vfs_bio.c revision 208745
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 208745 2010-06-02 15:46:37Z alc $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/fail.h>
52#include <sys/limits.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mount.h>
56#include <sys/mutex.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/proc.h>
60#include <sys/resourcevar.h>
61#include <sys/sysctl.h>
62#include <sys/vmmeter.h>
63#include <sys/vnode.h>
64#include <geom/geom.h>
65#include <vm/vm.h>
66#include <vm/vm_param.h>
67#include <vm/vm_kern.h>
68#include <vm/vm_pageout.h>
69#include <vm/vm_page.h>
70#include <vm/vm_object.h>
71#include <vm/vm_extern.h>
72#include <vm/vm_map.h>
73#include "opt_compat.h"
74#include "opt_directio.h"
75#include "opt_swap.h"
76
77static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
78
79struct	bio_ops bioops;		/* I/O operation notification */
80
81struct	buf_ops buf_ops_bio = {
82	.bop_name	=	"buf_ops_bio",
83	.bop_write	=	bufwrite,
84	.bop_strategy	=	bufstrategy,
85	.bop_sync	=	bufsync,
86	.bop_bdflush	=	bufbdflush,
87};
88
89/*
90 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
91 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
92 */
93struct buf *buf;		/* buffer header pool */
94
95static struct proc *bufdaemonproc;
96
97static int inmem(struct vnode *vp, daddr_t blkno);
98static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
99		vm_offset_t to);
100static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
101		vm_offset_t to);
102static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
103static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
104		vm_page_t m);
105static void vfs_clean_pages(struct buf *bp);
106static void vfs_setdirty(struct buf *bp);
107static void vfs_setdirty_locked_object(struct buf *bp);
108static void vfs_vmio_release(struct buf *bp);
109static int vfs_bio_clcheck(struct vnode *vp, int size,
110		daddr_t lblkno, daddr_t blkno);
111static int buf_do_flush(struct vnode *vp);
112static int flushbufqueues(struct vnode *, int, int);
113static void buf_daemon(void);
114static void bremfreel(struct buf *bp);
115#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
116    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
117static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
118#endif
119
120int vmiodirenable = TRUE;
121SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
122    "Use the VM system for directory writes");
123long runningbufspace;
124SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
125    "Amount of presently outstanding async buffer io");
126static long bufspace;
127#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
128    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
129SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
130    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
131#else
132SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
133    "Virtual memory used for buffers");
134#endif
135static long maxbufspace;
136SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
137    "Maximum allowed value of bufspace (including buf_daemon)");
138static long bufmallocspace;
139SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
140    "Amount of malloced memory for buffers");
141static long maxbufmallocspace;
142SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
143    "Maximum amount of malloced memory for buffers");
144static long lobufspace;
145SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
146    "Minimum amount of buffers we want to have");
147long hibufspace;
148SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
149    "Maximum allowed value of bufspace (excluding buf_daemon)");
150static int bufreusecnt;
151SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
152    "Number of times we have reused a buffer");
153static int buffreekvacnt;
154SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
155    "Number of times we have freed the KVA space from some buffer");
156static int bufdefragcnt;
157SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
158    "Number of times we have had to repeat buffer allocation to defragment");
159static long lorunningspace;
160SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
161    "Minimum preferred space used for in-progress I/O");
162static long hirunningspace;
163SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
164    "Maximum amount of space to use for in-progress I/O");
165int dirtybufferflushes;
166SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
167    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
168int bdwriteskip;
169SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
170    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
171int altbufferflushes;
172SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
173    0, "Number of fsync flushes to limit dirty buffers");
174static int recursiveflushes;
175SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
176    0, "Number of flushes skipped due to being recursive");
177static int numdirtybuffers;
178SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
179    "Number of buffers that are dirty (has unwritten changes) at the moment");
180static int lodirtybuffers;
181SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
182    "How many buffers we want to have free before bufdaemon can sleep");
183static int hidirtybuffers;
184SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
185    "When the number of dirty buffers is considered severe");
186int dirtybufthresh;
187SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
188    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
189static int numfreebuffers;
190SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
191    "Number of free buffers");
192static int lofreebuffers;
193SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
194   "XXX Unused");
195static int hifreebuffers;
196SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
197   "XXX Complicatedly unused");
198static int getnewbufcalls;
199SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
200   "Number of calls to getnewbuf");
201static int getnewbufrestarts;
202SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
203    "Number of times getnewbuf has had to restart a buffer aquisition");
204static int flushbufqtarget = 100;
205SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
206    "Amount of work to do in flushbufqueues when helping bufdaemon");
207static long notbufdflashes;
208SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
209    "Number of dirty buffer flushes done by the bufdaemon helpers");
210
211/*
212 * Wakeup point for bufdaemon, as well as indicator of whether it is already
213 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
214 * is idling.
215 */
216static int bd_request;
217
218/*
219 * Request for the buf daemon to write more buffers than is indicated by
220 * lodirtybuf.  This may be necessary to push out excess dependencies or
221 * defragment the address space where a simple count of the number of dirty
222 * buffers is insufficient to characterize the demand for flushing them.
223 */
224static int bd_speedupreq;
225
226/*
227 * This lock synchronizes access to bd_request.
228 */
229static struct mtx bdlock;
230
231/*
232 * bogus page -- for I/O to/from partially complete buffers
233 * this is a temporary solution to the problem, but it is not
234 * really that bad.  it would be better to split the buffer
235 * for input in the case of buffers partially already in memory,
236 * but the code is intricate enough already.
237 */
238vm_page_t bogus_page;
239
240/*
241 * Synchronization (sleep/wakeup) variable for active buffer space requests.
242 * Set when wait starts, cleared prior to wakeup().
243 * Used in runningbufwakeup() and waitrunningbufspace().
244 */
245static int runningbufreq;
246
247/*
248 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
249 * waitrunningbufspace().
250 */
251static struct mtx rbreqlock;
252
253/*
254 * Synchronization (sleep/wakeup) variable for buffer requests.
255 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
256 * by and/or.
257 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
258 * getnewbuf(), and getblk().
259 */
260static int needsbuffer;
261
262/*
263 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
264 */
265static struct mtx nblock;
266
267/*
268 * Definitions for the buffer free lists.
269 */
270#define BUFFER_QUEUES	6	/* number of free buffer queues */
271
272#define QUEUE_NONE	0	/* on no queue */
273#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
274#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
275#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
276#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
277#define QUEUE_EMPTY	5	/* empty buffer headers */
278#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
279
280/* Queues for free buffers with various properties */
281static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
282
283/* Lock for the bufqueues */
284static struct mtx bqlock;
285
286/*
287 * Single global constant for BUF_WMESG, to avoid getting multiple references.
288 * buf_wmesg is referred from macros.
289 */
290const char *buf_wmesg = BUF_WMESG;
291
292#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
293#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
294#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
295#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
296
297#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
298    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
299static int
300sysctl_bufspace(SYSCTL_HANDLER_ARGS)
301{
302	long lvalue;
303	int ivalue;
304
305	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
306		return (sysctl_handle_long(oidp, arg1, arg2, req));
307	lvalue = *(long *)arg1;
308	if (lvalue > INT_MAX)
309		/* On overflow, still write out a long to trigger ENOMEM. */
310		return (sysctl_handle_long(oidp, &lvalue, 0, req));
311	ivalue = lvalue;
312	return (sysctl_handle_int(oidp, &ivalue, 0, req));
313}
314#endif
315
316#ifdef DIRECTIO
317extern void ffs_rawread_setup(void);
318#endif /* DIRECTIO */
319/*
320 *	numdirtywakeup:
321 *
322 *	If someone is blocked due to there being too many dirty buffers,
323 *	and numdirtybuffers is now reasonable, wake them up.
324 */
325
326static __inline void
327numdirtywakeup(int level)
328{
329
330	if (numdirtybuffers <= level) {
331		mtx_lock(&nblock);
332		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
333			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
334			wakeup(&needsbuffer);
335		}
336		mtx_unlock(&nblock);
337	}
338}
339
340/*
341 *	bufspacewakeup:
342 *
343 *	Called when buffer space is potentially available for recovery.
344 *	getnewbuf() will block on this flag when it is unable to free
345 *	sufficient buffer space.  Buffer space becomes recoverable when
346 *	bp's get placed back in the queues.
347 */
348
349static __inline void
350bufspacewakeup(void)
351{
352
353	/*
354	 * If someone is waiting for BUF space, wake them up.  Even
355	 * though we haven't freed the kva space yet, the waiting
356	 * process will be able to now.
357	 */
358	mtx_lock(&nblock);
359	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
360		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
361		wakeup(&needsbuffer);
362	}
363	mtx_unlock(&nblock);
364}
365
366/*
367 * runningbufwakeup() - in-progress I/O accounting.
368 *
369 */
370void
371runningbufwakeup(struct buf *bp)
372{
373
374	if (bp->b_runningbufspace) {
375		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
376		bp->b_runningbufspace = 0;
377		mtx_lock(&rbreqlock);
378		if (runningbufreq && runningbufspace <= lorunningspace) {
379			runningbufreq = 0;
380			wakeup(&runningbufreq);
381		}
382		mtx_unlock(&rbreqlock);
383	}
384}
385
386/*
387 *	bufcountwakeup:
388 *
389 *	Called when a buffer has been added to one of the free queues to
390 *	account for the buffer and to wakeup anyone waiting for free buffers.
391 *	This typically occurs when large amounts of metadata are being handled
392 *	by the buffer cache ( else buffer space runs out first, usually ).
393 */
394
395static __inline void
396bufcountwakeup(void)
397{
398
399	atomic_add_int(&numfreebuffers, 1);
400	mtx_lock(&nblock);
401	if (needsbuffer) {
402		needsbuffer &= ~VFS_BIO_NEED_ANY;
403		if (numfreebuffers >= hifreebuffers)
404			needsbuffer &= ~VFS_BIO_NEED_FREE;
405		wakeup(&needsbuffer);
406	}
407	mtx_unlock(&nblock);
408}
409
410/*
411 *	waitrunningbufspace()
412 *
413 *	runningbufspace is a measure of the amount of I/O currently
414 *	running.  This routine is used in async-write situations to
415 *	prevent creating huge backups of pending writes to a device.
416 *	Only asynchronous writes are governed by this function.
417 *
418 *	Reads will adjust runningbufspace, but will not block based on it.
419 *	The read load has a side effect of reducing the allowed write load.
420 *
421 *	This does NOT turn an async write into a sync write.  It waits
422 *	for earlier writes to complete and generally returns before the
423 *	caller's write has reached the device.
424 */
425void
426waitrunningbufspace(void)
427{
428
429	mtx_lock(&rbreqlock);
430	while (runningbufspace > hirunningspace) {
431		++runningbufreq;
432		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
433	}
434	mtx_unlock(&rbreqlock);
435}
436
437
438/*
439 *	vfs_buf_test_cache:
440 *
441 *	Called when a buffer is extended.  This function clears the B_CACHE
442 *	bit if the newly extended portion of the buffer does not contain
443 *	valid data.
444 */
445static __inline
446void
447vfs_buf_test_cache(struct buf *bp,
448		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
449		  vm_page_t m)
450{
451
452	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
453	if (bp->b_flags & B_CACHE) {
454		int base = (foff + off) & PAGE_MASK;
455		if (vm_page_is_valid(m, base, size) == 0)
456			bp->b_flags &= ~B_CACHE;
457	}
458}
459
460/* Wake up the buffer daemon if necessary */
461static __inline
462void
463bd_wakeup(int dirtybuflevel)
464{
465
466	mtx_lock(&bdlock);
467	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
468		bd_request = 1;
469		wakeup(&bd_request);
470	}
471	mtx_unlock(&bdlock);
472}
473
474/*
475 * bd_speedup - speedup the buffer cache flushing code
476 */
477
478void
479bd_speedup(void)
480{
481	int needwake;
482
483	mtx_lock(&bdlock);
484	needwake = 0;
485	if (bd_speedupreq == 0 || bd_request == 0)
486		needwake = 1;
487	bd_speedupreq = 1;
488	bd_request = 1;
489	if (needwake)
490		wakeup(&bd_request);
491	mtx_unlock(&bdlock);
492}
493
494/*
495 * Calculating buffer cache scaling values and reserve space for buffer
496 * headers.  This is called during low level kernel initialization and
497 * may be called more then once.  We CANNOT write to the memory area
498 * being reserved at this time.
499 */
500caddr_t
501kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
502{
503	int tuned_nbuf;
504	long maxbuf;
505
506	/*
507	 * physmem_est is in pages.  Convert it to kilobytes (assumes
508	 * PAGE_SIZE is >= 1K)
509	 */
510	physmem_est = physmem_est * (PAGE_SIZE / 1024);
511
512	/*
513	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
514	 * For the first 64MB of ram nominally allocate sufficient buffers to
515	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
516	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
517	 * the buffer cache we limit the eventual kva reservation to
518	 * maxbcache bytes.
519	 *
520	 * factor represents the 1/4 x ram conversion.
521	 */
522	if (nbuf == 0) {
523		int factor = 4 * BKVASIZE / 1024;
524
525		nbuf = 50;
526		if (physmem_est > 4096)
527			nbuf += min((physmem_est - 4096) / factor,
528			    65536 / factor);
529		if (physmem_est > 65536)
530			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
531
532		if (maxbcache && nbuf > maxbcache / BKVASIZE)
533			nbuf = maxbcache / BKVASIZE;
534		tuned_nbuf = 1;
535	} else
536		tuned_nbuf = 0;
537
538	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
539	maxbuf = (LONG_MAX / 3) / BKVASIZE;
540	if (nbuf > maxbuf) {
541		if (!tuned_nbuf)
542			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
543			    maxbuf);
544		nbuf = maxbuf;
545	}
546
547	/*
548	 * swbufs are used as temporary holders for I/O, such as paging I/O.
549	 * We have no less then 16 and no more then 256.
550	 */
551	nswbuf = max(min(nbuf/4, 256), 16);
552#ifdef NSWBUF_MIN
553	if (nswbuf < NSWBUF_MIN)
554		nswbuf = NSWBUF_MIN;
555#endif
556#ifdef DIRECTIO
557	ffs_rawread_setup();
558#endif
559
560	/*
561	 * Reserve space for the buffer cache buffers
562	 */
563	swbuf = (void *)v;
564	v = (caddr_t)(swbuf + nswbuf);
565	buf = (void *)v;
566	v = (caddr_t)(buf + nbuf);
567
568	return(v);
569}
570
571/* Initialize the buffer subsystem.  Called before use of any buffers. */
572void
573bufinit(void)
574{
575	struct buf *bp;
576	int i;
577
578	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
579	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
580	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
581	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
582
583	/* next, make a null set of free lists */
584	for (i = 0; i < BUFFER_QUEUES; i++)
585		TAILQ_INIT(&bufqueues[i]);
586
587	/* finally, initialize each buffer header and stick on empty q */
588	for (i = 0; i < nbuf; i++) {
589		bp = &buf[i];
590		bzero(bp, sizeof *bp);
591		bp->b_flags = B_INVAL;	/* we're just an empty header */
592		bp->b_rcred = NOCRED;
593		bp->b_wcred = NOCRED;
594		bp->b_qindex = QUEUE_EMPTY;
595		bp->b_vflags = 0;
596		bp->b_xflags = 0;
597		LIST_INIT(&bp->b_dep);
598		BUF_LOCKINIT(bp);
599		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
600	}
601
602	/*
603	 * maxbufspace is the absolute maximum amount of buffer space we are
604	 * allowed to reserve in KVM and in real terms.  The absolute maximum
605	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
606	 * used by most other processes.  The differential is required to
607	 * ensure that buf_daemon is able to run when other processes might
608	 * be blocked waiting for buffer space.
609	 *
610	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
611	 * this may result in KVM fragmentation which is not handled optimally
612	 * by the system.
613	 */
614	maxbufspace = (long)nbuf * BKVASIZE;
615	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
616	lobufspace = hibufspace - MAXBSIZE;
617
618	lorunningspace = 512 * 1024;
619	hirunningspace = 1024 * 1024;
620
621/*
622 * Limit the amount of malloc memory since it is wired permanently into
623 * the kernel space.  Even though this is accounted for in the buffer
624 * allocation, we don't want the malloced region to grow uncontrolled.
625 * The malloc scheme improves memory utilization significantly on average
626 * (small) directories.
627 */
628	maxbufmallocspace = hibufspace / 20;
629
630/*
631 * Reduce the chance of a deadlock occuring by limiting the number
632 * of delayed-write dirty buffers we allow to stack up.
633 */
634	hidirtybuffers = nbuf / 4 + 20;
635	dirtybufthresh = hidirtybuffers * 9 / 10;
636	numdirtybuffers = 0;
637/*
638 * To support extreme low-memory systems, make sure hidirtybuffers cannot
639 * eat up all available buffer space.  This occurs when our minimum cannot
640 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
641 * BKVASIZE'd (8K) buffers.
642 */
643	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
644		hidirtybuffers >>= 1;
645	}
646	lodirtybuffers = hidirtybuffers / 2;
647
648/*
649 * Try to keep the number of free buffers in the specified range,
650 * and give special processes (e.g. like buf_daemon) access to an
651 * emergency reserve.
652 */
653	lofreebuffers = nbuf / 18 + 5;
654	hifreebuffers = 2 * lofreebuffers;
655	numfreebuffers = nbuf;
656
657	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
658	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
659}
660
661/*
662 * bfreekva() - free the kva allocation for a buffer.
663 *
664 *	Since this call frees up buffer space, we call bufspacewakeup().
665 */
666static void
667bfreekva(struct buf *bp)
668{
669
670	if (bp->b_kvasize) {
671		atomic_add_int(&buffreekvacnt, 1);
672		atomic_subtract_long(&bufspace, bp->b_kvasize);
673		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
674		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
675		bp->b_kvasize = 0;
676		bufspacewakeup();
677	}
678}
679
680/*
681 *	bremfree:
682 *
683 *	Mark the buffer for removal from the appropriate free list in brelse.
684 *
685 */
686void
687bremfree(struct buf *bp)
688{
689
690	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
691	KASSERT((bp->b_flags & B_REMFREE) == 0,
692	    ("bremfree: buffer %p already marked for delayed removal.", bp));
693	KASSERT(bp->b_qindex != QUEUE_NONE,
694	    ("bremfree: buffer %p not on a queue.", bp));
695	BUF_ASSERT_HELD(bp);
696
697	bp->b_flags |= B_REMFREE;
698	/* Fixup numfreebuffers count.  */
699	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
700		atomic_subtract_int(&numfreebuffers, 1);
701}
702
703/*
704 *	bremfreef:
705 *
706 *	Force an immediate removal from a free list.  Used only in nfs when
707 *	it abuses the b_freelist pointer.
708 */
709void
710bremfreef(struct buf *bp)
711{
712	mtx_lock(&bqlock);
713	bremfreel(bp);
714	mtx_unlock(&bqlock);
715}
716
717/*
718 *	bremfreel:
719 *
720 *	Removes a buffer from the free list, must be called with the
721 *	bqlock held.
722 */
723static void
724bremfreel(struct buf *bp)
725{
726	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
727	    bp, bp->b_vp, bp->b_flags);
728	KASSERT(bp->b_qindex != QUEUE_NONE,
729	    ("bremfreel: buffer %p not on a queue.", bp));
730	BUF_ASSERT_HELD(bp);
731	mtx_assert(&bqlock, MA_OWNED);
732
733	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
734	bp->b_qindex = QUEUE_NONE;
735	/*
736	 * If this was a delayed bremfree() we only need to remove the buffer
737	 * from the queue and return the stats are already done.
738	 */
739	if (bp->b_flags & B_REMFREE) {
740		bp->b_flags &= ~B_REMFREE;
741		return;
742	}
743	/*
744	 * Fixup numfreebuffers count.  If the buffer is invalid or not
745	 * delayed-write, the buffer was free and we must decrement
746	 * numfreebuffers.
747	 */
748	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
749		atomic_subtract_int(&numfreebuffers, 1);
750}
751
752
753/*
754 * Get a buffer with the specified data.  Look in the cache first.  We
755 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
756 * is set, the buffer is valid and we do not have to do anything ( see
757 * getblk() ).  This is really just a special case of breadn().
758 */
759int
760bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
761    struct buf **bpp)
762{
763
764	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
765}
766
767/*
768 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
769 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
770 * the buffer is valid and we do not have to do anything.
771 */
772void
773breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
774    int cnt, struct ucred * cred)
775{
776	struct buf *rabp;
777	int i;
778
779	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
780		if (inmem(vp, *rablkno))
781			continue;
782		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
783
784		if ((rabp->b_flags & B_CACHE) == 0) {
785			if (!TD_IS_IDLETHREAD(curthread))
786				curthread->td_ru.ru_inblock++;
787			rabp->b_flags |= B_ASYNC;
788			rabp->b_flags &= ~B_INVAL;
789			rabp->b_ioflags &= ~BIO_ERROR;
790			rabp->b_iocmd = BIO_READ;
791			if (rabp->b_rcred == NOCRED && cred != NOCRED)
792				rabp->b_rcred = crhold(cred);
793			vfs_busy_pages(rabp, 0);
794			BUF_KERNPROC(rabp);
795			rabp->b_iooffset = dbtob(rabp->b_blkno);
796			bstrategy(rabp);
797		} else {
798			brelse(rabp);
799		}
800	}
801}
802
803/*
804 * Operates like bread, but also starts asynchronous I/O on
805 * read-ahead blocks.
806 */
807int
808breadn(struct vnode * vp, daddr_t blkno, int size,
809    daddr_t * rablkno, int *rabsize,
810    int cnt, struct ucred * cred, struct buf **bpp)
811{
812	struct buf *bp;
813	int rv = 0, readwait = 0;
814
815	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
816	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
817
818	/* if not found in cache, do some I/O */
819	if ((bp->b_flags & B_CACHE) == 0) {
820		if (!TD_IS_IDLETHREAD(curthread))
821			curthread->td_ru.ru_inblock++;
822		bp->b_iocmd = BIO_READ;
823		bp->b_flags &= ~B_INVAL;
824		bp->b_ioflags &= ~BIO_ERROR;
825		if (bp->b_rcred == NOCRED && cred != NOCRED)
826			bp->b_rcred = crhold(cred);
827		vfs_busy_pages(bp, 0);
828		bp->b_iooffset = dbtob(bp->b_blkno);
829		bstrategy(bp);
830		++readwait;
831	}
832
833	breada(vp, rablkno, rabsize, cnt, cred);
834
835	if (readwait) {
836		rv = bufwait(bp);
837	}
838	return (rv);
839}
840
841/*
842 * Write, release buffer on completion.  (Done by iodone
843 * if async).  Do not bother writing anything if the buffer
844 * is invalid.
845 *
846 * Note that we set B_CACHE here, indicating that buffer is
847 * fully valid and thus cacheable.  This is true even of NFS
848 * now so we set it generally.  This could be set either here
849 * or in biodone() since the I/O is synchronous.  We put it
850 * here.
851 */
852int
853bufwrite(struct buf *bp)
854{
855	int oldflags;
856	struct vnode *vp;
857	int vp_md;
858
859	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
860	if (bp->b_flags & B_INVAL) {
861		brelse(bp);
862		return (0);
863	}
864
865	oldflags = bp->b_flags;
866
867	BUF_ASSERT_HELD(bp);
868
869	if (bp->b_pin_count > 0)
870		bunpin_wait(bp);
871
872	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
873	    ("FFS background buffer should not get here %p", bp));
874
875	vp = bp->b_vp;
876	if (vp)
877		vp_md = vp->v_vflag & VV_MD;
878	else
879		vp_md = 0;
880
881	/* Mark the buffer clean */
882	bundirty(bp);
883
884	bp->b_flags &= ~B_DONE;
885	bp->b_ioflags &= ~BIO_ERROR;
886	bp->b_flags |= B_CACHE;
887	bp->b_iocmd = BIO_WRITE;
888
889	bufobj_wref(bp->b_bufobj);
890	vfs_busy_pages(bp, 1);
891
892	/*
893	 * Normal bwrites pipeline writes
894	 */
895	bp->b_runningbufspace = bp->b_bufsize;
896	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
897
898	if (!TD_IS_IDLETHREAD(curthread))
899		curthread->td_ru.ru_oublock++;
900	if (oldflags & B_ASYNC)
901		BUF_KERNPROC(bp);
902	bp->b_iooffset = dbtob(bp->b_blkno);
903	bstrategy(bp);
904
905	if ((oldflags & B_ASYNC) == 0) {
906		int rtval = bufwait(bp);
907		brelse(bp);
908		return (rtval);
909	} else {
910		/*
911		 * don't allow the async write to saturate the I/O
912		 * system.  We will not deadlock here because
913		 * we are blocking waiting for I/O that is already in-progress
914		 * to complete. We do not block here if it is the update
915		 * or syncer daemon trying to clean up as that can lead
916		 * to deadlock.
917		 */
918		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
919			waitrunningbufspace();
920	}
921
922	return (0);
923}
924
925void
926bufbdflush(struct bufobj *bo, struct buf *bp)
927{
928	struct buf *nbp;
929
930	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
931		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
932		altbufferflushes++;
933	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
934		BO_LOCK(bo);
935		/*
936		 * Try to find a buffer to flush.
937		 */
938		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
939			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
940			    BUF_LOCK(nbp,
941				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
942				continue;
943			if (bp == nbp)
944				panic("bdwrite: found ourselves");
945			BO_UNLOCK(bo);
946			/* Don't countdeps with the bo lock held. */
947			if (buf_countdeps(nbp, 0)) {
948				BO_LOCK(bo);
949				BUF_UNLOCK(nbp);
950				continue;
951			}
952			if (nbp->b_flags & B_CLUSTEROK) {
953				vfs_bio_awrite(nbp);
954			} else {
955				bremfree(nbp);
956				bawrite(nbp);
957			}
958			dirtybufferflushes++;
959			break;
960		}
961		if (nbp == NULL)
962			BO_UNLOCK(bo);
963	}
964}
965
966/*
967 * Delayed write. (Buffer is marked dirty).  Do not bother writing
968 * anything if the buffer is marked invalid.
969 *
970 * Note that since the buffer must be completely valid, we can safely
971 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
972 * biodone() in order to prevent getblk from writing the buffer
973 * out synchronously.
974 */
975void
976bdwrite(struct buf *bp)
977{
978	struct thread *td = curthread;
979	struct vnode *vp;
980	struct bufobj *bo;
981
982	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
983	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
984	BUF_ASSERT_HELD(bp);
985
986	if (bp->b_flags & B_INVAL) {
987		brelse(bp);
988		return;
989	}
990
991	/*
992	 * If we have too many dirty buffers, don't create any more.
993	 * If we are wildly over our limit, then force a complete
994	 * cleanup. Otherwise, just keep the situation from getting
995	 * out of control. Note that we have to avoid a recursive
996	 * disaster and not try to clean up after our own cleanup!
997	 */
998	vp = bp->b_vp;
999	bo = bp->b_bufobj;
1000	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
1001		td->td_pflags |= TDP_INBDFLUSH;
1002		BO_BDFLUSH(bo, bp);
1003		td->td_pflags &= ~TDP_INBDFLUSH;
1004	} else
1005		recursiveflushes++;
1006
1007	bdirty(bp);
1008	/*
1009	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1010	 * true even of NFS now.
1011	 */
1012	bp->b_flags |= B_CACHE;
1013
1014	/*
1015	 * This bmap keeps the system from needing to do the bmap later,
1016	 * perhaps when the system is attempting to do a sync.  Since it
1017	 * is likely that the indirect block -- or whatever other datastructure
1018	 * that the filesystem needs is still in memory now, it is a good
1019	 * thing to do this.  Note also, that if the pageout daemon is
1020	 * requesting a sync -- there might not be enough memory to do
1021	 * the bmap then...  So, this is important to do.
1022	 */
1023	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1024		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1025	}
1026
1027	/*
1028	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1029	 */
1030	vfs_setdirty(bp);
1031
1032	/*
1033	 * We need to do this here to satisfy the vnode_pager and the
1034	 * pageout daemon, so that it thinks that the pages have been
1035	 * "cleaned".  Note that since the pages are in a delayed write
1036	 * buffer -- the VFS layer "will" see that the pages get written
1037	 * out on the next sync, or perhaps the cluster will be completed.
1038	 */
1039	vfs_clean_pages(bp);
1040	bqrelse(bp);
1041
1042	/*
1043	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1044	 * buffers (midpoint between our recovery point and our stall
1045	 * point).
1046	 */
1047	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1048
1049	/*
1050	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1051	 * due to the softdep code.
1052	 */
1053}
1054
1055/*
1056 *	bdirty:
1057 *
1058 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1059 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1060 *	itself to properly update it in the dirty/clean lists.  We mark it
1061 *	B_DONE to ensure that any asynchronization of the buffer properly
1062 *	clears B_DONE ( else a panic will occur later ).
1063 *
1064 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1065 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1066 *	should only be called if the buffer is known-good.
1067 *
1068 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1069 *	count.
1070 *
1071 *	The buffer must be on QUEUE_NONE.
1072 */
1073void
1074bdirty(struct buf *bp)
1075{
1076
1077	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1078	    bp, bp->b_vp, bp->b_flags);
1079	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1080	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1081	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1082	BUF_ASSERT_HELD(bp);
1083	bp->b_flags &= ~(B_RELBUF);
1084	bp->b_iocmd = BIO_WRITE;
1085
1086	if ((bp->b_flags & B_DELWRI) == 0) {
1087		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1088		reassignbuf(bp);
1089		atomic_add_int(&numdirtybuffers, 1);
1090		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1091	}
1092}
1093
1094/*
1095 *	bundirty:
1096 *
1097 *	Clear B_DELWRI for buffer.
1098 *
1099 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1100 *	count.
1101 *
1102 *	The buffer must be on QUEUE_NONE.
1103 */
1104
1105void
1106bundirty(struct buf *bp)
1107{
1108
1109	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1110	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1111	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1112	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1113	BUF_ASSERT_HELD(bp);
1114
1115	if (bp->b_flags & B_DELWRI) {
1116		bp->b_flags &= ~B_DELWRI;
1117		reassignbuf(bp);
1118		atomic_subtract_int(&numdirtybuffers, 1);
1119		numdirtywakeup(lodirtybuffers);
1120	}
1121	/*
1122	 * Since it is now being written, we can clear its deferred write flag.
1123	 */
1124	bp->b_flags &= ~B_DEFERRED;
1125}
1126
1127/*
1128 *	bawrite:
1129 *
1130 *	Asynchronous write.  Start output on a buffer, but do not wait for
1131 *	it to complete.  The buffer is released when the output completes.
1132 *
1133 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1134 *	B_INVAL buffers.  Not us.
1135 */
1136void
1137bawrite(struct buf *bp)
1138{
1139
1140	bp->b_flags |= B_ASYNC;
1141	(void) bwrite(bp);
1142}
1143
1144/*
1145 *	bwillwrite:
1146 *
1147 *	Called prior to the locking of any vnodes when we are expecting to
1148 *	write.  We do not want to starve the buffer cache with too many
1149 *	dirty buffers so we block here.  By blocking prior to the locking
1150 *	of any vnodes we attempt to avoid the situation where a locked vnode
1151 *	prevents the various system daemons from flushing related buffers.
1152 */
1153
1154void
1155bwillwrite(void)
1156{
1157
1158	if (numdirtybuffers >= hidirtybuffers) {
1159		mtx_lock(&nblock);
1160		while (numdirtybuffers >= hidirtybuffers) {
1161			bd_wakeup(1);
1162			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1163			msleep(&needsbuffer, &nblock,
1164			    (PRIBIO + 4), "flswai", 0);
1165		}
1166		mtx_unlock(&nblock);
1167	}
1168}
1169
1170/*
1171 * Return true if we have too many dirty buffers.
1172 */
1173int
1174buf_dirty_count_severe(void)
1175{
1176
1177	return(numdirtybuffers >= hidirtybuffers);
1178}
1179
1180static __noinline int
1181buf_vm_page_count_severe(void)
1182{
1183
1184	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1185
1186	return vm_page_count_severe();
1187}
1188
1189/*
1190 *	brelse:
1191 *
1192 *	Release a busy buffer and, if requested, free its resources.  The
1193 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1194 *	to be accessed later as a cache entity or reused for other purposes.
1195 */
1196void
1197brelse(struct buf *bp)
1198{
1199	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1200	    bp, bp->b_vp, bp->b_flags);
1201	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1202	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1203
1204	if (bp->b_flags & B_MANAGED) {
1205		bqrelse(bp);
1206		return;
1207	}
1208
1209	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1210	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1211		/*
1212		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1213		 * pages from being scrapped.  If the error is anything
1214		 * other than an I/O error (EIO), assume that retrying
1215		 * is futile.
1216		 */
1217		bp->b_ioflags &= ~BIO_ERROR;
1218		bdirty(bp);
1219	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1220	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1221		/*
1222		 * Either a failed I/O or we were asked to free or not
1223		 * cache the buffer.
1224		 */
1225		bp->b_flags |= B_INVAL;
1226		if (!LIST_EMPTY(&bp->b_dep))
1227			buf_deallocate(bp);
1228		if (bp->b_flags & B_DELWRI) {
1229			atomic_subtract_int(&numdirtybuffers, 1);
1230			numdirtywakeup(lodirtybuffers);
1231		}
1232		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1233		if ((bp->b_flags & B_VMIO) == 0) {
1234			if (bp->b_bufsize)
1235				allocbuf(bp, 0);
1236			if (bp->b_vp)
1237				brelvp(bp);
1238		}
1239	}
1240
1241	/*
1242	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1243	 * is called with B_DELWRI set, the underlying pages may wind up
1244	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1245	 * because pages associated with a B_DELWRI bp are marked clean.
1246	 *
1247	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1248	 * if B_DELWRI is set.
1249	 *
1250	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1251	 * on pages to return pages to the VM page queues.
1252	 */
1253	if (bp->b_flags & B_DELWRI)
1254		bp->b_flags &= ~B_RELBUF;
1255	else if (buf_vm_page_count_severe()) {
1256		/*
1257		 * The locking of the BO_LOCK is not necessary since
1258		 * BKGRDINPROG cannot be set while we hold the buf
1259		 * lock, it can only be cleared if it is already
1260		 * pending.
1261		 */
1262		if (bp->b_vp) {
1263			if (!(bp->b_vflags & BV_BKGRDINPROG))
1264				bp->b_flags |= B_RELBUF;
1265		} else
1266			bp->b_flags |= B_RELBUF;
1267	}
1268
1269	/*
1270	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1271	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1272	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1273	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1274	 *
1275	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1276	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1277	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1278	 *
1279	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1280	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1281	 * the commit state and we cannot afford to lose the buffer. If the
1282	 * buffer has a background write in progress, we need to keep it
1283	 * around to prevent it from being reconstituted and starting a second
1284	 * background write.
1285	 */
1286	if ((bp->b_flags & B_VMIO)
1287	    && !(bp->b_vp->v_mount != NULL &&
1288		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1289		 !vn_isdisk(bp->b_vp, NULL) &&
1290		 (bp->b_flags & B_DELWRI))
1291	    ) {
1292
1293		int i, j, resid;
1294		vm_page_t m;
1295		off_t foff;
1296		vm_pindex_t poff;
1297		vm_object_t obj;
1298
1299		obj = bp->b_bufobj->bo_object;
1300
1301		/*
1302		 * Get the base offset and length of the buffer.  Note that
1303		 * in the VMIO case if the buffer block size is not
1304		 * page-aligned then b_data pointer may not be page-aligned.
1305		 * But our b_pages[] array *IS* page aligned.
1306		 *
1307		 * block sizes less then DEV_BSIZE (usually 512) are not
1308		 * supported due to the page granularity bits (m->valid,
1309		 * m->dirty, etc...).
1310		 *
1311		 * See man buf(9) for more information
1312		 */
1313		resid = bp->b_bufsize;
1314		foff = bp->b_offset;
1315		VM_OBJECT_LOCK(obj);
1316		for (i = 0; i < bp->b_npages; i++) {
1317			int had_bogus = 0;
1318
1319			m = bp->b_pages[i];
1320
1321			/*
1322			 * If we hit a bogus page, fixup *all* the bogus pages
1323			 * now.
1324			 */
1325			if (m == bogus_page) {
1326				poff = OFF_TO_IDX(bp->b_offset);
1327				had_bogus = 1;
1328
1329				for (j = i; j < bp->b_npages; j++) {
1330					vm_page_t mtmp;
1331					mtmp = bp->b_pages[j];
1332					if (mtmp == bogus_page) {
1333						mtmp = vm_page_lookup(obj, poff + j);
1334						if (!mtmp) {
1335							panic("brelse: page missing\n");
1336						}
1337						bp->b_pages[j] = mtmp;
1338					}
1339				}
1340
1341				if ((bp->b_flags & B_INVAL) == 0) {
1342					pmap_qenter(
1343					    trunc_page((vm_offset_t)bp->b_data),
1344					    bp->b_pages, bp->b_npages);
1345				}
1346				m = bp->b_pages[i];
1347			}
1348			if ((bp->b_flags & B_NOCACHE) ||
1349			    (bp->b_ioflags & BIO_ERROR &&
1350			     bp->b_iocmd == BIO_READ)) {
1351				int poffset = foff & PAGE_MASK;
1352				int presid = resid > (PAGE_SIZE - poffset) ?
1353					(PAGE_SIZE - poffset) : resid;
1354
1355				KASSERT(presid >= 0, ("brelse: extra page"));
1356				vm_page_set_invalid(m, poffset, presid);
1357				if (had_bogus)
1358					printf("avoided corruption bug in bogus_page/brelse code\n");
1359			}
1360			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1361			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1362		}
1363		VM_OBJECT_UNLOCK(obj);
1364		if (bp->b_flags & (B_INVAL | B_RELBUF))
1365			vfs_vmio_release(bp);
1366
1367	} else if (bp->b_flags & B_VMIO) {
1368
1369		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1370			vfs_vmio_release(bp);
1371		}
1372
1373	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1374		if (bp->b_bufsize != 0)
1375			allocbuf(bp, 0);
1376		if (bp->b_vp != NULL)
1377			brelvp(bp);
1378	}
1379
1380	if (BUF_LOCKRECURSED(bp)) {
1381		/* do not release to free list */
1382		BUF_UNLOCK(bp);
1383		return;
1384	}
1385
1386	/* enqueue */
1387	mtx_lock(&bqlock);
1388	/* Handle delayed bremfree() processing. */
1389	if (bp->b_flags & B_REMFREE)
1390		bremfreel(bp);
1391	if (bp->b_qindex != QUEUE_NONE)
1392		panic("brelse: free buffer onto another queue???");
1393
1394	/*
1395	 * If the buffer has junk contents signal it and eventually
1396	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1397	 * doesn't find it.
1398	 */
1399	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1400	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1401		bp->b_flags |= B_INVAL;
1402	if (bp->b_flags & B_INVAL) {
1403		if (bp->b_flags & B_DELWRI)
1404			bundirty(bp);
1405		if (bp->b_vp)
1406			brelvp(bp);
1407	}
1408
1409	/* buffers with no memory */
1410	if (bp->b_bufsize == 0) {
1411		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1412		if (bp->b_vflags & BV_BKGRDINPROG)
1413			panic("losing buffer 1");
1414		if (bp->b_kvasize) {
1415			bp->b_qindex = QUEUE_EMPTYKVA;
1416		} else {
1417			bp->b_qindex = QUEUE_EMPTY;
1418		}
1419		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1420	/* buffers with junk contents */
1421	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1422	    (bp->b_ioflags & BIO_ERROR)) {
1423		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1424		if (bp->b_vflags & BV_BKGRDINPROG)
1425			panic("losing buffer 2");
1426		bp->b_qindex = QUEUE_CLEAN;
1427		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1428	/* remaining buffers */
1429	} else {
1430		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1431		    (B_DELWRI|B_NEEDSGIANT))
1432			bp->b_qindex = QUEUE_DIRTY_GIANT;
1433		else if (bp->b_flags & B_DELWRI)
1434			bp->b_qindex = QUEUE_DIRTY;
1435		else
1436			bp->b_qindex = QUEUE_CLEAN;
1437		if (bp->b_flags & B_AGE)
1438			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1439		else
1440			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1441	}
1442	mtx_unlock(&bqlock);
1443
1444	/*
1445	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1446	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1447	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1448	 * if B_INVAL is set ).
1449	 */
1450
1451	if (!(bp->b_flags & B_DELWRI))
1452		bufcountwakeup();
1453
1454	/*
1455	 * Something we can maybe free or reuse
1456	 */
1457	if (bp->b_bufsize || bp->b_kvasize)
1458		bufspacewakeup();
1459
1460	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1461	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1462		panic("brelse: not dirty");
1463	/* unlock */
1464	BUF_UNLOCK(bp);
1465}
1466
1467/*
1468 * Release a buffer back to the appropriate queue but do not try to free
1469 * it.  The buffer is expected to be used again soon.
1470 *
1471 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1472 * biodone() to requeue an async I/O on completion.  It is also used when
1473 * known good buffers need to be requeued but we think we may need the data
1474 * again soon.
1475 *
1476 * XXX we should be able to leave the B_RELBUF hint set on completion.
1477 */
1478void
1479bqrelse(struct buf *bp)
1480{
1481	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1482	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1483	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1484
1485	if (BUF_LOCKRECURSED(bp)) {
1486		/* do not release to free list */
1487		BUF_UNLOCK(bp);
1488		return;
1489	}
1490
1491	if (bp->b_flags & B_MANAGED) {
1492		if (bp->b_flags & B_REMFREE) {
1493			mtx_lock(&bqlock);
1494			bremfreel(bp);
1495			mtx_unlock(&bqlock);
1496		}
1497		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1498		BUF_UNLOCK(bp);
1499		return;
1500	}
1501
1502	mtx_lock(&bqlock);
1503	/* Handle delayed bremfree() processing. */
1504	if (bp->b_flags & B_REMFREE)
1505		bremfreel(bp);
1506	if (bp->b_qindex != QUEUE_NONE)
1507		panic("bqrelse: free buffer onto another queue???");
1508	/* buffers with stale but valid contents */
1509	if (bp->b_flags & B_DELWRI) {
1510		if (bp->b_flags & B_NEEDSGIANT)
1511			bp->b_qindex = QUEUE_DIRTY_GIANT;
1512		else
1513			bp->b_qindex = QUEUE_DIRTY;
1514		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1515	} else {
1516		/*
1517		 * The locking of the BO_LOCK for checking of the
1518		 * BV_BKGRDINPROG is not necessary since the
1519		 * BV_BKGRDINPROG cannot be set while we hold the buf
1520		 * lock, it can only be cleared if it is already
1521		 * pending.
1522		 */
1523		if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1524			bp->b_qindex = QUEUE_CLEAN;
1525			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1526			    b_freelist);
1527		} else {
1528			/*
1529			 * We are too low on memory, we have to try to free
1530			 * the buffer (most importantly: the wired pages
1531			 * making up its backing store) *now*.
1532			 */
1533			mtx_unlock(&bqlock);
1534			brelse(bp);
1535			return;
1536		}
1537	}
1538	mtx_unlock(&bqlock);
1539
1540	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1541		bufcountwakeup();
1542
1543	/*
1544	 * Something we can maybe free or reuse.
1545	 */
1546	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1547		bufspacewakeup();
1548
1549	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1550	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1551		panic("bqrelse: not dirty");
1552	/* unlock */
1553	BUF_UNLOCK(bp);
1554}
1555
1556/* Give pages used by the bp back to the VM system (where possible) */
1557static void
1558vfs_vmio_release(struct buf *bp)
1559{
1560	int i;
1561	vm_page_t m;
1562
1563	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1564	for (i = 0; i < bp->b_npages; i++) {
1565		m = bp->b_pages[i];
1566		bp->b_pages[i] = NULL;
1567		/*
1568		 * In order to keep page LRU ordering consistent, put
1569		 * everything on the inactive queue.
1570		 */
1571		vm_page_lock(m);
1572		vm_page_unwire(m, 0);
1573		/*
1574		 * We don't mess with busy pages, it is
1575		 * the responsibility of the process that
1576		 * busied the pages to deal with them.
1577		 */
1578		if ((m->oflags & VPO_BUSY) == 0 && m->busy == 0 &&
1579		    m->wire_count == 0) {
1580			/*
1581			 * Might as well free the page if we can and it has
1582			 * no valid data.  We also free the page if the
1583			 * buffer was used for direct I/O
1584			 */
1585			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1586			    m->hold_count == 0) {
1587				vm_page_free(m);
1588			} else if (bp->b_flags & B_DIRECT) {
1589				vm_page_try_to_free(m);
1590			} else if (buf_vm_page_count_severe()) {
1591				vm_page_try_to_cache(m);
1592			}
1593		}
1594		vm_page_unlock(m);
1595	}
1596	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1597	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1598
1599	if (bp->b_bufsize) {
1600		bufspacewakeup();
1601		bp->b_bufsize = 0;
1602	}
1603	bp->b_npages = 0;
1604	bp->b_flags &= ~B_VMIO;
1605	if (bp->b_vp)
1606		brelvp(bp);
1607}
1608
1609/*
1610 * Check to see if a block at a particular lbn is available for a clustered
1611 * write.
1612 */
1613static int
1614vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1615{
1616	struct buf *bpa;
1617	int match;
1618
1619	match = 0;
1620
1621	/* If the buf isn't in core skip it */
1622	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1623		return (0);
1624
1625	/* If the buf is busy we don't want to wait for it */
1626	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1627		return (0);
1628
1629	/* Only cluster with valid clusterable delayed write buffers */
1630	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1631	    (B_DELWRI | B_CLUSTEROK))
1632		goto done;
1633
1634	if (bpa->b_bufsize != size)
1635		goto done;
1636
1637	/*
1638	 * Check to see if it is in the expected place on disk and that the
1639	 * block has been mapped.
1640	 */
1641	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1642		match = 1;
1643done:
1644	BUF_UNLOCK(bpa);
1645	return (match);
1646}
1647
1648/*
1649 *	vfs_bio_awrite:
1650 *
1651 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1652 *	This is much better then the old way of writing only one buffer at
1653 *	a time.  Note that we may not be presented with the buffers in the
1654 *	correct order, so we search for the cluster in both directions.
1655 */
1656int
1657vfs_bio_awrite(struct buf *bp)
1658{
1659	struct bufobj *bo;
1660	int i;
1661	int j;
1662	daddr_t lblkno = bp->b_lblkno;
1663	struct vnode *vp = bp->b_vp;
1664	int ncl;
1665	int nwritten;
1666	int size;
1667	int maxcl;
1668
1669	bo = &vp->v_bufobj;
1670	/*
1671	 * right now we support clustered writing only to regular files.  If
1672	 * we find a clusterable block we could be in the middle of a cluster
1673	 * rather then at the beginning.
1674	 */
1675	if ((vp->v_type == VREG) &&
1676	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1677	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1678
1679		size = vp->v_mount->mnt_stat.f_iosize;
1680		maxcl = MAXPHYS / size;
1681
1682		BO_LOCK(bo);
1683		for (i = 1; i < maxcl; i++)
1684			if (vfs_bio_clcheck(vp, size, lblkno + i,
1685			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1686				break;
1687
1688		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1689			if (vfs_bio_clcheck(vp, size, lblkno - j,
1690			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1691				break;
1692		BO_UNLOCK(bo);
1693		--j;
1694		ncl = i + j;
1695		/*
1696		 * this is a possible cluster write
1697		 */
1698		if (ncl != 1) {
1699			BUF_UNLOCK(bp);
1700			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1701			return nwritten;
1702		}
1703	}
1704	bremfree(bp);
1705	bp->b_flags |= B_ASYNC;
1706	/*
1707	 * default (old) behavior, writing out only one block
1708	 *
1709	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1710	 */
1711	nwritten = bp->b_bufsize;
1712	(void) bwrite(bp);
1713
1714	return nwritten;
1715}
1716
1717/*
1718 *	getnewbuf:
1719 *
1720 *	Find and initialize a new buffer header, freeing up existing buffers
1721 *	in the bufqueues as necessary.  The new buffer is returned locked.
1722 *
1723 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1724 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1725 *
1726 *	We block if:
1727 *		We have insufficient buffer headers
1728 *		We have insufficient buffer space
1729 *		buffer_map is too fragmented ( space reservation fails )
1730 *		If we have to flush dirty buffers ( but we try to avoid this )
1731 *
1732 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1733 *	Instead we ask the buf daemon to do it for us.  We attempt to
1734 *	avoid piecemeal wakeups of the pageout daemon.
1735 */
1736
1737static struct buf *
1738getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1739    int gbflags)
1740{
1741	struct thread *td;
1742	struct buf *bp;
1743	struct buf *nbp;
1744	int defrag = 0;
1745	int nqindex;
1746	static int flushingbufs;
1747
1748	td = curthread;
1749	/*
1750	 * We can't afford to block since we might be holding a vnode lock,
1751	 * which may prevent system daemons from running.  We deal with
1752	 * low-memory situations by proactively returning memory and running
1753	 * async I/O rather then sync I/O.
1754	 */
1755	atomic_add_int(&getnewbufcalls, 1);
1756	atomic_subtract_int(&getnewbufrestarts, 1);
1757restart:
1758	atomic_add_int(&getnewbufrestarts, 1);
1759
1760	/*
1761	 * Setup for scan.  If we do not have enough free buffers,
1762	 * we setup a degenerate case that immediately fails.  Note
1763	 * that if we are specially marked process, we are allowed to
1764	 * dip into our reserves.
1765	 *
1766	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1767	 *
1768	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1769	 * However, there are a number of cases (defragging, reusing, ...)
1770	 * where we cannot backup.
1771	 */
1772	mtx_lock(&bqlock);
1773	nqindex = QUEUE_EMPTYKVA;
1774	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1775
1776	if (nbp == NULL) {
1777		/*
1778		 * If no EMPTYKVA buffers and we are either
1779		 * defragging or reusing, locate a CLEAN buffer
1780		 * to free or reuse.  If bufspace useage is low
1781		 * skip this step so we can allocate a new buffer.
1782		 */
1783		if (defrag || bufspace >= lobufspace) {
1784			nqindex = QUEUE_CLEAN;
1785			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1786		}
1787
1788		/*
1789		 * If we could not find or were not allowed to reuse a
1790		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1791		 * buffer.  We can only use an EMPTY buffer if allocating
1792		 * its KVA would not otherwise run us out of buffer space.
1793		 */
1794		if (nbp == NULL && defrag == 0 &&
1795		    bufspace + maxsize < hibufspace) {
1796			nqindex = QUEUE_EMPTY;
1797			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1798		}
1799	}
1800
1801	/*
1802	 * Run scan, possibly freeing data and/or kva mappings on the fly
1803	 * depending.
1804	 */
1805
1806	while ((bp = nbp) != NULL) {
1807		int qindex = nqindex;
1808
1809		/*
1810		 * Calculate next bp ( we can only use it if we do not block
1811		 * or do other fancy things ).
1812		 */
1813		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1814			switch(qindex) {
1815			case QUEUE_EMPTY:
1816				nqindex = QUEUE_EMPTYKVA;
1817				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1818					break;
1819				/* FALLTHROUGH */
1820			case QUEUE_EMPTYKVA:
1821				nqindex = QUEUE_CLEAN;
1822				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1823					break;
1824				/* FALLTHROUGH */
1825			case QUEUE_CLEAN:
1826				/*
1827				 * nbp is NULL.
1828				 */
1829				break;
1830			}
1831		}
1832		/*
1833		 * If we are defragging then we need a buffer with
1834		 * b_kvasize != 0.  XXX this situation should no longer
1835		 * occur, if defrag is non-zero the buffer's b_kvasize
1836		 * should also be non-zero at this point.  XXX
1837		 */
1838		if (defrag && bp->b_kvasize == 0) {
1839			printf("Warning: defrag empty buffer %p\n", bp);
1840			continue;
1841		}
1842
1843		/*
1844		 * Start freeing the bp.  This is somewhat involved.  nbp
1845		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1846		 */
1847		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1848			continue;
1849		if (bp->b_vp) {
1850			BO_LOCK(bp->b_bufobj);
1851			if (bp->b_vflags & BV_BKGRDINPROG) {
1852				BO_UNLOCK(bp->b_bufobj);
1853				BUF_UNLOCK(bp);
1854				continue;
1855			}
1856			BO_UNLOCK(bp->b_bufobj);
1857		}
1858		CTR6(KTR_BUF,
1859		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1860		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1861		    bp->b_kvasize, bp->b_bufsize, qindex);
1862
1863		/*
1864		 * Sanity Checks
1865		 */
1866		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1867
1868		/*
1869		 * Note: we no longer distinguish between VMIO and non-VMIO
1870		 * buffers.
1871		 */
1872
1873		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1874
1875		bremfreel(bp);
1876		mtx_unlock(&bqlock);
1877
1878		if (qindex == QUEUE_CLEAN) {
1879			if (bp->b_flags & B_VMIO) {
1880				bp->b_flags &= ~B_ASYNC;
1881				vfs_vmio_release(bp);
1882			}
1883			if (bp->b_vp)
1884				brelvp(bp);
1885		}
1886
1887		/*
1888		 * NOTE:  nbp is now entirely invalid.  We can only restart
1889		 * the scan from this point on.
1890		 *
1891		 * Get the rest of the buffer freed up.  b_kva* is still
1892		 * valid after this operation.
1893		 */
1894
1895		if (bp->b_rcred != NOCRED) {
1896			crfree(bp->b_rcred);
1897			bp->b_rcred = NOCRED;
1898		}
1899		if (bp->b_wcred != NOCRED) {
1900			crfree(bp->b_wcred);
1901			bp->b_wcred = NOCRED;
1902		}
1903		if (!LIST_EMPTY(&bp->b_dep))
1904			buf_deallocate(bp);
1905		if (bp->b_vflags & BV_BKGRDINPROG)
1906			panic("losing buffer 3");
1907		KASSERT(bp->b_vp == NULL,
1908		    ("bp: %p still has vnode %p.  qindex: %d",
1909		    bp, bp->b_vp, qindex));
1910		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1911		   ("bp: %p still on a buffer list. xflags %X",
1912		    bp, bp->b_xflags));
1913
1914		if (bp->b_bufsize)
1915			allocbuf(bp, 0);
1916
1917		bp->b_flags = 0;
1918		bp->b_ioflags = 0;
1919		bp->b_xflags = 0;
1920		bp->b_vflags = 0;
1921		bp->b_vp = NULL;
1922		bp->b_blkno = bp->b_lblkno = 0;
1923		bp->b_offset = NOOFFSET;
1924		bp->b_iodone = 0;
1925		bp->b_error = 0;
1926		bp->b_resid = 0;
1927		bp->b_bcount = 0;
1928		bp->b_npages = 0;
1929		bp->b_dirtyoff = bp->b_dirtyend = 0;
1930		bp->b_bufobj = NULL;
1931		bp->b_pin_count = 0;
1932		bp->b_fsprivate1 = NULL;
1933		bp->b_fsprivate2 = NULL;
1934		bp->b_fsprivate3 = NULL;
1935
1936		LIST_INIT(&bp->b_dep);
1937
1938		/*
1939		 * If we are defragging then free the buffer.
1940		 */
1941		if (defrag) {
1942			bp->b_flags |= B_INVAL;
1943			bfreekva(bp);
1944			brelse(bp);
1945			defrag = 0;
1946			goto restart;
1947		}
1948
1949		/*
1950		 * Notify any waiters for the buffer lock about
1951		 * identity change by freeing the buffer.
1952		 */
1953		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1954			bp->b_flags |= B_INVAL;
1955			bfreekva(bp);
1956			brelse(bp);
1957			goto restart;
1958		}
1959
1960		/*
1961		 * If we are overcomitted then recover the buffer and its
1962		 * KVM space.  This occurs in rare situations when multiple
1963		 * processes are blocked in getnewbuf() or allocbuf().
1964		 */
1965		if (bufspace >= hibufspace)
1966			flushingbufs = 1;
1967		if (flushingbufs && bp->b_kvasize != 0) {
1968			bp->b_flags |= B_INVAL;
1969			bfreekva(bp);
1970			brelse(bp);
1971			goto restart;
1972		}
1973		if (bufspace < lobufspace)
1974			flushingbufs = 0;
1975		break;
1976	}
1977
1978	/*
1979	 * If we exhausted our list, sleep as appropriate.  We may have to
1980	 * wakeup various daemons and write out some dirty buffers.
1981	 *
1982	 * Generally we are sleeping due to insufficient buffer space.
1983	 */
1984
1985	if (bp == NULL) {
1986		int flags, norunbuf;
1987		char *waitmsg;
1988		int fl;
1989
1990		if (defrag) {
1991			flags = VFS_BIO_NEED_BUFSPACE;
1992			waitmsg = "nbufkv";
1993		} else if (bufspace >= hibufspace) {
1994			waitmsg = "nbufbs";
1995			flags = VFS_BIO_NEED_BUFSPACE;
1996		} else {
1997			waitmsg = "newbuf";
1998			flags = VFS_BIO_NEED_ANY;
1999		}
2000		mtx_lock(&nblock);
2001		needsbuffer |= flags;
2002		mtx_unlock(&nblock);
2003		mtx_unlock(&bqlock);
2004
2005		bd_speedup();	/* heeeelp */
2006		if (gbflags & GB_NOWAIT_BD)
2007			return (NULL);
2008
2009		mtx_lock(&nblock);
2010		while (needsbuffer & flags) {
2011			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2012				mtx_unlock(&nblock);
2013				/*
2014				 * getblk() is called with a vnode
2015				 * locked, and some majority of the
2016				 * dirty buffers may as well belong to
2017				 * the vnode. Flushing the buffers
2018				 * there would make a progress that
2019				 * cannot be achieved by the
2020				 * buf_daemon, that cannot lock the
2021				 * vnode.
2022				 */
2023				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2024				    (td->td_pflags & TDP_NORUNNINGBUF);
2025				/* play bufdaemon */
2026				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2027				fl = buf_do_flush(vp);
2028				td->td_pflags &= norunbuf;
2029				mtx_lock(&nblock);
2030				if (fl != 0)
2031					continue;
2032				if ((needsbuffer & flags) == 0)
2033					break;
2034			}
2035			if (msleep(&needsbuffer, &nblock,
2036			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2037				mtx_unlock(&nblock);
2038				return (NULL);
2039			}
2040		}
2041		mtx_unlock(&nblock);
2042	} else {
2043		/*
2044		 * We finally have a valid bp.  We aren't quite out of the
2045		 * woods, we still have to reserve kva space.  In order
2046		 * to keep fragmentation sane we only allocate kva in
2047		 * BKVASIZE chunks.
2048		 */
2049		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2050
2051		if (maxsize != bp->b_kvasize) {
2052			vm_offset_t addr = 0;
2053
2054			bfreekva(bp);
2055
2056			vm_map_lock(buffer_map);
2057			if (vm_map_findspace(buffer_map,
2058				vm_map_min(buffer_map), maxsize, &addr)) {
2059				/*
2060				 * Uh oh.  Buffer map is to fragmented.  We
2061				 * must defragment the map.
2062				 */
2063				atomic_add_int(&bufdefragcnt, 1);
2064				vm_map_unlock(buffer_map);
2065				defrag = 1;
2066				bp->b_flags |= B_INVAL;
2067				brelse(bp);
2068				goto restart;
2069			}
2070			if (addr) {
2071				vm_map_insert(buffer_map, NULL, 0,
2072					addr, addr + maxsize,
2073					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2074
2075				bp->b_kvabase = (caddr_t) addr;
2076				bp->b_kvasize = maxsize;
2077				atomic_add_long(&bufspace, bp->b_kvasize);
2078				atomic_add_int(&bufreusecnt, 1);
2079			}
2080			vm_map_unlock(buffer_map);
2081		}
2082		bp->b_saveaddr = bp->b_kvabase;
2083		bp->b_data = bp->b_saveaddr;
2084	}
2085	return(bp);
2086}
2087
2088/*
2089 *	buf_daemon:
2090 *
2091 *	buffer flushing daemon.  Buffers are normally flushed by the
2092 *	update daemon but if it cannot keep up this process starts to
2093 *	take the load in an attempt to prevent getnewbuf() from blocking.
2094 */
2095
2096static struct kproc_desc buf_kp = {
2097	"bufdaemon",
2098	buf_daemon,
2099	&bufdaemonproc
2100};
2101SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2102
2103static int
2104buf_do_flush(struct vnode *vp)
2105{
2106	int flushed;
2107
2108	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2109	/* The list empty check here is slightly racy */
2110	if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2111		mtx_lock(&Giant);
2112		flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
2113		mtx_unlock(&Giant);
2114	}
2115	if (flushed == 0) {
2116		/*
2117		 * Could not find any buffers without rollback
2118		 * dependencies, so just write the first one
2119		 * in the hopes of eventually making progress.
2120		 */
2121		flushbufqueues(vp, QUEUE_DIRTY, 1);
2122		if (!TAILQ_EMPTY(
2123			    &bufqueues[QUEUE_DIRTY_GIANT])) {
2124			mtx_lock(&Giant);
2125			flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
2126			mtx_unlock(&Giant);
2127		}
2128	}
2129	return (flushed);
2130}
2131
2132static void
2133buf_daemon()
2134{
2135	int lodirtysave;
2136
2137	/*
2138	 * This process needs to be suspended prior to shutdown sync.
2139	 */
2140	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2141	    SHUTDOWN_PRI_LAST);
2142
2143	/*
2144	 * This process is allowed to take the buffer cache to the limit
2145	 */
2146	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2147	mtx_lock(&bdlock);
2148	for (;;) {
2149		bd_request = 0;
2150		mtx_unlock(&bdlock);
2151
2152		kproc_suspend_check(bufdaemonproc);
2153		lodirtysave = lodirtybuffers;
2154		if (bd_speedupreq) {
2155			lodirtybuffers = numdirtybuffers / 2;
2156			bd_speedupreq = 0;
2157		}
2158		/*
2159		 * Do the flush.  Limit the amount of in-transit I/O we
2160		 * allow to build up, otherwise we would completely saturate
2161		 * the I/O system.  Wakeup any waiting processes before we
2162		 * normally would so they can run in parallel with our drain.
2163		 */
2164		while (numdirtybuffers > lodirtybuffers) {
2165			if (buf_do_flush(NULL) == 0)
2166				break;
2167			uio_yield();
2168		}
2169		lodirtybuffers = lodirtysave;
2170
2171		/*
2172		 * Only clear bd_request if we have reached our low water
2173		 * mark.  The buf_daemon normally waits 1 second and
2174		 * then incrementally flushes any dirty buffers that have
2175		 * built up, within reason.
2176		 *
2177		 * If we were unable to hit our low water mark and couldn't
2178		 * find any flushable buffers, we sleep half a second.
2179		 * Otherwise we loop immediately.
2180		 */
2181		mtx_lock(&bdlock);
2182		if (numdirtybuffers <= lodirtybuffers) {
2183			/*
2184			 * We reached our low water mark, reset the
2185			 * request and sleep until we are needed again.
2186			 * The sleep is just so the suspend code works.
2187			 */
2188			bd_request = 0;
2189			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2190		} else {
2191			/*
2192			 * We couldn't find any flushable dirty buffers but
2193			 * still have too many dirty buffers, we
2194			 * have to sleep and try again.  (rare)
2195			 */
2196			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2197		}
2198	}
2199}
2200
2201/*
2202 *	flushbufqueues:
2203 *
2204 *	Try to flush a buffer in the dirty queue.  We must be careful to
2205 *	free up B_INVAL buffers instead of write them, which NFS is
2206 *	particularly sensitive to.
2207 */
2208static int flushwithdeps = 0;
2209SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2210    0, "Number of buffers flushed with dependecies that require rollbacks");
2211
2212static int
2213flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2214{
2215	struct buf *sentinel;
2216	struct vnode *vp;
2217	struct mount *mp;
2218	struct buf *bp;
2219	int hasdeps;
2220	int flushed;
2221	int target;
2222
2223	if (lvp == NULL) {
2224		target = numdirtybuffers - lodirtybuffers;
2225		if (flushdeps && target > 2)
2226			target /= 2;
2227	} else
2228		target = flushbufqtarget;
2229	flushed = 0;
2230	bp = NULL;
2231	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2232	sentinel->b_qindex = QUEUE_SENTINEL;
2233	mtx_lock(&bqlock);
2234	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2235	while (flushed != target) {
2236		bp = TAILQ_NEXT(sentinel, b_freelist);
2237		if (bp != NULL) {
2238			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2239			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2240			    b_freelist);
2241		} else
2242			break;
2243		/*
2244		 * Skip sentinels inserted by other invocations of the
2245		 * flushbufqueues(), taking care to not reorder them.
2246		 */
2247		if (bp->b_qindex == QUEUE_SENTINEL)
2248			continue;
2249		/*
2250		 * Only flush the buffers that belong to the
2251		 * vnode locked by the curthread.
2252		 */
2253		if (lvp != NULL && bp->b_vp != lvp)
2254			continue;
2255		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2256			continue;
2257		if (bp->b_pin_count > 0) {
2258			BUF_UNLOCK(bp);
2259			continue;
2260		}
2261		BO_LOCK(bp->b_bufobj);
2262		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2263		    (bp->b_flags & B_DELWRI) == 0) {
2264			BO_UNLOCK(bp->b_bufobj);
2265			BUF_UNLOCK(bp);
2266			continue;
2267		}
2268		BO_UNLOCK(bp->b_bufobj);
2269		if (bp->b_flags & B_INVAL) {
2270			bremfreel(bp);
2271			mtx_unlock(&bqlock);
2272			brelse(bp);
2273			flushed++;
2274			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2275			mtx_lock(&bqlock);
2276			continue;
2277		}
2278
2279		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2280			if (flushdeps == 0) {
2281				BUF_UNLOCK(bp);
2282				continue;
2283			}
2284			hasdeps = 1;
2285		} else
2286			hasdeps = 0;
2287		/*
2288		 * We must hold the lock on a vnode before writing
2289		 * one of its buffers. Otherwise we may confuse, or
2290		 * in the case of a snapshot vnode, deadlock the
2291		 * system.
2292		 *
2293		 * The lock order here is the reverse of the normal
2294		 * of vnode followed by buf lock.  This is ok because
2295		 * the NOWAIT will prevent deadlock.
2296		 */
2297		vp = bp->b_vp;
2298		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2299			BUF_UNLOCK(bp);
2300			continue;
2301		}
2302		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2303			mtx_unlock(&bqlock);
2304			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2305			    bp, bp->b_vp, bp->b_flags);
2306			if (curproc == bufdaemonproc)
2307				vfs_bio_awrite(bp);
2308			else {
2309				bremfree(bp);
2310				bwrite(bp);
2311				notbufdflashes++;
2312			}
2313			vn_finished_write(mp);
2314			VOP_UNLOCK(vp, 0);
2315			flushwithdeps += hasdeps;
2316			flushed++;
2317
2318			/*
2319			 * Sleeping on runningbufspace while holding
2320			 * vnode lock leads to deadlock.
2321			 */
2322			if (curproc == bufdaemonproc)
2323				waitrunningbufspace();
2324			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2325			mtx_lock(&bqlock);
2326			continue;
2327		}
2328		vn_finished_write(mp);
2329		BUF_UNLOCK(bp);
2330	}
2331	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2332	mtx_unlock(&bqlock);
2333	free(sentinel, M_TEMP);
2334	return (flushed);
2335}
2336
2337/*
2338 * Check to see if a block is currently memory resident.
2339 */
2340struct buf *
2341incore(struct bufobj *bo, daddr_t blkno)
2342{
2343	struct buf *bp;
2344
2345	BO_LOCK(bo);
2346	bp = gbincore(bo, blkno);
2347	BO_UNLOCK(bo);
2348	return (bp);
2349}
2350
2351/*
2352 * Returns true if no I/O is needed to access the
2353 * associated VM object.  This is like incore except
2354 * it also hunts around in the VM system for the data.
2355 */
2356
2357static int
2358inmem(struct vnode * vp, daddr_t blkno)
2359{
2360	vm_object_t obj;
2361	vm_offset_t toff, tinc, size;
2362	vm_page_t m;
2363	vm_ooffset_t off;
2364
2365	ASSERT_VOP_LOCKED(vp, "inmem");
2366
2367	if (incore(&vp->v_bufobj, blkno))
2368		return 1;
2369	if (vp->v_mount == NULL)
2370		return 0;
2371	obj = vp->v_object;
2372	if (obj == NULL)
2373		return (0);
2374
2375	size = PAGE_SIZE;
2376	if (size > vp->v_mount->mnt_stat.f_iosize)
2377		size = vp->v_mount->mnt_stat.f_iosize;
2378	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2379
2380	VM_OBJECT_LOCK(obj);
2381	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2382		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2383		if (!m)
2384			goto notinmem;
2385		tinc = size;
2386		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2387			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2388		if (vm_page_is_valid(m,
2389		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2390			goto notinmem;
2391	}
2392	VM_OBJECT_UNLOCK(obj);
2393	return 1;
2394
2395notinmem:
2396	VM_OBJECT_UNLOCK(obj);
2397	return (0);
2398}
2399
2400/*
2401 *	vfs_setdirty:
2402 *
2403 *	Sets the dirty range for a buffer based on the status of the dirty
2404 *	bits in the pages comprising the buffer.
2405 *
2406 *	The range is limited to the size of the buffer.
2407 *
2408 *	This routine is primarily used by NFS, but is generalized for the
2409 *	B_VMIO case.
2410 */
2411static void
2412vfs_setdirty(struct buf *bp)
2413{
2414
2415	/*
2416	 * Degenerate case - empty buffer
2417	 */
2418	if (bp->b_bufsize == 0)
2419		return;
2420
2421	if ((bp->b_flags & B_VMIO) == 0)
2422		return;
2423
2424	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2425	vfs_setdirty_locked_object(bp);
2426	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2427}
2428
2429static void
2430vfs_setdirty_locked_object(struct buf *bp)
2431{
2432	vm_object_t object;
2433	int i;
2434
2435	object = bp->b_bufobj->bo_object;
2436	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2437
2438	/*
2439	 * We qualify the scan for modified pages on whether the
2440	 * object has been flushed yet.
2441	 */
2442	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2443		vm_offset_t boffset;
2444		vm_offset_t eoffset;
2445
2446		/*
2447		 * test the pages to see if they have been modified directly
2448		 * by users through the VM system.
2449		 */
2450		for (i = 0; i < bp->b_npages; i++)
2451			vm_page_test_dirty(bp->b_pages[i]);
2452
2453		/*
2454		 * Calculate the encompassing dirty range, boffset and eoffset,
2455		 * (eoffset - boffset) bytes.
2456		 */
2457
2458		for (i = 0; i < bp->b_npages; i++) {
2459			if (bp->b_pages[i]->dirty)
2460				break;
2461		}
2462		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2463
2464		for (i = bp->b_npages - 1; i >= 0; --i) {
2465			if (bp->b_pages[i]->dirty) {
2466				break;
2467			}
2468		}
2469		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2470
2471		/*
2472		 * Fit it to the buffer.
2473		 */
2474
2475		if (eoffset > bp->b_bcount)
2476			eoffset = bp->b_bcount;
2477
2478		/*
2479		 * If we have a good dirty range, merge with the existing
2480		 * dirty range.
2481		 */
2482
2483		if (boffset < eoffset) {
2484			if (bp->b_dirtyoff > boffset)
2485				bp->b_dirtyoff = boffset;
2486			if (bp->b_dirtyend < eoffset)
2487				bp->b_dirtyend = eoffset;
2488		}
2489	}
2490}
2491
2492/*
2493 *	getblk:
2494 *
2495 *	Get a block given a specified block and offset into a file/device.
2496 *	The buffers B_DONE bit will be cleared on return, making it almost
2497 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2498 *	return.  The caller should clear B_INVAL prior to initiating a
2499 *	READ.
2500 *
2501 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2502 *	an existing buffer.
2503 *
2504 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2505 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2506 *	and then cleared based on the backing VM.  If the previous buffer is
2507 *	non-0-sized but invalid, B_CACHE will be cleared.
2508 *
2509 *	If getblk() must create a new buffer, the new buffer is returned with
2510 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2511 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2512 *	backing VM.
2513 *
2514 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2515 *	B_CACHE bit is clear.
2516 *
2517 *	What this means, basically, is that the caller should use B_CACHE to
2518 *	determine whether the buffer is fully valid or not and should clear
2519 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2520 *	the buffer by loading its data area with something, the caller needs
2521 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2522 *	the caller should set B_CACHE ( as an optimization ), else the caller
2523 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2524 *	a write attempt or if it was a successfull read.  If the caller
2525 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2526 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2527 */
2528struct buf *
2529getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2530    int flags)
2531{
2532	struct buf *bp;
2533	struct bufobj *bo;
2534	int error;
2535
2536	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2537	ASSERT_VOP_LOCKED(vp, "getblk");
2538	if (size > MAXBSIZE)
2539		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2540
2541	bo = &vp->v_bufobj;
2542loop:
2543	/*
2544	 * Block if we are low on buffers.   Certain processes are allowed
2545	 * to completely exhaust the buffer cache.
2546         *
2547         * If this check ever becomes a bottleneck it may be better to
2548         * move it into the else, when gbincore() fails.  At the moment
2549         * it isn't a problem.
2550	 *
2551	 * XXX remove if 0 sections (clean this up after its proven)
2552         */
2553	if (numfreebuffers == 0) {
2554		if (TD_IS_IDLETHREAD(curthread))
2555			return NULL;
2556		mtx_lock(&nblock);
2557		needsbuffer |= VFS_BIO_NEED_ANY;
2558		mtx_unlock(&nblock);
2559	}
2560
2561	BO_LOCK(bo);
2562	bp = gbincore(bo, blkno);
2563	if (bp != NULL) {
2564		int lockflags;
2565		/*
2566		 * Buffer is in-core.  If the buffer is not busy, it must
2567		 * be on a queue.
2568		 */
2569		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2570
2571		if (flags & GB_LOCK_NOWAIT)
2572			lockflags |= LK_NOWAIT;
2573
2574		error = BUF_TIMELOCK(bp, lockflags,
2575		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2576
2577		/*
2578		 * If we slept and got the lock we have to restart in case
2579		 * the buffer changed identities.
2580		 */
2581		if (error == ENOLCK)
2582			goto loop;
2583		/* We timed out or were interrupted. */
2584		else if (error)
2585			return (NULL);
2586
2587		/*
2588		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2589		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2590		 * and for a VMIO buffer B_CACHE is adjusted according to the
2591		 * backing VM cache.
2592		 */
2593		if (bp->b_flags & B_INVAL)
2594			bp->b_flags &= ~B_CACHE;
2595		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2596			bp->b_flags |= B_CACHE;
2597		bremfree(bp);
2598
2599		/*
2600		 * check for size inconsistancies for non-VMIO case.
2601		 */
2602
2603		if (bp->b_bcount != size) {
2604			if ((bp->b_flags & B_VMIO) == 0 ||
2605			    (size > bp->b_kvasize)) {
2606				if (bp->b_flags & B_DELWRI) {
2607					/*
2608					 * If buffer is pinned and caller does
2609					 * not want sleep  waiting for it to be
2610					 * unpinned, bail out
2611					 * */
2612					if (bp->b_pin_count > 0) {
2613						if (flags & GB_LOCK_NOWAIT) {
2614							bqrelse(bp);
2615							return (NULL);
2616						} else {
2617							bunpin_wait(bp);
2618						}
2619					}
2620					bp->b_flags |= B_NOCACHE;
2621					bwrite(bp);
2622				} else {
2623					if (LIST_EMPTY(&bp->b_dep)) {
2624						bp->b_flags |= B_RELBUF;
2625						brelse(bp);
2626					} else {
2627						bp->b_flags |= B_NOCACHE;
2628						bwrite(bp);
2629					}
2630				}
2631				goto loop;
2632			}
2633		}
2634
2635		/*
2636		 * If the size is inconsistant in the VMIO case, we can resize
2637		 * the buffer.  This might lead to B_CACHE getting set or
2638		 * cleared.  If the size has not changed, B_CACHE remains
2639		 * unchanged from its previous state.
2640		 */
2641
2642		if (bp->b_bcount != size)
2643			allocbuf(bp, size);
2644
2645		KASSERT(bp->b_offset != NOOFFSET,
2646		    ("getblk: no buffer offset"));
2647
2648		/*
2649		 * A buffer with B_DELWRI set and B_CACHE clear must
2650		 * be committed before we can return the buffer in
2651		 * order to prevent the caller from issuing a read
2652		 * ( due to B_CACHE not being set ) and overwriting
2653		 * it.
2654		 *
2655		 * Most callers, including NFS and FFS, need this to
2656		 * operate properly either because they assume they
2657		 * can issue a read if B_CACHE is not set, or because
2658		 * ( for example ) an uncached B_DELWRI might loop due
2659		 * to softupdates re-dirtying the buffer.  In the latter
2660		 * case, B_CACHE is set after the first write completes,
2661		 * preventing further loops.
2662		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2663		 * above while extending the buffer, we cannot allow the
2664		 * buffer to remain with B_CACHE set after the write
2665		 * completes or it will represent a corrupt state.  To
2666		 * deal with this we set B_NOCACHE to scrap the buffer
2667		 * after the write.
2668		 *
2669		 * We might be able to do something fancy, like setting
2670		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2671		 * so the below call doesn't set B_CACHE, but that gets real
2672		 * confusing.  This is much easier.
2673		 */
2674
2675		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2676			bp->b_flags |= B_NOCACHE;
2677			bwrite(bp);
2678			goto loop;
2679		}
2680		bp->b_flags &= ~B_DONE;
2681	} else {
2682		int bsize, maxsize, vmio;
2683		off_t offset;
2684
2685		/*
2686		 * Buffer is not in-core, create new buffer.  The buffer
2687		 * returned by getnewbuf() is locked.  Note that the returned
2688		 * buffer is also considered valid (not marked B_INVAL).
2689		 */
2690		BO_UNLOCK(bo);
2691		/*
2692		 * If the user does not want us to create the buffer, bail out
2693		 * here.
2694		 */
2695		if (flags & GB_NOCREAT)
2696			return NULL;
2697		bsize = vn_isdisk(vp, NULL) ? DEV_BSIZE : bo->bo_bsize;
2698		offset = blkno * bsize;
2699		vmio = vp->v_object != NULL;
2700		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2701		maxsize = imax(maxsize, bsize);
2702
2703		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2704		if (bp == NULL) {
2705			if (slpflag || slptimeo)
2706				return NULL;
2707			goto loop;
2708		}
2709
2710		/*
2711		 * This code is used to make sure that a buffer is not
2712		 * created while the getnewbuf routine is blocked.
2713		 * This can be a problem whether the vnode is locked or not.
2714		 * If the buffer is created out from under us, we have to
2715		 * throw away the one we just created.
2716		 *
2717		 * Note: this must occur before we associate the buffer
2718		 * with the vp especially considering limitations in
2719		 * the splay tree implementation when dealing with duplicate
2720		 * lblkno's.
2721		 */
2722		BO_LOCK(bo);
2723		if (gbincore(bo, blkno)) {
2724			BO_UNLOCK(bo);
2725			bp->b_flags |= B_INVAL;
2726			brelse(bp);
2727			goto loop;
2728		}
2729
2730		/*
2731		 * Insert the buffer into the hash, so that it can
2732		 * be found by incore.
2733		 */
2734		bp->b_blkno = bp->b_lblkno = blkno;
2735		bp->b_offset = offset;
2736		bgetvp(vp, bp);
2737		BO_UNLOCK(bo);
2738
2739		/*
2740		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2741		 * buffer size starts out as 0, B_CACHE will be set by
2742		 * allocbuf() for the VMIO case prior to it testing the
2743		 * backing store for validity.
2744		 */
2745
2746		if (vmio) {
2747			bp->b_flags |= B_VMIO;
2748#if defined(VFS_BIO_DEBUG)
2749			if (vn_canvmio(vp) != TRUE)
2750				printf("getblk: VMIO on vnode type %d\n",
2751					vp->v_type);
2752#endif
2753			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2754			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2755			    bp, vp->v_object, bp->b_bufobj->bo_object));
2756		} else {
2757			bp->b_flags &= ~B_VMIO;
2758			KASSERT(bp->b_bufobj->bo_object == NULL,
2759			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2760			    bp, bp->b_bufobj->bo_object));
2761		}
2762
2763		allocbuf(bp, size);
2764		bp->b_flags &= ~B_DONE;
2765	}
2766	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2767	BUF_ASSERT_HELD(bp);
2768	KASSERT(bp->b_bufobj == bo,
2769	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2770	return (bp);
2771}
2772
2773/*
2774 * Get an empty, disassociated buffer of given size.  The buffer is initially
2775 * set to B_INVAL.
2776 */
2777struct buf *
2778geteblk(int size, int flags)
2779{
2780	struct buf *bp;
2781	int maxsize;
2782
2783	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2784	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2785		if ((flags & GB_NOWAIT_BD) &&
2786		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2787			return (NULL);
2788	}
2789	allocbuf(bp, size);
2790	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2791	BUF_ASSERT_HELD(bp);
2792	return (bp);
2793}
2794
2795
2796/*
2797 * This code constitutes the buffer memory from either anonymous system
2798 * memory (in the case of non-VMIO operations) or from an associated
2799 * VM object (in the case of VMIO operations).  This code is able to
2800 * resize a buffer up or down.
2801 *
2802 * Note that this code is tricky, and has many complications to resolve
2803 * deadlock or inconsistant data situations.  Tread lightly!!!
2804 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2805 * the caller.  Calling this code willy nilly can result in the loss of data.
2806 *
2807 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2808 * B_CACHE for the non-VMIO case.
2809 */
2810
2811int
2812allocbuf(struct buf *bp, int size)
2813{
2814	int newbsize, mbsize;
2815	int i;
2816
2817	BUF_ASSERT_HELD(bp);
2818
2819	if (bp->b_kvasize < size)
2820		panic("allocbuf: buffer too small");
2821
2822	if ((bp->b_flags & B_VMIO) == 0) {
2823		caddr_t origbuf;
2824		int origbufsize;
2825		/*
2826		 * Just get anonymous memory from the kernel.  Don't
2827		 * mess with B_CACHE.
2828		 */
2829		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2830		if (bp->b_flags & B_MALLOC)
2831			newbsize = mbsize;
2832		else
2833			newbsize = round_page(size);
2834
2835		if (newbsize < bp->b_bufsize) {
2836			/*
2837			 * malloced buffers are not shrunk
2838			 */
2839			if (bp->b_flags & B_MALLOC) {
2840				if (newbsize) {
2841					bp->b_bcount = size;
2842				} else {
2843					free(bp->b_data, M_BIOBUF);
2844					if (bp->b_bufsize) {
2845						atomic_subtract_long(
2846						    &bufmallocspace,
2847						    bp->b_bufsize);
2848						bufspacewakeup();
2849						bp->b_bufsize = 0;
2850					}
2851					bp->b_saveaddr = bp->b_kvabase;
2852					bp->b_data = bp->b_saveaddr;
2853					bp->b_bcount = 0;
2854					bp->b_flags &= ~B_MALLOC;
2855				}
2856				return 1;
2857			}
2858			vm_hold_free_pages(
2859			    bp,
2860			    (vm_offset_t) bp->b_data + newbsize,
2861			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2862		} else if (newbsize > bp->b_bufsize) {
2863			/*
2864			 * We only use malloced memory on the first allocation.
2865			 * and revert to page-allocated memory when the buffer
2866			 * grows.
2867			 */
2868			/*
2869			 * There is a potential smp race here that could lead
2870			 * to bufmallocspace slightly passing the max.  It
2871			 * is probably extremely rare and not worth worrying
2872			 * over.
2873			 */
2874			if ( (bufmallocspace < maxbufmallocspace) &&
2875				(bp->b_bufsize == 0) &&
2876				(mbsize <= PAGE_SIZE/2)) {
2877
2878				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2879				bp->b_bufsize = mbsize;
2880				bp->b_bcount = size;
2881				bp->b_flags |= B_MALLOC;
2882				atomic_add_long(&bufmallocspace, mbsize);
2883				return 1;
2884			}
2885			origbuf = NULL;
2886			origbufsize = 0;
2887			/*
2888			 * If the buffer is growing on its other-than-first allocation,
2889			 * then we revert to the page-allocation scheme.
2890			 */
2891			if (bp->b_flags & B_MALLOC) {
2892				origbuf = bp->b_data;
2893				origbufsize = bp->b_bufsize;
2894				bp->b_data = bp->b_kvabase;
2895				if (bp->b_bufsize) {
2896					atomic_subtract_long(&bufmallocspace,
2897					    bp->b_bufsize);
2898					bufspacewakeup();
2899					bp->b_bufsize = 0;
2900				}
2901				bp->b_flags &= ~B_MALLOC;
2902				newbsize = round_page(newbsize);
2903			}
2904			vm_hold_load_pages(
2905			    bp,
2906			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2907			    (vm_offset_t) bp->b_data + newbsize);
2908			if (origbuf) {
2909				bcopy(origbuf, bp->b_data, origbufsize);
2910				free(origbuf, M_BIOBUF);
2911			}
2912		}
2913	} else {
2914		int desiredpages;
2915
2916		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2917		desiredpages = (size == 0) ? 0 :
2918			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2919
2920		if (bp->b_flags & B_MALLOC)
2921			panic("allocbuf: VMIO buffer can't be malloced");
2922		/*
2923		 * Set B_CACHE initially if buffer is 0 length or will become
2924		 * 0-length.
2925		 */
2926		if (size == 0 || bp->b_bufsize == 0)
2927			bp->b_flags |= B_CACHE;
2928
2929		if (newbsize < bp->b_bufsize) {
2930			/*
2931			 * DEV_BSIZE aligned new buffer size is less then the
2932			 * DEV_BSIZE aligned existing buffer size.  Figure out
2933			 * if we have to remove any pages.
2934			 */
2935			if (desiredpages < bp->b_npages) {
2936				vm_page_t m;
2937
2938				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2939				for (i = desiredpages; i < bp->b_npages; i++) {
2940					/*
2941					 * the page is not freed here -- it
2942					 * is the responsibility of
2943					 * vnode_pager_setsize
2944					 */
2945					m = bp->b_pages[i];
2946					KASSERT(m != bogus_page,
2947					    ("allocbuf: bogus page found"));
2948					while (vm_page_sleep_if_busy(m, TRUE,
2949					    "biodep"))
2950						continue;
2951
2952					bp->b_pages[i] = NULL;
2953					vm_page_lock(m);
2954					vm_page_unwire(m, 0);
2955					vm_page_unlock(m);
2956				}
2957				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2958				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2959				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2960				bp->b_npages = desiredpages;
2961			}
2962		} else if (size > bp->b_bcount) {
2963			/*
2964			 * We are growing the buffer, possibly in a
2965			 * byte-granular fashion.
2966			 */
2967			vm_object_t obj;
2968			vm_offset_t toff;
2969			vm_offset_t tinc;
2970
2971			/*
2972			 * Step 1, bring in the VM pages from the object,
2973			 * allocating them if necessary.  We must clear
2974			 * B_CACHE if these pages are not valid for the
2975			 * range covered by the buffer.
2976			 */
2977
2978			obj = bp->b_bufobj->bo_object;
2979
2980			VM_OBJECT_LOCK(obj);
2981			while (bp->b_npages < desiredpages) {
2982				vm_page_t m;
2983				vm_pindex_t pi;
2984
2985				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2986				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2987					/*
2988					 * note: must allocate system pages
2989					 * since blocking here could intefere
2990					 * with paging I/O, no matter which
2991					 * process we are.
2992					 */
2993					m = vm_page_alloc(obj, pi,
2994					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2995					    VM_ALLOC_WIRED);
2996					if (m == NULL) {
2997						atomic_add_int(&vm_pageout_deficit,
2998						    desiredpages - bp->b_npages);
2999						VM_OBJECT_UNLOCK(obj);
3000						VM_WAIT;
3001						VM_OBJECT_LOCK(obj);
3002					} else {
3003						if (m->valid == 0)
3004							bp->b_flags &= ~B_CACHE;
3005						bp->b_pages[bp->b_npages] = m;
3006						++bp->b_npages;
3007					}
3008					continue;
3009				}
3010
3011				/*
3012				 * We found a page.  If we have to sleep on it,
3013				 * retry because it might have gotten freed out
3014				 * from under us.
3015				 *
3016				 * We can only test VPO_BUSY here.  Blocking on
3017				 * m->busy might lead to a deadlock:
3018				 *
3019				 *  vm_fault->getpages->cluster_read->allocbuf
3020				 *
3021				 */
3022				if ((m->oflags & VPO_BUSY) != 0) {
3023					/*
3024					 * Reference the page before unlocking
3025					 * and sleeping so that the page daemon
3026					 * is less likely to reclaim it.
3027					 */
3028					vm_page_lock_queues();
3029					vm_page_flag_set(m, PG_REFERENCED);
3030					vm_page_sleep(m, "pgtblk");
3031					continue;
3032				}
3033
3034				/*
3035				 * We have a good page.
3036				 */
3037				vm_page_lock(m);
3038				vm_page_wire(m);
3039				vm_page_unlock(m);
3040				bp->b_pages[bp->b_npages] = m;
3041				++bp->b_npages;
3042			}
3043
3044			/*
3045			 * Step 2.  We've loaded the pages into the buffer,
3046			 * we have to figure out if we can still have B_CACHE
3047			 * set.  Note that B_CACHE is set according to the
3048			 * byte-granular range ( bcount and size ), new the
3049			 * aligned range ( newbsize ).
3050			 *
3051			 * The VM test is against m->valid, which is DEV_BSIZE
3052			 * aligned.  Needless to say, the validity of the data
3053			 * needs to also be DEV_BSIZE aligned.  Note that this
3054			 * fails with NFS if the server or some other client
3055			 * extends the file's EOF.  If our buffer is resized,
3056			 * B_CACHE may remain set! XXX
3057			 */
3058
3059			toff = bp->b_bcount;
3060			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3061
3062			while ((bp->b_flags & B_CACHE) && toff < size) {
3063				vm_pindex_t pi;
3064
3065				if (tinc > (size - toff))
3066					tinc = size - toff;
3067
3068				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3069				    PAGE_SHIFT;
3070
3071				vfs_buf_test_cache(
3072				    bp,
3073				    bp->b_offset,
3074				    toff,
3075				    tinc,
3076				    bp->b_pages[pi]
3077				);
3078				toff += tinc;
3079				tinc = PAGE_SIZE;
3080			}
3081			VM_OBJECT_UNLOCK(obj);
3082
3083			/*
3084			 * Step 3, fixup the KVM pmap.  Remember that
3085			 * bp->b_data is relative to bp->b_offset, but
3086			 * bp->b_offset may be offset into the first page.
3087			 */
3088
3089			bp->b_data = (caddr_t)
3090			    trunc_page((vm_offset_t)bp->b_data);
3091			pmap_qenter(
3092			    (vm_offset_t)bp->b_data,
3093			    bp->b_pages,
3094			    bp->b_npages
3095			);
3096
3097			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3098			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3099		}
3100	}
3101	if (newbsize < bp->b_bufsize)
3102		bufspacewakeup();
3103	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3104	bp->b_bcount = size;		/* requested buffer size	*/
3105	return 1;
3106}
3107
3108void
3109biodone(struct bio *bp)
3110{
3111	struct mtx *mtxp;
3112	void (*done)(struct bio *);
3113
3114	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3115	mtx_lock(mtxp);
3116	bp->bio_flags |= BIO_DONE;
3117	done = bp->bio_done;
3118	if (done == NULL)
3119		wakeup(bp);
3120	mtx_unlock(mtxp);
3121	if (done != NULL)
3122		done(bp);
3123}
3124
3125/*
3126 * Wait for a BIO to finish.
3127 *
3128 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3129 * case is not yet clear.
3130 */
3131int
3132biowait(struct bio *bp, const char *wchan)
3133{
3134	struct mtx *mtxp;
3135
3136	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3137	mtx_lock(mtxp);
3138	while ((bp->bio_flags & BIO_DONE) == 0)
3139		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3140	mtx_unlock(mtxp);
3141	if (bp->bio_error != 0)
3142		return (bp->bio_error);
3143	if (!(bp->bio_flags & BIO_ERROR))
3144		return (0);
3145	return (EIO);
3146}
3147
3148void
3149biofinish(struct bio *bp, struct devstat *stat, int error)
3150{
3151
3152	if (error) {
3153		bp->bio_error = error;
3154		bp->bio_flags |= BIO_ERROR;
3155	}
3156	if (stat != NULL)
3157		devstat_end_transaction_bio(stat, bp);
3158	biodone(bp);
3159}
3160
3161/*
3162 *	bufwait:
3163 *
3164 *	Wait for buffer I/O completion, returning error status.  The buffer
3165 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3166 *	error and cleared.
3167 */
3168int
3169bufwait(struct buf *bp)
3170{
3171	if (bp->b_iocmd == BIO_READ)
3172		bwait(bp, PRIBIO, "biord");
3173	else
3174		bwait(bp, PRIBIO, "biowr");
3175	if (bp->b_flags & B_EINTR) {
3176		bp->b_flags &= ~B_EINTR;
3177		return (EINTR);
3178	}
3179	if (bp->b_ioflags & BIO_ERROR) {
3180		return (bp->b_error ? bp->b_error : EIO);
3181	} else {
3182		return (0);
3183	}
3184}
3185
3186 /*
3187  * Call back function from struct bio back up to struct buf.
3188  */
3189static void
3190bufdonebio(struct bio *bip)
3191{
3192	struct buf *bp;
3193
3194	bp = bip->bio_caller2;
3195	bp->b_resid = bp->b_bcount - bip->bio_completed;
3196	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3197	bp->b_ioflags = bip->bio_flags;
3198	bp->b_error = bip->bio_error;
3199	if (bp->b_error)
3200		bp->b_ioflags |= BIO_ERROR;
3201	bufdone(bp);
3202	g_destroy_bio(bip);
3203}
3204
3205void
3206dev_strategy(struct cdev *dev, struct buf *bp)
3207{
3208	struct cdevsw *csw;
3209	struct bio *bip;
3210
3211	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3212		panic("b_iocmd botch");
3213	for (;;) {
3214		bip = g_new_bio();
3215		if (bip != NULL)
3216			break;
3217		/* Try again later */
3218		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3219	}
3220	bip->bio_cmd = bp->b_iocmd;
3221	bip->bio_offset = bp->b_iooffset;
3222	bip->bio_length = bp->b_bcount;
3223	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3224	bip->bio_data = bp->b_data;
3225	bip->bio_done = bufdonebio;
3226	bip->bio_caller2 = bp;
3227	bip->bio_dev = dev;
3228	KASSERT(dev->si_refcount > 0,
3229	    ("dev_strategy on un-referenced struct cdev *(%s)",
3230	    devtoname(dev)));
3231	csw = dev_refthread(dev);
3232	if (csw == NULL) {
3233		g_destroy_bio(bip);
3234		bp->b_error = ENXIO;
3235		bp->b_ioflags = BIO_ERROR;
3236		bufdone(bp);
3237		return;
3238	}
3239	(*csw->d_strategy)(bip);
3240	dev_relthread(dev);
3241}
3242
3243/*
3244 *	bufdone:
3245 *
3246 *	Finish I/O on a buffer, optionally calling a completion function.
3247 *	This is usually called from an interrupt so process blocking is
3248 *	not allowed.
3249 *
3250 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3251 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3252 *	assuming B_INVAL is clear.
3253 *
3254 *	For the VMIO case, we set B_CACHE if the op was a read and no
3255 *	read error occured, or if the op was a write.  B_CACHE is never
3256 *	set if the buffer is invalid or otherwise uncacheable.
3257 *
3258 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3259 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3260 *	in the biodone routine.
3261 */
3262void
3263bufdone(struct buf *bp)
3264{
3265	struct bufobj *dropobj;
3266	void    (*biodone)(struct buf *);
3267
3268	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3269	dropobj = NULL;
3270
3271	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3272	BUF_ASSERT_HELD(bp);
3273
3274	runningbufwakeup(bp);
3275	if (bp->b_iocmd == BIO_WRITE)
3276		dropobj = bp->b_bufobj;
3277	/* call optional completion function if requested */
3278	if (bp->b_iodone != NULL) {
3279		biodone = bp->b_iodone;
3280		bp->b_iodone = NULL;
3281		(*biodone) (bp);
3282		if (dropobj)
3283			bufobj_wdrop(dropobj);
3284		return;
3285	}
3286
3287	bufdone_finish(bp);
3288
3289	if (dropobj)
3290		bufobj_wdrop(dropobj);
3291}
3292
3293void
3294bufdone_finish(struct buf *bp)
3295{
3296	BUF_ASSERT_HELD(bp);
3297
3298	if (!LIST_EMPTY(&bp->b_dep))
3299		buf_complete(bp);
3300
3301	if (bp->b_flags & B_VMIO) {
3302		int i;
3303		vm_ooffset_t foff;
3304		vm_page_t m;
3305		vm_object_t obj;
3306		int iosize;
3307		struct vnode *vp = bp->b_vp;
3308
3309		obj = bp->b_bufobj->bo_object;
3310
3311#if defined(VFS_BIO_DEBUG)
3312		mp_fixme("usecount and vflag accessed without locks.");
3313		if (vp->v_usecount == 0) {
3314			panic("biodone: zero vnode ref count");
3315		}
3316
3317		KASSERT(vp->v_object != NULL,
3318			("biodone: vnode %p has no vm_object", vp));
3319#endif
3320
3321		foff = bp->b_offset;
3322		KASSERT(bp->b_offset != NOOFFSET,
3323		    ("biodone: no buffer offset"));
3324
3325		VM_OBJECT_LOCK(obj);
3326#if defined(VFS_BIO_DEBUG)
3327		if (obj->paging_in_progress < bp->b_npages) {
3328			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3329			    obj->paging_in_progress, bp->b_npages);
3330		}
3331#endif
3332
3333		/*
3334		 * Set B_CACHE if the op was a normal read and no error
3335		 * occured.  B_CACHE is set for writes in the b*write()
3336		 * routines.
3337		 */
3338		iosize = bp->b_bcount - bp->b_resid;
3339		if (bp->b_iocmd == BIO_READ &&
3340		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3341		    !(bp->b_ioflags & BIO_ERROR)) {
3342			bp->b_flags |= B_CACHE;
3343		}
3344		for (i = 0; i < bp->b_npages; i++) {
3345			int bogusflag = 0;
3346			int resid;
3347
3348			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3349			if (resid > iosize)
3350				resid = iosize;
3351
3352			/*
3353			 * cleanup bogus pages, restoring the originals
3354			 */
3355			m = bp->b_pages[i];
3356			if (m == bogus_page) {
3357				bogusflag = 1;
3358				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3359				if (m == NULL)
3360					panic("biodone: page disappeared!");
3361				bp->b_pages[i] = m;
3362				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3363				    bp->b_pages, bp->b_npages);
3364			}
3365#if defined(VFS_BIO_DEBUG)
3366			if (OFF_TO_IDX(foff) != m->pindex) {
3367				printf(
3368"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3369				    (intmax_t)foff, (uintmax_t)m->pindex);
3370			}
3371#endif
3372
3373			/*
3374			 * In the write case, the valid and clean bits are
3375			 * already changed correctly ( see bdwrite() ), so we
3376			 * only need to do this here in the read case.
3377			 */
3378			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3379				KASSERT((m->dirty & vm_page_bits(foff &
3380				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3381				    " page %p has unexpected dirty bits", m));
3382				vfs_page_set_valid(bp, foff, m);
3383			}
3384
3385			/*
3386			 * when debugging new filesystems or buffer I/O methods, this
3387			 * is the most common error that pops up.  if you see this, you
3388			 * have not set the page busy flag correctly!!!
3389			 */
3390			if (m->busy == 0) {
3391				printf("biodone: page busy < 0, "
3392				    "pindex: %d, foff: 0x(%x,%x), "
3393				    "resid: %d, index: %d\n",
3394				    (int) m->pindex, (int)(foff >> 32),
3395						(int) foff & 0xffffffff, resid, i);
3396				if (!vn_isdisk(vp, NULL))
3397					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3398					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3399					    (intmax_t) bp->b_lblkno,
3400					    bp->b_flags, bp->b_npages);
3401				else
3402					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3403					    (intmax_t) bp->b_lblkno,
3404					    bp->b_flags, bp->b_npages);
3405				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3406				    (u_long)m->valid, (u_long)m->dirty,
3407				    m->wire_count);
3408				panic("biodone: page busy < 0\n");
3409			}
3410			vm_page_io_finish(m);
3411			vm_object_pip_subtract(obj, 1);
3412			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3413			iosize -= resid;
3414		}
3415		vm_object_pip_wakeupn(obj, 0);
3416		VM_OBJECT_UNLOCK(obj);
3417	}
3418
3419	/*
3420	 * For asynchronous completions, release the buffer now. The brelse
3421	 * will do a wakeup there if necessary - so no need to do a wakeup
3422	 * here in the async case. The sync case always needs to do a wakeup.
3423	 */
3424
3425	if (bp->b_flags & B_ASYNC) {
3426		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3427			brelse(bp);
3428		else
3429			bqrelse(bp);
3430	} else
3431		bdone(bp);
3432}
3433
3434/*
3435 * This routine is called in lieu of iodone in the case of
3436 * incomplete I/O.  This keeps the busy status for pages
3437 * consistant.
3438 */
3439void
3440vfs_unbusy_pages(struct buf *bp)
3441{
3442	int i;
3443	vm_object_t obj;
3444	vm_page_t m;
3445
3446	runningbufwakeup(bp);
3447	if (!(bp->b_flags & B_VMIO))
3448		return;
3449
3450	obj = bp->b_bufobj->bo_object;
3451	VM_OBJECT_LOCK(obj);
3452	for (i = 0; i < bp->b_npages; i++) {
3453		m = bp->b_pages[i];
3454		if (m == bogus_page) {
3455			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3456			if (!m)
3457				panic("vfs_unbusy_pages: page missing\n");
3458			bp->b_pages[i] = m;
3459			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3460			    bp->b_pages, bp->b_npages);
3461		}
3462		vm_object_pip_subtract(obj, 1);
3463		vm_page_io_finish(m);
3464	}
3465	vm_object_pip_wakeupn(obj, 0);
3466	VM_OBJECT_UNLOCK(obj);
3467}
3468
3469/*
3470 * vfs_page_set_valid:
3471 *
3472 *	Set the valid bits in a page based on the supplied offset.   The
3473 *	range is restricted to the buffer's size.
3474 *
3475 *	This routine is typically called after a read completes.
3476 */
3477static void
3478vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3479{
3480	vm_ooffset_t eoff;
3481
3482	/*
3483	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3484	 * page boundary and eoff is not greater than the end of the buffer.
3485	 * The end of the buffer, in this case, is our file EOF, not the
3486	 * allocation size of the buffer.
3487	 */
3488	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3489	if (eoff > bp->b_offset + bp->b_bcount)
3490		eoff = bp->b_offset + bp->b_bcount;
3491
3492	/*
3493	 * Set valid range.  This is typically the entire buffer and thus the
3494	 * entire page.
3495	 */
3496	if (eoff > off)
3497		vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
3498}
3499
3500/*
3501 * vfs_page_set_validclean:
3502 *
3503 *	Set the valid bits and clear the dirty bits in a page based on the
3504 *	supplied offset.   The range is restricted to the buffer's size.
3505 */
3506static void
3507vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3508{
3509	vm_ooffset_t soff, eoff;
3510
3511	/*
3512	 * Start and end offsets in buffer.  eoff - soff may not cross a
3513	 * page boundry or cross the end of the buffer.  The end of the
3514	 * buffer, in this case, is our file EOF, not the allocation size
3515	 * of the buffer.
3516	 */
3517	soff = off;
3518	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3519	if (eoff > bp->b_offset + bp->b_bcount)
3520		eoff = bp->b_offset + bp->b_bcount;
3521
3522	/*
3523	 * Set valid range.  This is typically the entire buffer and thus the
3524	 * entire page.
3525	 */
3526	if (eoff > soff) {
3527		vm_page_set_validclean(
3528		    m,
3529		   (vm_offset_t) (soff & PAGE_MASK),
3530		   (vm_offset_t) (eoff - soff)
3531		);
3532	}
3533}
3534
3535/*
3536 * This routine is called before a device strategy routine.
3537 * It is used to tell the VM system that paging I/O is in
3538 * progress, and treat the pages associated with the buffer
3539 * almost as being VPO_BUSY.  Also the object paging_in_progress
3540 * flag is handled to make sure that the object doesn't become
3541 * inconsistant.
3542 *
3543 * Since I/O has not been initiated yet, certain buffer flags
3544 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3545 * and should be ignored.
3546 */
3547void
3548vfs_busy_pages(struct buf *bp, int clear_modify)
3549{
3550	int i, bogus;
3551	vm_object_t obj;
3552	vm_ooffset_t foff;
3553	vm_page_t m;
3554
3555	if (!(bp->b_flags & B_VMIO))
3556		return;
3557
3558	obj = bp->b_bufobj->bo_object;
3559	foff = bp->b_offset;
3560	KASSERT(bp->b_offset != NOOFFSET,
3561	    ("vfs_busy_pages: no buffer offset"));
3562	VM_OBJECT_LOCK(obj);
3563	if (bp->b_bufsize != 0)
3564		vfs_setdirty_locked_object(bp);
3565retry:
3566	for (i = 0; i < bp->b_npages; i++) {
3567		m = bp->b_pages[i];
3568
3569		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3570			goto retry;
3571	}
3572	bogus = 0;
3573	for (i = 0; i < bp->b_npages; i++) {
3574		m = bp->b_pages[i];
3575
3576		if ((bp->b_flags & B_CLUSTER) == 0) {
3577			vm_object_pip_add(obj, 1);
3578			vm_page_io_start(m);
3579		}
3580		/*
3581		 * When readying a buffer for a read ( i.e
3582		 * clear_modify == 0 ), it is important to do
3583		 * bogus_page replacement for valid pages in
3584		 * partially instantiated buffers.  Partially
3585		 * instantiated buffers can, in turn, occur when
3586		 * reconstituting a buffer from its VM backing store
3587		 * base.  We only have to do this if B_CACHE is
3588		 * clear ( which causes the I/O to occur in the
3589		 * first place ).  The replacement prevents the read
3590		 * I/O from overwriting potentially dirty VM-backed
3591		 * pages.  XXX bogus page replacement is, uh, bogus.
3592		 * It may not work properly with small-block devices.
3593		 * We need to find a better way.
3594		 */
3595		if (clear_modify) {
3596			pmap_remove_write(m);
3597			vfs_page_set_validclean(bp, foff, m);
3598		} else if (m->valid == VM_PAGE_BITS_ALL &&
3599		    (bp->b_flags & B_CACHE) == 0) {
3600			bp->b_pages[i] = bogus_page;
3601			bogus++;
3602		}
3603		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3604	}
3605	VM_OBJECT_UNLOCK(obj);
3606	if (bogus)
3607		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3608		    bp->b_pages, bp->b_npages);
3609}
3610
3611/*
3612 * Tell the VM system that the pages associated with this buffer
3613 * are clean.  This is used for delayed writes where the data is
3614 * going to go to disk eventually without additional VM intevention.
3615 *
3616 * Note that while we only really need to clean through to b_bcount, we
3617 * just go ahead and clean through to b_bufsize.
3618 */
3619static void
3620vfs_clean_pages(struct buf *bp)
3621{
3622	int i;
3623	vm_ooffset_t foff, noff, eoff;
3624	vm_page_t m;
3625
3626	if (!(bp->b_flags & B_VMIO))
3627		return;
3628
3629	foff = bp->b_offset;
3630	KASSERT(bp->b_offset != NOOFFSET,
3631	    ("vfs_clean_pages: no buffer offset"));
3632	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3633	for (i = 0; i < bp->b_npages; i++) {
3634		m = bp->b_pages[i];
3635		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3636		eoff = noff;
3637
3638		if (eoff > bp->b_offset + bp->b_bufsize)
3639			eoff = bp->b_offset + bp->b_bufsize;
3640		vfs_page_set_validclean(bp, foff, m);
3641		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3642		foff = noff;
3643	}
3644	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3645}
3646
3647/*
3648 *	vfs_bio_set_valid:
3649 *
3650 *	Set the range within the buffer to valid.  The range is
3651 *	relative to the beginning of the buffer, b_offset.  Note that
3652 *	b_offset itself may be offset from the beginning of the first
3653 *	page.
3654 */
3655void
3656vfs_bio_set_valid(struct buf *bp, int base, int size)
3657{
3658	int i, n;
3659	vm_page_t m;
3660
3661	if (!(bp->b_flags & B_VMIO))
3662		return;
3663
3664	/*
3665	 * Fixup base to be relative to beginning of first page.
3666	 * Set initial n to be the maximum number of bytes in the
3667	 * first page that can be validated.
3668	 */
3669	base += (bp->b_offset & PAGE_MASK);
3670	n = PAGE_SIZE - (base & PAGE_MASK);
3671
3672	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3673	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3674		m = bp->b_pages[i];
3675		if (n > size)
3676			n = size;
3677		vm_page_set_valid(m, base & PAGE_MASK, n);
3678		base += n;
3679		size -= n;
3680		n = PAGE_SIZE;
3681	}
3682	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3683}
3684
3685/*
3686 *	vfs_bio_clrbuf:
3687 *
3688 *	If the specified buffer is a non-VMIO buffer, clear the entire
3689 *	buffer.  If the specified buffer is a VMIO buffer, clear and
3690 *	validate only the previously invalid portions of the buffer.
3691 *	This routine essentially fakes an I/O, so we need to clear
3692 *	BIO_ERROR and B_INVAL.
3693 *
3694 *	Note that while we only theoretically need to clear through b_bcount,
3695 *	we go ahead and clear through b_bufsize.
3696 */
3697void
3698vfs_bio_clrbuf(struct buf *bp)
3699{
3700	int i, j, mask;
3701	caddr_t sa, ea;
3702
3703	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3704		clrbuf(bp);
3705		return;
3706	}
3707	bp->b_flags &= ~B_INVAL;
3708	bp->b_ioflags &= ~BIO_ERROR;
3709	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3710	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3711	    (bp->b_offset & PAGE_MASK) == 0) {
3712		if (bp->b_pages[0] == bogus_page)
3713			goto unlock;
3714		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3715		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3716		if ((bp->b_pages[0]->valid & mask) == mask)
3717			goto unlock;
3718		if ((bp->b_pages[0]->valid & mask) == 0) {
3719			bzero(bp->b_data, bp->b_bufsize);
3720			bp->b_pages[0]->valid |= mask;
3721			goto unlock;
3722		}
3723	}
3724	ea = sa = bp->b_data;
3725	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3726		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3727		ea = (caddr_t)(vm_offset_t)ulmin(
3728		    (u_long)(vm_offset_t)ea,
3729		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3730		if (bp->b_pages[i] == bogus_page)
3731			continue;
3732		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3733		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3734		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3735		if ((bp->b_pages[i]->valid & mask) == mask)
3736			continue;
3737		if ((bp->b_pages[i]->valid & mask) == 0)
3738			bzero(sa, ea - sa);
3739		else {
3740			for (; sa < ea; sa += DEV_BSIZE, j++) {
3741				if ((bp->b_pages[i]->valid & (1 << j)) == 0)
3742					bzero(sa, DEV_BSIZE);
3743			}
3744		}
3745		bp->b_pages[i]->valid |= mask;
3746	}
3747unlock:
3748	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3749	bp->b_resid = 0;
3750}
3751
3752/*
3753 * vm_hold_load_pages and vm_hold_free_pages get pages into
3754 * a buffers address space.  The pages are anonymous and are
3755 * not associated with a file object.
3756 */
3757static void
3758vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3759{
3760	vm_offset_t pg;
3761	vm_page_t p;
3762	int index;
3763
3764	to = round_page(to);
3765	from = round_page(from);
3766	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3767
3768	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3769tryagain:
3770		/*
3771		 * note: must allocate system pages since blocking here
3772		 * could interfere with paging I/O, no matter which
3773		 * process we are.
3774		 */
3775		p = vm_page_alloc(NULL, pg >> PAGE_SHIFT, VM_ALLOC_NOOBJ |
3776		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3777		if (!p) {
3778			atomic_add_int(&vm_pageout_deficit,
3779			    (to - pg) >> PAGE_SHIFT);
3780			VM_WAIT;
3781			goto tryagain;
3782		}
3783		pmap_qenter(pg, &p, 1);
3784		bp->b_pages[index] = p;
3785	}
3786	bp->b_npages = index;
3787}
3788
3789/* Return pages associated with this buf to the vm system */
3790static void
3791vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3792{
3793	vm_offset_t pg;
3794	vm_page_t p;
3795	int index, newnpages;
3796
3797	from = round_page(from);
3798	to = round_page(to);
3799	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3800
3801	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3802		p = bp->b_pages[index];
3803		if (p && (index < bp->b_npages)) {
3804			if (p->busy) {
3805				printf(
3806			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3807				    (intmax_t)bp->b_blkno,
3808				    (intmax_t)bp->b_lblkno);
3809			}
3810			bp->b_pages[index] = NULL;
3811			pmap_qremove(pg, 1);
3812			p->wire_count--;
3813			vm_page_free(p);
3814			atomic_subtract_int(&cnt.v_wire_count, 1);
3815		}
3816	}
3817	bp->b_npages = newnpages;
3818}
3819
3820/*
3821 * Map an IO request into kernel virtual address space.
3822 *
3823 * All requests are (re)mapped into kernel VA space.
3824 * Notice that we use b_bufsize for the size of the buffer
3825 * to be mapped.  b_bcount might be modified by the driver.
3826 *
3827 * Note that even if the caller determines that the address space should
3828 * be valid, a race or a smaller-file mapped into a larger space may
3829 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3830 * check the return value.
3831 */
3832int
3833vmapbuf(struct buf *bp)
3834{
3835	caddr_t addr, kva;
3836	vm_prot_t prot;
3837	int pidx, i;
3838	struct vm_page *m;
3839	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3840
3841	if (bp->b_bufsize < 0)
3842		return (-1);
3843	prot = VM_PROT_READ;
3844	if (bp->b_iocmd == BIO_READ)
3845		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3846	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3847	     addr < bp->b_data + bp->b_bufsize;
3848	     addr += PAGE_SIZE, pidx++) {
3849		/*
3850		 * Do the vm_fault if needed; do the copy-on-write thing
3851		 * when reading stuff off device into memory.
3852		 *
3853		 * NOTE! Must use pmap_extract() because addr may be in
3854		 * the userland address space, and kextract is only guarenteed
3855		 * to work for the kernland address space (see: sparc64 port).
3856		 */
3857retry:
3858		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3859		    prot) < 0) {
3860			for (i = 0; i < pidx; ++i) {
3861				vm_page_lock(bp->b_pages[i]);
3862				vm_page_unhold(bp->b_pages[i]);
3863				vm_page_unlock(bp->b_pages[i]);
3864				bp->b_pages[i] = NULL;
3865			}
3866			return(-1);
3867		}
3868		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3869		if (m == NULL)
3870			goto retry;
3871		bp->b_pages[pidx] = m;
3872	}
3873	if (pidx > btoc(MAXPHYS))
3874		panic("vmapbuf: mapped more than MAXPHYS");
3875	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3876
3877	kva = bp->b_saveaddr;
3878	bp->b_npages = pidx;
3879	bp->b_saveaddr = bp->b_data;
3880	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3881	return(0);
3882}
3883
3884/*
3885 * Free the io map PTEs associated with this IO operation.
3886 * We also invalidate the TLB entries and restore the original b_addr.
3887 */
3888void
3889vunmapbuf(struct buf *bp)
3890{
3891	int pidx;
3892	int npages;
3893
3894	npages = bp->b_npages;
3895	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3896	for (pidx = 0; pidx < npages; pidx++) {
3897		vm_page_lock(bp->b_pages[pidx]);
3898		vm_page_unhold(bp->b_pages[pidx]);
3899		vm_page_unlock(bp->b_pages[pidx]);
3900	}
3901
3902	bp->b_data = bp->b_saveaddr;
3903}
3904
3905void
3906bdone(struct buf *bp)
3907{
3908	struct mtx *mtxp;
3909
3910	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3911	mtx_lock(mtxp);
3912	bp->b_flags |= B_DONE;
3913	wakeup(bp);
3914	mtx_unlock(mtxp);
3915}
3916
3917void
3918bwait(struct buf *bp, u_char pri, const char *wchan)
3919{
3920	struct mtx *mtxp;
3921
3922	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3923	mtx_lock(mtxp);
3924	while ((bp->b_flags & B_DONE) == 0)
3925		msleep(bp, mtxp, pri, wchan, 0);
3926	mtx_unlock(mtxp);
3927}
3928
3929int
3930bufsync(struct bufobj *bo, int waitfor)
3931{
3932
3933	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3934}
3935
3936void
3937bufstrategy(struct bufobj *bo, struct buf *bp)
3938{
3939	int i = 0;
3940	struct vnode *vp;
3941
3942	vp = bp->b_vp;
3943	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3944	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3945	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3946	i = VOP_STRATEGY(vp, bp);
3947	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3948}
3949
3950void
3951bufobj_wrefl(struct bufobj *bo)
3952{
3953
3954	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3955	ASSERT_BO_LOCKED(bo);
3956	bo->bo_numoutput++;
3957}
3958
3959void
3960bufobj_wref(struct bufobj *bo)
3961{
3962
3963	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3964	BO_LOCK(bo);
3965	bo->bo_numoutput++;
3966	BO_UNLOCK(bo);
3967}
3968
3969void
3970bufobj_wdrop(struct bufobj *bo)
3971{
3972
3973	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3974	BO_LOCK(bo);
3975	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3976	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3977		bo->bo_flag &= ~BO_WWAIT;
3978		wakeup(&bo->bo_numoutput);
3979	}
3980	BO_UNLOCK(bo);
3981}
3982
3983int
3984bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3985{
3986	int error;
3987
3988	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3989	ASSERT_BO_LOCKED(bo);
3990	error = 0;
3991	while (bo->bo_numoutput) {
3992		bo->bo_flag |= BO_WWAIT;
3993		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3994		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3995		if (error)
3996			break;
3997	}
3998	return (error);
3999}
4000
4001void
4002bpin(struct buf *bp)
4003{
4004	struct mtx *mtxp;
4005
4006	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4007	mtx_lock(mtxp);
4008	bp->b_pin_count++;
4009	mtx_unlock(mtxp);
4010}
4011
4012void
4013bunpin(struct buf *bp)
4014{
4015	struct mtx *mtxp;
4016
4017	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4018	mtx_lock(mtxp);
4019	if (--bp->b_pin_count == 0)
4020		wakeup(bp);
4021	mtx_unlock(mtxp);
4022}
4023
4024void
4025bunpin_wait(struct buf *bp)
4026{
4027	struct mtx *mtxp;
4028
4029	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4030	mtx_lock(mtxp);
4031	while (bp->b_pin_count > 0)
4032		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4033	mtx_unlock(mtxp);
4034}
4035
4036#include "opt_ddb.h"
4037#ifdef DDB
4038#include <ddb/ddb.h>
4039
4040/* DDB command to show buffer data */
4041DB_SHOW_COMMAND(buffer, db_show_buffer)
4042{
4043	/* get args */
4044	struct buf *bp = (struct buf *)addr;
4045
4046	if (!have_addr) {
4047		db_printf("usage: show buffer <addr>\n");
4048		return;
4049	}
4050
4051	db_printf("buf at %p\n", bp);
4052	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4053	db_printf(
4054	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4055	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
4056	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4057	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4058	    bp->b_dep.lh_first);
4059	if (bp->b_npages) {
4060		int i;
4061		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4062		for (i = 0; i < bp->b_npages; i++) {
4063			vm_page_t m;
4064			m = bp->b_pages[i];
4065			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4066			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4067			if ((i + 1) < bp->b_npages)
4068				db_printf(",");
4069		}
4070		db_printf("\n");
4071	}
4072	db_printf(" ");
4073	lockmgr_printinfo(&bp->b_lock);
4074}
4075
4076DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4077{
4078	struct buf *bp;
4079	int i;
4080
4081	for (i = 0; i < nbuf; i++) {
4082		bp = &buf[i];
4083		if (BUF_ISLOCKED(bp)) {
4084			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4085			db_printf("\n");
4086		}
4087	}
4088}
4089
4090DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4091{
4092	struct vnode *vp;
4093	struct buf *bp;
4094
4095	if (!have_addr) {
4096		db_printf("usage: show vnodebufs <addr>\n");
4097		return;
4098	}
4099	vp = (struct vnode *)addr;
4100	db_printf("Clean buffers:\n");
4101	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4102		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4103		db_printf("\n");
4104	}
4105	db_printf("Dirty buffers:\n");
4106	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4107		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4108		db_printf("\n");
4109	}
4110}
4111#endif /* DDB */
4112