vfs_bio.c revision 244054
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 244054 2012-12-09 20:34:11Z kib $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/fail.h>
52#include <sys/limits.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mount.h>
56#include <sys/mutex.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/proc.h>
60#include <sys/resourcevar.h>
61#include <sys/sysctl.h>
62#include <sys/vmmeter.h>
63#include <sys/vnode.h>
64#include <geom/geom.h>
65#include <vm/vm.h>
66#include <vm/vm_param.h>
67#include <vm/vm_kern.h>
68#include <vm/vm_pageout.h>
69#include <vm/vm_page.h>
70#include <vm/vm_object.h>
71#include <vm/vm_extern.h>
72#include <vm/vm_map.h>
73#include "opt_compat.h"
74#include "opt_directio.h"
75#include "opt_swap.h"
76
77static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
78
79struct	bio_ops bioops;		/* I/O operation notification */
80
81struct	buf_ops buf_ops_bio = {
82	.bop_name	=	"buf_ops_bio",
83	.bop_write	=	bufwrite,
84	.bop_strategy	=	bufstrategy,
85	.bop_sync	=	bufsync,
86	.bop_bdflush	=	bufbdflush,
87};
88
89/*
90 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
91 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
92 */
93struct buf *buf;		/* buffer header pool */
94
95static struct proc *bufdaemonproc;
96
97static int inmem(struct vnode *vp, daddr_t blkno);
98static void vm_hold_free_pages(struct buf *bp, int newbsize);
99static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
100		vm_offset_t to);
101static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
102static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
103		vm_page_t m);
104static void vfs_drain_busy_pages(struct buf *bp);
105static void vfs_clean_pages_dirty_buf(struct buf *bp);
106static void vfs_setdirty_locked_object(struct buf *bp);
107static void vfs_vmio_release(struct buf *bp);
108static int vfs_bio_clcheck(struct vnode *vp, int size,
109		daddr_t lblkno, daddr_t blkno);
110static int buf_do_flush(struct vnode *vp);
111static int flushbufqueues(struct vnode *, int, int);
112static void buf_daemon(void);
113static void bremfreel(struct buf *bp);
114#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
115    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
116static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
117#endif
118
119int vmiodirenable = TRUE;
120SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
121    "Use the VM system for directory writes");
122long runningbufspace;
123SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
124    "Amount of presently outstanding async buffer io");
125static long bufspace;
126#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
127    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
128SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
129    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
130#else
131SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
132    "Virtual memory used for buffers");
133#endif
134static long maxbufspace;
135SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
136    "Maximum allowed value of bufspace (including buf_daemon)");
137static long bufmallocspace;
138SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
139    "Amount of malloced memory for buffers");
140static long maxbufmallocspace;
141SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
142    "Maximum amount of malloced memory for buffers");
143static long lobufspace;
144SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
145    "Minimum amount of buffers we want to have");
146long hibufspace;
147SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
148    "Maximum allowed value of bufspace (excluding buf_daemon)");
149static int bufreusecnt;
150SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
151    "Number of times we have reused a buffer");
152static int buffreekvacnt;
153SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
154    "Number of times we have freed the KVA space from some buffer");
155static int bufdefragcnt;
156SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
157    "Number of times we have had to repeat buffer allocation to defragment");
158static long lorunningspace;
159SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
160    "Minimum preferred space used for in-progress I/O");
161static long hirunningspace;
162SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
163    "Maximum amount of space to use for in-progress I/O");
164int dirtybufferflushes;
165SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
166    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
167int bdwriteskip;
168SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
169    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
170int altbufferflushes;
171SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
172    0, "Number of fsync flushes to limit dirty buffers");
173static int recursiveflushes;
174SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
175    0, "Number of flushes skipped due to being recursive");
176static int numdirtybuffers;
177SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
178    "Number of buffers that are dirty (has unwritten changes) at the moment");
179static int lodirtybuffers;
180SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
181    "How many buffers we want to have free before bufdaemon can sleep");
182static int hidirtybuffers;
183SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
184    "When the number of dirty buffers is considered severe");
185int dirtybufthresh;
186SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
187    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
188static int numfreebuffers;
189SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
190    "Number of free buffers");
191static int lofreebuffers;
192SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
193   "XXX Unused");
194static int hifreebuffers;
195SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
196   "XXX Complicatedly unused");
197static int getnewbufcalls;
198SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
199   "Number of calls to getnewbuf");
200static int getnewbufrestarts;
201SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
202    "Number of times getnewbuf has had to restart a buffer aquisition");
203static int flushbufqtarget = 100;
204SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
205    "Amount of work to do in flushbufqueues when helping bufdaemon");
206static long notbufdflashes;
207SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
208    "Number of dirty buffer flushes done by the bufdaemon helpers");
209
210/*
211 * Wakeup point for bufdaemon, as well as indicator of whether it is already
212 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
213 * is idling.
214 */
215static int bd_request;
216
217/*
218 * Request for the buf daemon to write more buffers than is indicated by
219 * lodirtybuf.  This may be necessary to push out excess dependencies or
220 * defragment the address space where a simple count of the number of dirty
221 * buffers is insufficient to characterize the demand for flushing them.
222 */
223static int bd_speedupreq;
224
225/*
226 * This lock synchronizes access to bd_request.
227 */
228static struct mtx bdlock;
229
230/*
231 * bogus page -- for I/O to/from partially complete buffers
232 * this is a temporary solution to the problem, but it is not
233 * really that bad.  it would be better to split the buffer
234 * for input in the case of buffers partially already in memory,
235 * but the code is intricate enough already.
236 */
237vm_page_t bogus_page;
238
239/*
240 * Synchronization (sleep/wakeup) variable for active buffer space requests.
241 * Set when wait starts, cleared prior to wakeup().
242 * Used in runningbufwakeup() and waitrunningbufspace().
243 */
244static int runningbufreq;
245
246/*
247 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
248 * waitrunningbufspace().
249 */
250static struct mtx rbreqlock;
251
252/*
253 * Synchronization (sleep/wakeup) variable for buffer requests.
254 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
255 * by and/or.
256 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
257 * getnewbuf(), and getblk().
258 */
259static int needsbuffer;
260
261/*
262 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
263 */
264static struct mtx nblock;
265
266/*
267 * Definitions for the buffer free lists.
268 */
269#define BUFFER_QUEUES	5	/* number of free buffer queues */
270
271#define QUEUE_NONE	0	/* on no queue */
272#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
273#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
274#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
275#define QUEUE_EMPTY	4	/* empty buffer headers */
276#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
277
278/* Queues for free buffers with various properties */
279static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
280
281/* Lock for the bufqueues */
282static struct mtx bqlock;
283
284/*
285 * Single global constant for BUF_WMESG, to avoid getting multiple references.
286 * buf_wmesg is referred from macros.
287 */
288const char *buf_wmesg = BUF_WMESG;
289
290#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
291#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
292#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
293#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
294
295#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
296    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
297static int
298sysctl_bufspace(SYSCTL_HANDLER_ARGS)
299{
300	long lvalue;
301	int ivalue;
302
303	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
304		return (sysctl_handle_long(oidp, arg1, arg2, req));
305	lvalue = *(long *)arg1;
306	if (lvalue > INT_MAX)
307		/* On overflow, still write out a long to trigger ENOMEM. */
308		return (sysctl_handle_long(oidp, &lvalue, 0, req));
309	ivalue = lvalue;
310	return (sysctl_handle_int(oidp, &ivalue, 0, req));
311}
312#endif
313
314#ifdef DIRECTIO
315extern void ffs_rawread_setup(void);
316#endif /* DIRECTIO */
317/*
318 *	numdirtywakeup:
319 *
320 *	If someone is blocked due to there being too many dirty buffers,
321 *	and numdirtybuffers is now reasonable, wake them up.
322 */
323
324static __inline void
325numdirtywakeup(int level)
326{
327
328	if (numdirtybuffers <= level) {
329		mtx_lock(&nblock);
330		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
331			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
332			wakeup(&needsbuffer);
333		}
334		mtx_unlock(&nblock);
335	}
336}
337
338/*
339 *	bufspacewakeup:
340 *
341 *	Called when buffer space is potentially available for recovery.
342 *	getnewbuf() will block on this flag when it is unable to free
343 *	sufficient buffer space.  Buffer space becomes recoverable when
344 *	bp's get placed back in the queues.
345 */
346
347static __inline void
348bufspacewakeup(void)
349{
350
351	/*
352	 * If someone is waiting for BUF space, wake them up.  Even
353	 * though we haven't freed the kva space yet, the waiting
354	 * process will be able to now.
355	 */
356	mtx_lock(&nblock);
357	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
358		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
359		wakeup(&needsbuffer);
360	}
361	mtx_unlock(&nblock);
362}
363
364/*
365 * runningbufwakeup() - in-progress I/O accounting.
366 *
367 */
368void
369runningbufwakeup(struct buf *bp)
370{
371
372	if (bp->b_runningbufspace) {
373		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
374		bp->b_runningbufspace = 0;
375		mtx_lock(&rbreqlock);
376		if (runningbufreq && runningbufspace <= lorunningspace) {
377			runningbufreq = 0;
378			wakeup(&runningbufreq);
379		}
380		mtx_unlock(&rbreqlock);
381	}
382}
383
384/*
385 *	bufcountwakeup:
386 *
387 *	Called when a buffer has been added to one of the free queues to
388 *	account for the buffer and to wakeup anyone waiting for free buffers.
389 *	This typically occurs when large amounts of metadata are being handled
390 *	by the buffer cache ( else buffer space runs out first, usually ).
391 */
392
393static __inline void
394bufcountwakeup(struct buf *bp)
395{
396	int old;
397
398	KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
399	    ("buf %p already counted as free", bp));
400	if (bp->b_bufobj != NULL)
401		mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
402	bp->b_vflags |= BV_INFREECNT;
403	old = atomic_fetchadd_int(&numfreebuffers, 1);
404	KASSERT(old >= 0 && old < nbuf,
405	    ("numfreebuffers climbed to %d", old + 1));
406	mtx_lock(&nblock);
407	if (needsbuffer) {
408		needsbuffer &= ~VFS_BIO_NEED_ANY;
409		if (numfreebuffers >= hifreebuffers)
410			needsbuffer &= ~VFS_BIO_NEED_FREE;
411		wakeup(&needsbuffer);
412	}
413	mtx_unlock(&nblock);
414}
415
416/*
417 *	waitrunningbufspace()
418 *
419 *	runningbufspace is a measure of the amount of I/O currently
420 *	running.  This routine is used in async-write situations to
421 *	prevent creating huge backups of pending writes to a device.
422 *	Only asynchronous writes are governed by this function.
423 *
424 *	Reads will adjust runningbufspace, but will not block based on it.
425 *	The read load has a side effect of reducing the allowed write load.
426 *
427 *	This does NOT turn an async write into a sync write.  It waits
428 *	for earlier writes to complete and generally returns before the
429 *	caller's write has reached the device.
430 */
431void
432waitrunningbufspace(void)
433{
434
435	mtx_lock(&rbreqlock);
436	while (runningbufspace > hirunningspace) {
437		++runningbufreq;
438		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
439	}
440	mtx_unlock(&rbreqlock);
441}
442
443
444/*
445 *	vfs_buf_test_cache:
446 *
447 *	Called when a buffer is extended.  This function clears the B_CACHE
448 *	bit if the newly extended portion of the buffer does not contain
449 *	valid data.
450 */
451static __inline
452void
453vfs_buf_test_cache(struct buf *bp,
454		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
455		  vm_page_t m)
456{
457
458	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
459	if (bp->b_flags & B_CACHE) {
460		int base = (foff + off) & PAGE_MASK;
461		if (vm_page_is_valid(m, base, size) == 0)
462			bp->b_flags &= ~B_CACHE;
463	}
464}
465
466/* Wake up the buffer daemon if necessary */
467static __inline
468void
469bd_wakeup(int dirtybuflevel)
470{
471
472	mtx_lock(&bdlock);
473	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
474		bd_request = 1;
475		wakeup(&bd_request);
476	}
477	mtx_unlock(&bdlock);
478}
479
480/*
481 * bd_speedup - speedup the buffer cache flushing code
482 */
483
484void
485bd_speedup(void)
486{
487	int needwake;
488
489	mtx_lock(&bdlock);
490	needwake = 0;
491	if (bd_speedupreq == 0 || bd_request == 0)
492		needwake = 1;
493	bd_speedupreq = 1;
494	bd_request = 1;
495	if (needwake)
496		wakeup(&bd_request);
497	mtx_unlock(&bdlock);
498}
499
500/*
501 * Calculating buffer cache scaling values and reserve space for buffer
502 * headers.  This is called during low level kernel initialization and
503 * may be called more then once.  We CANNOT write to the memory area
504 * being reserved at this time.
505 */
506caddr_t
507kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
508{
509	int tuned_nbuf;
510	long maxbuf;
511
512	/*
513	 * physmem_est is in pages.  Convert it to kilobytes (assumes
514	 * PAGE_SIZE is >= 1K)
515	 */
516	physmem_est = physmem_est * (PAGE_SIZE / 1024);
517
518	/*
519	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
520	 * For the first 64MB of ram nominally allocate sufficient buffers to
521	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
522	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
523	 * the buffer cache we limit the eventual kva reservation to
524	 * maxbcache bytes.
525	 *
526	 * factor represents the 1/4 x ram conversion.
527	 */
528	if (nbuf == 0) {
529		int factor = 4 * BKVASIZE / 1024;
530
531		nbuf = 50;
532		if (physmem_est > 4096)
533			nbuf += min((physmem_est - 4096) / factor,
534			    65536 / factor);
535		if (physmem_est > 65536)
536			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
537
538		if (maxbcache && nbuf > maxbcache / BKVASIZE)
539			nbuf = maxbcache / BKVASIZE;
540		tuned_nbuf = 1;
541	} else
542		tuned_nbuf = 0;
543
544	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
545	maxbuf = (LONG_MAX / 3) / BKVASIZE;
546	if (nbuf > maxbuf) {
547		if (!tuned_nbuf)
548			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
549			    maxbuf);
550		nbuf = maxbuf;
551	}
552
553	/*
554	 * swbufs are used as temporary holders for I/O, such as paging I/O.
555	 * We have no less then 16 and no more then 256.
556	 */
557	nswbuf = max(min(nbuf/4, 256), 16);
558#ifdef NSWBUF_MIN
559	if (nswbuf < NSWBUF_MIN)
560		nswbuf = NSWBUF_MIN;
561#endif
562#ifdef DIRECTIO
563	ffs_rawread_setup();
564#endif
565
566	/*
567	 * Reserve space for the buffer cache buffers
568	 */
569	swbuf = (void *)v;
570	v = (caddr_t)(swbuf + nswbuf);
571	buf = (void *)v;
572	v = (caddr_t)(buf + nbuf);
573
574	return(v);
575}
576
577/* Initialize the buffer subsystem.  Called before use of any buffers. */
578void
579bufinit(void)
580{
581	struct buf *bp;
582	int i;
583
584	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
585	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
586	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
587	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
588
589	/* next, make a null set of free lists */
590	for (i = 0; i < BUFFER_QUEUES; i++)
591		TAILQ_INIT(&bufqueues[i]);
592
593	/* finally, initialize each buffer header and stick on empty q */
594	for (i = 0; i < nbuf; i++) {
595		bp = &buf[i];
596		bzero(bp, sizeof *bp);
597		bp->b_flags = B_INVAL;	/* we're just an empty header */
598		bp->b_rcred = NOCRED;
599		bp->b_wcred = NOCRED;
600		bp->b_qindex = QUEUE_EMPTY;
601		bp->b_vflags = BV_INFREECNT;	/* buf is counted as free */
602		bp->b_xflags = 0;
603		LIST_INIT(&bp->b_dep);
604		BUF_LOCKINIT(bp);
605		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
606	}
607
608	/*
609	 * maxbufspace is the absolute maximum amount of buffer space we are
610	 * allowed to reserve in KVM and in real terms.  The absolute maximum
611	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
612	 * used by most other processes.  The differential is required to
613	 * ensure that buf_daemon is able to run when other processes might
614	 * be blocked waiting for buffer space.
615	 *
616	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
617	 * this may result in KVM fragmentation which is not handled optimally
618	 * by the system.
619	 */
620	maxbufspace = (long)nbuf * BKVASIZE;
621	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
622	lobufspace = hibufspace - MAXBSIZE;
623
624	/*
625	 * Note: The 16 MiB upper limit for hirunningspace was chosen
626	 * arbitrarily and may need further tuning. It corresponds to
627	 * 128 outstanding write IO requests (if IO size is 128 KiB),
628	 * which fits with many RAID controllers' tagged queuing limits.
629	 * The lower 1 MiB limit is the historical upper limit for
630	 * hirunningspace.
631	 */
632	hirunningspace = lmax(lmin(roundup(hibufspace / 64, MAXBSIZE),
633	    16 * 1024 * 1024), 1024 * 1024);
634	lorunningspace = roundup((hirunningspace * 2) / 3, MAXBSIZE);
635
636/*
637 * Limit the amount of malloc memory since it is wired permanently into
638 * the kernel space.  Even though this is accounted for in the buffer
639 * allocation, we don't want the malloced region to grow uncontrolled.
640 * The malloc scheme improves memory utilization significantly on average
641 * (small) directories.
642 */
643	maxbufmallocspace = hibufspace / 20;
644
645/*
646 * Reduce the chance of a deadlock occuring by limiting the number
647 * of delayed-write dirty buffers we allow to stack up.
648 */
649	hidirtybuffers = nbuf / 4 + 20;
650	dirtybufthresh = hidirtybuffers * 9 / 10;
651	numdirtybuffers = 0;
652/*
653 * To support extreme low-memory systems, make sure hidirtybuffers cannot
654 * eat up all available buffer space.  This occurs when our minimum cannot
655 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
656 * BKVASIZE'd buffers.
657 */
658	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
659		hidirtybuffers >>= 1;
660	}
661	lodirtybuffers = hidirtybuffers / 2;
662
663/*
664 * Try to keep the number of free buffers in the specified range,
665 * and give special processes (e.g. like buf_daemon) access to an
666 * emergency reserve.
667 */
668	lofreebuffers = nbuf / 18 + 5;
669	hifreebuffers = 2 * lofreebuffers;
670	numfreebuffers = nbuf;
671
672	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
673	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
674}
675
676/*
677 * bfreekva() - free the kva allocation for a buffer.
678 *
679 *	Since this call frees up buffer space, we call bufspacewakeup().
680 */
681static void
682bfreekva(struct buf *bp)
683{
684
685	if (bp->b_kvasize) {
686		atomic_add_int(&buffreekvacnt, 1);
687		atomic_subtract_long(&bufspace, bp->b_kvasize);
688		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
689		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
690		bp->b_kvasize = 0;
691		bufspacewakeup();
692	}
693}
694
695/*
696 *	bremfree:
697 *
698 *	Mark the buffer for removal from the appropriate free list in brelse.
699 *
700 */
701void
702bremfree(struct buf *bp)
703{
704	int old;
705
706	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
707	KASSERT((bp->b_flags & B_REMFREE) == 0,
708	    ("bremfree: buffer %p already marked for delayed removal.", bp));
709	KASSERT(bp->b_qindex != QUEUE_NONE,
710	    ("bremfree: buffer %p not on a queue.", bp));
711	BUF_ASSERT_HELD(bp);
712
713	bp->b_flags |= B_REMFREE;
714	/* Fixup numfreebuffers count.  */
715	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
716		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
717		    ("buf %p not counted in numfreebuffers", bp));
718		if (bp->b_bufobj != NULL)
719			mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
720		bp->b_vflags &= ~BV_INFREECNT;
721		old = atomic_fetchadd_int(&numfreebuffers, -1);
722		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
723	}
724}
725
726/*
727 *	bremfreef:
728 *
729 *	Force an immediate removal from a free list.  Used only in nfs when
730 *	it abuses the b_freelist pointer.
731 */
732void
733bremfreef(struct buf *bp)
734{
735	mtx_lock(&bqlock);
736	bremfreel(bp);
737	mtx_unlock(&bqlock);
738}
739
740/*
741 *	bremfreel:
742 *
743 *	Removes a buffer from the free list, must be called with the
744 *	bqlock held.
745 */
746static void
747bremfreel(struct buf *bp)
748{
749	int old;
750
751	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
752	    bp, bp->b_vp, bp->b_flags);
753	KASSERT(bp->b_qindex != QUEUE_NONE,
754	    ("bremfreel: buffer %p not on a queue.", bp));
755	BUF_ASSERT_HELD(bp);
756	mtx_assert(&bqlock, MA_OWNED);
757
758	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
759	bp->b_qindex = QUEUE_NONE;
760	/*
761	 * If this was a delayed bremfree() we only need to remove the buffer
762	 * from the queue and return the stats are already done.
763	 */
764	if (bp->b_flags & B_REMFREE) {
765		bp->b_flags &= ~B_REMFREE;
766		return;
767	}
768	/*
769	 * Fixup numfreebuffers count.  If the buffer is invalid or not
770	 * delayed-write, the buffer was free and we must decrement
771	 * numfreebuffers.
772	 */
773	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
774		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
775		    ("buf %p not counted in numfreebuffers", bp));
776		if (bp->b_bufobj != NULL)
777			mtx_assert(BO_MTX(bp->b_bufobj), MA_OWNED);
778		bp->b_vflags &= ~BV_INFREECNT;
779		old = atomic_fetchadd_int(&numfreebuffers, -1);
780		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
781	}
782}
783
784/*
785 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
786 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
787 * the buffer is valid and we do not have to do anything.
788 */
789void
790breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
791    int cnt, struct ucred * cred)
792{
793	struct buf *rabp;
794	int i;
795
796	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
797		if (inmem(vp, *rablkno))
798			continue;
799		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
800
801		if ((rabp->b_flags & B_CACHE) == 0) {
802			if (!TD_IS_IDLETHREAD(curthread))
803				curthread->td_ru.ru_inblock++;
804			rabp->b_flags |= B_ASYNC;
805			rabp->b_flags &= ~B_INVAL;
806			rabp->b_ioflags &= ~BIO_ERROR;
807			rabp->b_iocmd = BIO_READ;
808			if (rabp->b_rcred == NOCRED && cred != NOCRED)
809				rabp->b_rcred = crhold(cred);
810			vfs_busy_pages(rabp, 0);
811			BUF_KERNPROC(rabp);
812			rabp->b_iooffset = dbtob(rabp->b_blkno);
813			bstrategy(rabp);
814		} else {
815			brelse(rabp);
816		}
817	}
818}
819
820/*
821 * Entry point for bread() and breadn() via #defines in sys/buf.h.
822 *
823 * Get a buffer with the specified data.  Look in the cache first.  We
824 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
825 * is set, the buffer is valid and we do not have to do anything, see
826 * getblk(). Also starts asynchronous I/O on read-ahead blocks.
827 */
828int
829breadn_flags(struct vnode * vp, daddr_t blkno, int size,
830    daddr_t * rablkno, int *rabsize, int cnt,
831    struct ucred * cred, int flags, struct buf **bpp)
832{
833	struct buf *bp;
834	int rv = 0, readwait = 0;
835
836	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
837	/*
838	 * Can only return NULL if GB_LOCK_NOWAIT flag is specified.
839	 */
840	*bpp = bp = getblk(vp, blkno, size, 0, 0, flags);
841	if (bp == NULL)
842		return (EBUSY);
843
844	/* if not found in cache, do some I/O */
845	if ((bp->b_flags & B_CACHE) == 0) {
846		if (!TD_IS_IDLETHREAD(curthread))
847			curthread->td_ru.ru_inblock++;
848		bp->b_iocmd = BIO_READ;
849		bp->b_flags &= ~B_INVAL;
850		bp->b_ioflags &= ~BIO_ERROR;
851		if (bp->b_rcred == NOCRED && cred != NOCRED)
852			bp->b_rcred = crhold(cred);
853		vfs_busy_pages(bp, 0);
854		bp->b_iooffset = dbtob(bp->b_blkno);
855		bstrategy(bp);
856		++readwait;
857	}
858
859	breada(vp, rablkno, rabsize, cnt, cred);
860
861	if (readwait) {
862		rv = bufwait(bp);
863	}
864	return (rv);
865}
866
867/*
868 * Write, release buffer on completion.  (Done by iodone
869 * if async).  Do not bother writing anything if the buffer
870 * is invalid.
871 *
872 * Note that we set B_CACHE here, indicating that buffer is
873 * fully valid and thus cacheable.  This is true even of NFS
874 * now so we set it generally.  This could be set either here
875 * or in biodone() since the I/O is synchronous.  We put it
876 * here.
877 */
878int
879bufwrite(struct buf *bp)
880{
881	int oldflags;
882	struct vnode *vp;
883	int vp_md;
884
885	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
886	if (bp->b_flags & B_INVAL) {
887		brelse(bp);
888		return (0);
889	}
890
891	oldflags = bp->b_flags;
892
893	BUF_ASSERT_HELD(bp);
894
895	if (bp->b_pin_count > 0)
896		bunpin_wait(bp);
897
898	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
899	    ("FFS background buffer should not get here %p", bp));
900
901	vp = bp->b_vp;
902	if (vp)
903		vp_md = vp->v_vflag & VV_MD;
904	else
905		vp_md = 0;
906
907	/* Mark the buffer clean */
908	bundirty(bp);
909
910	bp->b_flags &= ~B_DONE;
911	bp->b_ioflags &= ~BIO_ERROR;
912	bp->b_flags |= B_CACHE;
913	bp->b_iocmd = BIO_WRITE;
914
915	bufobj_wref(bp->b_bufobj);
916	vfs_busy_pages(bp, 1);
917
918	/*
919	 * Normal bwrites pipeline writes
920	 */
921	bp->b_runningbufspace = bp->b_bufsize;
922	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
923
924	if (!TD_IS_IDLETHREAD(curthread))
925		curthread->td_ru.ru_oublock++;
926	if (oldflags & B_ASYNC)
927		BUF_KERNPROC(bp);
928	bp->b_iooffset = dbtob(bp->b_blkno);
929	bstrategy(bp);
930
931	if ((oldflags & B_ASYNC) == 0) {
932		int rtval = bufwait(bp);
933		brelse(bp);
934		return (rtval);
935	} else {
936		/*
937		 * don't allow the async write to saturate the I/O
938		 * system.  We will not deadlock here because
939		 * we are blocking waiting for I/O that is already in-progress
940		 * to complete. We do not block here if it is the update
941		 * or syncer daemon trying to clean up as that can lead
942		 * to deadlock.
943		 */
944		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
945			waitrunningbufspace();
946	}
947
948	return (0);
949}
950
951void
952bufbdflush(struct bufobj *bo, struct buf *bp)
953{
954	struct buf *nbp;
955
956	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
957		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
958		altbufferflushes++;
959	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
960		BO_LOCK(bo);
961		/*
962		 * Try to find a buffer to flush.
963		 */
964		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
965			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
966			    BUF_LOCK(nbp,
967				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
968				continue;
969			if (bp == nbp)
970				panic("bdwrite: found ourselves");
971			BO_UNLOCK(bo);
972			/* Don't countdeps with the bo lock held. */
973			if (buf_countdeps(nbp, 0)) {
974				BO_LOCK(bo);
975				BUF_UNLOCK(nbp);
976				continue;
977			}
978			if (nbp->b_flags & B_CLUSTEROK) {
979				vfs_bio_awrite(nbp);
980			} else {
981				bremfree(nbp);
982				bawrite(nbp);
983			}
984			dirtybufferflushes++;
985			break;
986		}
987		if (nbp == NULL)
988			BO_UNLOCK(bo);
989	}
990}
991
992/*
993 * Delayed write. (Buffer is marked dirty).  Do not bother writing
994 * anything if the buffer is marked invalid.
995 *
996 * Note that since the buffer must be completely valid, we can safely
997 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
998 * biodone() in order to prevent getblk from writing the buffer
999 * out synchronously.
1000 */
1001void
1002bdwrite(struct buf *bp)
1003{
1004	struct thread *td = curthread;
1005	struct vnode *vp;
1006	struct bufobj *bo;
1007
1008	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1009	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1010	BUF_ASSERT_HELD(bp);
1011
1012	if (bp->b_flags & B_INVAL) {
1013		brelse(bp);
1014		return;
1015	}
1016
1017	/*
1018	 * If we have too many dirty buffers, don't create any more.
1019	 * If we are wildly over our limit, then force a complete
1020	 * cleanup. Otherwise, just keep the situation from getting
1021	 * out of control. Note that we have to avoid a recursive
1022	 * disaster and not try to clean up after our own cleanup!
1023	 */
1024	vp = bp->b_vp;
1025	bo = bp->b_bufobj;
1026	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1027		td->td_pflags |= TDP_INBDFLUSH;
1028		BO_BDFLUSH(bo, bp);
1029		td->td_pflags &= ~TDP_INBDFLUSH;
1030	} else
1031		recursiveflushes++;
1032
1033	bdirty(bp);
1034	/*
1035	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1036	 * true even of NFS now.
1037	 */
1038	bp->b_flags |= B_CACHE;
1039
1040	/*
1041	 * This bmap keeps the system from needing to do the bmap later,
1042	 * perhaps when the system is attempting to do a sync.  Since it
1043	 * is likely that the indirect block -- or whatever other datastructure
1044	 * that the filesystem needs is still in memory now, it is a good
1045	 * thing to do this.  Note also, that if the pageout daemon is
1046	 * requesting a sync -- there might not be enough memory to do
1047	 * the bmap then...  So, this is important to do.
1048	 */
1049	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1050		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1051	}
1052
1053	/*
1054	 * Set the *dirty* buffer range based upon the VM system dirty
1055	 * pages.
1056	 *
1057	 * Mark the buffer pages as clean.  We need to do this here to
1058	 * satisfy the vnode_pager and the pageout daemon, so that it
1059	 * thinks that the pages have been "cleaned".  Note that since
1060	 * the pages are in a delayed write buffer -- the VFS layer
1061	 * "will" see that the pages get written out on the next sync,
1062	 * or perhaps the cluster will be completed.
1063	 */
1064	vfs_clean_pages_dirty_buf(bp);
1065	bqrelse(bp);
1066
1067	/*
1068	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1069	 * buffers (midpoint between our recovery point and our stall
1070	 * point).
1071	 */
1072	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1073
1074	/*
1075	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1076	 * due to the softdep code.
1077	 */
1078}
1079
1080/*
1081 *	bdirty:
1082 *
1083 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1084 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1085 *	itself to properly update it in the dirty/clean lists.  We mark it
1086 *	B_DONE to ensure that any asynchronization of the buffer properly
1087 *	clears B_DONE ( else a panic will occur later ).
1088 *
1089 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1090 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1091 *	should only be called if the buffer is known-good.
1092 *
1093 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1094 *	count.
1095 *
1096 *	The buffer must be on QUEUE_NONE.
1097 */
1098void
1099bdirty(struct buf *bp)
1100{
1101
1102	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1103	    bp, bp->b_vp, bp->b_flags);
1104	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1105	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1106	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1107	BUF_ASSERT_HELD(bp);
1108	bp->b_flags &= ~(B_RELBUF);
1109	bp->b_iocmd = BIO_WRITE;
1110
1111	if ((bp->b_flags & B_DELWRI) == 0) {
1112		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1113		reassignbuf(bp);
1114		atomic_add_int(&numdirtybuffers, 1);
1115		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1116	}
1117}
1118
1119/*
1120 *	bundirty:
1121 *
1122 *	Clear B_DELWRI for buffer.
1123 *
1124 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1125 *	count.
1126 *
1127 *	The buffer must be on QUEUE_NONE.
1128 */
1129
1130void
1131bundirty(struct buf *bp)
1132{
1133
1134	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1135	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1136	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1137	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1138	BUF_ASSERT_HELD(bp);
1139
1140	if (bp->b_flags & B_DELWRI) {
1141		bp->b_flags &= ~B_DELWRI;
1142		reassignbuf(bp);
1143		atomic_subtract_int(&numdirtybuffers, 1);
1144		numdirtywakeup(lodirtybuffers);
1145	}
1146	/*
1147	 * Since it is now being written, we can clear its deferred write flag.
1148	 */
1149	bp->b_flags &= ~B_DEFERRED;
1150}
1151
1152/*
1153 *	bawrite:
1154 *
1155 *	Asynchronous write.  Start output on a buffer, but do not wait for
1156 *	it to complete.  The buffer is released when the output completes.
1157 *
1158 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1159 *	B_INVAL buffers.  Not us.
1160 */
1161void
1162bawrite(struct buf *bp)
1163{
1164
1165	bp->b_flags |= B_ASYNC;
1166	(void) bwrite(bp);
1167}
1168
1169/*
1170 *	bwillwrite:
1171 *
1172 *	Called prior to the locking of any vnodes when we are expecting to
1173 *	write.  We do not want to starve the buffer cache with too many
1174 *	dirty buffers so we block here.  By blocking prior to the locking
1175 *	of any vnodes we attempt to avoid the situation where a locked vnode
1176 *	prevents the various system daemons from flushing related buffers.
1177 */
1178
1179void
1180bwillwrite(void)
1181{
1182
1183	if (numdirtybuffers >= hidirtybuffers) {
1184		mtx_lock(&nblock);
1185		while (numdirtybuffers >= hidirtybuffers) {
1186			bd_wakeup(1);
1187			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1188			msleep(&needsbuffer, &nblock,
1189			    (PRIBIO + 4), "flswai", 0);
1190		}
1191		mtx_unlock(&nblock);
1192	}
1193}
1194
1195/*
1196 * Return true if we have too many dirty buffers.
1197 */
1198int
1199buf_dirty_count_severe(void)
1200{
1201
1202	return(numdirtybuffers >= hidirtybuffers);
1203}
1204
1205static __noinline int
1206buf_vm_page_count_severe(void)
1207{
1208
1209	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1210
1211	return vm_page_count_severe();
1212}
1213
1214/*
1215 *	brelse:
1216 *
1217 *	Release a busy buffer and, if requested, free its resources.  The
1218 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1219 *	to be accessed later as a cache entity or reused for other purposes.
1220 */
1221void
1222brelse(struct buf *bp)
1223{
1224	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1225	    bp, bp->b_vp, bp->b_flags);
1226	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1227	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1228
1229	if (bp->b_flags & B_MANAGED) {
1230		bqrelse(bp);
1231		return;
1232	}
1233
1234	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1235	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1236		/*
1237		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1238		 * pages from being scrapped.  If the error is anything
1239		 * other than an I/O error (EIO), assume that retrying
1240		 * is futile.
1241		 */
1242		bp->b_ioflags &= ~BIO_ERROR;
1243		bdirty(bp);
1244	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1245	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1246		/*
1247		 * Either a failed I/O or we were asked to free or not
1248		 * cache the buffer.
1249		 */
1250		bp->b_flags |= B_INVAL;
1251		if (!LIST_EMPTY(&bp->b_dep))
1252			buf_deallocate(bp);
1253		if (bp->b_flags & B_DELWRI) {
1254			atomic_subtract_int(&numdirtybuffers, 1);
1255			numdirtywakeup(lodirtybuffers);
1256		}
1257		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1258		if ((bp->b_flags & B_VMIO) == 0) {
1259			if (bp->b_bufsize)
1260				allocbuf(bp, 0);
1261			if (bp->b_vp)
1262				brelvp(bp);
1263		}
1264	}
1265
1266	/*
1267	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1268	 * is called with B_DELWRI set, the underlying pages may wind up
1269	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1270	 * because pages associated with a B_DELWRI bp are marked clean.
1271	 *
1272	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1273	 * if B_DELWRI is set.
1274	 *
1275	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1276	 * on pages to return pages to the VM page queues.
1277	 */
1278	if (bp->b_flags & B_DELWRI)
1279		bp->b_flags &= ~B_RELBUF;
1280	else if (buf_vm_page_count_severe()) {
1281		/*
1282		 * The locking of the BO_LOCK is not necessary since
1283		 * BKGRDINPROG cannot be set while we hold the buf
1284		 * lock, it can only be cleared if it is already
1285		 * pending.
1286		 */
1287		if (bp->b_vp) {
1288			if (!(bp->b_vflags & BV_BKGRDINPROG))
1289				bp->b_flags |= B_RELBUF;
1290		} else
1291			bp->b_flags |= B_RELBUF;
1292	}
1293
1294	/*
1295	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1296	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1297	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1298	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1299	 *
1300	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1301	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1302	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1303	 *
1304	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1305	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1306	 * the commit state and we cannot afford to lose the buffer. If the
1307	 * buffer has a background write in progress, we need to keep it
1308	 * around to prevent it from being reconstituted and starting a second
1309	 * background write.
1310	 */
1311	if ((bp->b_flags & B_VMIO)
1312	    && !(bp->b_vp->v_mount != NULL &&
1313		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1314		 !vn_isdisk(bp->b_vp, NULL) &&
1315		 (bp->b_flags & B_DELWRI))
1316	    ) {
1317
1318		int i, j, resid;
1319		vm_page_t m;
1320		off_t foff;
1321		vm_pindex_t poff;
1322		vm_object_t obj;
1323
1324		obj = bp->b_bufobj->bo_object;
1325
1326		/*
1327		 * Get the base offset and length of the buffer.  Note that
1328		 * in the VMIO case if the buffer block size is not
1329		 * page-aligned then b_data pointer may not be page-aligned.
1330		 * But our b_pages[] array *IS* page aligned.
1331		 *
1332		 * block sizes less then DEV_BSIZE (usually 512) are not
1333		 * supported due to the page granularity bits (m->valid,
1334		 * m->dirty, etc...).
1335		 *
1336		 * See man buf(9) for more information
1337		 */
1338		resid = bp->b_bufsize;
1339		foff = bp->b_offset;
1340		VM_OBJECT_LOCK(obj);
1341		for (i = 0; i < bp->b_npages; i++) {
1342			int had_bogus = 0;
1343
1344			m = bp->b_pages[i];
1345
1346			/*
1347			 * If we hit a bogus page, fixup *all* the bogus pages
1348			 * now.
1349			 */
1350			if (m == bogus_page) {
1351				poff = OFF_TO_IDX(bp->b_offset);
1352				had_bogus = 1;
1353
1354				for (j = i; j < bp->b_npages; j++) {
1355					vm_page_t mtmp;
1356					mtmp = bp->b_pages[j];
1357					if (mtmp == bogus_page) {
1358						mtmp = vm_page_lookup(obj, poff + j);
1359						if (!mtmp) {
1360							panic("brelse: page missing\n");
1361						}
1362						bp->b_pages[j] = mtmp;
1363					}
1364				}
1365
1366				if ((bp->b_flags & B_INVAL) == 0) {
1367					pmap_qenter(
1368					    trunc_page((vm_offset_t)bp->b_data),
1369					    bp->b_pages, bp->b_npages);
1370				}
1371				m = bp->b_pages[i];
1372			}
1373			if ((bp->b_flags & B_NOCACHE) ||
1374			    (bp->b_ioflags & BIO_ERROR &&
1375			     bp->b_iocmd == BIO_READ)) {
1376				int poffset = foff & PAGE_MASK;
1377				int presid = resid > (PAGE_SIZE - poffset) ?
1378					(PAGE_SIZE - poffset) : resid;
1379
1380				KASSERT(presid >= 0, ("brelse: extra page"));
1381				vm_page_set_invalid(m, poffset, presid);
1382				if (had_bogus)
1383					printf("avoided corruption bug in bogus_page/brelse code\n");
1384			}
1385			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1386			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1387		}
1388		VM_OBJECT_UNLOCK(obj);
1389		if (bp->b_flags & (B_INVAL | B_RELBUF))
1390			vfs_vmio_release(bp);
1391
1392	} else if (bp->b_flags & B_VMIO) {
1393
1394		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1395			vfs_vmio_release(bp);
1396		}
1397
1398	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1399		if (bp->b_bufsize != 0)
1400			allocbuf(bp, 0);
1401		if (bp->b_vp != NULL)
1402			brelvp(bp);
1403	}
1404
1405	if (BUF_LOCKRECURSED(bp)) {
1406		/* do not release to free list */
1407		BUF_UNLOCK(bp);
1408		return;
1409	}
1410
1411	/* enqueue */
1412	mtx_lock(&bqlock);
1413	/* Handle delayed bremfree() processing. */
1414	if (bp->b_flags & B_REMFREE) {
1415		struct bufobj *bo;
1416
1417		bo = bp->b_bufobj;
1418		if (bo != NULL)
1419			BO_LOCK(bo);
1420		bremfreel(bp);
1421		if (bo != NULL)
1422			BO_UNLOCK(bo);
1423	}
1424	if (bp->b_qindex != QUEUE_NONE)
1425		panic("brelse: free buffer onto another queue???");
1426
1427	/*
1428	 * If the buffer has junk contents signal it and eventually
1429	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1430	 * doesn't find it.
1431	 */
1432	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1433	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1434		bp->b_flags |= B_INVAL;
1435	if (bp->b_flags & B_INVAL) {
1436		if (bp->b_flags & B_DELWRI)
1437			bundirty(bp);
1438		if (bp->b_vp)
1439			brelvp(bp);
1440	}
1441
1442	/* buffers with no memory */
1443	if (bp->b_bufsize == 0) {
1444		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1445		if (bp->b_vflags & BV_BKGRDINPROG)
1446			panic("losing buffer 1");
1447		if (bp->b_kvasize) {
1448			bp->b_qindex = QUEUE_EMPTYKVA;
1449		} else {
1450			bp->b_qindex = QUEUE_EMPTY;
1451		}
1452		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1453	/* buffers with junk contents */
1454	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1455	    (bp->b_ioflags & BIO_ERROR)) {
1456		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1457		if (bp->b_vflags & BV_BKGRDINPROG)
1458			panic("losing buffer 2");
1459		bp->b_qindex = QUEUE_CLEAN;
1460		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1461	/* remaining buffers */
1462	} else {
1463		if (bp->b_flags & B_DELWRI)
1464			bp->b_qindex = QUEUE_DIRTY;
1465		else
1466			bp->b_qindex = QUEUE_CLEAN;
1467		if (bp->b_flags & B_AGE)
1468			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1469		else
1470			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1471	}
1472	mtx_unlock(&bqlock);
1473
1474	/*
1475	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1476	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1477	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1478	 * if B_INVAL is set ).
1479	 */
1480
1481	if (!(bp->b_flags & B_DELWRI)) {
1482		struct bufobj *bo;
1483
1484		bo = bp->b_bufobj;
1485		if (bo != NULL)
1486			BO_LOCK(bo);
1487		bufcountwakeup(bp);
1488		if (bo != NULL)
1489			BO_UNLOCK(bo);
1490	}
1491
1492	/*
1493	 * Something we can maybe free or reuse
1494	 */
1495	if (bp->b_bufsize || bp->b_kvasize)
1496		bufspacewakeup();
1497
1498	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1499	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1500		panic("brelse: not dirty");
1501	/* unlock */
1502	BUF_UNLOCK(bp);
1503}
1504
1505/*
1506 * Release a buffer back to the appropriate queue but do not try to free
1507 * it.  The buffer is expected to be used again soon.
1508 *
1509 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1510 * biodone() to requeue an async I/O on completion.  It is also used when
1511 * known good buffers need to be requeued but we think we may need the data
1512 * again soon.
1513 *
1514 * XXX we should be able to leave the B_RELBUF hint set on completion.
1515 */
1516void
1517bqrelse(struct buf *bp)
1518{
1519	struct bufobj *bo;
1520
1521	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1522	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1523	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1524
1525	if (BUF_LOCKRECURSED(bp)) {
1526		/* do not release to free list */
1527		BUF_UNLOCK(bp);
1528		return;
1529	}
1530
1531	bo = bp->b_bufobj;
1532	if (bp->b_flags & B_MANAGED) {
1533		if (bp->b_flags & B_REMFREE) {
1534			mtx_lock(&bqlock);
1535			if (bo != NULL)
1536				BO_LOCK(bo);
1537			bremfreel(bp);
1538			if (bo != NULL)
1539				BO_UNLOCK(bo);
1540			mtx_unlock(&bqlock);
1541		}
1542		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1543		BUF_UNLOCK(bp);
1544		return;
1545	}
1546
1547	mtx_lock(&bqlock);
1548	/* Handle delayed bremfree() processing. */
1549	if (bp->b_flags & B_REMFREE) {
1550		if (bo != NULL)
1551			BO_LOCK(bo);
1552		bremfreel(bp);
1553		if (bo != NULL)
1554			BO_UNLOCK(bo);
1555	}
1556	if (bp->b_qindex != QUEUE_NONE)
1557		panic("bqrelse: free buffer onto another queue???");
1558	/* buffers with stale but valid contents */
1559	if (bp->b_flags & B_DELWRI) {
1560		bp->b_qindex = QUEUE_DIRTY;
1561		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1562	} else {
1563		/*
1564		 * The locking of the BO_LOCK for checking of the
1565		 * BV_BKGRDINPROG is not necessary since the
1566		 * BV_BKGRDINPROG cannot be set while we hold the buf
1567		 * lock, it can only be cleared if it is already
1568		 * pending.
1569		 */
1570		if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1571			bp->b_qindex = QUEUE_CLEAN;
1572			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1573			    b_freelist);
1574		} else {
1575			/*
1576			 * We are too low on memory, we have to try to free
1577			 * the buffer (most importantly: the wired pages
1578			 * making up its backing store) *now*.
1579			 */
1580			mtx_unlock(&bqlock);
1581			brelse(bp);
1582			return;
1583		}
1584	}
1585	mtx_unlock(&bqlock);
1586
1587	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI)) {
1588		if (bo != NULL)
1589			BO_LOCK(bo);
1590		bufcountwakeup(bp);
1591		if (bo != NULL)
1592			BO_UNLOCK(bo);
1593	}
1594
1595	/*
1596	 * Something we can maybe free or reuse.
1597	 */
1598	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1599		bufspacewakeup();
1600
1601	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1602	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1603		panic("bqrelse: not dirty");
1604	/* unlock */
1605	BUF_UNLOCK(bp);
1606}
1607
1608/* Give pages used by the bp back to the VM system (where possible) */
1609static void
1610vfs_vmio_release(struct buf *bp)
1611{
1612	int i;
1613	vm_page_t m;
1614
1615	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), bp->b_npages);
1616	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1617	for (i = 0; i < bp->b_npages; i++) {
1618		m = bp->b_pages[i];
1619		bp->b_pages[i] = NULL;
1620		/*
1621		 * In order to keep page LRU ordering consistent, put
1622		 * everything on the inactive queue.
1623		 */
1624		vm_page_lock(m);
1625		vm_page_unwire(m, 0);
1626		/*
1627		 * We don't mess with busy pages, it is
1628		 * the responsibility of the process that
1629		 * busied the pages to deal with them.
1630		 */
1631		if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
1632		    m->wire_count == 0) {
1633			/*
1634			 * Might as well free the page if we can and it has
1635			 * no valid data.  We also free the page if the
1636			 * buffer was used for direct I/O
1637			 */
1638			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid) {
1639				vm_page_free(m);
1640			} else if (bp->b_flags & B_DIRECT) {
1641				vm_page_try_to_free(m);
1642			} else if (buf_vm_page_count_severe()) {
1643				vm_page_try_to_cache(m);
1644			}
1645		}
1646		vm_page_unlock(m);
1647	}
1648	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1649
1650	if (bp->b_bufsize) {
1651		bufspacewakeup();
1652		bp->b_bufsize = 0;
1653	}
1654	bp->b_npages = 0;
1655	bp->b_flags &= ~B_VMIO;
1656	if (bp->b_vp)
1657		brelvp(bp);
1658}
1659
1660/*
1661 * Check to see if a block at a particular lbn is available for a clustered
1662 * write.
1663 */
1664static int
1665vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1666{
1667	struct buf *bpa;
1668	int match;
1669
1670	match = 0;
1671
1672	/* If the buf isn't in core skip it */
1673	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1674		return (0);
1675
1676	/* If the buf is busy we don't want to wait for it */
1677	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1678		return (0);
1679
1680	/* Only cluster with valid clusterable delayed write buffers */
1681	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1682	    (B_DELWRI | B_CLUSTEROK))
1683		goto done;
1684
1685	if (bpa->b_bufsize != size)
1686		goto done;
1687
1688	/*
1689	 * Check to see if it is in the expected place on disk and that the
1690	 * block has been mapped.
1691	 */
1692	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1693		match = 1;
1694done:
1695	BUF_UNLOCK(bpa);
1696	return (match);
1697}
1698
1699/*
1700 *	vfs_bio_awrite:
1701 *
1702 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1703 *	This is much better then the old way of writing only one buffer at
1704 *	a time.  Note that we may not be presented with the buffers in the
1705 *	correct order, so we search for the cluster in both directions.
1706 */
1707int
1708vfs_bio_awrite(struct buf *bp)
1709{
1710	struct bufobj *bo;
1711	int i;
1712	int j;
1713	daddr_t lblkno = bp->b_lblkno;
1714	struct vnode *vp = bp->b_vp;
1715	int ncl;
1716	int nwritten;
1717	int size;
1718	int maxcl;
1719
1720	bo = &vp->v_bufobj;
1721	/*
1722	 * right now we support clustered writing only to regular files.  If
1723	 * we find a clusterable block we could be in the middle of a cluster
1724	 * rather then at the beginning.
1725	 */
1726	if ((vp->v_type == VREG) &&
1727	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1728	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1729
1730		size = vp->v_mount->mnt_stat.f_iosize;
1731		maxcl = MAXPHYS / size;
1732
1733		BO_LOCK(bo);
1734		for (i = 1; i < maxcl; i++)
1735			if (vfs_bio_clcheck(vp, size, lblkno + i,
1736			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1737				break;
1738
1739		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1740			if (vfs_bio_clcheck(vp, size, lblkno - j,
1741			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1742				break;
1743		BO_UNLOCK(bo);
1744		--j;
1745		ncl = i + j;
1746		/*
1747		 * this is a possible cluster write
1748		 */
1749		if (ncl != 1) {
1750			BUF_UNLOCK(bp);
1751			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1752			return nwritten;
1753		}
1754	}
1755	bremfree(bp);
1756	bp->b_flags |= B_ASYNC;
1757	/*
1758	 * default (old) behavior, writing out only one block
1759	 *
1760	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1761	 */
1762	nwritten = bp->b_bufsize;
1763	(void) bwrite(bp);
1764
1765	return nwritten;
1766}
1767
1768/*
1769 *	getnewbuf:
1770 *
1771 *	Find and initialize a new buffer header, freeing up existing buffers
1772 *	in the bufqueues as necessary.  The new buffer is returned locked.
1773 *
1774 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1775 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1776 *
1777 *	We block if:
1778 *		We have insufficient buffer headers
1779 *		We have insufficient buffer space
1780 *		buffer_map is too fragmented ( space reservation fails )
1781 *		If we have to flush dirty buffers ( but we try to avoid this )
1782 *
1783 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1784 *	Instead we ask the buf daemon to do it for us.  We attempt to
1785 *	avoid piecemeal wakeups of the pageout daemon.
1786 */
1787
1788static struct buf *
1789getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1790    int gbflags)
1791{
1792	struct thread *td;
1793	struct buf *bp;
1794	struct buf *nbp;
1795	int defrag = 0;
1796	int nqindex;
1797	static int flushingbufs;
1798
1799	td = curthread;
1800	/*
1801	 * We can't afford to block since we might be holding a vnode lock,
1802	 * which may prevent system daemons from running.  We deal with
1803	 * low-memory situations by proactively returning memory and running
1804	 * async I/O rather then sync I/O.
1805	 */
1806	atomic_add_int(&getnewbufcalls, 1);
1807	atomic_subtract_int(&getnewbufrestarts, 1);
1808restart:
1809	atomic_add_int(&getnewbufrestarts, 1);
1810
1811	/*
1812	 * Setup for scan.  If we do not have enough free buffers,
1813	 * we setup a degenerate case that immediately fails.  Note
1814	 * that if we are specially marked process, we are allowed to
1815	 * dip into our reserves.
1816	 *
1817	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1818	 *
1819	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1820	 * However, there are a number of cases (defragging, reusing, ...)
1821	 * where we cannot backup.
1822	 */
1823	mtx_lock(&bqlock);
1824	nqindex = QUEUE_EMPTYKVA;
1825	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1826
1827	if (nbp == NULL) {
1828		/*
1829		 * If no EMPTYKVA buffers and we are either
1830		 * defragging or reusing, locate a CLEAN buffer
1831		 * to free or reuse.  If bufspace useage is low
1832		 * skip this step so we can allocate a new buffer.
1833		 */
1834		if (defrag || bufspace >= lobufspace) {
1835			nqindex = QUEUE_CLEAN;
1836			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1837		}
1838
1839		/*
1840		 * If we could not find or were not allowed to reuse a
1841		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1842		 * buffer.  We can only use an EMPTY buffer if allocating
1843		 * its KVA would not otherwise run us out of buffer space.
1844		 */
1845		if (nbp == NULL && defrag == 0 &&
1846		    bufspace + maxsize < hibufspace) {
1847			nqindex = QUEUE_EMPTY;
1848			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1849		}
1850	}
1851
1852	/*
1853	 * Run scan, possibly freeing data and/or kva mappings on the fly
1854	 * depending.
1855	 */
1856
1857	while ((bp = nbp) != NULL) {
1858		int qindex = nqindex;
1859
1860		/*
1861		 * Calculate next bp ( we can only use it if we do not block
1862		 * or do other fancy things ).
1863		 */
1864		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1865			switch(qindex) {
1866			case QUEUE_EMPTY:
1867				nqindex = QUEUE_EMPTYKVA;
1868				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1869					break;
1870				/* FALLTHROUGH */
1871			case QUEUE_EMPTYKVA:
1872				nqindex = QUEUE_CLEAN;
1873				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1874					break;
1875				/* FALLTHROUGH */
1876			case QUEUE_CLEAN:
1877				/*
1878				 * nbp is NULL.
1879				 */
1880				break;
1881			}
1882		}
1883		/*
1884		 * If we are defragging then we need a buffer with
1885		 * b_kvasize != 0.  XXX this situation should no longer
1886		 * occur, if defrag is non-zero the buffer's b_kvasize
1887		 * should also be non-zero at this point.  XXX
1888		 */
1889		if (defrag && bp->b_kvasize == 0) {
1890			printf("Warning: defrag empty buffer %p\n", bp);
1891			continue;
1892		}
1893
1894		/*
1895		 * Start freeing the bp.  This is somewhat involved.  nbp
1896		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1897		 */
1898		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1899			continue;
1900		if (bp->b_vp) {
1901			BO_LOCK(bp->b_bufobj);
1902			if (bp->b_vflags & BV_BKGRDINPROG) {
1903				BO_UNLOCK(bp->b_bufobj);
1904				BUF_UNLOCK(bp);
1905				continue;
1906			}
1907			BO_UNLOCK(bp->b_bufobj);
1908		}
1909		CTR6(KTR_BUF,
1910		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1911		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1912		    bp->b_kvasize, bp->b_bufsize, qindex);
1913
1914		/*
1915		 * Sanity Checks
1916		 */
1917		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1918
1919		/*
1920		 * Note: we no longer distinguish between VMIO and non-VMIO
1921		 * buffers.
1922		 */
1923
1924		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1925
1926		if (bp->b_bufobj != NULL)
1927			BO_LOCK(bp->b_bufobj);
1928		bremfreel(bp);
1929		if (bp->b_bufobj != NULL)
1930			BO_UNLOCK(bp->b_bufobj);
1931		mtx_unlock(&bqlock);
1932
1933		if (qindex == QUEUE_CLEAN) {
1934			if (bp->b_flags & B_VMIO) {
1935				bp->b_flags &= ~B_ASYNC;
1936				vfs_vmio_release(bp);
1937			}
1938			if (bp->b_vp)
1939				brelvp(bp);
1940		}
1941
1942		/*
1943		 * NOTE:  nbp is now entirely invalid.  We can only restart
1944		 * the scan from this point on.
1945		 *
1946		 * Get the rest of the buffer freed up.  b_kva* is still
1947		 * valid after this operation.
1948		 */
1949
1950		if (bp->b_rcred != NOCRED) {
1951			crfree(bp->b_rcred);
1952			bp->b_rcred = NOCRED;
1953		}
1954		if (bp->b_wcred != NOCRED) {
1955			crfree(bp->b_wcred);
1956			bp->b_wcred = NOCRED;
1957		}
1958		if (!LIST_EMPTY(&bp->b_dep))
1959			buf_deallocate(bp);
1960		if (bp->b_vflags & BV_BKGRDINPROG)
1961			panic("losing buffer 3");
1962		KASSERT(bp->b_vp == NULL,
1963		    ("bp: %p still has vnode %p.  qindex: %d",
1964		    bp, bp->b_vp, qindex));
1965		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1966		   ("bp: %p still on a buffer list. xflags %X",
1967		    bp, bp->b_xflags));
1968
1969		if (bp->b_bufsize)
1970			allocbuf(bp, 0);
1971
1972		bp->b_flags = 0;
1973		bp->b_ioflags = 0;
1974		bp->b_xflags = 0;
1975		KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
1976		    ("buf %p still counted as free?", bp));
1977		bp->b_vflags = 0;
1978		bp->b_vp = NULL;
1979		bp->b_blkno = bp->b_lblkno = 0;
1980		bp->b_offset = NOOFFSET;
1981		bp->b_iodone = 0;
1982		bp->b_error = 0;
1983		bp->b_resid = 0;
1984		bp->b_bcount = 0;
1985		bp->b_npages = 0;
1986		bp->b_dirtyoff = bp->b_dirtyend = 0;
1987		bp->b_bufobj = NULL;
1988		bp->b_pin_count = 0;
1989		bp->b_fsprivate1 = NULL;
1990		bp->b_fsprivate2 = NULL;
1991		bp->b_fsprivate3 = NULL;
1992
1993		LIST_INIT(&bp->b_dep);
1994
1995		/*
1996		 * If we are defragging then free the buffer.
1997		 */
1998		if (defrag) {
1999			bp->b_flags |= B_INVAL;
2000			bfreekva(bp);
2001			brelse(bp);
2002			defrag = 0;
2003			goto restart;
2004		}
2005
2006		/*
2007		 * Notify any waiters for the buffer lock about
2008		 * identity change by freeing the buffer.
2009		 */
2010		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
2011			bp->b_flags |= B_INVAL;
2012			bfreekva(bp);
2013			brelse(bp);
2014			goto restart;
2015		}
2016
2017		/*
2018		 * If we are overcomitted then recover the buffer and its
2019		 * KVM space.  This occurs in rare situations when multiple
2020		 * processes are blocked in getnewbuf() or allocbuf().
2021		 */
2022		if (bufspace >= hibufspace)
2023			flushingbufs = 1;
2024		if (flushingbufs && bp->b_kvasize != 0) {
2025			bp->b_flags |= B_INVAL;
2026			bfreekva(bp);
2027			brelse(bp);
2028			goto restart;
2029		}
2030		if (bufspace < lobufspace)
2031			flushingbufs = 0;
2032		break;
2033	}
2034
2035	/*
2036	 * If we exhausted our list, sleep as appropriate.  We may have to
2037	 * wakeup various daemons and write out some dirty buffers.
2038	 *
2039	 * Generally we are sleeping due to insufficient buffer space.
2040	 */
2041
2042	if (bp == NULL) {
2043		int flags, norunbuf;
2044		char *waitmsg;
2045		int fl;
2046
2047		if (defrag) {
2048			flags = VFS_BIO_NEED_BUFSPACE;
2049			waitmsg = "nbufkv";
2050		} else if (bufspace >= hibufspace) {
2051			waitmsg = "nbufbs";
2052			flags = VFS_BIO_NEED_BUFSPACE;
2053		} else {
2054			waitmsg = "newbuf";
2055			flags = VFS_BIO_NEED_ANY;
2056		}
2057		mtx_lock(&nblock);
2058		needsbuffer |= flags;
2059		mtx_unlock(&nblock);
2060		mtx_unlock(&bqlock);
2061
2062		bd_speedup();	/* heeeelp */
2063		if (gbflags & GB_NOWAIT_BD)
2064			return (NULL);
2065
2066		mtx_lock(&nblock);
2067		while (needsbuffer & flags) {
2068			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2069				mtx_unlock(&nblock);
2070				/*
2071				 * getblk() is called with a vnode
2072				 * locked, and some majority of the
2073				 * dirty buffers may as well belong to
2074				 * the vnode. Flushing the buffers
2075				 * there would make a progress that
2076				 * cannot be achieved by the
2077				 * buf_daemon, that cannot lock the
2078				 * vnode.
2079				 */
2080				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2081				    (td->td_pflags & TDP_NORUNNINGBUF);
2082				/* play bufdaemon */
2083				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2084				fl = buf_do_flush(vp);
2085				td->td_pflags &= norunbuf;
2086				mtx_lock(&nblock);
2087				if (fl != 0)
2088					continue;
2089				if ((needsbuffer & flags) == 0)
2090					break;
2091			}
2092			if (msleep(&needsbuffer, &nblock,
2093			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2094				mtx_unlock(&nblock);
2095				return (NULL);
2096			}
2097		}
2098		mtx_unlock(&nblock);
2099	} else {
2100		/*
2101		 * We finally have a valid bp.  We aren't quite out of the
2102		 * woods, we still have to reserve kva space.  In order
2103		 * to keep fragmentation sane we only allocate kva in
2104		 * BKVASIZE chunks.
2105		 */
2106		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2107
2108		if (maxsize != bp->b_kvasize) {
2109			vm_offset_t addr = 0;
2110
2111			bfreekva(bp);
2112
2113			vm_map_lock(buffer_map);
2114			if (vm_map_findspace(buffer_map,
2115				vm_map_min(buffer_map), maxsize, &addr)) {
2116				/*
2117				 * Uh oh.  Buffer map is to fragmented.  We
2118				 * must defragment the map.
2119				 */
2120				atomic_add_int(&bufdefragcnt, 1);
2121				vm_map_unlock(buffer_map);
2122				defrag = 1;
2123				bp->b_flags |= B_INVAL;
2124				brelse(bp);
2125				goto restart;
2126			}
2127			if (addr) {
2128				vm_map_insert(buffer_map, NULL, 0,
2129					addr, addr + maxsize,
2130					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2131
2132				bp->b_kvabase = (caddr_t) addr;
2133				bp->b_kvasize = maxsize;
2134				atomic_add_long(&bufspace, bp->b_kvasize);
2135				atomic_add_int(&bufreusecnt, 1);
2136			}
2137			vm_map_unlock(buffer_map);
2138		}
2139		bp->b_saveaddr = bp->b_kvabase;
2140		bp->b_data = bp->b_saveaddr;
2141	}
2142	return(bp);
2143}
2144
2145/*
2146 *	buf_daemon:
2147 *
2148 *	buffer flushing daemon.  Buffers are normally flushed by the
2149 *	update daemon but if it cannot keep up this process starts to
2150 *	take the load in an attempt to prevent getnewbuf() from blocking.
2151 */
2152
2153static struct kproc_desc buf_kp = {
2154	"bufdaemon",
2155	buf_daemon,
2156	&bufdaemonproc
2157};
2158SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2159
2160static int
2161buf_do_flush(struct vnode *vp)
2162{
2163	int flushed;
2164
2165	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2166	if (flushed == 0) {
2167		/*
2168		 * Could not find any buffers without rollback
2169		 * dependencies, so just write the first one
2170		 * in the hopes of eventually making progress.
2171		 */
2172		flushbufqueues(vp, QUEUE_DIRTY, 1);
2173	}
2174	return (flushed);
2175}
2176
2177static void
2178buf_daemon()
2179{
2180	int lodirtysave;
2181
2182	/*
2183	 * This process needs to be suspended prior to shutdown sync.
2184	 */
2185	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2186	    SHUTDOWN_PRI_LAST);
2187
2188	/*
2189	 * This process is allowed to take the buffer cache to the limit
2190	 */
2191	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2192	mtx_lock(&bdlock);
2193	for (;;) {
2194		bd_request = 0;
2195		mtx_unlock(&bdlock);
2196
2197		kproc_suspend_check(bufdaemonproc);
2198		lodirtysave = lodirtybuffers;
2199		if (bd_speedupreq) {
2200			lodirtybuffers = numdirtybuffers / 2;
2201			bd_speedupreq = 0;
2202		}
2203		/*
2204		 * Do the flush.  Limit the amount of in-transit I/O we
2205		 * allow to build up, otherwise we would completely saturate
2206		 * the I/O system.  Wakeup any waiting processes before we
2207		 * normally would so they can run in parallel with our drain.
2208		 */
2209		while (numdirtybuffers > lodirtybuffers) {
2210			if (buf_do_flush(NULL) == 0)
2211				break;
2212			kern_yield(PRI_UNCHANGED);
2213		}
2214		lodirtybuffers = lodirtysave;
2215
2216		/*
2217		 * Only clear bd_request if we have reached our low water
2218		 * mark.  The buf_daemon normally waits 1 second and
2219		 * then incrementally flushes any dirty buffers that have
2220		 * built up, within reason.
2221		 *
2222		 * If we were unable to hit our low water mark and couldn't
2223		 * find any flushable buffers, we sleep half a second.
2224		 * Otherwise we loop immediately.
2225		 */
2226		mtx_lock(&bdlock);
2227		if (numdirtybuffers <= lodirtybuffers) {
2228			/*
2229			 * We reached our low water mark, reset the
2230			 * request and sleep until we are needed again.
2231			 * The sleep is just so the suspend code works.
2232			 */
2233			bd_request = 0;
2234			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2235		} else {
2236			/*
2237			 * We couldn't find any flushable dirty buffers but
2238			 * still have too many dirty buffers, we
2239			 * have to sleep and try again.  (rare)
2240			 */
2241			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2242		}
2243	}
2244}
2245
2246/*
2247 *	flushbufqueues:
2248 *
2249 *	Try to flush a buffer in the dirty queue.  We must be careful to
2250 *	free up B_INVAL buffers instead of write them, which NFS is
2251 *	particularly sensitive to.
2252 */
2253static int flushwithdeps = 0;
2254SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2255    0, "Number of buffers flushed with dependecies that require rollbacks");
2256
2257static int
2258flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2259{
2260	struct buf *sentinel;
2261	struct vnode *vp;
2262	struct mount *mp;
2263	struct buf *bp;
2264	int hasdeps;
2265	int flushed;
2266	int target;
2267
2268	if (lvp == NULL) {
2269		target = numdirtybuffers - lodirtybuffers;
2270		if (flushdeps && target > 2)
2271			target /= 2;
2272	} else
2273		target = flushbufqtarget;
2274	flushed = 0;
2275	bp = NULL;
2276	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2277	sentinel->b_qindex = QUEUE_SENTINEL;
2278	mtx_lock(&bqlock);
2279	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2280	while (flushed != target) {
2281		bp = TAILQ_NEXT(sentinel, b_freelist);
2282		if (bp != NULL) {
2283			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2284			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2285			    b_freelist);
2286		} else
2287			break;
2288		/*
2289		 * Skip sentinels inserted by other invocations of the
2290		 * flushbufqueues(), taking care to not reorder them.
2291		 */
2292		if (bp->b_qindex == QUEUE_SENTINEL)
2293			continue;
2294		/*
2295		 * Only flush the buffers that belong to the
2296		 * vnode locked by the curthread.
2297		 */
2298		if (lvp != NULL && bp->b_vp != lvp)
2299			continue;
2300		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2301			continue;
2302		if (bp->b_pin_count > 0) {
2303			BUF_UNLOCK(bp);
2304			continue;
2305		}
2306		BO_LOCK(bp->b_bufobj);
2307		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2308		    (bp->b_flags & B_DELWRI) == 0) {
2309			BO_UNLOCK(bp->b_bufobj);
2310			BUF_UNLOCK(bp);
2311			continue;
2312		}
2313		BO_UNLOCK(bp->b_bufobj);
2314		if (bp->b_flags & B_INVAL) {
2315			bremfreel(bp);
2316			mtx_unlock(&bqlock);
2317			brelse(bp);
2318			flushed++;
2319			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2320			mtx_lock(&bqlock);
2321			continue;
2322		}
2323
2324		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2325			if (flushdeps == 0) {
2326				BUF_UNLOCK(bp);
2327				continue;
2328			}
2329			hasdeps = 1;
2330		} else
2331			hasdeps = 0;
2332		/*
2333		 * We must hold the lock on a vnode before writing
2334		 * one of its buffers. Otherwise we may confuse, or
2335		 * in the case of a snapshot vnode, deadlock the
2336		 * system.
2337		 *
2338		 * The lock order here is the reverse of the normal
2339		 * of vnode followed by buf lock.  This is ok because
2340		 * the NOWAIT will prevent deadlock.
2341		 */
2342		vp = bp->b_vp;
2343		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2344			BUF_UNLOCK(bp);
2345			continue;
2346		}
2347		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2348			mtx_unlock(&bqlock);
2349			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2350			    bp, bp->b_vp, bp->b_flags);
2351			if (curproc == bufdaemonproc)
2352				vfs_bio_awrite(bp);
2353			else {
2354				bremfree(bp);
2355				bwrite(bp);
2356				notbufdflashes++;
2357			}
2358			vn_finished_write(mp);
2359			VOP_UNLOCK(vp, 0);
2360			flushwithdeps += hasdeps;
2361			flushed++;
2362
2363			/*
2364			 * Sleeping on runningbufspace while holding
2365			 * vnode lock leads to deadlock.
2366			 */
2367			if (curproc == bufdaemonproc)
2368				waitrunningbufspace();
2369			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2370			mtx_lock(&bqlock);
2371			continue;
2372		}
2373		vn_finished_write(mp);
2374		BUF_UNLOCK(bp);
2375	}
2376	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2377	mtx_unlock(&bqlock);
2378	free(sentinel, M_TEMP);
2379	return (flushed);
2380}
2381
2382/*
2383 * Check to see if a block is currently memory resident.
2384 */
2385struct buf *
2386incore(struct bufobj *bo, daddr_t blkno)
2387{
2388	struct buf *bp;
2389
2390	BO_LOCK(bo);
2391	bp = gbincore(bo, blkno);
2392	BO_UNLOCK(bo);
2393	return (bp);
2394}
2395
2396/*
2397 * Returns true if no I/O is needed to access the
2398 * associated VM object.  This is like incore except
2399 * it also hunts around in the VM system for the data.
2400 */
2401
2402static int
2403inmem(struct vnode * vp, daddr_t blkno)
2404{
2405	vm_object_t obj;
2406	vm_offset_t toff, tinc, size;
2407	vm_page_t m;
2408	vm_ooffset_t off;
2409
2410	ASSERT_VOP_LOCKED(vp, "inmem");
2411
2412	if (incore(&vp->v_bufobj, blkno))
2413		return 1;
2414	if (vp->v_mount == NULL)
2415		return 0;
2416	obj = vp->v_object;
2417	if (obj == NULL)
2418		return (0);
2419
2420	size = PAGE_SIZE;
2421	if (size > vp->v_mount->mnt_stat.f_iosize)
2422		size = vp->v_mount->mnt_stat.f_iosize;
2423	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2424
2425	VM_OBJECT_LOCK(obj);
2426	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2427		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2428		if (!m)
2429			goto notinmem;
2430		tinc = size;
2431		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2432			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2433		if (vm_page_is_valid(m,
2434		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2435			goto notinmem;
2436	}
2437	VM_OBJECT_UNLOCK(obj);
2438	return 1;
2439
2440notinmem:
2441	VM_OBJECT_UNLOCK(obj);
2442	return (0);
2443}
2444
2445/*
2446 * Set the dirty range for a buffer based on the status of the dirty
2447 * bits in the pages comprising the buffer.  The range is limited
2448 * to the size of the buffer.
2449 *
2450 * Tell the VM system that the pages associated with this buffer
2451 * are clean.  This is used for delayed writes where the data is
2452 * going to go to disk eventually without additional VM intevention.
2453 *
2454 * Note that while we only really need to clean through to b_bcount, we
2455 * just go ahead and clean through to b_bufsize.
2456 */
2457static void
2458vfs_clean_pages_dirty_buf(struct buf *bp)
2459{
2460	vm_ooffset_t foff, noff, eoff;
2461	vm_page_t m;
2462	int i;
2463
2464	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2465		return;
2466
2467	foff = bp->b_offset;
2468	KASSERT(bp->b_offset != NOOFFSET,
2469	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2470
2471	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2472	vfs_drain_busy_pages(bp);
2473	vfs_setdirty_locked_object(bp);
2474	for (i = 0; i < bp->b_npages; i++) {
2475		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2476		eoff = noff;
2477		if (eoff > bp->b_offset + bp->b_bufsize)
2478			eoff = bp->b_offset + bp->b_bufsize;
2479		m = bp->b_pages[i];
2480		vfs_page_set_validclean(bp, foff, m);
2481		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2482		foff = noff;
2483	}
2484	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2485}
2486
2487static void
2488vfs_setdirty_locked_object(struct buf *bp)
2489{
2490	vm_object_t object;
2491	int i;
2492
2493	object = bp->b_bufobj->bo_object;
2494	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2495
2496	/*
2497	 * We qualify the scan for modified pages on whether the
2498	 * object has been flushed yet.
2499	 */
2500	if ((object->flags & OBJ_MIGHTBEDIRTY) != 0) {
2501		vm_offset_t boffset;
2502		vm_offset_t eoffset;
2503
2504		/*
2505		 * test the pages to see if they have been modified directly
2506		 * by users through the VM system.
2507		 */
2508		for (i = 0; i < bp->b_npages; i++)
2509			vm_page_test_dirty(bp->b_pages[i]);
2510
2511		/*
2512		 * Calculate the encompassing dirty range, boffset and eoffset,
2513		 * (eoffset - boffset) bytes.
2514		 */
2515
2516		for (i = 0; i < bp->b_npages; i++) {
2517			if (bp->b_pages[i]->dirty)
2518				break;
2519		}
2520		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2521
2522		for (i = bp->b_npages - 1; i >= 0; --i) {
2523			if (bp->b_pages[i]->dirty) {
2524				break;
2525			}
2526		}
2527		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2528
2529		/*
2530		 * Fit it to the buffer.
2531		 */
2532
2533		if (eoffset > bp->b_bcount)
2534			eoffset = bp->b_bcount;
2535
2536		/*
2537		 * If we have a good dirty range, merge with the existing
2538		 * dirty range.
2539		 */
2540
2541		if (boffset < eoffset) {
2542			if (bp->b_dirtyoff > boffset)
2543				bp->b_dirtyoff = boffset;
2544			if (bp->b_dirtyend < eoffset)
2545				bp->b_dirtyend = eoffset;
2546		}
2547	}
2548}
2549
2550/*
2551 *	getblk:
2552 *
2553 *	Get a block given a specified block and offset into a file/device.
2554 *	The buffers B_DONE bit will be cleared on return, making it almost
2555 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2556 *	return.  The caller should clear B_INVAL prior to initiating a
2557 *	READ.
2558 *
2559 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2560 *	an existing buffer.
2561 *
2562 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2563 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2564 *	and then cleared based on the backing VM.  If the previous buffer is
2565 *	non-0-sized but invalid, B_CACHE will be cleared.
2566 *
2567 *	If getblk() must create a new buffer, the new buffer is returned with
2568 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2569 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2570 *	backing VM.
2571 *
2572 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2573 *	B_CACHE bit is clear.
2574 *
2575 *	What this means, basically, is that the caller should use B_CACHE to
2576 *	determine whether the buffer is fully valid or not and should clear
2577 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2578 *	the buffer by loading its data area with something, the caller needs
2579 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2580 *	the caller should set B_CACHE ( as an optimization ), else the caller
2581 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2582 *	a write attempt or if it was a successfull read.  If the caller
2583 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2584 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2585 */
2586struct buf *
2587getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2588    int flags)
2589{
2590	struct buf *bp;
2591	struct bufobj *bo;
2592	int error;
2593
2594	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2595	ASSERT_VOP_LOCKED(vp, "getblk");
2596	if (size > MAXBSIZE)
2597		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2598
2599	bo = &vp->v_bufobj;
2600loop:
2601	/*
2602	 * Block if we are low on buffers.   Certain processes are allowed
2603	 * to completely exhaust the buffer cache.
2604         *
2605         * If this check ever becomes a bottleneck it may be better to
2606         * move it into the else, when gbincore() fails.  At the moment
2607         * it isn't a problem.
2608         */
2609	if (numfreebuffers == 0) {
2610		if (TD_IS_IDLETHREAD(curthread))
2611			return NULL;
2612		mtx_lock(&nblock);
2613		needsbuffer |= VFS_BIO_NEED_ANY;
2614		mtx_unlock(&nblock);
2615	}
2616
2617	BO_LOCK(bo);
2618	bp = gbincore(bo, blkno);
2619	if (bp != NULL) {
2620		int lockflags;
2621		/*
2622		 * Buffer is in-core.  If the buffer is not busy nor managed,
2623		 * it must be on a queue.
2624		 */
2625		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2626
2627		if (flags & GB_LOCK_NOWAIT)
2628			lockflags |= LK_NOWAIT;
2629
2630		error = BUF_TIMELOCK(bp, lockflags,
2631		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2632
2633		/*
2634		 * If we slept and got the lock we have to restart in case
2635		 * the buffer changed identities.
2636		 */
2637		if (error == ENOLCK)
2638			goto loop;
2639		/* We timed out or were interrupted. */
2640		else if (error)
2641			return (NULL);
2642
2643		/*
2644		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2645		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2646		 * and for a VMIO buffer B_CACHE is adjusted according to the
2647		 * backing VM cache.
2648		 */
2649		if (bp->b_flags & B_INVAL)
2650			bp->b_flags &= ~B_CACHE;
2651		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2652			bp->b_flags |= B_CACHE;
2653		if (bp->b_flags & B_MANAGED)
2654			MPASS(bp->b_qindex == QUEUE_NONE);
2655		else {
2656			BO_LOCK(bo);
2657			bremfree(bp);
2658			BO_UNLOCK(bo);
2659		}
2660
2661		/*
2662		 * check for size inconsistancies for non-VMIO case.
2663		 */
2664
2665		if (bp->b_bcount != size) {
2666			if ((bp->b_flags & B_VMIO) == 0 ||
2667			    (size > bp->b_kvasize)) {
2668				if (bp->b_flags & B_DELWRI) {
2669					/*
2670					 * If buffer is pinned and caller does
2671					 * not want sleep  waiting for it to be
2672					 * unpinned, bail out
2673					 * */
2674					if (bp->b_pin_count > 0) {
2675						if (flags & GB_LOCK_NOWAIT) {
2676							bqrelse(bp);
2677							return (NULL);
2678						} else {
2679							bunpin_wait(bp);
2680						}
2681					}
2682					bp->b_flags |= B_NOCACHE;
2683					bwrite(bp);
2684				} else {
2685					if (LIST_EMPTY(&bp->b_dep)) {
2686						bp->b_flags |= B_RELBUF;
2687						brelse(bp);
2688					} else {
2689						bp->b_flags |= B_NOCACHE;
2690						bwrite(bp);
2691					}
2692				}
2693				goto loop;
2694			}
2695		}
2696
2697		/*
2698		 * If the size is inconsistant in the VMIO case, we can resize
2699		 * the buffer.  This might lead to B_CACHE getting set or
2700		 * cleared.  If the size has not changed, B_CACHE remains
2701		 * unchanged from its previous state.
2702		 */
2703
2704		if (bp->b_bcount != size)
2705			allocbuf(bp, size);
2706
2707		KASSERT(bp->b_offset != NOOFFSET,
2708		    ("getblk: no buffer offset"));
2709
2710		/*
2711		 * A buffer with B_DELWRI set and B_CACHE clear must
2712		 * be committed before we can return the buffer in
2713		 * order to prevent the caller from issuing a read
2714		 * ( due to B_CACHE not being set ) and overwriting
2715		 * it.
2716		 *
2717		 * Most callers, including NFS and FFS, need this to
2718		 * operate properly either because they assume they
2719		 * can issue a read if B_CACHE is not set, or because
2720		 * ( for example ) an uncached B_DELWRI might loop due
2721		 * to softupdates re-dirtying the buffer.  In the latter
2722		 * case, B_CACHE is set after the first write completes,
2723		 * preventing further loops.
2724		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2725		 * above while extending the buffer, we cannot allow the
2726		 * buffer to remain with B_CACHE set after the write
2727		 * completes or it will represent a corrupt state.  To
2728		 * deal with this we set B_NOCACHE to scrap the buffer
2729		 * after the write.
2730		 *
2731		 * We might be able to do something fancy, like setting
2732		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2733		 * so the below call doesn't set B_CACHE, but that gets real
2734		 * confusing.  This is much easier.
2735		 */
2736
2737		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2738			bp->b_flags |= B_NOCACHE;
2739			bwrite(bp);
2740			goto loop;
2741		}
2742		bp->b_flags &= ~B_DONE;
2743	} else {
2744		int bsize, maxsize, vmio;
2745		off_t offset;
2746
2747		/*
2748		 * Buffer is not in-core, create new buffer.  The buffer
2749		 * returned by getnewbuf() is locked.  Note that the returned
2750		 * buffer is also considered valid (not marked B_INVAL).
2751		 */
2752		BO_UNLOCK(bo);
2753		/*
2754		 * If the user does not want us to create the buffer, bail out
2755		 * here.
2756		 */
2757		if (flags & GB_NOCREAT)
2758			return NULL;
2759		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
2760		offset = blkno * bsize;
2761		vmio = vp->v_object != NULL;
2762		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2763		maxsize = imax(maxsize, bsize);
2764
2765		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2766		if (bp == NULL) {
2767			if (slpflag || slptimeo)
2768				return NULL;
2769			goto loop;
2770		}
2771
2772		/*
2773		 * This code is used to make sure that a buffer is not
2774		 * created while the getnewbuf routine is blocked.
2775		 * This can be a problem whether the vnode is locked or not.
2776		 * If the buffer is created out from under us, we have to
2777		 * throw away the one we just created.
2778		 *
2779		 * Note: this must occur before we associate the buffer
2780		 * with the vp especially considering limitations in
2781		 * the splay tree implementation when dealing with duplicate
2782		 * lblkno's.
2783		 */
2784		BO_LOCK(bo);
2785		if (gbincore(bo, blkno)) {
2786			BO_UNLOCK(bo);
2787			bp->b_flags |= B_INVAL;
2788			brelse(bp);
2789			goto loop;
2790		}
2791
2792		/*
2793		 * Insert the buffer into the hash, so that it can
2794		 * be found by incore.
2795		 */
2796		bp->b_blkno = bp->b_lblkno = blkno;
2797		bp->b_offset = offset;
2798		bgetvp(vp, bp);
2799		BO_UNLOCK(bo);
2800
2801		/*
2802		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2803		 * buffer size starts out as 0, B_CACHE will be set by
2804		 * allocbuf() for the VMIO case prior to it testing the
2805		 * backing store for validity.
2806		 */
2807
2808		if (vmio) {
2809			bp->b_flags |= B_VMIO;
2810			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2811			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2812			    bp, vp->v_object, bp->b_bufobj->bo_object));
2813		} else {
2814			bp->b_flags &= ~B_VMIO;
2815			KASSERT(bp->b_bufobj->bo_object == NULL,
2816			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2817			    bp, bp->b_bufobj->bo_object));
2818		}
2819
2820		allocbuf(bp, size);
2821		bp->b_flags &= ~B_DONE;
2822	}
2823	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2824	BUF_ASSERT_HELD(bp);
2825	KASSERT(bp->b_bufobj == bo,
2826	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2827	return (bp);
2828}
2829
2830/*
2831 * Get an empty, disassociated buffer of given size.  The buffer is initially
2832 * set to B_INVAL.
2833 */
2834struct buf *
2835geteblk(int size, int flags)
2836{
2837	struct buf *bp;
2838	int maxsize;
2839
2840	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2841	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2842		if ((flags & GB_NOWAIT_BD) &&
2843		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2844			return (NULL);
2845	}
2846	allocbuf(bp, size);
2847	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2848	BUF_ASSERT_HELD(bp);
2849	return (bp);
2850}
2851
2852
2853/*
2854 * This code constitutes the buffer memory from either anonymous system
2855 * memory (in the case of non-VMIO operations) or from an associated
2856 * VM object (in the case of VMIO operations).  This code is able to
2857 * resize a buffer up or down.
2858 *
2859 * Note that this code is tricky, and has many complications to resolve
2860 * deadlock or inconsistant data situations.  Tread lightly!!!
2861 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2862 * the caller.  Calling this code willy nilly can result in the loss of data.
2863 *
2864 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2865 * B_CACHE for the non-VMIO case.
2866 */
2867
2868int
2869allocbuf(struct buf *bp, int size)
2870{
2871	int newbsize, mbsize;
2872	int i;
2873
2874	BUF_ASSERT_HELD(bp);
2875
2876	if (bp->b_kvasize < size)
2877		panic("allocbuf: buffer too small");
2878
2879	if ((bp->b_flags & B_VMIO) == 0) {
2880		caddr_t origbuf;
2881		int origbufsize;
2882		/*
2883		 * Just get anonymous memory from the kernel.  Don't
2884		 * mess with B_CACHE.
2885		 */
2886		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2887		if (bp->b_flags & B_MALLOC)
2888			newbsize = mbsize;
2889		else
2890			newbsize = round_page(size);
2891
2892		if (newbsize < bp->b_bufsize) {
2893			/*
2894			 * malloced buffers are not shrunk
2895			 */
2896			if (bp->b_flags & B_MALLOC) {
2897				if (newbsize) {
2898					bp->b_bcount = size;
2899				} else {
2900					free(bp->b_data, M_BIOBUF);
2901					if (bp->b_bufsize) {
2902						atomic_subtract_long(
2903						    &bufmallocspace,
2904						    bp->b_bufsize);
2905						bufspacewakeup();
2906						bp->b_bufsize = 0;
2907					}
2908					bp->b_saveaddr = bp->b_kvabase;
2909					bp->b_data = bp->b_saveaddr;
2910					bp->b_bcount = 0;
2911					bp->b_flags &= ~B_MALLOC;
2912				}
2913				return 1;
2914			}
2915			vm_hold_free_pages(bp, newbsize);
2916		} else if (newbsize > bp->b_bufsize) {
2917			/*
2918			 * We only use malloced memory on the first allocation.
2919			 * and revert to page-allocated memory when the buffer
2920			 * grows.
2921			 */
2922			/*
2923			 * There is a potential smp race here that could lead
2924			 * to bufmallocspace slightly passing the max.  It
2925			 * is probably extremely rare and not worth worrying
2926			 * over.
2927			 */
2928			if ( (bufmallocspace < maxbufmallocspace) &&
2929				(bp->b_bufsize == 0) &&
2930				(mbsize <= PAGE_SIZE/2)) {
2931
2932				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2933				bp->b_bufsize = mbsize;
2934				bp->b_bcount = size;
2935				bp->b_flags |= B_MALLOC;
2936				atomic_add_long(&bufmallocspace, mbsize);
2937				return 1;
2938			}
2939			origbuf = NULL;
2940			origbufsize = 0;
2941			/*
2942			 * If the buffer is growing on its other-than-first allocation,
2943			 * then we revert to the page-allocation scheme.
2944			 */
2945			if (bp->b_flags & B_MALLOC) {
2946				origbuf = bp->b_data;
2947				origbufsize = bp->b_bufsize;
2948				bp->b_data = bp->b_kvabase;
2949				if (bp->b_bufsize) {
2950					atomic_subtract_long(&bufmallocspace,
2951					    bp->b_bufsize);
2952					bufspacewakeup();
2953					bp->b_bufsize = 0;
2954				}
2955				bp->b_flags &= ~B_MALLOC;
2956				newbsize = round_page(newbsize);
2957			}
2958			vm_hold_load_pages(
2959			    bp,
2960			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2961			    (vm_offset_t) bp->b_data + newbsize);
2962			if (origbuf) {
2963				bcopy(origbuf, bp->b_data, origbufsize);
2964				free(origbuf, M_BIOBUF);
2965			}
2966		}
2967	} else {
2968		int desiredpages;
2969
2970		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2971		desiredpages = (size == 0) ? 0 :
2972			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2973
2974		if (bp->b_flags & B_MALLOC)
2975			panic("allocbuf: VMIO buffer can't be malloced");
2976		/*
2977		 * Set B_CACHE initially if buffer is 0 length or will become
2978		 * 0-length.
2979		 */
2980		if (size == 0 || bp->b_bufsize == 0)
2981			bp->b_flags |= B_CACHE;
2982
2983		if (newbsize < bp->b_bufsize) {
2984			/*
2985			 * DEV_BSIZE aligned new buffer size is less then the
2986			 * DEV_BSIZE aligned existing buffer size.  Figure out
2987			 * if we have to remove any pages.
2988			 */
2989			if (desiredpages < bp->b_npages) {
2990				vm_page_t m;
2991
2992				pmap_qremove((vm_offset_t)trunc_page(
2993				    (vm_offset_t)bp->b_data) +
2994				    (desiredpages << PAGE_SHIFT),
2995				    (bp->b_npages - desiredpages));
2996				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2997				for (i = desiredpages; i < bp->b_npages; i++) {
2998					/*
2999					 * the page is not freed here -- it
3000					 * is the responsibility of
3001					 * vnode_pager_setsize
3002					 */
3003					m = bp->b_pages[i];
3004					KASSERT(m != bogus_page,
3005					    ("allocbuf: bogus page found"));
3006					while (vm_page_sleep_if_busy(m, TRUE,
3007					    "biodep"))
3008						continue;
3009
3010					bp->b_pages[i] = NULL;
3011					vm_page_lock(m);
3012					vm_page_unwire(m, 0);
3013					vm_page_unlock(m);
3014				}
3015				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3016				bp->b_npages = desiredpages;
3017			}
3018		} else if (size > bp->b_bcount) {
3019			/*
3020			 * We are growing the buffer, possibly in a
3021			 * byte-granular fashion.
3022			 */
3023			vm_object_t obj;
3024			vm_offset_t toff;
3025			vm_offset_t tinc;
3026
3027			/*
3028			 * Step 1, bring in the VM pages from the object,
3029			 * allocating them if necessary.  We must clear
3030			 * B_CACHE if these pages are not valid for the
3031			 * range covered by the buffer.
3032			 */
3033
3034			obj = bp->b_bufobj->bo_object;
3035
3036			VM_OBJECT_LOCK(obj);
3037			while (bp->b_npages < desiredpages) {
3038				vm_page_t m;
3039
3040				/*
3041				 * We must allocate system pages since blocking
3042				 * here could interfere with paging I/O, no
3043				 * matter which process we are.
3044				 *
3045				 * We can only test VPO_BUSY here.  Blocking on
3046				 * m->busy might lead to a deadlock:
3047				 *  vm_fault->getpages->cluster_read->allocbuf
3048				 * Thus, we specify VM_ALLOC_IGN_SBUSY.
3049				 */
3050				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3051				    bp->b_npages, VM_ALLOC_NOBUSY |
3052				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3053				    VM_ALLOC_RETRY | VM_ALLOC_IGN_SBUSY |
3054				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3055				if (m->valid == 0)
3056					bp->b_flags &= ~B_CACHE;
3057				bp->b_pages[bp->b_npages] = m;
3058				++bp->b_npages;
3059			}
3060
3061			/*
3062			 * Step 2.  We've loaded the pages into the buffer,
3063			 * we have to figure out if we can still have B_CACHE
3064			 * set.  Note that B_CACHE is set according to the
3065			 * byte-granular range ( bcount and size ), new the
3066			 * aligned range ( newbsize ).
3067			 *
3068			 * The VM test is against m->valid, which is DEV_BSIZE
3069			 * aligned.  Needless to say, the validity of the data
3070			 * needs to also be DEV_BSIZE aligned.  Note that this
3071			 * fails with NFS if the server or some other client
3072			 * extends the file's EOF.  If our buffer is resized,
3073			 * B_CACHE may remain set! XXX
3074			 */
3075
3076			toff = bp->b_bcount;
3077			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3078
3079			while ((bp->b_flags & B_CACHE) && toff < size) {
3080				vm_pindex_t pi;
3081
3082				if (tinc > (size - toff))
3083					tinc = size - toff;
3084
3085				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3086				    PAGE_SHIFT;
3087
3088				vfs_buf_test_cache(
3089				    bp,
3090				    bp->b_offset,
3091				    toff,
3092				    tinc,
3093				    bp->b_pages[pi]
3094				);
3095				toff += tinc;
3096				tinc = PAGE_SIZE;
3097			}
3098			VM_OBJECT_UNLOCK(obj);
3099
3100			/*
3101			 * Step 3, fixup the KVM pmap.  Remember that
3102			 * bp->b_data is relative to bp->b_offset, but
3103			 * bp->b_offset may be offset into the first page.
3104			 */
3105
3106			bp->b_data = (caddr_t)
3107			    trunc_page((vm_offset_t)bp->b_data);
3108			pmap_qenter(
3109			    (vm_offset_t)bp->b_data,
3110			    bp->b_pages,
3111			    bp->b_npages
3112			);
3113
3114			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3115			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3116		}
3117	}
3118	if (newbsize < bp->b_bufsize)
3119		bufspacewakeup();
3120	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3121	bp->b_bcount = size;		/* requested buffer size	*/
3122	return 1;
3123}
3124
3125void
3126biodone(struct bio *bp)
3127{
3128	struct mtx *mtxp;
3129	void (*done)(struct bio *);
3130
3131	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3132	mtx_lock(mtxp);
3133	bp->bio_flags |= BIO_DONE;
3134	done = bp->bio_done;
3135	if (done == NULL)
3136		wakeup(bp);
3137	mtx_unlock(mtxp);
3138	if (done != NULL)
3139		done(bp);
3140}
3141
3142/*
3143 * Wait for a BIO to finish.
3144 *
3145 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3146 * case is not yet clear.
3147 */
3148int
3149biowait(struct bio *bp, const char *wchan)
3150{
3151	struct mtx *mtxp;
3152
3153	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3154	mtx_lock(mtxp);
3155	while ((bp->bio_flags & BIO_DONE) == 0)
3156		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3157	mtx_unlock(mtxp);
3158	if (bp->bio_error != 0)
3159		return (bp->bio_error);
3160	if (!(bp->bio_flags & BIO_ERROR))
3161		return (0);
3162	return (EIO);
3163}
3164
3165void
3166biofinish(struct bio *bp, struct devstat *stat, int error)
3167{
3168
3169	if (error) {
3170		bp->bio_error = error;
3171		bp->bio_flags |= BIO_ERROR;
3172	}
3173	if (stat != NULL)
3174		devstat_end_transaction_bio(stat, bp);
3175	biodone(bp);
3176}
3177
3178/*
3179 *	bufwait:
3180 *
3181 *	Wait for buffer I/O completion, returning error status.  The buffer
3182 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3183 *	error and cleared.
3184 */
3185int
3186bufwait(struct buf *bp)
3187{
3188	if (bp->b_iocmd == BIO_READ)
3189		bwait(bp, PRIBIO, "biord");
3190	else
3191		bwait(bp, PRIBIO, "biowr");
3192	if (bp->b_flags & B_EINTR) {
3193		bp->b_flags &= ~B_EINTR;
3194		return (EINTR);
3195	}
3196	if (bp->b_ioflags & BIO_ERROR) {
3197		return (bp->b_error ? bp->b_error : EIO);
3198	} else {
3199		return (0);
3200	}
3201}
3202
3203 /*
3204  * Call back function from struct bio back up to struct buf.
3205  */
3206static void
3207bufdonebio(struct bio *bip)
3208{
3209	struct buf *bp;
3210
3211	bp = bip->bio_caller2;
3212	bp->b_resid = bp->b_bcount - bip->bio_completed;
3213	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3214	bp->b_ioflags = bip->bio_flags;
3215	bp->b_error = bip->bio_error;
3216	if (bp->b_error)
3217		bp->b_ioflags |= BIO_ERROR;
3218	bufdone(bp);
3219	g_destroy_bio(bip);
3220}
3221
3222void
3223dev_strategy(struct cdev *dev, struct buf *bp)
3224{
3225	struct cdevsw *csw;
3226	struct bio *bip;
3227	int ref;
3228
3229	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3230		panic("b_iocmd botch");
3231	for (;;) {
3232		bip = g_new_bio();
3233		if (bip != NULL)
3234			break;
3235		/* Try again later */
3236		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3237	}
3238	bip->bio_cmd = bp->b_iocmd;
3239	bip->bio_offset = bp->b_iooffset;
3240	bip->bio_length = bp->b_bcount;
3241	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3242	bip->bio_data = bp->b_data;
3243	bip->bio_done = bufdonebio;
3244	bip->bio_caller2 = bp;
3245	bip->bio_dev = dev;
3246	KASSERT(dev->si_refcount > 0,
3247	    ("dev_strategy on un-referenced struct cdev *(%s)",
3248	    devtoname(dev)));
3249	csw = dev_refthread(dev, &ref);
3250	if (csw == NULL) {
3251		g_destroy_bio(bip);
3252		bp->b_error = ENXIO;
3253		bp->b_ioflags = BIO_ERROR;
3254		bufdone(bp);
3255		return;
3256	}
3257	(*csw->d_strategy)(bip);
3258	dev_relthread(dev, ref);
3259}
3260
3261/*
3262 *	bufdone:
3263 *
3264 *	Finish I/O on a buffer, optionally calling a completion function.
3265 *	This is usually called from an interrupt so process blocking is
3266 *	not allowed.
3267 *
3268 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3269 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3270 *	assuming B_INVAL is clear.
3271 *
3272 *	For the VMIO case, we set B_CACHE if the op was a read and no
3273 *	read error occured, or if the op was a write.  B_CACHE is never
3274 *	set if the buffer is invalid or otherwise uncacheable.
3275 *
3276 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3277 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3278 *	in the biodone routine.
3279 */
3280void
3281bufdone(struct buf *bp)
3282{
3283	struct bufobj *dropobj;
3284	void    (*biodone)(struct buf *);
3285
3286	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3287	dropobj = NULL;
3288
3289	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3290	BUF_ASSERT_HELD(bp);
3291
3292	runningbufwakeup(bp);
3293	if (bp->b_iocmd == BIO_WRITE)
3294		dropobj = bp->b_bufobj;
3295	/* call optional completion function if requested */
3296	if (bp->b_iodone != NULL) {
3297		biodone = bp->b_iodone;
3298		bp->b_iodone = NULL;
3299		(*biodone) (bp);
3300		if (dropobj)
3301			bufobj_wdrop(dropobj);
3302		return;
3303	}
3304
3305	bufdone_finish(bp);
3306
3307	if (dropobj)
3308		bufobj_wdrop(dropobj);
3309}
3310
3311void
3312bufdone_finish(struct buf *bp)
3313{
3314	BUF_ASSERT_HELD(bp);
3315
3316	if (!LIST_EMPTY(&bp->b_dep))
3317		buf_complete(bp);
3318
3319	if (bp->b_flags & B_VMIO) {
3320		vm_ooffset_t foff;
3321		vm_page_t m;
3322		vm_object_t obj;
3323		struct vnode *vp;
3324		int bogus, i, iosize;
3325
3326		obj = bp->b_bufobj->bo_object;
3327		KASSERT(obj->paging_in_progress >= bp->b_npages,
3328		    ("biodone_finish: paging in progress(%d) < b_npages(%d)",
3329		    obj->paging_in_progress, bp->b_npages));
3330
3331		vp = bp->b_vp;
3332		KASSERT(vp->v_holdcnt > 0,
3333		    ("biodone_finish: vnode %p has zero hold count", vp));
3334		KASSERT(vp->v_object != NULL,
3335		    ("biodone_finish: vnode %p has no vm_object", vp));
3336
3337		foff = bp->b_offset;
3338		KASSERT(bp->b_offset != NOOFFSET,
3339		    ("biodone_finish: bp %p has no buffer offset", bp));
3340
3341		/*
3342		 * Set B_CACHE if the op was a normal read and no error
3343		 * occured.  B_CACHE is set for writes in the b*write()
3344		 * routines.
3345		 */
3346		iosize = bp->b_bcount - bp->b_resid;
3347		if (bp->b_iocmd == BIO_READ &&
3348		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3349		    !(bp->b_ioflags & BIO_ERROR)) {
3350			bp->b_flags |= B_CACHE;
3351		}
3352		bogus = 0;
3353		VM_OBJECT_LOCK(obj);
3354		for (i = 0; i < bp->b_npages; i++) {
3355			int bogusflag = 0;
3356			int resid;
3357
3358			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3359			if (resid > iosize)
3360				resid = iosize;
3361
3362			/*
3363			 * cleanup bogus pages, restoring the originals
3364			 */
3365			m = bp->b_pages[i];
3366			if (m == bogus_page) {
3367				bogus = bogusflag = 1;
3368				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3369				if (m == NULL)
3370					panic("biodone: page disappeared!");
3371				bp->b_pages[i] = m;
3372			}
3373			KASSERT(OFF_TO_IDX(foff) == m->pindex,
3374			    ("biodone_finish: foff(%jd)/pindex(%ju) mismatch",
3375			    (intmax_t)foff, (uintmax_t)m->pindex));
3376
3377			/*
3378			 * In the write case, the valid and clean bits are
3379			 * already changed correctly ( see bdwrite() ), so we
3380			 * only need to do this here in the read case.
3381			 */
3382			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3383				KASSERT((m->dirty & vm_page_bits(foff &
3384				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3385				    " page %p has unexpected dirty bits", m));
3386				vfs_page_set_valid(bp, foff, m);
3387			}
3388
3389			vm_page_io_finish(m);
3390			vm_object_pip_subtract(obj, 1);
3391			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3392			iosize -= resid;
3393		}
3394		vm_object_pip_wakeupn(obj, 0);
3395		VM_OBJECT_UNLOCK(obj);
3396		if (bogus)
3397			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3398			    bp->b_pages, bp->b_npages);
3399	}
3400
3401	/*
3402	 * For asynchronous completions, release the buffer now. The brelse
3403	 * will do a wakeup there if necessary - so no need to do a wakeup
3404	 * here in the async case. The sync case always needs to do a wakeup.
3405	 */
3406
3407	if (bp->b_flags & B_ASYNC) {
3408		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3409			brelse(bp);
3410		else
3411			bqrelse(bp);
3412	} else
3413		bdone(bp);
3414}
3415
3416/*
3417 * This routine is called in lieu of iodone in the case of
3418 * incomplete I/O.  This keeps the busy status for pages
3419 * consistant.
3420 */
3421void
3422vfs_unbusy_pages(struct buf *bp)
3423{
3424	int i;
3425	vm_object_t obj;
3426	vm_page_t m;
3427
3428	runningbufwakeup(bp);
3429	if (!(bp->b_flags & B_VMIO))
3430		return;
3431
3432	obj = bp->b_bufobj->bo_object;
3433	VM_OBJECT_LOCK(obj);
3434	for (i = 0; i < bp->b_npages; i++) {
3435		m = bp->b_pages[i];
3436		if (m == bogus_page) {
3437			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3438			if (!m)
3439				panic("vfs_unbusy_pages: page missing\n");
3440			bp->b_pages[i] = m;
3441			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3442			    bp->b_pages, bp->b_npages);
3443		}
3444		vm_object_pip_subtract(obj, 1);
3445		vm_page_io_finish(m);
3446	}
3447	vm_object_pip_wakeupn(obj, 0);
3448	VM_OBJECT_UNLOCK(obj);
3449}
3450
3451/*
3452 * vfs_page_set_valid:
3453 *
3454 *	Set the valid bits in a page based on the supplied offset.   The
3455 *	range is restricted to the buffer's size.
3456 *
3457 *	This routine is typically called after a read completes.
3458 */
3459static void
3460vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3461{
3462	vm_ooffset_t eoff;
3463
3464	/*
3465	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3466	 * page boundary and eoff is not greater than the end of the buffer.
3467	 * The end of the buffer, in this case, is our file EOF, not the
3468	 * allocation size of the buffer.
3469	 */
3470	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3471	if (eoff > bp->b_offset + bp->b_bcount)
3472		eoff = bp->b_offset + bp->b_bcount;
3473
3474	/*
3475	 * Set valid range.  This is typically the entire buffer and thus the
3476	 * entire page.
3477	 */
3478	if (eoff > off)
3479		vm_page_set_valid_range(m, off & PAGE_MASK, eoff - off);
3480}
3481
3482/*
3483 * vfs_page_set_validclean:
3484 *
3485 *	Set the valid bits and clear the dirty bits in a page based on the
3486 *	supplied offset.   The range is restricted to the buffer's size.
3487 */
3488static void
3489vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3490{
3491	vm_ooffset_t soff, eoff;
3492
3493	/*
3494	 * Start and end offsets in buffer.  eoff - soff may not cross a
3495	 * page boundry or cross the end of the buffer.  The end of the
3496	 * buffer, in this case, is our file EOF, not the allocation size
3497	 * of the buffer.
3498	 */
3499	soff = off;
3500	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3501	if (eoff > bp->b_offset + bp->b_bcount)
3502		eoff = bp->b_offset + bp->b_bcount;
3503
3504	/*
3505	 * Set valid range.  This is typically the entire buffer and thus the
3506	 * entire page.
3507	 */
3508	if (eoff > soff) {
3509		vm_page_set_validclean(
3510		    m,
3511		   (vm_offset_t) (soff & PAGE_MASK),
3512		   (vm_offset_t) (eoff - soff)
3513		);
3514	}
3515}
3516
3517/*
3518 * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
3519 * any page is busy, drain the flag.
3520 */
3521static void
3522vfs_drain_busy_pages(struct buf *bp)
3523{
3524	vm_page_t m;
3525	int i, last_busied;
3526
3527	VM_OBJECT_LOCK_ASSERT(bp->b_bufobj->bo_object, MA_OWNED);
3528	last_busied = 0;
3529	for (i = 0; i < bp->b_npages; i++) {
3530		m = bp->b_pages[i];
3531		if ((m->oflags & VPO_BUSY) != 0) {
3532			for (; last_busied < i; last_busied++)
3533				vm_page_busy(bp->b_pages[last_busied]);
3534			while ((m->oflags & VPO_BUSY) != 0)
3535				vm_page_sleep(m, "vbpage");
3536		}
3537	}
3538	for (i = 0; i < last_busied; i++)
3539		vm_page_wakeup(bp->b_pages[i]);
3540}
3541
3542/*
3543 * This routine is called before a device strategy routine.
3544 * It is used to tell the VM system that paging I/O is in
3545 * progress, and treat the pages associated with the buffer
3546 * almost as being VPO_BUSY.  Also the object paging_in_progress
3547 * flag is handled to make sure that the object doesn't become
3548 * inconsistant.
3549 *
3550 * Since I/O has not been initiated yet, certain buffer flags
3551 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3552 * and should be ignored.
3553 */
3554void
3555vfs_busy_pages(struct buf *bp, int clear_modify)
3556{
3557	int i, bogus;
3558	vm_object_t obj;
3559	vm_ooffset_t foff;
3560	vm_page_t m;
3561
3562	if (!(bp->b_flags & B_VMIO))
3563		return;
3564
3565	obj = bp->b_bufobj->bo_object;
3566	foff = bp->b_offset;
3567	KASSERT(bp->b_offset != NOOFFSET,
3568	    ("vfs_busy_pages: no buffer offset"));
3569	VM_OBJECT_LOCK(obj);
3570	vfs_drain_busy_pages(bp);
3571	if (bp->b_bufsize != 0)
3572		vfs_setdirty_locked_object(bp);
3573	bogus = 0;
3574	for (i = 0; i < bp->b_npages; i++) {
3575		m = bp->b_pages[i];
3576
3577		if ((bp->b_flags & B_CLUSTER) == 0) {
3578			vm_object_pip_add(obj, 1);
3579			vm_page_io_start(m);
3580		}
3581		/*
3582		 * When readying a buffer for a read ( i.e
3583		 * clear_modify == 0 ), it is important to do
3584		 * bogus_page replacement for valid pages in
3585		 * partially instantiated buffers.  Partially
3586		 * instantiated buffers can, in turn, occur when
3587		 * reconstituting a buffer from its VM backing store
3588		 * base.  We only have to do this if B_CACHE is
3589		 * clear ( which causes the I/O to occur in the
3590		 * first place ).  The replacement prevents the read
3591		 * I/O from overwriting potentially dirty VM-backed
3592		 * pages.  XXX bogus page replacement is, uh, bogus.
3593		 * It may not work properly with small-block devices.
3594		 * We need to find a better way.
3595		 */
3596		if (clear_modify) {
3597			pmap_remove_write(m);
3598			vfs_page_set_validclean(bp, foff, m);
3599		} else if (m->valid == VM_PAGE_BITS_ALL &&
3600		    (bp->b_flags & B_CACHE) == 0) {
3601			bp->b_pages[i] = bogus_page;
3602			bogus++;
3603		}
3604		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3605	}
3606	VM_OBJECT_UNLOCK(obj);
3607	if (bogus)
3608		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3609		    bp->b_pages, bp->b_npages);
3610}
3611
3612/*
3613 *	vfs_bio_set_valid:
3614 *
3615 *	Set the range within the buffer to valid.  The range is
3616 *	relative to the beginning of the buffer, b_offset.  Note that
3617 *	b_offset itself may be offset from the beginning of the first
3618 *	page.
3619 */
3620void
3621vfs_bio_set_valid(struct buf *bp, int base, int size)
3622{
3623	int i, n;
3624	vm_page_t m;
3625
3626	if (!(bp->b_flags & B_VMIO))
3627		return;
3628
3629	/*
3630	 * Fixup base to be relative to beginning of first page.
3631	 * Set initial n to be the maximum number of bytes in the
3632	 * first page that can be validated.
3633	 */
3634	base += (bp->b_offset & PAGE_MASK);
3635	n = PAGE_SIZE - (base & PAGE_MASK);
3636
3637	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3638	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3639		m = bp->b_pages[i];
3640		if (n > size)
3641			n = size;
3642		vm_page_set_valid_range(m, base & PAGE_MASK, n);
3643		base += n;
3644		size -= n;
3645		n = PAGE_SIZE;
3646	}
3647	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3648}
3649
3650/*
3651 *	vfs_bio_clrbuf:
3652 *
3653 *	If the specified buffer is a non-VMIO buffer, clear the entire
3654 *	buffer.  If the specified buffer is a VMIO buffer, clear and
3655 *	validate only the previously invalid portions of the buffer.
3656 *	This routine essentially fakes an I/O, so we need to clear
3657 *	BIO_ERROR and B_INVAL.
3658 *
3659 *	Note that while we only theoretically need to clear through b_bcount,
3660 *	we go ahead and clear through b_bufsize.
3661 */
3662void
3663vfs_bio_clrbuf(struct buf *bp)
3664{
3665	int i, j, mask;
3666	caddr_t sa, ea;
3667
3668	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3669		clrbuf(bp);
3670		return;
3671	}
3672	bp->b_flags &= ~B_INVAL;
3673	bp->b_ioflags &= ~BIO_ERROR;
3674	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3675	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3676	    (bp->b_offset & PAGE_MASK) == 0) {
3677		if (bp->b_pages[0] == bogus_page)
3678			goto unlock;
3679		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3680		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3681		if ((bp->b_pages[0]->valid & mask) == mask)
3682			goto unlock;
3683		if ((bp->b_pages[0]->valid & mask) == 0) {
3684			bzero(bp->b_data, bp->b_bufsize);
3685			bp->b_pages[0]->valid |= mask;
3686			goto unlock;
3687		}
3688	}
3689	ea = sa = bp->b_data;
3690	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3691		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3692		ea = (caddr_t)(vm_offset_t)ulmin(
3693		    (u_long)(vm_offset_t)ea,
3694		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3695		if (bp->b_pages[i] == bogus_page)
3696			continue;
3697		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3698		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3699		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3700		if ((bp->b_pages[i]->valid & mask) == mask)
3701			continue;
3702		if ((bp->b_pages[i]->valid & mask) == 0)
3703			bzero(sa, ea - sa);
3704		else {
3705			for (; sa < ea; sa += DEV_BSIZE, j++) {
3706				if ((bp->b_pages[i]->valid & (1 << j)) == 0)
3707					bzero(sa, DEV_BSIZE);
3708			}
3709		}
3710		bp->b_pages[i]->valid |= mask;
3711	}
3712unlock:
3713	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3714	bp->b_resid = 0;
3715}
3716
3717/*
3718 * vm_hold_load_pages and vm_hold_free_pages get pages into
3719 * a buffers address space.  The pages are anonymous and are
3720 * not associated with a file object.
3721 */
3722static void
3723vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3724{
3725	vm_offset_t pg;
3726	vm_page_t p;
3727	int index;
3728
3729	to = round_page(to);
3730	from = round_page(from);
3731	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3732
3733	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3734tryagain:
3735		/*
3736		 * note: must allocate system pages since blocking here
3737		 * could interfere with paging I/O, no matter which
3738		 * process we are.
3739		 */
3740		p = vm_page_alloc(NULL, 0, VM_ALLOC_SYSTEM | VM_ALLOC_NOOBJ |
3741		    VM_ALLOC_WIRED | VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
3742		if (p == NULL) {
3743			VM_WAIT;
3744			goto tryagain;
3745		}
3746		pmap_qenter(pg, &p, 1);
3747		bp->b_pages[index] = p;
3748	}
3749	bp->b_npages = index;
3750}
3751
3752/* Return pages associated with this buf to the vm system */
3753static void
3754vm_hold_free_pages(struct buf *bp, int newbsize)
3755{
3756	vm_offset_t from;
3757	vm_page_t p;
3758	int index, newnpages;
3759
3760	from = round_page((vm_offset_t)bp->b_data + newbsize);
3761	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3762	if (bp->b_npages > newnpages)
3763		pmap_qremove(from, bp->b_npages - newnpages);
3764	for (index = newnpages; index < bp->b_npages; index++) {
3765		p = bp->b_pages[index];
3766		bp->b_pages[index] = NULL;
3767		if (p->busy != 0)
3768			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3769			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
3770		p->wire_count--;
3771		vm_page_free(p);
3772		atomic_subtract_int(&cnt.v_wire_count, 1);
3773	}
3774	bp->b_npages = newnpages;
3775}
3776
3777/*
3778 * Map an IO request into kernel virtual address space.
3779 *
3780 * All requests are (re)mapped into kernel VA space.
3781 * Notice that we use b_bufsize for the size of the buffer
3782 * to be mapped.  b_bcount might be modified by the driver.
3783 *
3784 * Note that even if the caller determines that the address space should
3785 * be valid, a race or a smaller-file mapped into a larger space may
3786 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3787 * check the return value.
3788 */
3789int
3790vmapbuf(struct buf *bp)
3791{
3792	caddr_t kva;
3793	vm_prot_t prot;
3794	int pidx;
3795
3796	if (bp->b_bufsize < 0)
3797		return (-1);
3798	prot = VM_PROT_READ;
3799	if (bp->b_iocmd == BIO_READ)
3800		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3801	if ((pidx = vm_fault_quick_hold_pages(&curproc->p_vmspace->vm_map,
3802	    (vm_offset_t)bp->b_data, bp->b_bufsize, prot, bp->b_pages,
3803	    btoc(MAXPHYS))) < 0)
3804		return (-1);
3805	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3806
3807	kva = bp->b_saveaddr;
3808	bp->b_npages = pidx;
3809	bp->b_saveaddr = bp->b_data;
3810	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3811	return(0);
3812}
3813
3814/*
3815 * Free the io map PTEs associated with this IO operation.
3816 * We also invalidate the TLB entries and restore the original b_addr.
3817 */
3818void
3819vunmapbuf(struct buf *bp)
3820{
3821	int npages;
3822
3823	npages = bp->b_npages;
3824	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3825	vm_page_unhold_pages(bp->b_pages, npages);
3826
3827	bp->b_data = bp->b_saveaddr;
3828}
3829
3830void
3831bdone(struct buf *bp)
3832{
3833	struct mtx *mtxp;
3834
3835	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3836	mtx_lock(mtxp);
3837	bp->b_flags |= B_DONE;
3838	wakeup(bp);
3839	mtx_unlock(mtxp);
3840}
3841
3842void
3843bwait(struct buf *bp, u_char pri, const char *wchan)
3844{
3845	struct mtx *mtxp;
3846
3847	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3848	mtx_lock(mtxp);
3849	while ((bp->b_flags & B_DONE) == 0)
3850		msleep(bp, mtxp, pri, wchan, 0);
3851	mtx_unlock(mtxp);
3852}
3853
3854int
3855bufsync(struct bufobj *bo, int waitfor)
3856{
3857
3858	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3859}
3860
3861void
3862bufstrategy(struct bufobj *bo, struct buf *bp)
3863{
3864	int i = 0;
3865	struct vnode *vp;
3866
3867	vp = bp->b_vp;
3868	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3869	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3870	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3871	i = VOP_STRATEGY(vp, bp);
3872	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3873}
3874
3875void
3876bufobj_wrefl(struct bufobj *bo)
3877{
3878
3879	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3880	ASSERT_BO_LOCKED(bo);
3881	bo->bo_numoutput++;
3882}
3883
3884void
3885bufobj_wref(struct bufobj *bo)
3886{
3887
3888	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3889	BO_LOCK(bo);
3890	bo->bo_numoutput++;
3891	BO_UNLOCK(bo);
3892}
3893
3894void
3895bufobj_wdrop(struct bufobj *bo)
3896{
3897
3898	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3899	BO_LOCK(bo);
3900	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3901	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3902		bo->bo_flag &= ~BO_WWAIT;
3903		wakeup(&bo->bo_numoutput);
3904	}
3905	BO_UNLOCK(bo);
3906}
3907
3908int
3909bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3910{
3911	int error;
3912
3913	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3914	ASSERT_BO_LOCKED(bo);
3915	error = 0;
3916	while (bo->bo_numoutput) {
3917		bo->bo_flag |= BO_WWAIT;
3918		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3919		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3920		if (error)
3921			break;
3922	}
3923	return (error);
3924}
3925
3926void
3927bpin(struct buf *bp)
3928{
3929	struct mtx *mtxp;
3930
3931	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3932	mtx_lock(mtxp);
3933	bp->b_pin_count++;
3934	mtx_unlock(mtxp);
3935}
3936
3937void
3938bunpin(struct buf *bp)
3939{
3940	struct mtx *mtxp;
3941
3942	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3943	mtx_lock(mtxp);
3944	if (--bp->b_pin_count == 0)
3945		wakeup(bp);
3946	mtx_unlock(mtxp);
3947}
3948
3949void
3950bunpin_wait(struct buf *bp)
3951{
3952	struct mtx *mtxp;
3953
3954	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3955	mtx_lock(mtxp);
3956	while (bp->b_pin_count > 0)
3957		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
3958	mtx_unlock(mtxp);
3959}
3960
3961#include "opt_ddb.h"
3962#ifdef DDB
3963#include <ddb/ddb.h>
3964
3965/* DDB command to show buffer data */
3966DB_SHOW_COMMAND(buffer, db_show_buffer)
3967{
3968	/* get args */
3969	struct buf *bp = (struct buf *)addr;
3970
3971	if (!have_addr) {
3972		db_printf("usage: show buffer <addr>\n");
3973		return;
3974	}
3975
3976	db_printf("buf at %p\n", bp);
3977	db_printf("b_flags = 0x%b, b_xflags=0x%b, b_vflags=0x%b\n",
3978	    (u_int)bp->b_flags, PRINT_BUF_FLAGS, (u_int)bp->b_xflags,
3979	    PRINT_BUF_XFLAGS, (u_int)bp->b_vflags, PRINT_BUF_VFLAGS);
3980	db_printf(
3981	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3982	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_lblkno = %jd, "
3983	    "b_dep = %p\n",
3984	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3985	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
3986	    (intmax_t)bp->b_lblkno, bp->b_dep.lh_first);
3987	if (bp->b_npages) {
3988		int i;
3989		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3990		for (i = 0; i < bp->b_npages; i++) {
3991			vm_page_t m;
3992			m = bp->b_pages[i];
3993			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3994			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3995			if ((i + 1) < bp->b_npages)
3996				db_printf(",");
3997		}
3998		db_printf("\n");
3999	}
4000	db_printf(" ");
4001	BUF_LOCKPRINTINFO(bp);
4002}
4003
4004DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4005{
4006	struct buf *bp;
4007	int i;
4008
4009	for (i = 0; i < nbuf; i++) {
4010		bp = &buf[i];
4011		if (BUF_ISLOCKED(bp)) {
4012			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4013			db_printf("\n");
4014		}
4015	}
4016}
4017
4018DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4019{
4020	struct vnode *vp;
4021	struct buf *bp;
4022
4023	if (!have_addr) {
4024		db_printf("usage: show vnodebufs <addr>\n");
4025		return;
4026	}
4027	vp = (struct vnode *)addr;
4028	db_printf("Clean buffers:\n");
4029	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4030		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4031		db_printf("\n");
4032	}
4033	db_printf("Dirty buffers:\n");
4034	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4035		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4036		db_printf("\n");
4037	}
4038}
4039
4040DB_COMMAND(countfreebufs, db_coundfreebufs)
4041{
4042	struct buf *bp;
4043	int i, used = 0, nfree = 0;
4044
4045	if (have_addr) {
4046		db_printf("usage: countfreebufs\n");
4047		return;
4048	}
4049
4050	for (i = 0; i < nbuf; i++) {
4051		bp = &buf[i];
4052		if ((bp->b_vflags & BV_INFREECNT) != 0)
4053			nfree++;
4054		else
4055			used++;
4056	}
4057
4058	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4059	    nfree + used);
4060	db_printf("numfreebuffers is %d\n", numfreebuffers);
4061}
4062#endif /* DDB */
4063