vfs_bio.c revision 209902
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 209902 2010-07-11 20:11:44Z alc $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/fail.h>
52#include <sys/limits.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mount.h>
56#include <sys/mutex.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/proc.h>
60#include <sys/resourcevar.h>
61#include <sys/sysctl.h>
62#include <sys/vmmeter.h>
63#include <sys/vnode.h>
64#include <geom/geom.h>
65#include <vm/vm.h>
66#include <vm/vm_param.h>
67#include <vm/vm_kern.h>
68#include <vm/vm_pageout.h>
69#include <vm/vm_page.h>
70#include <vm/vm_object.h>
71#include <vm/vm_extern.h>
72#include <vm/vm_map.h>
73#include "opt_compat.h"
74#include "opt_directio.h"
75#include "opt_swap.h"
76
77static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
78
79struct	bio_ops bioops;		/* I/O operation notification */
80
81struct	buf_ops buf_ops_bio = {
82	.bop_name	=	"buf_ops_bio",
83	.bop_write	=	bufwrite,
84	.bop_strategy	=	bufstrategy,
85	.bop_sync	=	bufsync,
86	.bop_bdflush	=	bufbdflush,
87};
88
89/*
90 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
91 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
92 */
93struct buf *buf;		/* buffer header pool */
94
95static struct proc *bufdaemonproc;
96
97static int inmem(struct vnode *vp, daddr_t blkno);
98static void vm_hold_free_pages(struct buf *bp, int newbsize);
99static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
100		vm_offset_t to);
101static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
102static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
103		vm_page_t m);
104static void vfs_drain_busy_pages(struct buf *bp);
105static void vfs_clean_pages_dirty_buf(struct buf *bp);
106static void vfs_setdirty_locked_object(struct buf *bp);
107static void vfs_vmio_release(struct buf *bp);
108static int vfs_bio_clcheck(struct vnode *vp, int size,
109		daddr_t lblkno, daddr_t blkno);
110static int buf_do_flush(struct vnode *vp);
111static int flushbufqueues(struct vnode *, int, int);
112static void buf_daemon(void);
113static void bremfreel(struct buf *bp);
114#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
115    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
116static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
117#endif
118
119int vmiodirenable = TRUE;
120SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
121    "Use the VM system for directory writes");
122long runningbufspace;
123SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
124    "Amount of presently outstanding async buffer io");
125static long bufspace;
126#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
127    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
128SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
129    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
130#else
131SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
132    "Virtual memory used for buffers");
133#endif
134static long maxbufspace;
135SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
136    "Maximum allowed value of bufspace (including buf_daemon)");
137static long bufmallocspace;
138SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
139    "Amount of malloced memory for buffers");
140static long maxbufmallocspace;
141SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
142    "Maximum amount of malloced memory for buffers");
143static long lobufspace;
144SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
145    "Minimum amount of buffers we want to have");
146long hibufspace;
147SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
148    "Maximum allowed value of bufspace (excluding buf_daemon)");
149static int bufreusecnt;
150SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
151    "Number of times we have reused a buffer");
152static int buffreekvacnt;
153SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
154    "Number of times we have freed the KVA space from some buffer");
155static int bufdefragcnt;
156SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
157    "Number of times we have had to repeat buffer allocation to defragment");
158static long lorunningspace;
159SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
160    "Minimum preferred space used for in-progress I/O");
161static long hirunningspace;
162SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
163    "Maximum amount of space to use for in-progress I/O");
164int dirtybufferflushes;
165SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
166    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
167int bdwriteskip;
168SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
169    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
170int altbufferflushes;
171SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
172    0, "Number of fsync flushes to limit dirty buffers");
173static int recursiveflushes;
174SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
175    0, "Number of flushes skipped due to being recursive");
176static int numdirtybuffers;
177SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
178    "Number of buffers that are dirty (has unwritten changes) at the moment");
179static int lodirtybuffers;
180SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
181    "How many buffers we want to have free before bufdaemon can sleep");
182static int hidirtybuffers;
183SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
184    "When the number of dirty buffers is considered severe");
185int dirtybufthresh;
186SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
187    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
188static int numfreebuffers;
189SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
190    "Number of free buffers");
191static int lofreebuffers;
192SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
193   "XXX Unused");
194static int hifreebuffers;
195SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
196   "XXX Complicatedly unused");
197static int getnewbufcalls;
198SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
199   "Number of calls to getnewbuf");
200static int getnewbufrestarts;
201SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
202    "Number of times getnewbuf has had to restart a buffer aquisition");
203static int flushbufqtarget = 100;
204SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
205    "Amount of work to do in flushbufqueues when helping bufdaemon");
206static long notbufdflashes;
207SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
208    "Number of dirty buffer flushes done by the bufdaemon helpers");
209
210/*
211 * Wakeup point for bufdaemon, as well as indicator of whether it is already
212 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
213 * is idling.
214 */
215static int bd_request;
216
217/*
218 * Request for the buf daemon to write more buffers than is indicated by
219 * lodirtybuf.  This may be necessary to push out excess dependencies or
220 * defragment the address space where a simple count of the number of dirty
221 * buffers is insufficient to characterize the demand for flushing them.
222 */
223static int bd_speedupreq;
224
225/*
226 * This lock synchronizes access to bd_request.
227 */
228static struct mtx bdlock;
229
230/*
231 * bogus page -- for I/O to/from partially complete buffers
232 * this is a temporary solution to the problem, but it is not
233 * really that bad.  it would be better to split the buffer
234 * for input in the case of buffers partially already in memory,
235 * but the code is intricate enough already.
236 */
237vm_page_t bogus_page;
238
239/*
240 * Synchronization (sleep/wakeup) variable for active buffer space requests.
241 * Set when wait starts, cleared prior to wakeup().
242 * Used in runningbufwakeup() and waitrunningbufspace().
243 */
244static int runningbufreq;
245
246/*
247 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
248 * waitrunningbufspace().
249 */
250static struct mtx rbreqlock;
251
252/*
253 * Synchronization (sleep/wakeup) variable for buffer requests.
254 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
255 * by and/or.
256 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
257 * getnewbuf(), and getblk().
258 */
259static int needsbuffer;
260
261/*
262 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
263 */
264static struct mtx nblock;
265
266/*
267 * Definitions for the buffer free lists.
268 */
269#define BUFFER_QUEUES	6	/* number of free buffer queues */
270
271#define QUEUE_NONE	0	/* on no queue */
272#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
273#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
274#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
275#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
276#define QUEUE_EMPTY	5	/* empty buffer headers */
277#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
278
279/* Queues for free buffers with various properties */
280static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
281
282/* Lock for the bufqueues */
283static struct mtx bqlock;
284
285/*
286 * Single global constant for BUF_WMESG, to avoid getting multiple references.
287 * buf_wmesg is referred from macros.
288 */
289const char *buf_wmesg = BUF_WMESG;
290
291#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
292#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
293#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
294#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
295
296#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
297    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
298static int
299sysctl_bufspace(SYSCTL_HANDLER_ARGS)
300{
301	long lvalue;
302	int ivalue;
303
304	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
305		return (sysctl_handle_long(oidp, arg1, arg2, req));
306	lvalue = *(long *)arg1;
307	if (lvalue > INT_MAX)
308		/* On overflow, still write out a long to trigger ENOMEM. */
309		return (sysctl_handle_long(oidp, &lvalue, 0, req));
310	ivalue = lvalue;
311	return (sysctl_handle_int(oidp, &ivalue, 0, req));
312}
313#endif
314
315#ifdef DIRECTIO
316extern void ffs_rawread_setup(void);
317#endif /* DIRECTIO */
318/*
319 *	numdirtywakeup:
320 *
321 *	If someone is blocked due to there being too many dirty buffers,
322 *	and numdirtybuffers is now reasonable, wake them up.
323 */
324
325static __inline void
326numdirtywakeup(int level)
327{
328
329	if (numdirtybuffers <= level) {
330		mtx_lock(&nblock);
331		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
332			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
333			wakeup(&needsbuffer);
334		}
335		mtx_unlock(&nblock);
336	}
337}
338
339/*
340 *	bufspacewakeup:
341 *
342 *	Called when buffer space is potentially available for recovery.
343 *	getnewbuf() will block on this flag when it is unable to free
344 *	sufficient buffer space.  Buffer space becomes recoverable when
345 *	bp's get placed back in the queues.
346 */
347
348static __inline void
349bufspacewakeup(void)
350{
351
352	/*
353	 * If someone is waiting for BUF space, wake them up.  Even
354	 * though we haven't freed the kva space yet, the waiting
355	 * process will be able to now.
356	 */
357	mtx_lock(&nblock);
358	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
359		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
360		wakeup(&needsbuffer);
361	}
362	mtx_unlock(&nblock);
363}
364
365/*
366 * runningbufwakeup() - in-progress I/O accounting.
367 *
368 */
369void
370runningbufwakeup(struct buf *bp)
371{
372
373	if (bp->b_runningbufspace) {
374		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
375		bp->b_runningbufspace = 0;
376		mtx_lock(&rbreqlock);
377		if (runningbufreq && runningbufspace <= lorunningspace) {
378			runningbufreq = 0;
379			wakeup(&runningbufreq);
380		}
381		mtx_unlock(&rbreqlock);
382	}
383}
384
385/*
386 *	bufcountwakeup:
387 *
388 *	Called when a buffer has been added to one of the free queues to
389 *	account for the buffer and to wakeup anyone waiting for free buffers.
390 *	This typically occurs when large amounts of metadata are being handled
391 *	by the buffer cache ( else buffer space runs out first, usually ).
392 */
393
394static __inline void
395bufcountwakeup(struct buf *bp)
396{
397	int old;
398
399	KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
400	    ("buf %p already counted as free", bp));
401	bp->b_vflags |= BV_INFREECNT;
402	old = atomic_fetchadd_int(&numfreebuffers, 1);
403	KASSERT(old >= 0 && old < nbuf,
404	    ("numfreebuffers climbed to %d", old + 1));
405	mtx_lock(&nblock);
406	if (needsbuffer) {
407		needsbuffer &= ~VFS_BIO_NEED_ANY;
408		if (numfreebuffers >= hifreebuffers)
409			needsbuffer &= ~VFS_BIO_NEED_FREE;
410		wakeup(&needsbuffer);
411	}
412	mtx_unlock(&nblock);
413}
414
415/*
416 *	waitrunningbufspace()
417 *
418 *	runningbufspace is a measure of the amount of I/O currently
419 *	running.  This routine is used in async-write situations to
420 *	prevent creating huge backups of pending writes to a device.
421 *	Only asynchronous writes are governed by this function.
422 *
423 *	Reads will adjust runningbufspace, but will not block based on it.
424 *	The read load has a side effect of reducing the allowed write load.
425 *
426 *	This does NOT turn an async write into a sync write.  It waits
427 *	for earlier writes to complete and generally returns before the
428 *	caller's write has reached the device.
429 */
430void
431waitrunningbufspace(void)
432{
433
434	mtx_lock(&rbreqlock);
435	while (runningbufspace > hirunningspace) {
436		++runningbufreq;
437		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
438	}
439	mtx_unlock(&rbreqlock);
440}
441
442
443/*
444 *	vfs_buf_test_cache:
445 *
446 *	Called when a buffer is extended.  This function clears the B_CACHE
447 *	bit if the newly extended portion of the buffer does not contain
448 *	valid data.
449 */
450static __inline
451void
452vfs_buf_test_cache(struct buf *bp,
453		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
454		  vm_page_t m)
455{
456
457	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
458	if (bp->b_flags & B_CACHE) {
459		int base = (foff + off) & PAGE_MASK;
460		if (vm_page_is_valid(m, base, size) == 0)
461			bp->b_flags &= ~B_CACHE;
462	}
463}
464
465/* Wake up the buffer daemon if necessary */
466static __inline
467void
468bd_wakeup(int dirtybuflevel)
469{
470
471	mtx_lock(&bdlock);
472	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
473		bd_request = 1;
474		wakeup(&bd_request);
475	}
476	mtx_unlock(&bdlock);
477}
478
479/*
480 * bd_speedup - speedup the buffer cache flushing code
481 */
482
483void
484bd_speedup(void)
485{
486	int needwake;
487
488	mtx_lock(&bdlock);
489	needwake = 0;
490	if (bd_speedupreq == 0 || bd_request == 0)
491		needwake = 1;
492	bd_speedupreq = 1;
493	bd_request = 1;
494	if (needwake)
495		wakeup(&bd_request);
496	mtx_unlock(&bdlock);
497}
498
499/*
500 * Calculating buffer cache scaling values and reserve space for buffer
501 * headers.  This is called during low level kernel initialization and
502 * may be called more then once.  We CANNOT write to the memory area
503 * being reserved at this time.
504 */
505caddr_t
506kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
507{
508	int tuned_nbuf;
509	long maxbuf;
510
511	/*
512	 * physmem_est is in pages.  Convert it to kilobytes (assumes
513	 * PAGE_SIZE is >= 1K)
514	 */
515	physmem_est = physmem_est * (PAGE_SIZE / 1024);
516
517	/*
518	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
519	 * For the first 64MB of ram nominally allocate sufficient buffers to
520	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
521	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
522	 * the buffer cache we limit the eventual kva reservation to
523	 * maxbcache bytes.
524	 *
525	 * factor represents the 1/4 x ram conversion.
526	 */
527	if (nbuf == 0) {
528		int factor = 4 * BKVASIZE / 1024;
529
530		nbuf = 50;
531		if (physmem_est > 4096)
532			nbuf += min((physmem_est - 4096) / factor,
533			    65536 / factor);
534		if (physmem_est > 65536)
535			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
536
537		if (maxbcache && nbuf > maxbcache / BKVASIZE)
538			nbuf = maxbcache / BKVASIZE;
539		tuned_nbuf = 1;
540	} else
541		tuned_nbuf = 0;
542
543	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
544	maxbuf = (LONG_MAX / 3) / BKVASIZE;
545	if (nbuf > maxbuf) {
546		if (!tuned_nbuf)
547			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
548			    maxbuf);
549		nbuf = maxbuf;
550	}
551
552	/*
553	 * swbufs are used as temporary holders for I/O, such as paging I/O.
554	 * We have no less then 16 and no more then 256.
555	 */
556	nswbuf = max(min(nbuf/4, 256), 16);
557#ifdef NSWBUF_MIN
558	if (nswbuf < NSWBUF_MIN)
559		nswbuf = NSWBUF_MIN;
560#endif
561#ifdef DIRECTIO
562	ffs_rawread_setup();
563#endif
564
565	/*
566	 * Reserve space for the buffer cache buffers
567	 */
568	swbuf = (void *)v;
569	v = (caddr_t)(swbuf + nswbuf);
570	buf = (void *)v;
571	v = (caddr_t)(buf + nbuf);
572
573	return(v);
574}
575
576/* Initialize the buffer subsystem.  Called before use of any buffers. */
577void
578bufinit(void)
579{
580	struct buf *bp;
581	int i;
582
583	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
584	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
585	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
586	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
587
588	/* next, make a null set of free lists */
589	for (i = 0; i < BUFFER_QUEUES; i++)
590		TAILQ_INIT(&bufqueues[i]);
591
592	/* finally, initialize each buffer header and stick on empty q */
593	for (i = 0; i < nbuf; i++) {
594		bp = &buf[i];
595		bzero(bp, sizeof *bp);
596		bp->b_flags = B_INVAL;	/* we're just an empty header */
597		bp->b_rcred = NOCRED;
598		bp->b_wcred = NOCRED;
599		bp->b_qindex = QUEUE_EMPTY;
600		bp->b_vflags = BV_INFREECNT;	/* buf is counted as free */
601		bp->b_xflags = 0;
602		LIST_INIT(&bp->b_dep);
603		BUF_LOCKINIT(bp);
604		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
605	}
606
607	/*
608	 * maxbufspace is the absolute maximum amount of buffer space we are
609	 * allowed to reserve in KVM and in real terms.  The absolute maximum
610	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
611	 * used by most other processes.  The differential is required to
612	 * ensure that buf_daemon is able to run when other processes might
613	 * be blocked waiting for buffer space.
614	 *
615	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
616	 * this may result in KVM fragmentation which is not handled optimally
617	 * by the system.
618	 */
619	maxbufspace = (long)nbuf * BKVASIZE;
620	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
621	lobufspace = hibufspace - MAXBSIZE;
622
623	lorunningspace = 512 * 1024;
624	hirunningspace = 1024 * 1024;
625
626/*
627 * Limit the amount of malloc memory since it is wired permanently into
628 * the kernel space.  Even though this is accounted for in the buffer
629 * allocation, we don't want the malloced region to grow uncontrolled.
630 * The malloc scheme improves memory utilization significantly on average
631 * (small) directories.
632 */
633	maxbufmallocspace = hibufspace / 20;
634
635/*
636 * Reduce the chance of a deadlock occuring by limiting the number
637 * of delayed-write dirty buffers we allow to stack up.
638 */
639	hidirtybuffers = nbuf / 4 + 20;
640	dirtybufthresh = hidirtybuffers * 9 / 10;
641	numdirtybuffers = 0;
642/*
643 * To support extreme low-memory systems, make sure hidirtybuffers cannot
644 * eat up all available buffer space.  This occurs when our minimum cannot
645 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
646 * BKVASIZE'd (8K) buffers.
647 */
648	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
649		hidirtybuffers >>= 1;
650	}
651	lodirtybuffers = hidirtybuffers / 2;
652
653/*
654 * Try to keep the number of free buffers in the specified range,
655 * and give special processes (e.g. like buf_daemon) access to an
656 * emergency reserve.
657 */
658	lofreebuffers = nbuf / 18 + 5;
659	hifreebuffers = 2 * lofreebuffers;
660	numfreebuffers = nbuf;
661
662	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
663	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
664}
665
666/*
667 * bfreekva() - free the kva allocation for a buffer.
668 *
669 *	Since this call frees up buffer space, we call bufspacewakeup().
670 */
671static void
672bfreekva(struct buf *bp)
673{
674
675	if (bp->b_kvasize) {
676		atomic_add_int(&buffreekvacnt, 1);
677		atomic_subtract_long(&bufspace, bp->b_kvasize);
678		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
679		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
680		bp->b_kvasize = 0;
681		bufspacewakeup();
682	}
683}
684
685/*
686 *	bremfree:
687 *
688 *	Mark the buffer for removal from the appropriate free list in brelse.
689 *
690 */
691void
692bremfree(struct buf *bp)
693{
694	int old;
695
696	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
697	KASSERT((bp->b_flags & B_REMFREE) == 0,
698	    ("bremfree: buffer %p already marked for delayed removal.", bp));
699	KASSERT(bp->b_qindex != QUEUE_NONE,
700	    ("bremfree: buffer %p not on a queue.", bp));
701	BUF_ASSERT_HELD(bp);
702
703	bp->b_flags |= B_REMFREE;
704	/* Fixup numfreebuffers count.  */
705	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
706		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
707		    ("buf %p not counted in numfreebuffers", bp));
708		bp->b_vflags &= ~BV_INFREECNT;
709		old = atomic_fetchadd_int(&numfreebuffers, -1);
710		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
711	}
712}
713
714/*
715 *	bremfreef:
716 *
717 *	Force an immediate removal from a free list.  Used only in nfs when
718 *	it abuses the b_freelist pointer.
719 */
720void
721bremfreef(struct buf *bp)
722{
723	mtx_lock(&bqlock);
724	bremfreel(bp);
725	mtx_unlock(&bqlock);
726}
727
728/*
729 *	bremfreel:
730 *
731 *	Removes a buffer from the free list, must be called with the
732 *	bqlock held.
733 */
734static void
735bremfreel(struct buf *bp)
736{
737	int old;
738
739	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
740	    bp, bp->b_vp, bp->b_flags);
741	KASSERT(bp->b_qindex != QUEUE_NONE,
742	    ("bremfreel: buffer %p not on a queue.", bp));
743	BUF_ASSERT_HELD(bp);
744	mtx_assert(&bqlock, MA_OWNED);
745
746	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
747	bp->b_qindex = QUEUE_NONE;
748	/*
749	 * If this was a delayed bremfree() we only need to remove the buffer
750	 * from the queue and return the stats are already done.
751	 */
752	if (bp->b_flags & B_REMFREE) {
753		bp->b_flags &= ~B_REMFREE;
754		return;
755	}
756	/*
757	 * Fixup numfreebuffers count.  If the buffer is invalid or not
758	 * delayed-write, the buffer was free and we must decrement
759	 * numfreebuffers.
760	 */
761	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
762		KASSERT((bp->b_vflags & BV_INFREECNT) != 0,
763		    ("buf %p not counted in numfreebuffers", bp));
764		bp->b_vflags &= ~BV_INFREECNT;
765		old = atomic_fetchadd_int(&numfreebuffers, -1);
766		KASSERT(old > 0, ("numfreebuffers dropped to %d", old - 1));
767	}
768}
769
770
771/*
772 * Get a buffer with the specified data.  Look in the cache first.  We
773 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
774 * is set, the buffer is valid and we do not have to do anything ( see
775 * getblk() ).  This is really just a special case of breadn().
776 */
777int
778bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
779    struct buf **bpp)
780{
781
782	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
783}
784
785/*
786 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
787 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
788 * the buffer is valid and we do not have to do anything.
789 */
790void
791breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
792    int cnt, struct ucred * cred)
793{
794	struct buf *rabp;
795	int i;
796
797	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
798		if (inmem(vp, *rablkno))
799			continue;
800		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
801
802		if ((rabp->b_flags & B_CACHE) == 0) {
803			if (!TD_IS_IDLETHREAD(curthread))
804				curthread->td_ru.ru_inblock++;
805			rabp->b_flags |= B_ASYNC;
806			rabp->b_flags &= ~B_INVAL;
807			rabp->b_ioflags &= ~BIO_ERROR;
808			rabp->b_iocmd = BIO_READ;
809			if (rabp->b_rcred == NOCRED && cred != NOCRED)
810				rabp->b_rcred = crhold(cred);
811			vfs_busy_pages(rabp, 0);
812			BUF_KERNPROC(rabp);
813			rabp->b_iooffset = dbtob(rabp->b_blkno);
814			bstrategy(rabp);
815		} else {
816			brelse(rabp);
817		}
818	}
819}
820
821/*
822 * Operates like bread, but also starts asynchronous I/O on
823 * read-ahead blocks.
824 */
825int
826breadn(struct vnode * vp, daddr_t blkno, int size,
827    daddr_t * rablkno, int *rabsize,
828    int cnt, struct ucred * cred, struct buf **bpp)
829{
830	struct buf *bp;
831	int rv = 0, readwait = 0;
832
833	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
834	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
835
836	/* if not found in cache, do some I/O */
837	if ((bp->b_flags & B_CACHE) == 0) {
838		if (!TD_IS_IDLETHREAD(curthread))
839			curthread->td_ru.ru_inblock++;
840		bp->b_iocmd = BIO_READ;
841		bp->b_flags &= ~B_INVAL;
842		bp->b_ioflags &= ~BIO_ERROR;
843		if (bp->b_rcred == NOCRED && cred != NOCRED)
844			bp->b_rcred = crhold(cred);
845		vfs_busy_pages(bp, 0);
846		bp->b_iooffset = dbtob(bp->b_blkno);
847		bstrategy(bp);
848		++readwait;
849	}
850
851	breada(vp, rablkno, rabsize, cnt, cred);
852
853	if (readwait) {
854		rv = bufwait(bp);
855	}
856	return (rv);
857}
858
859/*
860 * Write, release buffer on completion.  (Done by iodone
861 * if async).  Do not bother writing anything if the buffer
862 * is invalid.
863 *
864 * Note that we set B_CACHE here, indicating that buffer is
865 * fully valid and thus cacheable.  This is true even of NFS
866 * now so we set it generally.  This could be set either here
867 * or in biodone() since the I/O is synchronous.  We put it
868 * here.
869 */
870int
871bufwrite(struct buf *bp)
872{
873	int oldflags;
874	struct vnode *vp;
875	int vp_md;
876
877	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
878	if (bp->b_flags & B_INVAL) {
879		brelse(bp);
880		return (0);
881	}
882
883	oldflags = bp->b_flags;
884
885	BUF_ASSERT_HELD(bp);
886
887	if (bp->b_pin_count > 0)
888		bunpin_wait(bp);
889
890	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
891	    ("FFS background buffer should not get here %p", bp));
892
893	vp = bp->b_vp;
894	if (vp)
895		vp_md = vp->v_vflag & VV_MD;
896	else
897		vp_md = 0;
898
899	/* Mark the buffer clean */
900	bundirty(bp);
901
902	bp->b_flags &= ~B_DONE;
903	bp->b_ioflags &= ~BIO_ERROR;
904	bp->b_flags |= B_CACHE;
905	bp->b_iocmd = BIO_WRITE;
906
907	bufobj_wref(bp->b_bufobj);
908	vfs_busy_pages(bp, 1);
909
910	/*
911	 * Normal bwrites pipeline writes
912	 */
913	bp->b_runningbufspace = bp->b_bufsize;
914	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
915
916	if (!TD_IS_IDLETHREAD(curthread))
917		curthread->td_ru.ru_oublock++;
918	if (oldflags & B_ASYNC)
919		BUF_KERNPROC(bp);
920	bp->b_iooffset = dbtob(bp->b_blkno);
921	bstrategy(bp);
922
923	if ((oldflags & B_ASYNC) == 0) {
924		int rtval = bufwait(bp);
925		brelse(bp);
926		return (rtval);
927	} else {
928		/*
929		 * don't allow the async write to saturate the I/O
930		 * system.  We will not deadlock here because
931		 * we are blocking waiting for I/O that is already in-progress
932		 * to complete. We do not block here if it is the update
933		 * or syncer daemon trying to clean up as that can lead
934		 * to deadlock.
935		 */
936		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
937			waitrunningbufspace();
938	}
939
940	return (0);
941}
942
943void
944bufbdflush(struct bufobj *bo, struct buf *bp)
945{
946	struct buf *nbp;
947
948	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
949		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
950		altbufferflushes++;
951	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
952		BO_LOCK(bo);
953		/*
954		 * Try to find a buffer to flush.
955		 */
956		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
957			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
958			    BUF_LOCK(nbp,
959				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
960				continue;
961			if (bp == nbp)
962				panic("bdwrite: found ourselves");
963			BO_UNLOCK(bo);
964			/* Don't countdeps with the bo lock held. */
965			if (buf_countdeps(nbp, 0)) {
966				BO_LOCK(bo);
967				BUF_UNLOCK(nbp);
968				continue;
969			}
970			if (nbp->b_flags & B_CLUSTEROK) {
971				vfs_bio_awrite(nbp);
972			} else {
973				bremfree(nbp);
974				bawrite(nbp);
975			}
976			dirtybufferflushes++;
977			break;
978		}
979		if (nbp == NULL)
980			BO_UNLOCK(bo);
981	}
982}
983
984/*
985 * Delayed write. (Buffer is marked dirty).  Do not bother writing
986 * anything if the buffer is marked invalid.
987 *
988 * Note that since the buffer must be completely valid, we can safely
989 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
990 * biodone() in order to prevent getblk from writing the buffer
991 * out synchronously.
992 */
993void
994bdwrite(struct buf *bp)
995{
996	struct thread *td = curthread;
997	struct vnode *vp;
998	struct bufobj *bo;
999
1000	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1001	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1002	BUF_ASSERT_HELD(bp);
1003
1004	if (bp->b_flags & B_INVAL) {
1005		brelse(bp);
1006		return;
1007	}
1008
1009	/*
1010	 * If we have too many dirty buffers, don't create any more.
1011	 * If we are wildly over our limit, then force a complete
1012	 * cleanup. Otherwise, just keep the situation from getting
1013	 * out of control. Note that we have to avoid a recursive
1014	 * disaster and not try to clean up after our own cleanup!
1015	 */
1016	vp = bp->b_vp;
1017	bo = bp->b_bufobj;
1018	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1019		td->td_pflags |= TDP_INBDFLUSH;
1020		BO_BDFLUSH(bo, bp);
1021		td->td_pflags &= ~TDP_INBDFLUSH;
1022	} else
1023		recursiveflushes++;
1024
1025	bdirty(bp);
1026	/*
1027	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1028	 * true even of NFS now.
1029	 */
1030	bp->b_flags |= B_CACHE;
1031
1032	/*
1033	 * This bmap keeps the system from needing to do the bmap later,
1034	 * perhaps when the system is attempting to do a sync.  Since it
1035	 * is likely that the indirect block -- or whatever other datastructure
1036	 * that the filesystem needs is still in memory now, it is a good
1037	 * thing to do this.  Note also, that if the pageout daemon is
1038	 * requesting a sync -- there might not be enough memory to do
1039	 * the bmap then...  So, this is important to do.
1040	 */
1041	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1042		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1043	}
1044
1045	/*
1046	 * Set the *dirty* buffer range based upon the VM system dirty
1047	 * pages.
1048	 *
1049	 * Mark the buffer pages as clean.  We need to do this here to
1050	 * satisfy the vnode_pager and the pageout daemon, so that it
1051	 * thinks that the pages have been "cleaned".  Note that since
1052	 * the pages are in a delayed write buffer -- the VFS layer
1053	 * "will" see that the pages get written out on the next sync,
1054	 * or perhaps the cluster will be completed.
1055	 */
1056	vfs_clean_pages_dirty_buf(bp);
1057	bqrelse(bp);
1058
1059	/*
1060	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1061	 * buffers (midpoint between our recovery point and our stall
1062	 * point).
1063	 */
1064	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1065
1066	/*
1067	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1068	 * due to the softdep code.
1069	 */
1070}
1071
1072/*
1073 *	bdirty:
1074 *
1075 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1076 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1077 *	itself to properly update it in the dirty/clean lists.  We mark it
1078 *	B_DONE to ensure that any asynchronization of the buffer properly
1079 *	clears B_DONE ( else a panic will occur later ).
1080 *
1081 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1082 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1083 *	should only be called if the buffer is known-good.
1084 *
1085 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1086 *	count.
1087 *
1088 *	The buffer must be on QUEUE_NONE.
1089 */
1090void
1091bdirty(struct buf *bp)
1092{
1093
1094	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1095	    bp, bp->b_vp, bp->b_flags);
1096	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1097	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1098	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1099	BUF_ASSERT_HELD(bp);
1100	bp->b_flags &= ~(B_RELBUF);
1101	bp->b_iocmd = BIO_WRITE;
1102
1103	if ((bp->b_flags & B_DELWRI) == 0) {
1104		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1105		reassignbuf(bp);
1106		atomic_add_int(&numdirtybuffers, 1);
1107		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1108	}
1109}
1110
1111/*
1112 *	bundirty:
1113 *
1114 *	Clear B_DELWRI for buffer.
1115 *
1116 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1117 *	count.
1118 *
1119 *	The buffer must be on QUEUE_NONE.
1120 */
1121
1122void
1123bundirty(struct buf *bp)
1124{
1125
1126	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1127	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1128	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1129	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1130	BUF_ASSERT_HELD(bp);
1131
1132	if (bp->b_flags & B_DELWRI) {
1133		bp->b_flags &= ~B_DELWRI;
1134		reassignbuf(bp);
1135		atomic_subtract_int(&numdirtybuffers, 1);
1136		numdirtywakeup(lodirtybuffers);
1137	}
1138	/*
1139	 * Since it is now being written, we can clear its deferred write flag.
1140	 */
1141	bp->b_flags &= ~B_DEFERRED;
1142}
1143
1144/*
1145 *	bawrite:
1146 *
1147 *	Asynchronous write.  Start output on a buffer, but do not wait for
1148 *	it to complete.  The buffer is released when the output completes.
1149 *
1150 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1151 *	B_INVAL buffers.  Not us.
1152 */
1153void
1154bawrite(struct buf *bp)
1155{
1156
1157	bp->b_flags |= B_ASYNC;
1158	(void) bwrite(bp);
1159}
1160
1161/*
1162 *	bwillwrite:
1163 *
1164 *	Called prior to the locking of any vnodes when we are expecting to
1165 *	write.  We do not want to starve the buffer cache with too many
1166 *	dirty buffers so we block here.  By blocking prior to the locking
1167 *	of any vnodes we attempt to avoid the situation where a locked vnode
1168 *	prevents the various system daemons from flushing related buffers.
1169 */
1170
1171void
1172bwillwrite(void)
1173{
1174
1175	if (numdirtybuffers >= hidirtybuffers) {
1176		mtx_lock(&nblock);
1177		while (numdirtybuffers >= hidirtybuffers) {
1178			bd_wakeup(1);
1179			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1180			msleep(&needsbuffer, &nblock,
1181			    (PRIBIO + 4), "flswai", 0);
1182		}
1183		mtx_unlock(&nblock);
1184	}
1185}
1186
1187/*
1188 * Return true if we have too many dirty buffers.
1189 */
1190int
1191buf_dirty_count_severe(void)
1192{
1193
1194	return(numdirtybuffers >= hidirtybuffers);
1195}
1196
1197static __noinline int
1198buf_vm_page_count_severe(void)
1199{
1200
1201	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1202
1203	return vm_page_count_severe();
1204}
1205
1206/*
1207 *	brelse:
1208 *
1209 *	Release a busy buffer and, if requested, free its resources.  The
1210 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1211 *	to be accessed later as a cache entity or reused for other purposes.
1212 */
1213void
1214brelse(struct buf *bp)
1215{
1216	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1217	    bp, bp->b_vp, bp->b_flags);
1218	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1219	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1220
1221	if (bp->b_flags & B_MANAGED) {
1222		bqrelse(bp);
1223		return;
1224	}
1225
1226	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1227	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1228		/*
1229		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1230		 * pages from being scrapped.  If the error is anything
1231		 * other than an I/O error (EIO), assume that retrying
1232		 * is futile.
1233		 */
1234		bp->b_ioflags &= ~BIO_ERROR;
1235		bdirty(bp);
1236	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1237	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1238		/*
1239		 * Either a failed I/O or we were asked to free or not
1240		 * cache the buffer.
1241		 */
1242		bp->b_flags |= B_INVAL;
1243		if (!LIST_EMPTY(&bp->b_dep))
1244			buf_deallocate(bp);
1245		if (bp->b_flags & B_DELWRI) {
1246			atomic_subtract_int(&numdirtybuffers, 1);
1247			numdirtywakeup(lodirtybuffers);
1248		}
1249		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1250		if ((bp->b_flags & B_VMIO) == 0) {
1251			if (bp->b_bufsize)
1252				allocbuf(bp, 0);
1253			if (bp->b_vp)
1254				brelvp(bp);
1255		}
1256	}
1257
1258	/*
1259	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1260	 * is called with B_DELWRI set, the underlying pages may wind up
1261	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1262	 * because pages associated with a B_DELWRI bp are marked clean.
1263	 *
1264	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1265	 * if B_DELWRI is set.
1266	 *
1267	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1268	 * on pages to return pages to the VM page queues.
1269	 */
1270	if (bp->b_flags & B_DELWRI)
1271		bp->b_flags &= ~B_RELBUF;
1272	else if (buf_vm_page_count_severe()) {
1273		/*
1274		 * The locking of the BO_LOCK is not necessary since
1275		 * BKGRDINPROG cannot be set while we hold the buf
1276		 * lock, it can only be cleared if it is already
1277		 * pending.
1278		 */
1279		if (bp->b_vp) {
1280			if (!(bp->b_vflags & BV_BKGRDINPROG))
1281				bp->b_flags |= B_RELBUF;
1282		} else
1283			bp->b_flags |= B_RELBUF;
1284	}
1285
1286	/*
1287	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1288	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1289	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1290	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1291	 *
1292	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1293	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1294	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1295	 *
1296	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1297	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1298	 * the commit state and we cannot afford to lose the buffer. If the
1299	 * buffer has a background write in progress, we need to keep it
1300	 * around to prevent it from being reconstituted and starting a second
1301	 * background write.
1302	 */
1303	if ((bp->b_flags & B_VMIO)
1304	    && !(bp->b_vp->v_mount != NULL &&
1305		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1306		 !vn_isdisk(bp->b_vp, NULL) &&
1307		 (bp->b_flags & B_DELWRI))
1308	    ) {
1309
1310		int i, j, resid;
1311		vm_page_t m;
1312		off_t foff;
1313		vm_pindex_t poff;
1314		vm_object_t obj;
1315
1316		obj = bp->b_bufobj->bo_object;
1317
1318		/*
1319		 * Get the base offset and length of the buffer.  Note that
1320		 * in the VMIO case if the buffer block size is not
1321		 * page-aligned then b_data pointer may not be page-aligned.
1322		 * But our b_pages[] array *IS* page aligned.
1323		 *
1324		 * block sizes less then DEV_BSIZE (usually 512) are not
1325		 * supported due to the page granularity bits (m->valid,
1326		 * m->dirty, etc...).
1327		 *
1328		 * See man buf(9) for more information
1329		 */
1330		resid = bp->b_bufsize;
1331		foff = bp->b_offset;
1332		VM_OBJECT_LOCK(obj);
1333		for (i = 0; i < bp->b_npages; i++) {
1334			int had_bogus = 0;
1335
1336			m = bp->b_pages[i];
1337
1338			/*
1339			 * If we hit a bogus page, fixup *all* the bogus pages
1340			 * now.
1341			 */
1342			if (m == bogus_page) {
1343				poff = OFF_TO_IDX(bp->b_offset);
1344				had_bogus = 1;
1345
1346				for (j = i; j < bp->b_npages; j++) {
1347					vm_page_t mtmp;
1348					mtmp = bp->b_pages[j];
1349					if (mtmp == bogus_page) {
1350						mtmp = vm_page_lookup(obj, poff + j);
1351						if (!mtmp) {
1352							panic("brelse: page missing\n");
1353						}
1354						bp->b_pages[j] = mtmp;
1355					}
1356				}
1357
1358				if ((bp->b_flags & B_INVAL) == 0) {
1359					pmap_qenter(
1360					    trunc_page((vm_offset_t)bp->b_data),
1361					    bp->b_pages, bp->b_npages);
1362				}
1363				m = bp->b_pages[i];
1364			}
1365			if ((bp->b_flags & B_NOCACHE) ||
1366			    (bp->b_ioflags & BIO_ERROR &&
1367			     bp->b_iocmd == BIO_READ)) {
1368				int poffset = foff & PAGE_MASK;
1369				int presid = resid > (PAGE_SIZE - poffset) ?
1370					(PAGE_SIZE - poffset) : resid;
1371
1372				KASSERT(presid >= 0, ("brelse: extra page"));
1373				vm_page_set_invalid(m, poffset, presid);
1374				if (had_bogus)
1375					printf("avoided corruption bug in bogus_page/brelse code\n");
1376			}
1377			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1378			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1379		}
1380		VM_OBJECT_UNLOCK(obj);
1381		if (bp->b_flags & (B_INVAL | B_RELBUF))
1382			vfs_vmio_release(bp);
1383
1384	} else if (bp->b_flags & B_VMIO) {
1385
1386		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1387			vfs_vmio_release(bp);
1388		}
1389
1390	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1391		if (bp->b_bufsize != 0)
1392			allocbuf(bp, 0);
1393		if (bp->b_vp != NULL)
1394			brelvp(bp);
1395	}
1396
1397	if (BUF_LOCKRECURSED(bp)) {
1398		/* do not release to free list */
1399		BUF_UNLOCK(bp);
1400		return;
1401	}
1402
1403	/* enqueue */
1404	mtx_lock(&bqlock);
1405	/* Handle delayed bremfree() processing. */
1406	if (bp->b_flags & B_REMFREE)
1407		bremfreel(bp);
1408	if (bp->b_qindex != QUEUE_NONE)
1409		panic("brelse: free buffer onto another queue???");
1410
1411	/*
1412	 * If the buffer has junk contents signal it and eventually
1413	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1414	 * doesn't find it.
1415	 */
1416	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1417	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1418		bp->b_flags |= B_INVAL;
1419	if (bp->b_flags & B_INVAL) {
1420		if (bp->b_flags & B_DELWRI)
1421			bundirty(bp);
1422		if (bp->b_vp)
1423			brelvp(bp);
1424	}
1425
1426	/* buffers with no memory */
1427	if (bp->b_bufsize == 0) {
1428		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1429		if (bp->b_vflags & BV_BKGRDINPROG)
1430			panic("losing buffer 1");
1431		if (bp->b_kvasize) {
1432			bp->b_qindex = QUEUE_EMPTYKVA;
1433		} else {
1434			bp->b_qindex = QUEUE_EMPTY;
1435		}
1436		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1437	/* buffers with junk contents */
1438	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1439	    (bp->b_ioflags & BIO_ERROR)) {
1440		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1441		if (bp->b_vflags & BV_BKGRDINPROG)
1442			panic("losing buffer 2");
1443		bp->b_qindex = QUEUE_CLEAN;
1444		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1445	/* remaining buffers */
1446	} else {
1447		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1448		    (B_DELWRI|B_NEEDSGIANT))
1449			bp->b_qindex = QUEUE_DIRTY_GIANT;
1450		else if (bp->b_flags & B_DELWRI)
1451			bp->b_qindex = QUEUE_DIRTY;
1452		else
1453			bp->b_qindex = QUEUE_CLEAN;
1454		if (bp->b_flags & B_AGE)
1455			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1456		else
1457			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1458	}
1459	mtx_unlock(&bqlock);
1460
1461	/*
1462	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1463	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1464	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1465	 * if B_INVAL is set ).
1466	 */
1467
1468	if (!(bp->b_flags & B_DELWRI))
1469		bufcountwakeup(bp);
1470
1471	/*
1472	 * Something we can maybe free or reuse
1473	 */
1474	if (bp->b_bufsize || bp->b_kvasize)
1475		bufspacewakeup();
1476
1477	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1478	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1479		panic("brelse: not dirty");
1480	/* unlock */
1481	BUF_UNLOCK(bp);
1482}
1483
1484/*
1485 * Release a buffer back to the appropriate queue but do not try to free
1486 * it.  The buffer is expected to be used again soon.
1487 *
1488 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1489 * biodone() to requeue an async I/O on completion.  It is also used when
1490 * known good buffers need to be requeued but we think we may need the data
1491 * again soon.
1492 *
1493 * XXX we should be able to leave the B_RELBUF hint set on completion.
1494 */
1495void
1496bqrelse(struct buf *bp)
1497{
1498	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1499	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1500	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1501
1502	if (BUF_LOCKRECURSED(bp)) {
1503		/* do not release to free list */
1504		BUF_UNLOCK(bp);
1505		return;
1506	}
1507
1508	if (bp->b_flags & B_MANAGED) {
1509		if (bp->b_flags & B_REMFREE) {
1510			mtx_lock(&bqlock);
1511			bremfreel(bp);
1512			mtx_unlock(&bqlock);
1513		}
1514		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1515		BUF_UNLOCK(bp);
1516		return;
1517	}
1518
1519	mtx_lock(&bqlock);
1520	/* Handle delayed bremfree() processing. */
1521	if (bp->b_flags & B_REMFREE)
1522		bremfreel(bp);
1523	if (bp->b_qindex != QUEUE_NONE)
1524		panic("bqrelse: free buffer onto another queue???");
1525	/* buffers with stale but valid contents */
1526	if (bp->b_flags & B_DELWRI) {
1527		if (bp->b_flags & B_NEEDSGIANT)
1528			bp->b_qindex = QUEUE_DIRTY_GIANT;
1529		else
1530			bp->b_qindex = QUEUE_DIRTY;
1531		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1532	} else {
1533		/*
1534		 * The locking of the BO_LOCK for checking of the
1535		 * BV_BKGRDINPROG is not necessary since the
1536		 * BV_BKGRDINPROG cannot be set while we hold the buf
1537		 * lock, it can only be cleared if it is already
1538		 * pending.
1539		 */
1540		if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1541			bp->b_qindex = QUEUE_CLEAN;
1542			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1543			    b_freelist);
1544		} else {
1545			/*
1546			 * We are too low on memory, we have to try to free
1547			 * the buffer (most importantly: the wired pages
1548			 * making up its backing store) *now*.
1549			 */
1550			mtx_unlock(&bqlock);
1551			brelse(bp);
1552			return;
1553		}
1554	}
1555	mtx_unlock(&bqlock);
1556
1557	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1558		bufcountwakeup(bp);
1559
1560	/*
1561	 * Something we can maybe free or reuse.
1562	 */
1563	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1564		bufspacewakeup();
1565
1566	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1567	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1568		panic("bqrelse: not dirty");
1569	/* unlock */
1570	BUF_UNLOCK(bp);
1571}
1572
1573/* Give pages used by the bp back to the VM system (where possible) */
1574static void
1575vfs_vmio_release(struct buf *bp)
1576{
1577	int i;
1578	vm_page_t m;
1579
1580	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1581	for (i = 0; i < bp->b_npages; i++) {
1582		m = bp->b_pages[i];
1583		bp->b_pages[i] = NULL;
1584		/*
1585		 * In order to keep page LRU ordering consistent, put
1586		 * everything on the inactive queue.
1587		 */
1588		vm_page_lock(m);
1589		vm_page_unwire(m, 0);
1590		/*
1591		 * We don't mess with busy pages, it is
1592		 * the responsibility of the process that
1593		 * busied the pages to deal with them.
1594		 */
1595		if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
1596		    m->wire_count == 0) {
1597			/*
1598			 * Might as well free the page if we can and it has
1599			 * no valid data.  We also free the page if the
1600			 * buffer was used for direct I/O
1601			 */
1602			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1603			    m->hold_count == 0) {
1604				vm_page_free(m);
1605			} else if (bp->b_flags & B_DIRECT) {
1606				vm_page_try_to_free(m);
1607			} else if (buf_vm_page_count_severe()) {
1608				vm_page_try_to_cache(m);
1609			}
1610		}
1611		vm_page_unlock(m);
1612	}
1613	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1614	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1615
1616	if (bp->b_bufsize) {
1617		bufspacewakeup();
1618		bp->b_bufsize = 0;
1619	}
1620	bp->b_npages = 0;
1621	bp->b_flags &= ~B_VMIO;
1622	if (bp->b_vp)
1623		brelvp(bp);
1624}
1625
1626/*
1627 * Check to see if a block at a particular lbn is available for a clustered
1628 * write.
1629 */
1630static int
1631vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1632{
1633	struct buf *bpa;
1634	int match;
1635
1636	match = 0;
1637
1638	/* If the buf isn't in core skip it */
1639	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1640		return (0);
1641
1642	/* If the buf is busy we don't want to wait for it */
1643	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1644		return (0);
1645
1646	/* Only cluster with valid clusterable delayed write buffers */
1647	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1648	    (B_DELWRI | B_CLUSTEROK))
1649		goto done;
1650
1651	if (bpa->b_bufsize != size)
1652		goto done;
1653
1654	/*
1655	 * Check to see if it is in the expected place on disk and that the
1656	 * block has been mapped.
1657	 */
1658	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1659		match = 1;
1660done:
1661	BUF_UNLOCK(bpa);
1662	return (match);
1663}
1664
1665/*
1666 *	vfs_bio_awrite:
1667 *
1668 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1669 *	This is much better then the old way of writing only one buffer at
1670 *	a time.  Note that we may not be presented with the buffers in the
1671 *	correct order, so we search for the cluster in both directions.
1672 */
1673int
1674vfs_bio_awrite(struct buf *bp)
1675{
1676	struct bufobj *bo;
1677	int i;
1678	int j;
1679	daddr_t lblkno = bp->b_lblkno;
1680	struct vnode *vp = bp->b_vp;
1681	int ncl;
1682	int nwritten;
1683	int size;
1684	int maxcl;
1685
1686	bo = &vp->v_bufobj;
1687	/*
1688	 * right now we support clustered writing only to regular files.  If
1689	 * we find a clusterable block we could be in the middle of a cluster
1690	 * rather then at the beginning.
1691	 */
1692	if ((vp->v_type == VREG) &&
1693	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1694	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1695
1696		size = vp->v_mount->mnt_stat.f_iosize;
1697		maxcl = MAXPHYS / size;
1698
1699		BO_LOCK(bo);
1700		for (i = 1; i < maxcl; i++)
1701			if (vfs_bio_clcheck(vp, size, lblkno + i,
1702			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1703				break;
1704
1705		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1706			if (vfs_bio_clcheck(vp, size, lblkno - j,
1707			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1708				break;
1709		BO_UNLOCK(bo);
1710		--j;
1711		ncl = i + j;
1712		/*
1713		 * this is a possible cluster write
1714		 */
1715		if (ncl != 1) {
1716			BUF_UNLOCK(bp);
1717			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1718			return nwritten;
1719		}
1720	}
1721	bremfree(bp);
1722	bp->b_flags |= B_ASYNC;
1723	/*
1724	 * default (old) behavior, writing out only one block
1725	 *
1726	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1727	 */
1728	nwritten = bp->b_bufsize;
1729	(void) bwrite(bp);
1730
1731	return nwritten;
1732}
1733
1734/*
1735 *	getnewbuf:
1736 *
1737 *	Find and initialize a new buffer header, freeing up existing buffers
1738 *	in the bufqueues as necessary.  The new buffer is returned locked.
1739 *
1740 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1741 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1742 *
1743 *	We block if:
1744 *		We have insufficient buffer headers
1745 *		We have insufficient buffer space
1746 *		buffer_map is too fragmented ( space reservation fails )
1747 *		If we have to flush dirty buffers ( but we try to avoid this )
1748 *
1749 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1750 *	Instead we ask the buf daemon to do it for us.  We attempt to
1751 *	avoid piecemeal wakeups of the pageout daemon.
1752 */
1753
1754static struct buf *
1755getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1756    int gbflags)
1757{
1758	struct thread *td;
1759	struct buf *bp;
1760	struct buf *nbp;
1761	int defrag = 0;
1762	int nqindex;
1763	static int flushingbufs;
1764
1765	td = curthread;
1766	/*
1767	 * We can't afford to block since we might be holding a vnode lock,
1768	 * which may prevent system daemons from running.  We deal with
1769	 * low-memory situations by proactively returning memory and running
1770	 * async I/O rather then sync I/O.
1771	 */
1772	atomic_add_int(&getnewbufcalls, 1);
1773	atomic_subtract_int(&getnewbufrestarts, 1);
1774restart:
1775	atomic_add_int(&getnewbufrestarts, 1);
1776
1777	/*
1778	 * Setup for scan.  If we do not have enough free buffers,
1779	 * we setup a degenerate case that immediately fails.  Note
1780	 * that if we are specially marked process, we are allowed to
1781	 * dip into our reserves.
1782	 *
1783	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1784	 *
1785	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1786	 * However, there are a number of cases (defragging, reusing, ...)
1787	 * where we cannot backup.
1788	 */
1789	mtx_lock(&bqlock);
1790	nqindex = QUEUE_EMPTYKVA;
1791	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1792
1793	if (nbp == NULL) {
1794		/*
1795		 * If no EMPTYKVA buffers and we are either
1796		 * defragging or reusing, locate a CLEAN buffer
1797		 * to free or reuse.  If bufspace useage is low
1798		 * skip this step so we can allocate a new buffer.
1799		 */
1800		if (defrag || bufspace >= lobufspace) {
1801			nqindex = QUEUE_CLEAN;
1802			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1803		}
1804
1805		/*
1806		 * If we could not find or were not allowed to reuse a
1807		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1808		 * buffer.  We can only use an EMPTY buffer if allocating
1809		 * its KVA would not otherwise run us out of buffer space.
1810		 */
1811		if (nbp == NULL && defrag == 0 &&
1812		    bufspace + maxsize < hibufspace) {
1813			nqindex = QUEUE_EMPTY;
1814			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1815		}
1816	}
1817
1818	/*
1819	 * Run scan, possibly freeing data and/or kva mappings on the fly
1820	 * depending.
1821	 */
1822
1823	while ((bp = nbp) != NULL) {
1824		int qindex = nqindex;
1825
1826		/*
1827		 * Calculate next bp ( we can only use it if we do not block
1828		 * or do other fancy things ).
1829		 */
1830		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1831			switch(qindex) {
1832			case QUEUE_EMPTY:
1833				nqindex = QUEUE_EMPTYKVA;
1834				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1835					break;
1836				/* FALLTHROUGH */
1837			case QUEUE_EMPTYKVA:
1838				nqindex = QUEUE_CLEAN;
1839				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1840					break;
1841				/* FALLTHROUGH */
1842			case QUEUE_CLEAN:
1843				/*
1844				 * nbp is NULL.
1845				 */
1846				break;
1847			}
1848		}
1849		/*
1850		 * If we are defragging then we need a buffer with
1851		 * b_kvasize != 0.  XXX this situation should no longer
1852		 * occur, if defrag is non-zero the buffer's b_kvasize
1853		 * should also be non-zero at this point.  XXX
1854		 */
1855		if (defrag && bp->b_kvasize == 0) {
1856			printf("Warning: defrag empty buffer %p\n", bp);
1857			continue;
1858		}
1859
1860		/*
1861		 * Start freeing the bp.  This is somewhat involved.  nbp
1862		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1863		 */
1864		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1865			continue;
1866		if (bp->b_vp) {
1867			BO_LOCK(bp->b_bufobj);
1868			if (bp->b_vflags & BV_BKGRDINPROG) {
1869				BO_UNLOCK(bp->b_bufobj);
1870				BUF_UNLOCK(bp);
1871				continue;
1872			}
1873			BO_UNLOCK(bp->b_bufobj);
1874		}
1875		CTR6(KTR_BUF,
1876		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1877		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1878		    bp->b_kvasize, bp->b_bufsize, qindex);
1879
1880		/*
1881		 * Sanity Checks
1882		 */
1883		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1884
1885		/*
1886		 * Note: we no longer distinguish between VMIO and non-VMIO
1887		 * buffers.
1888		 */
1889
1890		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1891
1892		bremfreel(bp);
1893		mtx_unlock(&bqlock);
1894
1895		if (qindex == QUEUE_CLEAN) {
1896			if (bp->b_flags & B_VMIO) {
1897				bp->b_flags &= ~B_ASYNC;
1898				vfs_vmio_release(bp);
1899			}
1900			if (bp->b_vp)
1901				brelvp(bp);
1902		}
1903
1904		/*
1905		 * NOTE:  nbp is now entirely invalid.  We can only restart
1906		 * the scan from this point on.
1907		 *
1908		 * Get the rest of the buffer freed up.  b_kva* is still
1909		 * valid after this operation.
1910		 */
1911
1912		if (bp->b_rcred != NOCRED) {
1913			crfree(bp->b_rcred);
1914			bp->b_rcred = NOCRED;
1915		}
1916		if (bp->b_wcred != NOCRED) {
1917			crfree(bp->b_wcred);
1918			bp->b_wcred = NOCRED;
1919		}
1920		if (!LIST_EMPTY(&bp->b_dep))
1921			buf_deallocate(bp);
1922		if (bp->b_vflags & BV_BKGRDINPROG)
1923			panic("losing buffer 3");
1924		KASSERT(bp->b_vp == NULL,
1925		    ("bp: %p still has vnode %p.  qindex: %d",
1926		    bp, bp->b_vp, qindex));
1927		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1928		   ("bp: %p still on a buffer list. xflags %X",
1929		    bp, bp->b_xflags));
1930
1931		if (bp->b_bufsize)
1932			allocbuf(bp, 0);
1933
1934		bp->b_flags = 0;
1935		bp->b_ioflags = 0;
1936		bp->b_xflags = 0;
1937		KASSERT((bp->b_vflags & BV_INFREECNT) == 0,
1938		    ("buf %p still counted as free?", bp));
1939		bp->b_vflags = 0;
1940		bp->b_vp = NULL;
1941		bp->b_blkno = bp->b_lblkno = 0;
1942		bp->b_offset = NOOFFSET;
1943		bp->b_iodone = 0;
1944		bp->b_error = 0;
1945		bp->b_resid = 0;
1946		bp->b_bcount = 0;
1947		bp->b_npages = 0;
1948		bp->b_dirtyoff = bp->b_dirtyend = 0;
1949		bp->b_bufobj = NULL;
1950		bp->b_pin_count = 0;
1951		bp->b_fsprivate1 = NULL;
1952		bp->b_fsprivate2 = NULL;
1953		bp->b_fsprivate3 = NULL;
1954
1955		LIST_INIT(&bp->b_dep);
1956
1957		/*
1958		 * If we are defragging then free the buffer.
1959		 */
1960		if (defrag) {
1961			bp->b_flags |= B_INVAL;
1962			bfreekva(bp);
1963			brelse(bp);
1964			defrag = 0;
1965			goto restart;
1966		}
1967
1968		/*
1969		 * Notify any waiters for the buffer lock about
1970		 * identity change by freeing the buffer.
1971		 */
1972		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1973			bp->b_flags |= B_INVAL;
1974			bfreekva(bp);
1975			brelse(bp);
1976			goto restart;
1977		}
1978
1979		/*
1980		 * If we are overcomitted then recover the buffer and its
1981		 * KVM space.  This occurs in rare situations when multiple
1982		 * processes are blocked in getnewbuf() or allocbuf().
1983		 */
1984		if (bufspace >= hibufspace)
1985			flushingbufs = 1;
1986		if (flushingbufs && bp->b_kvasize != 0) {
1987			bp->b_flags |= B_INVAL;
1988			bfreekva(bp);
1989			brelse(bp);
1990			goto restart;
1991		}
1992		if (bufspace < lobufspace)
1993			flushingbufs = 0;
1994		break;
1995	}
1996
1997	/*
1998	 * If we exhausted our list, sleep as appropriate.  We may have to
1999	 * wakeup various daemons and write out some dirty buffers.
2000	 *
2001	 * Generally we are sleeping due to insufficient buffer space.
2002	 */
2003
2004	if (bp == NULL) {
2005		int flags, norunbuf;
2006		char *waitmsg;
2007		int fl;
2008
2009		if (defrag) {
2010			flags = VFS_BIO_NEED_BUFSPACE;
2011			waitmsg = "nbufkv";
2012		} else if (bufspace >= hibufspace) {
2013			waitmsg = "nbufbs";
2014			flags = VFS_BIO_NEED_BUFSPACE;
2015		} else {
2016			waitmsg = "newbuf";
2017			flags = VFS_BIO_NEED_ANY;
2018		}
2019		mtx_lock(&nblock);
2020		needsbuffer |= flags;
2021		mtx_unlock(&nblock);
2022		mtx_unlock(&bqlock);
2023
2024		bd_speedup();	/* heeeelp */
2025		if (gbflags & GB_NOWAIT_BD)
2026			return (NULL);
2027
2028		mtx_lock(&nblock);
2029		while (needsbuffer & flags) {
2030			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2031				mtx_unlock(&nblock);
2032				/*
2033				 * getblk() is called with a vnode
2034				 * locked, and some majority of the
2035				 * dirty buffers may as well belong to
2036				 * the vnode. Flushing the buffers
2037				 * there would make a progress that
2038				 * cannot be achieved by the
2039				 * buf_daemon, that cannot lock the
2040				 * vnode.
2041				 */
2042				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2043				    (td->td_pflags & TDP_NORUNNINGBUF);
2044				/* play bufdaemon */
2045				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2046				fl = buf_do_flush(vp);
2047				td->td_pflags &= norunbuf;
2048				mtx_lock(&nblock);
2049				if (fl != 0)
2050					continue;
2051				if ((needsbuffer & flags) == 0)
2052					break;
2053			}
2054			if (msleep(&needsbuffer, &nblock,
2055			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2056				mtx_unlock(&nblock);
2057				return (NULL);
2058			}
2059		}
2060		mtx_unlock(&nblock);
2061	} else {
2062		/*
2063		 * We finally have a valid bp.  We aren't quite out of the
2064		 * woods, we still have to reserve kva space.  In order
2065		 * to keep fragmentation sane we only allocate kva in
2066		 * BKVASIZE chunks.
2067		 */
2068		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2069
2070		if (maxsize != bp->b_kvasize) {
2071			vm_offset_t addr = 0;
2072
2073			bfreekva(bp);
2074
2075			vm_map_lock(buffer_map);
2076			if (vm_map_findspace(buffer_map,
2077				vm_map_min(buffer_map), maxsize, &addr)) {
2078				/*
2079				 * Uh oh.  Buffer map is to fragmented.  We
2080				 * must defragment the map.
2081				 */
2082				atomic_add_int(&bufdefragcnt, 1);
2083				vm_map_unlock(buffer_map);
2084				defrag = 1;
2085				bp->b_flags |= B_INVAL;
2086				brelse(bp);
2087				goto restart;
2088			}
2089			if (addr) {
2090				vm_map_insert(buffer_map, NULL, 0,
2091					addr, addr + maxsize,
2092					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2093
2094				bp->b_kvabase = (caddr_t) addr;
2095				bp->b_kvasize = maxsize;
2096				atomic_add_long(&bufspace, bp->b_kvasize);
2097				atomic_add_int(&bufreusecnt, 1);
2098			}
2099			vm_map_unlock(buffer_map);
2100		}
2101		bp->b_saveaddr = bp->b_kvabase;
2102		bp->b_data = bp->b_saveaddr;
2103	}
2104	return(bp);
2105}
2106
2107/*
2108 *	buf_daemon:
2109 *
2110 *	buffer flushing daemon.  Buffers are normally flushed by the
2111 *	update daemon but if it cannot keep up this process starts to
2112 *	take the load in an attempt to prevent getnewbuf() from blocking.
2113 */
2114
2115static struct kproc_desc buf_kp = {
2116	"bufdaemon",
2117	buf_daemon,
2118	&bufdaemonproc
2119};
2120SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2121
2122static int
2123buf_do_flush(struct vnode *vp)
2124{
2125	int flushed;
2126
2127	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2128	/* The list empty check here is slightly racy */
2129	if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2130		mtx_lock(&Giant);
2131		flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
2132		mtx_unlock(&Giant);
2133	}
2134	if (flushed == 0) {
2135		/*
2136		 * Could not find any buffers without rollback
2137		 * dependencies, so just write the first one
2138		 * in the hopes of eventually making progress.
2139		 */
2140		flushbufqueues(vp, QUEUE_DIRTY, 1);
2141		if (!TAILQ_EMPTY(
2142			    &bufqueues[QUEUE_DIRTY_GIANT])) {
2143			mtx_lock(&Giant);
2144			flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
2145			mtx_unlock(&Giant);
2146		}
2147	}
2148	return (flushed);
2149}
2150
2151static void
2152buf_daemon()
2153{
2154	int lodirtysave;
2155
2156	/*
2157	 * This process needs to be suspended prior to shutdown sync.
2158	 */
2159	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2160	    SHUTDOWN_PRI_LAST);
2161
2162	/*
2163	 * This process is allowed to take the buffer cache to the limit
2164	 */
2165	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2166	mtx_lock(&bdlock);
2167	for (;;) {
2168		bd_request = 0;
2169		mtx_unlock(&bdlock);
2170
2171		kproc_suspend_check(bufdaemonproc);
2172		lodirtysave = lodirtybuffers;
2173		if (bd_speedupreq) {
2174			lodirtybuffers = numdirtybuffers / 2;
2175			bd_speedupreq = 0;
2176		}
2177		/*
2178		 * Do the flush.  Limit the amount of in-transit I/O we
2179		 * allow to build up, otherwise we would completely saturate
2180		 * the I/O system.  Wakeup any waiting processes before we
2181		 * normally would so they can run in parallel with our drain.
2182		 */
2183		while (numdirtybuffers > lodirtybuffers) {
2184			if (buf_do_flush(NULL) == 0)
2185				break;
2186			uio_yield();
2187		}
2188		lodirtybuffers = lodirtysave;
2189
2190		/*
2191		 * Only clear bd_request if we have reached our low water
2192		 * mark.  The buf_daemon normally waits 1 second and
2193		 * then incrementally flushes any dirty buffers that have
2194		 * built up, within reason.
2195		 *
2196		 * If we were unable to hit our low water mark and couldn't
2197		 * find any flushable buffers, we sleep half a second.
2198		 * Otherwise we loop immediately.
2199		 */
2200		mtx_lock(&bdlock);
2201		if (numdirtybuffers <= lodirtybuffers) {
2202			/*
2203			 * We reached our low water mark, reset the
2204			 * request and sleep until we are needed again.
2205			 * The sleep is just so the suspend code works.
2206			 */
2207			bd_request = 0;
2208			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2209		} else {
2210			/*
2211			 * We couldn't find any flushable dirty buffers but
2212			 * still have too many dirty buffers, we
2213			 * have to sleep and try again.  (rare)
2214			 */
2215			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2216		}
2217	}
2218}
2219
2220/*
2221 *	flushbufqueues:
2222 *
2223 *	Try to flush a buffer in the dirty queue.  We must be careful to
2224 *	free up B_INVAL buffers instead of write them, which NFS is
2225 *	particularly sensitive to.
2226 */
2227static int flushwithdeps = 0;
2228SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2229    0, "Number of buffers flushed with dependecies that require rollbacks");
2230
2231static int
2232flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2233{
2234	struct buf *sentinel;
2235	struct vnode *vp;
2236	struct mount *mp;
2237	struct buf *bp;
2238	int hasdeps;
2239	int flushed;
2240	int target;
2241
2242	if (lvp == NULL) {
2243		target = numdirtybuffers - lodirtybuffers;
2244		if (flushdeps && target > 2)
2245			target /= 2;
2246	} else
2247		target = flushbufqtarget;
2248	flushed = 0;
2249	bp = NULL;
2250	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2251	sentinel->b_qindex = QUEUE_SENTINEL;
2252	mtx_lock(&bqlock);
2253	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2254	while (flushed != target) {
2255		bp = TAILQ_NEXT(sentinel, b_freelist);
2256		if (bp != NULL) {
2257			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2258			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2259			    b_freelist);
2260		} else
2261			break;
2262		/*
2263		 * Skip sentinels inserted by other invocations of the
2264		 * flushbufqueues(), taking care to not reorder them.
2265		 */
2266		if (bp->b_qindex == QUEUE_SENTINEL)
2267			continue;
2268		/*
2269		 * Only flush the buffers that belong to the
2270		 * vnode locked by the curthread.
2271		 */
2272		if (lvp != NULL && bp->b_vp != lvp)
2273			continue;
2274		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2275			continue;
2276		if (bp->b_pin_count > 0) {
2277			BUF_UNLOCK(bp);
2278			continue;
2279		}
2280		BO_LOCK(bp->b_bufobj);
2281		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2282		    (bp->b_flags & B_DELWRI) == 0) {
2283			BO_UNLOCK(bp->b_bufobj);
2284			BUF_UNLOCK(bp);
2285			continue;
2286		}
2287		BO_UNLOCK(bp->b_bufobj);
2288		if (bp->b_flags & B_INVAL) {
2289			bremfreel(bp);
2290			mtx_unlock(&bqlock);
2291			brelse(bp);
2292			flushed++;
2293			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2294			mtx_lock(&bqlock);
2295			continue;
2296		}
2297
2298		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2299			if (flushdeps == 0) {
2300				BUF_UNLOCK(bp);
2301				continue;
2302			}
2303			hasdeps = 1;
2304		} else
2305			hasdeps = 0;
2306		/*
2307		 * We must hold the lock on a vnode before writing
2308		 * one of its buffers. Otherwise we may confuse, or
2309		 * in the case of a snapshot vnode, deadlock the
2310		 * system.
2311		 *
2312		 * The lock order here is the reverse of the normal
2313		 * of vnode followed by buf lock.  This is ok because
2314		 * the NOWAIT will prevent deadlock.
2315		 */
2316		vp = bp->b_vp;
2317		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2318			BUF_UNLOCK(bp);
2319			continue;
2320		}
2321		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2322			mtx_unlock(&bqlock);
2323			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2324			    bp, bp->b_vp, bp->b_flags);
2325			if (curproc == bufdaemonproc)
2326				vfs_bio_awrite(bp);
2327			else {
2328				bremfree(bp);
2329				bwrite(bp);
2330				notbufdflashes++;
2331			}
2332			vn_finished_write(mp);
2333			VOP_UNLOCK(vp, 0);
2334			flushwithdeps += hasdeps;
2335			flushed++;
2336
2337			/*
2338			 * Sleeping on runningbufspace while holding
2339			 * vnode lock leads to deadlock.
2340			 */
2341			if (curproc == bufdaemonproc)
2342				waitrunningbufspace();
2343			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2344			mtx_lock(&bqlock);
2345			continue;
2346		}
2347		vn_finished_write(mp);
2348		BUF_UNLOCK(bp);
2349	}
2350	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2351	mtx_unlock(&bqlock);
2352	free(sentinel, M_TEMP);
2353	return (flushed);
2354}
2355
2356/*
2357 * Check to see if a block is currently memory resident.
2358 */
2359struct buf *
2360incore(struct bufobj *bo, daddr_t blkno)
2361{
2362	struct buf *bp;
2363
2364	BO_LOCK(bo);
2365	bp = gbincore(bo, blkno);
2366	BO_UNLOCK(bo);
2367	return (bp);
2368}
2369
2370/*
2371 * Returns true if no I/O is needed to access the
2372 * associated VM object.  This is like incore except
2373 * it also hunts around in the VM system for the data.
2374 */
2375
2376static int
2377inmem(struct vnode * vp, daddr_t blkno)
2378{
2379	vm_object_t obj;
2380	vm_offset_t toff, tinc, size;
2381	vm_page_t m;
2382	vm_ooffset_t off;
2383
2384	ASSERT_VOP_LOCKED(vp, "inmem");
2385
2386	if (incore(&vp->v_bufobj, blkno))
2387		return 1;
2388	if (vp->v_mount == NULL)
2389		return 0;
2390	obj = vp->v_object;
2391	if (obj == NULL)
2392		return (0);
2393
2394	size = PAGE_SIZE;
2395	if (size > vp->v_mount->mnt_stat.f_iosize)
2396		size = vp->v_mount->mnt_stat.f_iosize;
2397	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2398
2399	VM_OBJECT_LOCK(obj);
2400	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2401		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2402		if (!m)
2403			goto notinmem;
2404		tinc = size;
2405		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2406			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2407		if (vm_page_is_valid(m,
2408		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2409			goto notinmem;
2410	}
2411	VM_OBJECT_UNLOCK(obj);
2412	return 1;
2413
2414notinmem:
2415	VM_OBJECT_UNLOCK(obj);
2416	return (0);
2417}
2418
2419/*
2420 * Set the dirty range for a buffer based on the status of the dirty
2421 * bits in the pages comprising the buffer.  The range is limited
2422 * to the size of the buffer.
2423 *
2424 * Tell the VM system that the pages associated with this buffer
2425 * are clean.  This is used for delayed writes where the data is
2426 * going to go to disk eventually without additional VM intevention.
2427 *
2428 * Note that while we only really need to clean through to b_bcount, we
2429 * just go ahead and clean through to b_bufsize.
2430 */
2431static void
2432vfs_clean_pages_dirty_buf(struct buf *bp)
2433{
2434	vm_ooffset_t foff, noff, eoff;
2435	vm_page_t m;
2436	int i;
2437
2438	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2439		return;
2440
2441	foff = bp->b_offset;
2442	KASSERT(bp->b_offset != NOOFFSET,
2443	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2444
2445	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2446	vfs_drain_busy_pages(bp);
2447	vfs_setdirty_locked_object(bp);
2448	for (i = 0; i < bp->b_npages; i++) {
2449		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2450		eoff = noff;
2451		if (eoff > bp->b_offset + bp->b_bufsize)
2452			eoff = bp->b_offset + bp->b_bufsize;
2453		m = bp->b_pages[i];
2454		vfs_page_set_validclean(bp, foff, m);
2455		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2456		foff = noff;
2457	}
2458	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2459}
2460
2461static void
2462vfs_setdirty_locked_object(struct buf *bp)
2463{
2464	vm_object_t object;
2465	int i;
2466
2467	object = bp->b_bufobj->bo_object;
2468	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2469
2470	/*
2471	 * We qualify the scan for modified pages on whether the
2472	 * object has been flushed yet.
2473	 */
2474	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2475		vm_offset_t boffset;
2476		vm_offset_t eoffset;
2477
2478		/*
2479		 * test the pages to see if they have been modified directly
2480		 * by users through the VM system.
2481		 */
2482		for (i = 0; i < bp->b_npages; i++)
2483			vm_page_test_dirty(bp->b_pages[i]);
2484
2485		/*
2486		 * Calculate the encompassing dirty range, boffset and eoffset,
2487		 * (eoffset - boffset) bytes.
2488		 */
2489
2490		for (i = 0; i < bp->b_npages; i++) {
2491			if (bp->b_pages[i]->dirty)
2492				break;
2493		}
2494		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2495
2496		for (i = bp->b_npages - 1; i >= 0; --i) {
2497			if (bp->b_pages[i]->dirty) {
2498				break;
2499			}
2500		}
2501		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2502
2503		/*
2504		 * Fit it to the buffer.
2505		 */
2506
2507		if (eoffset > bp->b_bcount)
2508			eoffset = bp->b_bcount;
2509
2510		/*
2511		 * If we have a good dirty range, merge with the existing
2512		 * dirty range.
2513		 */
2514
2515		if (boffset < eoffset) {
2516			if (bp->b_dirtyoff > boffset)
2517				bp->b_dirtyoff = boffset;
2518			if (bp->b_dirtyend < eoffset)
2519				bp->b_dirtyend = eoffset;
2520		}
2521	}
2522}
2523
2524/*
2525 *	getblk:
2526 *
2527 *	Get a block given a specified block and offset into a file/device.
2528 *	The buffers B_DONE bit will be cleared on return, making it almost
2529 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2530 *	return.  The caller should clear B_INVAL prior to initiating a
2531 *	READ.
2532 *
2533 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2534 *	an existing buffer.
2535 *
2536 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2537 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2538 *	and then cleared based on the backing VM.  If the previous buffer is
2539 *	non-0-sized but invalid, B_CACHE will be cleared.
2540 *
2541 *	If getblk() must create a new buffer, the new buffer is returned with
2542 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2543 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2544 *	backing VM.
2545 *
2546 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2547 *	B_CACHE bit is clear.
2548 *
2549 *	What this means, basically, is that the caller should use B_CACHE to
2550 *	determine whether the buffer is fully valid or not and should clear
2551 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2552 *	the buffer by loading its data area with something, the caller needs
2553 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2554 *	the caller should set B_CACHE ( as an optimization ), else the caller
2555 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2556 *	a write attempt or if it was a successfull read.  If the caller
2557 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2558 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2559 */
2560struct buf *
2561getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2562    int flags)
2563{
2564	struct buf *bp;
2565	struct bufobj *bo;
2566	int error;
2567
2568	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2569	ASSERT_VOP_LOCKED(vp, "getblk");
2570	if (size > MAXBSIZE)
2571		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2572
2573	bo = &vp->v_bufobj;
2574loop:
2575	/*
2576	 * Block if we are low on buffers.   Certain processes are allowed
2577	 * to completely exhaust the buffer cache.
2578         *
2579         * If this check ever becomes a bottleneck it may be better to
2580         * move it into the else, when gbincore() fails.  At the moment
2581         * it isn't a problem.
2582	 *
2583	 * XXX remove if 0 sections (clean this up after its proven)
2584         */
2585	if (numfreebuffers == 0) {
2586		if (TD_IS_IDLETHREAD(curthread))
2587			return NULL;
2588		mtx_lock(&nblock);
2589		needsbuffer |= VFS_BIO_NEED_ANY;
2590		mtx_unlock(&nblock);
2591	}
2592
2593	BO_LOCK(bo);
2594	bp = gbincore(bo, blkno);
2595	if (bp != NULL) {
2596		int lockflags;
2597		/*
2598		 * Buffer is in-core.  If the buffer is not busy, it must
2599		 * be on a queue.
2600		 */
2601		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2602
2603		if (flags & GB_LOCK_NOWAIT)
2604			lockflags |= LK_NOWAIT;
2605
2606		error = BUF_TIMELOCK(bp, lockflags,
2607		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2608
2609		/*
2610		 * If we slept and got the lock we have to restart in case
2611		 * the buffer changed identities.
2612		 */
2613		if (error == ENOLCK)
2614			goto loop;
2615		/* We timed out or were interrupted. */
2616		else if (error)
2617			return (NULL);
2618
2619		/*
2620		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2621		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2622		 * and for a VMIO buffer B_CACHE is adjusted according to the
2623		 * backing VM cache.
2624		 */
2625		if (bp->b_flags & B_INVAL)
2626			bp->b_flags &= ~B_CACHE;
2627		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2628			bp->b_flags |= B_CACHE;
2629		bremfree(bp);
2630
2631		/*
2632		 * check for size inconsistancies for non-VMIO case.
2633		 */
2634
2635		if (bp->b_bcount != size) {
2636			if ((bp->b_flags & B_VMIO) == 0 ||
2637			    (size > bp->b_kvasize)) {
2638				if (bp->b_flags & B_DELWRI) {
2639					/*
2640					 * If buffer is pinned and caller does
2641					 * not want sleep  waiting for it to be
2642					 * unpinned, bail out
2643					 * */
2644					if (bp->b_pin_count > 0) {
2645						if (flags & GB_LOCK_NOWAIT) {
2646							bqrelse(bp);
2647							return (NULL);
2648						} else {
2649							bunpin_wait(bp);
2650						}
2651					}
2652					bp->b_flags |= B_NOCACHE;
2653					bwrite(bp);
2654				} else {
2655					if (LIST_EMPTY(&bp->b_dep)) {
2656						bp->b_flags |= B_RELBUF;
2657						brelse(bp);
2658					} else {
2659						bp->b_flags |= B_NOCACHE;
2660						bwrite(bp);
2661					}
2662				}
2663				goto loop;
2664			}
2665		}
2666
2667		/*
2668		 * If the size is inconsistant in the VMIO case, we can resize
2669		 * the buffer.  This might lead to B_CACHE getting set or
2670		 * cleared.  If the size has not changed, B_CACHE remains
2671		 * unchanged from its previous state.
2672		 */
2673
2674		if (bp->b_bcount != size)
2675			allocbuf(bp, size);
2676
2677		KASSERT(bp->b_offset != NOOFFSET,
2678		    ("getblk: no buffer offset"));
2679
2680		/*
2681		 * A buffer with B_DELWRI set and B_CACHE clear must
2682		 * be committed before we can return the buffer in
2683		 * order to prevent the caller from issuing a read
2684		 * ( due to B_CACHE not being set ) and overwriting
2685		 * it.
2686		 *
2687		 * Most callers, including NFS and FFS, need this to
2688		 * operate properly either because they assume they
2689		 * can issue a read if B_CACHE is not set, or because
2690		 * ( for example ) an uncached B_DELWRI might loop due
2691		 * to softupdates re-dirtying the buffer.  In the latter
2692		 * case, B_CACHE is set after the first write completes,
2693		 * preventing further loops.
2694		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2695		 * above while extending the buffer, we cannot allow the
2696		 * buffer to remain with B_CACHE set after the write
2697		 * completes or it will represent a corrupt state.  To
2698		 * deal with this we set B_NOCACHE to scrap the buffer
2699		 * after the write.
2700		 *
2701		 * We might be able to do something fancy, like setting
2702		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2703		 * so the below call doesn't set B_CACHE, but that gets real
2704		 * confusing.  This is much easier.
2705		 */
2706
2707		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2708			bp->b_flags |= B_NOCACHE;
2709			bwrite(bp);
2710			goto loop;
2711		}
2712		bp->b_flags &= ~B_DONE;
2713	} else {
2714		int bsize, maxsize, vmio;
2715		off_t offset;
2716
2717		/*
2718		 * Buffer is not in-core, create new buffer.  The buffer
2719		 * returned by getnewbuf() is locked.  Note that the returned
2720		 * buffer is also considered valid (not marked B_INVAL).
2721		 */
2722		BO_UNLOCK(bo);
2723		/*
2724		 * If the user does not want us to create the buffer, bail out
2725		 * here.
2726		 */
2727		if (flags & GB_NOCREAT)
2728			return NULL;
2729		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
2730		offset = blkno * bsize;
2731		vmio = vp->v_object != NULL;
2732		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2733		maxsize = imax(maxsize, bsize);
2734
2735		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2736		if (bp == NULL) {
2737			if (slpflag || slptimeo)
2738				return NULL;
2739			goto loop;
2740		}
2741
2742		/*
2743		 * This code is used to make sure that a buffer is not
2744		 * created while the getnewbuf routine is blocked.
2745		 * This can be a problem whether the vnode is locked or not.
2746		 * If the buffer is created out from under us, we have to
2747		 * throw away the one we just created.
2748		 *
2749		 * Note: this must occur before we associate the buffer
2750		 * with the vp especially considering limitations in
2751		 * the splay tree implementation when dealing with duplicate
2752		 * lblkno's.
2753		 */
2754		BO_LOCK(bo);
2755		if (gbincore(bo, blkno)) {
2756			BO_UNLOCK(bo);
2757			bp->b_flags |= B_INVAL;
2758			brelse(bp);
2759			goto loop;
2760		}
2761
2762		/*
2763		 * Insert the buffer into the hash, so that it can
2764		 * be found by incore.
2765		 */
2766		bp->b_blkno = bp->b_lblkno = blkno;
2767		bp->b_offset = offset;
2768		bgetvp(vp, bp);
2769		BO_UNLOCK(bo);
2770
2771		/*
2772		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2773		 * buffer size starts out as 0, B_CACHE will be set by
2774		 * allocbuf() for the VMIO case prior to it testing the
2775		 * backing store for validity.
2776		 */
2777
2778		if (vmio) {
2779			bp->b_flags |= B_VMIO;
2780#if defined(VFS_BIO_DEBUG)
2781			if (vn_canvmio(vp) != TRUE)
2782				printf("getblk: VMIO on vnode type %d\n",
2783					vp->v_type);
2784#endif
2785			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2786			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2787			    bp, vp->v_object, bp->b_bufobj->bo_object));
2788		} else {
2789			bp->b_flags &= ~B_VMIO;
2790			KASSERT(bp->b_bufobj->bo_object == NULL,
2791			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2792			    bp, bp->b_bufobj->bo_object));
2793		}
2794
2795		allocbuf(bp, size);
2796		bp->b_flags &= ~B_DONE;
2797	}
2798	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2799	BUF_ASSERT_HELD(bp);
2800	KASSERT(bp->b_bufobj == bo,
2801	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2802	return (bp);
2803}
2804
2805/*
2806 * Get an empty, disassociated buffer of given size.  The buffer is initially
2807 * set to B_INVAL.
2808 */
2809struct buf *
2810geteblk(int size, int flags)
2811{
2812	struct buf *bp;
2813	int maxsize;
2814
2815	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2816	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2817		if ((flags & GB_NOWAIT_BD) &&
2818		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2819			return (NULL);
2820	}
2821	allocbuf(bp, size);
2822	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2823	BUF_ASSERT_HELD(bp);
2824	return (bp);
2825}
2826
2827
2828/*
2829 * This code constitutes the buffer memory from either anonymous system
2830 * memory (in the case of non-VMIO operations) or from an associated
2831 * VM object (in the case of VMIO operations).  This code is able to
2832 * resize a buffer up or down.
2833 *
2834 * Note that this code is tricky, and has many complications to resolve
2835 * deadlock or inconsistant data situations.  Tread lightly!!!
2836 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2837 * the caller.  Calling this code willy nilly can result in the loss of data.
2838 *
2839 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2840 * B_CACHE for the non-VMIO case.
2841 */
2842
2843int
2844allocbuf(struct buf *bp, int size)
2845{
2846	int newbsize, mbsize;
2847	int i;
2848
2849	BUF_ASSERT_HELD(bp);
2850
2851	if (bp->b_kvasize < size)
2852		panic("allocbuf: buffer too small");
2853
2854	if ((bp->b_flags & B_VMIO) == 0) {
2855		caddr_t origbuf;
2856		int origbufsize;
2857		/*
2858		 * Just get anonymous memory from the kernel.  Don't
2859		 * mess with B_CACHE.
2860		 */
2861		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2862		if (bp->b_flags & B_MALLOC)
2863			newbsize = mbsize;
2864		else
2865			newbsize = round_page(size);
2866
2867		if (newbsize < bp->b_bufsize) {
2868			/*
2869			 * malloced buffers are not shrunk
2870			 */
2871			if (bp->b_flags & B_MALLOC) {
2872				if (newbsize) {
2873					bp->b_bcount = size;
2874				} else {
2875					free(bp->b_data, M_BIOBUF);
2876					if (bp->b_bufsize) {
2877						atomic_subtract_long(
2878						    &bufmallocspace,
2879						    bp->b_bufsize);
2880						bufspacewakeup();
2881						bp->b_bufsize = 0;
2882					}
2883					bp->b_saveaddr = bp->b_kvabase;
2884					bp->b_data = bp->b_saveaddr;
2885					bp->b_bcount = 0;
2886					bp->b_flags &= ~B_MALLOC;
2887				}
2888				return 1;
2889			}
2890			vm_hold_free_pages(bp, newbsize);
2891		} else if (newbsize > bp->b_bufsize) {
2892			/*
2893			 * We only use malloced memory on the first allocation.
2894			 * and revert to page-allocated memory when the buffer
2895			 * grows.
2896			 */
2897			/*
2898			 * There is a potential smp race here that could lead
2899			 * to bufmallocspace slightly passing the max.  It
2900			 * is probably extremely rare and not worth worrying
2901			 * over.
2902			 */
2903			if ( (bufmallocspace < maxbufmallocspace) &&
2904				(bp->b_bufsize == 0) &&
2905				(mbsize <= PAGE_SIZE/2)) {
2906
2907				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2908				bp->b_bufsize = mbsize;
2909				bp->b_bcount = size;
2910				bp->b_flags |= B_MALLOC;
2911				atomic_add_long(&bufmallocspace, mbsize);
2912				return 1;
2913			}
2914			origbuf = NULL;
2915			origbufsize = 0;
2916			/*
2917			 * If the buffer is growing on its other-than-first allocation,
2918			 * then we revert to the page-allocation scheme.
2919			 */
2920			if (bp->b_flags & B_MALLOC) {
2921				origbuf = bp->b_data;
2922				origbufsize = bp->b_bufsize;
2923				bp->b_data = bp->b_kvabase;
2924				if (bp->b_bufsize) {
2925					atomic_subtract_long(&bufmallocspace,
2926					    bp->b_bufsize);
2927					bufspacewakeup();
2928					bp->b_bufsize = 0;
2929				}
2930				bp->b_flags &= ~B_MALLOC;
2931				newbsize = round_page(newbsize);
2932			}
2933			vm_hold_load_pages(
2934			    bp,
2935			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2936			    (vm_offset_t) bp->b_data + newbsize);
2937			if (origbuf) {
2938				bcopy(origbuf, bp->b_data, origbufsize);
2939				free(origbuf, M_BIOBUF);
2940			}
2941		}
2942	} else {
2943		int desiredpages;
2944
2945		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2946		desiredpages = (size == 0) ? 0 :
2947			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2948
2949		if (bp->b_flags & B_MALLOC)
2950			panic("allocbuf: VMIO buffer can't be malloced");
2951		/*
2952		 * Set B_CACHE initially if buffer is 0 length or will become
2953		 * 0-length.
2954		 */
2955		if (size == 0 || bp->b_bufsize == 0)
2956			bp->b_flags |= B_CACHE;
2957
2958		if (newbsize < bp->b_bufsize) {
2959			/*
2960			 * DEV_BSIZE aligned new buffer size is less then the
2961			 * DEV_BSIZE aligned existing buffer size.  Figure out
2962			 * if we have to remove any pages.
2963			 */
2964			if (desiredpages < bp->b_npages) {
2965				vm_page_t m;
2966
2967				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2968				for (i = desiredpages; i < bp->b_npages; i++) {
2969					/*
2970					 * the page is not freed here -- it
2971					 * is the responsibility of
2972					 * vnode_pager_setsize
2973					 */
2974					m = bp->b_pages[i];
2975					KASSERT(m != bogus_page,
2976					    ("allocbuf: bogus page found"));
2977					while (vm_page_sleep_if_busy(m, TRUE,
2978					    "biodep"))
2979						continue;
2980
2981					bp->b_pages[i] = NULL;
2982					vm_page_lock(m);
2983					vm_page_unwire(m, 0);
2984					vm_page_unlock(m);
2985				}
2986				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2987				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2988				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2989				bp->b_npages = desiredpages;
2990			}
2991		} else if (size > bp->b_bcount) {
2992			/*
2993			 * We are growing the buffer, possibly in a
2994			 * byte-granular fashion.
2995			 */
2996			vm_object_t obj;
2997			vm_offset_t toff;
2998			vm_offset_t tinc;
2999
3000			/*
3001			 * Step 1, bring in the VM pages from the object,
3002			 * allocating them if necessary.  We must clear
3003			 * B_CACHE if these pages are not valid for the
3004			 * range covered by the buffer.
3005			 */
3006
3007			obj = bp->b_bufobj->bo_object;
3008
3009			VM_OBJECT_LOCK(obj);
3010			while (bp->b_npages < desiredpages) {
3011				vm_page_t m;
3012
3013				/*
3014				 * We must allocate system pages since blocking
3015				 * here could intefere with paging I/O, no
3016				 * matter which process we are.
3017				 *
3018				 * We can only test VPO_BUSY here.  Blocking on
3019				 * m->busy might lead to a deadlock:
3020				 *  vm_fault->getpages->cluster_read->allocbuf
3021				 * Thus, we specify VM_ALLOC_IGN_SBUSY.
3022				 */
3023				m = vm_page_grab(obj, OFF_TO_IDX(bp->b_offset) +
3024				    bp->b_npages, VM_ALLOC_NOBUSY |
3025				    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3026				    VM_ALLOC_RETRY | VM_ALLOC_IGN_SBUSY |
3027				    VM_ALLOC_COUNT(desiredpages - bp->b_npages));
3028				if (m->valid == 0)
3029					bp->b_flags &= ~B_CACHE;
3030				bp->b_pages[bp->b_npages] = m;
3031				++bp->b_npages;
3032			}
3033
3034			/*
3035			 * Step 2.  We've loaded the pages into the buffer,
3036			 * we have to figure out if we can still have B_CACHE
3037			 * set.  Note that B_CACHE is set according to the
3038			 * byte-granular range ( bcount and size ), new the
3039			 * aligned range ( newbsize ).
3040			 *
3041			 * The VM test is against m->valid, which is DEV_BSIZE
3042			 * aligned.  Needless to say, the validity of the data
3043			 * needs to also be DEV_BSIZE aligned.  Note that this
3044			 * fails with NFS if the server or some other client
3045			 * extends the file's EOF.  If our buffer is resized,
3046			 * B_CACHE may remain set! XXX
3047			 */
3048
3049			toff = bp->b_bcount;
3050			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3051
3052			while ((bp->b_flags & B_CACHE) && toff < size) {
3053				vm_pindex_t pi;
3054
3055				if (tinc > (size - toff))
3056					tinc = size - toff;
3057
3058				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3059				    PAGE_SHIFT;
3060
3061				vfs_buf_test_cache(
3062				    bp,
3063				    bp->b_offset,
3064				    toff,
3065				    tinc,
3066				    bp->b_pages[pi]
3067				);
3068				toff += tinc;
3069				tinc = PAGE_SIZE;
3070			}
3071			VM_OBJECT_UNLOCK(obj);
3072
3073			/*
3074			 * Step 3, fixup the KVM pmap.  Remember that
3075			 * bp->b_data is relative to bp->b_offset, but
3076			 * bp->b_offset may be offset into the first page.
3077			 */
3078
3079			bp->b_data = (caddr_t)
3080			    trunc_page((vm_offset_t)bp->b_data);
3081			pmap_qenter(
3082			    (vm_offset_t)bp->b_data,
3083			    bp->b_pages,
3084			    bp->b_npages
3085			);
3086
3087			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3088			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3089		}
3090	}
3091	if (newbsize < bp->b_bufsize)
3092		bufspacewakeup();
3093	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3094	bp->b_bcount = size;		/* requested buffer size	*/
3095	return 1;
3096}
3097
3098void
3099biodone(struct bio *bp)
3100{
3101	struct mtx *mtxp;
3102	void (*done)(struct bio *);
3103
3104	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3105	mtx_lock(mtxp);
3106	bp->bio_flags |= BIO_DONE;
3107	done = bp->bio_done;
3108	if (done == NULL)
3109		wakeup(bp);
3110	mtx_unlock(mtxp);
3111	if (done != NULL)
3112		done(bp);
3113}
3114
3115/*
3116 * Wait for a BIO to finish.
3117 *
3118 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3119 * case is not yet clear.
3120 */
3121int
3122biowait(struct bio *bp, const char *wchan)
3123{
3124	struct mtx *mtxp;
3125
3126	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3127	mtx_lock(mtxp);
3128	while ((bp->bio_flags & BIO_DONE) == 0)
3129		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3130	mtx_unlock(mtxp);
3131	if (bp->bio_error != 0)
3132		return (bp->bio_error);
3133	if (!(bp->bio_flags & BIO_ERROR))
3134		return (0);
3135	return (EIO);
3136}
3137
3138void
3139biofinish(struct bio *bp, struct devstat *stat, int error)
3140{
3141
3142	if (error) {
3143		bp->bio_error = error;
3144		bp->bio_flags |= BIO_ERROR;
3145	}
3146	if (stat != NULL)
3147		devstat_end_transaction_bio(stat, bp);
3148	biodone(bp);
3149}
3150
3151/*
3152 *	bufwait:
3153 *
3154 *	Wait for buffer I/O completion, returning error status.  The buffer
3155 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3156 *	error and cleared.
3157 */
3158int
3159bufwait(struct buf *bp)
3160{
3161	if (bp->b_iocmd == BIO_READ)
3162		bwait(bp, PRIBIO, "biord");
3163	else
3164		bwait(bp, PRIBIO, "biowr");
3165	if (bp->b_flags & B_EINTR) {
3166		bp->b_flags &= ~B_EINTR;
3167		return (EINTR);
3168	}
3169	if (bp->b_ioflags & BIO_ERROR) {
3170		return (bp->b_error ? bp->b_error : EIO);
3171	} else {
3172		return (0);
3173	}
3174}
3175
3176 /*
3177  * Call back function from struct bio back up to struct buf.
3178  */
3179static void
3180bufdonebio(struct bio *bip)
3181{
3182	struct buf *bp;
3183
3184	bp = bip->bio_caller2;
3185	bp->b_resid = bp->b_bcount - bip->bio_completed;
3186	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3187	bp->b_ioflags = bip->bio_flags;
3188	bp->b_error = bip->bio_error;
3189	if (bp->b_error)
3190		bp->b_ioflags |= BIO_ERROR;
3191	bufdone(bp);
3192	g_destroy_bio(bip);
3193}
3194
3195void
3196dev_strategy(struct cdev *dev, struct buf *bp)
3197{
3198	struct cdevsw *csw;
3199	struct bio *bip;
3200
3201	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3202		panic("b_iocmd botch");
3203	for (;;) {
3204		bip = g_new_bio();
3205		if (bip != NULL)
3206			break;
3207		/* Try again later */
3208		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3209	}
3210	bip->bio_cmd = bp->b_iocmd;
3211	bip->bio_offset = bp->b_iooffset;
3212	bip->bio_length = bp->b_bcount;
3213	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3214	bip->bio_data = bp->b_data;
3215	bip->bio_done = bufdonebio;
3216	bip->bio_caller2 = bp;
3217	bip->bio_dev = dev;
3218	KASSERT(dev->si_refcount > 0,
3219	    ("dev_strategy on un-referenced struct cdev *(%s)",
3220	    devtoname(dev)));
3221	csw = dev_refthread(dev);
3222	if (csw == NULL) {
3223		g_destroy_bio(bip);
3224		bp->b_error = ENXIO;
3225		bp->b_ioflags = BIO_ERROR;
3226		bufdone(bp);
3227		return;
3228	}
3229	(*csw->d_strategy)(bip);
3230	dev_relthread(dev);
3231}
3232
3233/*
3234 *	bufdone:
3235 *
3236 *	Finish I/O on a buffer, optionally calling a completion function.
3237 *	This is usually called from an interrupt so process blocking is
3238 *	not allowed.
3239 *
3240 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3241 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3242 *	assuming B_INVAL is clear.
3243 *
3244 *	For the VMIO case, we set B_CACHE if the op was a read and no
3245 *	read error occured, or if the op was a write.  B_CACHE is never
3246 *	set if the buffer is invalid or otherwise uncacheable.
3247 *
3248 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3249 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3250 *	in the biodone routine.
3251 */
3252void
3253bufdone(struct buf *bp)
3254{
3255	struct bufobj *dropobj;
3256	void    (*biodone)(struct buf *);
3257
3258	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3259	dropobj = NULL;
3260
3261	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3262	BUF_ASSERT_HELD(bp);
3263
3264	runningbufwakeup(bp);
3265	if (bp->b_iocmd == BIO_WRITE)
3266		dropobj = bp->b_bufobj;
3267	/* call optional completion function if requested */
3268	if (bp->b_iodone != NULL) {
3269		biodone = bp->b_iodone;
3270		bp->b_iodone = NULL;
3271		(*biodone) (bp);
3272		if (dropobj)
3273			bufobj_wdrop(dropobj);
3274		return;
3275	}
3276
3277	bufdone_finish(bp);
3278
3279	if (dropobj)
3280		bufobj_wdrop(dropobj);
3281}
3282
3283void
3284bufdone_finish(struct buf *bp)
3285{
3286	BUF_ASSERT_HELD(bp);
3287
3288	if (!LIST_EMPTY(&bp->b_dep))
3289		buf_complete(bp);
3290
3291	if (bp->b_flags & B_VMIO) {
3292		int i;
3293		vm_ooffset_t foff;
3294		vm_page_t m;
3295		vm_object_t obj;
3296		int bogus, iosize;
3297		struct vnode *vp = bp->b_vp;
3298
3299		obj = bp->b_bufobj->bo_object;
3300
3301#if defined(VFS_BIO_DEBUG)
3302		mp_fixme("usecount and vflag accessed without locks.");
3303		if (vp->v_usecount == 0) {
3304			panic("biodone: zero vnode ref count");
3305		}
3306
3307		KASSERT(vp->v_object != NULL,
3308			("biodone: vnode %p has no vm_object", vp));
3309#endif
3310
3311		foff = bp->b_offset;
3312		KASSERT(bp->b_offset != NOOFFSET,
3313		    ("biodone: no buffer offset"));
3314
3315		VM_OBJECT_LOCK(obj);
3316#if defined(VFS_BIO_DEBUG)
3317		if (obj->paging_in_progress < bp->b_npages) {
3318			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3319			    obj->paging_in_progress, bp->b_npages);
3320		}
3321#endif
3322
3323		/*
3324		 * Set B_CACHE if the op was a normal read and no error
3325		 * occured.  B_CACHE is set for writes in the b*write()
3326		 * routines.
3327		 */
3328		iosize = bp->b_bcount - bp->b_resid;
3329		if (bp->b_iocmd == BIO_READ &&
3330		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3331		    !(bp->b_ioflags & BIO_ERROR)) {
3332			bp->b_flags |= B_CACHE;
3333		}
3334		bogus = 0;
3335		for (i = 0; i < bp->b_npages; i++) {
3336			int bogusflag = 0;
3337			int resid;
3338
3339			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3340			if (resid > iosize)
3341				resid = iosize;
3342
3343			/*
3344			 * cleanup bogus pages, restoring the originals
3345			 */
3346			m = bp->b_pages[i];
3347			if (m == bogus_page) {
3348				bogus = bogusflag = 1;
3349				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3350				if (m == NULL)
3351					panic("biodone: page disappeared!");
3352				bp->b_pages[i] = m;
3353			}
3354#if defined(VFS_BIO_DEBUG)
3355			if (OFF_TO_IDX(foff) != m->pindex) {
3356				printf(
3357"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3358				    (intmax_t)foff, (uintmax_t)m->pindex);
3359			}
3360#endif
3361
3362			/*
3363			 * In the write case, the valid and clean bits are
3364			 * already changed correctly ( see bdwrite() ), so we
3365			 * only need to do this here in the read case.
3366			 */
3367			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3368				KASSERT((m->dirty & vm_page_bits(foff &
3369				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3370				    " page %p has unexpected dirty bits", m));
3371				vfs_page_set_valid(bp, foff, m);
3372			}
3373
3374			/*
3375			 * when debugging new filesystems or buffer I/O methods, this
3376			 * is the most common error that pops up.  if you see this, you
3377			 * have not set the page busy flag correctly!!!
3378			 */
3379			if (m->busy == 0) {
3380				printf("biodone: page busy < 0, "
3381				    "pindex: %d, foff: 0x(%x,%x), "
3382				    "resid: %d, index: %d\n",
3383				    (int) m->pindex, (int)(foff >> 32),
3384						(int) foff & 0xffffffff, resid, i);
3385				if (!vn_isdisk(vp, NULL))
3386					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3387					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3388					    (intmax_t) bp->b_lblkno,
3389					    bp->b_flags, bp->b_npages);
3390				else
3391					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3392					    (intmax_t) bp->b_lblkno,
3393					    bp->b_flags, bp->b_npages);
3394				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3395				    (u_long)m->valid, (u_long)m->dirty,
3396				    m->wire_count);
3397				panic("biodone: page busy < 0\n");
3398			}
3399			vm_page_io_finish(m);
3400			vm_object_pip_subtract(obj, 1);
3401			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3402			iosize -= resid;
3403		}
3404		vm_object_pip_wakeupn(obj, 0);
3405		VM_OBJECT_UNLOCK(obj);
3406		if (bogus)
3407			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3408			    bp->b_pages, bp->b_npages);
3409	}
3410
3411	/*
3412	 * For asynchronous completions, release the buffer now. The brelse
3413	 * will do a wakeup there if necessary - so no need to do a wakeup
3414	 * here in the async case. The sync case always needs to do a wakeup.
3415	 */
3416
3417	if (bp->b_flags & B_ASYNC) {
3418		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3419			brelse(bp);
3420		else
3421			bqrelse(bp);
3422	} else
3423		bdone(bp);
3424}
3425
3426/*
3427 * This routine is called in lieu of iodone in the case of
3428 * incomplete I/O.  This keeps the busy status for pages
3429 * consistant.
3430 */
3431void
3432vfs_unbusy_pages(struct buf *bp)
3433{
3434	int i;
3435	vm_object_t obj;
3436	vm_page_t m;
3437
3438	runningbufwakeup(bp);
3439	if (!(bp->b_flags & B_VMIO))
3440		return;
3441
3442	obj = bp->b_bufobj->bo_object;
3443	VM_OBJECT_LOCK(obj);
3444	for (i = 0; i < bp->b_npages; i++) {
3445		m = bp->b_pages[i];
3446		if (m == bogus_page) {
3447			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3448			if (!m)
3449				panic("vfs_unbusy_pages: page missing\n");
3450			bp->b_pages[i] = m;
3451			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3452			    bp->b_pages, bp->b_npages);
3453		}
3454		vm_object_pip_subtract(obj, 1);
3455		vm_page_io_finish(m);
3456	}
3457	vm_object_pip_wakeupn(obj, 0);
3458	VM_OBJECT_UNLOCK(obj);
3459}
3460
3461/*
3462 * vfs_page_set_valid:
3463 *
3464 *	Set the valid bits in a page based on the supplied offset.   The
3465 *	range is restricted to the buffer's size.
3466 *
3467 *	This routine is typically called after a read completes.
3468 */
3469static void
3470vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3471{
3472	vm_ooffset_t eoff;
3473
3474	/*
3475	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3476	 * page boundary and eoff is not greater than the end of the buffer.
3477	 * The end of the buffer, in this case, is our file EOF, not the
3478	 * allocation size of the buffer.
3479	 */
3480	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3481	if (eoff > bp->b_offset + bp->b_bcount)
3482		eoff = bp->b_offset + bp->b_bcount;
3483
3484	/*
3485	 * Set valid range.  This is typically the entire buffer and thus the
3486	 * entire page.
3487	 */
3488	if (eoff > off)
3489		vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
3490}
3491
3492/*
3493 * vfs_page_set_validclean:
3494 *
3495 *	Set the valid bits and clear the dirty bits in a page based on the
3496 *	supplied offset.   The range is restricted to the buffer's size.
3497 */
3498static void
3499vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3500{
3501	vm_ooffset_t soff, eoff;
3502
3503	/*
3504	 * Start and end offsets in buffer.  eoff - soff may not cross a
3505	 * page boundry or cross the end of the buffer.  The end of the
3506	 * buffer, in this case, is our file EOF, not the allocation size
3507	 * of the buffer.
3508	 */
3509	soff = off;
3510	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3511	if (eoff > bp->b_offset + bp->b_bcount)
3512		eoff = bp->b_offset + bp->b_bcount;
3513
3514	/*
3515	 * Set valid range.  This is typically the entire buffer and thus the
3516	 * entire page.
3517	 */
3518	if (eoff > soff) {
3519		vm_page_set_validclean(
3520		    m,
3521		   (vm_offset_t) (soff & PAGE_MASK),
3522		   (vm_offset_t) (eoff - soff)
3523		);
3524	}
3525}
3526
3527/*
3528 * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
3529 * any page is busy, drain the flag.
3530 */
3531static void
3532vfs_drain_busy_pages(struct buf *bp)
3533{
3534	vm_page_t m;
3535	int i, last_busied;
3536
3537	VM_OBJECT_LOCK_ASSERT(bp->b_bufobj->bo_object, MA_OWNED);
3538	last_busied = 0;
3539	for (i = 0; i < bp->b_npages; i++) {
3540		m = bp->b_pages[i];
3541		if ((m->oflags & VPO_BUSY) != 0) {
3542			for (; last_busied < i; last_busied++)
3543				vm_page_busy(bp->b_pages[last_busied]);
3544			while ((m->oflags & VPO_BUSY) != 0)
3545				vm_page_sleep(m, "vbpage");
3546		}
3547	}
3548	for (i = 0; i < last_busied; i++)
3549		vm_page_wakeup(bp->b_pages[i]);
3550}
3551
3552/*
3553 * This routine is called before a device strategy routine.
3554 * It is used to tell the VM system that paging I/O is in
3555 * progress, and treat the pages associated with the buffer
3556 * almost as being VPO_BUSY.  Also the object paging_in_progress
3557 * flag is handled to make sure that the object doesn't become
3558 * inconsistant.
3559 *
3560 * Since I/O has not been initiated yet, certain buffer flags
3561 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3562 * and should be ignored.
3563 */
3564void
3565vfs_busy_pages(struct buf *bp, int clear_modify)
3566{
3567	int i, bogus;
3568	vm_object_t obj;
3569	vm_ooffset_t foff;
3570	vm_page_t m;
3571
3572	if (!(bp->b_flags & B_VMIO))
3573		return;
3574
3575	obj = bp->b_bufobj->bo_object;
3576	foff = bp->b_offset;
3577	KASSERT(bp->b_offset != NOOFFSET,
3578	    ("vfs_busy_pages: no buffer offset"));
3579	VM_OBJECT_LOCK(obj);
3580	vfs_drain_busy_pages(bp);
3581	if (bp->b_bufsize != 0)
3582		vfs_setdirty_locked_object(bp);
3583	bogus = 0;
3584	for (i = 0; i < bp->b_npages; i++) {
3585		m = bp->b_pages[i];
3586
3587		if ((bp->b_flags & B_CLUSTER) == 0) {
3588			vm_object_pip_add(obj, 1);
3589			vm_page_io_start(m);
3590		}
3591		/*
3592		 * When readying a buffer for a read ( i.e
3593		 * clear_modify == 0 ), it is important to do
3594		 * bogus_page replacement for valid pages in
3595		 * partially instantiated buffers.  Partially
3596		 * instantiated buffers can, in turn, occur when
3597		 * reconstituting a buffer from its VM backing store
3598		 * base.  We only have to do this if B_CACHE is
3599		 * clear ( which causes the I/O to occur in the
3600		 * first place ).  The replacement prevents the read
3601		 * I/O from overwriting potentially dirty VM-backed
3602		 * pages.  XXX bogus page replacement is, uh, bogus.
3603		 * It may not work properly with small-block devices.
3604		 * We need to find a better way.
3605		 */
3606		if (clear_modify) {
3607			pmap_remove_write(m);
3608			vfs_page_set_validclean(bp, foff, m);
3609		} else if (m->valid == VM_PAGE_BITS_ALL &&
3610		    (bp->b_flags & B_CACHE) == 0) {
3611			bp->b_pages[i] = bogus_page;
3612			bogus++;
3613		}
3614		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3615	}
3616	VM_OBJECT_UNLOCK(obj);
3617	if (bogus)
3618		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3619		    bp->b_pages, bp->b_npages);
3620}
3621
3622/*
3623 *	vfs_bio_set_valid:
3624 *
3625 *	Set the range within the buffer to valid.  The range is
3626 *	relative to the beginning of the buffer, b_offset.  Note that
3627 *	b_offset itself may be offset from the beginning of the first
3628 *	page.
3629 */
3630void
3631vfs_bio_set_valid(struct buf *bp, int base, int size)
3632{
3633	int i, n;
3634	vm_page_t m;
3635
3636	if (!(bp->b_flags & B_VMIO))
3637		return;
3638
3639	/*
3640	 * Fixup base to be relative to beginning of first page.
3641	 * Set initial n to be the maximum number of bytes in the
3642	 * first page that can be validated.
3643	 */
3644	base += (bp->b_offset & PAGE_MASK);
3645	n = PAGE_SIZE - (base & PAGE_MASK);
3646
3647	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3648	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3649		m = bp->b_pages[i];
3650		if (n > size)
3651			n = size;
3652		vm_page_set_valid(m, base & PAGE_MASK, n);
3653		base += n;
3654		size -= n;
3655		n = PAGE_SIZE;
3656	}
3657	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3658}
3659
3660/*
3661 *	vfs_bio_clrbuf:
3662 *
3663 *	If the specified buffer is a non-VMIO buffer, clear the entire
3664 *	buffer.  If the specified buffer is a VMIO buffer, clear and
3665 *	validate only the previously invalid portions of the buffer.
3666 *	This routine essentially fakes an I/O, so we need to clear
3667 *	BIO_ERROR and B_INVAL.
3668 *
3669 *	Note that while we only theoretically need to clear through b_bcount,
3670 *	we go ahead and clear through b_bufsize.
3671 */
3672void
3673vfs_bio_clrbuf(struct buf *bp)
3674{
3675	int i, j, mask;
3676	caddr_t sa, ea;
3677
3678	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3679		clrbuf(bp);
3680		return;
3681	}
3682	bp->b_flags &= ~B_INVAL;
3683	bp->b_ioflags &= ~BIO_ERROR;
3684	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3685	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3686	    (bp->b_offset & PAGE_MASK) == 0) {
3687		if (bp->b_pages[0] == bogus_page)
3688			goto unlock;
3689		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3690		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3691		if ((bp->b_pages[0]->valid & mask) == mask)
3692			goto unlock;
3693		if ((bp->b_pages[0]->valid & mask) == 0) {
3694			bzero(bp->b_data, bp->b_bufsize);
3695			bp->b_pages[0]->valid |= mask;
3696			goto unlock;
3697		}
3698	}
3699	ea = sa = bp->b_data;
3700	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3701		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3702		ea = (caddr_t)(vm_offset_t)ulmin(
3703		    (u_long)(vm_offset_t)ea,
3704		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3705		if (bp->b_pages[i] == bogus_page)
3706			continue;
3707		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3708		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3709		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3710		if ((bp->b_pages[i]->valid & mask) == mask)
3711			continue;
3712		if ((bp->b_pages[i]->valid & mask) == 0)
3713			bzero(sa, ea - sa);
3714		else {
3715			for (; sa < ea; sa += DEV_BSIZE, j++) {
3716				if ((bp->b_pages[i]->valid & (1 << j)) == 0)
3717					bzero(sa, DEV_BSIZE);
3718			}
3719		}
3720		bp->b_pages[i]->valid |= mask;
3721	}
3722unlock:
3723	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3724	bp->b_resid = 0;
3725}
3726
3727/*
3728 * vm_hold_load_pages and vm_hold_free_pages get pages into
3729 * a buffers address space.  The pages are anonymous and are
3730 * not associated with a file object.
3731 */
3732static void
3733vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3734{
3735	vm_offset_t pg;
3736	vm_page_t p;
3737	int index;
3738
3739	to = round_page(to);
3740	from = round_page(from);
3741	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3742
3743	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3744tryagain:
3745		/*
3746		 * note: must allocate system pages since blocking here
3747		 * could interfere with paging I/O, no matter which
3748		 * process we are.
3749		 */
3750		p = vm_page_alloc(NULL, pg >> PAGE_SHIFT, VM_ALLOC_NOOBJ |
3751		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED |
3752		    VM_ALLOC_COUNT((to - pg) >> PAGE_SHIFT));
3753		if (!p) {
3754			VM_WAIT;
3755			goto tryagain;
3756		}
3757		pmap_qenter(pg, &p, 1);
3758		bp->b_pages[index] = p;
3759	}
3760	bp->b_npages = index;
3761}
3762
3763/* Return pages associated with this buf to the vm system */
3764static void
3765vm_hold_free_pages(struct buf *bp, int newbsize)
3766{
3767	vm_offset_t from;
3768	vm_page_t p;
3769	int index, newnpages;
3770
3771	from = round_page((vm_offset_t)bp->b_data + newbsize);
3772	newnpages = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3773	if (bp->b_npages > newnpages)
3774		pmap_qremove(from, bp->b_npages - newnpages);
3775	for (index = newnpages; index < bp->b_npages; index++) {
3776		p = bp->b_pages[index];
3777		bp->b_pages[index] = NULL;
3778		if (p->busy != 0)
3779			printf("vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3780			    (intmax_t)bp->b_blkno, (intmax_t)bp->b_lblkno);
3781		p->wire_count--;
3782		vm_page_free(p);
3783		atomic_subtract_int(&cnt.v_wire_count, 1);
3784	}
3785	bp->b_npages = newnpages;
3786}
3787
3788/*
3789 * Map an IO request into kernel virtual address space.
3790 *
3791 * All requests are (re)mapped into kernel VA space.
3792 * Notice that we use b_bufsize for the size of the buffer
3793 * to be mapped.  b_bcount might be modified by the driver.
3794 *
3795 * Note that even if the caller determines that the address space should
3796 * be valid, a race or a smaller-file mapped into a larger space may
3797 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3798 * check the return value.
3799 */
3800int
3801vmapbuf(struct buf *bp)
3802{
3803	caddr_t addr, kva;
3804	vm_prot_t prot;
3805	int pidx, i;
3806	struct vm_page *m;
3807	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3808
3809	if (bp->b_bufsize < 0)
3810		return (-1);
3811	prot = VM_PROT_READ;
3812	if (bp->b_iocmd == BIO_READ)
3813		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3814	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3815	     addr < bp->b_data + bp->b_bufsize;
3816	     addr += PAGE_SIZE, pidx++) {
3817		/*
3818		 * Do the vm_fault if needed; do the copy-on-write thing
3819		 * when reading stuff off device into memory.
3820		 *
3821		 * NOTE! Must use pmap_extract() because addr may be in
3822		 * the userland address space, and kextract is only guarenteed
3823		 * to work for the kernland address space (see: sparc64 port).
3824		 */
3825retry:
3826		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3827		    prot) < 0) {
3828			for (i = 0; i < pidx; ++i) {
3829				vm_page_lock(bp->b_pages[i]);
3830				vm_page_unhold(bp->b_pages[i]);
3831				vm_page_unlock(bp->b_pages[i]);
3832				bp->b_pages[i] = NULL;
3833			}
3834			return(-1);
3835		}
3836		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3837		if (m == NULL)
3838			goto retry;
3839		bp->b_pages[pidx] = m;
3840	}
3841	if (pidx > btoc(MAXPHYS))
3842		panic("vmapbuf: mapped more than MAXPHYS");
3843	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3844
3845	kva = bp->b_saveaddr;
3846	bp->b_npages = pidx;
3847	bp->b_saveaddr = bp->b_data;
3848	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3849	return(0);
3850}
3851
3852/*
3853 * Free the io map PTEs associated with this IO operation.
3854 * We also invalidate the TLB entries and restore the original b_addr.
3855 */
3856void
3857vunmapbuf(struct buf *bp)
3858{
3859	int pidx;
3860	int npages;
3861
3862	npages = bp->b_npages;
3863	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3864	for (pidx = 0; pidx < npages; pidx++) {
3865		vm_page_lock(bp->b_pages[pidx]);
3866		vm_page_unhold(bp->b_pages[pidx]);
3867		vm_page_unlock(bp->b_pages[pidx]);
3868	}
3869
3870	bp->b_data = bp->b_saveaddr;
3871}
3872
3873void
3874bdone(struct buf *bp)
3875{
3876	struct mtx *mtxp;
3877
3878	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3879	mtx_lock(mtxp);
3880	bp->b_flags |= B_DONE;
3881	wakeup(bp);
3882	mtx_unlock(mtxp);
3883}
3884
3885void
3886bwait(struct buf *bp, u_char pri, const char *wchan)
3887{
3888	struct mtx *mtxp;
3889
3890	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3891	mtx_lock(mtxp);
3892	while ((bp->b_flags & B_DONE) == 0)
3893		msleep(bp, mtxp, pri, wchan, 0);
3894	mtx_unlock(mtxp);
3895}
3896
3897int
3898bufsync(struct bufobj *bo, int waitfor)
3899{
3900
3901	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3902}
3903
3904void
3905bufstrategy(struct bufobj *bo, struct buf *bp)
3906{
3907	int i = 0;
3908	struct vnode *vp;
3909
3910	vp = bp->b_vp;
3911	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3912	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3913	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3914	i = VOP_STRATEGY(vp, bp);
3915	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3916}
3917
3918void
3919bufobj_wrefl(struct bufobj *bo)
3920{
3921
3922	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3923	ASSERT_BO_LOCKED(bo);
3924	bo->bo_numoutput++;
3925}
3926
3927void
3928bufobj_wref(struct bufobj *bo)
3929{
3930
3931	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3932	BO_LOCK(bo);
3933	bo->bo_numoutput++;
3934	BO_UNLOCK(bo);
3935}
3936
3937void
3938bufobj_wdrop(struct bufobj *bo)
3939{
3940
3941	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3942	BO_LOCK(bo);
3943	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3944	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3945		bo->bo_flag &= ~BO_WWAIT;
3946		wakeup(&bo->bo_numoutput);
3947	}
3948	BO_UNLOCK(bo);
3949}
3950
3951int
3952bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3953{
3954	int error;
3955
3956	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3957	ASSERT_BO_LOCKED(bo);
3958	error = 0;
3959	while (bo->bo_numoutput) {
3960		bo->bo_flag |= BO_WWAIT;
3961		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3962		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3963		if (error)
3964			break;
3965	}
3966	return (error);
3967}
3968
3969void
3970bpin(struct buf *bp)
3971{
3972	struct mtx *mtxp;
3973
3974	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3975	mtx_lock(mtxp);
3976	bp->b_pin_count++;
3977	mtx_unlock(mtxp);
3978}
3979
3980void
3981bunpin(struct buf *bp)
3982{
3983	struct mtx *mtxp;
3984
3985	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3986	mtx_lock(mtxp);
3987	if (--bp->b_pin_count == 0)
3988		wakeup(bp);
3989	mtx_unlock(mtxp);
3990}
3991
3992void
3993bunpin_wait(struct buf *bp)
3994{
3995	struct mtx *mtxp;
3996
3997	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3998	mtx_lock(mtxp);
3999	while (bp->b_pin_count > 0)
4000		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4001	mtx_unlock(mtxp);
4002}
4003
4004#include "opt_ddb.h"
4005#ifdef DDB
4006#include <ddb/ddb.h>
4007
4008/* DDB command to show buffer data */
4009DB_SHOW_COMMAND(buffer, db_show_buffer)
4010{
4011	/* get args */
4012	struct buf *bp = (struct buf *)addr;
4013
4014	if (!have_addr) {
4015		db_printf("usage: show buffer <addr>\n");
4016		return;
4017	}
4018
4019	db_printf("buf at %p\n", bp);
4020	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4021	db_printf(
4022	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4023	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
4024	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4025	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4026	    bp->b_dep.lh_first);
4027	if (bp->b_npages) {
4028		int i;
4029		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4030		for (i = 0; i < bp->b_npages; i++) {
4031			vm_page_t m;
4032			m = bp->b_pages[i];
4033			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4034			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4035			if ((i + 1) < bp->b_npages)
4036				db_printf(",");
4037		}
4038		db_printf("\n");
4039	}
4040	db_printf(" ");
4041	lockmgr_printinfo(&bp->b_lock);
4042}
4043
4044DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4045{
4046	struct buf *bp;
4047	int i;
4048
4049	for (i = 0; i < nbuf; i++) {
4050		bp = &buf[i];
4051		if (BUF_ISLOCKED(bp)) {
4052			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4053			db_printf("\n");
4054		}
4055	}
4056}
4057
4058DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4059{
4060	struct vnode *vp;
4061	struct buf *bp;
4062
4063	if (!have_addr) {
4064		db_printf("usage: show vnodebufs <addr>\n");
4065		return;
4066	}
4067	vp = (struct vnode *)addr;
4068	db_printf("Clean buffers:\n");
4069	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4070		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4071		db_printf("\n");
4072	}
4073	db_printf("Dirty buffers:\n");
4074	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4075		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4076		db_printf("\n");
4077	}
4078}
4079
4080DB_COMMAND(countfreebufs, db_coundfreebufs)
4081{
4082	struct buf *bp;
4083	int i, used = 0, nfree = 0;
4084
4085	if (have_addr) {
4086		db_printf("usage: countfreebufs\n");
4087		return;
4088	}
4089
4090	for (i = 0; i < nbuf; i++) {
4091		bp = &buf[i];
4092		if ((bp->b_vflags & BV_INFREECNT) != 0)
4093			nfree++;
4094		else
4095			used++;
4096	}
4097
4098	db_printf("Counted %d free, %d used (%d tot)\n", nfree, used,
4099	    nfree + used);
4100	db_printf("numfreebuffers is %d\n", numfreebuffers);
4101}
4102#endif /* DDB */
4103