vfs_bio.c revision 208920
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 208920 2010-06-08 17:54:28Z kib $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/fail.h>
52#include <sys/limits.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mount.h>
56#include <sys/mutex.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/proc.h>
60#include <sys/resourcevar.h>
61#include <sys/sysctl.h>
62#include <sys/vmmeter.h>
63#include <sys/vnode.h>
64#include <geom/geom.h>
65#include <vm/vm.h>
66#include <vm/vm_param.h>
67#include <vm/vm_kern.h>
68#include <vm/vm_pageout.h>
69#include <vm/vm_page.h>
70#include <vm/vm_object.h>
71#include <vm/vm_extern.h>
72#include <vm/vm_map.h>
73#include "opt_compat.h"
74#include "opt_directio.h"
75#include "opt_swap.h"
76
77static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
78
79struct	bio_ops bioops;		/* I/O operation notification */
80
81struct	buf_ops buf_ops_bio = {
82	.bop_name	=	"buf_ops_bio",
83	.bop_write	=	bufwrite,
84	.bop_strategy	=	bufstrategy,
85	.bop_sync	=	bufsync,
86	.bop_bdflush	=	bufbdflush,
87};
88
89/*
90 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
91 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
92 */
93struct buf *buf;		/* buffer header pool */
94
95static struct proc *bufdaemonproc;
96
97static int inmem(struct vnode *vp, daddr_t blkno);
98static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
99		vm_offset_t to);
100static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
101		vm_offset_t to);
102static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
103static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
104		vm_page_t m);
105static void vfs_drain_busy_pages(struct buf *bp);
106static void vfs_clean_pages_dirty_buf(struct buf *bp);
107static void vfs_setdirty_locked_object(struct buf *bp);
108static void vfs_vmio_release(struct buf *bp);
109static int vfs_bio_clcheck(struct vnode *vp, int size,
110		daddr_t lblkno, daddr_t blkno);
111static int buf_do_flush(struct vnode *vp);
112static int flushbufqueues(struct vnode *, int, int);
113static void buf_daemon(void);
114static void bremfreel(struct buf *bp);
115#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
116    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
117static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
118#endif
119
120int vmiodirenable = TRUE;
121SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
122    "Use the VM system for directory writes");
123long runningbufspace;
124SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
125    "Amount of presently outstanding async buffer io");
126static long bufspace;
127#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
128    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
129SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
130    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
131#else
132SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
133    "Virtual memory used for buffers");
134#endif
135static long maxbufspace;
136SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
137    "Maximum allowed value of bufspace (including buf_daemon)");
138static long bufmallocspace;
139SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
140    "Amount of malloced memory for buffers");
141static long maxbufmallocspace;
142SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
143    "Maximum amount of malloced memory for buffers");
144static long lobufspace;
145SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
146    "Minimum amount of buffers we want to have");
147long hibufspace;
148SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
149    "Maximum allowed value of bufspace (excluding buf_daemon)");
150static int bufreusecnt;
151SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
152    "Number of times we have reused a buffer");
153static int buffreekvacnt;
154SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
155    "Number of times we have freed the KVA space from some buffer");
156static int bufdefragcnt;
157SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
158    "Number of times we have had to repeat buffer allocation to defragment");
159static long lorunningspace;
160SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
161    "Minimum preferred space used for in-progress I/O");
162static long hirunningspace;
163SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
164    "Maximum amount of space to use for in-progress I/O");
165int dirtybufferflushes;
166SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
167    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
168int bdwriteskip;
169SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
170    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
171int altbufferflushes;
172SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
173    0, "Number of fsync flushes to limit dirty buffers");
174static int recursiveflushes;
175SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
176    0, "Number of flushes skipped due to being recursive");
177static int numdirtybuffers;
178SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
179    "Number of buffers that are dirty (has unwritten changes) at the moment");
180static int lodirtybuffers;
181SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
182    "How many buffers we want to have free before bufdaemon can sleep");
183static int hidirtybuffers;
184SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
185    "When the number of dirty buffers is considered severe");
186int dirtybufthresh;
187SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
188    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
189static int numfreebuffers;
190SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
191    "Number of free buffers");
192static int lofreebuffers;
193SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
194   "XXX Unused");
195static int hifreebuffers;
196SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
197   "XXX Complicatedly unused");
198static int getnewbufcalls;
199SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
200   "Number of calls to getnewbuf");
201static int getnewbufrestarts;
202SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
203    "Number of times getnewbuf has had to restart a buffer aquisition");
204static int flushbufqtarget = 100;
205SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
206    "Amount of work to do in flushbufqueues when helping bufdaemon");
207static long notbufdflashes;
208SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
209    "Number of dirty buffer flushes done by the bufdaemon helpers");
210
211/*
212 * Wakeup point for bufdaemon, as well as indicator of whether it is already
213 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
214 * is idling.
215 */
216static int bd_request;
217
218/*
219 * Request for the buf daemon to write more buffers than is indicated by
220 * lodirtybuf.  This may be necessary to push out excess dependencies or
221 * defragment the address space where a simple count of the number of dirty
222 * buffers is insufficient to characterize the demand for flushing them.
223 */
224static int bd_speedupreq;
225
226/*
227 * This lock synchronizes access to bd_request.
228 */
229static struct mtx bdlock;
230
231/*
232 * bogus page -- for I/O to/from partially complete buffers
233 * this is a temporary solution to the problem, but it is not
234 * really that bad.  it would be better to split the buffer
235 * for input in the case of buffers partially already in memory,
236 * but the code is intricate enough already.
237 */
238vm_page_t bogus_page;
239
240/*
241 * Synchronization (sleep/wakeup) variable for active buffer space requests.
242 * Set when wait starts, cleared prior to wakeup().
243 * Used in runningbufwakeup() and waitrunningbufspace().
244 */
245static int runningbufreq;
246
247/*
248 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
249 * waitrunningbufspace().
250 */
251static struct mtx rbreqlock;
252
253/*
254 * Synchronization (sleep/wakeup) variable for buffer requests.
255 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
256 * by and/or.
257 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
258 * getnewbuf(), and getblk().
259 */
260static int needsbuffer;
261
262/*
263 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
264 */
265static struct mtx nblock;
266
267/*
268 * Definitions for the buffer free lists.
269 */
270#define BUFFER_QUEUES	6	/* number of free buffer queues */
271
272#define QUEUE_NONE	0	/* on no queue */
273#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
274#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
275#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
276#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
277#define QUEUE_EMPTY	5	/* empty buffer headers */
278#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
279
280/* Queues for free buffers with various properties */
281static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
282
283/* Lock for the bufqueues */
284static struct mtx bqlock;
285
286/*
287 * Single global constant for BUF_WMESG, to avoid getting multiple references.
288 * buf_wmesg is referred from macros.
289 */
290const char *buf_wmesg = BUF_WMESG;
291
292#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
293#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
294#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
295#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
296
297#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
298    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
299static int
300sysctl_bufspace(SYSCTL_HANDLER_ARGS)
301{
302	long lvalue;
303	int ivalue;
304
305	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
306		return (sysctl_handle_long(oidp, arg1, arg2, req));
307	lvalue = *(long *)arg1;
308	if (lvalue > INT_MAX)
309		/* On overflow, still write out a long to trigger ENOMEM. */
310		return (sysctl_handle_long(oidp, &lvalue, 0, req));
311	ivalue = lvalue;
312	return (sysctl_handle_int(oidp, &ivalue, 0, req));
313}
314#endif
315
316#ifdef DIRECTIO
317extern void ffs_rawread_setup(void);
318#endif /* DIRECTIO */
319/*
320 *	numdirtywakeup:
321 *
322 *	If someone is blocked due to there being too many dirty buffers,
323 *	and numdirtybuffers is now reasonable, wake them up.
324 */
325
326static __inline void
327numdirtywakeup(int level)
328{
329
330	if (numdirtybuffers <= level) {
331		mtx_lock(&nblock);
332		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
333			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
334			wakeup(&needsbuffer);
335		}
336		mtx_unlock(&nblock);
337	}
338}
339
340/*
341 *	bufspacewakeup:
342 *
343 *	Called when buffer space is potentially available for recovery.
344 *	getnewbuf() will block on this flag when it is unable to free
345 *	sufficient buffer space.  Buffer space becomes recoverable when
346 *	bp's get placed back in the queues.
347 */
348
349static __inline void
350bufspacewakeup(void)
351{
352
353	/*
354	 * If someone is waiting for BUF space, wake them up.  Even
355	 * though we haven't freed the kva space yet, the waiting
356	 * process will be able to now.
357	 */
358	mtx_lock(&nblock);
359	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
360		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
361		wakeup(&needsbuffer);
362	}
363	mtx_unlock(&nblock);
364}
365
366/*
367 * runningbufwakeup() - in-progress I/O accounting.
368 *
369 */
370void
371runningbufwakeup(struct buf *bp)
372{
373
374	if (bp->b_runningbufspace) {
375		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
376		bp->b_runningbufspace = 0;
377		mtx_lock(&rbreqlock);
378		if (runningbufreq && runningbufspace <= lorunningspace) {
379			runningbufreq = 0;
380			wakeup(&runningbufreq);
381		}
382		mtx_unlock(&rbreqlock);
383	}
384}
385
386/*
387 *	bufcountwakeup:
388 *
389 *	Called when a buffer has been added to one of the free queues to
390 *	account for the buffer and to wakeup anyone waiting for free buffers.
391 *	This typically occurs when large amounts of metadata are being handled
392 *	by the buffer cache ( else buffer space runs out first, usually ).
393 */
394
395static __inline void
396bufcountwakeup(void)
397{
398
399	atomic_add_int(&numfreebuffers, 1);
400	mtx_lock(&nblock);
401	if (needsbuffer) {
402		needsbuffer &= ~VFS_BIO_NEED_ANY;
403		if (numfreebuffers >= hifreebuffers)
404			needsbuffer &= ~VFS_BIO_NEED_FREE;
405		wakeup(&needsbuffer);
406	}
407	mtx_unlock(&nblock);
408}
409
410/*
411 *	waitrunningbufspace()
412 *
413 *	runningbufspace is a measure of the amount of I/O currently
414 *	running.  This routine is used in async-write situations to
415 *	prevent creating huge backups of pending writes to a device.
416 *	Only asynchronous writes are governed by this function.
417 *
418 *	Reads will adjust runningbufspace, but will not block based on it.
419 *	The read load has a side effect of reducing the allowed write load.
420 *
421 *	This does NOT turn an async write into a sync write.  It waits
422 *	for earlier writes to complete and generally returns before the
423 *	caller's write has reached the device.
424 */
425void
426waitrunningbufspace(void)
427{
428
429	mtx_lock(&rbreqlock);
430	while (runningbufspace > hirunningspace) {
431		++runningbufreq;
432		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
433	}
434	mtx_unlock(&rbreqlock);
435}
436
437
438/*
439 *	vfs_buf_test_cache:
440 *
441 *	Called when a buffer is extended.  This function clears the B_CACHE
442 *	bit if the newly extended portion of the buffer does not contain
443 *	valid data.
444 */
445static __inline
446void
447vfs_buf_test_cache(struct buf *bp,
448		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
449		  vm_page_t m)
450{
451
452	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
453	if (bp->b_flags & B_CACHE) {
454		int base = (foff + off) & PAGE_MASK;
455		if (vm_page_is_valid(m, base, size) == 0)
456			bp->b_flags &= ~B_CACHE;
457	}
458}
459
460/* Wake up the buffer daemon if necessary */
461static __inline
462void
463bd_wakeup(int dirtybuflevel)
464{
465
466	mtx_lock(&bdlock);
467	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
468		bd_request = 1;
469		wakeup(&bd_request);
470	}
471	mtx_unlock(&bdlock);
472}
473
474/*
475 * bd_speedup - speedup the buffer cache flushing code
476 */
477
478void
479bd_speedup(void)
480{
481	int needwake;
482
483	mtx_lock(&bdlock);
484	needwake = 0;
485	if (bd_speedupreq == 0 || bd_request == 0)
486		needwake = 1;
487	bd_speedupreq = 1;
488	bd_request = 1;
489	if (needwake)
490		wakeup(&bd_request);
491	mtx_unlock(&bdlock);
492}
493
494/*
495 * Calculating buffer cache scaling values and reserve space for buffer
496 * headers.  This is called during low level kernel initialization and
497 * may be called more then once.  We CANNOT write to the memory area
498 * being reserved at this time.
499 */
500caddr_t
501kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
502{
503	int tuned_nbuf;
504	long maxbuf;
505
506	/*
507	 * physmem_est is in pages.  Convert it to kilobytes (assumes
508	 * PAGE_SIZE is >= 1K)
509	 */
510	physmem_est = physmem_est * (PAGE_SIZE / 1024);
511
512	/*
513	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
514	 * For the first 64MB of ram nominally allocate sufficient buffers to
515	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
516	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
517	 * the buffer cache we limit the eventual kva reservation to
518	 * maxbcache bytes.
519	 *
520	 * factor represents the 1/4 x ram conversion.
521	 */
522	if (nbuf == 0) {
523		int factor = 4 * BKVASIZE / 1024;
524
525		nbuf = 50;
526		if (physmem_est > 4096)
527			nbuf += min((physmem_est - 4096) / factor,
528			    65536 / factor);
529		if (physmem_est > 65536)
530			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
531
532		if (maxbcache && nbuf > maxbcache / BKVASIZE)
533			nbuf = maxbcache / BKVASIZE;
534		tuned_nbuf = 1;
535	} else
536		tuned_nbuf = 0;
537
538	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
539	maxbuf = (LONG_MAX / 3) / BKVASIZE;
540	if (nbuf > maxbuf) {
541		if (!tuned_nbuf)
542			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
543			    maxbuf);
544		nbuf = maxbuf;
545	}
546
547	/*
548	 * swbufs are used as temporary holders for I/O, such as paging I/O.
549	 * We have no less then 16 and no more then 256.
550	 */
551	nswbuf = max(min(nbuf/4, 256), 16);
552#ifdef NSWBUF_MIN
553	if (nswbuf < NSWBUF_MIN)
554		nswbuf = NSWBUF_MIN;
555#endif
556#ifdef DIRECTIO
557	ffs_rawread_setup();
558#endif
559
560	/*
561	 * Reserve space for the buffer cache buffers
562	 */
563	swbuf = (void *)v;
564	v = (caddr_t)(swbuf + nswbuf);
565	buf = (void *)v;
566	v = (caddr_t)(buf + nbuf);
567
568	return(v);
569}
570
571/* Initialize the buffer subsystem.  Called before use of any buffers. */
572void
573bufinit(void)
574{
575	struct buf *bp;
576	int i;
577
578	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
579	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
580	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
581	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
582
583	/* next, make a null set of free lists */
584	for (i = 0; i < BUFFER_QUEUES; i++)
585		TAILQ_INIT(&bufqueues[i]);
586
587	/* finally, initialize each buffer header and stick on empty q */
588	for (i = 0; i < nbuf; i++) {
589		bp = &buf[i];
590		bzero(bp, sizeof *bp);
591		bp->b_flags = B_INVAL;	/* we're just an empty header */
592		bp->b_rcred = NOCRED;
593		bp->b_wcred = NOCRED;
594		bp->b_qindex = QUEUE_EMPTY;
595		bp->b_vflags = 0;
596		bp->b_xflags = 0;
597		LIST_INIT(&bp->b_dep);
598		BUF_LOCKINIT(bp);
599		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
600	}
601
602	/*
603	 * maxbufspace is the absolute maximum amount of buffer space we are
604	 * allowed to reserve in KVM and in real terms.  The absolute maximum
605	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
606	 * used by most other processes.  The differential is required to
607	 * ensure that buf_daemon is able to run when other processes might
608	 * be blocked waiting for buffer space.
609	 *
610	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
611	 * this may result in KVM fragmentation which is not handled optimally
612	 * by the system.
613	 */
614	maxbufspace = (long)nbuf * BKVASIZE;
615	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
616	lobufspace = hibufspace - MAXBSIZE;
617
618	lorunningspace = 512 * 1024;
619	hirunningspace = 1024 * 1024;
620
621/*
622 * Limit the amount of malloc memory since it is wired permanently into
623 * the kernel space.  Even though this is accounted for in the buffer
624 * allocation, we don't want the malloced region to grow uncontrolled.
625 * The malloc scheme improves memory utilization significantly on average
626 * (small) directories.
627 */
628	maxbufmallocspace = hibufspace / 20;
629
630/*
631 * Reduce the chance of a deadlock occuring by limiting the number
632 * of delayed-write dirty buffers we allow to stack up.
633 */
634	hidirtybuffers = nbuf / 4 + 20;
635	dirtybufthresh = hidirtybuffers * 9 / 10;
636	numdirtybuffers = 0;
637/*
638 * To support extreme low-memory systems, make sure hidirtybuffers cannot
639 * eat up all available buffer space.  This occurs when our minimum cannot
640 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
641 * BKVASIZE'd (8K) buffers.
642 */
643	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
644		hidirtybuffers >>= 1;
645	}
646	lodirtybuffers = hidirtybuffers / 2;
647
648/*
649 * Try to keep the number of free buffers in the specified range,
650 * and give special processes (e.g. like buf_daemon) access to an
651 * emergency reserve.
652 */
653	lofreebuffers = nbuf / 18 + 5;
654	hifreebuffers = 2 * lofreebuffers;
655	numfreebuffers = nbuf;
656
657	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
658	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
659}
660
661/*
662 * bfreekva() - free the kva allocation for a buffer.
663 *
664 *	Since this call frees up buffer space, we call bufspacewakeup().
665 */
666static void
667bfreekva(struct buf *bp)
668{
669
670	if (bp->b_kvasize) {
671		atomic_add_int(&buffreekvacnt, 1);
672		atomic_subtract_long(&bufspace, bp->b_kvasize);
673		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
674		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
675		bp->b_kvasize = 0;
676		bufspacewakeup();
677	}
678}
679
680/*
681 *	bremfree:
682 *
683 *	Mark the buffer for removal from the appropriate free list in brelse.
684 *
685 */
686void
687bremfree(struct buf *bp)
688{
689
690	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
691	KASSERT((bp->b_flags & B_REMFREE) == 0,
692	    ("bremfree: buffer %p already marked for delayed removal.", bp));
693	KASSERT(bp->b_qindex != QUEUE_NONE,
694	    ("bremfree: buffer %p not on a queue.", bp));
695	BUF_ASSERT_HELD(bp);
696
697	bp->b_flags |= B_REMFREE;
698	/* Fixup numfreebuffers count.  */
699	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
700		atomic_subtract_int(&numfreebuffers, 1);
701}
702
703/*
704 *	bremfreef:
705 *
706 *	Force an immediate removal from a free list.  Used only in nfs when
707 *	it abuses the b_freelist pointer.
708 */
709void
710bremfreef(struct buf *bp)
711{
712	mtx_lock(&bqlock);
713	bremfreel(bp);
714	mtx_unlock(&bqlock);
715}
716
717/*
718 *	bremfreel:
719 *
720 *	Removes a buffer from the free list, must be called with the
721 *	bqlock held.
722 */
723static void
724bremfreel(struct buf *bp)
725{
726	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
727	    bp, bp->b_vp, bp->b_flags);
728	KASSERT(bp->b_qindex != QUEUE_NONE,
729	    ("bremfreel: buffer %p not on a queue.", bp));
730	BUF_ASSERT_HELD(bp);
731	mtx_assert(&bqlock, MA_OWNED);
732
733	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
734	bp->b_qindex = QUEUE_NONE;
735	/*
736	 * If this was a delayed bremfree() we only need to remove the buffer
737	 * from the queue and return the stats are already done.
738	 */
739	if (bp->b_flags & B_REMFREE) {
740		bp->b_flags &= ~B_REMFREE;
741		return;
742	}
743	/*
744	 * Fixup numfreebuffers count.  If the buffer is invalid or not
745	 * delayed-write, the buffer was free and we must decrement
746	 * numfreebuffers.
747	 */
748	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
749		atomic_subtract_int(&numfreebuffers, 1);
750}
751
752
753/*
754 * Get a buffer with the specified data.  Look in the cache first.  We
755 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
756 * is set, the buffer is valid and we do not have to do anything ( see
757 * getblk() ).  This is really just a special case of breadn().
758 */
759int
760bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
761    struct buf **bpp)
762{
763
764	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
765}
766
767/*
768 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
769 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
770 * the buffer is valid and we do not have to do anything.
771 */
772void
773breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
774    int cnt, struct ucred * cred)
775{
776	struct buf *rabp;
777	int i;
778
779	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
780		if (inmem(vp, *rablkno))
781			continue;
782		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
783
784		if ((rabp->b_flags & B_CACHE) == 0) {
785			if (!TD_IS_IDLETHREAD(curthread))
786				curthread->td_ru.ru_inblock++;
787			rabp->b_flags |= B_ASYNC;
788			rabp->b_flags &= ~B_INVAL;
789			rabp->b_ioflags &= ~BIO_ERROR;
790			rabp->b_iocmd = BIO_READ;
791			if (rabp->b_rcred == NOCRED && cred != NOCRED)
792				rabp->b_rcred = crhold(cred);
793			vfs_busy_pages(rabp, 0);
794			BUF_KERNPROC(rabp);
795			rabp->b_iooffset = dbtob(rabp->b_blkno);
796			bstrategy(rabp);
797		} else {
798			brelse(rabp);
799		}
800	}
801}
802
803/*
804 * Operates like bread, but also starts asynchronous I/O on
805 * read-ahead blocks.
806 */
807int
808breadn(struct vnode * vp, daddr_t blkno, int size,
809    daddr_t * rablkno, int *rabsize,
810    int cnt, struct ucred * cred, struct buf **bpp)
811{
812	struct buf *bp;
813	int rv = 0, readwait = 0;
814
815	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
816	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
817
818	/* if not found in cache, do some I/O */
819	if ((bp->b_flags & B_CACHE) == 0) {
820		if (!TD_IS_IDLETHREAD(curthread))
821			curthread->td_ru.ru_inblock++;
822		bp->b_iocmd = BIO_READ;
823		bp->b_flags &= ~B_INVAL;
824		bp->b_ioflags &= ~BIO_ERROR;
825		if (bp->b_rcred == NOCRED && cred != NOCRED)
826			bp->b_rcred = crhold(cred);
827		vfs_busy_pages(bp, 0);
828		bp->b_iooffset = dbtob(bp->b_blkno);
829		bstrategy(bp);
830		++readwait;
831	}
832
833	breada(vp, rablkno, rabsize, cnt, cred);
834
835	if (readwait) {
836		rv = bufwait(bp);
837	}
838	return (rv);
839}
840
841/*
842 * Write, release buffer on completion.  (Done by iodone
843 * if async).  Do not bother writing anything if the buffer
844 * is invalid.
845 *
846 * Note that we set B_CACHE here, indicating that buffer is
847 * fully valid and thus cacheable.  This is true even of NFS
848 * now so we set it generally.  This could be set either here
849 * or in biodone() since the I/O is synchronous.  We put it
850 * here.
851 */
852int
853bufwrite(struct buf *bp)
854{
855	int oldflags;
856	struct vnode *vp;
857	int vp_md;
858
859	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
860	if (bp->b_flags & B_INVAL) {
861		brelse(bp);
862		return (0);
863	}
864
865	oldflags = bp->b_flags;
866
867	BUF_ASSERT_HELD(bp);
868
869	if (bp->b_pin_count > 0)
870		bunpin_wait(bp);
871
872	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
873	    ("FFS background buffer should not get here %p", bp));
874
875	vp = bp->b_vp;
876	if (vp)
877		vp_md = vp->v_vflag & VV_MD;
878	else
879		vp_md = 0;
880
881	/* Mark the buffer clean */
882	bundirty(bp);
883
884	bp->b_flags &= ~B_DONE;
885	bp->b_ioflags &= ~BIO_ERROR;
886	bp->b_flags |= B_CACHE;
887	bp->b_iocmd = BIO_WRITE;
888
889	bufobj_wref(bp->b_bufobj);
890	vfs_busy_pages(bp, 1);
891
892	/*
893	 * Normal bwrites pipeline writes
894	 */
895	bp->b_runningbufspace = bp->b_bufsize;
896	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
897
898	if (!TD_IS_IDLETHREAD(curthread))
899		curthread->td_ru.ru_oublock++;
900	if (oldflags & B_ASYNC)
901		BUF_KERNPROC(bp);
902	bp->b_iooffset = dbtob(bp->b_blkno);
903	bstrategy(bp);
904
905	if ((oldflags & B_ASYNC) == 0) {
906		int rtval = bufwait(bp);
907		brelse(bp);
908		return (rtval);
909	} else {
910		/*
911		 * don't allow the async write to saturate the I/O
912		 * system.  We will not deadlock here because
913		 * we are blocking waiting for I/O that is already in-progress
914		 * to complete. We do not block here if it is the update
915		 * or syncer daemon trying to clean up as that can lead
916		 * to deadlock.
917		 */
918		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
919			waitrunningbufspace();
920	}
921
922	return (0);
923}
924
925void
926bufbdflush(struct bufobj *bo, struct buf *bp)
927{
928	struct buf *nbp;
929
930	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
931		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
932		altbufferflushes++;
933	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
934		BO_LOCK(bo);
935		/*
936		 * Try to find a buffer to flush.
937		 */
938		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
939			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
940			    BUF_LOCK(nbp,
941				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
942				continue;
943			if (bp == nbp)
944				panic("bdwrite: found ourselves");
945			BO_UNLOCK(bo);
946			/* Don't countdeps with the bo lock held. */
947			if (buf_countdeps(nbp, 0)) {
948				BO_LOCK(bo);
949				BUF_UNLOCK(nbp);
950				continue;
951			}
952			if (nbp->b_flags & B_CLUSTEROK) {
953				vfs_bio_awrite(nbp);
954			} else {
955				bremfree(nbp);
956				bawrite(nbp);
957			}
958			dirtybufferflushes++;
959			break;
960		}
961		if (nbp == NULL)
962			BO_UNLOCK(bo);
963	}
964}
965
966/*
967 * Delayed write. (Buffer is marked dirty).  Do not bother writing
968 * anything if the buffer is marked invalid.
969 *
970 * Note that since the buffer must be completely valid, we can safely
971 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
972 * biodone() in order to prevent getblk from writing the buffer
973 * out synchronously.
974 */
975void
976bdwrite(struct buf *bp)
977{
978	struct thread *td = curthread;
979	struct vnode *vp;
980	struct bufobj *bo;
981
982	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
983	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
984	BUF_ASSERT_HELD(bp);
985
986	if (bp->b_flags & B_INVAL) {
987		brelse(bp);
988		return;
989	}
990
991	/*
992	 * If we have too many dirty buffers, don't create any more.
993	 * If we are wildly over our limit, then force a complete
994	 * cleanup. Otherwise, just keep the situation from getting
995	 * out of control. Note that we have to avoid a recursive
996	 * disaster and not try to clean up after our own cleanup!
997	 */
998	vp = bp->b_vp;
999	bo = bp->b_bufobj;
1000	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1001		td->td_pflags |= TDP_INBDFLUSH;
1002		BO_BDFLUSH(bo, bp);
1003		td->td_pflags &= ~TDP_INBDFLUSH;
1004	} else
1005		recursiveflushes++;
1006
1007	bdirty(bp);
1008	/*
1009	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1010	 * true even of NFS now.
1011	 */
1012	bp->b_flags |= B_CACHE;
1013
1014	/*
1015	 * This bmap keeps the system from needing to do the bmap later,
1016	 * perhaps when the system is attempting to do a sync.  Since it
1017	 * is likely that the indirect block -- or whatever other datastructure
1018	 * that the filesystem needs is still in memory now, it is a good
1019	 * thing to do this.  Note also, that if the pageout daemon is
1020	 * requesting a sync -- there might not be enough memory to do
1021	 * the bmap then...  So, this is important to do.
1022	 */
1023	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1024		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1025	}
1026
1027	/*
1028	 * Set the *dirty* buffer range based upon the VM system dirty
1029	 * pages.
1030	 *
1031	 * Mark the buffer pages as clean.  We need to do this here to
1032	 * satisfy the vnode_pager and the pageout daemon, so that it
1033	 * thinks that the pages have been "cleaned".  Note that since
1034	 * the pages are in a delayed write buffer -- the VFS layer
1035	 * "will" see that the pages get written out on the next sync,
1036	 * or perhaps the cluster will be completed.
1037	 */
1038	vfs_clean_pages_dirty_buf(bp);
1039	bqrelse(bp);
1040
1041	/*
1042	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1043	 * buffers (midpoint between our recovery point and our stall
1044	 * point).
1045	 */
1046	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1047
1048	/*
1049	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1050	 * due to the softdep code.
1051	 */
1052}
1053
1054/*
1055 *	bdirty:
1056 *
1057 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1058 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1059 *	itself to properly update it in the dirty/clean lists.  We mark it
1060 *	B_DONE to ensure that any asynchronization of the buffer properly
1061 *	clears B_DONE ( else a panic will occur later ).
1062 *
1063 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1064 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1065 *	should only be called if the buffer is known-good.
1066 *
1067 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1068 *	count.
1069 *
1070 *	The buffer must be on QUEUE_NONE.
1071 */
1072void
1073bdirty(struct buf *bp)
1074{
1075
1076	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1077	    bp, bp->b_vp, bp->b_flags);
1078	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1079	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1080	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1081	BUF_ASSERT_HELD(bp);
1082	bp->b_flags &= ~(B_RELBUF);
1083	bp->b_iocmd = BIO_WRITE;
1084
1085	if ((bp->b_flags & B_DELWRI) == 0) {
1086		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1087		reassignbuf(bp);
1088		atomic_add_int(&numdirtybuffers, 1);
1089		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1090	}
1091}
1092
1093/*
1094 *	bundirty:
1095 *
1096 *	Clear B_DELWRI for buffer.
1097 *
1098 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1099 *	count.
1100 *
1101 *	The buffer must be on QUEUE_NONE.
1102 */
1103
1104void
1105bundirty(struct buf *bp)
1106{
1107
1108	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1109	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1110	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1111	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1112	BUF_ASSERT_HELD(bp);
1113
1114	if (bp->b_flags & B_DELWRI) {
1115		bp->b_flags &= ~B_DELWRI;
1116		reassignbuf(bp);
1117		atomic_subtract_int(&numdirtybuffers, 1);
1118		numdirtywakeup(lodirtybuffers);
1119	}
1120	/*
1121	 * Since it is now being written, we can clear its deferred write flag.
1122	 */
1123	bp->b_flags &= ~B_DEFERRED;
1124}
1125
1126/*
1127 *	bawrite:
1128 *
1129 *	Asynchronous write.  Start output on a buffer, but do not wait for
1130 *	it to complete.  The buffer is released when the output completes.
1131 *
1132 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1133 *	B_INVAL buffers.  Not us.
1134 */
1135void
1136bawrite(struct buf *bp)
1137{
1138
1139	bp->b_flags |= B_ASYNC;
1140	(void) bwrite(bp);
1141}
1142
1143/*
1144 *	bwillwrite:
1145 *
1146 *	Called prior to the locking of any vnodes when we are expecting to
1147 *	write.  We do not want to starve the buffer cache with too many
1148 *	dirty buffers so we block here.  By blocking prior to the locking
1149 *	of any vnodes we attempt to avoid the situation where a locked vnode
1150 *	prevents the various system daemons from flushing related buffers.
1151 */
1152
1153void
1154bwillwrite(void)
1155{
1156
1157	if (numdirtybuffers >= hidirtybuffers) {
1158		mtx_lock(&nblock);
1159		while (numdirtybuffers >= hidirtybuffers) {
1160			bd_wakeup(1);
1161			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1162			msleep(&needsbuffer, &nblock,
1163			    (PRIBIO + 4), "flswai", 0);
1164		}
1165		mtx_unlock(&nblock);
1166	}
1167}
1168
1169/*
1170 * Return true if we have too many dirty buffers.
1171 */
1172int
1173buf_dirty_count_severe(void)
1174{
1175
1176	return(numdirtybuffers >= hidirtybuffers);
1177}
1178
1179static __noinline int
1180buf_vm_page_count_severe(void)
1181{
1182
1183	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1184
1185	return vm_page_count_severe();
1186}
1187
1188/*
1189 *	brelse:
1190 *
1191 *	Release a busy buffer and, if requested, free its resources.  The
1192 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1193 *	to be accessed later as a cache entity or reused for other purposes.
1194 */
1195void
1196brelse(struct buf *bp)
1197{
1198	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1199	    bp, bp->b_vp, bp->b_flags);
1200	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1201	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1202
1203	if (bp->b_flags & B_MANAGED) {
1204		bqrelse(bp);
1205		return;
1206	}
1207
1208	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1209	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1210		/*
1211		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1212		 * pages from being scrapped.  If the error is anything
1213		 * other than an I/O error (EIO), assume that retrying
1214		 * is futile.
1215		 */
1216		bp->b_ioflags &= ~BIO_ERROR;
1217		bdirty(bp);
1218	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1219	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1220		/*
1221		 * Either a failed I/O or we were asked to free or not
1222		 * cache the buffer.
1223		 */
1224		bp->b_flags |= B_INVAL;
1225		if (!LIST_EMPTY(&bp->b_dep))
1226			buf_deallocate(bp);
1227		if (bp->b_flags & B_DELWRI) {
1228			atomic_subtract_int(&numdirtybuffers, 1);
1229			numdirtywakeup(lodirtybuffers);
1230		}
1231		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1232		if ((bp->b_flags & B_VMIO) == 0) {
1233			if (bp->b_bufsize)
1234				allocbuf(bp, 0);
1235			if (bp->b_vp)
1236				brelvp(bp);
1237		}
1238	}
1239
1240	/*
1241	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1242	 * is called with B_DELWRI set, the underlying pages may wind up
1243	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1244	 * because pages associated with a B_DELWRI bp are marked clean.
1245	 *
1246	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1247	 * if B_DELWRI is set.
1248	 *
1249	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1250	 * on pages to return pages to the VM page queues.
1251	 */
1252	if (bp->b_flags & B_DELWRI)
1253		bp->b_flags &= ~B_RELBUF;
1254	else if (buf_vm_page_count_severe()) {
1255		/*
1256		 * The locking of the BO_LOCK is not necessary since
1257		 * BKGRDINPROG cannot be set while we hold the buf
1258		 * lock, it can only be cleared if it is already
1259		 * pending.
1260		 */
1261		if (bp->b_vp) {
1262			if (!(bp->b_vflags & BV_BKGRDINPROG))
1263				bp->b_flags |= B_RELBUF;
1264		} else
1265			bp->b_flags |= B_RELBUF;
1266	}
1267
1268	/*
1269	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1270	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1271	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1272	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1273	 *
1274	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1275	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1276	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1277	 *
1278	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1279	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1280	 * the commit state and we cannot afford to lose the buffer. If the
1281	 * buffer has a background write in progress, we need to keep it
1282	 * around to prevent it from being reconstituted and starting a second
1283	 * background write.
1284	 */
1285	if ((bp->b_flags & B_VMIO)
1286	    && !(bp->b_vp->v_mount != NULL &&
1287		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1288		 !vn_isdisk(bp->b_vp, NULL) &&
1289		 (bp->b_flags & B_DELWRI))
1290	    ) {
1291
1292		int i, j, resid;
1293		vm_page_t m;
1294		off_t foff;
1295		vm_pindex_t poff;
1296		vm_object_t obj;
1297
1298		obj = bp->b_bufobj->bo_object;
1299
1300		/*
1301		 * Get the base offset and length of the buffer.  Note that
1302		 * in the VMIO case if the buffer block size is not
1303		 * page-aligned then b_data pointer may not be page-aligned.
1304		 * But our b_pages[] array *IS* page aligned.
1305		 *
1306		 * block sizes less then DEV_BSIZE (usually 512) are not
1307		 * supported due to the page granularity bits (m->valid,
1308		 * m->dirty, etc...).
1309		 *
1310		 * See man buf(9) for more information
1311		 */
1312		resid = bp->b_bufsize;
1313		foff = bp->b_offset;
1314		VM_OBJECT_LOCK(obj);
1315		for (i = 0; i < bp->b_npages; i++) {
1316			int had_bogus = 0;
1317
1318			m = bp->b_pages[i];
1319
1320			/*
1321			 * If we hit a bogus page, fixup *all* the bogus pages
1322			 * now.
1323			 */
1324			if (m == bogus_page) {
1325				poff = OFF_TO_IDX(bp->b_offset);
1326				had_bogus = 1;
1327
1328				for (j = i; j < bp->b_npages; j++) {
1329					vm_page_t mtmp;
1330					mtmp = bp->b_pages[j];
1331					if (mtmp == bogus_page) {
1332						mtmp = vm_page_lookup(obj, poff + j);
1333						if (!mtmp) {
1334							panic("brelse: page missing\n");
1335						}
1336						bp->b_pages[j] = mtmp;
1337					}
1338				}
1339
1340				if ((bp->b_flags & B_INVAL) == 0) {
1341					pmap_qenter(
1342					    trunc_page((vm_offset_t)bp->b_data),
1343					    bp->b_pages, bp->b_npages);
1344				}
1345				m = bp->b_pages[i];
1346			}
1347			if ((bp->b_flags & B_NOCACHE) ||
1348			    (bp->b_ioflags & BIO_ERROR &&
1349			     bp->b_iocmd == BIO_READ)) {
1350				int poffset = foff & PAGE_MASK;
1351				int presid = resid > (PAGE_SIZE - poffset) ?
1352					(PAGE_SIZE - poffset) : resid;
1353
1354				KASSERT(presid >= 0, ("brelse: extra page"));
1355				vm_page_set_invalid(m, poffset, presid);
1356				if (had_bogus)
1357					printf("avoided corruption bug in bogus_page/brelse code\n");
1358			}
1359			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1360			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1361		}
1362		VM_OBJECT_UNLOCK(obj);
1363		if (bp->b_flags & (B_INVAL | B_RELBUF))
1364			vfs_vmio_release(bp);
1365
1366	} else if (bp->b_flags & B_VMIO) {
1367
1368		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1369			vfs_vmio_release(bp);
1370		}
1371
1372	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1373		if (bp->b_bufsize != 0)
1374			allocbuf(bp, 0);
1375		if (bp->b_vp != NULL)
1376			brelvp(bp);
1377	}
1378
1379	if (BUF_LOCKRECURSED(bp)) {
1380		/* do not release to free list */
1381		BUF_UNLOCK(bp);
1382		return;
1383	}
1384
1385	/* enqueue */
1386	mtx_lock(&bqlock);
1387	/* Handle delayed bremfree() processing. */
1388	if (bp->b_flags & B_REMFREE)
1389		bremfreel(bp);
1390	if (bp->b_qindex != QUEUE_NONE)
1391		panic("brelse: free buffer onto another queue???");
1392
1393	/*
1394	 * If the buffer has junk contents signal it and eventually
1395	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1396	 * doesn't find it.
1397	 */
1398	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1399	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1400		bp->b_flags |= B_INVAL;
1401	if (bp->b_flags & B_INVAL) {
1402		if (bp->b_flags & B_DELWRI)
1403			bundirty(bp);
1404		if (bp->b_vp)
1405			brelvp(bp);
1406	}
1407
1408	/* buffers with no memory */
1409	if (bp->b_bufsize == 0) {
1410		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1411		if (bp->b_vflags & BV_BKGRDINPROG)
1412			panic("losing buffer 1");
1413		if (bp->b_kvasize) {
1414			bp->b_qindex = QUEUE_EMPTYKVA;
1415		} else {
1416			bp->b_qindex = QUEUE_EMPTY;
1417		}
1418		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1419	/* buffers with junk contents */
1420	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1421	    (bp->b_ioflags & BIO_ERROR)) {
1422		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1423		if (bp->b_vflags & BV_BKGRDINPROG)
1424			panic("losing buffer 2");
1425		bp->b_qindex = QUEUE_CLEAN;
1426		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1427	/* remaining buffers */
1428	} else {
1429		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1430		    (B_DELWRI|B_NEEDSGIANT))
1431			bp->b_qindex = QUEUE_DIRTY_GIANT;
1432		else if (bp->b_flags & B_DELWRI)
1433			bp->b_qindex = QUEUE_DIRTY;
1434		else
1435			bp->b_qindex = QUEUE_CLEAN;
1436		if (bp->b_flags & B_AGE)
1437			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1438		else
1439			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1440	}
1441	mtx_unlock(&bqlock);
1442
1443	/*
1444	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1445	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1446	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1447	 * if B_INVAL is set ).
1448	 */
1449
1450	if (!(bp->b_flags & B_DELWRI))
1451		bufcountwakeup();
1452
1453	/*
1454	 * Something we can maybe free or reuse
1455	 */
1456	if (bp->b_bufsize || bp->b_kvasize)
1457		bufspacewakeup();
1458
1459	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1460	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1461		panic("brelse: not dirty");
1462	/* unlock */
1463	BUF_UNLOCK(bp);
1464}
1465
1466/*
1467 * Release a buffer back to the appropriate queue but do not try to free
1468 * it.  The buffer is expected to be used again soon.
1469 *
1470 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1471 * biodone() to requeue an async I/O on completion.  It is also used when
1472 * known good buffers need to be requeued but we think we may need the data
1473 * again soon.
1474 *
1475 * XXX we should be able to leave the B_RELBUF hint set on completion.
1476 */
1477void
1478bqrelse(struct buf *bp)
1479{
1480	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1481	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1482	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1483
1484	if (BUF_LOCKRECURSED(bp)) {
1485		/* do not release to free list */
1486		BUF_UNLOCK(bp);
1487		return;
1488	}
1489
1490	if (bp->b_flags & B_MANAGED) {
1491		if (bp->b_flags & B_REMFREE) {
1492			mtx_lock(&bqlock);
1493			bremfreel(bp);
1494			mtx_unlock(&bqlock);
1495		}
1496		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1497		BUF_UNLOCK(bp);
1498		return;
1499	}
1500
1501	mtx_lock(&bqlock);
1502	/* Handle delayed bremfree() processing. */
1503	if (bp->b_flags & B_REMFREE)
1504		bremfreel(bp);
1505	if (bp->b_qindex != QUEUE_NONE)
1506		panic("bqrelse: free buffer onto another queue???");
1507	/* buffers with stale but valid contents */
1508	if (bp->b_flags & B_DELWRI) {
1509		if (bp->b_flags & B_NEEDSGIANT)
1510			bp->b_qindex = QUEUE_DIRTY_GIANT;
1511		else
1512			bp->b_qindex = QUEUE_DIRTY;
1513		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1514	} else {
1515		/*
1516		 * The locking of the BO_LOCK for checking of the
1517		 * BV_BKGRDINPROG is not necessary since the
1518		 * BV_BKGRDINPROG cannot be set while we hold the buf
1519		 * lock, it can only be cleared if it is already
1520		 * pending.
1521		 */
1522		if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1523			bp->b_qindex = QUEUE_CLEAN;
1524			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1525			    b_freelist);
1526		} else {
1527			/*
1528			 * We are too low on memory, we have to try to free
1529			 * the buffer (most importantly: the wired pages
1530			 * making up its backing store) *now*.
1531			 */
1532			mtx_unlock(&bqlock);
1533			brelse(bp);
1534			return;
1535		}
1536	}
1537	mtx_unlock(&bqlock);
1538
1539	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1540		bufcountwakeup();
1541
1542	/*
1543	 * Something we can maybe free or reuse.
1544	 */
1545	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1546		bufspacewakeup();
1547
1548	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1549	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1550		panic("bqrelse: not dirty");
1551	/* unlock */
1552	BUF_UNLOCK(bp);
1553}
1554
1555/* Give pages used by the bp back to the VM system (where possible) */
1556static void
1557vfs_vmio_release(struct buf *bp)
1558{
1559	int i;
1560	vm_page_t m;
1561
1562	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1563	for (i = 0; i < bp->b_npages; i++) {
1564		m = bp->b_pages[i];
1565		bp->b_pages[i] = NULL;
1566		/*
1567		 * In order to keep page LRU ordering consistent, put
1568		 * everything on the inactive queue.
1569		 */
1570		vm_page_lock(m);
1571		vm_page_unwire(m, 0);
1572		/*
1573		 * We don't mess with busy pages, it is
1574		 * the responsibility of the process that
1575		 * busied the pages to deal with them.
1576		 */
1577		if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
1578		    m->wire_count == 0) {
1579			/*
1580			 * Might as well free the page if we can and it has
1581			 * no valid data.  We also free the page if the
1582			 * buffer was used for direct I/O
1583			 */
1584			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1585			    m->hold_count == 0) {
1586				vm_page_free(m);
1587			} else if (bp->b_flags & B_DIRECT) {
1588				vm_page_try_to_free(m);
1589			} else if (buf_vm_page_count_severe()) {
1590				vm_page_try_to_cache(m);
1591			}
1592		}
1593		vm_page_unlock(m);
1594	}
1595	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1596	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1597
1598	if (bp->b_bufsize) {
1599		bufspacewakeup();
1600		bp->b_bufsize = 0;
1601	}
1602	bp->b_npages = 0;
1603	bp->b_flags &= ~B_VMIO;
1604	if (bp->b_vp)
1605		brelvp(bp);
1606}
1607
1608/*
1609 * Check to see if a block at a particular lbn is available for a clustered
1610 * write.
1611 */
1612static int
1613vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1614{
1615	struct buf *bpa;
1616	int match;
1617
1618	match = 0;
1619
1620	/* If the buf isn't in core skip it */
1621	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1622		return (0);
1623
1624	/* If the buf is busy we don't want to wait for it */
1625	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1626		return (0);
1627
1628	/* Only cluster with valid clusterable delayed write buffers */
1629	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1630	    (B_DELWRI | B_CLUSTEROK))
1631		goto done;
1632
1633	if (bpa->b_bufsize != size)
1634		goto done;
1635
1636	/*
1637	 * Check to see if it is in the expected place on disk and that the
1638	 * block has been mapped.
1639	 */
1640	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1641		match = 1;
1642done:
1643	BUF_UNLOCK(bpa);
1644	return (match);
1645}
1646
1647/*
1648 *	vfs_bio_awrite:
1649 *
1650 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1651 *	This is much better then the old way of writing only one buffer at
1652 *	a time.  Note that we may not be presented with the buffers in the
1653 *	correct order, so we search for the cluster in both directions.
1654 */
1655int
1656vfs_bio_awrite(struct buf *bp)
1657{
1658	struct bufobj *bo;
1659	int i;
1660	int j;
1661	daddr_t lblkno = bp->b_lblkno;
1662	struct vnode *vp = bp->b_vp;
1663	int ncl;
1664	int nwritten;
1665	int size;
1666	int maxcl;
1667
1668	bo = &vp->v_bufobj;
1669	/*
1670	 * right now we support clustered writing only to regular files.  If
1671	 * we find a clusterable block we could be in the middle of a cluster
1672	 * rather then at the beginning.
1673	 */
1674	if ((vp->v_type == VREG) &&
1675	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1676	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1677
1678		size = vp->v_mount->mnt_stat.f_iosize;
1679		maxcl = MAXPHYS / size;
1680
1681		BO_LOCK(bo);
1682		for (i = 1; i < maxcl; i++)
1683			if (vfs_bio_clcheck(vp, size, lblkno + i,
1684			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1685				break;
1686
1687		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1688			if (vfs_bio_clcheck(vp, size, lblkno - j,
1689			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1690				break;
1691		BO_UNLOCK(bo);
1692		--j;
1693		ncl = i + j;
1694		/*
1695		 * this is a possible cluster write
1696		 */
1697		if (ncl != 1) {
1698			BUF_UNLOCK(bp);
1699			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1700			return nwritten;
1701		}
1702	}
1703	bremfree(bp);
1704	bp->b_flags |= B_ASYNC;
1705	/*
1706	 * default (old) behavior, writing out only one block
1707	 *
1708	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1709	 */
1710	nwritten = bp->b_bufsize;
1711	(void) bwrite(bp);
1712
1713	return nwritten;
1714}
1715
1716/*
1717 *	getnewbuf:
1718 *
1719 *	Find and initialize a new buffer header, freeing up existing buffers
1720 *	in the bufqueues as necessary.  The new buffer is returned locked.
1721 *
1722 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1723 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1724 *
1725 *	We block if:
1726 *		We have insufficient buffer headers
1727 *		We have insufficient buffer space
1728 *		buffer_map is too fragmented ( space reservation fails )
1729 *		If we have to flush dirty buffers ( but we try to avoid this )
1730 *
1731 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1732 *	Instead we ask the buf daemon to do it for us.  We attempt to
1733 *	avoid piecemeal wakeups of the pageout daemon.
1734 */
1735
1736static struct buf *
1737getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1738    int gbflags)
1739{
1740	struct thread *td;
1741	struct buf *bp;
1742	struct buf *nbp;
1743	int defrag = 0;
1744	int nqindex;
1745	static int flushingbufs;
1746
1747	td = curthread;
1748	/*
1749	 * We can't afford to block since we might be holding a vnode lock,
1750	 * which may prevent system daemons from running.  We deal with
1751	 * low-memory situations by proactively returning memory and running
1752	 * async I/O rather then sync I/O.
1753	 */
1754	atomic_add_int(&getnewbufcalls, 1);
1755	atomic_subtract_int(&getnewbufrestarts, 1);
1756restart:
1757	atomic_add_int(&getnewbufrestarts, 1);
1758
1759	/*
1760	 * Setup for scan.  If we do not have enough free buffers,
1761	 * we setup a degenerate case that immediately fails.  Note
1762	 * that if we are specially marked process, we are allowed to
1763	 * dip into our reserves.
1764	 *
1765	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1766	 *
1767	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1768	 * However, there are a number of cases (defragging, reusing, ...)
1769	 * where we cannot backup.
1770	 */
1771	mtx_lock(&bqlock);
1772	nqindex = QUEUE_EMPTYKVA;
1773	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1774
1775	if (nbp == NULL) {
1776		/*
1777		 * If no EMPTYKVA buffers and we are either
1778		 * defragging or reusing, locate a CLEAN buffer
1779		 * to free or reuse.  If bufspace useage is low
1780		 * skip this step so we can allocate a new buffer.
1781		 */
1782		if (defrag || bufspace >= lobufspace) {
1783			nqindex = QUEUE_CLEAN;
1784			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1785		}
1786
1787		/*
1788		 * If we could not find or were not allowed to reuse a
1789		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1790		 * buffer.  We can only use an EMPTY buffer if allocating
1791		 * its KVA would not otherwise run us out of buffer space.
1792		 */
1793		if (nbp == NULL && defrag == 0 &&
1794		    bufspace + maxsize < hibufspace) {
1795			nqindex = QUEUE_EMPTY;
1796			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1797		}
1798	}
1799
1800	/*
1801	 * Run scan, possibly freeing data and/or kva mappings on the fly
1802	 * depending.
1803	 */
1804
1805	while ((bp = nbp) != NULL) {
1806		int qindex = nqindex;
1807
1808		/*
1809		 * Calculate next bp ( we can only use it if we do not block
1810		 * or do other fancy things ).
1811		 */
1812		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1813			switch(qindex) {
1814			case QUEUE_EMPTY:
1815				nqindex = QUEUE_EMPTYKVA;
1816				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1817					break;
1818				/* FALLTHROUGH */
1819			case QUEUE_EMPTYKVA:
1820				nqindex = QUEUE_CLEAN;
1821				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1822					break;
1823				/* FALLTHROUGH */
1824			case QUEUE_CLEAN:
1825				/*
1826				 * nbp is NULL.
1827				 */
1828				break;
1829			}
1830		}
1831		/*
1832		 * If we are defragging then we need a buffer with
1833		 * b_kvasize != 0.  XXX this situation should no longer
1834		 * occur, if defrag is non-zero the buffer's b_kvasize
1835		 * should also be non-zero at this point.  XXX
1836		 */
1837		if (defrag && bp->b_kvasize == 0) {
1838			printf("Warning: defrag empty buffer %p\n", bp);
1839			continue;
1840		}
1841
1842		/*
1843		 * Start freeing the bp.  This is somewhat involved.  nbp
1844		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1845		 */
1846		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1847			continue;
1848		if (bp->b_vp) {
1849			BO_LOCK(bp->b_bufobj);
1850			if (bp->b_vflags & BV_BKGRDINPROG) {
1851				BO_UNLOCK(bp->b_bufobj);
1852				BUF_UNLOCK(bp);
1853				continue;
1854			}
1855			BO_UNLOCK(bp->b_bufobj);
1856		}
1857		CTR6(KTR_BUF,
1858		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1859		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1860		    bp->b_kvasize, bp->b_bufsize, qindex);
1861
1862		/*
1863		 * Sanity Checks
1864		 */
1865		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1866
1867		/*
1868		 * Note: we no longer distinguish between VMIO and non-VMIO
1869		 * buffers.
1870		 */
1871
1872		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1873
1874		bremfreel(bp);
1875		mtx_unlock(&bqlock);
1876
1877		if (qindex == QUEUE_CLEAN) {
1878			if (bp->b_flags & B_VMIO) {
1879				bp->b_flags &= ~B_ASYNC;
1880				vfs_vmio_release(bp);
1881			}
1882			if (bp->b_vp)
1883				brelvp(bp);
1884		}
1885
1886		/*
1887		 * NOTE:  nbp is now entirely invalid.  We can only restart
1888		 * the scan from this point on.
1889		 *
1890		 * Get the rest of the buffer freed up.  b_kva* is still
1891		 * valid after this operation.
1892		 */
1893
1894		if (bp->b_rcred != NOCRED) {
1895			crfree(bp->b_rcred);
1896			bp->b_rcred = NOCRED;
1897		}
1898		if (bp->b_wcred != NOCRED) {
1899			crfree(bp->b_wcred);
1900			bp->b_wcred = NOCRED;
1901		}
1902		if (!LIST_EMPTY(&bp->b_dep))
1903			buf_deallocate(bp);
1904		if (bp->b_vflags & BV_BKGRDINPROG)
1905			panic("losing buffer 3");
1906		KASSERT(bp->b_vp == NULL,
1907		    ("bp: %p still has vnode %p.  qindex: %d",
1908		    bp, bp->b_vp, qindex));
1909		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1910		   ("bp: %p still on a buffer list. xflags %X",
1911		    bp, bp->b_xflags));
1912
1913		if (bp->b_bufsize)
1914			allocbuf(bp, 0);
1915
1916		bp->b_flags = 0;
1917		bp->b_ioflags = 0;
1918		bp->b_xflags = 0;
1919		bp->b_vflags = 0;
1920		bp->b_vp = NULL;
1921		bp->b_blkno = bp->b_lblkno = 0;
1922		bp->b_offset = NOOFFSET;
1923		bp->b_iodone = 0;
1924		bp->b_error = 0;
1925		bp->b_resid = 0;
1926		bp->b_bcount = 0;
1927		bp->b_npages = 0;
1928		bp->b_dirtyoff = bp->b_dirtyend = 0;
1929		bp->b_bufobj = NULL;
1930		bp->b_pin_count = 0;
1931		bp->b_fsprivate1 = NULL;
1932		bp->b_fsprivate2 = NULL;
1933		bp->b_fsprivate3 = NULL;
1934
1935		LIST_INIT(&bp->b_dep);
1936
1937		/*
1938		 * If we are defragging then free the buffer.
1939		 */
1940		if (defrag) {
1941			bp->b_flags |= B_INVAL;
1942			bfreekva(bp);
1943			brelse(bp);
1944			defrag = 0;
1945			goto restart;
1946		}
1947
1948		/*
1949		 * Notify any waiters for the buffer lock about
1950		 * identity change by freeing the buffer.
1951		 */
1952		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1953			bp->b_flags |= B_INVAL;
1954			bfreekva(bp);
1955			brelse(bp);
1956			goto restart;
1957		}
1958
1959		/*
1960		 * If we are overcomitted then recover the buffer and its
1961		 * KVM space.  This occurs in rare situations when multiple
1962		 * processes are blocked in getnewbuf() or allocbuf().
1963		 */
1964		if (bufspace >= hibufspace)
1965			flushingbufs = 1;
1966		if (flushingbufs && bp->b_kvasize != 0) {
1967			bp->b_flags |= B_INVAL;
1968			bfreekva(bp);
1969			brelse(bp);
1970			goto restart;
1971		}
1972		if (bufspace < lobufspace)
1973			flushingbufs = 0;
1974		break;
1975	}
1976
1977	/*
1978	 * If we exhausted our list, sleep as appropriate.  We may have to
1979	 * wakeup various daemons and write out some dirty buffers.
1980	 *
1981	 * Generally we are sleeping due to insufficient buffer space.
1982	 */
1983
1984	if (bp == NULL) {
1985		int flags, norunbuf;
1986		char *waitmsg;
1987		int fl;
1988
1989		if (defrag) {
1990			flags = VFS_BIO_NEED_BUFSPACE;
1991			waitmsg = "nbufkv";
1992		} else if (bufspace >= hibufspace) {
1993			waitmsg = "nbufbs";
1994			flags = VFS_BIO_NEED_BUFSPACE;
1995		} else {
1996			waitmsg = "newbuf";
1997			flags = VFS_BIO_NEED_ANY;
1998		}
1999		mtx_lock(&nblock);
2000		needsbuffer |= flags;
2001		mtx_unlock(&nblock);
2002		mtx_unlock(&bqlock);
2003
2004		bd_speedup();	/* heeeelp */
2005		if (gbflags & GB_NOWAIT_BD)
2006			return (NULL);
2007
2008		mtx_lock(&nblock);
2009		while (needsbuffer & flags) {
2010			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2011				mtx_unlock(&nblock);
2012				/*
2013				 * getblk() is called with a vnode
2014				 * locked, and some majority of the
2015				 * dirty buffers may as well belong to
2016				 * the vnode. Flushing the buffers
2017				 * there would make a progress that
2018				 * cannot be achieved by the
2019				 * buf_daemon, that cannot lock the
2020				 * vnode.
2021				 */
2022				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2023				    (td->td_pflags & TDP_NORUNNINGBUF);
2024				/* play bufdaemon */
2025				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2026				fl = buf_do_flush(vp);
2027				td->td_pflags &= norunbuf;
2028				mtx_lock(&nblock);
2029				if (fl != 0)
2030					continue;
2031				if ((needsbuffer & flags) == 0)
2032					break;
2033			}
2034			if (msleep(&needsbuffer, &nblock,
2035			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2036				mtx_unlock(&nblock);
2037				return (NULL);
2038			}
2039		}
2040		mtx_unlock(&nblock);
2041	} else {
2042		/*
2043		 * We finally have a valid bp.  We aren't quite out of the
2044		 * woods, we still have to reserve kva space.  In order
2045		 * to keep fragmentation sane we only allocate kva in
2046		 * BKVASIZE chunks.
2047		 */
2048		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2049
2050		if (maxsize != bp->b_kvasize) {
2051			vm_offset_t addr = 0;
2052
2053			bfreekva(bp);
2054
2055			vm_map_lock(buffer_map);
2056			if (vm_map_findspace(buffer_map,
2057				vm_map_min(buffer_map), maxsize, &addr)) {
2058				/*
2059				 * Uh oh.  Buffer map is to fragmented.  We
2060				 * must defragment the map.
2061				 */
2062				atomic_add_int(&bufdefragcnt, 1);
2063				vm_map_unlock(buffer_map);
2064				defrag = 1;
2065				bp->b_flags |= B_INVAL;
2066				brelse(bp);
2067				goto restart;
2068			}
2069			if (addr) {
2070				vm_map_insert(buffer_map, NULL, 0,
2071					addr, addr + maxsize,
2072					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2073
2074				bp->b_kvabase = (caddr_t) addr;
2075				bp->b_kvasize = maxsize;
2076				atomic_add_long(&bufspace, bp->b_kvasize);
2077				atomic_add_int(&bufreusecnt, 1);
2078			}
2079			vm_map_unlock(buffer_map);
2080		}
2081		bp->b_saveaddr = bp->b_kvabase;
2082		bp->b_data = bp->b_saveaddr;
2083	}
2084	return(bp);
2085}
2086
2087/*
2088 *	buf_daemon:
2089 *
2090 *	buffer flushing daemon.  Buffers are normally flushed by the
2091 *	update daemon but if it cannot keep up this process starts to
2092 *	take the load in an attempt to prevent getnewbuf() from blocking.
2093 */
2094
2095static struct kproc_desc buf_kp = {
2096	"bufdaemon",
2097	buf_daemon,
2098	&bufdaemonproc
2099};
2100SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2101
2102static int
2103buf_do_flush(struct vnode *vp)
2104{
2105	int flushed;
2106
2107	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2108	/* The list empty check here is slightly racy */
2109	if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2110		mtx_lock(&Giant);
2111		flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
2112		mtx_unlock(&Giant);
2113	}
2114	if (flushed == 0) {
2115		/*
2116		 * Could not find any buffers without rollback
2117		 * dependencies, so just write the first one
2118		 * in the hopes of eventually making progress.
2119		 */
2120		flushbufqueues(vp, QUEUE_DIRTY, 1);
2121		if (!TAILQ_EMPTY(
2122			    &bufqueues[QUEUE_DIRTY_GIANT])) {
2123			mtx_lock(&Giant);
2124			flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
2125			mtx_unlock(&Giant);
2126		}
2127	}
2128	return (flushed);
2129}
2130
2131static void
2132buf_daemon()
2133{
2134	int lodirtysave;
2135
2136	/*
2137	 * This process needs to be suspended prior to shutdown sync.
2138	 */
2139	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2140	    SHUTDOWN_PRI_LAST);
2141
2142	/*
2143	 * This process is allowed to take the buffer cache to the limit
2144	 */
2145	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2146	mtx_lock(&bdlock);
2147	for (;;) {
2148		bd_request = 0;
2149		mtx_unlock(&bdlock);
2150
2151		kproc_suspend_check(bufdaemonproc);
2152		lodirtysave = lodirtybuffers;
2153		if (bd_speedupreq) {
2154			lodirtybuffers = numdirtybuffers / 2;
2155			bd_speedupreq = 0;
2156		}
2157		/*
2158		 * Do the flush.  Limit the amount of in-transit I/O we
2159		 * allow to build up, otherwise we would completely saturate
2160		 * the I/O system.  Wakeup any waiting processes before we
2161		 * normally would so they can run in parallel with our drain.
2162		 */
2163		while (numdirtybuffers > lodirtybuffers) {
2164			if (buf_do_flush(NULL) == 0)
2165				break;
2166			uio_yield();
2167		}
2168		lodirtybuffers = lodirtysave;
2169
2170		/*
2171		 * Only clear bd_request if we have reached our low water
2172		 * mark.  The buf_daemon normally waits 1 second and
2173		 * then incrementally flushes any dirty buffers that have
2174		 * built up, within reason.
2175		 *
2176		 * If we were unable to hit our low water mark and couldn't
2177		 * find any flushable buffers, we sleep half a second.
2178		 * Otherwise we loop immediately.
2179		 */
2180		mtx_lock(&bdlock);
2181		if (numdirtybuffers <= lodirtybuffers) {
2182			/*
2183			 * We reached our low water mark, reset the
2184			 * request and sleep until we are needed again.
2185			 * The sleep is just so the suspend code works.
2186			 */
2187			bd_request = 0;
2188			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2189		} else {
2190			/*
2191			 * We couldn't find any flushable dirty buffers but
2192			 * still have too many dirty buffers, we
2193			 * have to sleep and try again.  (rare)
2194			 */
2195			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2196		}
2197	}
2198}
2199
2200/*
2201 *	flushbufqueues:
2202 *
2203 *	Try to flush a buffer in the dirty queue.  We must be careful to
2204 *	free up B_INVAL buffers instead of write them, which NFS is
2205 *	particularly sensitive to.
2206 */
2207static int flushwithdeps = 0;
2208SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2209    0, "Number of buffers flushed with dependecies that require rollbacks");
2210
2211static int
2212flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2213{
2214	struct buf *sentinel;
2215	struct vnode *vp;
2216	struct mount *mp;
2217	struct buf *bp;
2218	int hasdeps;
2219	int flushed;
2220	int target;
2221
2222	if (lvp == NULL) {
2223		target = numdirtybuffers - lodirtybuffers;
2224		if (flushdeps && target > 2)
2225			target /= 2;
2226	} else
2227		target = flushbufqtarget;
2228	flushed = 0;
2229	bp = NULL;
2230	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2231	sentinel->b_qindex = QUEUE_SENTINEL;
2232	mtx_lock(&bqlock);
2233	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2234	while (flushed != target) {
2235		bp = TAILQ_NEXT(sentinel, b_freelist);
2236		if (bp != NULL) {
2237			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2238			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2239			    b_freelist);
2240		} else
2241			break;
2242		/*
2243		 * Skip sentinels inserted by other invocations of the
2244		 * flushbufqueues(), taking care to not reorder them.
2245		 */
2246		if (bp->b_qindex == QUEUE_SENTINEL)
2247			continue;
2248		/*
2249		 * Only flush the buffers that belong to the
2250		 * vnode locked by the curthread.
2251		 */
2252		if (lvp != NULL && bp->b_vp != lvp)
2253			continue;
2254		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2255			continue;
2256		if (bp->b_pin_count > 0) {
2257			BUF_UNLOCK(bp);
2258			continue;
2259		}
2260		BO_LOCK(bp->b_bufobj);
2261		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2262		    (bp->b_flags & B_DELWRI) == 0) {
2263			BO_UNLOCK(bp->b_bufobj);
2264			BUF_UNLOCK(bp);
2265			continue;
2266		}
2267		BO_UNLOCK(bp->b_bufobj);
2268		if (bp->b_flags & B_INVAL) {
2269			bremfreel(bp);
2270			mtx_unlock(&bqlock);
2271			brelse(bp);
2272			flushed++;
2273			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2274			mtx_lock(&bqlock);
2275			continue;
2276		}
2277
2278		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2279			if (flushdeps == 0) {
2280				BUF_UNLOCK(bp);
2281				continue;
2282			}
2283			hasdeps = 1;
2284		} else
2285			hasdeps = 0;
2286		/*
2287		 * We must hold the lock on a vnode before writing
2288		 * one of its buffers. Otherwise we may confuse, or
2289		 * in the case of a snapshot vnode, deadlock the
2290		 * system.
2291		 *
2292		 * The lock order here is the reverse of the normal
2293		 * of vnode followed by buf lock.  This is ok because
2294		 * the NOWAIT will prevent deadlock.
2295		 */
2296		vp = bp->b_vp;
2297		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2298			BUF_UNLOCK(bp);
2299			continue;
2300		}
2301		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2302			mtx_unlock(&bqlock);
2303			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2304			    bp, bp->b_vp, bp->b_flags);
2305			if (curproc == bufdaemonproc)
2306				vfs_bio_awrite(bp);
2307			else {
2308				bremfree(bp);
2309				bwrite(bp);
2310				notbufdflashes++;
2311			}
2312			vn_finished_write(mp);
2313			VOP_UNLOCK(vp, 0);
2314			flushwithdeps += hasdeps;
2315			flushed++;
2316
2317			/*
2318			 * Sleeping on runningbufspace while holding
2319			 * vnode lock leads to deadlock.
2320			 */
2321			if (curproc == bufdaemonproc)
2322				waitrunningbufspace();
2323			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2324			mtx_lock(&bqlock);
2325			continue;
2326		}
2327		vn_finished_write(mp);
2328		BUF_UNLOCK(bp);
2329	}
2330	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2331	mtx_unlock(&bqlock);
2332	free(sentinel, M_TEMP);
2333	return (flushed);
2334}
2335
2336/*
2337 * Check to see if a block is currently memory resident.
2338 */
2339struct buf *
2340incore(struct bufobj *bo, daddr_t blkno)
2341{
2342	struct buf *bp;
2343
2344	BO_LOCK(bo);
2345	bp = gbincore(bo, blkno);
2346	BO_UNLOCK(bo);
2347	return (bp);
2348}
2349
2350/*
2351 * Returns true if no I/O is needed to access the
2352 * associated VM object.  This is like incore except
2353 * it also hunts around in the VM system for the data.
2354 */
2355
2356static int
2357inmem(struct vnode * vp, daddr_t blkno)
2358{
2359	vm_object_t obj;
2360	vm_offset_t toff, tinc, size;
2361	vm_page_t m;
2362	vm_ooffset_t off;
2363
2364	ASSERT_VOP_LOCKED(vp, "inmem");
2365
2366	if (incore(&vp->v_bufobj, blkno))
2367		return 1;
2368	if (vp->v_mount == NULL)
2369		return 0;
2370	obj = vp->v_object;
2371	if (obj == NULL)
2372		return (0);
2373
2374	size = PAGE_SIZE;
2375	if (size > vp->v_mount->mnt_stat.f_iosize)
2376		size = vp->v_mount->mnt_stat.f_iosize;
2377	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2378
2379	VM_OBJECT_LOCK(obj);
2380	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2381		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2382		if (!m)
2383			goto notinmem;
2384		tinc = size;
2385		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2386			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2387		if (vm_page_is_valid(m,
2388		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2389			goto notinmem;
2390	}
2391	VM_OBJECT_UNLOCK(obj);
2392	return 1;
2393
2394notinmem:
2395	VM_OBJECT_UNLOCK(obj);
2396	return (0);
2397}
2398
2399/*
2400 * Set the dirty range for a buffer based on the status of the dirty
2401 * bits in the pages comprising the buffer.  The range is limited
2402 * to the size of the buffer.
2403 *
2404 * Tell the VM system that the pages associated with this buffer
2405 * are clean.  This is used for delayed writes where the data is
2406 * going to go to disk eventually without additional VM intevention.
2407 *
2408 * Note that while we only really need to clean through to b_bcount, we
2409 * just go ahead and clean through to b_bufsize.
2410 */
2411static void
2412vfs_clean_pages_dirty_buf(struct buf *bp)
2413{
2414	vm_ooffset_t foff, noff, eoff;
2415	vm_page_t m;
2416	int i;
2417
2418	if ((bp->b_flags & B_VMIO) == 0 || bp->b_bufsize == 0)
2419		return;
2420
2421	foff = bp->b_offset;
2422	KASSERT(bp->b_offset != NOOFFSET,
2423	    ("vfs_clean_pages_dirty_buf: no buffer offset"));
2424
2425	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2426	vfs_drain_busy_pages(bp);
2427	vfs_setdirty_locked_object(bp);
2428	for (i = 0; i < bp->b_npages; i++) {
2429		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
2430		eoff = noff;
2431		if (eoff > bp->b_offset + bp->b_bufsize)
2432			eoff = bp->b_offset + bp->b_bufsize;
2433		m = bp->b_pages[i];
2434		vfs_page_set_validclean(bp, foff, m);
2435		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
2436		foff = noff;
2437	}
2438	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2439}
2440
2441static void
2442vfs_setdirty_locked_object(struct buf *bp)
2443{
2444	vm_object_t object;
2445	int i;
2446
2447	object = bp->b_bufobj->bo_object;
2448	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2449
2450	/*
2451	 * We qualify the scan for modified pages on whether the
2452	 * object has been flushed yet.
2453	 */
2454	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2455		vm_offset_t boffset;
2456		vm_offset_t eoffset;
2457
2458		/*
2459		 * test the pages to see if they have been modified directly
2460		 * by users through the VM system.
2461		 */
2462		for (i = 0; i < bp->b_npages; i++)
2463			vm_page_test_dirty(bp->b_pages[i]);
2464
2465		/*
2466		 * Calculate the encompassing dirty range, boffset and eoffset,
2467		 * (eoffset - boffset) bytes.
2468		 */
2469
2470		for (i = 0; i < bp->b_npages; i++) {
2471			if (bp->b_pages[i]->dirty)
2472				break;
2473		}
2474		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2475
2476		for (i = bp->b_npages - 1; i >= 0; --i) {
2477			if (bp->b_pages[i]->dirty) {
2478				break;
2479			}
2480		}
2481		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2482
2483		/*
2484		 * Fit it to the buffer.
2485		 */
2486
2487		if (eoffset > bp->b_bcount)
2488			eoffset = bp->b_bcount;
2489
2490		/*
2491		 * If we have a good dirty range, merge with the existing
2492		 * dirty range.
2493		 */
2494
2495		if (boffset < eoffset) {
2496			if (bp->b_dirtyoff > boffset)
2497				bp->b_dirtyoff = boffset;
2498			if (bp->b_dirtyend < eoffset)
2499				bp->b_dirtyend = eoffset;
2500		}
2501	}
2502}
2503
2504/*
2505 *	getblk:
2506 *
2507 *	Get a block given a specified block and offset into a file/device.
2508 *	The buffers B_DONE bit will be cleared on return, making it almost
2509 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2510 *	return.  The caller should clear B_INVAL prior to initiating a
2511 *	READ.
2512 *
2513 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2514 *	an existing buffer.
2515 *
2516 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2517 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2518 *	and then cleared based on the backing VM.  If the previous buffer is
2519 *	non-0-sized but invalid, B_CACHE will be cleared.
2520 *
2521 *	If getblk() must create a new buffer, the new buffer is returned with
2522 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2523 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2524 *	backing VM.
2525 *
2526 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2527 *	B_CACHE bit is clear.
2528 *
2529 *	What this means, basically, is that the caller should use B_CACHE to
2530 *	determine whether the buffer is fully valid or not and should clear
2531 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2532 *	the buffer by loading its data area with something, the caller needs
2533 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2534 *	the caller should set B_CACHE ( as an optimization ), else the caller
2535 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2536 *	a write attempt or if it was a successfull read.  If the caller
2537 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2538 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2539 */
2540struct buf *
2541getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2542    int flags)
2543{
2544	struct buf *bp;
2545	struct bufobj *bo;
2546	int error;
2547
2548	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2549	ASSERT_VOP_LOCKED(vp, "getblk");
2550	if (size > MAXBSIZE)
2551		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2552
2553	bo = &vp->v_bufobj;
2554loop:
2555	/*
2556	 * Block if we are low on buffers.   Certain processes are allowed
2557	 * to completely exhaust the buffer cache.
2558         *
2559         * If this check ever becomes a bottleneck it may be better to
2560         * move it into the else, when gbincore() fails.  At the moment
2561         * it isn't a problem.
2562	 *
2563	 * XXX remove if 0 sections (clean this up after its proven)
2564         */
2565	if (numfreebuffers == 0) {
2566		if (TD_IS_IDLETHREAD(curthread))
2567			return NULL;
2568		mtx_lock(&nblock);
2569		needsbuffer |= VFS_BIO_NEED_ANY;
2570		mtx_unlock(&nblock);
2571	}
2572
2573	BO_LOCK(bo);
2574	bp = gbincore(bo, blkno);
2575	if (bp != NULL) {
2576		int lockflags;
2577		/*
2578		 * Buffer is in-core.  If the buffer is not busy, it must
2579		 * be on a queue.
2580		 */
2581		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2582
2583		if (flags & GB_LOCK_NOWAIT)
2584			lockflags |= LK_NOWAIT;
2585
2586		error = BUF_TIMELOCK(bp, lockflags,
2587		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2588
2589		/*
2590		 * If we slept and got the lock we have to restart in case
2591		 * the buffer changed identities.
2592		 */
2593		if (error == ENOLCK)
2594			goto loop;
2595		/* We timed out or were interrupted. */
2596		else if (error)
2597			return (NULL);
2598
2599		/*
2600		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2601		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2602		 * and for a VMIO buffer B_CACHE is adjusted according to the
2603		 * backing VM cache.
2604		 */
2605		if (bp->b_flags & B_INVAL)
2606			bp->b_flags &= ~B_CACHE;
2607		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2608			bp->b_flags |= B_CACHE;
2609		bremfree(bp);
2610
2611		/*
2612		 * check for size inconsistancies for non-VMIO case.
2613		 */
2614
2615		if (bp->b_bcount != size) {
2616			if ((bp->b_flags & B_VMIO) == 0 ||
2617			    (size > bp->b_kvasize)) {
2618				if (bp->b_flags & B_DELWRI) {
2619					/*
2620					 * If buffer is pinned and caller does
2621					 * not want sleep  waiting for it to be
2622					 * unpinned, bail out
2623					 * */
2624					if (bp->b_pin_count > 0) {
2625						if (flags & GB_LOCK_NOWAIT) {
2626							bqrelse(bp);
2627							return (NULL);
2628						} else {
2629							bunpin_wait(bp);
2630						}
2631					}
2632					bp->b_flags |= B_NOCACHE;
2633					bwrite(bp);
2634				} else {
2635					if (LIST_EMPTY(&bp->b_dep)) {
2636						bp->b_flags |= B_RELBUF;
2637						brelse(bp);
2638					} else {
2639						bp->b_flags |= B_NOCACHE;
2640						bwrite(bp);
2641					}
2642				}
2643				goto loop;
2644			}
2645		}
2646
2647		/*
2648		 * If the size is inconsistant in the VMIO case, we can resize
2649		 * the buffer.  This might lead to B_CACHE getting set or
2650		 * cleared.  If the size has not changed, B_CACHE remains
2651		 * unchanged from its previous state.
2652		 */
2653
2654		if (bp->b_bcount != size)
2655			allocbuf(bp, size);
2656
2657		KASSERT(bp->b_offset != NOOFFSET,
2658		    ("getblk: no buffer offset"));
2659
2660		/*
2661		 * A buffer with B_DELWRI set and B_CACHE clear must
2662		 * be committed before we can return the buffer in
2663		 * order to prevent the caller from issuing a read
2664		 * ( due to B_CACHE not being set ) and overwriting
2665		 * it.
2666		 *
2667		 * Most callers, including NFS and FFS, need this to
2668		 * operate properly either because they assume they
2669		 * can issue a read if B_CACHE is not set, or because
2670		 * ( for example ) an uncached B_DELWRI might loop due
2671		 * to softupdates re-dirtying the buffer.  In the latter
2672		 * case, B_CACHE is set after the first write completes,
2673		 * preventing further loops.
2674		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2675		 * above while extending the buffer, we cannot allow the
2676		 * buffer to remain with B_CACHE set after the write
2677		 * completes or it will represent a corrupt state.  To
2678		 * deal with this we set B_NOCACHE to scrap the buffer
2679		 * after the write.
2680		 *
2681		 * We might be able to do something fancy, like setting
2682		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2683		 * so the below call doesn't set B_CACHE, but that gets real
2684		 * confusing.  This is much easier.
2685		 */
2686
2687		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2688			bp->b_flags |= B_NOCACHE;
2689			bwrite(bp);
2690			goto loop;
2691		}
2692		bp->b_flags &= ~B_DONE;
2693	} else {
2694		int bsize, maxsize, vmio;
2695		off_t offset;
2696
2697		/*
2698		 * Buffer is not in-core, create new buffer.  The buffer
2699		 * returned by getnewbuf() is locked.  Note that the returned
2700		 * buffer is also considered valid (not marked B_INVAL).
2701		 */
2702		BO_UNLOCK(bo);
2703		/*
2704		 * If the user does not want us to create the buffer, bail out
2705		 * here.
2706		 */
2707		if (flags & GB_NOCREAT)
2708			return NULL;
2709		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
2710		offset = blkno * bsize;
2711		vmio = vp->v_object != NULL;
2712		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2713		maxsize = imax(maxsize, bsize);
2714
2715		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2716		if (bp == NULL) {
2717			if (slpflag || slptimeo)
2718				return NULL;
2719			goto loop;
2720		}
2721
2722		/*
2723		 * This code is used to make sure that a buffer is not
2724		 * created while the getnewbuf routine is blocked.
2725		 * This can be a problem whether the vnode is locked or not.
2726		 * If the buffer is created out from under us, we have to
2727		 * throw away the one we just created.
2728		 *
2729		 * Note: this must occur before we associate the buffer
2730		 * with the vp especially considering limitations in
2731		 * the splay tree implementation when dealing with duplicate
2732		 * lblkno's.
2733		 */
2734		BO_LOCK(bo);
2735		if (gbincore(bo, blkno)) {
2736			BO_UNLOCK(bo);
2737			bp->b_flags |= B_INVAL;
2738			brelse(bp);
2739			goto loop;
2740		}
2741
2742		/*
2743		 * Insert the buffer into the hash, so that it can
2744		 * be found by incore.
2745		 */
2746		bp->b_blkno = bp->b_lblkno = blkno;
2747		bp->b_offset = offset;
2748		bgetvp(vp, bp);
2749		BO_UNLOCK(bo);
2750
2751		/*
2752		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2753		 * buffer size starts out as 0, B_CACHE will be set by
2754		 * allocbuf() for the VMIO case prior to it testing the
2755		 * backing store for validity.
2756		 */
2757
2758		if (vmio) {
2759			bp->b_flags |= B_VMIO;
2760#if defined(VFS_BIO_DEBUG)
2761			if (vn_canvmio(vp) != TRUE)
2762				printf("getblk: VMIO on vnode type %d\n",
2763					vp->v_type);
2764#endif
2765			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2766			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2767			    bp, vp->v_object, bp->b_bufobj->bo_object));
2768		} else {
2769			bp->b_flags &= ~B_VMIO;
2770			KASSERT(bp->b_bufobj->bo_object == NULL,
2771			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2772			    bp, bp->b_bufobj->bo_object));
2773		}
2774
2775		allocbuf(bp, size);
2776		bp->b_flags &= ~B_DONE;
2777	}
2778	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2779	BUF_ASSERT_HELD(bp);
2780	KASSERT(bp->b_bufobj == bo,
2781	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2782	return (bp);
2783}
2784
2785/*
2786 * Get an empty, disassociated buffer of given size.  The buffer is initially
2787 * set to B_INVAL.
2788 */
2789struct buf *
2790geteblk(int size, int flags)
2791{
2792	struct buf *bp;
2793	int maxsize;
2794
2795	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2796	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2797		if ((flags & GB_NOWAIT_BD) &&
2798		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2799			return (NULL);
2800	}
2801	allocbuf(bp, size);
2802	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2803	BUF_ASSERT_HELD(bp);
2804	return (bp);
2805}
2806
2807
2808/*
2809 * This code constitutes the buffer memory from either anonymous system
2810 * memory (in the case of non-VMIO operations) or from an associated
2811 * VM object (in the case of VMIO operations).  This code is able to
2812 * resize a buffer up or down.
2813 *
2814 * Note that this code is tricky, and has many complications to resolve
2815 * deadlock or inconsistant data situations.  Tread lightly!!!
2816 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2817 * the caller.  Calling this code willy nilly can result in the loss of data.
2818 *
2819 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2820 * B_CACHE for the non-VMIO case.
2821 */
2822
2823int
2824allocbuf(struct buf *bp, int size)
2825{
2826	int newbsize, mbsize;
2827	int i;
2828
2829	BUF_ASSERT_HELD(bp);
2830
2831	if (bp->b_kvasize < size)
2832		panic("allocbuf: buffer too small");
2833
2834	if ((bp->b_flags & B_VMIO) == 0) {
2835		caddr_t origbuf;
2836		int origbufsize;
2837		/*
2838		 * Just get anonymous memory from the kernel.  Don't
2839		 * mess with B_CACHE.
2840		 */
2841		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2842		if (bp->b_flags & B_MALLOC)
2843			newbsize = mbsize;
2844		else
2845			newbsize = round_page(size);
2846
2847		if (newbsize < bp->b_bufsize) {
2848			/*
2849			 * malloced buffers are not shrunk
2850			 */
2851			if (bp->b_flags & B_MALLOC) {
2852				if (newbsize) {
2853					bp->b_bcount = size;
2854				} else {
2855					free(bp->b_data, M_BIOBUF);
2856					if (bp->b_bufsize) {
2857						atomic_subtract_long(
2858						    &bufmallocspace,
2859						    bp->b_bufsize);
2860						bufspacewakeup();
2861						bp->b_bufsize = 0;
2862					}
2863					bp->b_saveaddr = bp->b_kvabase;
2864					bp->b_data = bp->b_saveaddr;
2865					bp->b_bcount = 0;
2866					bp->b_flags &= ~B_MALLOC;
2867				}
2868				return 1;
2869			}
2870			vm_hold_free_pages(
2871			    bp,
2872			    (vm_offset_t) bp->b_data + newbsize,
2873			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2874		} else if (newbsize > bp->b_bufsize) {
2875			/*
2876			 * We only use malloced memory on the first allocation.
2877			 * and revert to page-allocated memory when the buffer
2878			 * grows.
2879			 */
2880			/*
2881			 * There is a potential smp race here that could lead
2882			 * to bufmallocspace slightly passing the max.  It
2883			 * is probably extremely rare and not worth worrying
2884			 * over.
2885			 */
2886			if ( (bufmallocspace < maxbufmallocspace) &&
2887				(bp->b_bufsize == 0) &&
2888				(mbsize <= PAGE_SIZE/2)) {
2889
2890				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2891				bp->b_bufsize = mbsize;
2892				bp->b_bcount = size;
2893				bp->b_flags |= B_MALLOC;
2894				atomic_add_long(&bufmallocspace, mbsize);
2895				return 1;
2896			}
2897			origbuf = NULL;
2898			origbufsize = 0;
2899			/*
2900			 * If the buffer is growing on its other-than-first allocation,
2901			 * then we revert to the page-allocation scheme.
2902			 */
2903			if (bp->b_flags & B_MALLOC) {
2904				origbuf = bp->b_data;
2905				origbufsize = bp->b_bufsize;
2906				bp->b_data = bp->b_kvabase;
2907				if (bp->b_bufsize) {
2908					atomic_subtract_long(&bufmallocspace,
2909					    bp->b_bufsize);
2910					bufspacewakeup();
2911					bp->b_bufsize = 0;
2912				}
2913				bp->b_flags &= ~B_MALLOC;
2914				newbsize = round_page(newbsize);
2915			}
2916			vm_hold_load_pages(
2917			    bp,
2918			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2919			    (vm_offset_t) bp->b_data + newbsize);
2920			if (origbuf) {
2921				bcopy(origbuf, bp->b_data, origbufsize);
2922				free(origbuf, M_BIOBUF);
2923			}
2924		}
2925	} else {
2926		int desiredpages;
2927
2928		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2929		desiredpages = (size == 0) ? 0 :
2930			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2931
2932		if (bp->b_flags & B_MALLOC)
2933			panic("allocbuf: VMIO buffer can't be malloced");
2934		/*
2935		 * Set B_CACHE initially if buffer is 0 length or will become
2936		 * 0-length.
2937		 */
2938		if (size == 0 || bp->b_bufsize == 0)
2939			bp->b_flags |= B_CACHE;
2940
2941		if (newbsize < bp->b_bufsize) {
2942			/*
2943			 * DEV_BSIZE aligned new buffer size is less then the
2944			 * DEV_BSIZE aligned existing buffer size.  Figure out
2945			 * if we have to remove any pages.
2946			 */
2947			if (desiredpages < bp->b_npages) {
2948				vm_page_t m;
2949
2950				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2951				for (i = desiredpages; i < bp->b_npages; i++) {
2952					/*
2953					 * the page is not freed here -- it
2954					 * is the responsibility of
2955					 * vnode_pager_setsize
2956					 */
2957					m = bp->b_pages[i];
2958					KASSERT(m != bogus_page,
2959					    ("allocbuf: bogus page found"));
2960					while (vm_page_sleep_if_busy(m, TRUE,
2961					    "biodep"))
2962						continue;
2963
2964					bp->b_pages[i] = NULL;
2965					vm_page_lock(m);
2966					vm_page_unwire(m, 0);
2967					vm_page_unlock(m);
2968				}
2969				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2970				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2971				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2972				bp->b_npages = desiredpages;
2973			}
2974		} else if (size > bp->b_bcount) {
2975			/*
2976			 * We are growing the buffer, possibly in a
2977			 * byte-granular fashion.
2978			 */
2979			vm_object_t obj;
2980			vm_offset_t toff;
2981			vm_offset_t tinc;
2982
2983			/*
2984			 * Step 1, bring in the VM pages from the object,
2985			 * allocating them if necessary.  We must clear
2986			 * B_CACHE if these pages are not valid for the
2987			 * range covered by the buffer.
2988			 */
2989
2990			obj = bp->b_bufobj->bo_object;
2991
2992			VM_OBJECT_LOCK(obj);
2993			while (bp->b_npages < desiredpages) {
2994				vm_page_t m;
2995				vm_pindex_t pi;
2996
2997				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2998				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2999					/*
3000					 * note: must allocate system pages
3001					 * since blocking here could intefere
3002					 * with paging I/O, no matter which
3003					 * process we are.
3004					 */
3005					m = vm_page_alloc(obj, pi,
3006					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
3007					    VM_ALLOC_WIRED);
3008					if (m == NULL) {
3009						atomic_add_int(&vm_pageout_deficit,
3010						    desiredpages - bp->b_npages);
3011						VM_OBJECT_UNLOCK(obj);
3012						VM_WAIT;
3013						VM_OBJECT_LOCK(obj);
3014					} else {
3015						if (m->valid == 0)
3016							bp->b_flags &= ~B_CACHE;
3017						bp->b_pages[bp->b_npages] = m;
3018						++bp->b_npages;
3019					}
3020					continue;
3021				}
3022
3023				/*
3024				 * We found a page.  If we have to sleep on it,
3025				 * retry because it might have gotten freed out
3026				 * from under us.
3027				 *
3028				 * We can only test VPO_BUSY here.  Blocking on
3029				 * m->busy might lead to a deadlock:
3030				 *
3031				 *  vm_fault->getpages->cluster_read->allocbuf
3032				 *
3033				 */
3034				if ((m->oflags & VPO_BUSY) != 0) {
3035					/*
3036					 * Reference the page before unlocking
3037					 * and sleeping so that the page daemon
3038					 * is less likely to reclaim it.
3039					 */
3040					vm_page_lock_queues();
3041					vm_page_flag_set(m, PG_REFERENCED);
3042					vm_page_sleep(m, "pgtblk");
3043					continue;
3044				}
3045
3046				/*
3047				 * We have a good page.
3048				 */
3049				vm_page_lock(m);
3050				vm_page_wire(m);
3051				vm_page_unlock(m);
3052				bp->b_pages[bp->b_npages] = m;
3053				++bp->b_npages;
3054			}
3055
3056			/*
3057			 * Step 2.  We've loaded the pages into the buffer,
3058			 * we have to figure out if we can still have B_CACHE
3059			 * set.  Note that B_CACHE is set according to the
3060			 * byte-granular range ( bcount and size ), new the
3061			 * aligned range ( newbsize ).
3062			 *
3063			 * The VM test is against m->valid, which is DEV_BSIZE
3064			 * aligned.  Needless to say, the validity of the data
3065			 * needs to also be DEV_BSIZE aligned.  Note that this
3066			 * fails with NFS if the server or some other client
3067			 * extends the file's EOF.  If our buffer is resized,
3068			 * B_CACHE may remain set! XXX
3069			 */
3070
3071			toff = bp->b_bcount;
3072			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3073
3074			while ((bp->b_flags & B_CACHE) && toff < size) {
3075				vm_pindex_t pi;
3076
3077				if (tinc > (size - toff))
3078					tinc = size - toff;
3079
3080				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3081				    PAGE_SHIFT;
3082
3083				vfs_buf_test_cache(
3084				    bp,
3085				    bp->b_offset,
3086				    toff,
3087				    tinc,
3088				    bp->b_pages[pi]
3089				);
3090				toff += tinc;
3091				tinc = PAGE_SIZE;
3092			}
3093			VM_OBJECT_UNLOCK(obj);
3094
3095			/*
3096			 * Step 3, fixup the KVM pmap.  Remember that
3097			 * bp->b_data is relative to bp->b_offset, but
3098			 * bp->b_offset may be offset into the first page.
3099			 */
3100
3101			bp->b_data = (caddr_t)
3102			    trunc_page((vm_offset_t)bp->b_data);
3103			pmap_qenter(
3104			    (vm_offset_t)bp->b_data,
3105			    bp->b_pages,
3106			    bp->b_npages
3107			);
3108
3109			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3110			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3111		}
3112	}
3113	if (newbsize < bp->b_bufsize)
3114		bufspacewakeup();
3115	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3116	bp->b_bcount = size;		/* requested buffer size	*/
3117	return 1;
3118}
3119
3120void
3121biodone(struct bio *bp)
3122{
3123	struct mtx *mtxp;
3124	void (*done)(struct bio *);
3125
3126	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3127	mtx_lock(mtxp);
3128	bp->bio_flags |= BIO_DONE;
3129	done = bp->bio_done;
3130	if (done == NULL)
3131		wakeup(bp);
3132	mtx_unlock(mtxp);
3133	if (done != NULL)
3134		done(bp);
3135}
3136
3137/*
3138 * Wait for a BIO to finish.
3139 *
3140 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3141 * case is not yet clear.
3142 */
3143int
3144biowait(struct bio *bp, const char *wchan)
3145{
3146	struct mtx *mtxp;
3147
3148	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3149	mtx_lock(mtxp);
3150	while ((bp->bio_flags & BIO_DONE) == 0)
3151		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3152	mtx_unlock(mtxp);
3153	if (bp->bio_error != 0)
3154		return (bp->bio_error);
3155	if (!(bp->bio_flags & BIO_ERROR))
3156		return (0);
3157	return (EIO);
3158}
3159
3160void
3161biofinish(struct bio *bp, struct devstat *stat, int error)
3162{
3163
3164	if (error) {
3165		bp->bio_error = error;
3166		bp->bio_flags |= BIO_ERROR;
3167	}
3168	if (stat != NULL)
3169		devstat_end_transaction_bio(stat, bp);
3170	biodone(bp);
3171}
3172
3173/*
3174 *	bufwait:
3175 *
3176 *	Wait for buffer I/O completion, returning error status.  The buffer
3177 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3178 *	error and cleared.
3179 */
3180int
3181bufwait(struct buf *bp)
3182{
3183	if (bp->b_iocmd == BIO_READ)
3184		bwait(bp, PRIBIO, "biord");
3185	else
3186		bwait(bp, PRIBIO, "biowr");
3187	if (bp->b_flags & B_EINTR) {
3188		bp->b_flags &= ~B_EINTR;
3189		return (EINTR);
3190	}
3191	if (bp->b_ioflags & BIO_ERROR) {
3192		return (bp->b_error ? bp->b_error : EIO);
3193	} else {
3194		return (0);
3195	}
3196}
3197
3198 /*
3199  * Call back function from struct bio back up to struct buf.
3200  */
3201static void
3202bufdonebio(struct bio *bip)
3203{
3204	struct buf *bp;
3205
3206	bp = bip->bio_caller2;
3207	bp->b_resid = bp->b_bcount - bip->bio_completed;
3208	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3209	bp->b_ioflags = bip->bio_flags;
3210	bp->b_error = bip->bio_error;
3211	if (bp->b_error)
3212		bp->b_ioflags |= BIO_ERROR;
3213	bufdone(bp);
3214	g_destroy_bio(bip);
3215}
3216
3217void
3218dev_strategy(struct cdev *dev, struct buf *bp)
3219{
3220	struct cdevsw *csw;
3221	struct bio *bip;
3222
3223	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3224		panic("b_iocmd botch");
3225	for (;;) {
3226		bip = g_new_bio();
3227		if (bip != NULL)
3228			break;
3229		/* Try again later */
3230		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3231	}
3232	bip->bio_cmd = bp->b_iocmd;
3233	bip->bio_offset = bp->b_iooffset;
3234	bip->bio_length = bp->b_bcount;
3235	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3236	bip->bio_data = bp->b_data;
3237	bip->bio_done = bufdonebio;
3238	bip->bio_caller2 = bp;
3239	bip->bio_dev = dev;
3240	KASSERT(dev->si_refcount > 0,
3241	    ("dev_strategy on un-referenced struct cdev *(%s)",
3242	    devtoname(dev)));
3243	csw = dev_refthread(dev);
3244	if (csw == NULL) {
3245		g_destroy_bio(bip);
3246		bp->b_error = ENXIO;
3247		bp->b_ioflags = BIO_ERROR;
3248		bufdone(bp);
3249		return;
3250	}
3251	(*csw->d_strategy)(bip);
3252	dev_relthread(dev);
3253}
3254
3255/*
3256 *	bufdone:
3257 *
3258 *	Finish I/O on a buffer, optionally calling a completion function.
3259 *	This is usually called from an interrupt so process blocking is
3260 *	not allowed.
3261 *
3262 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3263 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3264 *	assuming B_INVAL is clear.
3265 *
3266 *	For the VMIO case, we set B_CACHE if the op was a read and no
3267 *	read error occured, or if the op was a write.  B_CACHE is never
3268 *	set if the buffer is invalid or otherwise uncacheable.
3269 *
3270 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3271 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3272 *	in the biodone routine.
3273 */
3274void
3275bufdone(struct buf *bp)
3276{
3277	struct bufobj *dropobj;
3278	void    (*biodone)(struct buf *);
3279
3280	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3281	dropobj = NULL;
3282
3283	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3284	BUF_ASSERT_HELD(bp);
3285
3286	runningbufwakeup(bp);
3287	if (bp->b_iocmd == BIO_WRITE)
3288		dropobj = bp->b_bufobj;
3289	/* call optional completion function if requested */
3290	if (bp->b_iodone != NULL) {
3291		biodone = bp->b_iodone;
3292		bp->b_iodone = NULL;
3293		(*biodone) (bp);
3294		if (dropobj)
3295			bufobj_wdrop(dropobj);
3296		return;
3297	}
3298
3299	bufdone_finish(bp);
3300
3301	if (dropobj)
3302		bufobj_wdrop(dropobj);
3303}
3304
3305void
3306bufdone_finish(struct buf *bp)
3307{
3308	BUF_ASSERT_HELD(bp);
3309
3310	if (!LIST_EMPTY(&bp->b_dep))
3311		buf_complete(bp);
3312
3313	if (bp->b_flags & B_VMIO) {
3314		int i;
3315		vm_ooffset_t foff;
3316		vm_page_t m;
3317		vm_object_t obj;
3318		int iosize;
3319		struct vnode *vp = bp->b_vp;
3320
3321		obj = bp->b_bufobj->bo_object;
3322
3323#if defined(VFS_BIO_DEBUG)
3324		mp_fixme("usecount and vflag accessed without locks.");
3325		if (vp->v_usecount == 0) {
3326			panic("biodone: zero vnode ref count");
3327		}
3328
3329		KASSERT(vp->v_object != NULL,
3330			("biodone: vnode %p has no vm_object", vp));
3331#endif
3332
3333		foff = bp->b_offset;
3334		KASSERT(bp->b_offset != NOOFFSET,
3335		    ("biodone: no buffer offset"));
3336
3337		VM_OBJECT_LOCK(obj);
3338#if defined(VFS_BIO_DEBUG)
3339		if (obj->paging_in_progress < bp->b_npages) {
3340			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3341			    obj->paging_in_progress, bp->b_npages);
3342		}
3343#endif
3344
3345		/*
3346		 * Set B_CACHE if the op was a normal read and no error
3347		 * occured.  B_CACHE is set for writes in the b*write()
3348		 * routines.
3349		 */
3350		iosize = bp->b_bcount - bp->b_resid;
3351		if (bp->b_iocmd == BIO_READ &&
3352		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3353		    !(bp->b_ioflags & BIO_ERROR)) {
3354			bp->b_flags |= B_CACHE;
3355		}
3356		for (i = 0; i < bp->b_npages; i++) {
3357			int bogusflag = 0;
3358			int resid;
3359
3360			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3361			if (resid > iosize)
3362				resid = iosize;
3363
3364			/*
3365			 * cleanup bogus pages, restoring the originals
3366			 */
3367			m = bp->b_pages[i];
3368			if (m == bogus_page) {
3369				bogusflag = 1;
3370				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3371				if (m == NULL)
3372					panic("biodone: page disappeared!");
3373				bp->b_pages[i] = m;
3374				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3375				    bp->b_pages, bp->b_npages);
3376			}
3377#if defined(VFS_BIO_DEBUG)
3378			if (OFF_TO_IDX(foff) != m->pindex) {
3379				printf(
3380"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3381				    (intmax_t)foff, (uintmax_t)m->pindex);
3382			}
3383#endif
3384
3385			/*
3386			 * In the write case, the valid and clean bits are
3387			 * already changed correctly ( see bdwrite() ), so we
3388			 * only need to do this here in the read case.
3389			 */
3390			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3391				KASSERT((m->dirty & vm_page_bits(foff &
3392				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3393				    " page %p has unexpected dirty bits", m));
3394				vfs_page_set_valid(bp, foff, m);
3395			}
3396
3397			/*
3398			 * when debugging new filesystems or buffer I/O methods, this
3399			 * is the most common error that pops up.  if you see this, you
3400			 * have not set the page busy flag correctly!!!
3401			 */
3402			if (m->busy == 0) {
3403				printf("biodone: page busy < 0, "
3404				    "pindex: %d, foff: 0x(%x,%x), "
3405				    "resid: %d, index: %d\n",
3406				    (int) m->pindex, (int)(foff >> 32),
3407						(int) foff & 0xffffffff, resid, i);
3408				if (!vn_isdisk(vp, NULL))
3409					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3410					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3411					    (intmax_t) bp->b_lblkno,
3412					    bp->b_flags, bp->b_npages);
3413				else
3414					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3415					    (intmax_t) bp->b_lblkno,
3416					    bp->b_flags, bp->b_npages);
3417				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3418				    (u_long)m->valid, (u_long)m->dirty,
3419				    m->wire_count);
3420				panic("biodone: page busy < 0\n");
3421			}
3422			vm_page_io_finish(m);
3423			vm_object_pip_subtract(obj, 1);
3424			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3425			iosize -= resid;
3426		}
3427		vm_object_pip_wakeupn(obj, 0);
3428		VM_OBJECT_UNLOCK(obj);
3429	}
3430
3431	/*
3432	 * For asynchronous completions, release the buffer now. The brelse
3433	 * will do a wakeup there if necessary - so no need to do a wakeup
3434	 * here in the async case. The sync case always needs to do a wakeup.
3435	 */
3436
3437	if (bp->b_flags & B_ASYNC) {
3438		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3439			brelse(bp);
3440		else
3441			bqrelse(bp);
3442	} else
3443		bdone(bp);
3444}
3445
3446/*
3447 * This routine is called in lieu of iodone in the case of
3448 * incomplete I/O.  This keeps the busy status for pages
3449 * consistant.
3450 */
3451void
3452vfs_unbusy_pages(struct buf *bp)
3453{
3454	int i;
3455	vm_object_t obj;
3456	vm_page_t m;
3457
3458	runningbufwakeup(bp);
3459	if (!(bp->b_flags & B_VMIO))
3460		return;
3461
3462	obj = bp->b_bufobj->bo_object;
3463	VM_OBJECT_LOCK(obj);
3464	for (i = 0; i < bp->b_npages; i++) {
3465		m = bp->b_pages[i];
3466		if (m == bogus_page) {
3467			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3468			if (!m)
3469				panic("vfs_unbusy_pages: page missing\n");
3470			bp->b_pages[i] = m;
3471			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3472			    bp->b_pages, bp->b_npages);
3473		}
3474		vm_object_pip_subtract(obj, 1);
3475		vm_page_io_finish(m);
3476	}
3477	vm_object_pip_wakeupn(obj, 0);
3478	VM_OBJECT_UNLOCK(obj);
3479}
3480
3481/*
3482 * vfs_page_set_valid:
3483 *
3484 *	Set the valid bits in a page based on the supplied offset.   The
3485 *	range is restricted to the buffer's size.
3486 *
3487 *	This routine is typically called after a read completes.
3488 */
3489static void
3490vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3491{
3492	vm_ooffset_t eoff;
3493
3494	/*
3495	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3496	 * page boundary and eoff is not greater than the end of the buffer.
3497	 * The end of the buffer, in this case, is our file EOF, not the
3498	 * allocation size of the buffer.
3499	 */
3500	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3501	if (eoff > bp->b_offset + bp->b_bcount)
3502		eoff = bp->b_offset + bp->b_bcount;
3503
3504	/*
3505	 * Set valid range.  This is typically the entire buffer and thus the
3506	 * entire page.
3507	 */
3508	if (eoff > off)
3509		vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
3510}
3511
3512/*
3513 * vfs_page_set_validclean:
3514 *
3515 *	Set the valid bits and clear the dirty bits in a page based on the
3516 *	supplied offset.   The range is restricted to the buffer's size.
3517 */
3518static void
3519vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3520{
3521	vm_ooffset_t soff, eoff;
3522
3523	/*
3524	 * Start and end offsets in buffer.  eoff - soff may not cross a
3525	 * page boundry or cross the end of the buffer.  The end of the
3526	 * buffer, in this case, is our file EOF, not the allocation size
3527	 * of the buffer.
3528	 */
3529	soff = off;
3530	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3531	if (eoff > bp->b_offset + bp->b_bcount)
3532		eoff = bp->b_offset + bp->b_bcount;
3533
3534	/*
3535	 * Set valid range.  This is typically the entire buffer and thus the
3536	 * entire page.
3537	 */
3538	if (eoff > soff) {
3539		vm_page_set_validclean(
3540		    m,
3541		   (vm_offset_t) (soff & PAGE_MASK),
3542		   (vm_offset_t) (eoff - soff)
3543		);
3544	}
3545}
3546
3547/*
3548 * Ensure that all buffer pages are not busied by VPO_BUSY flag. If
3549 * any page is busy, drain the flag.
3550 */
3551static void
3552vfs_drain_busy_pages(struct buf *bp)
3553{
3554	vm_page_t m;
3555	int i, last_busied;
3556
3557	VM_OBJECT_LOCK_ASSERT(bp->b_bufobj->bo_object, MA_OWNED);
3558	last_busied = 0;
3559	for (i = 0; i < bp->b_npages; i++) {
3560		m = bp->b_pages[i];
3561		if ((m->oflags & VPO_BUSY) != 0) {
3562			for (; last_busied < i; last_busied++)
3563				vm_page_busy(bp->b_pages[last_busied]);
3564			while ((m->oflags & VPO_BUSY) != 0)
3565				vm_page_sleep(m, "vbpage");
3566		}
3567	}
3568	for (i = 0; i < last_busied; i++)
3569		vm_page_wakeup(bp->b_pages[i]);
3570}
3571
3572/*
3573 * This routine is called before a device strategy routine.
3574 * It is used to tell the VM system that paging I/O is in
3575 * progress, and treat the pages associated with the buffer
3576 * almost as being VPO_BUSY.  Also the object paging_in_progress
3577 * flag is handled to make sure that the object doesn't become
3578 * inconsistant.
3579 *
3580 * Since I/O has not been initiated yet, certain buffer flags
3581 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3582 * and should be ignored.
3583 */
3584void
3585vfs_busy_pages(struct buf *bp, int clear_modify)
3586{
3587	int i, bogus;
3588	vm_object_t obj;
3589	vm_ooffset_t foff;
3590	vm_page_t m;
3591
3592	if (!(bp->b_flags & B_VMIO))
3593		return;
3594
3595	obj = bp->b_bufobj->bo_object;
3596	foff = bp->b_offset;
3597	KASSERT(bp->b_offset != NOOFFSET,
3598	    ("vfs_busy_pages: no buffer offset"));
3599	VM_OBJECT_LOCK(obj);
3600	vfs_drain_busy_pages(bp);
3601	if (bp->b_bufsize != 0)
3602		vfs_setdirty_locked_object(bp);
3603	bogus = 0;
3604	for (i = 0; i < bp->b_npages; i++) {
3605		m = bp->b_pages[i];
3606
3607		if ((bp->b_flags & B_CLUSTER) == 0) {
3608			vm_object_pip_add(obj, 1);
3609			vm_page_io_start(m);
3610		}
3611		/*
3612		 * When readying a buffer for a read ( i.e
3613		 * clear_modify == 0 ), it is important to do
3614		 * bogus_page replacement for valid pages in
3615		 * partially instantiated buffers.  Partially
3616		 * instantiated buffers can, in turn, occur when
3617		 * reconstituting a buffer from its VM backing store
3618		 * base.  We only have to do this if B_CACHE is
3619		 * clear ( which causes the I/O to occur in the
3620		 * first place ).  The replacement prevents the read
3621		 * I/O from overwriting potentially dirty VM-backed
3622		 * pages.  XXX bogus page replacement is, uh, bogus.
3623		 * It may not work properly with small-block devices.
3624		 * We need to find a better way.
3625		 */
3626		if (clear_modify) {
3627			pmap_remove_write(m);
3628			vfs_page_set_validclean(bp, foff, m);
3629		} else if (m->valid == VM_PAGE_BITS_ALL &&
3630		    (bp->b_flags & B_CACHE) == 0) {
3631			bp->b_pages[i] = bogus_page;
3632			bogus++;
3633		}
3634		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3635	}
3636	VM_OBJECT_UNLOCK(obj);
3637	if (bogus)
3638		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3639		    bp->b_pages, bp->b_npages);
3640}
3641
3642/*
3643 *	vfs_bio_set_valid:
3644 *
3645 *	Set the range within the buffer to valid.  The range is
3646 *	relative to the beginning of the buffer, b_offset.  Note that
3647 *	b_offset itself may be offset from the beginning of the first
3648 *	page.
3649 */
3650void
3651vfs_bio_set_valid(struct buf *bp, int base, int size)
3652{
3653	int i, n;
3654	vm_page_t m;
3655
3656	if (!(bp->b_flags & B_VMIO))
3657		return;
3658
3659	/*
3660	 * Fixup base to be relative to beginning of first page.
3661	 * Set initial n to be the maximum number of bytes in the
3662	 * first page that can be validated.
3663	 */
3664	base += (bp->b_offset & PAGE_MASK);
3665	n = PAGE_SIZE - (base & PAGE_MASK);
3666
3667	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3668	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3669		m = bp->b_pages[i];
3670		if (n > size)
3671			n = size;
3672		vm_page_set_valid(m, base & PAGE_MASK, n);
3673		base += n;
3674		size -= n;
3675		n = PAGE_SIZE;
3676	}
3677	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3678}
3679
3680/*
3681 *	vfs_bio_clrbuf:
3682 *
3683 *	If the specified buffer is a non-VMIO buffer, clear the entire
3684 *	buffer.  If the specified buffer is a VMIO buffer, clear and
3685 *	validate only the previously invalid portions of the buffer.
3686 *	This routine essentially fakes an I/O, so we need to clear
3687 *	BIO_ERROR and B_INVAL.
3688 *
3689 *	Note that while we only theoretically need to clear through b_bcount,
3690 *	we go ahead and clear through b_bufsize.
3691 */
3692void
3693vfs_bio_clrbuf(struct buf *bp)
3694{
3695	int i, j, mask;
3696	caddr_t sa, ea;
3697
3698	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3699		clrbuf(bp);
3700		return;
3701	}
3702	bp->b_flags &= ~B_INVAL;
3703	bp->b_ioflags &= ~BIO_ERROR;
3704	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3705	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3706	    (bp->b_offset & PAGE_MASK) == 0) {
3707		if (bp->b_pages[0] == bogus_page)
3708			goto unlock;
3709		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3710		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3711		if ((bp->b_pages[0]->valid & mask) == mask)
3712			goto unlock;
3713		if ((bp->b_pages[0]->valid & mask) == 0) {
3714			bzero(bp->b_data, bp->b_bufsize);
3715			bp->b_pages[0]->valid |= mask;
3716			goto unlock;
3717		}
3718	}
3719	ea = sa = bp->b_data;
3720	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3721		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3722		ea = (caddr_t)(vm_offset_t)ulmin(
3723		    (u_long)(vm_offset_t)ea,
3724		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3725		if (bp->b_pages[i] == bogus_page)
3726			continue;
3727		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3728		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3729		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3730		if ((bp->b_pages[i]->valid & mask) == mask)
3731			continue;
3732		if ((bp->b_pages[i]->valid & mask) == 0)
3733			bzero(sa, ea - sa);
3734		else {
3735			for (; sa < ea; sa += DEV_BSIZE, j++) {
3736				if ((bp->b_pages[i]->valid & (1 << j)) == 0)
3737					bzero(sa, DEV_BSIZE);
3738			}
3739		}
3740		bp->b_pages[i]->valid |= mask;
3741	}
3742unlock:
3743	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3744	bp->b_resid = 0;
3745}
3746
3747/*
3748 * vm_hold_load_pages and vm_hold_free_pages get pages into
3749 * a buffers address space.  The pages are anonymous and are
3750 * not associated with a file object.
3751 */
3752static void
3753vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3754{
3755	vm_offset_t pg;
3756	vm_page_t p;
3757	int index;
3758
3759	to = round_page(to);
3760	from = round_page(from);
3761	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3762
3763	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3764tryagain:
3765		/*
3766		 * note: must allocate system pages since blocking here
3767		 * could interfere with paging I/O, no matter which
3768		 * process we are.
3769		 */
3770		p = vm_page_alloc(NULL, pg >> PAGE_SHIFT, VM_ALLOC_NOOBJ |
3771		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3772		if (!p) {
3773			atomic_add_int(&vm_pageout_deficit,
3774			    (to - pg) >> PAGE_SHIFT);
3775			VM_WAIT;
3776			goto tryagain;
3777		}
3778		pmap_qenter(pg, &p, 1);
3779		bp->b_pages[index] = p;
3780	}
3781	bp->b_npages = index;
3782}
3783
3784/* Return pages associated with this buf to the vm system */
3785static void
3786vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3787{
3788	vm_offset_t pg;
3789	vm_page_t p;
3790	int index, newnpages;
3791
3792	from = round_page(from);
3793	to = round_page(to);
3794	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3795
3796	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3797		p = bp->b_pages[index];
3798		if (p && (index < bp->b_npages)) {
3799			if (p->busy) {
3800				printf(
3801			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3802				    (intmax_t)bp->b_blkno,
3803				    (intmax_t)bp->b_lblkno);
3804			}
3805			bp->b_pages[index] = NULL;
3806			pmap_qremove(pg, 1);
3807			p->wire_count--;
3808			vm_page_free(p);
3809			atomic_subtract_int(&cnt.v_wire_count, 1);
3810		}
3811	}
3812	bp->b_npages = newnpages;
3813}
3814
3815/*
3816 * Map an IO request into kernel virtual address space.
3817 *
3818 * All requests are (re)mapped into kernel VA space.
3819 * Notice that we use b_bufsize for the size of the buffer
3820 * to be mapped.  b_bcount might be modified by the driver.
3821 *
3822 * Note that even if the caller determines that the address space should
3823 * be valid, a race or a smaller-file mapped into a larger space may
3824 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3825 * check the return value.
3826 */
3827int
3828vmapbuf(struct buf *bp)
3829{
3830	caddr_t addr, kva;
3831	vm_prot_t prot;
3832	int pidx, i;
3833	struct vm_page *m;
3834	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3835
3836	if (bp->b_bufsize < 0)
3837		return (-1);
3838	prot = VM_PROT_READ;
3839	if (bp->b_iocmd == BIO_READ)
3840		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3841	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3842	     addr < bp->b_data + bp->b_bufsize;
3843	     addr += PAGE_SIZE, pidx++) {
3844		/*
3845		 * Do the vm_fault if needed; do the copy-on-write thing
3846		 * when reading stuff off device into memory.
3847		 *
3848		 * NOTE! Must use pmap_extract() because addr may be in
3849		 * the userland address space, and kextract is only guarenteed
3850		 * to work for the kernland address space (see: sparc64 port).
3851		 */
3852retry:
3853		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3854		    prot) < 0) {
3855			for (i = 0; i < pidx; ++i) {
3856				vm_page_lock(bp->b_pages[i]);
3857				vm_page_unhold(bp->b_pages[i]);
3858				vm_page_unlock(bp->b_pages[i]);
3859				bp->b_pages[i] = NULL;
3860			}
3861			return(-1);
3862		}
3863		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3864		if (m == NULL)
3865			goto retry;
3866		bp->b_pages[pidx] = m;
3867	}
3868	if (pidx > btoc(MAXPHYS))
3869		panic("vmapbuf: mapped more than MAXPHYS");
3870	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3871
3872	kva = bp->b_saveaddr;
3873	bp->b_npages = pidx;
3874	bp->b_saveaddr = bp->b_data;
3875	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3876	return(0);
3877}
3878
3879/*
3880 * Free the io map PTEs associated with this IO operation.
3881 * We also invalidate the TLB entries and restore the original b_addr.
3882 */
3883void
3884vunmapbuf(struct buf *bp)
3885{
3886	int pidx;
3887	int npages;
3888
3889	npages = bp->b_npages;
3890	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3891	for (pidx = 0; pidx < npages; pidx++) {
3892		vm_page_lock(bp->b_pages[pidx]);
3893		vm_page_unhold(bp->b_pages[pidx]);
3894		vm_page_unlock(bp->b_pages[pidx]);
3895	}
3896
3897	bp->b_data = bp->b_saveaddr;
3898}
3899
3900void
3901bdone(struct buf *bp)
3902{
3903	struct mtx *mtxp;
3904
3905	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3906	mtx_lock(mtxp);
3907	bp->b_flags |= B_DONE;
3908	wakeup(bp);
3909	mtx_unlock(mtxp);
3910}
3911
3912void
3913bwait(struct buf *bp, u_char pri, const char *wchan)
3914{
3915	struct mtx *mtxp;
3916
3917	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3918	mtx_lock(mtxp);
3919	while ((bp->b_flags & B_DONE) == 0)
3920		msleep(bp, mtxp, pri, wchan, 0);
3921	mtx_unlock(mtxp);
3922}
3923
3924int
3925bufsync(struct bufobj *bo, int waitfor)
3926{
3927
3928	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3929}
3930
3931void
3932bufstrategy(struct bufobj *bo, struct buf *bp)
3933{
3934	int i = 0;
3935	struct vnode *vp;
3936
3937	vp = bp->b_vp;
3938	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3939	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3940	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3941	i = VOP_STRATEGY(vp, bp);
3942	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3943}
3944
3945void
3946bufobj_wrefl(struct bufobj *bo)
3947{
3948
3949	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3950	ASSERT_BO_LOCKED(bo);
3951	bo->bo_numoutput++;
3952}
3953
3954void
3955bufobj_wref(struct bufobj *bo)
3956{
3957
3958	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3959	BO_LOCK(bo);
3960	bo->bo_numoutput++;
3961	BO_UNLOCK(bo);
3962}
3963
3964void
3965bufobj_wdrop(struct bufobj *bo)
3966{
3967
3968	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3969	BO_LOCK(bo);
3970	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3971	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3972		bo->bo_flag &= ~BO_WWAIT;
3973		wakeup(&bo->bo_numoutput);
3974	}
3975	BO_UNLOCK(bo);
3976}
3977
3978int
3979bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3980{
3981	int error;
3982
3983	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3984	ASSERT_BO_LOCKED(bo);
3985	error = 0;
3986	while (bo->bo_numoutput) {
3987		bo->bo_flag |= BO_WWAIT;
3988		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3989		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3990		if (error)
3991			break;
3992	}
3993	return (error);
3994}
3995
3996void
3997bpin(struct buf *bp)
3998{
3999	struct mtx *mtxp;
4000
4001	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4002	mtx_lock(mtxp);
4003	bp->b_pin_count++;
4004	mtx_unlock(mtxp);
4005}
4006
4007void
4008bunpin(struct buf *bp)
4009{
4010	struct mtx *mtxp;
4011
4012	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4013	mtx_lock(mtxp);
4014	if (--bp->b_pin_count == 0)
4015		wakeup(bp);
4016	mtx_unlock(mtxp);
4017}
4018
4019void
4020bunpin_wait(struct buf *bp)
4021{
4022	struct mtx *mtxp;
4023
4024	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4025	mtx_lock(mtxp);
4026	while (bp->b_pin_count > 0)
4027		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4028	mtx_unlock(mtxp);
4029}
4030
4031#include "opt_ddb.h"
4032#ifdef DDB
4033#include <ddb/ddb.h>
4034
4035/* DDB command to show buffer data */
4036DB_SHOW_COMMAND(buffer, db_show_buffer)
4037{
4038	/* get args */
4039	struct buf *bp = (struct buf *)addr;
4040
4041	if (!have_addr) {
4042		db_printf("usage: show buffer <addr>\n");
4043		return;
4044	}
4045
4046	db_printf("buf at %p\n", bp);
4047	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4048	db_printf(
4049	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4050	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
4051	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4052	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4053	    bp->b_dep.lh_first);
4054	if (bp->b_npages) {
4055		int i;
4056		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4057		for (i = 0; i < bp->b_npages; i++) {
4058			vm_page_t m;
4059			m = bp->b_pages[i];
4060			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4061			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4062			if ((i + 1) < bp->b_npages)
4063				db_printf(",");
4064		}
4065		db_printf("\n");
4066	}
4067	db_printf(" ");
4068	lockmgr_printinfo(&bp->b_lock);
4069}
4070
4071DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4072{
4073	struct buf *bp;
4074	int i;
4075
4076	for (i = 0; i < nbuf; i++) {
4077		bp = &buf[i];
4078		if (BUF_ISLOCKED(bp)) {
4079			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4080			db_printf("\n");
4081		}
4082	}
4083}
4084
4085DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4086{
4087	struct vnode *vp;
4088	struct buf *bp;
4089
4090	if (!have_addr) {
4091		db_printf("usage: show vnodebufs <addr>\n");
4092		return;
4093	}
4094	vp = (struct vnode *)addr;
4095	db_printf("Clean buffers:\n");
4096	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4097		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4098		db_printf("\n");
4099	}
4100	db_printf("Dirty buffers:\n");
4101	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4102		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4103		db_printf("\n");
4104	}
4105}
4106#endif /* DDB */
4107