vfs_bio.c revision 19996
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.105 1996/11/17 02:10:48 dyson Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#include "opt_bounce.h"
36
37#define VMIO
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/vmmeter.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_prot.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_pageout.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_extern.h>
54#include <sys/buf.h>
55#include <sys/mount.h>
56#include <sys/malloc.h>
57#include <sys/resourcevar.h>
58#include <sys/proc.h>
59
60#include <miscfs/specfs/specdev.h>
61
62static void vfs_update __P((void));
63static struct	proc *updateproc;
64static struct kproc_desc up_kp = {
65	"update",
66	vfs_update,
67	&updateproc
68};
69SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
70
71struct buf *buf;		/* buffer header pool */
72struct swqueue bswlist;
73
74int count_lock_queue __P((void));
75static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
78		vm_offset_t to);
79static void vfs_clean_pages(struct buf * bp);
80static void vfs_setdirty(struct buf *bp);
81static void vfs_vmio_release(struct buf *bp);
82
83int needsbuffer;
84
85/*
86 * Internal update daemon, process 3
87 *	The variable vfs_update_wakeup allows for internal syncs.
88 */
89int vfs_update_wakeup;
90
91
92/*
93 * buffers base kva
94 */
95caddr_t buffers_kva;
96
97/*
98 * bogus page -- for I/O to/from partially complete buffers
99 * this is a temporary solution to the problem, but it is not
100 * really that bad.  it would be better to split the buffer
101 * for input in the case of buffers partially already in memory,
102 * but the code is intricate enough already.
103 */
104vm_page_t bogus_page;
105static vm_offset_t bogus_offset;
106
107static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
108	bufmallocspace, maxbufmallocspace;
109
110static struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
111static struct bqueues bufqueues[BUFFER_QUEUES];
112
113extern int vm_swap_size;
114
115#define BUF_MAXUSE 16
116
117/*
118 * Initialize buffer headers and related structures.
119 */
120void
121bufinit()
122{
123	struct buf *bp;
124	int i;
125
126	TAILQ_INIT(&bswlist);
127	LIST_INIT(&invalhash);
128
129	/* first, make a null hash table */
130	for (i = 0; i < BUFHSZ; i++)
131		LIST_INIT(&bufhashtbl[i]);
132
133	/* next, make a null set of free lists */
134	for (i = 0; i < BUFFER_QUEUES; i++)
135		TAILQ_INIT(&bufqueues[i]);
136
137	buffers_kva = (caddr_t) kmem_alloc_pageable(buffer_map, MAXBSIZE * nbuf);
138	/* finally, initialize each buffer header and stick on empty q */
139	for (i = 0; i < nbuf; i++) {
140		bp = &buf[i];
141		bzero(bp, sizeof *bp);
142		bp->b_flags = B_INVAL;	/* we're just an empty header */
143		bp->b_dev = NODEV;
144		bp->b_rcred = NOCRED;
145		bp->b_wcred = NOCRED;
146		bp->b_qindex = QUEUE_EMPTY;
147		bp->b_vnbufs.le_next = NOLIST;
148		bp->b_data = buffers_kva + i * MAXBSIZE;
149		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
150		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
151	}
152/*
153 * maxbufspace is currently calculated to support all filesystem blocks
154 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
155 * cache is still the same as it would be for 8K filesystems.  This
156 * keeps the size of the buffer cache "in check" for big block filesystems.
157 */
158	maxbufspace = (nbuf + 8) * PAGE_SIZE;
159/*
160 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
161 */
162	maxvmiobufspace = 2 * maxbufspace / 3;
163/*
164 * Limit the amount of malloc memory since it is wired permanently into
165 * the kernel space.  Even though this is accounted for in the buffer
166 * allocation, we don't want the malloced region to grow uncontrolled.
167 * The malloc scheme improves memory utilization significantly on average
168 * (small) directories.
169 */
170	maxbufmallocspace = maxbufspace / 20;
171
172	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
173	bogus_page = vm_page_alloc(kernel_object,
174			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
175			VM_ALLOC_NORMAL);
176
177}
178
179/*
180 * remove the buffer from the appropriate free list
181 */
182void
183bremfree(struct buf * bp)
184{
185	int s = splbio();
186
187	if (bp->b_qindex != QUEUE_NONE) {
188		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
189		bp->b_qindex = QUEUE_NONE;
190	} else {
191		panic("bremfree: removing a buffer when not on a queue");
192	}
193	splx(s);
194}
195
196/*
197 * Get a buffer with the specified data.  Look in the cache first.
198 */
199int
200bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
201    struct buf ** bpp)
202{
203	struct buf *bp;
204
205	bp = getblk(vp, blkno, size, 0, 0);
206	*bpp = bp;
207
208	/* if not found in cache, do some I/O */
209	if ((bp->b_flags & B_CACHE) == 0) {
210		if (curproc != NULL)
211			curproc->p_stats->p_ru.ru_inblock++;
212		bp->b_flags |= B_READ;
213		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
214		if (bp->b_rcred == NOCRED) {
215			if (cred != NOCRED)
216				crhold(cred);
217			bp->b_rcred = cred;
218		}
219		vfs_busy_pages(bp, 0);
220		VOP_STRATEGY(bp);
221		return (biowait(bp));
222	}
223	return (0);
224}
225
226/*
227 * Operates like bread, but also starts asynchronous I/O on
228 * read-ahead blocks.
229 */
230int
231breadn(struct vnode * vp, daddr_t blkno, int size,
232    daddr_t * rablkno, int *rabsize,
233    int cnt, struct ucred * cred, struct buf ** bpp)
234{
235	struct buf *bp, *rabp;
236	int i;
237	int rv = 0, readwait = 0;
238
239	*bpp = bp = getblk(vp, blkno, size, 0, 0);
240
241	/* if not found in cache, do some I/O */
242	if ((bp->b_flags & B_CACHE) == 0) {
243		if (curproc != NULL)
244			curproc->p_stats->p_ru.ru_inblock++;
245		bp->b_flags |= B_READ;
246		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
247		if (bp->b_rcred == NOCRED) {
248			if (cred != NOCRED)
249				crhold(cred);
250			bp->b_rcred = cred;
251		}
252		vfs_busy_pages(bp, 0);
253		VOP_STRATEGY(bp);
254		++readwait;
255	}
256	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
257		if (inmem(vp, *rablkno))
258			continue;
259		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
260
261		if ((rabp->b_flags & B_CACHE) == 0) {
262			if (curproc != NULL)
263				curproc->p_stats->p_ru.ru_inblock++;
264			rabp->b_flags |= B_READ | B_ASYNC;
265			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
266			if (rabp->b_rcred == NOCRED) {
267				if (cred != NOCRED)
268					crhold(cred);
269				rabp->b_rcred = cred;
270			}
271			vfs_busy_pages(rabp, 0);
272			VOP_STRATEGY(rabp);
273		} else {
274			brelse(rabp);
275		}
276	}
277
278	if (readwait) {
279		rv = biowait(bp);
280	}
281	return (rv);
282}
283
284/*
285 * Write, release buffer on completion.  (Done by iodone
286 * if async.)
287 */
288int
289bwrite(struct buf * bp)
290{
291	int oldflags = bp->b_flags;
292
293	if (bp->b_flags & B_INVAL) {
294		brelse(bp);
295		return (0);
296	}
297	if (!(bp->b_flags & B_BUSY))
298		panic("bwrite: buffer is not busy???");
299
300	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
301	bp->b_flags |= B_WRITEINPROG;
302
303	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
304		reassignbuf(bp, bp->b_vp);
305	}
306
307	bp->b_vp->v_numoutput++;
308	vfs_busy_pages(bp, 1);
309	if (curproc != NULL)
310		curproc->p_stats->p_ru.ru_oublock++;
311	VOP_STRATEGY(bp);
312
313	/*
314	 * Handle ordered writes here.
315	 * If the write was originally flagged as ordered,
316	 * then we check to see if it was converted to async.
317	 * If it was converted to async, and is done now, then
318	 * we release the buffer.  Otherwise we clear the
319	 * ordered flag because it is not needed anymore.
320	 *
321 	 * Note that biodone has been modified so that it does
322	 * not release ordered buffers.  This allows us to have
323	 * a chance to determine whether or not the driver
324	 * has set the async flag in the strategy routine.  Otherwise
325	 * if biodone was not modified, then the buffer may have been
326	 * reused before we have had a chance to check the flag.
327	 */
328
329	if ((oldflags & B_ORDERED) == B_ORDERED) {
330		int s;
331		s = splbio();
332		if (bp->b_flags & B_ASYNC)  {
333			if ((bp->b_flags & B_DONE)) {
334				if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
335					brelse(bp);
336				else
337					bqrelse(bp);
338			}
339			splx(s);
340			return (0);
341		} else {
342			bp->b_flags &= ~B_ORDERED;
343		}
344		splx(s);
345	}
346
347	if ((oldflags & B_ASYNC) == 0) {
348		int rtval = biowait(bp);
349
350		if (oldflags & B_DELWRI) {
351			reassignbuf(bp, bp->b_vp);
352		}
353		brelse(bp);
354		return (rtval);
355	}
356	return (0);
357}
358
359int
360vn_bwrite(ap)
361	struct vop_bwrite_args *ap;
362{
363	return (bwrite(ap->a_bp));
364}
365
366/*
367 * Delayed write. (Buffer is marked dirty).
368 */
369void
370bdwrite(struct buf * bp)
371{
372
373	if ((bp->b_flags & B_BUSY) == 0) {
374		panic("bdwrite: buffer is not busy");
375	}
376	if (bp->b_flags & B_INVAL) {
377		brelse(bp);
378		return;
379	}
380	if (bp->b_flags & B_TAPE) {
381		bawrite(bp);
382		return;
383	}
384	bp->b_flags &= ~(B_READ|B_RELBUF);
385	if ((bp->b_flags & B_DELWRI) == 0) {
386		bp->b_flags |= B_DONE | B_DELWRI;
387		reassignbuf(bp, bp->b_vp);
388	}
389
390	/*
391	 * This bmap keeps the system from needing to do the bmap later,
392	 * perhaps when the system is attempting to do a sync.  Since it
393	 * is likely that the indirect block -- or whatever other datastructure
394	 * that the filesystem needs is still in memory now, it is a good
395	 * thing to do this.  Note also, that if the pageout daemon is
396	 * requesting a sync -- there might not be enough memory to do
397	 * the bmap then...  So, this is important to do.
398	 */
399	if( bp->b_lblkno == bp->b_blkno) {
400		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
401	}
402
403	/*
404	 * Set the *dirty* buffer range based upon the VM system dirty pages.
405	 */
406	vfs_setdirty(bp);
407
408	/*
409	 * We need to do this here to satisfy the vnode_pager and the
410	 * pageout daemon, so that it thinks that the pages have been
411	 * "cleaned".  Note that since the pages are in a delayed write
412	 * buffer -- the VFS layer "will" see that the pages get written
413	 * out on the next sync, or perhaps the cluster will be completed.
414	 */
415	vfs_clean_pages(bp);
416	bqrelse(bp);
417	return;
418}
419
420/*
421 * Asynchronous write.
422 * Start output on a buffer, but do not wait for it to complete.
423 * The buffer is released when the output completes.
424 */
425void
426bawrite(struct buf * bp)
427{
428	bp->b_flags |= B_ASYNC;
429	(void) VOP_BWRITE(bp);
430}
431
432/*
433 * Ordered write.
434 * Start output on a buffer, but only wait for it to complete if the
435 * output device cannot guarantee ordering in some other way.  Devices
436 * that can perform asynchronous ordered writes will set the B_ASYNC
437 * flag in their strategy routine.
438 * The buffer is released when the output completes.
439 */
440int
441bowrite(struct buf * bp)
442{
443	bp->b_flags |= B_ORDERED;
444	return (VOP_BWRITE(bp));
445}
446
447/*
448 * Release a buffer.
449 */
450void
451brelse(struct buf * bp)
452{
453	int s;
454
455	if (bp->b_flags & B_CLUSTER) {
456		relpbuf(bp);
457		return;
458	}
459	/* anyone need a "free" block? */
460	s = splbio();
461
462	/* anyone need this block? */
463	if (bp->b_flags & B_WANTED) {
464		bp->b_flags &= ~(B_WANTED | B_AGE);
465		wakeup(bp);
466	}
467
468	if (bp->b_flags & B_LOCKED)
469		bp->b_flags &= ~B_ERROR;
470
471	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
472	    (bp->b_bufsize <= 0)) {
473		bp->b_flags |= B_INVAL;
474		bp->b_flags &= ~(B_DELWRI | B_CACHE);
475		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
476			if (bp->b_bufsize)
477				allocbuf(bp, 0);
478			brelvp(bp);
479		}
480	}
481
482	/*
483	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
484	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
485	 * but the VM object is kept around.  The B_NOCACHE flag is used to
486	 * invalidate the pages in the VM object.
487	 */
488	if (bp->b_flags & B_VMIO) {
489		vm_ooffset_t foff;
490		vm_object_t obj;
491		int i, resid;
492		vm_page_t m;
493		struct vnode *vp;
494		int iototal = bp->b_bufsize;
495
496		vp = bp->b_vp;
497		if (!vp)
498			panic("brelse: missing vp");
499
500		if (bp->b_npages) {
501			vm_pindex_t poff;
502			obj = (vm_object_t) vp->v_object;
503			if (vp->v_type == VBLK)
504				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
505			else
506				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
507			poff = OFF_TO_IDX(foff);
508			for (i = 0; i < bp->b_npages; i++) {
509				m = bp->b_pages[i];
510				if (m == bogus_page) {
511					m = vm_page_lookup(obj, poff + i);
512					if (!m) {
513						panic("brelse: page missing\n");
514					}
515					bp->b_pages[i] = m;
516					pmap_qenter(trunc_page(bp->b_data),
517						bp->b_pages, bp->b_npages);
518				}
519				resid = IDX_TO_OFF(m->pindex+1) - foff;
520				if (resid > iototal)
521					resid = iototal;
522				if (resid > 0) {
523					/*
524					 * Don't invalidate the page if the local machine has already
525					 * modified it.  This is the lesser of two evils, and should
526					 * be fixed.
527					 */
528					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
529						vm_page_test_dirty(m);
530						if (m->dirty == 0) {
531							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
532							if (m->valid == 0)
533								vm_page_protect(m, VM_PROT_NONE);
534						}
535					}
536					if (resid >= PAGE_SIZE) {
537						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
538							bp->b_flags |= B_INVAL;
539						}
540					} else {
541						if (!vm_page_is_valid(m,
542							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
543							bp->b_flags |= B_INVAL;
544						}
545					}
546				}
547				foff += resid;
548				iototal -= resid;
549			}
550		}
551		if (bp->b_flags & (B_INVAL | B_RELBUF))
552			vfs_vmio_release(bp);
553	}
554	if (bp->b_qindex != QUEUE_NONE)
555		panic("brelse: free buffer onto another queue???");
556
557	/* enqueue */
558	/* buffers with no memory */
559	if (bp->b_bufsize == 0) {
560		bp->b_qindex = QUEUE_EMPTY;
561		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
562		LIST_REMOVE(bp, b_hash);
563		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
564		bp->b_dev = NODEV;
565		if (needsbuffer) {
566			wakeup(&needsbuffer);
567			needsbuffer=0;
568		}
569		/* buffers with junk contents */
570	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
571		bp->b_qindex = QUEUE_AGE;
572		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
573		LIST_REMOVE(bp, b_hash);
574		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
575		bp->b_dev = NODEV;
576		if (needsbuffer) {
577			wakeup(&needsbuffer);
578			needsbuffer=0;
579		}
580		/* buffers that are locked */
581	} else if (bp->b_flags & B_LOCKED) {
582		bp->b_qindex = QUEUE_LOCKED;
583		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
584		/* buffers with stale but valid contents */
585	} else if (bp->b_flags & B_AGE) {
586		bp->b_qindex = QUEUE_AGE;
587		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
588		if (needsbuffer) {
589			wakeup(&needsbuffer);
590			needsbuffer=0;
591		}
592		/* buffers with valid and quite potentially reuseable contents */
593	} else {
594		bp->b_qindex = QUEUE_LRU;
595		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
596		if (needsbuffer) {
597			wakeup(&needsbuffer);
598			needsbuffer=0;
599		}
600	}
601
602	/* unlock */
603	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
604				B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
605	splx(s);
606}
607
608/*
609 * Release a buffer.
610 */
611void
612bqrelse(struct buf * bp)
613{
614	int s;
615
616	s = splbio();
617
618
619	/* anyone need this block? */
620	if (bp->b_flags & B_WANTED) {
621		bp->b_flags &= ~(B_WANTED | B_AGE);
622		wakeup(bp);
623	}
624
625	if (bp->b_qindex != QUEUE_NONE)
626		panic("bqrelse: free buffer onto another queue???");
627
628	if (bp->b_flags & B_LOCKED) {
629		bp->b_flags &= ~B_ERROR;
630		bp->b_qindex = QUEUE_LOCKED;
631		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
632		/* buffers with stale but valid contents */
633	} else {
634		bp->b_qindex = QUEUE_LRU;
635		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
636		if (needsbuffer) {
637			wakeup(&needsbuffer);
638			needsbuffer=0;
639		}
640	}
641
642	/* unlock */
643	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
644		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
645	splx(s);
646}
647
648static void
649vfs_vmio_release(bp)
650	struct buf *bp;
651{
652	int i;
653	vm_page_t m;
654
655	for (i = 0; i < bp->b_npages; i++) {
656		m = bp->b_pages[i];
657		bp->b_pages[i] = NULL;
658		vm_page_unwire(m);
659		/*
660		 * We don't mess with busy pages, it is
661		 * the responsibility of the process that
662		 * busied the pages to deal with them.
663		 */
664		if ((m->flags & PG_BUSY) || (m->busy != 0))
665			continue;
666
667		if (m->wire_count == 0) {
668
669			if (m->flags & PG_WANTED) {
670				m->flags &= ~PG_WANTED;
671				wakeup(m);
672			}
673
674			/*
675			 * If this is an async free -- we cannot place
676			 * pages onto the cache queue, so our policy for
677			 * such buffers is to avoid the cache queue, and
678			 * only modify the active queue or free queue.
679			 */
680			if ((bp->b_flags & B_ASYNC) == 0) {
681
682			/*
683			 * In the case of sync buffer frees, we can do pretty much
684			 * anything to any of the memory queues.  Specifically,
685			 * the cache queue is free to be modified.
686			 */
687				if (m->valid) {
688					if(m->dirty == 0)
689						vm_page_test_dirty(m);
690					/*
691					 * this keeps pressure off of the process memory
692					 */
693					if ((vm_swap_size == 0) ||
694						(cnt.v_free_count < cnt.v_free_min)) {
695						if ((m->dirty == 0) &&
696							(m->hold_count == 0))
697							vm_page_cache(m);
698						else
699							vm_page_deactivate(m);
700					}
701				} else if (m->hold_count == 0) {
702					vm_page_protect(m, VM_PROT_NONE);
703					vm_page_free(m);
704				}
705			} else {
706				/*
707				 * If async, then at least we clear the
708				 * act_count.
709				 */
710				m->act_count = 0;
711			}
712		}
713	}
714	bufspace -= bp->b_bufsize;
715	vmiospace -= bp->b_bufsize;
716	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
717	bp->b_npages = 0;
718	bp->b_bufsize = 0;
719	bp->b_flags &= ~B_VMIO;
720	if (bp->b_vp)
721		brelvp(bp);
722}
723
724/*
725 * Check to see if a block is currently memory resident.
726 */
727__inline struct buf *
728gbincore(struct vnode * vp, daddr_t blkno)
729{
730	struct buf *bp;
731	struct bufhashhdr *bh;
732
733	bh = BUFHASH(vp, blkno);
734	bp = bh->lh_first;
735
736	/* Search hash chain */
737	while (bp != NULL) {
738		/* hit */
739		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
740		    (bp->b_flags & B_INVAL) == 0) {
741			break;
742		}
743		bp = bp->b_hash.le_next;
744	}
745	return (bp);
746}
747
748/*
749 * this routine implements clustered async writes for
750 * clearing out B_DELWRI buffers...  This is much better
751 * than the old way of writing only one buffer at a time.
752 */
753int
754vfs_bio_awrite(struct buf * bp)
755{
756	int i;
757	daddr_t lblkno = bp->b_lblkno;
758	struct vnode *vp = bp->b_vp;
759	int s;
760	int ncl;
761	struct buf *bpa;
762	int nwritten;
763
764	s = splbio();
765	/*
766	 * right now we support clustered writing only to regular files
767	 */
768	if ((vp->v_type == VREG) &&
769	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
770	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
771		int size;
772		int maxcl;
773
774		size = vp->v_mount->mnt_stat.f_iosize;
775		maxcl = MAXPHYS / size;
776
777		for (i = 1; i < maxcl; i++) {
778			if ((bpa = gbincore(vp, lblkno + i)) &&
779			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
780			    (B_DELWRI | B_CLUSTEROK)) &&
781			    (bpa->b_bufsize == size)) {
782				if ((bpa->b_blkno == bpa->b_lblkno) ||
783				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
784					break;
785			} else {
786				break;
787			}
788		}
789		ncl = i;
790		/*
791		 * this is a possible cluster write
792		 */
793		if (ncl != 1) {
794			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
795			splx(s);
796			return nwritten;
797		}
798	}
799	bremfree(bp);
800	splx(s);
801	/*
802	 * default (old) behavior, writing out only one block
803	 */
804	bp->b_flags |= B_BUSY | B_ASYNC;
805	nwritten = bp->b_bufsize;
806	(void) VOP_BWRITE(bp);
807	return nwritten;
808}
809
810
811/*
812 * Find a buffer header which is available for use.
813 */
814static struct buf *
815getnewbuf(int slpflag, int slptimeo, int doingvmio)
816{
817	struct buf *bp;
818	int nbyteswritten = 0;
819
820start:
821	if (bufspace >= maxbufspace)
822		goto trytofreespace;
823
824	/* can we constitute a new buffer? */
825	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
826		if (bp->b_qindex != QUEUE_EMPTY)
827			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
828			    bp->b_qindex);
829		bp->b_flags |= B_BUSY;
830		bremfree(bp);
831		goto fillbuf;
832	}
833trytofreespace:
834	/*
835	 * We keep the file I/O from hogging metadata I/O
836	 * This is desirable because file data is cached in the
837	 * VM/Buffer cache even if a buffer is freed.
838	 */
839	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
840		if (bp->b_qindex != QUEUE_AGE)
841			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
842			    bp->b_qindex);
843	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
844		if (bp->b_qindex != QUEUE_LRU)
845			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
846			    bp->b_qindex);
847	}
848	if (!bp) {
849		/* wait for a free buffer of any kind */
850		needsbuffer = 1;
851		tsleep(&needsbuffer,
852			(PRIBIO + 1) | slpflag, "newbuf", slptimeo);
853		return (0);
854	}
855
856#if defined(DIAGNOSTIC)
857	if (bp->b_flags & B_BUSY) {
858		panic("getnewbuf: busy buffer on free list\n");
859	}
860#endif
861
862	/*
863	 * We are fairly aggressive about freeing VMIO buffers, but since
864	 * the buffering is intact without buffer headers, there is not
865	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
866	 */
867	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
868		if ((bp->b_flags & B_VMIO) == 0 ||
869			(vmiospace < maxvmiobufspace)) {
870			--bp->b_usecount;
871			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
872			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
873				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
874				goto start;
875			}
876			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
877		}
878	}
879
880	/* if we are a delayed write, convert to an async write */
881	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
882		nbyteswritten += vfs_bio_awrite(bp);
883		if (!slpflag && !slptimeo) {
884			return (0);
885		}
886		goto start;
887	}
888
889	if (bp->b_flags & B_WANTED) {
890		bp->b_flags &= ~B_WANTED;
891		wakeup(bp);
892	}
893	bremfree(bp);
894	bp->b_flags |= B_BUSY;
895
896	if (bp->b_flags & B_VMIO) {
897		bp->b_flags &= ~B_ASYNC;
898		vfs_vmio_release(bp);
899	}
900
901	if (bp->b_vp)
902		brelvp(bp);
903
904fillbuf:
905	/* we are not free, nor do we contain interesting data */
906	if (bp->b_rcred != NOCRED) {
907		crfree(bp->b_rcred);
908		bp->b_rcred = NOCRED;
909	}
910	if (bp->b_wcred != NOCRED) {
911		crfree(bp->b_wcred);
912		bp->b_wcred = NOCRED;
913	}
914
915	LIST_REMOVE(bp, b_hash);
916	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
917	if (bp->b_bufsize) {
918		allocbuf(bp, 0);
919	}
920	bp->b_flags = B_BUSY;
921	bp->b_dev = NODEV;
922	bp->b_vp = NULL;
923	bp->b_blkno = bp->b_lblkno = 0;
924	bp->b_iodone = 0;
925	bp->b_error = 0;
926	bp->b_resid = 0;
927	bp->b_bcount = 0;
928	bp->b_npages = 0;
929	bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
930	bp->b_dirtyoff = bp->b_dirtyend = 0;
931	bp->b_validoff = bp->b_validend = 0;
932	bp->b_usecount = 4;
933	if (bufspace >= maxbufspace + nbyteswritten) {
934		bp->b_flags |= B_INVAL;
935		brelse(bp);
936		goto trytofreespace;
937	}
938	return (bp);
939}
940
941/*
942 * Check to see if a block is currently memory resident.
943 */
944struct buf *
945incore(struct vnode * vp, daddr_t blkno)
946{
947	struct buf *bp;
948
949	int s = splbio();
950	bp = gbincore(vp, blkno);
951	splx(s);
952	return (bp);
953}
954
955/*
956 * Returns true if no I/O is needed to access the
957 * associated VM object.  This is like incore except
958 * it also hunts around in the VM system for the data.
959 */
960
961int
962inmem(struct vnode * vp, daddr_t blkno)
963{
964	vm_object_t obj;
965	vm_offset_t toff, tinc;
966	vm_page_t m;
967	vm_ooffset_t off;
968
969	if (incore(vp, blkno))
970		return 1;
971	if (vp->v_mount == NULL)
972		return 0;
973	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
974		return 0;
975
976	obj = vp->v_object;
977	tinc = PAGE_SIZE;
978	if (tinc > vp->v_mount->mnt_stat.f_iosize)
979		tinc = vp->v_mount->mnt_stat.f_iosize;
980	off = blkno * vp->v_mount->mnt_stat.f_iosize;
981
982	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
983
984		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
985		if (!m)
986			return 0;
987		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
988			return 0;
989	}
990	return 1;
991}
992
993/*
994 * now we set the dirty range for the buffer --
995 * for NFS -- if the file is mapped and pages have
996 * been written to, let it know.  We want the
997 * entire range of the buffer to be marked dirty if
998 * any of the pages have been written to for consistancy
999 * with the b_validoff, b_validend set in the nfs write
1000 * code, and used by the nfs read code.
1001 */
1002static void
1003vfs_setdirty(struct buf *bp) {
1004	int i;
1005	vm_object_t object;
1006	vm_offset_t boffset, offset;
1007	/*
1008	 * We qualify the scan for modified pages on whether the
1009	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1010	 * is not cleared simply by protecting pages off.
1011	 */
1012	if ((bp->b_flags & B_VMIO) &&
1013		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1014		/*
1015		 * test the pages to see if they have been modified directly
1016		 * by users through the VM system.
1017		 */
1018		for (i = 0; i < bp->b_npages; i++)
1019			vm_page_test_dirty(bp->b_pages[i]);
1020
1021		/*
1022		 * scan forwards for the first page modified
1023		 */
1024		for (i = 0; i < bp->b_npages; i++) {
1025			if (bp->b_pages[i]->dirty) {
1026				break;
1027			}
1028		}
1029		boffset = (i << PAGE_SHIFT);
1030		if (boffset < bp->b_dirtyoff) {
1031			bp->b_dirtyoff = boffset;
1032		}
1033
1034		/*
1035		 * scan backwards for the last page modified
1036		 */
1037		for (i = bp->b_npages - 1; i >= 0; --i) {
1038			if (bp->b_pages[i]->dirty) {
1039				break;
1040			}
1041		}
1042		boffset = (i + 1);
1043		offset = boffset + bp->b_pages[0]->pindex;
1044		if (offset >= object->size)
1045			boffset = object->size - bp->b_pages[0]->pindex;
1046		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
1047			bp->b_dirtyend = (boffset << PAGE_SHIFT);
1048	}
1049}
1050
1051/*
1052 * Get a block given a specified block and offset into a file/device.
1053 */
1054struct buf *
1055getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1056{
1057	struct buf *bp;
1058	int s;
1059	struct bufhashhdr *bh;
1060
1061	if (size > MAXBSIZE)
1062		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
1063
1064	s = splbio();
1065loop:
1066	if ((bp = gbincore(vp, blkno))) {
1067		if (bp->b_flags & B_BUSY) {
1068			bp->b_flags |= B_WANTED;
1069			if (bp->b_usecount < BUF_MAXUSE)
1070				++bp->b_usecount;
1071			if (!tsleep(bp,
1072				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
1073				goto loop;
1074
1075			splx(s);
1076			return (struct buf *) NULL;
1077		}
1078		bp->b_flags |= B_BUSY | B_CACHE;
1079		bremfree(bp);
1080
1081		/*
1082		 * check for size inconsistancies (note that they shouldn't happen
1083		 * but do when filesystems don't handle the size changes correctly.)
1084		 * We are conservative on metadata and don't just extend the buffer
1085		 * but write and re-constitute it.
1086		 */
1087
1088		if (bp->b_bcount != size) {
1089			if (bp->b_flags & B_VMIO) {
1090				allocbuf(bp, size);
1091			} else {
1092				bp->b_flags |= B_NOCACHE;
1093				VOP_BWRITE(bp);
1094				goto loop;
1095			}
1096		}
1097
1098		if (bp->b_usecount < BUF_MAXUSE)
1099			++bp->b_usecount;
1100		splx(s);
1101		return (bp);
1102	} else {
1103		vm_object_t obj;
1104		int doingvmio;
1105
1106		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1107			doingvmio = 1;
1108		} else {
1109			doingvmio = 0;
1110		}
1111		if ((bp = getnewbuf(slpflag, slptimeo, doingvmio)) == 0) {
1112			if (slpflag || slptimeo) {
1113				splx(s);
1114				return NULL;
1115			}
1116			goto loop;
1117		}
1118
1119		/*
1120		 * This code is used to make sure that a buffer is not
1121		 * created while the getnewbuf routine is blocked.
1122		 * Normally the vnode is locked so this isn't a problem.
1123		 * VBLK type I/O requests, however, don't lock the vnode.
1124		 */
1125		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1126			bp->b_flags |= B_INVAL;
1127			brelse(bp);
1128			goto loop;
1129		}
1130
1131		/*
1132		 * Insert the buffer into the hash, so that it can
1133		 * be found by incore.
1134		 */
1135		bp->b_blkno = bp->b_lblkno = blkno;
1136		bgetvp(vp, bp);
1137		LIST_REMOVE(bp, b_hash);
1138		bh = BUFHASH(vp, blkno);
1139		LIST_INSERT_HEAD(bh, bp, b_hash);
1140
1141		if (doingvmio) {
1142			bp->b_flags |= (B_VMIO | B_CACHE);
1143#if defined(VFS_BIO_DEBUG)
1144			if (vp->v_type != VREG && vp->v_type != VBLK)
1145				printf("getblk: vmioing file type %d???\n", vp->v_type);
1146#endif
1147		} else {
1148			bp->b_flags &= ~B_VMIO;
1149		}
1150		splx(s);
1151
1152		allocbuf(bp, size);
1153#ifdef	PC98
1154		/*
1155		 * 1024byte/sector support
1156		 */
1157#define B_XXX2 0x8000000
1158		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1159#endif
1160		return (bp);
1161	}
1162}
1163
1164/*
1165 * Get an empty, disassociated buffer of given size.
1166 */
1167struct buf *
1168geteblk(int size)
1169{
1170	struct buf *bp;
1171	int s;
1172
1173	s = splbio();
1174	while ((bp = getnewbuf(0, 0, 0)) == 0);
1175	splx(s);
1176	allocbuf(bp, size);
1177	bp->b_flags |= B_INVAL;
1178	return (bp);
1179}
1180
1181
1182/*
1183 * This code constitutes the buffer memory from either anonymous system
1184 * memory (in the case of non-VMIO operations) or from an associated
1185 * VM object (in the case of VMIO operations).
1186 *
1187 * Note that this code is tricky, and has many complications to resolve
1188 * deadlock or inconsistant data situations.  Tread lightly!!!
1189 *
1190 * Modify the length of a buffer's underlying buffer storage without
1191 * destroying information (unless, of course the buffer is shrinking).
1192 */
1193int
1194allocbuf(struct buf * bp, int size)
1195{
1196
1197	int s;
1198	int newbsize, mbsize;
1199	int i;
1200
1201	if (!(bp->b_flags & B_BUSY))
1202		panic("allocbuf: buffer not busy");
1203
1204	if ((bp->b_flags & B_VMIO) == 0) {
1205		caddr_t origbuf;
1206		int origbufsize;
1207		/*
1208		 * Just get anonymous memory from the kernel
1209		 */
1210		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1211#if !defined(NO_B_MALLOC)
1212		if (bp->b_flags & B_MALLOC)
1213			newbsize = mbsize;
1214		else
1215#endif
1216			newbsize = round_page(size);
1217
1218		if (newbsize < bp->b_bufsize) {
1219#if !defined(NO_B_MALLOC)
1220			/*
1221			 * malloced buffers are not shrunk
1222			 */
1223			if (bp->b_flags & B_MALLOC) {
1224				if (newbsize) {
1225					bp->b_bcount = size;
1226				} else {
1227					free(bp->b_data, M_BIOBUF);
1228					bufspace -= bp->b_bufsize;
1229					bufmallocspace -= bp->b_bufsize;
1230					bp->b_data = (caddr_t) buffers_kva + (bp - buf) * MAXBSIZE;
1231					bp->b_bufsize = 0;
1232					bp->b_bcount = 0;
1233					bp->b_flags &= ~B_MALLOC;
1234				}
1235				return 1;
1236			}
1237#endif
1238			vm_hold_free_pages(
1239			    bp,
1240			    (vm_offset_t) bp->b_data + newbsize,
1241			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1242		} else if (newbsize > bp->b_bufsize) {
1243#if !defined(NO_B_MALLOC)
1244			/*
1245			 * We only use malloced memory on the first allocation.
1246			 * and revert to page-allocated memory when the buffer grows.
1247			 */
1248			if ( (bufmallocspace < maxbufmallocspace) &&
1249				(bp->b_bufsize == 0) &&
1250				(mbsize <= PAGE_SIZE/2)) {
1251
1252				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1253				bp->b_bufsize = mbsize;
1254				bp->b_bcount = size;
1255				bp->b_flags |= B_MALLOC;
1256				bufspace += mbsize;
1257				bufmallocspace += mbsize;
1258				return 1;
1259			}
1260#endif
1261			origbuf = NULL;
1262			origbufsize = 0;
1263#if !defined(NO_B_MALLOC)
1264			/*
1265			 * If the buffer is growing on it's other-than-first allocation,
1266			 * then we revert to the page-allocation scheme.
1267			 */
1268			if (bp->b_flags & B_MALLOC) {
1269				origbuf = bp->b_data;
1270				origbufsize = bp->b_bufsize;
1271				bp->b_data = (caddr_t) buffers_kva + (bp - buf) * MAXBSIZE;
1272				bufspace -= bp->b_bufsize;
1273				bufmallocspace -= bp->b_bufsize;
1274				bp->b_bufsize = 0;
1275				bp->b_flags &= ~B_MALLOC;
1276				newbsize = round_page(newbsize);
1277			}
1278#endif
1279			vm_hold_load_pages(
1280			    bp,
1281			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1282			    (vm_offset_t) bp->b_data + newbsize);
1283#if !defined(NO_B_MALLOC)
1284			if (origbuf) {
1285				bcopy(origbuf, bp->b_data, origbufsize);
1286				free(origbuf, M_BIOBUF);
1287			}
1288#endif
1289		}
1290	} else {
1291		vm_page_t m;
1292		int desiredpages;
1293
1294		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1295		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1296
1297#if !defined(NO_B_MALLOC)
1298		if (bp->b_flags & B_MALLOC)
1299			panic("allocbuf: VMIO buffer can't be malloced");
1300#endif
1301
1302		if (newbsize < bp->b_bufsize) {
1303			if (desiredpages < bp->b_npages) {
1304				for (i = desiredpages; i < bp->b_npages; i++) {
1305					/*
1306					 * the page is not freed here -- it
1307					 * is the responsibility of vnode_pager_setsize
1308					 */
1309					m = bp->b_pages[i];
1310#if defined(DIAGNOSTIC)
1311					if (m == bogus_page)
1312						panic("allocbuf: bogus page found");
1313#endif
1314					s = splvm();
1315					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1316						m->flags |= PG_WANTED;
1317						tsleep(m, PVM, "biodep", 0);
1318					}
1319					splx(s);
1320
1321					bp->b_pages[i] = NULL;
1322					vm_page_unwire(m);
1323				}
1324				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1325				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1326				bp->b_npages = desiredpages;
1327			}
1328		} else if (newbsize > bp->b_bufsize) {
1329			vm_object_t obj;
1330			vm_offset_t tinc, toff;
1331			vm_ooffset_t off;
1332			vm_pindex_t objoff;
1333			int pageindex, curbpnpages;
1334			struct vnode *vp;
1335			int bsize;
1336
1337			vp = bp->b_vp;
1338
1339			if (vp->v_type == VBLK)
1340				bsize = DEV_BSIZE;
1341			else
1342				bsize = vp->v_mount->mnt_stat.f_iosize;
1343
1344			if (bp->b_npages < desiredpages) {
1345				obj = vp->v_object;
1346				tinc = PAGE_SIZE;
1347				if (tinc > bsize)
1348					tinc = bsize;
1349				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1350				curbpnpages = bp->b_npages;
1351		doretry:
1352				bp->b_flags |= B_CACHE;
1353				for (toff = 0; toff < newbsize; toff += tinc) {
1354					int bytesinpage;
1355
1356					pageindex = toff >> PAGE_SHIFT;
1357					objoff = OFF_TO_IDX(off + toff);
1358					if (pageindex < curbpnpages) {
1359
1360						m = bp->b_pages[pageindex];
1361#ifdef VFS_BIO_DIAG
1362						if (m->pindex != objoff)
1363							panic("allocbuf: page changed offset??!!!?");
1364#endif
1365						bytesinpage = tinc;
1366						if (tinc > (newbsize - toff))
1367							bytesinpage = newbsize - toff;
1368						if ((bp->b_flags & B_CACHE) &&
1369							!vm_page_is_valid(m,
1370							(vm_offset_t) ((toff + off) & PAGE_MASK),
1371							bytesinpage)) {
1372							bp->b_flags &= ~B_CACHE;
1373						}
1374						continue;
1375					}
1376					m = vm_page_lookup(obj, objoff);
1377					if (!m) {
1378						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1379						if (!m) {
1380							VM_WAIT;
1381							goto doretry;
1382						}
1383						/*
1384						 * Normally it is unwise to clear PG_BUSY without
1385						 * PAGE_WAKEUP -- but it is okay here, as there is
1386						 * no chance for blocking between here and vm_page_alloc
1387						 */
1388						m->flags &= ~PG_BUSY;
1389						vm_page_wire(m);
1390						bp->b_flags &= ~B_CACHE;
1391					} else if (m->flags & PG_BUSY) {
1392						s = splvm();
1393						if (m->flags & PG_BUSY) {
1394							m->flags |= PG_WANTED;
1395							tsleep(m, PVM, "pgtblk", 0);
1396						}
1397						splx(s);
1398						goto doretry;
1399					} else {
1400						if ((curproc != pageproc) &&
1401							((m->queue - m->pc) == PQ_CACHE) &&
1402						    ((cnt.v_free_count + cnt.v_cache_count) <
1403								(cnt.v_free_min + cnt.v_cache_min))) {
1404							pagedaemon_wakeup();
1405						}
1406						bytesinpage = tinc;
1407						if (tinc > (newbsize - toff))
1408							bytesinpage = newbsize - toff;
1409						if ((bp->b_flags & B_CACHE) &&
1410							!vm_page_is_valid(m,
1411							(vm_offset_t) ((toff + off) & PAGE_MASK),
1412							bytesinpage)) {
1413							bp->b_flags &= ~B_CACHE;
1414						}
1415						vm_page_wire(m);
1416					}
1417					bp->b_pages[pageindex] = m;
1418					curbpnpages = pageindex + 1;
1419				}
1420				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1421				bp->b_npages = curbpnpages;
1422				pmap_qenter((vm_offset_t) bp->b_data,
1423					bp->b_pages, bp->b_npages);
1424				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1425			}
1426		}
1427	}
1428	if (bp->b_flags & B_VMIO)
1429		vmiospace += bp->b_bufsize;
1430	bufspace += (newbsize - bp->b_bufsize);
1431	bp->b_bufsize = newbsize;
1432	bp->b_bcount = size;
1433	return 1;
1434}
1435
1436/*
1437 * Wait for buffer I/O completion, returning error status.
1438 */
1439int
1440biowait(register struct buf * bp)
1441{
1442	int s;
1443
1444	s = splbio();
1445	while ((bp->b_flags & B_DONE) == 0)
1446		tsleep(bp, PRIBIO, "biowait", 0);
1447	splx(s);
1448	if (bp->b_flags & B_EINTR) {
1449		bp->b_flags &= ~B_EINTR;
1450		return (EINTR);
1451	}
1452	if (bp->b_flags & B_ERROR) {
1453		return (bp->b_error ? bp->b_error : EIO);
1454	} else {
1455		return (0);
1456	}
1457}
1458
1459/*
1460 * Finish I/O on a buffer, calling an optional function.
1461 * This is usually called from interrupt level, so process blocking
1462 * is not *a good idea*.
1463 */
1464void
1465biodone(register struct buf * bp)
1466{
1467	int s;
1468
1469	s = splbio();
1470	if (!(bp->b_flags & B_BUSY))
1471		panic("biodone: buffer not busy");
1472
1473	if (bp->b_flags & B_DONE) {
1474		splx(s);
1475		printf("biodone: buffer already done\n");
1476		return;
1477	}
1478	bp->b_flags |= B_DONE;
1479
1480	if ((bp->b_flags & B_READ) == 0) {
1481		vwakeup(bp);
1482	}
1483#ifdef BOUNCE_BUFFERS
1484	if (bp->b_flags & B_BOUNCE)
1485		vm_bounce_free(bp);
1486#endif
1487
1488	/* call optional completion function if requested */
1489	if (bp->b_flags & B_CALL) {
1490		bp->b_flags &= ~B_CALL;
1491		(*bp->b_iodone) (bp);
1492		splx(s);
1493		return;
1494	}
1495	if (bp->b_flags & B_VMIO) {
1496		int i, resid;
1497		vm_ooffset_t foff;
1498		vm_page_t m;
1499		vm_object_t obj;
1500		int iosize;
1501		struct vnode *vp = bp->b_vp;
1502
1503		if (vp->v_type == VBLK)
1504			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1505		else
1506			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1507		obj = vp->v_object;
1508		if (!obj) {
1509			panic("biodone: no object");
1510		}
1511#if defined(VFS_BIO_DEBUG)
1512		if (obj->paging_in_progress < bp->b_npages) {
1513			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1514			    obj->paging_in_progress, bp->b_npages);
1515		}
1516#endif
1517		iosize = bp->b_bufsize;
1518		for (i = 0; i < bp->b_npages; i++) {
1519			int bogusflag = 0;
1520			m = bp->b_pages[i];
1521			if (m == bogus_page) {
1522				bogusflag = 1;
1523				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1524				if (!m) {
1525#if defined(VFS_BIO_DEBUG)
1526					printf("biodone: page disappeared\n");
1527#endif
1528					--obj->paging_in_progress;
1529					continue;
1530				}
1531				bp->b_pages[i] = m;
1532				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1533			}
1534#if defined(VFS_BIO_DEBUG)
1535			if (OFF_TO_IDX(foff) != m->pindex) {
1536				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1537			}
1538#endif
1539			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1540			if (resid > iosize)
1541				resid = iosize;
1542			/*
1543			 * In the write case, the valid and clean bits are
1544			 * already changed correctly, so we only need to do this
1545			 * here in the read case.
1546			 */
1547			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1548				vm_page_set_validclean(m,
1549					(vm_offset_t) (foff & PAGE_MASK), resid);
1550			}
1551
1552			/*
1553			 * when debugging new filesystems or buffer I/O methods, this
1554			 * is the most common error that pops up.  if you see this, you
1555			 * have not set the page busy flag correctly!!!
1556			 */
1557			if (m->busy == 0) {
1558				printf("biodone: page busy < 0, "
1559				    "pindex: %d, foff: 0x(%x,%x), "
1560				    "resid: %d, index: %d\n",
1561				    (int) m->pindex, (int)(foff >> 32),
1562						(int) foff & 0xffffffff, resid, i);
1563				if (vp->v_type != VBLK)
1564					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1565					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1566					    (int) bp->b_lblkno,
1567					    bp->b_flags, bp->b_npages);
1568				else
1569					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1570					    (int) bp->b_lblkno,
1571					    bp->b_flags, bp->b_npages);
1572				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1573				    m->valid, m->dirty, m->wire_count);
1574				panic("biodone: page busy < 0\n");
1575			}
1576			--m->busy;
1577			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1578				m->flags &= ~PG_WANTED;
1579				wakeup(m);
1580			}
1581			--obj->paging_in_progress;
1582			foff += resid;
1583			iosize -= resid;
1584		}
1585		if (obj && obj->paging_in_progress == 0 &&
1586		    (obj->flags & OBJ_PIPWNT)) {
1587			obj->flags &= ~OBJ_PIPWNT;
1588			wakeup(obj);
1589		}
1590	}
1591	/*
1592	 * For asynchronous completions, release the buffer now. The brelse
1593	 * checks for B_WANTED and will do the wakeup there if necessary - so
1594	 * no need to do a wakeup here in the async case.
1595	 */
1596
1597	if (bp->b_flags & B_ASYNC) {
1598		if ((bp->b_flags & B_ORDERED) == 0) {
1599			if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1600				brelse(bp);
1601			else
1602				bqrelse(bp);
1603		}
1604	} else {
1605		bp->b_flags &= ~B_WANTED;
1606		wakeup(bp);
1607	}
1608	splx(s);
1609}
1610
1611int
1612count_lock_queue()
1613{
1614	int count;
1615	struct buf *bp;
1616
1617	count = 0;
1618	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1619	    bp != NULL;
1620	    bp = TAILQ_NEXT(bp, b_freelist))
1621		count++;
1622	return (count);
1623}
1624
1625int vfs_update_interval = 30;
1626
1627static void
1628vfs_update()
1629{
1630	(void) spl0();		/* XXX redundant?  wrong place? */
1631	while (1) {
1632		tsleep(&vfs_update_wakeup, PUSER, "update",
1633		    hz * vfs_update_interval);
1634		vfs_update_wakeup = 0;
1635		sync(curproc, NULL, NULL);
1636	}
1637}
1638
1639static int
1640sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1641{
1642	int error = sysctl_handle_int(oidp,
1643		oidp->oid_arg1, oidp->oid_arg2, req);
1644	if (!error)
1645		wakeup(&vfs_update_wakeup);
1646	return error;
1647}
1648
1649SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1650	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1651
1652
1653/*
1654 * This routine is called in lieu of iodone in the case of
1655 * incomplete I/O.  This keeps the busy status for pages
1656 * consistant.
1657 */
1658void
1659vfs_unbusy_pages(struct buf * bp)
1660{
1661	int i;
1662
1663	if (bp->b_flags & B_VMIO) {
1664		struct vnode *vp = bp->b_vp;
1665		vm_object_t obj = vp->v_object;
1666		vm_ooffset_t foff;
1667
1668		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1669
1670		for (i = 0; i < bp->b_npages; i++) {
1671			vm_page_t m = bp->b_pages[i];
1672
1673			if (m == bogus_page) {
1674				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1675				if (!m) {
1676					panic("vfs_unbusy_pages: page missing\n");
1677				}
1678				bp->b_pages[i] = m;
1679				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1680			}
1681			--obj->paging_in_progress;
1682			--m->busy;
1683			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1684				m->flags &= ~PG_WANTED;
1685				wakeup(m);
1686			}
1687		}
1688		if (obj->paging_in_progress == 0 &&
1689		    (obj->flags & OBJ_PIPWNT)) {
1690			obj->flags &= ~OBJ_PIPWNT;
1691			wakeup(obj);
1692		}
1693	}
1694}
1695
1696/*
1697 * This routine is called before a device strategy routine.
1698 * It is used to tell the VM system that paging I/O is in
1699 * progress, and treat the pages associated with the buffer
1700 * almost as being PG_BUSY.  Also the object paging_in_progress
1701 * flag is handled to make sure that the object doesn't become
1702 * inconsistant.
1703 */
1704void
1705vfs_busy_pages(struct buf * bp, int clear_modify)
1706{
1707	int i;
1708
1709	if (bp->b_flags & B_VMIO) {
1710		vm_object_t obj = bp->b_vp->v_object;
1711		vm_ooffset_t foff;
1712		int iocount = bp->b_bufsize;
1713
1714		if (bp->b_vp->v_type == VBLK)
1715			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1716		else
1717			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1718		vfs_setdirty(bp);
1719		for (i = 0; i < bp->b_npages; i++) {
1720			vm_page_t m = bp->b_pages[i];
1721			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1722
1723			if (resid > iocount)
1724				resid = iocount;
1725			if ((bp->b_flags & B_CLUSTER) == 0) {
1726				obj->paging_in_progress++;
1727				m->busy++;
1728			}
1729			vm_page_protect(m, VM_PROT_NONE);
1730			if (clear_modify) {
1731				vm_page_set_validclean(m,
1732					(vm_offset_t) (foff & PAGE_MASK), resid);
1733			} else if (bp->b_bcount >= PAGE_SIZE) {
1734				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1735					bp->b_pages[i] = bogus_page;
1736					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1737				}
1738			}
1739			foff += resid;
1740			iocount -= resid;
1741		}
1742	}
1743}
1744
1745/*
1746 * Tell the VM system that the pages associated with this buffer
1747 * are clean.  This is used for delayed writes where the data is
1748 * going to go to disk eventually without additional VM intevention.
1749 */
1750void
1751vfs_clean_pages(struct buf * bp)
1752{
1753	int i;
1754
1755	if (bp->b_flags & B_VMIO) {
1756		vm_ooffset_t foff;
1757		int iocount = bp->b_bufsize;
1758
1759		if (bp->b_vp->v_type == VBLK)
1760			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1761		else
1762			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1763
1764		for (i = 0; i < bp->b_npages; i++) {
1765			vm_page_t m = bp->b_pages[i];
1766			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1767
1768			if (resid > iocount)
1769				resid = iocount;
1770			if (resid > 0) {
1771				vm_page_set_validclean(m,
1772					((vm_offset_t) foff & PAGE_MASK), resid);
1773			}
1774			foff += resid;
1775			iocount -= resid;
1776		}
1777	}
1778}
1779
1780void
1781vfs_bio_clrbuf(struct buf *bp) {
1782	int i;
1783	if( bp->b_flags & B_VMIO) {
1784		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1785			int mask;
1786			mask = 0;
1787			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
1788				mask |= (1 << (i/DEV_BSIZE));
1789			if( bp->b_pages[0]->valid != mask) {
1790				bzero(bp->b_data, bp->b_bufsize);
1791			}
1792			bp->b_pages[0]->valid = mask;
1793			bp->b_resid = 0;
1794			return;
1795		}
1796		for(i=0;i<bp->b_npages;i++) {
1797			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1798				continue;
1799			if( bp->b_pages[i]->valid == 0) {
1800				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
1801					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
1802				}
1803			} else {
1804				int j;
1805				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1806					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1807						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
1808				}
1809			}
1810			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
1811		}
1812		bp->b_resid = 0;
1813	} else {
1814		clrbuf(bp);
1815	}
1816}
1817
1818/*
1819 * vm_hold_load_pages and vm_hold_unload pages get pages into
1820 * a buffers address space.  The pages are anonymous and are
1821 * not associated with a file object.
1822 */
1823void
1824vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1825{
1826	vm_offset_t pg;
1827	vm_page_t p;
1828	int index;
1829
1830	to = round_page(to);
1831	from = round_page(from);
1832	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1833
1834	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1835
1836tryagain:
1837
1838		p = vm_page_alloc(kernel_object, ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
1839		    VM_ALLOC_NORMAL);
1840		if (!p) {
1841			VM_WAIT;
1842			goto tryagain;
1843		}
1844		vm_page_wire(p);
1845		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1846		bp->b_pages[index] = p;
1847		PAGE_WAKEUP(p);
1848	}
1849	bp->b_npages = to >> PAGE_SHIFT;
1850}
1851
1852void
1853vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1854{
1855	vm_offset_t pg;
1856	vm_page_t p;
1857	int index;
1858
1859	from = round_page(from);
1860	to = round_page(to);
1861	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1862
1863	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1864		p = bp->b_pages[index];
1865		if (p && (index < bp->b_npages)) {
1866			if (p->busy) {
1867				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
1868					bp->b_blkno, bp->b_lblkno);
1869			}
1870			bp->b_pages[index] = NULL;
1871			pmap_kremove(pg);
1872			vm_page_unwire(p);
1873			vm_page_free(p);
1874		}
1875	}
1876	bp->b_npages = from >> PAGE_SHIFT;
1877}
1878