;
1191	(void) bwrite(bp);
1192}
1193
1194/*
1195 *	bbarrierwrite:
1196 *
1197 *	Synchronous barrier write.  Start output on a buffer and wait for
1198 *	it to complete.  Place a write barrier after this write so that
1199 *	this buffer and all buffers written before it are committed to
1200 *	the disk before any buffers written after this write are committed
1201 *	to the disk.  The buffer is released when the output completes.
1202 */
1203int
1204bbarrierwrite(struct buf *bp)
1205{
1206
1207	bp->b_flags |= B_BARRIER;
1208	return (bwrite(bp));
1209}
1210
1211/*
1212 *	bwillwrite:
1213 *
1214 *	Called prior to the locking of any vnodes when we are expecting to
1215 *	write.  We do not want to starve the buffer cache with too many
1216 *	dirty buffers so we block here.  By blocking prior to the locking
1217 *	of any vnodes we attempt to avoid the situation where a locked vnode
1218 *	prevents the various system daemons from flushing related buffers.
1219 */
1220
1221void
1222bwillwrite(void)
1223{
1224
1225	if (numdirtybuffers >= hidirtybuffers) {
1226		mtx_lock(&nblock);
1227		while (numdirtybuffers >= hidirtybuffers) {
1228			bd_wakeup(1);
1229			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1230			msleep(&needsbuffer, &nblock,
1231			    (PRIBIO + 4), "flswai", 0);
1232		}
1233		mtx_unlock(&nblock);
1234	}
1235}
1236
1237/*
1238 * Return true if we have too many dirty buffers.
1239 */
1240int
1241buf_dirty_count_severe(void)
1242{
1243
1244	return(numdirtybuffers >= hidirtybuffers);
1245}
1246
1247static __noinline int
1248buf_vm_page_count_severe(void)
1249{
1250
1251	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1252
1253	return vm_page_count_severe();
1254}
1255
1256/*
1257 *	brelse:
1258 *
1259 *	Release a busy buffer and, if requested, free its resources.  The
1260 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1261 *	to be accessed later as a cache entity or reused for other purposes.
1262 */
1263void
1264brelse(struct buf *bp)
1265{
1266	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1267	    bp, bp->b_vp, bp->b_flags);
1268	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1269	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1270
1271	if (BUF_LOCKRECURSED(bp)) {
1272		/*
1273		 * Do not process, in particular, do not handle the
1274		 * B_INVAL/B_RELBUF and do not release to free list.
1275		 */
1276		BUF_UNLOCK(bp);
1277		return;
1278	}
1279
1280	if (bp->b_flags & B_MANAGED) {
1281		bqrelse(bp);
1282		return;
1283	}
1284
1285	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1286	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1287		/*
1288		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1289		 * pages from being scrapped.  If the error is anything
1290		 * other than an I/O error (EIO), assume that retrying
1291		 * is futile.
1292		 */
1293		bp->b_ioflags &= ~BIO_ERROR;
1294		bdirty(bp);
1295	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1296	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1297		/*
1298		 * Either a failed I/O or we were asked to free or not
1299		 * cache the buffer.
1300		 */
1301		bp->b_flags |= B_INVAL;
1302		if (!LIST_EMPTY(&bp->b_dep))
1303			buf_deallocate(bp);
1304		if (bp->b_flags & B_DELWRI) {
1305			atomic_subtract_int(&numdirtybuffers, 1);
1306			numdirtywakeup(lodirtybuffers);
1307		}
1308		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1309		if ((bp->b_flags & B_VMIO) == 0) {
1310			if (bp->b_bufsize)
1311				allocbuf(bp, 0);
1312			if (bp->b_vp)
1313				brelvp(bp);
1314		}
1315	}
1316
1317	/*
1318	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1319	 * is called with B_DELWRI set, the underlying pages may wind up
1320	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1321	 * because pages associated with a B_DELWRI bp are marked clean.
1322	 *
1323	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1324	 * if B_DELWRI is set.
1325	 *
1326	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1327	 * on pages to return pages to the VM page queues.
1328	 */
1329	if (bp->b_flags & B_DELWRI)
1330		bp->b_flags &= ~B_RELBUF;
1331	else if (buf_vm_page_count_severe()) {
1332		/*
1333		 * The locking of the BO_LOCK is not necessary since
1334		 * BKGRDINPROG cannot be set while we hold the buf
1335		 * lock, it can only be cleared if it is already
1336		 * pending.
1337		 */
1338		if (bp->b_vp) {
1339			if (!(bp->b_vflags & BV_BKGRDINPROG))
1340				bp->b_flags |= B_RELBUF;
1341		} else
1342			bp->b_flags |= B_RELBUF;
1343	}
1344
1345	/*
1346	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1347	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1348	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1349	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1350	 *
1351	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1352	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1353	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1354	 *
1355	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1356	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1357	 * the commit state and we cannot afford to lose the buffer. If the
1358	 * buffer has a background write in progress, we need to keep it
1359	 * around to prevent it from being reconstituted and starting a second
1360	 * background write.
1361	 */
1362	if ((bp->b_flags & B_VMIO)
1363	    && !(bp->b_vp->v_mount != NULL &&
1364		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1365		 !vn_isdisk(bp->b_vp, NULL) &&
1366		 (bp->b_flags & B_DELWRI))
1367	    ) {
1368
1369		int i, j, resid;
1370		vm_page_t m;
1371		off_t foff;
1372		vm_pindex_t poff;
1373		vm_object_t obj;
1374
1375		obj = bp->b_bufobj->bo_object;
1376
1377		/*
1378		 * Get the base offset and length of the buffer.  Note that
1379		 * in the VMIO case if the buffer block size is not
1380		 * page-aligned then b_data pointer may not be page-aligned.
1381		 * But our b_pages[] array *IS* page aligned.
1382		 *
1383		 * block sizes less then DEV_BSIZE (usually 512) are not
1384		 * supported due to the page granularity bits (m->valid,
1385		 * m->dirty, etc...).
1386		 *
1387		 * See man buf(9) for more information
1388		 */
1389		resid = bp->b_bufsize;
1390		foff = bp->b_offset;
1391		VM_OBJECT_LOCK(obj);
1392		for (i = 0; i < bp->b_npages; i++) {
1393			int had_bogus = 0;
1394
1395			m = bp->b_pages[i];
1396
1397			/*
1398			 * If we hit a bogus page, fixup *all* the bogus pages
1399			 * now.
1400			 */
1401			if (m == bogus_page) {
1402				poff = OFF_TO_IDX(bp->b_offset);
1403				had_bogus = 1;
1404
1405				for (j = i; j < bp->b_npages; j++) {
1406					vm_page_t mtmp;
1407					mtmp = bp->b_pages[j];
1408					if (mtmp == bogus_page) {
1409						mtmp = vm_page_lookup(obj, poff + j);
1410						if (!mtmp) {
1411							panic("brelse: page missing\n");
1412						}
1413						bp->b_pages[j] = mtmp;
1414					}
1415				}
1416
1417				if ((bp->b_flags & B_INVAL) == 0) {
1418					pmap_qenter(
1419					    trunc_page((vm_offset_t)bp->b_data),
1420					    bp->b_pages, bp->b_npages);
1421				}
1422				m = bp->b_pages[i];
1423			}
1424			if ((bp->b_flags & B_NOCACHE) ||
1425			    (bp->b_ioflags & BIO_ERROR &&
1426			     bp->b_iocmd == BIO_READ)) {
1427				int poffset = foff & PAGE_MASK;
1428				int presid = resid > (PAGE_SIZE - poffset) ?
1429					(PAGE_SIZE - poffset) : resid;
1430
1431				KASSERT(presid >= 0, ("brelse: extra page"));
1432				vm_page_set_invalid(m, poffset, presid);
1433				if (had_bogus)
1434					printf("avoided corruption bug in bogus_page/brelse code\n");
1435			}
1436			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1437			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1438		}
1439		VM_OBJECT_UNLOCK(obj);
1440		if (bp->b_flags & (B_INVAL | B_RELBUF))
1441			vfs_vmio_release(bp);
1442
1443	} else if (bp->b_flags & B_VMIO) {
1444
1445		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1446			vfs_vmio_release(bp);
1447		}
1448
1449	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1450		if (bp->b_bufsize != 0)
1451			allocbuf(bp, 0);
1452		if (bp->b_vp != NULL)
1453			brelvp(bp);
1454	}
1455
1456	/* enqueue */
1457	mtx_lock(&bqlock);
1458	/* Handle delayed bremfree() processing. */
1459	if (bp->b_flags & B_REMFREE) {
1460		struct bufobj *bo;
1461
1462		bo = bp->b_bufobj;
1463		if (bo != NULL)
1464			BO_LOCK(bo);
1465		bremfreel(bp);
1466		if (bo != NULL)
1467			BO_UNLOCK(bo);
1468	}
1469	if (bp->b_qindex != QUEUE_NONE)
1470		panic("brelse: free buffer onto another queue???");
1471
1472	/*
1473	 * If the buffer has junk contents signal it and eventually
1474	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1475	 * doesn't find it.
1476	 */
1477	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1478	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1479		bp->b_flags |= B_INVAL;
1480	if (bp->b_flags & B_INVAL) {
1481		if (bp->b_flags & B_DELWRI)
1482			bundirty(bp);
1483		if (bp->b_vp)
1484			brelvp(bp);
1485	}
1486
1487	/* buffers with no memory */
1488	if (bp->b_bufsize == 0) {
1489		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1490		if (bp->b_vflags & BV_BKGRDINPROG)
1491			panic("losing buffer 1");
1492		if (bp->b_kvasize) {
1493			bp->b_qindex = QUEUE_EMPTYKVA;
1494		} else {
1495			bp->b_qindex = QUEUE_EMPTY;
1496		}
1497		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1498	/* buffers with junk contents */
1499	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1500	    (bp->b_ioflags & BIO_ERROR)) {
1501		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1502		if (bp->b_vflags & BV_BKGRDINPROG)
1503			panic("losing buffer 2");
1504		bp->b_qindex = QUEUE_CLEAN;
1505		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1506	/* remaining buffers */
1507	} else {
1508		if (bp->b_flags & B_DELWRI)
1509			bp->b_qindex = QUEUE_DIRTY;
1510		else
1511			bp->b_qindex = QUEUE_CLEAN;
1512		if (bp->b_flags & B_AGE)
1513			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1514		else
1515			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1516	}
1517	mtx_unlock(&bqlock);
1518
1519	/*
1520	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1521	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1522	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1523	 * if B_INVAL is set ).
1524	 */
1525
1526	if (!(bp->b_flags & B_DELWRI)) {
1527		struct bufobj *bo;
1528
1529		bo = bp->b_bufobj;
1530		if (bo != NULL)
1531			BO_LOCK(bo);
1532		bufcountwakeup(bp);
1533		if (bo != NULL)
1534			BO_UNLOCK(bo);
1535	}
1536
1537	/*
1538	 * Something we can maybe free or reuse
1539	 */
1540	if (bp->b_bufsize || bp->b_kvasize)
1541		bufspacewakeup();
1542
1543	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1544	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1545		panic("brelse: not dirty");
1546	/* unlock */
1547	BUF_UNLOCK(bp);
1548}
1549
1550/*
1551 * Release a buffer back to the appropriate queue but do not try to free
1552 * it.  The buffer is expected to be used again soon.
1553 *
1554 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1555 * biodone() to requeue an async I/O on completion.  It is also used when
1556 * known good buffers need to be requeued but we think we may need the data
1557 * again soon.
1558 *
1559 * XXX we should be able to leave the B_RELBUF hint set on completion.
1560 */
1561void
1562bqrelse(struct buf *bp)
1563{
1564	struct bufobj *bo;
1565
1566	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1567	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1568	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1569
1570	if (BUF_LOCKRECURSED(bp)) {
1571		/* do not release to free list */
1572		BUF_UNLOCK(bp);
1573		return;
1574	}
1575
1576	bo = bp->b_bufobj;
1577	if (bp->b_flags & B_MANAGED) {
1578		if (bp->b_flags & B_REMFREE) {
1579			mtx_lock(&bqlock);
1580			if (bo != NULL)
1581				BO_LOCK(bo);
1582			bremfreel(bp);
1583			if (bo != NULL)
1584				BO_UNLOCK(bo);
1585			mtx_unlock(&bqlock);
1586		}
1587		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1588		BUF_UNLOCK(bp);
1589		return;
1590	}
1591
1592	mtx_lock(&bqlock);
1593	/* Handle delayed bremfree() processing. */
1594	if (bp->b_flags & B_REMFREE) {
1595		if (bo != NULL)
1596			BO_LOCK(bo);
1597		bremfreel(bp);
1598		if (bo != NULL)
1599			BO_UNLOCK(bo);
1600	}
1601	if (bp->b_qindex != QUEUE_NONE)
1602		panic("bqrelse: free buffer onto another queue???");
1603	/* buffers with stale but valid contents */
1604	if (bp->b_flags & B_DELWRI) {
1605		bp->b_qindex = QUEUE_DIRTY;
1606		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1607	} else {
1608		/*
1609		 * The locking of the BO_LOCK for checking of the
1610		 * BV_BKGRDINPROG is not necessary since the
1611		 * BV_BKGRDINPROG cannot be set while we hold the buf
1612		 * lock, it can only be cleared if it is already
1613		 * pending.
1614		 */
1615		if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1616			bp->b_qindex = QUEUE_CLEAN;
1617			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1618			    b_freelist);
1619		} else {
1620			/*
1621			 * We are too low on memory, we have to try to free
1622			 * the buffer (most importantly: the wired pages
1623			 * making up its backing store) *now*.
1624			 */
1625			mtx_unlock(&bqlock);
1626			brelse(bp);
1627			return;
1628		}
1629	}
1630	mtx_unlock(&bqlock);
1631
1632	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI)) {
1633		if (bo != NULL)
1634			BO_LOCK(bo);
1635		bufcountwakeup(bp);
1636		if (bo != NULL)
1637			BO_UNLOCK(bo);
1638	}
1639
1640	/*
1641	 * Something we can maybe free or reuse.
1642	 */
1643	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1644		bufspacewakeup();
1645
1646	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1647	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1648		panic("bqrelse: not dirty");
1649	/* unlock */
1650	BUF_UNLOCK(bp);
1651}
1652
1653/* Give pages used by the bp back to the VM system (where possible) */
1654static void
1655vfs_vmio_release(struct buf *bp)
1656{
1657	int i;
1658	vm_page_t m;
1659
1660	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
1661	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1662	for (i = 0; i < bp->b_npages; i++) {
1663		m = bp->b_pages[i];
1664		bp->b_pages[i] = NULL;
1665		/*
1666		 * In order to keep page LRU ordering consistent, put
1667		 * everything on the inactive queue.
1668		 */
1669		vm_page_lock(m);
1670		vm_page_unwire(m, 0);
1671		/*
1672		 * We don't mess with busy pages, it is
1673		 * the responsibility of the process that
1674		 * busied the pages to deal with them.
1675		 */
1676		if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
1677		    m->wire_count == 0) {
1678			/*
1679			 * Might as well free the page if we can and it has
1680			 * no valid data.  We also free the page if the
1681			 * buffer was used for direct I/O
1682			 */
1683			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
1684				vm_page_free(m);
1685			} else if (bp->b_flags & B_DIRECT) {
1686				vm_page_try_to_free(m);
1687			} else if (buf_vm_page_count_severe()) {
1688				vm_page_try_to_cache(m);
1689			}
1690		}
1691		vm_page_unlock(m);
1692	}
1693	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1694
1695	if (bp->b_bufsize) {
1696		bufspacewakeup();
1697		bp->b_bufsize = 0;
1698	}
1699	bp->b_npages = 0;
1700	bp->b_flags &= ~B_VMIO;
1701	if (bp->b_vp)
1702		brelvp(bp);
1703}
1704
1705/*
1706 * Check to see if a block at a particular lbn is available for a clustered
1707 * write.
1708 */
1709static int
1710vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1711{
1712	struct buf *bpa;
1713	int match;
1714
1715	match = 0;
1716
1717	/* If the buf isn't in core skip it */
1718	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1719		return (0);
1720
1721	/* If the buf is busy we don't want to wait for it */
1722	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1723		return (0);
1724
1725	/* Only cluster with valid clusterable delayed write buffers */
1726	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1727	    (B_DELWRI | B_CLUSTEROK))
1728		goto done;
1729
1730	if (bpa->b_bufsize != size)
1731		goto done;
1732
1733	/*
1734	 * Check to see if it is in the expected place on disk and that the
1735	 * block has been mapped.
1736	 */
1737	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1738		match = 1;
1739done:
1740	BUF_UNLOCK(bpa);
1741	return (match);
1742}
1743
1744/*
1745 *	vfs_bio_awrite:
1746 *
1747 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1748 *	This is much better then the old way of writing only one buffer at
1749 *	a time.  Note that we may not be presented with the buffers in the
1750 *	correct order, so we search for the cluster in both directions.
1751 */
1752int
1753vfs_bio_awrite(struct buf *bp)
1754{
1755	struct bufobj *bo;
1756	int i;
1757	int j;
1758	daddr_t lblkno = bp->b_lblkno;
1759	struct vnode *vp = bp->b_vp;
1760	int ncl;
1761	int nwritten;
1762	int size;
1763	int maxcl;
1764
1765	bo = &vp->v_bufobj;
1766	/*
1767	 * right now we support clustered writing only to regular files.  If
1768	 * we find a clusterable block we could be in the middle of a cluster
1769	 * rather then at the beginning.
1770	 */
1771	if ((vp->v_type == VREG) &&
1772	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1773	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1774
1775		size = vp->v_mount->mnt_stat.f_iosize;
1776		maxcl = MAXPHYS / size;
1777
1778		BO_LOCK(bo);
1779		for (i = 1; i < maxcl; i++)
1780			if (vfs_bio_clcheck(vp, size, lblkno + i,
1781			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1782				break;
1783
1784		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1785			if (vfs_bio_clcheck(vp, size, lblkno - j,
1786			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1787				break;
1788		BO_UNLOCK(bo);
1789		--j;
1790		ncl = i + j;
1791		/*
1792		 * this is a possible cluster write
1793		 */
1794		if (ncl != 1) {
1795			BUF_UNLOCK(bp);
1796			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1797			return nwritten;
1798		}
1799	}
1800	bremfree(bp);
1801	bp->b_flags |= B_ASYNC;
1802	/*
1803	 * default (old) behavior, writing out only one block
1804	 *
1805	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1806	 */
1807	nwritten = bp->b_bufsize;
1808	(void) bwrite(bp);
1809
1810	return nwritten;
1811}
1812
1813/*
1814 *	getnewbuf:
1815 *
1816 *	Find and initialize a new buffer header, freeing up existing buffers
1817 *	in the bufqueues as necessary.  The new buffer is returned locked.
1818 *
1819 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1820 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1821 *
1822 *	We block if:
1823 *		We have insufficient buffer headers
1824 *		We have insufficient buffer space
1825 *		buffer_map is too fragmented ( space reservation fails )
1826 *		If we have to flush dirty buffers ( but we try to avoid this )
1827 *
1828 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1829 *	Instead we ask the buf daemon to do it for us.  We attempt to
1830 *	avoid piecemeal wakeups of the pageout daemon.
1831 */
1832
1833static struct buf *
1834getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1835    int gbflags)
1836{
1837	struct thread *td;
1838	struct buf *bp;
1839	struct buf *nbp;
1840	int defrag = 0;
1841	int nqindex;
1842	static int flushingbufs;
1843
1844	td = curthread;
1845	/*
1846	 * We can't afford to block since we might be holding a vnode lock,
1847	 * which may prevent system daemons from running.  We deal with
1848	 * low-memory situations by proactively returning memory and running
1849	 * async I/O rather then sync I/O.
1850	 */
1851	atomic_add_int(&getnewbufcalls, 1);
1852	atomic_subtract_int(&getnewbufrestarts, 1);
1853restart:
1854	atomic_add_int(&getnewbufrestarts, 1);
1855
1856	/*
1857	 * Setup for scan.  If we do not have enough free buffers,
1858	 * we setup a degenerate case that immediately fails.  Note
1859	 * that if we are specially marked process, we are allowed to
1860	 * dip into our reserves.
1861	 *
1862	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1863	 *
1864	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1865	 * However, there are a number of cases (defragging, reusing, ...)
1866	 * where we cannot backup.
1867	 */
1868	mtx_lock(&bqlock);
1869	nqindex = QUEUE_EMPTYKVA;
1870	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1871
1872	if (nbp == NULL) {
1873		/*
1874		 * If no EMPTYKVA buffers and we are either
1875		 * defragging or reusing, locate a CLEAN buffer
1876		 * to free or reuse.  If bufspace useage is low
1877		 * skip this step so we can allocate a new buffer.
1878		 */
1879		if (defrag || bufspace >= lobufspace) {
1880			nqindex = QUEUE_CLEAN;
1881			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1882		}
1883
1884		/*
1885		 * If we could not find or were not allowed to reuse a
1886		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1887		 * buffer.  We can only use an EMPTY buffer if allocating
1888		 * its KVA would not otherwise run us out of buffer space.
1889		 */
1890		if (nbp == NULL && defrag == 0 &&
1891		    bufspace + maxsize < hibufspace) {
1892			nqindex = QUEUE_EMPTY;
1893			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1894		}
1895	}
1896
1897	/*
1898	 * Run scan, possibly freeing data and/or kva mappings on the fly
1899	 * depending.
1900	 */
1901
1902	while ((bp = nbp) != NULL) {
1903		int qindex = nqindex;
1904
1905		/*
1906		 * Calculate next bp ( we can only use it if we do not block
1907		 * or do other fancy things ).
1908		 */
1909		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1910			switch(qindex) {
1911			case QUEUE_EMPTY:
1912				nqindex = QUEUE_EMPTYKVA;
1913				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1914					break;
1915				/* FALLTHROUGH */
1916			case QUEUE_EMPTYKVA:
1917				nqindex = QUEUE_CLEAN;
1918				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1919					break;
1920				/* FALLTHROUGH */
1921			case QUEUE_CLEAN:
1922				/*
1923				 * nbp is NULL.
1924				 */
1925				break;
1926			}
1927		}
1928		/*
1929		 * If we are defragging then we need a buffer with
1930		 * b_kvasize != 0.  XXX this situation should no longer
1931		 * occur, if defrag is non-zero the buffer's b_kvasize
1932		 * should also be non-zero at this point.  XXX
1933		 */
1934		if (defrag && bp->b_kvasize == 0) {
1935			printf("Warning: defrag empty buffer %p\n", bp);
1936			continue;
1937		}
1938
1939		/*
1940		 * Start freeing the bp.  This is somewhat involved.  nbp
1941		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1942		 */
1943		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1944			continue;
1945		if (bp->b_vp) {
1946			BO_LOCK(bp->b_bufobj);
1947			if (bp->b_vflags & BV_BKGRDINPROG) {
1948				BO_UNLOCK(bp->b_bufobj);
1949				BUF_UNLOCK(bp);
1950				continue;
1951			}
1952			BO_UNLOCK(bp->b_bufobj);
1953		}
1954		CTR6(KTR_BUF,
1955		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1956		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1957		    bp->b_kvasize, bp->b_bufsize, qindex);
1958
1959		/*
1960		 * Sanity Checks
1961		 */
1962		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1963
1964		/*
1965		 * Note: we no longer distinguish between VMIO and non-VMIO
1966		 * buffers.
1967		 */
1968
1969		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1970
1971		if (bp->b_bufobj != NULL)
1972			BO_LOCK(bp->b_bufobj);
1973		bremfreel(bp);
1974		if (bp->b_bufobj != NULL)
1975			BO_UNLOCK(bp->b_bufobj);
1976		mtx_unlock(&bqlock);
1977
1978		if (qindex == QUEUE_CLEAN) {
1979			if (bp->b_flags & B_VMIO) {
1980				bp->b_flags &= ~B_ASYNC;
1981				vfs_vmio_release(bp);
1982			}
1983			if (bp->b_vp)
1984				brelvp(bp);
1985		}
1986
1987		/*
1988		 * NOTE:  nbp is now entirely invalid.  We can only restart
1989		 * the scan from this point on.
1990		 *
1991		 * Get the rest of the buffer freed up.  b_kva* is still
1992		 * valid after this operation.
1993		 */
1994
1995		if (bp->b_rcred != NOCRED) {
1996			crfree(bp->b_rcred);
1997			bp->b_rcred = NOCRED;
1998		}
1999		if (bp->b_wcred != NOCRED) {
2000			crfree(bp->b_wcred);
2001			bp->b_wcred = NOCRED;
2002		}
2003		if (!LIST_EMPTY(&bp->b_dep))
2004			buf_deallocate(bp);
2005		if (bp->b_vflags & BV_BKGRDINPROG)
2006			panic("losing buffer 3");
2007		KASSERT(bp->b_vp == NULL,
2008		    ("bp: %p still has vnode %p.  qindex: %d",
2009		    bp, bp->b_vp, qindex));
2010		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
2011		   ("bp: %p still on a buffer list. xflags %X",
2012		    bp, bp->b_xflags));
2013
2014		if (bp->b_bufsize)
2015			allocbuf(bp, 0);
2016
2017		bp->b_flags = 0;
2018		bp->b_ioflags = 0;
2019		bp->b_xflags = 0;
2020		KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
2021		    ("buf %p still counted as free?", bp));
2022		bp->b_vflags = 0;
2023		bp->b_vp = NULL;
2024		bp->b_blkno = bp->b_lblkno = 0;
2025		bp->b_offset = NOOFFSET;
2026		bp->b_iodone = 0;
2027		bp->b_error = 0;
2028		bp->b_resid = 0;
2029		bp->b_bcount = 0;
2030		bp->b_npages = 0;
2031		bp->b_dirtyoff = bp->b_dirtyend = 0;
2032		bp->b_bufobj = NULL;
2033		bp->b_pin_count = 0;
2034		bp->b_fsprivate1 = NULL;
2035		bp->b_fsprivate2 = NULL;
2036		bp->b_fsprivate3 = NULL;
2037
2038		LIST_INIT(&bp->b_dep);
2039
2040		/*
2041		 * If we are defragging then free the buffer.
2042		 */
2043		if (defrag) {
2044			bp->b_flags |= B_INVAL;
2045			bfreekva(bp);
2046			brelse(bp);
2047			defrag = 0;
2048			goto restart;
2049		}
2050
2051		/*
2052		 * Notify any waiters for the buffer lock about
2053		 * identity change by freeing the buffer.
2054		 */
2055		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2056			bp->b_flags |= B_INVAL;
2057			bfreekva(bp);
2058			brelse(bp);
2059			goto restart;
2060		}
2061
2062		/*
2063		 * If we are overcomitted then recover the buffer and its
2064		 * KVM space.  This occurs in rare situations when multiple
2065		 * processes are blocked in getnewbuf() or allocbuf().
2066		 */
2067		if (bufspace >= hibufspace)
2068			flushingbufs = 1;
2069		if (flushingbufs && bp->b_kvasize != 0) {
2070			bp->b_flags |= B_INVAL;
2071			bfreekva(bp);
2072			brelse(bp);
2073			goto restart;
2074		}
2075		if (bufspace < lobufspace)
2076			flushingbufs = 0;
2077		break;
2078	}
2079
2080	/*
2081	 * If we exhausted our list, sleep as appropriate.  We may have to
2082	 * wakeup various daemons and write out some dirty buffers.
2083	 *
2084	 * Generally we are sleeping due to insufficient buffer space.
2085	 */
2086
2087	if (bp == NULL) {
2088		int flags, norunbuf;
2089		char *waitmsg;
2090		int fl;
2091
2092		if (defrag) {
2093			flags = VFS_BIO_NEED_BUFSPACE;
2094			waitmsg = "nbufkv";
2095		} else if (bufspace >= hibufspace) {
2096			waitmsg = "nbufbs";
2097			flags = VFS_BIO_NEED_BUFSPACE;
2098		} else {
2099			waitmsg = "newbuf";
2100			flags = VFS_BIO_NEED_ANY;
2101		}
2102		mtx_lock(&nblock);
2103		needsbuffer |= flags;
2104		mtx_unlock(&nblock);
2105		mtx_unlock(&bqlock);
2106
2107		bd_speedup();	/* heeeelp */
2108		if (gbflags & GB_NOWAIT_BD)
2109			return (NULL);
2110
2111		mtx_lock(&nblock);
2112		while (needsbuffer & flags) {
2113			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2114				mtx_unlock(&nblock);
2115				/*
2116				 * getblk() is called with a vnode
2117				 * locked, and some majority of the
2118				 * dirty buffers may as well belong to
2119				 * the vnode. Flushing the buffers
2120				 * there would make a progress that
2121				 * cannot be achieved by the
2122				 * buf_daemon, that cannot lock the
2123				 * vnode.
2124				 */
2125				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2126				    (td->td_pflags & TDP_NORUNNINGBUF);
2127				/* play bufdaemon */
2128				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2129				fl = buf_do_flush(vp);
2130				td->td_pflags &= norunbuf;
2131				mtx_lock(&nblock);
2132				if (fl != 0)
2133					continue;
2134				if ((needsbuffer & flags) == 0)
2135					break;
2136			}
2137			if (msleep(&needsbuffer, &nblock,
2138			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2139				mtx_unlock(&nblock);
2140				return (NULL);
2141			}
2142		}
2143		mtx_unlock(&nblock);
2144	} else {
2145		/*
2146		 * We finally have a valid bp.  We aren't quite out of the
2147		 * woods, we still have to reserve kva space.  In order
2148		 * to keep fragmentation sane we only allocate kva in
2149		 * BKVASIZE chunks.
2150		 */
2151		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2152
2153		if (maxsize != bp->b_kvasize) {
2154			vm_offset_t addr = 0;
2155			int rv;
2156
2157			bfreekva(bp);
2158
2159			vm_map_lock(buffer_map);
2160			if (vm_map_findspace(buffer_map,
2161			    vm_map_min(buffer_map), maxsize, &addr)) {
2162				/*
2163				 * Buffer map is too fragmented.
2164				 * We must defragment the map.
2165				 */
2166				atomic_add_int(&bufdefragcnt, 1);
2167				vm_map_unlock(buffer_map);
2168				defrag = 1;
2169				bp->b_flags |= B_INVAL;
2170				brelse(bp);
2171				goto restart;
2172			}
2173			rv = vm_map_insert(buffer_map, NULL, 0, addr,
2174			    addr + maxsize, VM_PROT_ALL, VM_PROT_ALL,
2175			    MAP_NOFAULT);
2176			KASSERT(rv == KERN_SUCCESS,
2177			    ("vm_map_insert(buffer_map) rv %d", rv));
2178			vm_map_unlock(buffer_map);
2179			bp->b_kvabase = (caddr_t)addr;
2180			bp->b_kvasize = maxsize;
2181			atomic_add_long(&bufspace, bp->b_kvasize);
2182			atomic_add_int(&bufreusecnt, 1);
2183		}
2184		bp->b_saveaddr = bp->b_kvabase;
2185		bp->b_data = bp->b_saveaddr;
2186	}
2187	return (bp);
2188}
2189
2190/*
2191 *	buf_daemon:
2192 *
2193 *	buffer flushing daemon.  Buffers are normally flushed by the
2194 *	update daemon but if it cannot keep up this process starts to
2195 *	take the load in an attempt to prevent getnewbuf() from blocking.
2196 */
2197
2198static struct kproc_desc buf_kp = {
2199	"bufdaemon",
2200	buf_daemon,
2201	&bufdaemonproc
2202};
2203SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2204
2205static int
2206buf_do_flush(struct vnode *vp)
2207{
2208	int flushed;
2209
2210	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2211	if (flushed == 0) {
2212		/*
2213		 * Could not find any buffers without rollback
2214		 * dependencies, so just write the first one
2215		 * in the hopes of eventually making progress.
2216		 */
2217		flushbufqueues(vp, QUEUE_DIRTY, 1);
2218	}
2219	return (flushed);
2220}
2221
2222static void
2223buf_daemon()
2224{
2225	int lodirtysave;
2226
2227	/*
2228	 * This process needs to be suspended prior to shutdown sync.
2229	 */
2230	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2231	    SHUTDOWN_PRI_LAST);
2232
2233	/*
2234	 * This process is allowed to take the buffer cache to the limit
2235	 */
2236	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2237	mtx_lock(&bdlock);
2238	for (;;) {
2239		bd_request = 0;
2240		mtx_unlock(&bdlock);
2241
2242		kproc_suspend_check(bufdaemonproc);
2243		lodirtysave = lodirtybuffers;
2244		if (bd_speedupreq) {
2245			lodirtybuffers = numdirtybuffers / 2;
2246			bd_speedupreq = 0;
2247		}
2248		/*
2249		 * Do the flush.  Limit the amount of in-transit I/O we
2250		 * allow to build up, otherwise we would completely saturate
2251		 * the I/O system.  Wakeup any waiting processes before we
2252		 * normally would so they can run in parallel with our drain.
2253		 */
2254		while (numdirtybuffers > lodirtybuffers) {
2255			if (buf_do_flush(NULL) == 0)
2256				break;
2257			kern_yield(PRI_USER);
2258		}
2259		lodirtybuffers = lodirtysave;
2260
2261		/*
2262		 * Only clear bd_request if we have reached our low water
2263		 * mark.  The buf_daemon normally waits 1 second and
2264		 * then incrementally flushes any dirty buffers that have
2265		 * built up, within reason.
2266		 *
2267		 * If we were unable to hit our low water mark and couldn't
2268		 * find any flushable buffers, we sleep half a second.
2269		 * Otherwise we loop immediately.
2270		 */
2271		mtx_lock(&bdlock);
2272		if (numdirtybuffers <= lodirtybuffers) {
2273			/*
2274			 * We reached our low water mark, reset the
2275			 * request and sleep until we are needed again.
2276			 * The sleep is just so the suspend code works.
2277			 */
2278			bd_request = 0;
2279			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2280		} else {
2281			/*
2282			 * We couldn't find any flushable dirty buffers but
2283			 * still have too many dirty buffers, we
2284			 * have to sleep and try again.  (rare)
2285			 */
2286			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2287		}
2288	}
2289}
2290
2291/*
2292 *	flushbufqueues:
2293 *
2294 *	Try to flush a buffer in the dirty queue.  We must be careful to
2295 *	free up B_INVAL buffers instead of write them, which NFS is
2296 *	particularly sensitive to.
2297 */
2298static int flushwithdeps = 0;
2299SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2300    0, "Number of buffers flushed with dependecies that require rollbacks");
2301
2302static int
2303flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2304{
2305	struct buf *sentinel;
2306	struct vnode *vp;
2307	struct mount *mp;
2308	struct buf *bp;
2309	int hasdeps;
2310	int flushed;
2311	int target;
2312
2313	if (lvp == NULL) {
2314		target = numdirtybuffers - lodirtybuffers;
2315		if (flushdeps && target > 2)
2316			target /= 2;
2317	} else
2318		target = flushbufqtarget;
2319	flushed = 0;
2320	bp = NULL;
2321	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2322	sentinel->b_qindex = QUEUE_SENTINEL;
2323	mtx_lock(&bqlock);
2324	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2325	while (flushed != target) {
2326		bp = TAILQ_NEXT(sentinel, b_freelist);
2327		if (bp != NULL) {
2328			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2329			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2330			    b_freelist);
2331		} else
2332			break;
2333		/*
2334		 * Skip sentinels inserted by other invocations of the
2335		 * flushbufqueues(), taking care to not reorder them.
2336		 */
2337		if (bp->b_qindex == QUEUE_SENTINEL)
2338			continue;
2339		/*
2340		 * Only flush the buffers that belong to the
2341		 * vnode locked by the curthread.
2342		 */
2343		if (lvp != NULL && bp->b_vp != lvp)
2344			continue;
2345		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2346			continue;
2347		if (bp->b_pin_count > 0) {
2348			BUF_UNLOCK(bp);
2349			continue;
2350		}
2351		BO_LOCK(bp->b_bufobj);
2352		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2353		    (bp->b_flags & B_DELWRI) == 0) {
2354			BO_UNLOCK(bp->b_bufobj);
2355			BUF_UNLOCK(bp);
2356			continue;
2357		}
2358		BO_UNLOCK(bp->b_bufobj);
2359		if (bp->b_flags & B_INVAL) {
2360			bremfreel(bp);
2361			mtx_unlock(&bqlock);
2362			brelse(bp);
2363			flushed++;
2364			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2365			mtx_lock(&bqlock);
2366			continue;
2367		}
2368
2369		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2370			if (flushdeps == 0) {
2371				BUF_UNLOCK(bp);
2372				continue;
2373			}
2374			hasdeps = 1;
2375		} else
2376			hasdeps = 0;
2377		/*
2378		 * We must hold the lock on a vnode before writing
2379		 * one of its buffers. Otherwise we may confuse, or
2380		 * in the case of a snapshot vnode, deadlock the
2381		 * system.
2382		 *
2383		 * The lock order here is the reverse of the normal
2384		 * of vnode followed by buf lock.  This is ok because
2385		 * the NOWAIT will prevent deadlock.
2386		 */
2387		vp = bp->b_vp;
2388		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2389			BUF_UNLOCK(bp);
2390			continue;
2391		}
2392		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2393			mtx_unlock(&bqlock);
2394			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2395			    bp, bp->b_vp, bp->b_flags);
2396			if (curproc == bufdaemonproc)
2397				vfs_bio_awrite(bp);
2398			else {
2399				bremfree(bp);
2400				bwrite(bp);
2401				notbufdflashes++;
2402			}
2403			vn_finished_write(mp);
2404			VOP_UNLOCK(vp, 0);
2405			flushwithdeps += hasdeps;
2406			flushed++;
2407
2408			/*
2409			 * Sleeping on runningbufspace while holding
2410			 * vnode lock leads to deadlock.
2411			 */
2412			if (curproc == bufdaemonproc)
2413				waitrunningbufspace();
2414			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2415			mtx_lock(&bqlock);
2416			continue;
2417		}
2418		vn_finished_write(mp);
2419		BUF_UNLOCK(bp);
2420	}
2421	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2422	mtx_unlock(&bqlock);
2423	free(sentinel, M_TEMP);
2424	return (flushed);
2425}
2426
2427/*
2428 * Check to see if a block is currently memory resident.
2429 */
2430struct buf *
2431incore(struct bufobj *bo, daddr_t blkno)
2432{
2433	struct buf *bp;
2434
2435	BO_LOCK(bo);
2436	bp = gbincore(bo, blkno);
2437	BO_UNLOCK(bo);
2438	return (bp);
2439}
2440
2441/*
2442 * Returns true if no I/O is needed to access the
2443 * associated VM object.  This is like incore except
2444 * it also hunts around in the VM system for the data.
2445 */
2446
2447static int
2448inmem(struct vnode * vp, daddr_t blkno)
2449{
2450	vm_object_t obj;
2451	vm_offset_t toff, tinc, size;
2452	vm_page_t m;
2453	vm_ooffset_t off;
2454
2455	ASSERT_VOP_LOCKED(vp, "inmem");
2456
2457	if (incore(&vp->v_bufobj, blkno))
2458		return 1;
2459	if (vp->v_mount == NULL)
2460		return 0;
2461	obj = vp->v_object;
2462	if (obj == NULL)
2463		return (0);
2464
2465	size = PAGE_SIZE;
2466	if (size > vp->v_mount->mnt_stat.f_iosize)
2467		size = vp->v_mount->mnt_stat.f_iosize;
2468	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2469
2470	VM_OBJECT_LOCK(obj);
2471	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2472		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2473		if (!m)
2474			goto notinmem;
2475		tinc = size;
2476		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2477			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2478		if (vm_page_is_valid(m,
2479		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2480			goto notinmem;
2481	}
2482	VM_OBJECT_UNLOCK(obj);
2483	return 1;
2484
2485notinmem:
2486	VM_OBJECT_UNLOCK(obj);
2487	return (0);
2488}
2489
2490/*
2491 * Set the dirty range for a buffer based on the status of the dirty
2492 * bits in the pages comprising the buffer.  The range is limited
2493 * to the size of the buffer.
2494 *
2495 * Tell the VM system that the pages associated with this buffer
2496 * are clean.  This is used for delayed writes where the data is
2497 * going to go to disk eventually without additional VM intevention.
2498 *
2499 * Note that while we only really need to clean through to b_bcount, we
2500 * just go ahead and clean through to b_bufsize.
2501 */
2502static void
2503vfs_clean_pages_dirty_buf(struct buf *bp)
2504{
2505	vm_ooffset_t foff, noff, eoff;
2506	vm_page_t m;
2507	int i;
2508
2509	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2510		return;
2511
2512	foff = bp->b_offset;
2513	KASSERT(bp->b_offset != NOOFFSET,
2514	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2515
2516	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2517	vfs_drain_busy_pages(bp);
2518	vfs_setdirty_locked_object(bp);
2519	for (i = 0; i < bp->b_npages; i++) {
2520		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2521		eoff = noff;
2522		if (eoff > bp->b_offset + bp->b_bufsize)
2523			eoff = bp->b_offset + bp->b_bufsize;
2524		m = bp->b_pages[i];
2525		vfs_page_set_validclean(bp, foff, m);
2526		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2527		foff = noff;
2528	}
2529	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2530}
2531
2532static void
2533vfs_setdirty_locked_object(struct buf *bp)
2534{
2535	vm_object_t object;
2536	int i;
2537
2538	object = bp->b_bufobj->bo_object;
2539	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2540
2541	/*
2542	 * We qualify the scan for modified pages on whether the
2543	 * object has been flushed yet.
2544	 */
2545	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
2546		vm_offset_t boffset;
2547		vm_offset_t eoffset;
2548
2549		/*
2550		 * test the pages to see if they have been modified directly
2551		 * by users through the VM system.
2552		 */
2553		for (i = 0; i < bp->b_npages; i++)
2554			vm_page_test_dirty(bp->b_pages[i]);
2555
2556		/*
2557		 * Calculate the encompassing dirty range, boffset and eoffset,
2558		 * (eoffset - boffset) bytes.
2559		 */
2560
2561		for (i = 0; i < bp->b_npages; i++) {
2562			if (bp->b_pages[i]->dirty)
2563				break;
2564		}
2565		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2566
2567		for (i = bp->b_npages - 1; i >= 0; --i) {
2568			if (bp->b_pages[i]->dirty) {
2569				break;
2570			}
2571		}
2572		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2573
2574		/*
2575		 * Fit it to the buffer.
2576		 */
2577
2578		if (eoffset > bp->b_bcount)
2579			eoffset = bp->b_bcount;
2580
2581		/*
2582		 * If we have a good dirty range, merge with the existing
2583		 * dirty range.
2584		 */
2585
2586		if (boffset < eoffset) {
2587			if (bp->b_dirtyoff > boffset)
2588				bp->b_dirtyoff = boffset;
2589			if (bp->b_dirtyend < eoffset)
2590				bp->b_dirtyend = eoffset;
2591		}
2592	}
2593}
2594
2595/*
2596 *	getblk:
2597 *
2598 *	Get a block given a specified block and offset into a file/device.
2599 *	The buffers B_DONE bit will be cleared on return, making it almost
2600 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2601 *	return.  The caller should clear B_INVAL prior to initiating a
2602 *	READ.
2603 *
2604 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2605 *	an existing buffer.
2606 *
2607 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2608 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2609 *	and then cleared based on the backing VM.  If the previous buffer is
2610 *	non-0-sized but invalid, B_CACHE will be cleared.
2611 *
2612 *	If getblk() must create a new buffer, the new buffer is returned with
2613 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2614 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2615 *	backing VM.
2616 *
2617 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2618 *	B_CACHE bit is clear.
2619 *
2620 *	What this means, basically, is that the caller should use B_CACHE to
2621 *	determine whether the buffer is fully valid or not and should clear
2622 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2623 *	the buffer by loading its data area with something, the caller needs
2624 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2625 *	the caller should set B_CACHE ( as an optimization ), else the caller
2626 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2627 *	a write attempt or if it was a successfull read.  If the caller
2628 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2629 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2630 */
2631struct buf *
2632getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2633    int flags)
2634{
2635	struct buf *bp;
2636	struct bufobj *bo;
2637	int error;
2638
2639	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2640	ASSERT_VOP_LOCKED(vp, "getblk");
2641	if (size > MAXBSIZE)
2642		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2643
2644	bo = &vp->v_bufobj;
2645loop:
2646	/*
2647	 * Block if we are low on buffers.   Certain processes are allowed
2648	 * to completely exhaust the buffer cache.
2649         *
2650         * If this check ever becomes a bottleneck it may be better to
2651         * move it into the else, when gbincore() fails.  At the moment
2652         * it isn't a problem.
2653         */
2654	if (numfreebuffers == 0) {
2655		if (TD_IS_IDLETHREAD(curthread))
2656			return NULL;
2657		mtx_lock(&nblock);
2658		needsbuffer |= VFS_BIO_NEED_ANY;
2659		mtx_unlock(&nblock);
2660	}
2661
2662	BO_LOCK(bo);
2663	bp = gbincore(bo, blkno);
2664	if (bp != NULL) {
2665		int lockflags;
2666		/*
2667		 * Buffer is in-core.  If the buffer is not busy nor managed,
2668		 * it must be on a queue.
2669		 */
2670		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2671
2672		if (flags & GB_LOCK_NOWAIT)
2673			lockflags |= LK_NOWAIT;
2674
2675		error = BUF_TIMELOCK(bp, lockflags,
2676		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2677
2678		/*
2679		 * If we slept and got the lock we have to restart in case
2680		 * the buffer changed identities.
2681		 */
2682		if (error == ENOLCK)
2683			goto loop;
2684		/* We timed out or were interrupted. */
2685		else if (error)
2686			return (NULL);
2687		/* If recursed, assume caller knows the rules. */
2688		else if (BUF_LOCKRECURSED(bp))
2689			goto end;
2690
2691		/*
2692		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2693		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2694		 * and for a VMIO buffer B_CACHE is adjusted according to the
2695		 * backing VM cache.
2696		 */
2697		if (bp->b_flags & B_INVAL)
2698			bp->b_flags &= ~B_CACHE;
2699		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2700			bp->b_flags |= B_CACHE;
2701		if (bp->b_flags & B_MANAGED)
2702			MPASS(bp->b_qindex == QUEUE_NONE);
2703		else {
2704			BO_LOCK(bo);
2705			bremfree(bp);
2706			BO_UNLOCK(bo);
2707		}
2708
2709		/*
2710		 * check for size inconsistancies for non-VMIO case.
2711		 */
2712
2713		if (bp->b_bcount != size) {
2714			if ((bp->b_flags & B_VMIO) == 0 ||
2715			    (size > bp->b_kvasize)) {
2716				if (bp->b_flags & B_DELWRI) {
2717					/*
2718					 * If buffer is pinned and caller does
2719					 * not want sleep  waiting for it to be
2720					 * unpinned, bail out
2721					 * */
2722					if (bp->b_pin_count > 0) {
2723						if (flags & GB_LOCK_NOWAIT) {
2724							bqrelse(bp);
2725							return (NULL);
2726						} else {
2727							bunpin_wait(bp);
2728						}
2729					}
2730					bp->b_flags |= B_NOCACHE;
2731					bwrite(bp);
2732				} else {
2733					if (LIST_EMPTY(&bp->b_dep)) {
2734						bp->b_flags |= B_RELBUF;
2735						brelse(bp);
2736					} else {
2737						bp->b_flags |= B_NOCACHE;
2738						bwrite(bp);
2739					}
2740				}
2741				goto loop;
2742			}
2743		}
2744
2745		/*
2746		 * If the size is inconsistant in the VMIO case, we can resize
2747		 * the buffer.  This might lead to B_CACHE getting set or
2748		 * cleared.  If the size has not changed, B_CACHE remains
2749		 * unchanged from its previous state.
2750		 */
2751
2752		if (bp->b_bcount != size)
2753			allocbuf(bp, size);
2754
2755		KASSERT(bp->b_offset != NOOFFSET,
2756		    ("getblk: no buffer offset"));
2757
2758		/*
2759		 * A buffer with B_DELWRI set and B_CACHE clear must
2760		 * be committed before we can return the buffer in
2761		 * order to prevent the caller from issuing a read
2762		 * ( due to B_CACHE not being set ) and overwriting
2763		 * it.
2764		 *
2765		 * Most callers, including NFS and FFS, need this to
2766		 * operate properly either because they assume they
2767		 * can issue a read if B_CACHE is not set, or because
2768		 * ( for example ) an uncached B_DELWRI might loop due
2769		 * to softupdates re-dirtying the buffer.  In the latter
2770		 * case, B_CACHE is set after the first write completes,
2771		 * preventing further loops.
2772		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2773		 * above while extending the buffer, we cannot allow the
2774		 * buffer to remain with B_CACHE set after the write
2775		 * completes or it will represent a corrupt state.  To
2776		 * deal with this we set B_NOCACHE to scrap the buffer
2777		 * after the write.
2778		 *
2779		 * We might be able to do something fancy, like setting
2780		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2781		 * so the below call doesn't set B_CACHE, but that gets real
2782		 * confusing.  This is much easier.
2783		 */
2784
2785		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2786			bp->b_flags |= B_NOCACHE;
2787			bwrite(bp);
2788			goto loop;
2789		}
2790		bp->b_flags &= ~B_DONE;
2791	} else {
2792		int bsize, maxsize, vmio;
2793		off_t offset;
2794
2795		/*
2796		 * Buffer is not in-core, create new buffer.  The buffer
2797		 * returned by getnewbuf() is locked.  Note that the returned
2798		 * buffer is also considered valid (not marked B_INVAL).
2799		 */
2800		BO_UNLOCK(bo);
2801		/*
2802		 * If the user does not want us to create the buffer, bail out
2803		 * here.
2804		 */
2805		if (flags & GB_NOCREAT)
2806			return NULL;
2807		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
2808		offset = blkno * bsize;
2809		vmio = vp->v_object != NULL;
2810		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2811		maxsize = imax(maxsize, bsize);
2812
2813		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2814		if (bp == NULL) {
2815			if (slpflag || slptimeo)
2816				return NULL;
2817			goto loop;
2818		}
2819
2820		/*
2821		 * This code is used to make sure that a buffer is not
2822		 * created while the getnewbuf routine is blocked.
2823		 * This can be a problem whether the vnode is locked or not.
2824		 * If the buffer is created out from under us, we have to
2825		 * throw away the one we just created.
2826		 *
2827		 * Note: this must occur before we associate the buffer
2828		 * with the vp especially considering limitations in
2829		 * the splay tree implementation when dealing with duplicate
2830		 * lblkno's.
2831		 */
2832		BO_LOCK(bo);
2833		if (gbincore(bo, blkno)) {
2834			BO_UNLOCK(bo);
2835			bp->b_flags |= B_INVAL;
2836			brelse(bp);
2837			goto loop;
2838		}
2839
2840		/*
2841		 * Insert the buffer into the hash, so that it can
2842		 * be found by incore.
2843		 */
2844		bp->b_blkno = bp->b_lblkno = blkno;
2845		bp->b_offset = offset;
2846		bgetvp(vp, bp);
2847		BO_UNLOCK(bo);
2848
2849		/*
2850		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2851		 * buffer size starts out as 0, B_CACHE will be set by
2852		 * allocbuf() for the VMIO case prior to it testing the
2853		 * backing store for validity.
2854		 */
2855
2856		if (vmio) {
2857			bp->b_flags |= B_VMIO;
2858			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2859			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2860			    bp, vp->v_object, bp->b_bufobj->bo_object));
2861		} else {
2862			bp->b_flags &= ~B_VMIO;
2863			KASSERT(bp->b_bufobj->bo_object == NULL,
2864			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2865			    bp, bp->b_bufobj->bo_object));
2866		}
2867
2868		allocbuf(bp, size);
2869		bp->b_flags &= ~B_DONE;
2870	}
2871	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2872	BUF_ASSERT_HELD(bp);
2873end:
2874	KASSERT(bp->b_bufobj == bo,
2875	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2876	return (bp);
2877}
2878
2879/*
2880 * Get an empty, disassociated buffer of given size.  The buffer is initially
2881 * set to B_INVAL.
2882 */
2883struct buf *
2884geteblk(int size, int flags)
2885{
2886	struct buf *bp;
2887	int maxsize;
2888
2889	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2890	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2891		if ((flags & GB_NOWAIT_BD) &&
2892		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2893			return (NULL);
2894	}
2895	allocbuf(bp, size);
2896	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2897	BUF_ASSERT_HELD(bp);
2898	return (bp);
2899}
2900
2901
2902/*
2903 * This code constitutes the buffer memory from either anonymous system
2904 * memory (in the case of non-VMIO operations) or from an associated
2905 * VM object (in the case of VMIO operations).  This code is able to
2906 * resize a buffer up or down.
2907 *
2908 * Note that this code is tricky, and has many complications to resolve
2909 * deadlock or inconsistant data situations.  Tread lightly!!!
2910 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2911 * the caller.  Calling this code willy nilly can result in the loss of data.
2912 *
2913 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2914 * B_CACHE for the non-VMIO case.
2915 */
2916
2917int
2918allocbuf(struct buf *bp, int size)
2919{
2920	int newbsize, mbsize;
2921	int i;
2922
2923	BUF_ASSERT_HELD(bp);
2924
2925	if (bp->b_kvasize < size)
2926		panic("allocbuf: buffer too small");
2927
2928	if ((bp->b_flags & B_VMIO) == 0) {
2929		caddr_t origbuf;
2930		int origbufsize;
2931		/*
2932		 * Just get anonymous memory from the kernel.  Don't
2933		 * mess with B_CACHE.
2934		 */
2935		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2936		if (bp->b_flags & B_MALLOC)
2937			newbsize = mbsize;
2938		else
2939			newbsize = round_page(size);
2940
2941		if (newbsize < bp->b_bufsize) {
2942			/*
2943			 * malloced buffers are not shrunk
2944			 */
2945			if (bp->b_flags & B_MALLOC) {
2946				if (newbsize) {
2947					bp->b_bcount = size;
2948				} else {
2949					free(bp->b_data, M_BIOBUF);
2950					if (bp->b_bufsize) {
2951						atomic_subtract_long(
2952						    &bufmallocspace,
2953						    bp->b_bufsize);
2954						bufspacewakeup();
2955						bp->b_bufsize = 0;
2956					}
2957					bp->b_saveaddr = bp->b_kvabase;
2958					bp->b_data = bp->b_saveaddr;
2959					bp->b_bcount = 0;
2960					bp->b_flags &= ~B_MALLOC;
2961				}
2962				return 1;
2963			}
2964			vm_hold_free_pages(bp, newbsize);
2965		} else if (newbsize > bp->b_bufsize) {
2966			/*
2967			 * We only use malloced memory on the first allocation.
2968			 * and revert to page-allocated memory when the buffer
2969			 * grows.
2970			 */
2971			/*
2972			 * There is a potential smp race here that could lead
2973			 * to bufmallocspace slightly passing the max.  It
2974			 * is probably extremely rare and not worth worrying
2975			 * over.
2976			 */
2977			if ( (bufmallocspace < maxbufmallocspace) &&
2978				(bp->b_bufsize == 0) &&
2979				(mbsize <= PAGE_SIZE/2)) {
2980
2981				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2982				bp->b_bufsize = mbsize;
2983				bp->b_bcount = size;
2984				bp->b_flags |= B_MALLOC;
2985				atomic_add_long(&bufmallocspace, mbsize);
2986				return 1;
2987			}
2988			origbuf = NULL;
2989			origbufsize = 0;
2990			/*
2991			 * If the buffer is growing on its other-than-first allocation,
2992			 * then we revert to the page-allocation scheme.
2993			 */
2994			if (bp->b_flags & B_MALLOC) {
2995				origbuf = bp->b_data;
2996				origbufsize = bp->b_bufsize;
2997				bp->b_data = bp->b_kvabase;
2998				if (bp->b_bufsize) {
2999					atomic_subtract_long(&bufmallocspace,
3000					    bp->b_bufsize);
3001					bufspacewakeup();
3002					bp->b_bufsize = 0;
3003				}
3004				bp->b_flags &= ~B_MALLOC;
3005				newbsize = round_page(newbsize);
3006			}
3007			vm_hold_load_pages(
3008			    bp,
3009			    (vm_offset_t) bp->b_data + bp->b_bufsize,
3010			    (vm_offset_t) bp->b_data + newbsize);
3011			if (origbuf) {
3012				bcopy(origbuf, bp->b_data, origbufsize);
3013				free(origbuf, M_BIOBUF);
3014			}
3015		}
3016	} else {
3017		int desiredpages;
3018
3019		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
3020		desiredpages = (size == 0) ? 0 :
3021			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
3022
3023		if (bp->b_flags & B_MALLOC)
3024			panic("allocbuf: VMIO buffer can't be malloced");
3025		/*
3026		 * Set B_CACHE initially if buffer is 0 length or will become
3027		 * 0-length.
3028		 */
3029		if (size == 0 || bp->b_bufsize == 0)
3030			bp->b_flags |= B_CACHE;
3031
3032		if (newbsize < bp->b_bufsize) {
3033			/*
3034			 * DEV_BSIZE aligned new buffer size is less then the
3035			 * DEV_BSIZE aligned existing buffer size.  Figure out
3036			 * if we have to remove any pages.
3037			 */
3038			if (desiredpages < bp->b_npages) {
3039				vm_page_t m;
3040
3041				pmap_qremove((vm_offset_t)trunc_page(
3042				    (vm_offset_t)bp->b_data) +
3043				    (desiredpages << PAGE_SHIFT),
3044				    (bp->b_npages - desiredpages));
3045				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3046				for (i = desiredpages; i < bp->b_npages; i++) {
3047					/*
3048					 * the page is not freed here -- it
3049					 * is the responsibility of
3050					 * vnode_pager_setsize
3051					 */
3052					m = bp->b_pages[i];
3053					KASSERT(m != bogus_page,
3054					    ("allocbuf: bogus page found"));
3055					while (vm_page_sleep_if_busy(m, TRUE,
3056					    "biodep"))
3057						continue;
3058
3059					bp->b_pages[i] = NULL;
3060					vm_page_lock(m);
3061					vm_page_unwire(m, 0);
3062					vm_page_unlock(m);
3063				}
3064				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3065				bp->b_npages = desiredpages;
3066			}
3067		} else if (size > bp->b_bcount) {
3068			/*
3069			 * We are growing the buffer, possibly in a
3070			 * byte-granular fashion.
3071			 */
3072			vm_object_t obj;
3073			vm_offset_t toff;
3074			vm_offset_t tinc;
3075
3076			/*
3077			 * Step 1, bring in the VM pages from the object,
3078			 * allocating them if necessary.  We must clear
3079			 * B_CACHE if these pages are not valid for the
3080			 * range covered by the buffer.
3081			 */
3082
3083			obj = bp->b_bufobj->bo_object;
3084
3085			VM_OBJECT_LOCK(obj);
3086			while (bp->b_npages < desiredpages) {
3087				vm_page_t m;
3088
3089				/*
3090				 * We must allocate system pages since blocking
3091				 * here could interfere with paging I/O, no
3092				 * matter which process we are.
3093				 *
3094				 * We can only test VPO_BUSY here.  Blocking on
3095				 * m->busy might lead to a deadlock:
3096				 *  vm_fault->getpages->cluster_read->allocbuf
3097				 * Thus, we specify VM_ALLOC_IGN_SBUSY.
3098				 */
3099				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3100				    bp->b_npages, VM_ALLOC_NOBUSY |
3101				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3102				    VM_ALLOC_RETRY | VM_ALLOC_IGN_SBUSY |
3103				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3104				if (m->valid == 0)
3105					bp->b_flags &= ~B_CACHE;
3106				bp->b_pages[bp->b_npages] = m;
3107				++bp->b_npages;
3108			}
3109
3110			/*
3111			 * Step 2.  We've loaded the pages into the buffer,
3112			 * we have to figure out if we can still have B_CACHE
3113			 * set.  Note that B_CACHE is set according to the
3114			 * byte-granular range ( bcount and size ), new the
3115			 * aligned range ( newbsize ).
3116			 *
3117			 * The VM test is against m->valid, which is DEV_BSIZE
3118			 * aligned.  Needless to say, the validity of the data
3119			 * needs to also be DEV_BSIZE aligned.  Note that this
3120			 * fails with NFS if the server or some other client
3121			 * extends the file's EOF.  If our buffer is resized,
3122			 * B_CACHE may remain set! XXX
3123			 */
3124
3125			toff = bp->b_bcount;
3126			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3127
3128			while ((bp->b_flags & B_CACHE) && toff < size) {
3129				vm_pindex_t pi;
3130
3131				if (tinc > (size - toff))
3132					tinc = size - toff;
3133
3134				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3135				    PAGE_SHIFT;
3136
3137				vfs_buf_test_cache(
3138				    bp,
3139				    bp->b_offset,
3140				    toff,
3141				    tinc,
3142				    bp->b_pages[pi]
3143				);
3144				toff += tinc;
3145				tinc = PAGE_SIZE;
3146			}
3147			VM_OBJECT_UNLOCK(obj);
3148
3149			/*
3150			 * Step 3, fixup the KVM pmap.  Remember that
3151			 * bp->b_data is relative to bp->b_offset, but
3152			 * bp->b_offset may be offset into the first page.
3153			 */
3154
3155			bp->b_data = (caddr_t)
3156			    trunc_page((vm_offset_t)bp->b_data);
3157			pmap_qenter(
3158			    (vm_offset_t)bp->b_data,
3159			    bp->b_pages,
3160			    bp->b_npages
3161			);
3162
3163			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3164			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3165		}
3166	}
3167	if (newbsize < bp->b_bufsize)
3168		bufspacewakeup();
3169	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3170	bp->b_bcount = size;		/* requested buffer size	*/
3171	return 1;
3172}
3173
3174void
3175biodone(struct bio *bp)
3176{
3177	struct mtx *mtxp;
3178	void (*done)(struct bio *);
3179
3180	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3181	mtx_lock(mtxp);
3182	bp->bio_flags |= BIO_DONE;
3183	done = bp->bio_done;
3184	if (done == NULL)
3185		wakeup(bp);
3186	mtx_unlock(mtxp);
3187	if (done != NULL)
3188		done(bp);
3189}
3190
3191/*
3192 * Wait for a BIO to finish.
3193 *
3194 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3195 * case is not yet clear.
3196 */
3197int
3198biowait(struct bio *bp, const char *wchan)
3199{
3200	struct mtx *mtxp;
3201
3202	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3203	mtx_lock(mtxp);
3204	while ((bp->bio_flags & BIO_DONE) == 0)
3205		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3206	mtx_unlock(mtxp);
3207	if (bp->bio_error != 0)
3208		return (bp->bio_error);
3209	if (!(bp->bio_flags & BIO_ERROR))
3210		return (0);
3211	return (EIO);
3212}
3213
3214void
3215biofinish(struct bio *bp, struct devstat *stat, int error)
3216{
3217
3218	if (error) {
3219		bp->bio_error = error;
3220		bp->bio_flags |= BIO_ERROR;
3221	}
3222	if (stat != NULL)
3223		devstat_end_transaction_bio(stat, bp);
3224	biodone(bp);
3225}
3226
3227/*
3228 *	bufwait:
3229 *
3230 *	Wait for buffer I/O completion, returning error status.  The buffer
3231 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3232 *	error and cleared.
3233 */
3234int
3235bufwait(struct buf *bp)
3236{
3237	if (bp->b_iocmd == BIO_READ)
3238		bwait(bp, PRIBIO, "biord");
3239	else
3240		bwait(bp, PRIBIO, "biowr");
3241	if (bp->b_flags & B_EINTR) {
3242		bp->b_flags &= ~B_EINTR;
3243		return (EINTR);
3244	}
3245	if (bp->b_ioflags & BIO_ERROR) {
3246		return (bp->b_error ? bp->b_error : EIO);
3247	} else {
3248		return (0);
3249	}
3250}
3251
3252 /*
3253  * Call back function from struct bio back up to struct buf.
3254  */
3255static void
3256bufdonebio(struct bio *bip)
3257{
3258	struct buf *bp;
3259
3260	bp = bip->bio_caller2;
3261	bp->b_resid = bp->b_bcount - bip->bio_completed;
3262	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3263	bp->b_ioflags = bip->bio_flags;
3264	bp->b_error = bip->bio_error;
3265	if (bp->b_error)
3266		bp->b_ioflags |= BIO_ERROR;
3267	bufdone(bp);
3268	g_destroy_bio(bip);
3269}
3270
3271void
3272dev_strategy(struct cdev *dev, struct buf *bp)
3273{
3274	struct cdevsw *csw;
3275	struct bio *bip;
3276	int ref;
3277
3278	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3279		panic("b_iocmd botch");
3280	for (;;) {
3281		bip = g_new_bio();
3282		if (bip != NULL)
3283			break;
3284		/* Try again later */
3285		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3286	}
3287	bip->bio_cmd = bp->b_iocmd;
3288	bip->bio_offset = bp->b_iooffset;
3289	bip->bio_length = bp->b_bcount;
3290	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3291	bip->bio_data = bp->b_data;
3292	bip->bio_done = bufdonebio;
3293	bip->bio_caller2 = bp;
3294	bip->bio_dev = dev;
3295	KASSERT(dev->si_refcount > 0,
3296	    ("dev_strategy on un-referenced struct cdev *(%s)",
3297	    devtoname(dev)));
3298	csw = dev_refthread(dev, &ref);
3299	if (csw == NULL) {
3300		g_destroy_bio(bip);
3301		bp->b_error = ENXIO;
3302		bp->b_ioflags = BIO_ERROR;
3303		bufdone(bp);
3304		return;
3305	}
3306	(*csw->d_strategy)(bip);
3307	dev_relthread(dev, ref);
3308}
3309
3310/*
3311 *	bufdone:
3312 *
3313 *	Finish I/O on a buffer, optionally calling a completion function.
3314 *	This is usually called from an interrupt so process blocking is
3315 *	not allowed.
3316 *
3317 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3318 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3319 *	assuming B_INVAL is clear.
3320 *
3321 *	For the VMIO case, we set B_CACHE if the op was a read and no
3322 *	read error occured, or if the op was a write.  B_CACHE is never
3323 *	set if the buffer is invalid or otherwise uncacheable.
3324 *
3325 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3326 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3327 *	in the biodone routine.
3328 */
3329void
3330bufdone(struct buf *bp)
3331{
3332	struct bufobj *dropobj;
3333	void    (*biodone)(struct buf *);
3334
3335	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3336	dropobj = NULL;
3337
3338	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3339	BUF_ASSERT_HELD(bp);
3340
3341	runningbufwakeup(bp);
3342	if (bp->b_iocmd == BIO_WRITE)
3343		dropobj = bp->b_bufobj;
3344	/* call optional completion function if requested */
3345	if (bp->b_iodone != NULL) {
3346		biodone = bp->b_iodone;
3347		bp->b_iodone = NULL;
3348		(*biodone) (bp);
3349		if (dropobj)
3350			bufobj_wdrop(dropobj);
3351		return;
3352	}
3353
3354	bufdone_finish(bp);
3355
3356	if (dropobj)
3357		bufobj_wdrop(dropobj);
3358}
3359
3360void
3361bufdone_finish(struct buf *bp)
3362{
3363	BUF_ASSERT_HELD(bp);
3364
3365	if (!LIST_EMPTY(&bp->b_dep))
3366		buf_complete(bp);
3367
3368	if (bp->b_flags & B_VMIO) {
3369		vm_ooffset_t foff;
3370		vm_page_t m;
3371		vm_object_t obj;
3372		struct vnode *vp;
3373		int bogus, i, iosize;
3374
3375		obj = bp->b_bufobj->bo_object;
3376		KASSERT(obj->paging_in_progress >= bp->b_npages,
3377		    ("biodone_finish: paging in progress(%d) < b_npages(%d)",
3378		    obj->paging_in_progress, bp->b_npages));
3379
3380		vp = bp->b_vp;
3381		KASSERT(vp->v_holdcnt > 0,
3382		    ("biodone_finish: vnode %p has zero hold count", vp));
3383		KASSERT(vp->v_object != NULL,
3384		    ("biodone_finish: vnode %p has no vm_object", vp));
3385
3386		foff = bp->b_offset;
3387		KASSERT(bp->b_offset != NOOFFSET,
3388		    ("biodone_finish: bp %p has no buffer offset", bp));
3389
3390		/*
3391		 * Set B_CACHE if the op was a normal read and no error
3392		 * occured.  B_CACHE is set for writes in the b*write()
3393		 * routines.
3394		 */
3395		iosize = bp->b_bcount - bp->b_resid;
3396		if (bp->b_iocmd == BIO_READ &&
3397		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3398		    !(bp->b_ioflags & BIO_ERROR)) {
3399			bp->b_flags |= B_CACHE;
3400		}
3401		bogus = 0;
3402		VM_OBJECT_LOCK(obj);
3403		for (i = 0; i < bp->b_npages; i++) {
3404			int bogusflag = 0;
3405			int resid;
3406
3407			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3408			if (resid > iosize)
3409				resid = iosize;
3410
3411			/*
3412			 * cleanup bogus pages, restoring the originals
3413			 */
3414			m = bp->b_pages[i];
3415			if (m == bogus_page) {
3416				bogus = bogusflag = 1;
3417				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3418				if (m == NULL)
3419					panic("biodone: page disappeared!");
3420				bp->b_pages[i] = m;
3421			}
3422			KASSERT(OFF_TO_IDX(foff) == m->pindex,
3423			    ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
3424			    (intmax_t)foff, (uintmax_t)m->pindex));
3425
3426			/*
3427			 * In the write case, the valid and clean bits are
3428			 * already changed correctly ( see bdwrite() ), so we
3429			 * only need to do this here in the read case.
3430			 */
3431			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3432				KASSERT((m->dirty & vm_page_bits(foff &
3433				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3434				    " page %p has unexpected dirty bits", m));
3435				vfs_page_set_valid(bp, foff, m);
3436			}
3437
3438			vm_page_io_finish(m);
3439			vm_object_pip_subtract(obj, 1);
3440			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3441			iosize -= resid;
3442		}
3443		vm_object_pip_wakeupn(obj, 0);
3444		VM_OBJECT_UNLOCK(obj);
3445		if (bogus)
3446			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3447			    bp->b_pages, bp->b_npages);
3448	}
3449
3450	/*
3451	 * For asynchronous completions, release the buffer now. The brelse
3452	 * will do a wakeup there if necessary - so no need to do a wakeup
3453	 * here in the async case. The sync case always needs to do a wakeup.
3454	 */
3455
3456	if (bp->b_flags & B_ASYNC) {
3457		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3458			brelse(bp);
3459		else
3460			bqrelse(bp);
3461	} else
3462		bdone(bp);
3463}
3464
3465/*
3466 * This routine is called in lieu of iodone in the case of
3467 * incomplete I/O.  This keeps the busy status for pages
3468 * consistant.
3469 */
3470void
3471vfs_unbusy_pages(struct buf *bp)
3472{
3473	int i;
3474	vm_object_t obj;
3475	vm_page_t m;
3476
3477	runningbufwakeup(bp);
3478	if (!(bp->b_flags & B_VMIO))
3479		return;
3480
3481	obj = bp->b_bufobj->bo_object;
3482	VM_OBJECT_LOCK(obj);
3483	for (i = 0; i < bp->b_npages; i++) {
3484		m = bp->b_pages[i];
3485		if (m == bogus_page) {
3486			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3487			if (!m)
3488				panic("vfs_unbusy_pages: page missing\n");
3489			bp->b_pages[i] = m;
3490			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3491			    bp->b_pages, bp->b_npages);
3492		}
3493		vm_object_pip_subtract(obj, 1);
3494		vm_page_io_finish(m);
3495	}
3496	vm_object_pip_wakeupn(obj, 0);
3497	VM_OBJECT_UNLOCK(obj);
3498}
3499
3500/*
3501 * vfs_page_set_valid:
3502 *
3503 *	Set the valid bits in a page based on the supplied offset.   The
3504 *	range is restricted to the buffer's size.
3505 *
3506 *	This routine is typically called after a read completes.
3507 */
3508static void
3509vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3510{
3511	vm_ooffset_t eoff;
3512
3513	/*
3514	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3515	 * page boundary and eoff is not greater than the end of the buffer.
3516	 * The end of the buffer, in this case, is our file EOF, not the
3517	 * allocation size of the buffer.
3518	 */
3519	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3520	if (eoff > bp->b_offset + bp->b_bcount)
3521		eoff = bp->b_offset + bp->b_bcount;
3522
3523	/*
3524	 * Set valid range.  This is typically the entire buffer and thus the
3525	 * entire page.
3526	 */
3527	if (eoff > off)
3528		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
3529}
3530
3531/*
3532 * vfs_page_set_validclean:
3533 *
3534 *	Set the valid bits and clear the dirty bits in a page based on the
3535 *	supplied offset.   The range is restricted to the buffer's size.
3536 */
3537static void
3538vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3539{
3540	vm_ooffset_t soff, eoff;
3541
3542	/*
3543	 * Start and end offsets in buffer.  eoff - soff may not cross a
3544	 * page boundry or cross the end of the buffer.  The end of the
3545	 * buffer, in this case, is our file EOF, not the allocation size
3546	 * of the buffer.
3547	 */
3548	soff = off;
3549	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3550	if (eoff > bp->b_offset + bp->b_bcount)
3551		eoff = bp->b_offset + bp->b_bcount;
3552
3553	/*
3554	 * Set valid range.  This is typically the entire buffer and thus the
3555	 * entire page.
3556	 */
3557	if (eoff > soff) {
3558		vm_page_set_validclean(
3559		    m,
3560		   (vm_offset_t) (soff & PAGE_MASK),
3561		   (vm_offset_t) (eoff - soff)
3562		);
3563	}
3564}
3565
3566/*
3567 * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
3568 * any page is busy, drain the flag.
3569 */
3570static void
3571vfs_drain_busy_pages(struct buf *bp)
3572{
3573	vm_page_t m;
3574	int i, last_busied;
3575
3576	VM_OBJECT_LOCK_ASSERT(bp->b_bufobj->bo_object, MA_OWNED);
3577	last_busied = 0;
3578	for (i = 0; i < bp->b_npages; i++) {
3579		m = bp->b_pages[i];
3580		if ((m->oflags & VPO_BUSY) != 0) {
3581			for (; last_busied < i; last_busied++)
3582				vm_page_busy(bp->b_pages[last_busied]);
3583			while ((m->oflags & VPO_BUSY) != 0)
3584				vm_page_sleep(m, "vbpage");
3585		}
3586	}
3587	for (i = 0; i < last_busied; i++)
3588		vm_page_wakeup(bp->b_pages[i]);
3589}
3590
3591/*
3592 * This routine is called before a device strategy routine.
3593 * It is used to tell the VM system that paging I/O is in
3594 * progress, and treat the pages associated with the buffer
3595 * almost as being VPO_BUSY.  Also the object paging_in_progress
3596 * flag is handled to make sure that the object doesn't become
3597 * inconsistant.
3598 *
3599 * Since I/O has not been initiated yet, certain buffer flags
3600 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3601 * and should be ignored.
3602 */
3603void
3604vfs_busy_pages(struct buf *bp, int clear_modify)
3605{
3606	int i, bogus;
3607	vm_object_t obj;
3608	vm_ooffset_t foff;
3609	vm_page_t m;
3610
3611	if (!(bp->b_flags & B_VMIO))
3612		return;
3613
3614	obj = bp->b_bufobj->bo_object;
3615	foff = bp->b_offset;
3616	KASSERT(bp->b_offset != NOOFFSET,
3617	    ("vfs_busy_pages: no buffer offset"));
3618	VM_OBJECT_LOCK(obj);
3619	vfs_drain_busy_pages(bp);
3620	if (bp->b_bufsize != 0)
3621		vfs_setdirty_locked_object(bp);
3622	bogus = 0;
3623	for (i = 0; i < bp->b_npages; i++) {
3624		m = bp->b_pages[i];
3625
3626		if ((bp->b_flags & B_CLUSTER) == 0) {
3627			vm_object_pip_add(obj, 1);
3628			vm_page_io_start(m);
3629		}
3630		/*
3631		 * When readying a buffer for a read ( i.e
3632		 * clear_modify == 0 ), it is important to do
3633		 * bogus_page replacement for valid pages in
3634		 * partially instantiated buffers.  Partially
3635		 * instantiated buffers can, in turn, occur when
3636		 * reconstituting a buffer from its VM backing store
3637		 * base.  We only have to do this if B_CACHE is
3638		 * clear ( which causes the I/O to occur in the
3639		 * first place ).  The replacement prevents the read
3640		 * I/O from overwriting potentially dirty VM-backed
3641		 * pages.  XXX bogus page replacement is, uh, bogus.
3642		 * It may not work properly with small-block devices.
3643		 * We need to find a better way.
3644		 */
3645		if (clear_modify) {
3646			pmap_remove_write(m);
3647			vfs_page_set_validclean(bp, foff, m);
3648		} else if (m->valid == VM_PAGE_BITS_ALL &&
3649		    (bp->b_flags & B_CACHE) == 0) {
3650			bp->b_pages[i] = bogus_page;
3651			bogus++;
3652		}
3653		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3654	}
3655	VM_OBJECT_UNLOCK(obj);
3656	if (bogus)
3657		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3658		    bp->b_pages, bp->b_npages);
3659}
3660
3661/*
3662 *	vfs_bio_set_valid:
3663 *
3664 *	Set the range within the buffer to valid.  The range is
3665 *	relative to the beginning of the buffer, b_offset.  Note that
3666 *	b_offset itself may be offset from the beginning of the first
3667 *	page.
3668 */
3669void
3670vfs_bio_set_valid(struct buf *bp, int base, int size)
3671{
3672	int i, n;
3673	vm_page_t m;
3674
3675	if (!(bp->b_flags & B_VMIO))
3676		return;
3677
3678	/*
3679	 * Fixup base to be relative to beginning of first page.
3680	 * Set initial n to be the maximum number of bytes in the
3681	 * first page that can be validated.
3682	 */
3683	base += (bp->b_offset & PAGE_MASK);
3684	n = PAGE_SIZE - (base & PAGE_MASK);
3685
3686	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3687	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3688		m = bp->b_pages[i];
3689		if (n > size)
3690			n = size;
3691		vm_page_set_valid_range(m, base & PAGE_MASK, n);
3692		base += n;
3693		size -= n;
3694		n = PAGE_SIZE;
3695	}
3696	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3697}
3698
3699/*
3700 *	vfs_bio_clrbuf:
3701 *
3702 *	If the specified buffer is a non-VMIO buffer, clear the entire
3703 *	buffer.  If the specified buffer is a VMIO buffer, clear and
3704 *	validate only the previously invalid portions of the buffer.
3705 *	This routine essentially fakes an I/O, so we need to clear
3706 *	BIO_ERROR and B_INVAL.
3707 *
3708 *	Note that while we only theoretically need to clear through b_bcount,
3709 *	we go ahead and clear through b_bufsize.
3710 */
3711void
3712vfs_bio_clrbuf(struct buf *bp)
3713{
3714	int i, j, mask;
3715	caddr_t sa, ea;
3716
3717	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3718		clrbuf(bp);
3719		return;
3720	}
3721	bp->b_flags &= ~B_INVAL;
3722	bp->b_ioflags &= ~BIO_ERROR;
3723	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3724	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3725	    (bp->b_offset & PAGE_MASK) == 0) {
3726		if (bp->b_pages[0] == bogus_page)
3727			goto unlock;
3728		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3729		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3730		if ((bp->b_pages[0]->valid & mask) == mask)
3731			goto unlock;
3732		if ((bp->b_pages[0]->valid & mask) == 0) {
3733			bzero(bp->b_data, bp->b_bufsize);
3734			bp->b_pages[0]->valid |= mask;
3735			goto unlock;
3736		}
3737	}
3738	ea = sa = bp->b_data;
3739	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3740		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3741		ea = (caddr_t)(vm_offset_t)ulmin(
3742		    (u_long)(vm_offset_t)ea,
3743		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3744		if (bp->b_pages[i] == bogus_page)
3745			continue;
3746		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3747		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3748		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3749		if ((bp->b_pages[i]->valid & mask) == mask)
3750			continue;
3751		if ((bp->b_pages[i]->valid & mask) == 0)
3752			bzero(sa, ea - sa);
3753		else {
3754			for (; sa < ea; sa += DEV_BSIZE, j++) {
3755				if ((bp->b_pages[i]->valid & (1 << j)) == 0)
3756					bzero(sa, DEV_BSIZE);
3757			}
3758		}
3759		bp->b_pages[i]->valid |= mask;
3760	}
3761unlock:
3762	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3763	bp->b_resid = 0;
3764}
3765
3766/*
3767 * vm_hold_load_pages and vm_hold_free_pages get pages into
3768 * a buffers address space.  The pages are anonymous and are
3769 * not associated with a file object.
3770 */
3771static void
3772vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3773{
3774	vm_offset_t pg;
3775	vm_page_t p;
3776	int index;
3777
3778	to = round_page(to);
3779	from = round_page(from);
3780	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3781
3782	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3783tryagain:
3784		/*
3785		 * note: must allocate system pages since blocking here
3786		 * could interfere with paging I/O, no matter which
3787		 * process we are.
3788		 */
3789		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
3790		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
3791		if (p == NULL) {
3792			VM_WAIT;
3793			goto tryagain;
3794		}
3795		pmap_qenter(pg, &p, 1);
3796		bp->b_pages[index] = p;
3797	}
3798	bp->b_npages = index;
3799}
3800
3801/* Return pages associated with this buf to the vm system */
3802static void
3803vm_hold_free_pages(struct buf *bp, int newbsize)
3804{
3805	vm_offset_t from;
3806	vm_page_t p;
3807	int index, newnpages;
3808
3809	from = round_page((vm_offset_t)bp->b_data + newbsize);
3810	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3811	if (bp->b_npages > newnpages)
3812		pmap_qremove(from, bp->b_npages - newnpages);
3813	for (index = newnpages; index < bp->b_npages; index++) {
3814		p = bp->b_pages[index];
3815		bp->b_pages[index] = NULL;
3816		if (p->busy != 0)
3817			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3818			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
3819		p->wire_count--;
3820		vm_page_free(p);
3821		atomic_subtract_int(&cnt.v_wire_count, 1);
3822	}
3823	bp->b_npages = newnpages;
3824}
3825
3826/*
3827 * Map an IO request into kernel virtual address space.
3828 *
3829 * All requests are (re)mapped into kernel VA space.
3830 * Notice that we use b_bufsize for the size of the buffer
3831 * to be mapped.  b_bcount might be modified by the driver.
3832 *
3833 * Note that even if the caller determines that the address space should
3834 * be valid, a race or a smaller-file mapped into a larger space may
3835 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3836 * check the return value.
3837 */
3838int
3839vmapbuf(struct buf *bp)
3840{
3841	caddr_t kva;
3842	vm_prot_t prot;
3843	int pidx;
3844
3845	if (bp->b_bufsize < 0)
3846		return (-1);
3847	prot = VM_PROT_READ;
3848	if (bp->b_iocmd == BIO_READ)
3849		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3850	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
3851	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
3852	    btoc(MAXPHYS))) < 0)
3853		return (-1);
3854	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3855
3856	kva = bp->b_saveaddr;
3857	bp->b_npages = pidx;
3858	bp->b_saveaddr = bp->b_data;
3859	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3860	return(0);
3861}
3862
3863/*
3864 * Free the io map PTEs associated with this IO operation.
3865 * We also invalidate the TLB entries and restore the original b_addr.
3866 */
3867void
3868vunmapbuf(struct buf *bp)
3869{
3870	int npages;
3871
3872	npages = bp->b_npages;
3873	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3874	vm_page_unhold_pages(bp->b_pages, npages);
3875
3876	bp->b_data = bp->b_saveaddr;
3877}
3878
3879void
3880bdone(struct buf *bp)
3881{
3882	struct mtx *mtxp;
3883
3884	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3885	mtx_lock(mtxp);
3886	bp->b_flags |= B_DONE;
3887	wakeup(bp);
3888	mtx_unlock(mtxp);
3889}
3890
3891void
3892bwait(struct buf *bp, u_char pri, const char *wchan)
3893{
3894	struct mtx *mtxp;
3895
3896	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3897	mtx_lock(mtxp);
3898	while ((bp->b_flags & B_DONE) == 0)
3899		msleep(bp, mtxp, pri, wchan, 0);
3900	mtx_unlock(mtxp);
3901}
3902
3903int
3904bufsync(struct bufobj *bo, int waitfor)
3905{
3906
3907	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3908}
3909
3910void
3911bufstrategy(struct bufobj *bo, struct buf *bp)
3912{
3913	int i = 0;
3914	struct vnode *vp;
3915
3916	vp = bp->b_vp;
3917	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3918	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3919	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3920	i = VOP_STRATEGY(vp, bp);
3921	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3922}
3923
3924void
3925bufobj_wrefl(struct bufobj *bo)
3926{
3927
3928	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3929	ASSERT_BO_LOCKED(bo);
3930	bo->bo_numoutput++;
3931}
3932
3933void
3934bufobj_wref(struct bufobj *bo)
3935{
3936
3937	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3938	BO_LOCK(bo);
3939	bo->bo_numoutput++;
3940	BO_UNLOCK(bo);
3941}
3942
3943void
3944bufobj_wdrop(struct bufobj *bo)
3945{
3946
3947	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3948	BO_LOCK(bo);
3949	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3950	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3951		bo->bo_flag &= ~BO_WWAIT;
3952		wakeup(&bo->bo_numoutput);
3953	}
3954	BO_UNLOCK(bo);
3955}
3956
3957int
3958bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3959{
3960	int error;
3961
3962	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3963	ASSERT_BO_LOCKED(bo);
3964	error = 0;
3965	while (bo->bo_numoutput) {
3966		bo->bo_flag |= BO_WWAIT;
3967		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3968		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3969		if (error)
3970			break;
3971	}
3972	return (error);
3973}
3974
3975void
3976bpin(struct buf *bp)
3977{
3978	struct mtx *mtxp;
3979
3980	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3981	mtx_lock(mtxp);
3982	bp->b_pin_count++;
3983	mtx_unlock(mtxp);
3984}
3985
3986void
3987bunpin(struct buf *bp)
3988{
3989	struct mtx *mtxp;
3990
3991	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3992	mtx_lock(mtxp);
3993	if (--bp->b_pin_count == 0)
3994		wakeup(bp);
3995	mtx_unlock(mtxp);
3996}
3997
3998void
3999bunpin_wait(struct buf *bp)
4000{
4001	struct mtx *mtxp;
4002
4003	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4004	mtx_lock(mtxp);
4005	while (bp->b_pin_count > 0)
4006		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4007	mtx_unlock(mtxp);
4008}
4009
4010#include "opt_ddb.h"
4011#ifdef DDB
4012#include <ddb/ddb.h>
4013
4014/* DDB command to show buffer data */
4015DB_SHOW_COMMAND(buffer, db_show_buffer)
4016{
4017	/* get args */
4018	struct buf *bp = (struct buf *)addr;
4019
4020	if (!have_addr) {
4021		db_printf("usage: show buffer <addr>\n");
4022		return;
4023	}
4024
4025	db_printf("buf at %p\n", bp);
4026	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
4027	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
4028	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
4029	db_printf(
4030	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4031	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
4032	    "b_dep = %p\n",
4033	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4034	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4035	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
4036	if (bp->b_npages) {
4037		int i;
4038		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4039		for (i = 0; i < bp->b_npages; i++) {
4040			vm_page_t m;
4041			m = bp->b_pages[i];
4042			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4043			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4044			if ((i + 1) < bp->b_npages)
4045				db_printf(",");
4046		}
4047		db_printf("\n");
4048	}
4049	db_printf(" ");
4050	BUF_LOCKPRINTINFO(bp);
4051}
4052
4053DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4054{
4055	struct buf *bp;
4056	int i;
4057
4058	for (i = 0; i < nbuf; i++) {
4059		bp = &buf[i];
4060		if (BUF_ISLOCKED(bp)) {
4061			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4062			db_printf("\n");
4063		}
4064	}
4065}
4066
4067DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4068{
4069	struct vnode *vp;
4070	struct buf *bp;
4071
4072	if (!have_addr) {
4073		db_printf("usage: show vnodebufs <addr>\n");
4074		return;
4075	}
4076	vp = (struct vnode *)addr;
4077	db_printf("Clean buffers:\n");
4078	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4079		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4080		db_printf("\n");
4081	}
4082	db_printf("Dirty buffers:\n");
4083	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4084		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4085		db_printf("\n");
4086	}
4087}
4088
4089DB_COMMAND(countfreebufs, db_coundfreebufs)
4090{
4091	struct buf *bp;
4092	int i, used = 0, nfree = 0;
4093
4094	if (have_addr) {
4095		db_printf("usage: countfreebufs\n");
4096		return;
4097	}
4098
4099	for (i = 0; i < nbuf; i++) {
4100		bp = &buf[i];
4101		if ((bp->b_vflags & BV_INFREECNT) != 0)
4102			nfree++;
4103		else
4104			used++;
4105	}
4106
4107	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4108	    nfree + used);
4109	db_printf("numfreebuffers is %d\n", numfreebuffers);
4110}
4111#endif /* DDB */
4112