vfs_bio.c revision 20054
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.106 1996/11/28 04:26:04 dyson Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#include "opt_bounce.h"
36
37#define VMIO
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/vmmeter.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_prot.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_pageout.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_extern.h>
54#include <vm/lock.h>
55#include <vm/vm_map.h>
56#include <sys/buf.h>
57#include <sys/mount.h>
58#include <sys/malloc.h>
59#include <sys/resourcevar.h>
60#include <sys/proc.h>
61
62#include <miscfs/specfs/specdev.h>
63
64static void vfs_update __P((void));
65static struct	proc *updateproc;
66static struct kproc_desc up_kp = {
67	"update",
68	vfs_update,
69	&updateproc
70};
71SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
72
73struct buf *buf;		/* buffer header pool */
74struct swqueue bswlist;
75
76int count_lock_queue __P((void));
77static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
78		vm_offset_t to);
79static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
80		vm_offset_t to);
81static void vfs_clean_pages(struct buf * bp);
82static void vfs_setdirty(struct buf *bp);
83static void vfs_vmio_release(struct buf *bp);
84
85int needsbuffer;
86
87/*
88 * Internal update daemon, process 3
89 *	The variable vfs_update_wakeup allows for internal syncs.
90 */
91int vfs_update_wakeup;
92
93
94/*
95 * buffers base kva
96 */
97
98/*
99 * bogus page -- for I/O to/from partially complete buffers
100 * this is a temporary solution to the problem, but it is not
101 * really that bad.  it would be better to split the buffer
102 * for input in the case of buffers partially already in memory,
103 * but the code is intricate enough already.
104 */
105vm_page_t bogus_page;
106static vm_offset_t bogus_offset;
107
108static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
109	bufmallocspace, maxbufmallocspace;
110
111static struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
112static struct bqueues bufqueues[BUFFER_QUEUES];
113
114extern int vm_swap_size;
115
116#define BUF_MAXUSE 16
117
118/*
119 * Initialize buffer headers and related structures.
120 */
121void
122bufinit()
123{
124	struct buf *bp;
125	int i;
126
127	TAILQ_INIT(&bswlist);
128	LIST_INIT(&invalhash);
129
130	/* first, make a null hash table */
131	for (i = 0; i < BUFHSZ; i++)
132		LIST_INIT(&bufhashtbl[i]);
133
134	/* next, make a null set of free lists */
135	for (i = 0; i < BUFFER_QUEUES; i++)
136		TAILQ_INIT(&bufqueues[i]);
137
138	/* finally, initialize each buffer header and stick on empty q */
139	for (i = 0; i < nbuf; i++) {
140		bp = &buf[i];
141		bzero(bp, sizeof *bp);
142		bp->b_flags = B_INVAL;	/* we're just an empty header */
143		bp->b_dev = NODEV;
144		bp->b_rcred = NOCRED;
145		bp->b_wcred = NOCRED;
146		bp->b_qindex = QUEUE_EMPTY;
147		bp->b_vnbufs.le_next = NOLIST;
148		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
149		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
150	}
151/*
152 * maxbufspace is currently calculated to support all filesystem blocks
153 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
154 * cache is still the same as it would be for 8K filesystems.  This
155 * keeps the size of the buffer cache "in check" for big block filesystems.
156 */
157	maxbufspace = (nbuf + 8) * PAGE_SIZE;
158/*
159 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
160 */
161	maxvmiobufspace = 2 * maxbufspace / 3;
162/*
163 * Limit the amount of malloc memory since it is wired permanently into
164 * the kernel space.  Even though this is accounted for in the buffer
165 * allocation, we don't want the malloced region to grow uncontrolled.
166 * The malloc scheme improves memory utilization significantly on average
167 * (small) directories.
168 */
169	maxbufmallocspace = maxbufspace / 20;
170
171	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
172	bogus_page = vm_page_alloc(kernel_object,
173			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
174			VM_ALLOC_NORMAL);
175
176}
177
178/*
179 * Free the kva allocation for a buffer
180 * Must be called only at splbio or higher,
181 *  as this is the only locking for buffer_map.
182 */
183static void
184bfreekva(struct buf * bp)
185{
186	if (bp->b_kvasize == 0)
187		return;
188
189	vm_map_delete(buffer_map,
190		(vm_offset_t) bp->b_kvabase,
191		(vm_offset_t) bp->b_kvabase + bp->b_kvasize);
192
193	bp->b_kvasize = 0;
194
195}
196
197/*
198 * remove the buffer from the appropriate free list
199 */
200void
201bremfree(struct buf * bp)
202{
203	int s = splbio();
204
205	if (bp->b_qindex != QUEUE_NONE) {
206		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
207		bp->b_qindex = QUEUE_NONE;
208	} else {
209		panic("bremfree: removing a buffer when not on a queue");
210	}
211	splx(s);
212}
213
214/*
215 * Get a buffer with the specified data.  Look in the cache first.
216 */
217int
218bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
219    struct buf ** bpp)
220{
221	struct buf *bp;
222
223	bp = getblk(vp, blkno, size, 0, 0);
224	*bpp = bp;
225
226	/* if not found in cache, do some I/O */
227	if ((bp->b_flags & B_CACHE) == 0) {
228		if (curproc != NULL)
229			curproc->p_stats->p_ru.ru_inblock++;
230		bp->b_flags |= B_READ;
231		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
232		if (bp->b_rcred == NOCRED) {
233			if (cred != NOCRED)
234				crhold(cred);
235			bp->b_rcred = cred;
236		}
237		vfs_busy_pages(bp, 0);
238		VOP_STRATEGY(bp);
239		return (biowait(bp));
240	}
241	return (0);
242}
243
244/*
245 * Operates like bread, but also starts asynchronous I/O on
246 * read-ahead blocks.
247 */
248int
249breadn(struct vnode * vp, daddr_t blkno, int size,
250    daddr_t * rablkno, int *rabsize,
251    int cnt, struct ucred * cred, struct buf ** bpp)
252{
253	struct buf *bp, *rabp;
254	int i;
255	int rv = 0, readwait = 0;
256
257	*bpp = bp = getblk(vp, blkno, size, 0, 0);
258
259	/* if not found in cache, do some I/O */
260	if ((bp->b_flags & B_CACHE) == 0) {
261		if (curproc != NULL)
262			curproc->p_stats->p_ru.ru_inblock++;
263		bp->b_flags |= B_READ;
264		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
265		if (bp->b_rcred == NOCRED) {
266			if (cred != NOCRED)
267				crhold(cred);
268			bp->b_rcred = cred;
269		}
270		vfs_busy_pages(bp, 0);
271		VOP_STRATEGY(bp);
272		++readwait;
273	}
274	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
275		if (inmem(vp, *rablkno))
276			continue;
277		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
278
279		if ((rabp->b_flags & B_CACHE) == 0) {
280			if (curproc != NULL)
281				curproc->p_stats->p_ru.ru_inblock++;
282			rabp->b_flags |= B_READ | B_ASYNC;
283			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
284			if (rabp->b_rcred == NOCRED) {
285				if (cred != NOCRED)
286					crhold(cred);
287				rabp->b_rcred = cred;
288			}
289			vfs_busy_pages(rabp, 0);
290			VOP_STRATEGY(rabp);
291		} else {
292			brelse(rabp);
293		}
294	}
295
296	if (readwait) {
297		rv = biowait(bp);
298	}
299	return (rv);
300}
301
302/*
303 * Write, release buffer on completion.  (Done by iodone
304 * if async.)
305 */
306int
307bwrite(struct buf * bp)
308{
309	int oldflags = bp->b_flags;
310
311	if (bp->b_flags & B_INVAL) {
312		brelse(bp);
313		return (0);
314	}
315	if (!(bp->b_flags & B_BUSY))
316		panic("bwrite: buffer is not busy???");
317
318	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
319	bp->b_flags |= B_WRITEINPROG;
320
321	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
322		reassignbuf(bp, bp->b_vp);
323	}
324
325	bp->b_vp->v_numoutput++;
326	vfs_busy_pages(bp, 1);
327	if (curproc != NULL)
328		curproc->p_stats->p_ru.ru_oublock++;
329	VOP_STRATEGY(bp);
330
331	/*
332	 * Handle ordered writes here.
333	 * If the write was originally flagged as ordered,
334	 * then we check to see if it was converted to async.
335	 * If it was converted to async, and is done now, then
336	 * we release the buffer.  Otherwise we clear the
337	 * ordered flag because it is not needed anymore.
338	 *
339 	 * Note that biodone has been modified so that it does
340	 * not release ordered buffers.  This allows us to have
341	 * a chance to determine whether or not the driver
342	 * has set the async flag in the strategy routine.  Otherwise
343	 * if biodone was not modified, then the buffer may have been
344	 * reused before we have had a chance to check the flag.
345	 */
346
347	if ((oldflags & B_ORDERED) == B_ORDERED) {
348		int s;
349		s = splbio();
350		if (bp->b_flags & B_ASYNC)  {
351			if ((bp->b_flags & B_DONE)) {
352				if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
353					brelse(bp);
354				else
355					bqrelse(bp);
356			}
357			splx(s);
358			return (0);
359		} else {
360			bp->b_flags &= ~B_ORDERED;
361		}
362		splx(s);
363	}
364
365	if ((oldflags & B_ASYNC) == 0) {
366		int rtval = biowait(bp);
367
368		if (oldflags & B_DELWRI) {
369			reassignbuf(bp, bp->b_vp);
370		}
371		brelse(bp);
372		return (rtval);
373	}
374	return (0);
375}
376
377int
378vn_bwrite(ap)
379	struct vop_bwrite_args *ap;
380{
381	return (bwrite(ap->a_bp));
382}
383
384/*
385 * Delayed write. (Buffer is marked dirty).
386 */
387void
388bdwrite(struct buf * bp)
389{
390
391	if ((bp->b_flags & B_BUSY) == 0) {
392		panic("bdwrite: buffer is not busy");
393	}
394	if (bp->b_flags & B_INVAL) {
395		brelse(bp);
396		return;
397	}
398	if (bp->b_flags & B_TAPE) {
399		bawrite(bp);
400		return;
401	}
402	bp->b_flags &= ~(B_READ|B_RELBUF);
403	if ((bp->b_flags & B_DELWRI) == 0) {
404		bp->b_flags |= B_DONE | B_DELWRI;
405		reassignbuf(bp, bp->b_vp);
406	}
407
408	/*
409	 * This bmap keeps the system from needing to do the bmap later,
410	 * perhaps when the system is attempting to do a sync.  Since it
411	 * is likely that the indirect block -- or whatever other datastructure
412	 * that the filesystem needs is still in memory now, it is a good
413	 * thing to do this.  Note also, that if the pageout daemon is
414	 * requesting a sync -- there might not be enough memory to do
415	 * the bmap then...  So, this is important to do.
416	 */
417	if( bp->b_lblkno == bp->b_blkno) {
418		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
419	}
420
421	/*
422	 * Set the *dirty* buffer range based upon the VM system dirty pages.
423	 */
424	vfs_setdirty(bp);
425
426	/*
427	 * We need to do this here to satisfy the vnode_pager and the
428	 * pageout daemon, so that it thinks that the pages have been
429	 * "cleaned".  Note that since the pages are in a delayed write
430	 * buffer -- the VFS layer "will" see that the pages get written
431	 * out on the next sync, or perhaps the cluster will be completed.
432	 */
433	vfs_clean_pages(bp);
434	bqrelse(bp);
435	return;
436}
437
438/*
439 * Asynchronous write.
440 * Start output on a buffer, but do not wait for it to complete.
441 * The buffer is released when the output completes.
442 */
443void
444bawrite(struct buf * bp)
445{
446	bp->b_flags |= B_ASYNC;
447	(void) VOP_BWRITE(bp);
448}
449
450/*
451 * Ordered write.
452 * Start output on a buffer, but only wait for it to complete if the
453 * output device cannot guarantee ordering in some other way.  Devices
454 * that can perform asynchronous ordered writes will set the B_ASYNC
455 * flag in their strategy routine.
456 * The buffer is released when the output completes.
457 */
458int
459bowrite(struct buf * bp)
460{
461	bp->b_flags |= B_ORDERED;
462	return (VOP_BWRITE(bp));
463}
464
465/*
466 * Release a buffer.
467 */
468void
469brelse(struct buf * bp)
470{
471	int s;
472
473	if (bp->b_flags & B_CLUSTER) {
474		relpbuf(bp);
475		return;
476	}
477	/* anyone need a "free" block? */
478	s = splbio();
479
480	/* anyone need this block? */
481	if (bp->b_flags & B_WANTED) {
482		bp->b_flags &= ~(B_WANTED | B_AGE);
483		wakeup(bp);
484	}
485
486	if (bp->b_flags & B_LOCKED)
487		bp->b_flags &= ~B_ERROR;
488
489	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
490	    (bp->b_bufsize <= 0)) {
491		bp->b_flags |= B_INVAL;
492		bp->b_flags &= ~(B_DELWRI | B_CACHE);
493		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
494			if (bp->b_bufsize)
495				allocbuf(bp, 0);
496			brelvp(bp);
497		}
498	}
499
500	/*
501	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
502	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
503	 * but the VM object is kept around.  The B_NOCACHE flag is used to
504	 * invalidate the pages in the VM object.
505	 */
506	if (bp->b_flags & B_VMIO) {
507		vm_ooffset_t foff;
508		vm_object_t obj;
509		int i, resid;
510		vm_page_t m;
511		struct vnode *vp;
512		int iototal = bp->b_bufsize;
513
514		vp = bp->b_vp;
515		if (!vp)
516			panic("brelse: missing vp");
517
518		if (bp->b_npages) {
519			vm_pindex_t poff;
520			obj = (vm_object_t) vp->v_object;
521			if (vp->v_type == VBLK)
522				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
523			else
524				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
525			poff = OFF_TO_IDX(foff);
526			for (i = 0; i < bp->b_npages; i++) {
527				m = bp->b_pages[i];
528				if (m == bogus_page) {
529					m = vm_page_lookup(obj, poff + i);
530					if (!m) {
531						panic("brelse: page missing\n");
532					}
533					bp->b_pages[i] = m;
534					pmap_qenter(trunc_page(bp->b_data),
535						bp->b_pages, bp->b_npages);
536				}
537				resid = IDX_TO_OFF(m->pindex+1) - foff;
538				if (resid > iototal)
539					resid = iototal;
540				if (resid > 0) {
541					/*
542					 * Don't invalidate the page if the local machine has already
543					 * modified it.  This is the lesser of two evils, and should
544					 * be fixed.
545					 */
546					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
547						vm_page_test_dirty(m);
548						if (m->dirty == 0) {
549							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
550							if (m->valid == 0)
551								vm_page_protect(m, VM_PROT_NONE);
552						}
553					}
554					if (resid >= PAGE_SIZE) {
555						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
556							bp->b_flags |= B_INVAL;
557						}
558					} else {
559						if (!vm_page_is_valid(m,
560							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
561							bp->b_flags |= B_INVAL;
562						}
563					}
564				}
565				foff += resid;
566				iototal -= resid;
567			}
568		}
569		if (bp->b_flags & (B_INVAL | B_RELBUF))
570			vfs_vmio_release(bp);
571	}
572	if (bp->b_qindex != QUEUE_NONE)
573		panic("brelse: free buffer onto another queue???");
574
575	/* enqueue */
576	/* buffers with no memory */
577	if (bp->b_bufsize == 0) {
578		bp->b_qindex = QUEUE_EMPTY;
579		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
580		LIST_REMOVE(bp, b_hash);
581		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
582		bp->b_dev = NODEV;
583		/*
584		 * Get rid of the kva allocation *now*
585		 */
586		bfreekva(bp);
587		if (needsbuffer) {
588			wakeup(&needsbuffer);
589			needsbuffer=0;
590		}
591		/* buffers with junk contents */
592	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
593		bp->b_qindex = QUEUE_AGE;
594		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
595		LIST_REMOVE(bp, b_hash);
596		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
597		bp->b_dev = NODEV;
598		if (needsbuffer) {
599			wakeup(&needsbuffer);
600			needsbuffer=0;
601		}
602		/* buffers that are locked */
603	} else if (bp->b_flags & B_LOCKED) {
604		bp->b_qindex = QUEUE_LOCKED;
605		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
606		/* buffers with stale but valid contents */
607	} else if (bp->b_flags & B_AGE) {
608		bp->b_qindex = QUEUE_AGE;
609		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
610		if (needsbuffer) {
611			wakeup(&needsbuffer);
612			needsbuffer=0;
613		}
614		/* buffers with valid and quite potentially reuseable contents */
615	} else {
616		bp->b_qindex = QUEUE_LRU;
617		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
618		if (needsbuffer) {
619			wakeup(&needsbuffer);
620			needsbuffer=0;
621		}
622	}
623
624	/* unlock */
625	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
626				B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
627	splx(s);
628}
629
630/*
631 * Release a buffer.
632 */
633void
634bqrelse(struct buf * bp)
635{
636	int s;
637
638	s = splbio();
639
640
641	/* anyone need this block? */
642	if (bp->b_flags & B_WANTED) {
643		bp->b_flags &= ~(B_WANTED | B_AGE);
644		wakeup(bp);
645	}
646
647	if (bp->b_qindex != QUEUE_NONE)
648		panic("bqrelse: free buffer onto another queue???");
649
650	if (bp->b_flags & B_LOCKED) {
651		bp->b_flags &= ~B_ERROR;
652		bp->b_qindex = QUEUE_LOCKED;
653		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
654		/* buffers with stale but valid contents */
655	} else {
656		bp->b_qindex = QUEUE_LRU;
657		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
658		if (needsbuffer) {
659			wakeup(&needsbuffer);
660			needsbuffer=0;
661		}
662	}
663
664	/* unlock */
665	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
666		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
667	splx(s);
668}
669
670static void
671vfs_vmio_release(bp)
672	struct buf *bp;
673{
674	int i;
675	vm_page_t m;
676
677	for (i = 0; i < bp->b_npages; i++) {
678		m = bp->b_pages[i];
679		bp->b_pages[i] = NULL;
680		vm_page_unwire(m);
681		/*
682		 * We don't mess with busy pages, it is
683		 * the responsibility of the process that
684		 * busied the pages to deal with them.
685		 */
686		if ((m->flags & PG_BUSY) || (m->busy != 0))
687			continue;
688
689		if (m->wire_count == 0) {
690
691			if (m->flags & PG_WANTED) {
692				m->flags &= ~PG_WANTED;
693				wakeup(m);
694			}
695
696			/*
697			 * If this is an async free -- we cannot place
698			 * pages onto the cache queue, so our policy for
699			 * such buffers is to avoid the cache queue, and
700			 * only modify the active queue or free queue.
701			 */
702			if ((bp->b_flags & B_ASYNC) == 0) {
703
704			/*
705			 * In the case of sync buffer frees, we can do pretty much
706			 * anything to any of the memory queues.  Specifically,
707			 * the cache queue is free to be modified.
708			 */
709				if (m->valid) {
710					if(m->dirty == 0)
711						vm_page_test_dirty(m);
712					/*
713					 * this keeps pressure off of the process memory
714					 */
715					if ((vm_swap_size == 0) ||
716						(cnt.v_free_count < cnt.v_free_min)) {
717						if ((m->dirty == 0) &&
718							(m->hold_count == 0))
719							vm_page_cache(m);
720						else
721							vm_page_deactivate(m);
722					}
723				} else if (m->hold_count == 0) {
724					vm_page_protect(m, VM_PROT_NONE);
725					vm_page_free(m);
726				}
727			} else {
728				/*
729				 * If async, then at least we clear the
730				 * act_count.
731				 */
732				m->act_count = 0;
733			}
734		}
735	}
736	bufspace -= bp->b_bufsize;
737	vmiospace -= bp->b_bufsize;
738	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
739	bp->b_npages = 0;
740	bp->b_bufsize = 0;
741	bp->b_flags &= ~B_VMIO;
742	if (bp->b_vp)
743		brelvp(bp);
744}
745
746/*
747 * Check to see if a block is currently memory resident.
748 */
749struct buf *
750gbincore(struct vnode * vp, daddr_t blkno)
751{
752	struct buf *bp;
753	struct bufhashhdr *bh;
754
755	bh = BUFHASH(vp, blkno);
756	bp = bh->lh_first;
757
758	/* Search hash chain */
759	while (bp != NULL) {
760		/* hit */
761		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
762		    (bp->b_flags & B_INVAL) == 0) {
763			break;
764		}
765		bp = bp->b_hash.le_next;
766	}
767	return (bp);
768}
769
770/*
771 * this routine implements clustered async writes for
772 * clearing out B_DELWRI buffers...  This is much better
773 * than the old way of writing only one buffer at a time.
774 */
775int
776vfs_bio_awrite(struct buf * bp)
777{
778	int i;
779	daddr_t lblkno = bp->b_lblkno;
780	struct vnode *vp = bp->b_vp;
781	int s;
782	int ncl;
783	struct buf *bpa;
784	int nwritten;
785
786	s = splbio();
787	/*
788	 * right now we support clustered writing only to regular files
789	 */
790	if ((vp->v_type == VREG) &&
791	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
792	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
793		int size;
794		int maxcl;
795
796		size = vp->v_mount->mnt_stat.f_iosize;
797		maxcl = MAXPHYS / size;
798
799		for (i = 1; i < maxcl; i++) {
800			if ((bpa = gbincore(vp, lblkno + i)) &&
801			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
802			    (B_DELWRI | B_CLUSTEROK)) &&
803			    (bpa->b_bufsize == size)) {
804				if ((bpa->b_blkno == bpa->b_lblkno) ||
805				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
806					break;
807			} else {
808				break;
809			}
810		}
811		ncl = i;
812		/*
813		 * this is a possible cluster write
814		 */
815		if (ncl != 1) {
816			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
817			splx(s);
818			return nwritten;
819		}
820	}
821	bremfree(bp);
822	splx(s);
823	/*
824	 * default (old) behavior, writing out only one block
825	 */
826	bp->b_flags |= B_BUSY | B_ASYNC;
827	nwritten = bp->b_bufsize;
828	(void) VOP_BWRITE(bp);
829	return nwritten;
830}
831
832
833/*
834 * Find a buffer header which is available for use.
835 */
836static struct buf *
837getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
838{
839	struct buf *bp;
840	int nbyteswritten = 0;
841	vm_offset_t addr;
842
843start:
844	if (bufspace >= maxbufspace)
845		goto trytofreespace;
846
847	/* can we constitute a new buffer? */
848	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
849		if (bp->b_qindex != QUEUE_EMPTY)
850			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
851			    bp->b_qindex);
852		bp->b_flags |= B_BUSY;
853		bremfree(bp);
854		goto fillbuf;
855	}
856trytofreespace:
857	/*
858	 * We keep the file I/O from hogging metadata I/O
859	 * This is desirable because file data is cached in the
860	 * VM/Buffer cache even if a buffer is freed.
861	 */
862	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
863		if (bp->b_qindex != QUEUE_AGE)
864			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
865			    bp->b_qindex);
866	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
867		if (bp->b_qindex != QUEUE_LRU)
868			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
869			    bp->b_qindex);
870	}
871	if (!bp) {
872		/* wait for a free buffer of any kind */
873		needsbuffer = 1;
874		tsleep(&needsbuffer,
875			(PRIBIO + 1) | slpflag, "newbuf", slptimeo);
876		return (0);
877	}
878
879#if defined(DIAGNOSTIC)
880	if (bp->b_flags & B_BUSY) {
881		panic("getnewbuf: busy buffer on free list\n");
882	}
883#endif
884
885	/*
886	 * We are fairly aggressive about freeing VMIO buffers, but since
887	 * the buffering is intact without buffer headers, there is not
888	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
889	 */
890	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
891		if ((bp->b_flags & B_VMIO) == 0 ||
892			(vmiospace < maxvmiobufspace)) {
893			--bp->b_usecount;
894			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
895			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
896				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
897				goto start;
898			}
899			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
900		}
901	}
902
903	/* if we are a delayed write, convert to an async write */
904	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
905		nbyteswritten += vfs_bio_awrite(bp);
906		if (!slpflag && !slptimeo) {
907			return (0);
908		}
909		goto start;
910	}
911
912	if (bp->b_flags & B_WANTED) {
913		bp->b_flags &= ~B_WANTED;
914		wakeup(bp);
915	}
916	bremfree(bp);
917	bp->b_flags |= B_BUSY;
918
919	if (bp->b_flags & B_VMIO) {
920		bp->b_flags &= ~B_ASYNC;
921		vfs_vmio_release(bp);
922	}
923
924	if (bp->b_vp)
925		brelvp(bp);
926
927fillbuf:
928	/* we are not free, nor do we contain interesting data */
929	if (bp->b_rcred != NOCRED) {
930		crfree(bp->b_rcred);
931		bp->b_rcred = NOCRED;
932	}
933	if (bp->b_wcred != NOCRED) {
934		crfree(bp->b_wcred);
935		bp->b_wcred = NOCRED;
936	}
937
938	LIST_REMOVE(bp, b_hash);
939	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
940	if (bp->b_bufsize) {
941		allocbuf(bp, 0);
942	}
943	bp->b_flags = B_BUSY;
944	bp->b_dev = NODEV;
945	bp->b_vp = NULL;
946	bp->b_blkno = bp->b_lblkno = 0;
947	bp->b_iodone = 0;
948	bp->b_error = 0;
949	bp->b_resid = 0;
950	bp->b_bcount = 0;
951	bp->b_npages = 0;
952	bp->b_dirtyoff = bp->b_dirtyend = 0;
953	bp->b_validoff = bp->b_validend = 0;
954	bp->b_usecount = 4;
955
956	maxsize = (maxsize + PAGE_MASK) & ~PAGE_MASK;
957	bfreekva(bp);
958
959	/*
960	 * See if we have buffer kva space
961	 */
962	if (vm_map_findspace(buffer_map, 0, maxsize, &addr)) {
963		bp->b_flags |= B_INVAL;
964		brelse(bp);
965		goto trytofreespace;
966	}
967
968	/*
969	 * See if we are below are allocated minimum
970	 */
971	if (bufspace >= (maxbufspace + nbyteswritten)) {
972		bp->b_flags |= B_INVAL;
973		brelse(bp);
974		goto trytofreespace;
975	}
976
977	/*
978	 * create a map entry for the buffer -- in essence
979	 * reserving the kva space.
980	 */
981	vm_map_insert(buffer_map, NULL, 0,
982		addr, addr + maxsize,
983		VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
984
985	bp->b_data = (caddr_t) addr;
986	bp->b_kvabase = (caddr_t) addr;
987	bp->b_kvasize = maxsize;
988
989	return (bp);
990}
991
992/*
993 * Check to see if a block is currently memory resident.
994 */
995struct buf *
996incore(struct vnode * vp, daddr_t blkno)
997{
998	struct buf *bp;
999
1000	int s = splbio();
1001	bp = gbincore(vp, blkno);
1002	splx(s);
1003	return (bp);
1004}
1005
1006/*
1007 * Returns true if no I/O is needed to access the
1008 * associated VM object.  This is like incore except
1009 * it also hunts around in the VM system for the data.
1010 */
1011
1012int
1013inmem(struct vnode * vp, daddr_t blkno)
1014{
1015	vm_object_t obj;
1016	vm_offset_t toff, tinc;
1017	vm_page_t m;
1018	vm_ooffset_t off;
1019
1020	if (incore(vp, blkno))
1021		return 1;
1022	if (vp->v_mount == NULL)
1023		return 0;
1024	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
1025		return 0;
1026
1027	obj = vp->v_object;
1028	tinc = PAGE_SIZE;
1029	if (tinc > vp->v_mount->mnt_stat.f_iosize)
1030		tinc = vp->v_mount->mnt_stat.f_iosize;
1031	off = blkno * vp->v_mount->mnt_stat.f_iosize;
1032
1033	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
1034
1035		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
1036		if (!m)
1037			return 0;
1038		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
1039			return 0;
1040	}
1041	return 1;
1042}
1043
1044/*
1045 * now we set the dirty range for the buffer --
1046 * for NFS -- if the file is mapped and pages have
1047 * been written to, let it know.  We want the
1048 * entire range of the buffer to be marked dirty if
1049 * any of the pages have been written to for consistancy
1050 * with the b_validoff, b_validend set in the nfs write
1051 * code, and used by the nfs read code.
1052 */
1053static void
1054vfs_setdirty(struct buf *bp) {
1055	int i;
1056	vm_object_t object;
1057	vm_offset_t boffset, offset;
1058	/*
1059	 * We qualify the scan for modified pages on whether the
1060	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1061	 * is not cleared simply by protecting pages off.
1062	 */
1063	if ((bp->b_flags & B_VMIO) &&
1064		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1065		/*
1066		 * test the pages to see if they have been modified directly
1067		 * by users through the VM system.
1068		 */
1069		for (i = 0; i < bp->b_npages; i++)
1070			vm_page_test_dirty(bp->b_pages[i]);
1071
1072		/*
1073		 * scan forwards for the first page modified
1074		 */
1075		for (i = 0; i < bp->b_npages; i++) {
1076			if (bp->b_pages[i]->dirty) {
1077				break;
1078			}
1079		}
1080		boffset = (i << PAGE_SHIFT);
1081		if (boffset < bp->b_dirtyoff) {
1082			bp->b_dirtyoff = boffset;
1083		}
1084
1085		/*
1086		 * scan backwards for the last page modified
1087		 */
1088		for (i = bp->b_npages - 1; i >= 0; --i) {
1089			if (bp->b_pages[i]->dirty) {
1090				break;
1091			}
1092		}
1093		boffset = (i + 1);
1094		offset = boffset + bp->b_pages[0]->pindex;
1095		if (offset >= object->size)
1096			boffset = object->size - bp->b_pages[0]->pindex;
1097		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
1098			bp->b_dirtyend = (boffset << PAGE_SHIFT);
1099	}
1100}
1101
1102/*
1103 * Get a block given a specified block and offset into a file/device.
1104 */
1105struct buf *
1106getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1107{
1108	struct buf *bp;
1109	int s;
1110	struct bufhashhdr *bh;
1111	int maxsize;
1112
1113	if (vp->v_mount) {
1114		maxsize = vp->v_mount->mnt_stat.f_iosize;
1115		/*
1116		 * This happens on mount points.
1117		 */
1118		if (maxsize < size)
1119			maxsize = size;
1120	} else {
1121		maxsize = size;
1122	}
1123
1124	if (size > MAXBSIZE)
1125		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1126
1127	s = splbio();
1128loop:
1129	if ((bp = gbincore(vp, blkno))) {
1130		if (bp->b_flags & B_BUSY) {
1131			bp->b_flags |= B_WANTED;
1132			if (bp->b_usecount < BUF_MAXUSE)
1133				++bp->b_usecount;
1134			if (!tsleep(bp,
1135				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
1136				goto loop;
1137
1138			splx(s);
1139			return (struct buf *) NULL;
1140		}
1141		bp->b_flags |= B_BUSY | B_CACHE;
1142		bremfree(bp);
1143
1144		/*
1145		 * check for size inconsistancies (note that they shouldn't happen
1146		 * but do when filesystems don't handle the size changes correctly.)
1147		 * We are conservative on metadata and don't just extend the buffer
1148		 * but write and re-constitute it.
1149		 */
1150
1151		if (bp->b_bcount != size) {
1152			if ((bp->b_flags & B_VMIO) && (size <= bp->b_kvasize)) {
1153				allocbuf(bp, size);
1154			} else {
1155				bp->b_flags |= B_NOCACHE;
1156				VOP_BWRITE(bp);
1157				goto loop;
1158			}
1159		}
1160
1161		if (bp->b_usecount < BUF_MAXUSE)
1162			++bp->b_usecount;
1163		splx(s);
1164		return (bp);
1165	} else {
1166		vm_object_t obj;
1167
1168		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == 0) {
1169			if (slpflag || slptimeo) {
1170				splx(s);
1171				return NULL;
1172			}
1173			goto loop;
1174		}
1175
1176		/*
1177		 * This code is used to make sure that a buffer is not
1178		 * created while the getnewbuf routine is blocked.
1179		 * Normally the vnode is locked so this isn't a problem.
1180		 * VBLK type I/O requests, however, don't lock the vnode.
1181		 */
1182		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1183			bp->b_flags |= B_INVAL;
1184			brelse(bp);
1185			goto loop;
1186		}
1187
1188		/*
1189		 * Insert the buffer into the hash, so that it can
1190		 * be found by incore.
1191		 */
1192		bp->b_blkno = bp->b_lblkno = blkno;
1193		bgetvp(vp, bp);
1194		LIST_REMOVE(bp, b_hash);
1195		bh = BUFHASH(vp, blkno);
1196		LIST_INSERT_HEAD(bh, bp, b_hash);
1197
1198		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1199			bp->b_flags |= (B_VMIO | B_CACHE);
1200#if defined(VFS_BIO_DEBUG)
1201			if (vp->v_type != VREG && vp->v_type != VBLK)
1202				printf("getblk: vmioing file type %d???\n", vp->v_type);
1203#endif
1204		} else {
1205			bp->b_flags &= ~B_VMIO;
1206		}
1207		splx(s);
1208
1209		allocbuf(bp, size);
1210#ifdef	PC98
1211		/*
1212		 * 1024byte/sector support
1213		 */
1214#define B_XXX2 0x8000000
1215		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1216#endif
1217		return (bp);
1218	}
1219}
1220
1221/*
1222 * Get an empty, disassociated buffer of given size.
1223 */
1224struct buf *
1225geteblk(int size)
1226{
1227	struct buf *bp;
1228	int s;
1229
1230	s = splbio();
1231	while ((bp = getnewbuf(0, 0, size, MAXBSIZE)) == 0);
1232	splx(s);
1233	allocbuf(bp, size);
1234	bp->b_flags |= B_INVAL;
1235	return (bp);
1236}
1237
1238
1239/*
1240 * This code constitutes the buffer memory from either anonymous system
1241 * memory (in the case of non-VMIO operations) or from an associated
1242 * VM object (in the case of VMIO operations).
1243 *
1244 * Note that this code is tricky, and has many complications to resolve
1245 * deadlock or inconsistant data situations.  Tread lightly!!!
1246 *
1247 * Modify the length of a buffer's underlying buffer storage without
1248 * destroying information (unless, of course the buffer is shrinking).
1249 */
1250int
1251allocbuf(struct buf * bp, int size)
1252{
1253
1254	int s;
1255	int newbsize, mbsize;
1256	int i;
1257
1258	if (!(bp->b_flags & B_BUSY))
1259		panic("allocbuf: buffer not busy");
1260
1261	if (bp->b_kvasize < size)
1262		panic("allocbuf: buffer too small");
1263
1264	if ((bp->b_flags & B_VMIO) == 0) {
1265		caddr_t origbuf;
1266		int origbufsize;
1267		/*
1268		 * Just get anonymous memory from the kernel
1269		 */
1270		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1271#if !defined(NO_B_MALLOC)
1272		if (bp->b_flags & B_MALLOC)
1273			newbsize = mbsize;
1274		else
1275#endif
1276			newbsize = round_page(size);
1277
1278		if (newbsize < bp->b_bufsize) {
1279#if !defined(NO_B_MALLOC)
1280			/*
1281			 * malloced buffers are not shrunk
1282			 */
1283			if (bp->b_flags & B_MALLOC) {
1284				if (newbsize) {
1285					bp->b_bcount = size;
1286				} else {
1287					free(bp->b_data, M_BIOBUF);
1288					bufspace -= bp->b_bufsize;
1289					bufmallocspace -= bp->b_bufsize;
1290					bp->b_data = bp->b_kvabase;
1291					bp->b_bufsize = 0;
1292					bp->b_bcount = 0;
1293					bp->b_flags &= ~B_MALLOC;
1294				}
1295				return 1;
1296			}
1297#endif
1298			vm_hold_free_pages(
1299			    bp,
1300			    (vm_offset_t) bp->b_data + newbsize,
1301			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1302		} else if (newbsize > bp->b_bufsize) {
1303#if !defined(NO_B_MALLOC)
1304			/*
1305			 * We only use malloced memory on the first allocation.
1306			 * and revert to page-allocated memory when the buffer grows.
1307			 */
1308			if ( (bufmallocspace < maxbufmallocspace) &&
1309				(bp->b_bufsize == 0) &&
1310				(mbsize <= PAGE_SIZE/2)) {
1311
1312				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1313				bp->b_bufsize = mbsize;
1314				bp->b_bcount = size;
1315				bp->b_flags |= B_MALLOC;
1316				bufspace += mbsize;
1317				bufmallocspace += mbsize;
1318				return 1;
1319			}
1320#endif
1321			origbuf = NULL;
1322			origbufsize = 0;
1323#if !defined(NO_B_MALLOC)
1324			/*
1325			 * If the buffer is growing on it's other-than-first allocation,
1326			 * then we revert to the page-allocation scheme.
1327			 */
1328			if (bp->b_flags & B_MALLOC) {
1329				origbuf = bp->b_data;
1330				origbufsize = bp->b_bufsize;
1331				bp->b_data = bp->b_kvabase;
1332				bufspace -= bp->b_bufsize;
1333				bufmallocspace -= bp->b_bufsize;
1334				bp->b_bufsize = 0;
1335				bp->b_flags &= ~B_MALLOC;
1336				newbsize = round_page(newbsize);
1337			}
1338#endif
1339			vm_hold_load_pages(
1340			    bp,
1341			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1342			    (vm_offset_t) bp->b_data + newbsize);
1343#if !defined(NO_B_MALLOC)
1344			if (origbuf) {
1345				bcopy(origbuf, bp->b_data, origbufsize);
1346				free(origbuf, M_BIOBUF);
1347			}
1348#endif
1349		}
1350	} else {
1351		vm_page_t m;
1352		int desiredpages;
1353
1354		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1355		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1356
1357#if !defined(NO_B_MALLOC)
1358		if (bp->b_flags & B_MALLOC)
1359			panic("allocbuf: VMIO buffer can't be malloced");
1360#endif
1361
1362		if (newbsize < bp->b_bufsize) {
1363			if (desiredpages < bp->b_npages) {
1364				for (i = desiredpages; i < bp->b_npages; i++) {
1365					/*
1366					 * the page is not freed here -- it
1367					 * is the responsibility of vnode_pager_setsize
1368					 */
1369					m = bp->b_pages[i];
1370#if defined(DIAGNOSTIC)
1371					if (m == bogus_page)
1372						panic("allocbuf: bogus page found");
1373#endif
1374					s = splvm();
1375					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1376						m->flags |= PG_WANTED;
1377						tsleep(m, PVM, "biodep", 0);
1378					}
1379					splx(s);
1380
1381					bp->b_pages[i] = NULL;
1382					vm_page_unwire(m);
1383				}
1384				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1385				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1386				bp->b_npages = desiredpages;
1387			}
1388		} else if (newbsize > bp->b_bufsize) {
1389			vm_object_t obj;
1390			vm_offset_t tinc, toff;
1391			vm_ooffset_t off;
1392			vm_pindex_t objoff;
1393			int pageindex, curbpnpages;
1394			struct vnode *vp;
1395			int bsize;
1396
1397			vp = bp->b_vp;
1398
1399			if (vp->v_type == VBLK)
1400				bsize = DEV_BSIZE;
1401			else
1402				bsize = vp->v_mount->mnt_stat.f_iosize;
1403
1404			if (bp->b_npages < desiredpages) {
1405				obj = vp->v_object;
1406				tinc = PAGE_SIZE;
1407				if (tinc > bsize)
1408					tinc = bsize;
1409				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1410				curbpnpages = bp->b_npages;
1411		doretry:
1412				bp->b_flags |= B_CACHE;
1413				for (toff = 0; toff < newbsize; toff += tinc) {
1414					int bytesinpage;
1415
1416					pageindex = toff >> PAGE_SHIFT;
1417					objoff = OFF_TO_IDX(off + toff);
1418					if (pageindex < curbpnpages) {
1419
1420						m = bp->b_pages[pageindex];
1421#ifdef VFS_BIO_DIAG
1422						if (m->pindex != objoff)
1423							panic("allocbuf: page changed offset??!!!?");
1424#endif
1425						bytesinpage = tinc;
1426						if (tinc > (newbsize - toff))
1427							bytesinpage = newbsize - toff;
1428						if ((bp->b_flags & B_CACHE) &&
1429							!vm_page_is_valid(m,
1430							(vm_offset_t) ((toff + off) & PAGE_MASK),
1431							bytesinpage)) {
1432							bp->b_flags &= ~B_CACHE;
1433						}
1434						continue;
1435					}
1436					m = vm_page_lookup(obj, objoff);
1437					if (!m) {
1438						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1439						if (!m) {
1440							VM_WAIT;
1441							goto doretry;
1442						}
1443						/*
1444						 * Normally it is unwise to clear PG_BUSY without
1445						 * PAGE_WAKEUP -- but it is okay here, as there is
1446						 * no chance for blocking between here and vm_page_alloc
1447						 */
1448						m->flags &= ~PG_BUSY;
1449						vm_page_wire(m);
1450						bp->b_flags &= ~B_CACHE;
1451					} else if (m->flags & PG_BUSY) {
1452						s = splvm();
1453						if (m->flags & PG_BUSY) {
1454							m->flags |= PG_WANTED;
1455							tsleep(m, PVM, "pgtblk", 0);
1456						}
1457						splx(s);
1458						goto doretry;
1459					} else {
1460						if ((curproc != pageproc) &&
1461							((m->queue - m->pc) == PQ_CACHE) &&
1462						    ((cnt.v_free_count + cnt.v_cache_count) <
1463								(cnt.v_free_min + cnt.v_cache_min))) {
1464							pagedaemon_wakeup();
1465						}
1466						bytesinpage = tinc;
1467						if (tinc > (newbsize - toff))
1468							bytesinpage = newbsize - toff;
1469						if ((bp->b_flags & B_CACHE) &&
1470							!vm_page_is_valid(m,
1471							(vm_offset_t) ((toff + off) & PAGE_MASK),
1472							bytesinpage)) {
1473							bp->b_flags &= ~B_CACHE;
1474						}
1475						vm_page_wire(m);
1476					}
1477					bp->b_pages[pageindex] = m;
1478					curbpnpages = pageindex + 1;
1479				}
1480				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1481				bp->b_npages = curbpnpages;
1482				pmap_qenter((vm_offset_t) bp->b_data,
1483					bp->b_pages, bp->b_npages);
1484				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1485			}
1486		}
1487	}
1488	if (bp->b_flags & B_VMIO)
1489		vmiospace += bp->b_bufsize;
1490	bufspace += (newbsize - bp->b_bufsize);
1491	bp->b_bufsize = newbsize;
1492	bp->b_bcount = size;
1493	return 1;
1494}
1495
1496/*
1497 * Wait for buffer I/O completion, returning error status.
1498 */
1499int
1500biowait(register struct buf * bp)
1501{
1502	int s;
1503
1504	s = splbio();
1505	while ((bp->b_flags & B_DONE) == 0)
1506		tsleep(bp, PRIBIO, "biowait", 0);
1507	splx(s);
1508	if (bp->b_flags & B_EINTR) {
1509		bp->b_flags &= ~B_EINTR;
1510		return (EINTR);
1511	}
1512	if (bp->b_flags & B_ERROR) {
1513		return (bp->b_error ? bp->b_error : EIO);
1514	} else {
1515		return (0);
1516	}
1517}
1518
1519/*
1520 * Finish I/O on a buffer, calling an optional function.
1521 * This is usually called from interrupt level, so process blocking
1522 * is not *a good idea*.
1523 */
1524void
1525biodone(register struct buf * bp)
1526{
1527	int s;
1528
1529	s = splbio();
1530	if (!(bp->b_flags & B_BUSY))
1531		panic("biodone: buffer not busy");
1532
1533	if (bp->b_flags & B_DONE) {
1534		splx(s);
1535		printf("biodone: buffer already done\n");
1536		return;
1537	}
1538	bp->b_flags |= B_DONE;
1539
1540	if ((bp->b_flags & B_READ) == 0) {
1541		vwakeup(bp);
1542	}
1543#ifdef BOUNCE_BUFFERS
1544	if (bp->b_flags & B_BOUNCE)
1545		vm_bounce_free(bp);
1546#endif
1547
1548	/* call optional completion function if requested */
1549	if (bp->b_flags & B_CALL) {
1550		bp->b_flags &= ~B_CALL;
1551		(*bp->b_iodone) (bp);
1552		splx(s);
1553		return;
1554	}
1555	if (bp->b_flags & B_VMIO) {
1556		int i, resid;
1557		vm_ooffset_t foff;
1558		vm_page_t m;
1559		vm_object_t obj;
1560		int iosize;
1561		struct vnode *vp = bp->b_vp;
1562
1563		if (vp->v_type == VBLK)
1564			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1565		else
1566			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1567		obj = vp->v_object;
1568		if (!obj) {
1569			panic("biodone: no object");
1570		}
1571#if defined(VFS_BIO_DEBUG)
1572		if (obj->paging_in_progress < bp->b_npages) {
1573			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1574			    obj->paging_in_progress, bp->b_npages);
1575		}
1576#endif
1577		iosize = bp->b_bufsize;
1578		for (i = 0; i < bp->b_npages; i++) {
1579			int bogusflag = 0;
1580			m = bp->b_pages[i];
1581			if (m == bogus_page) {
1582				bogusflag = 1;
1583				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1584				if (!m) {
1585#if defined(VFS_BIO_DEBUG)
1586					printf("biodone: page disappeared\n");
1587#endif
1588					--obj->paging_in_progress;
1589					continue;
1590				}
1591				bp->b_pages[i] = m;
1592				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1593			}
1594#if defined(VFS_BIO_DEBUG)
1595			if (OFF_TO_IDX(foff) != m->pindex) {
1596				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1597			}
1598#endif
1599			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1600			if (resid > iosize)
1601				resid = iosize;
1602			/*
1603			 * In the write case, the valid and clean bits are
1604			 * already changed correctly, so we only need to do this
1605			 * here in the read case.
1606			 */
1607			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1608				vm_page_set_validclean(m,
1609					(vm_offset_t) (foff & PAGE_MASK), resid);
1610			}
1611
1612			/*
1613			 * when debugging new filesystems or buffer I/O methods, this
1614			 * is the most common error that pops up.  if you see this, you
1615			 * have not set the page busy flag correctly!!!
1616			 */
1617			if (m->busy == 0) {
1618				printf("biodone: page busy < 0, "
1619				    "pindex: %d, foff: 0x(%x,%x), "
1620				    "resid: %d, index: %d\n",
1621				    (int) m->pindex, (int)(foff >> 32),
1622						(int) foff & 0xffffffff, resid, i);
1623				if (vp->v_type != VBLK)
1624					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1625					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1626					    (int) bp->b_lblkno,
1627					    bp->b_flags, bp->b_npages);
1628				else
1629					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1630					    (int) bp->b_lblkno,
1631					    bp->b_flags, bp->b_npages);
1632				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1633				    m->valid, m->dirty, m->wire_count);
1634				panic("biodone: page busy < 0\n");
1635			}
1636			--m->busy;
1637			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1638				m->flags &= ~PG_WANTED;
1639				wakeup(m);
1640			}
1641			--obj->paging_in_progress;
1642			foff += resid;
1643			iosize -= resid;
1644		}
1645		if (obj && obj->paging_in_progress == 0 &&
1646		    (obj->flags & OBJ_PIPWNT)) {
1647			obj->flags &= ~OBJ_PIPWNT;
1648			wakeup(obj);
1649		}
1650	}
1651	/*
1652	 * For asynchronous completions, release the buffer now. The brelse
1653	 * checks for B_WANTED and will do the wakeup there if necessary - so
1654	 * no need to do a wakeup here in the async case.
1655	 */
1656
1657	if (bp->b_flags & B_ASYNC) {
1658		if ((bp->b_flags & B_ORDERED) == 0) {
1659			if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1660				brelse(bp);
1661			else
1662				bqrelse(bp);
1663		}
1664	} else {
1665		bp->b_flags &= ~B_WANTED;
1666		wakeup(bp);
1667	}
1668	splx(s);
1669}
1670
1671int
1672count_lock_queue()
1673{
1674	int count;
1675	struct buf *bp;
1676
1677	count = 0;
1678	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1679	    bp != NULL;
1680	    bp = TAILQ_NEXT(bp, b_freelist))
1681		count++;
1682	return (count);
1683}
1684
1685int vfs_update_interval = 30;
1686
1687static void
1688vfs_update()
1689{
1690	(void) spl0();		/* XXX redundant?  wrong place? */
1691	while (1) {
1692		tsleep(&vfs_update_wakeup, PUSER, "update",
1693		    hz * vfs_update_interval);
1694		vfs_update_wakeup = 0;
1695		sync(curproc, NULL, NULL);
1696	}
1697}
1698
1699static int
1700sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1701{
1702	int error = sysctl_handle_int(oidp,
1703		oidp->oid_arg1, oidp->oid_arg2, req);
1704	if (!error)
1705		wakeup(&vfs_update_wakeup);
1706	return error;
1707}
1708
1709SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1710	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1711
1712
1713/*
1714 * This routine is called in lieu of iodone in the case of
1715 * incomplete I/O.  This keeps the busy status for pages
1716 * consistant.
1717 */
1718void
1719vfs_unbusy_pages(struct buf * bp)
1720{
1721	int i;
1722
1723	if (bp->b_flags & B_VMIO) {
1724		struct vnode *vp = bp->b_vp;
1725		vm_object_t obj = vp->v_object;
1726		vm_ooffset_t foff;
1727
1728		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1729
1730		for (i = 0; i < bp->b_npages; i++) {
1731			vm_page_t m = bp->b_pages[i];
1732
1733			if (m == bogus_page) {
1734				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1735				if (!m) {
1736					panic("vfs_unbusy_pages: page missing\n");
1737				}
1738				bp->b_pages[i] = m;
1739				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1740			}
1741			--obj->paging_in_progress;
1742			--m->busy;
1743			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1744				m->flags &= ~PG_WANTED;
1745				wakeup(m);
1746			}
1747		}
1748		if (obj->paging_in_progress == 0 &&
1749		    (obj->flags & OBJ_PIPWNT)) {
1750			obj->flags &= ~OBJ_PIPWNT;
1751			wakeup(obj);
1752		}
1753	}
1754}
1755
1756/*
1757 * This routine is called before a device strategy routine.
1758 * It is used to tell the VM system that paging I/O is in
1759 * progress, and treat the pages associated with the buffer
1760 * almost as being PG_BUSY.  Also the object paging_in_progress
1761 * flag is handled to make sure that the object doesn't become
1762 * inconsistant.
1763 */
1764void
1765vfs_busy_pages(struct buf * bp, int clear_modify)
1766{
1767	int i;
1768
1769	if (bp->b_flags & B_VMIO) {
1770		vm_object_t obj = bp->b_vp->v_object;
1771		vm_ooffset_t foff;
1772		int iocount = bp->b_bufsize;
1773
1774		if (bp->b_vp->v_type == VBLK)
1775			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1776		else
1777			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1778		vfs_setdirty(bp);
1779		for (i = 0; i < bp->b_npages; i++) {
1780			vm_page_t m = bp->b_pages[i];
1781			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1782
1783			if (resid > iocount)
1784				resid = iocount;
1785			if ((bp->b_flags & B_CLUSTER) == 0) {
1786				obj->paging_in_progress++;
1787				m->busy++;
1788			}
1789			vm_page_protect(m, VM_PROT_NONE);
1790			if (clear_modify) {
1791				vm_page_set_validclean(m,
1792					(vm_offset_t) (foff & PAGE_MASK), resid);
1793			} else if (bp->b_bcount >= PAGE_SIZE) {
1794				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1795					bp->b_pages[i] = bogus_page;
1796					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1797				}
1798			}
1799			foff += resid;
1800			iocount -= resid;
1801		}
1802	}
1803}
1804
1805/*
1806 * Tell the VM system that the pages associated with this buffer
1807 * are clean.  This is used for delayed writes where the data is
1808 * going to go to disk eventually without additional VM intevention.
1809 */
1810void
1811vfs_clean_pages(struct buf * bp)
1812{
1813	int i;
1814
1815	if (bp->b_flags & B_VMIO) {
1816		vm_ooffset_t foff;
1817		int iocount = bp->b_bufsize;
1818
1819		if (bp->b_vp->v_type == VBLK)
1820			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1821		else
1822			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1823
1824		for (i = 0; i < bp->b_npages; i++) {
1825			vm_page_t m = bp->b_pages[i];
1826			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1827
1828			if (resid > iocount)
1829				resid = iocount;
1830			if (resid > 0) {
1831				vm_page_set_validclean(m,
1832					((vm_offset_t) foff & PAGE_MASK), resid);
1833			}
1834			foff += resid;
1835			iocount -= resid;
1836		}
1837	}
1838}
1839
1840void
1841vfs_bio_clrbuf(struct buf *bp) {
1842	int i;
1843	if( bp->b_flags & B_VMIO) {
1844		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1845			int mask;
1846			mask = 0;
1847			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
1848				mask |= (1 << (i/DEV_BSIZE));
1849			if( bp->b_pages[0]->valid != mask) {
1850				bzero(bp->b_data, bp->b_bufsize);
1851			}
1852			bp->b_pages[0]->valid = mask;
1853			bp->b_resid = 0;
1854			return;
1855		}
1856		for(i=0;i<bp->b_npages;i++) {
1857			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1858				continue;
1859			if( bp->b_pages[i]->valid == 0) {
1860				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
1861					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
1862				}
1863			} else {
1864				int j;
1865				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1866					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1867						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
1868				}
1869			}
1870			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
1871		}
1872		bp->b_resid = 0;
1873	} else {
1874		clrbuf(bp);
1875	}
1876}
1877
1878/*
1879 * vm_hold_load_pages and vm_hold_unload pages get pages into
1880 * a buffers address space.  The pages are anonymous and are
1881 * not associated with a file object.
1882 */
1883void
1884vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1885{
1886	vm_offset_t pg;
1887	vm_page_t p;
1888	int index;
1889
1890	to = round_page(to);
1891	from = round_page(from);
1892	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1893
1894	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1895
1896tryagain:
1897
1898		p = vm_page_alloc(kernel_object, ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
1899		    VM_ALLOC_NORMAL);
1900		if (!p) {
1901			VM_WAIT;
1902			goto tryagain;
1903		}
1904		vm_page_wire(p);
1905		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1906		bp->b_pages[index] = p;
1907		PAGE_WAKEUP(p);
1908	}
1909	bp->b_npages = to >> PAGE_SHIFT;
1910}
1911
1912void
1913vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1914{
1915	vm_offset_t pg;
1916	vm_page_t p;
1917	int index;
1918
1919	from = round_page(from);
1920	to = round_page(to);
1921	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1922
1923	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1924		p = bp->b_pages[index];
1925		if (p && (index < bp->b_npages)) {
1926			if (p->busy) {
1927				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
1928					bp->b_blkno, bp->b_lblkno);
1929			}
1930			bp->b_pages[index] = NULL;
1931			pmap_kremove(pg);
1932			vm_page_unwire(p);
1933			vm_page_free(p);
1934		}
1935	}
1936	bp->b_npages = from >> PAGE_SHIFT;
1937}
1938