vfs_bio.c revision 195773
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 195773 2009-07-19 20:25:59Z kib $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/fail.h>
52#include <sys/limits.h>
53#include <sys/lock.h>
54#include <sys/malloc.h>
55#include <sys/mount.h>
56#include <sys/mutex.h>
57#include <sys/kernel.h>
58#include <sys/kthread.h>
59#include <sys/proc.h>
60#include <sys/resourcevar.h>
61#include <sys/sysctl.h>
62#include <sys/vmmeter.h>
63#include <sys/vnode.h>
64#include <geom/geom.h>
65#include <vm/vm.h>
66#include <vm/vm_param.h>
67#include <vm/vm_kern.h>
68#include <vm/vm_pageout.h>
69#include <vm/vm_page.h>
70#include <vm/vm_object.h>
71#include <vm/vm_extern.h>
72#include <vm/vm_map.h>
73#include "opt_compat.h"
74#include "opt_directio.h"
75#include "opt_swap.h"
76
77static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
78
79struct	bio_ops bioops;		/* I/O operation notification */
80
81struct	buf_ops buf_ops_bio = {
82	.bop_name	=	"buf_ops_bio",
83	.bop_write	=	bufwrite,
84	.bop_strategy	=	bufstrategy,
85	.bop_sync	=	bufsync,
86	.bop_bdflush	=	bufbdflush,
87};
88
89/*
90 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
91 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
92 */
93struct buf *buf;		/* buffer header pool */
94
95static struct proc *bufdaemonproc;
96
97static int inmem(struct vnode *vp, daddr_t blkno);
98static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
99		vm_offset_t to);
100static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
101		vm_offset_t to);
102static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
103static void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
104		vm_page_t m);
105static void vfs_clean_pages(struct buf *bp);
106static void vfs_setdirty(struct buf *bp);
107static void vfs_setdirty_locked_object(struct buf *bp);
108static void vfs_vmio_release(struct buf *bp);
109static int vfs_bio_clcheck(struct vnode *vp, int size,
110		daddr_t lblkno, daddr_t blkno);
111static int buf_do_flush(struct vnode *vp);
112static int flushbufqueues(struct vnode *, int, int);
113static void buf_daemon(void);
114static void bremfreel(struct buf *bp);
115#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
116    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
117static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
118#endif
119
120int vmiodirenable = TRUE;
121SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
122    "Use the VM system for directory writes");
123long runningbufspace;
124SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
125    "Amount of presently outstanding async buffer io");
126static long bufspace;
127#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
128    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
129SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
130    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
131#else
132SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
133    "Virtual memory used for buffers");
134#endif
135static long maxbufspace;
136SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
137    "Maximum allowed value of bufspace (including buf_daemon)");
138static long bufmallocspace;
139SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
140    "Amount of malloced memory for buffers");
141static long maxbufmallocspace;
142SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
143    "Maximum amount of malloced memory for buffers");
144static long lobufspace;
145SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
146    "Minimum amount of buffers we want to have");
147long hibufspace;
148SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
149    "Maximum allowed value of bufspace (excluding buf_daemon)");
150static int bufreusecnt;
151SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
152    "Number of times we have reused a buffer");
153static int buffreekvacnt;
154SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
155    "Number of times we have freed the KVA space from some buffer");
156static int bufdefragcnt;
157SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
158    "Number of times we have had to repeat buffer allocation to defragment");
159static long lorunningspace;
160SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
161    "Minimum preferred space used for in-progress I/O");
162static long hirunningspace;
163SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
164    "Maximum amount of space to use for in-progress I/O");
165int dirtybufferflushes;
166SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
167    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
168int bdwriteskip;
169SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
170    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
171int altbufferflushes;
172SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
173    0, "Number of fsync flushes to limit dirty buffers");
174static int recursiveflushes;
175SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
176    0, "Number of flushes skipped due to being recursive");
177static int numdirtybuffers;
178SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
179    "Number of buffers that are dirty (has unwritten changes) at the moment");
180static int lodirtybuffers;
181SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
182    "How many buffers we want to have free before bufdaemon can sleep");
183static int hidirtybuffers;
184SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
185    "When the number of dirty buffers is considered severe");
186int dirtybufthresh;
187SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
188    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
189static int numfreebuffers;
190SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
191    "Number of free buffers");
192static int lofreebuffers;
193SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
194   "XXX Unused");
195static int hifreebuffers;
196SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
197   "XXX Complicatedly unused");
198static int getnewbufcalls;
199SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
200   "Number of calls to getnewbuf");
201static int getnewbufrestarts;
202SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
203    "Number of times getnewbuf has had to restart a buffer aquisition");
204static int flushbufqtarget = 100;
205SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
206    "Amount of work to do in flushbufqueues when helping bufdaemon");
207static long notbufdflashes;
208SYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
209    "Number of dirty buffer flushes done by the bufdaemon helpers");
210
211/*
212 * Wakeup point for bufdaemon, as well as indicator of whether it is already
213 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
214 * is idling.
215 */
216static int bd_request;
217
218/*
219 * This lock synchronizes access to bd_request.
220 */
221static struct mtx bdlock;
222
223/*
224 * bogus page -- for I/O to/from partially complete buffers
225 * this is a temporary solution to the problem, but it is not
226 * really that bad.  it would be better to split the buffer
227 * for input in the case of buffers partially already in memory,
228 * but the code is intricate enough already.
229 */
230vm_page_t bogus_page;
231
232/*
233 * Synchronization (sleep/wakeup) variable for active buffer space requests.
234 * Set when wait starts, cleared prior to wakeup().
235 * Used in runningbufwakeup() and waitrunningbufspace().
236 */
237static int runningbufreq;
238
239/*
240 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
241 * waitrunningbufspace().
242 */
243static struct mtx rbreqlock;
244
245/*
246 * Synchronization (sleep/wakeup) variable for buffer requests.
247 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
248 * by and/or.
249 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
250 * getnewbuf(), and getblk().
251 */
252static int needsbuffer;
253
254/*
255 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
256 */
257static struct mtx nblock;
258
259/*
260 * Definitions for the buffer free lists.
261 */
262#define BUFFER_QUEUES	6	/* number of free buffer queues */
263
264#define QUEUE_NONE	0	/* on no queue */
265#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
266#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
267#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
268#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
269#define QUEUE_EMPTY	5	/* empty buffer headers */
270#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
271
272/* Queues for free buffers with various properties */
273static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
274
275/* Lock for the bufqueues */
276static struct mtx bqlock;
277
278/*
279 * Single global constant for BUF_WMESG, to avoid getting multiple references.
280 * buf_wmesg is referred from macros.
281 */
282const char *buf_wmesg = BUF_WMESG;
283
284#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
285#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
286#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
287#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
288
289#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
290    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
291static int
292sysctl_bufspace(SYSCTL_HANDLER_ARGS)
293{
294	long lvalue;
295	int ivalue;
296
297	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
298		return (sysctl_handle_long(oidp, arg1, arg2, req));
299	lvalue = *(long *)arg1;
300	if (lvalue > INT_MAX)
301		/* On overflow, still write out a long to trigger ENOMEM. */
302		return (sysctl_handle_long(oidp, &lvalue, 0, req));
303	ivalue = lvalue;
304	return (sysctl_handle_int(oidp, &ivalue, 0, req));
305}
306#endif
307
308#ifdef DIRECTIO
309extern void ffs_rawread_setup(void);
310#endif /* DIRECTIO */
311/*
312 *	numdirtywakeup:
313 *
314 *	If someone is blocked due to there being too many dirty buffers,
315 *	and numdirtybuffers is now reasonable, wake them up.
316 */
317
318static __inline void
319numdirtywakeup(int level)
320{
321
322	if (numdirtybuffers <= level) {
323		mtx_lock(&nblock);
324		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
325			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
326			wakeup(&needsbuffer);
327		}
328		mtx_unlock(&nblock);
329	}
330}
331
332/*
333 *	bufspacewakeup:
334 *
335 *	Called when buffer space is potentially available for recovery.
336 *	getnewbuf() will block on this flag when it is unable to free
337 *	sufficient buffer space.  Buffer space becomes recoverable when
338 *	bp's get placed back in the queues.
339 */
340
341static __inline void
342bufspacewakeup(void)
343{
344
345	/*
346	 * If someone is waiting for BUF space, wake them up.  Even
347	 * though we haven't freed the kva space yet, the waiting
348	 * process will be able to now.
349	 */
350	mtx_lock(&nblock);
351	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
352		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
353		wakeup(&needsbuffer);
354	}
355	mtx_unlock(&nblock);
356}
357
358/*
359 * runningbufwakeup() - in-progress I/O accounting.
360 *
361 */
362void
363runningbufwakeup(struct buf *bp)
364{
365
366	if (bp->b_runningbufspace) {
367		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
368		bp->b_runningbufspace = 0;
369		mtx_lock(&rbreqlock);
370		if (runningbufreq && runningbufspace <= lorunningspace) {
371			runningbufreq = 0;
372			wakeup(&runningbufreq);
373		}
374		mtx_unlock(&rbreqlock);
375	}
376}
377
378/*
379 *	bufcountwakeup:
380 *
381 *	Called when a buffer has been added to one of the free queues to
382 *	account for the buffer and to wakeup anyone waiting for free buffers.
383 *	This typically occurs when large amounts of metadata are being handled
384 *	by the buffer cache ( else buffer space runs out first, usually ).
385 */
386
387static __inline void
388bufcountwakeup(void)
389{
390
391	atomic_add_int(&numfreebuffers, 1);
392	mtx_lock(&nblock);
393	if (needsbuffer) {
394		needsbuffer &= ~VFS_BIO_NEED_ANY;
395		if (numfreebuffers >= hifreebuffers)
396			needsbuffer &= ~VFS_BIO_NEED_FREE;
397		wakeup(&needsbuffer);
398	}
399	mtx_unlock(&nblock);
400}
401
402/*
403 *	waitrunningbufspace()
404 *
405 *	runningbufspace is a measure of the amount of I/O currently
406 *	running.  This routine is used in async-write situations to
407 *	prevent creating huge backups of pending writes to a device.
408 *	Only asynchronous writes are governed by this function.
409 *
410 *	Reads will adjust runningbufspace, but will not block based on it.
411 *	The read load has a side effect of reducing the allowed write load.
412 *
413 *	This does NOT turn an async write into a sync write.  It waits
414 *	for earlier writes to complete and generally returns before the
415 *	caller's write has reached the device.
416 */
417void
418waitrunningbufspace(void)
419{
420
421	mtx_lock(&rbreqlock);
422	while (runningbufspace > hirunningspace) {
423		++runningbufreq;
424		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
425	}
426	mtx_unlock(&rbreqlock);
427}
428
429
430/*
431 *	vfs_buf_test_cache:
432 *
433 *	Called when a buffer is extended.  This function clears the B_CACHE
434 *	bit if the newly extended portion of the buffer does not contain
435 *	valid data.
436 */
437static __inline
438void
439vfs_buf_test_cache(struct buf *bp,
440		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
441		  vm_page_t m)
442{
443
444	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
445	if (bp->b_flags & B_CACHE) {
446		int base = (foff + off) & PAGE_MASK;
447		if (vm_page_is_valid(m, base, size) == 0)
448			bp->b_flags &= ~B_CACHE;
449	}
450}
451
452/* Wake up the buffer daemon if necessary */
453static __inline
454void
455bd_wakeup(int dirtybuflevel)
456{
457
458	mtx_lock(&bdlock);
459	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
460		bd_request = 1;
461		wakeup(&bd_request);
462	}
463	mtx_unlock(&bdlock);
464}
465
466/*
467 * bd_speedup - speedup the buffer cache flushing code
468 */
469
470static __inline
471void
472bd_speedup(void)
473{
474
475	bd_wakeup(1);
476}
477
478/*
479 * Calculating buffer cache scaling values and reserve space for buffer
480 * headers.  This is called during low level kernel initialization and
481 * may be called more then once.  We CANNOT write to the memory area
482 * being reserved at this time.
483 */
484caddr_t
485kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
486{
487	int tuned_nbuf;
488	long maxbuf;
489
490	/*
491	 * physmem_est is in pages.  Convert it to kilobytes (assumes
492	 * PAGE_SIZE is >= 1K)
493	 */
494	physmem_est = physmem_est * (PAGE_SIZE / 1024);
495
496	/*
497	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
498	 * For the first 64MB of ram nominally allocate sufficient buffers to
499	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
500	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
501	 * the buffer cache we limit the eventual kva reservation to
502	 * maxbcache bytes.
503	 *
504	 * factor represents the 1/4 x ram conversion.
505	 */
506	if (nbuf == 0) {
507		int factor = 4 * BKVASIZE / 1024;
508
509		nbuf = 50;
510		if (physmem_est > 4096)
511			nbuf += min((physmem_est - 4096) / factor,
512			    65536 / factor);
513		if (physmem_est > 65536)
514			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
515
516		if (maxbcache && nbuf > maxbcache / BKVASIZE)
517			nbuf = maxbcache / BKVASIZE;
518		tuned_nbuf = 1;
519	} else
520		tuned_nbuf = 0;
521
522	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
523	maxbuf = (LONG_MAX / 3) / BKVASIZE;
524	if (nbuf > maxbuf) {
525		if (!tuned_nbuf)
526			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
527			    maxbuf);
528		nbuf = maxbuf;
529	}
530
531	/*
532	 * swbufs are used as temporary holders for I/O, such as paging I/O.
533	 * We have no less then 16 and no more then 256.
534	 */
535	nswbuf = max(min(nbuf/4, 256), 16);
536#ifdef NSWBUF_MIN
537	if (nswbuf < NSWBUF_MIN)
538		nswbuf = NSWBUF_MIN;
539#endif
540#ifdef DIRECTIO
541	ffs_rawread_setup();
542#endif
543
544	/*
545	 * Reserve space for the buffer cache buffers
546	 */
547	swbuf = (void *)v;
548	v = (caddr_t)(swbuf + nswbuf);
549	buf = (void *)v;
550	v = (caddr_t)(buf + nbuf);
551
552	return(v);
553}
554
555/* Initialize the buffer subsystem.  Called before use of any buffers. */
556void
557bufinit(void)
558{
559	struct buf *bp;
560	int i;
561
562	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
563	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
564	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
565	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
566
567	/* next, make a null set of free lists */
568	for (i = 0; i < BUFFER_QUEUES; i++)
569		TAILQ_INIT(&bufqueues[i]);
570
571	/* finally, initialize each buffer header and stick on empty q */
572	for (i = 0; i < nbuf; i++) {
573		bp = &buf[i];
574		bzero(bp, sizeof *bp);
575		bp->b_flags = B_INVAL;	/* we're just an empty header */
576		bp->b_rcred = NOCRED;
577		bp->b_wcred = NOCRED;
578		bp->b_qindex = QUEUE_EMPTY;
579		bp->b_vflags = 0;
580		bp->b_xflags = 0;
581		LIST_INIT(&bp->b_dep);
582		BUF_LOCKINIT(bp);
583		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
584	}
585
586	/*
587	 * maxbufspace is the absolute maximum amount of buffer space we are
588	 * allowed to reserve in KVM and in real terms.  The absolute maximum
589	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
590	 * used by most other processes.  The differential is required to
591	 * ensure that buf_daemon is able to run when other processes might
592	 * be blocked waiting for buffer space.
593	 *
594	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
595	 * this may result in KVM fragmentation which is not handled optimally
596	 * by the system.
597	 */
598	maxbufspace = (long)nbuf * BKVASIZE;
599	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
600	lobufspace = hibufspace - MAXBSIZE;
601
602	lorunningspace = 512 * 1024;
603	hirunningspace = 1024 * 1024;
604
605/*
606 * Limit the amount of malloc memory since it is wired permanently into
607 * the kernel space.  Even though this is accounted for in the buffer
608 * allocation, we don't want the malloced region to grow uncontrolled.
609 * The malloc scheme improves memory utilization significantly on average
610 * (small) directories.
611 */
612	maxbufmallocspace = hibufspace / 20;
613
614/*
615 * Reduce the chance of a deadlock occuring by limiting the number
616 * of delayed-write dirty buffers we allow to stack up.
617 */
618	hidirtybuffers = nbuf / 4 + 20;
619	dirtybufthresh = hidirtybuffers * 9 / 10;
620	numdirtybuffers = 0;
621/*
622 * To support extreme low-memory systems, make sure hidirtybuffers cannot
623 * eat up all available buffer space.  This occurs when our minimum cannot
624 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
625 * BKVASIZE'd (8K) buffers.
626 */
627	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
628		hidirtybuffers >>= 1;
629	}
630	lodirtybuffers = hidirtybuffers / 2;
631
632/*
633 * Try to keep the number of free buffers in the specified range,
634 * and give special processes (e.g. like buf_daemon) access to an
635 * emergency reserve.
636 */
637	lofreebuffers = nbuf / 18 + 5;
638	hifreebuffers = 2 * lofreebuffers;
639	numfreebuffers = nbuf;
640
641	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
642	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
643}
644
645/*
646 * bfreekva() - free the kva allocation for a buffer.
647 *
648 *	Since this call frees up buffer space, we call bufspacewakeup().
649 */
650static void
651bfreekva(struct buf *bp)
652{
653
654	if (bp->b_kvasize) {
655		atomic_add_int(&buffreekvacnt, 1);
656		atomic_subtract_long(&bufspace, bp->b_kvasize);
657		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
658		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
659		bp->b_kvasize = 0;
660		bufspacewakeup();
661	}
662}
663
664/*
665 *	bremfree:
666 *
667 *	Mark the buffer for removal from the appropriate free list in brelse.
668 *
669 */
670void
671bremfree(struct buf *bp)
672{
673
674	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
675	KASSERT((bp->b_flags & B_REMFREE) == 0,
676	    ("bremfree: buffer %p already marked for delayed removal.", bp));
677	KASSERT(bp->b_qindex != QUEUE_NONE,
678	    ("bremfree: buffer %p not on a queue.", bp));
679	BUF_ASSERT_HELD(bp);
680
681	bp->b_flags |= B_REMFREE;
682	/* Fixup numfreebuffers count.  */
683	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
684		atomic_subtract_int(&numfreebuffers, 1);
685}
686
687/*
688 *	bremfreef:
689 *
690 *	Force an immediate removal from a free list.  Used only in nfs when
691 *	it abuses the b_freelist pointer.
692 */
693void
694bremfreef(struct buf *bp)
695{
696	mtx_lock(&bqlock);
697	bremfreel(bp);
698	mtx_unlock(&bqlock);
699}
700
701/*
702 *	bremfreel:
703 *
704 *	Removes a buffer from the free list, must be called with the
705 *	bqlock held.
706 */
707static void
708bremfreel(struct buf *bp)
709{
710	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
711	    bp, bp->b_vp, bp->b_flags);
712	KASSERT(bp->b_qindex != QUEUE_NONE,
713	    ("bremfreel: buffer %p not on a queue.", bp));
714	BUF_ASSERT_HELD(bp);
715	mtx_assert(&bqlock, MA_OWNED);
716
717	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
718	bp->b_qindex = QUEUE_NONE;
719	/*
720	 * If this was a delayed bremfree() we only need to remove the buffer
721	 * from the queue and return the stats are already done.
722	 */
723	if (bp->b_flags & B_REMFREE) {
724		bp->b_flags &= ~B_REMFREE;
725		return;
726	}
727	/*
728	 * Fixup numfreebuffers count.  If the buffer is invalid or not
729	 * delayed-write, the buffer was free and we must decrement
730	 * numfreebuffers.
731	 */
732	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
733		atomic_subtract_int(&numfreebuffers, 1);
734}
735
736
737/*
738 * Get a buffer with the specified data.  Look in the cache first.  We
739 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
740 * is set, the buffer is valid and we do not have to do anything ( see
741 * getblk() ).  This is really just a special case of breadn().
742 */
743int
744bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
745    struct buf **bpp)
746{
747
748	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
749}
750
751/*
752 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
753 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
754 * the buffer is valid and we do not have to do anything.
755 */
756void
757breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
758    int cnt, struct ucred * cred)
759{
760	struct buf *rabp;
761	int i;
762
763	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
764		if (inmem(vp, *rablkno))
765			continue;
766		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
767
768		if ((rabp->b_flags & B_CACHE) == 0) {
769			if (!TD_IS_IDLETHREAD(curthread))
770				curthread->td_ru.ru_inblock++;
771			rabp->b_flags |= B_ASYNC;
772			rabp->b_flags &= ~B_INVAL;
773			rabp->b_ioflags &= ~BIO_ERROR;
774			rabp->b_iocmd = BIO_READ;
775			if (rabp->b_rcred == NOCRED && cred != NOCRED)
776				rabp->b_rcred = crhold(cred);
777			vfs_busy_pages(rabp, 0);
778			BUF_KERNPROC(rabp);
779			rabp->b_iooffset = dbtob(rabp->b_blkno);
780			bstrategy(rabp);
781		} else {
782			brelse(rabp);
783		}
784	}
785}
786
787/*
788 * Operates like bread, but also starts asynchronous I/O on
789 * read-ahead blocks.
790 */
791int
792breadn(struct vnode * vp, daddr_t blkno, int size,
793    daddr_t * rablkno, int *rabsize,
794    int cnt, struct ucred * cred, struct buf **bpp)
795{
796	struct buf *bp;
797	int rv = 0, readwait = 0;
798
799	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
800	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
801
802	/* if not found in cache, do some I/O */
803	if ((bp->b_flags & B_CACHE) == 0) {
804		if (!TD_IS_IDLETHREAD(curthread))
805			curthread->td_ru.ru_inblock++;
806		bp->b_iocmd = BIO_READ;
807		bp->b_flags &= ~B_INVAL;
808		bp->b_ioflags &= ~BIO_ERROR;
809		if (bp->b_rcred == NOCRED && cred != NOCRED)
810			bp->b_rcred = crhold(cred);
811		vfs_busy_pages(bp, 0);
812		bp->b_iooffset = dbtob(bp->b_blkno);
813		bstrategy(bp);
814		++readwait;
815	}
816
817	breada(vp, rablkno, rabsize, cnt, cred);
818
819	if (readwait) {
820		rv = bufwait(bp);
821	}
822	return (rv);
823}
824
825/*
826 * Write, release buffer on completion.  (Done by iodone
827 * if async).  Do not bother writing anything if the buffer
828 * is invalid.
829 *
830 * Note that we set B_CACHE here, indicating that buffer is
831 * fully valid and thus cacheable.  This is true even of NFS
832 * now so we set it generally.  This could be set either here
833 * or in biodone() since the I/O is synchronous.  We put it
834 * here.
835 */
836int
837bufwrite(struct buf *bp)
838{
839	int oldflags;
840	struct vnode *vp;
841	int vp_md;
842
843	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
844	if (bp->b_flags & B_INVAL) {
845		brelse(bp);
846		return (0);
847	}
848
849	oldflags = bp->b_flags;
850
851	BUF_ASSERT_HELD(bp);
852
853	if (bp->b_pin_count > 0)
854		bunpin_wait(bp);
855
856	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
857	    ("FFS background buffer should not get here %p", bp));
858
859	vp = bp->b_vp;
860	if (vp)
861		vp_md = vp->v_vflag & VV_MD;
862	else
863		vp_md = 0;
864
865	/* Mark the buffer clean */
866	bundirty(bp);
867
868	bp->b_flags &= ~B_DONE;
869	bp->b_ioflags &= ~BIO_ERROR;
870	bp->b_flags |= B_CACHE;
871	bp->b_iocmd = BIO_WRITE;
872
873	bufobj_wref(bp->b_bufobj);
874	vfs_busy_pages(bp, 1);
875
876	/*
877	 * Normal bwrites pipeline writes
878	 */
879	bp->b_runningbufspace = bp->b_bufsize;
880	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
881
882	if (!TD_IS_IDLETHREAD(curthread))
883		curthread->td_ru.ru_oublock++;
884	if (oldflags & B_ASYNC)
885		BUF_KERNPROC(bp);
886	bp->b_iooffset = dbtob(bp->b_blkno);
887	bstrategy(bp);
888
889	if ((oldflags & B_ASYNC) == 0) {
890		int rtval = bufwait(bp);
891		brelse(bp);
892		return (rtval);
893	} else {
894		/*
895		 * don't allow the async write to saturate the I/O
896		 * system.  We will not deadlock here because
897		 * we are blocking waiting for I/O that is already in-progress
898		 * to complete. We do not block here if it is the update
899		 * or syncer daemon trying to clean up as that can lead
900		 * to deadlock.
901		 */
902		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
903			waitrunningbufspace();
904	}
905
906	return (0);
907}
908
909void
910bufbdflush(struct bufobj *bo, struct buf *bp)
911{
912	struct buf *nbp;
913
914	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
915		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
916		altbufferflushes++;
917	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
918		BO_LOCK(bo);
919		/*
920		 * Try to find a buffer to flush.
921		 */
922		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
923			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
924			    BUF_LOCK(nbp,
925				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
926				continue;
927			if (bp == nbp)
928				panic("bdwrite: found ourselves");
929			BO_UNLOCK(bo);
930			/* Don't countdeps with the bo lock held. */
931			if (buf_countdeps(nbp, 0)) {
932				BO_LOCK(bo);
933				BUF_UNLOCK(nbp);
934				continue;
935			}
936			if (nbp->b_flags & B_CLUSTEROK) {
937				vfs_bio_awrite(nbp);
938			} else {
939				bremfree(nbp);
940				bawrite(nbp);
941			}
942			dirtybufferflushes++;
943			break;
944		}
945		if (nbp == NULL)
946			BO_UNLOCK(bo);
947	}
948}
949
950/*
951 * Delayed write. (Buffer is marked dirty).  Do not bother writing
952 * anything if the buffer is marked invalid.
953 *
954 * Note that since the buffer must be completely valid, we can safely
955 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
956 * biodone() in order to prevent getblk from writing the buffer
957 * out synchronously.
958 */
959void
960bdwrite(struct buf *bp)
961{
962	struct thread *td = curthread;
963	struct vnode *vp;
964	struct bufobj *bo;
965
966	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
967	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
968	BUF_ASSERT_HELD(bp);
969
970	if (bp->b_flags & B_INVAL) {
971		brelse(bp);
972		return;
973	}
974
975	/*
976	 * If we have too many dirty buffers, don't create any more.
977	 * If we are wildly over our limit, then force a complete
978	 * cleanup. Otherwise, just keep the situation from getting
979	 * out of control. Note that we have to avoid a recursive
980	 * disaster and not try to clean up after our own cleanup!
981	 */
982	vp = bp->b_vp;
983	bo = bp->b_bufobj;
984	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
985		td->td_pflags |= TDP_INBDFLUSH;
986		BO_BDFLUSH(bo, bp);
987		td->td_pflags &= ~TDP_INBDFLUSH;
988	} else
989		recursiveflushes++;
990
991	bdirty(bp);
992	/*
993	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
994	 * true even of NFS now.
995	 */
996	bp->b_flags |= B_CACHE;
997
998	/*
999	 * This bmap keeps the system from needing to do the bmap later,
1000	 * perhaps when the system is attempting to do a sync.  Since it
1001	 * is likely that the indirect block -- or whatever other datastructure
1002	 * that the filesystem needs is still in memory now, it is a good
1003	 * thing to do this.  Note also, that if the pageout daemon is
1004	 * requesting a sync -- there might not be enough memory to do
1005	 * the bmap then...  So, this is important to do.
1006	 */
1007	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1008		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1009	}
1010
1011	/*
1012	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1013	 */
1014	vfs_setdirty(bp);
1015
1016	/*
1017	 * We need to do this here to satisfy the vnode_pager and the
1018	 * pageout daemon, so that it thinks that the pages have been
1019	 * "cleaned".  Note that since the pages are in a delayed write
1020	 * buffer -- the VFS layer "will" see that the pages get written
1021	 * out on the next sync, or perhaps the cluster will be completed.
1022	 */
1023	vfs_clean_pages(bp);
1024	bqrelse(bp);
1025
1026	/*
1027	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1028	 * buffers (midpoint between our recovery point and our stall
1029	 * point).
1030	 */
1031	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1032
1033	/*
1034	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1035	 * due to the softdep code.
1036	 */
1037}
1038
1039/*
1040 *	bdirty:
1041 *
1042 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1043 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1044 *	itself to properly update it in the dirty/clean lists.  We mark it
1045 *	B_DONE to ensure that any asynchronization of the buffer properly
1046 *	clears B_DONE ( else a panic will occur later ).
1047 *
1048 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1049 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1050 *	should only be called if the buffer is known-good.
1051 *
1052 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1053 *	count.
1054 *
1055 *	The buffer must be on QUEUE_NONE.
1056 */
1057void
1058bdirty(struct buf *bp)
1059{
1060
1061	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1062	    bp, bp->b_vp, bp->b_flags);
1063	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1064	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1065	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1066	BUF_ASSERT_HELD(bp);
1067	bp->b_flags &= ~(B_RELBUF);
1068	bp->b_iocmd = BIO_WRITE;
1069
1070	if ((bp->b_flags & B_DELWRI) == 0) {
1071		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1072		reassignbuf(bp);
1073		atomic_add_int(&numdirtybuffers, 1);
1074		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1075	}
1076}
1077
1078/*
1079 *	bundirty:
1080 *
1081 *	Clear B_DELWRI for buffer.
1082 *
1083 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1084 *	count.
1085 *
1086 *	The buffer must be on QUEUE_NONE.
1087 */
1088
1089void
1090bundirty(struct buf *bp)
1091{
1092
1093	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1094	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1095	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1096	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1097	BUF_ASSERT_HELD(bp);
1098
1099	if (bp->b_flags & B_DELWRI) {
1100		bp->b_flags &= ~B_DELWRI;
1101		reassignbuf(bp);
1102		atomic_subtract_int(&numdirtybuffers, 1);
1103		numdirtywakeup(lodirtybuffers);
1104	}
1105	/*
1106	 * Since it is now being written, we can clear its deferred write flag.
1107	 */
1108	bp->b_flags &= ~B_DEFERRED;
1109}
1110
1111/*
1112 *	bawrite:
1113 *
1114 *	Asynchronous write.  Start output on a buffer, but do not wait for
1115 *	it to complete.  The buffer is released when the output completes.
1116 *
1117 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1118 *	B_INVAL buffers.  Not us.
1119 */
1120void
1121bawrite(struct buf *bp)
1122{
1123
1124	bp->b_flags |= B_ASYNC;
1125	(void) bwrite(bp);
1126}
1127
1128/*
1129 *	bwillwrite:
1130 *
1131 *	Called prior to the locking of any vnodes when we are expecting to
1132 *	write.  We do not want to starve the buffer cache with too many
1133 *	dirty buffers so we block here.  By blocking prior to the locking
1134 *	of any vnodes we attempt to avoid the situation where a locked vnode
1135 *	prevents the various system daemons from flushing related buffers.
1136 */
1137
1138void
1139bwillwrite(void)
1140{
1141
1142	if (numdirtybuffers >= hidirtybuffers) {
1143		mtx_lock(&nblock);
1144		while (numdirtybuffers >= hidirtybuffers) {
1145			bd_wakeup(1);
1146			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1147			msleep(&needsbuffer, &nblock,
1148			    (PRIBIO + 4), "flswai", 0);
1149		}
1150		mtx_unlock(&nblock);
1151	}
1152}
1153
1154/*
1155 * Return true if we have too many dirty buffers.
1156 */
1157int
1158buf_dirty_count_severe(void)
1159{
1160
1161	return(numdirtybuffers >= hidirtybuffers);
1162}
1163
1164static __noinline int
1165buf_vm_page_count_severe(void)
1166{
1167
1168	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1169
1170	return vm_page_count_severe();
1171}
1172
1173/*
1174 *	brelse:
1175 *
1176 *	Release a busy buffer and, if requested, free its resources.  The
1177 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1178 *	to be accessed later as a cache entity or reused for other purposes.
1179 */
1180void
1181brelse(struct buf *bp)
1182{
1183	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1184	    bp, bp->b_vp, bp->b_flags);
1185	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1186	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1187
1188	if (bp->b_flags & B_MANAGED) {
1189		bqrelse(bp);
1190		return;
1191	}
1192
1193	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1194	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1195		/*
1196		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1197		 * pages from being scrapped.  If the error is anything
1198		 * other than an I/O error (EIO), assume that retrying
1199		 * is futile.
1200		 */
1201		bp->b_ioflags &= ~BIO_ERROR;
1202		bdirty(bp);
1203	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1204	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1205		/*
1206		 * Either a failed I/O or we were asked to free or not
1207		 * cache the buffer.
1208		 */
1209		bp->b_flags |= B_INVAL;
1210		if (!LIST_EMPTY(&bp->b_dep))
1211			buf_deallocate(bp);
1212		if (bp->b_flags & B_DELWRI) {
1213			atomic_subtract_int(&numdirtybuffers, 1);
1214			numdirtywakeup(lodirtybuffers);
1215		}
1216		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1217		if ((bp->b_flags & B_VMIO) == 0) {
1218			if (bp->b_bufsize)
1219				allocbuf(bp, 0);
1220			if (bp->b_vp)
1221				brelvp(bp);
1222		}
1223	}
1224
1225	/*
1226	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1227	 * is called with B_DELWRI set, the underlying pages may wind up
1228	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1229	 * because pages associated with a B_DELWRI bp are marked clean.
1230	 *
1231	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1232	 * if B_DELWRI is set.
1233	 *
1234	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1235	 * on pages to return pages to the VM page queues.
1236	 */
1237	if (bp->b_flags & B_DELWRI)
1238		bp->b_flags &= ~B_RELBUF;
1239	else if (buf_vm_page_count_severe()) {
1240		/*
1241		 * The locking of the BO_LOCK is not necessary since
1242		 * BKGRDINPROG cannot be set while we hold the buf
1243		 * lock, it can only be cleared if it is already
1244		 * pending.
1245		 */
1246		if (bp->b_vp) {
1247			if (!(bp->b_vflags & BV_BKGRDINPROG))
1248				bp->b_flags |= B_RELBUF;
1249		} else
1250			bp->b_flags |= B_RELBUF;
1251	}
1252
1253	/*
1254	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1255	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1256	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1257	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1258	 *
1259	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1260	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1261	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1262	 *
1263	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1264	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1265	 * the commit state and we cannot afford to lose the buffer. If the
1266	 * buffer has a background write in progress, we need to keep it
1267	 * around to prevent it from being reconstituted and starting a second
1268	 * background write.
1269	 */
1270	if ((bp->b_flags & B_VMIO)
1271	    && !(bp->b_vp->v_mount != NULL &&
1272		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1273		 !vn_isdisk(bp->b_vp, NULL) &&
1274		 (bp->b_flags & B_DELWRI))
1275	    ) {
1276
1277		int i, j, resid;
1278		vm_page_t m;
1279		off_t foff;
1280		vm_pindex_t poff;
1281		vm_object_t obj;
1282
1283		obj = bp->b_bufobj->bo_object;
1284
1285		/*
1286		 * Get the base offset and length of the buffer.  Note that
1287		 * in the VMIO case if the buffer block size is not
1288		 * page-aligned then b_data pointer may not be page-aligned.
1289		 * But our b_pages[] array *IS* page aligned.
1290		 *
1291		 * block sizes less then DEV_BSIZE (usually 512) are not
1292		 * supported due to the page granularity bits (m->valid,
1293		 * m->dirty, etc...).
1294		 *
1295		 * See man buf(9) for more information
1296		 */
1297		resid = bp->b_bufsize;
1298		foff = bp->b_offset;
1299		VM_OBJECT_LOCK(obj);
1300		for (i = 0; i < bp->b_npages; i++) {
1301			int had_bogus = 0;
1302
1303			m = bp->b_pages[i];
1304
1305			/*
1306			 * If we hit a bogus page, fixup *all* the bogus pages
1307			 * now.
1308			 */
1309			if (m == bogus_page) {
1310				poff = OFF_TO_IDX(bp->b_offset);
1311				had_bogus = 1;
1312
1313				for (j = i; j < bp->b_npages; j++) {
1314					vm_page_t mtmp;
1315					mtmp = bp->b_pages[j];
1316					if (mtmp == bogus_page) {
1317						mtmp = vm_page_lookup(obj, poff + j);
1318						if (!mtmp) {
1319							panic("brelse: page missing\n");
1320						}
1321						bp->b_pages[j] = mtmp;
1322					}
1323				}
1324
1325				if ((bp->b_flags & B_INVAL) == 0) {
1326					pmap_qenter(
1327					    trunc_page((vm_offset_t)bp->b_data),
1328					    bp->b_pages, bp->b_npages);
1329				}
1330				m = bp->b_pages[i];
1331			}
1332			if ((bp->b_flags & B_NOCACHE) ||
1333			    (bp->b_ioflags & BIO_ERROR &&
1334			     bp->b_iocmd == BIO_READ)) {
1335				int poffset = foff & PAGE_MASK;
1336				int presid = resid > (PAGE_SIZE - poffset) ?
1337					(PAGE_SIZE - poffset) : resid;
1338
1339				KASSERT(presid >= 0, ("brelse: extra page"));
1340				vm_page_lock_queues();
1341				vm_page_set_invalid(m, poffset, presid);
1342				vm_page_unlock_queues();
1343				if (had_bogus)
1344					printf("avoided corruption bug in bogus_page/brelse code\n");
1345			}
1346			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1347			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1348		}
1349		VM_OBJECT_UNLOCK(obj);
1350		if (bp->b_flags & (B_INVAL | B_RELBUF))
1351			vfs_vmio_release(bp);
1352
1353	} else if (bp->b_flags & B_VMIO) {
1354
1355		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1356			vfs_vmio_release(bp);
1357		}
1358
1359	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1360		if (bp->b_bufsize != 0)
1361			allocbuf(bp, 0);
1362		if (bp->b_vp != NULL)
1363			brelvp(bp);
1364	}
1365
1366	if (BUF_LOCKRECURSED(bp)) {
1367		/* do not release to free list */
1368		BUF_UNLOCK(bp);
1369		return;
1370	}
1371
1372	/* enqueue */
1373	mtx_lock(&bqlock);
1374	/* Handle delayed bremfree() processing. */
1375	if (bp->b_flags & B_REMFREE)
1376		bremfreel(bp);
1377	if (bp->b_qindex != QUEUE_NONE)
1378		panic("brelse: free buffer onto another queue???");
1379
1380	/*
1381	 * If the buffer has junk contents signal it and eventually
1382	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1383	 * doesn't find it.
1384	 */
1385	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1386	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1387		bp->b_flags |= B_INVAL;
1388	if (bp->b_flags & B_INVAL) {
1389		if (bp->b_flags & B_DELWRI)
1390			bundirty(bp);
1391		if (bp->b_vp)
1392			brelvp(bp);
1393	}
1394
1395	/* buffers with no memory */
1396	if (bp->b_bufsize == 0) {
1397		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1398		if (bp->b_vflags & BV_BKGRDINPROG)
1399			panic("losing buffer 1");
1400		if (bp->b_kvasize) {
1401			bp->b_qindex = QUEUE_EMPTYKVA;
1402		} else {
1403			bp->b_qindex = QUEUE_EMPTY;
1404		}
1405		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1406	/* buffers with junk contents */
1407	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1408	    (bp->b_ioflags & BIO_ERROR)) {
1409		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1410		if (bp->b_vflags & BV_BKGRDINPROG)
1411			panic("losing buffer 2");
1412		bp->b_qindex = QUEUE_CLEAN;
1413		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1414	/* remaining buffers */
1415	} else {
1416		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1417		    (B_DELWRI|B_NEEDSGIANT))
1418			bp->b_qindex = QUEUE_DIRTY_GIANT;
1419		else if (bp->b_flags & B_DELWRI)
1420			bp->b_qindex = QUEUE_DIRTY;
1421		else
1422			bp->b_qindex = QUEUE_CLEAN;
1423		if (bp->b_flags & B_AGE)
1424			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1425		else
1426			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1427	}
1428	mtx_unlock(&bqlock);
1429
1430	/*
1431	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1432	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1433	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1434	 * if B_INVAL is set ).
1435	 */
1436
1437	if (!(bp->b_flags & B_DELWRI))
1438		bufcountwakeup();
1439
1440	/*
1441	 * Something we can maybe free or reuse
1442	 */
1443	if (bp->b_bufsize || bp->b_kvasize)
1444		bufspacewakeup();
1445
1446	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1447	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1448		panic("brelse: not dirty");
1449	/* unlock */
1450	BUF_UNLOCK(bp);
1451}
1452
1453/*
1454 * Release a buffer back to the appropriate queue but do not try to free
1455 * it.  The buffer is expected to be used again soon.
1456 *
1457 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1458 * biodone() to requeue an async I/O on completion.  It is also used when
1459 * known good buffers need to be requeued but we think we may need the data
1460 * again soon.
1461 *
1462 * XXX we should be able to leave the B_RELBUF hint set on completion.
1463 */
1464void
1465bqrelse(struct buf *bp)
1466{
1467	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1468	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1469	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1470
1471	if (BUF_LOCKRECURSED(bp)) {
1472		/* do not release to free list */
1473		BUF_UNLOCK(bp);
1474		return;
1475	}
1476
1477	if (bp->b_flags & B_MANAGED) {
1478		if (bp->b_flags & B_REMFREE) {
1479			mtx_lock(&bqlock);
1480			bremfreel(bp);
1481			mtx_unlock(&bqlock);
1482		}
1483		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1484		BUF_UNLOCK(bp);
1485		return;
1486	}
1487
1488	mtx_lock(&bqlock);
1489	/* Handle delayed bremfree() processing. */
1490	if (bp->b_flags & B_REMFREE)
1491		bremfreel(bp);
1492	if (bp->b_qindex != QUEUE_NONE)
1493		panic("bqrelse: free buffer onto another queue???");
1494	/* buffers with stale but valid contents */
1495	if (bp->b_flags & B_DELWRI) {
1496		if (bp->b_flags & B_NEEDSGIANT)
1497			bp->b_qindex = QUEUE_DIRTY_GIANT;
1498		else
1499			bp->b_qindex = QUEUE_DIRTY;
1500		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1501	} else {
1502		/*
1503		 * The locking of the BO_LOCK for checking of the
1504		 * BV_BKGRDINPROG is not necessary since the
1505		 * BV_BKGRDINPROG cannot be set while we hold the buf
1506		 * lock, it can only be cleared if it is already
1507		 * pending.
1508		 */
1509		if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1510			bp->b_qindex = QUEUE_CLEAN;
1511			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1512			    b_freelist);
1513		} else {
1514			/*
1515			 * We are too low on memory, we have to try to free
1516			 * the buffer (most importantly: the wired pages
1517			 * making up its backing store) *now*.
1518			 */
1519			mtx_unlock(&bqlock);
1520			brelse(bp);
1521			return;
1522		}
1523	}
1524	mtx_unlock(&bqlock);
1525
1526	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1527		bufcountwakeup();
1528
1529	/*
1530	 * Something we can maybe free or reuse.
1531	 */
1532	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1533		bufspacewakeup();
1534
1535	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1536	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1537		panic("bqrelse: not dirty");
1538	/* unlock */
1539	BUF_UNLOCK(bp);
1540}
1541
1542/* Give pages used by the bp back to the VM system (where possible) */
1543static void
1544vfs_vmio_release(struct buf *bp)
1545{
1546	int i;
1547	vm_page_t m;
1548
1549	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1550	vm_page_lock_queues();
1551	for (i = 0; i < bp->b_npages; i++) {
1552		m = bp->b_pages[i];
1553		bp->b_pages[i] = NULL;
1554		/*
1555		 * In order to keep page LRU ordering consistent, put
1556		 * everything on the inactive queue.
1557		 */
1558		vm_page_unwire(m, 0);
1559		/*
1560		 * We don't mess with busy pages, it is
1561		 * the responsibility of the process that
1562		 * busied the pages to deal with them.
1563		 */
1564		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1565			continue;
1566
1567		if (m->wire_count == 0) {
1568			/*
1569			 * Might as well free the page if we can and it has
1570			 * no valid data.  We also free the page if the
1571			 * buffer was used for direct I/O
1572			 */
1573			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1574			    m->hold_count == 0) {
1575				vm_page_free(m);
1576			} else if (bp->b_flags & B_DIRECT) {
1577				vm_page_try_to_free(m);
1578			} else if (buf_vm_page_count_severe()) {
1579				vm_page_try_to_cache(m);
1580			}
1581		}
1582	}
1583	vm_page_unlock_queues();
1584	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1585	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1586
1587	if (bp->b_bufsize) {
1588		bufspacewakeup();
1589		bp->b_bufsize = 0;
1590	}
1591	bp->b_npages = 0;
1592	bp->b_flags &= ~B_VMIO;
1593	if (bp->b_vp)
1594		brelvp(bp);
1595}
1596
1597/*
1598 * Check to see if a block at a particular lbn is available for a clustered
1599 * write.
1600 */
1601static int
1602vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1603{
1604	struct buf *bpa;
1605	int match;
1606
1607	match = 0;
1608
1609	/* If the buf isn't in core skip it */
1610	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1611		return (0);
1612
1613	/* If the buf is busy we don't want to wait for it */
1614	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1615		return (0);
1616
1617	/* Only cluster with valid clusterable delayed write buffers */
1618	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1619	    (B_DELWRI | B_CLUSTEROK))
1620		goto done;
1621
1622	if (bpa->b_bufsize != size)
1623		goto done;
1624
1625	/*
1626	 * Check to see if it is in the expected place on disk and that the
1627	 * block has been mapped.
1628	 */
1629	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1630		match = 1;
1631done:
1632	BUF_UNLOCK(bpa);
1633	return (match);
1634}
1635
1636/*
1637 *	vfs_bio_awrite:
1638 *
1639 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1640 *	This is much better then the old way of writing only one buffer at
1641 *	a time.  Note that we may not be presented with the buffers in the
1642 *	correct order, so we search for the cluster in both directions.
1643 */
1644int
1645vfs_bio_awrite(struct buf *bp)
1646{
1647	struct bufobj *bo;
1648	int i;
1649	int j;
1650	daddr_t lblkno = bp->b_lblkno;
1651	struct vnode *vp = bp->b_vp;
1652	int ncl;
1653	int nwritten;
1654	int size;
1655	int maxcl;
1656
1657	bo = &vp->v_bufobj;
1658	/*
1659	 * right now we support clustered writing only to regular files.  If
1660	 * we find a clusterable block we could be in the middle of a cluster
1661	 * rather then at the beginning.
1662	 */
1663	if ((vp->v_type == VREG) &&
1664	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1665	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1666
1667		size = vp->v_mount->mnt_stat.f_iosize;
1668		maxcl = MAXPHYS / size;
1669
1670		BO_LOCK(bo);
1671		for (i = 1; i < maxcl; i++)
1672			if (vfs_bio_clcheck(vp, size, lblkno + i,
1673			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1674				break;
1675
1676		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1677			if (vfs_bio_clcheck(vp, size, lblkno - j,
1678			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1679				break;
1680		BO_UNLOCK(bo);
1681		--j;
1682		ncl = i + j;
1683		/*
1684		 * this is a possible cluster write
1685		 */
1686		if (ncl != 1) {
1687			BUF_UNLOCK(bp);
1688			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1689			return nwritten;
1690		}
1691	}
1692	bremfree(bp);
1693	bp->b_flags |= B_ASYNC;
1694	/*
1695	 * default (old) behavior, writing out only one block
1696	 *
1697	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1698	 */
1699	nwritten = bp->b_bufsize;
1700	(void) bwrite(bp);
1701
1702	return nwritten;
1703}
1704
1705/*
1706 *	getnewbuf:
1707 *
1708 *	Find and initialize a new buffer header, freeing up existing buffers
1709 *	in the bufqueues as necessary.  The new buffer is returned locked.
1710 *
1711 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1712 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1713 *
1714 *	We block if:
1715 *		We have insufficient buffer headers
1716 *		We have insufficient buffer space
1717 *		buffer_map is too fragmented ( space reservation fails )
1718 *		If we have to flush dirty buffers ( but we try to avoid this )
1719 *
1720 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1721 *	Instead we ask the buf daemon to do it for us.  We attempt to
1722 *	avoid piecemeal wakeups of the pageout daemon.
1723 */
1724
1725static struct buf *
1726getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1727    int gbflags)
1728{
1729	struct thread *td;
1730	struct buf *bp;
1731	struct buf *nbp;
1732	int defrag = 0;
1733	int nqindex;
1734	static int flushingbufs;
1735
1736	td = curthread;
1737	/*
1738	 * We can't afford to block since we might be holding a vnode lock,
1739	 * which may prevent system daemons from running.  We deal with
1740	 * low-memory situations by proactively returning memory and running
1741	 * async I/O rather then sync I/O.
1742	 */
1743	atomic_add_int(&getnewbufcalls, 1);
1744	atomic_subtract_int(&getnewbufrestarts, 1);
1745restart:
1746	atomic_add_int(&getnewbufrestarts, 1);
1747
1748	/*
1749	 * Setup for scan.  If we do not have enough free buffers,
1750	 * we setup a degenerate case that immediately fails.  Note
1751	 * that if we are specially marked process, we are allowed to
1752	 * dip into our reserves.
1753	 *
1754	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1755	 *
1756	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1757	 * However, there are a number of cases (defragging, reusing, ...)
1758	 * where we cannot backup.
1759	 */
1760	mtx_lock(&bqlock);
1761	nqindex = QUEUE_EMPTYKVA;
1762	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1763
1764	if (nbp == NULL) {
1765		/*
1766		 * If no EMPTYKVA buffers and we are either
1767		 * defragging or reusing, locate a CLEAN buffer
1768		 * to free or reuse.  If bufspace useage is low
1769		 * skip this step so we can allocate a new buffer.
1770		 */
1771		if (defrag || bufspace >= lobufspace) {
1772			nqindex = QUEUE_CLEAN;
1773			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1774		}
1775
1776		/*
1777		 * If we could not find or were not allowed to reuse a
1778		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1779		 * buffer.  We can only use an EMPTY buffer if allocating
1780		 * its KVA would not otherwise run us out of buffer space.
1781		 */
1782		if (nbp == NULL && defrag == 0 &&
1783		    bufspace + maxsize < hibufspace) {
1784			nqindex = QUEUE_EMPTY;
1785			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1786		}
1787	}
1788
1789	/*
1790	 * Run scan, possibly freeing data and/or kva mappings on the fly
1791	 * depending.
1792	 */
1793
1794	while ((bp = nbp) != NULL) {
1795		int qindex = nqindex;
1796
1797		/*
1798		 * Calculate next bp ( we can only use it if we do not block
1799		 * or do other fancy things ).
1800		 */
1801		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1802			switch(qindex) {
1803			case QUEUE_EMPTY:
1804				nqindex = QUEUE_EMPTYKVA;
1805				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1806					break;
1807				/* FALLTHROUGH */
1808			case QUEUE_EMPTYKVA:
1809				nqindex = QUEUE_CLEAN;
1810				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1811					break;
1812				/* FALLTHROUGH */
1813			case QUEUE_CLEAN:
1814				/*
1815				 * nbp is NULL.
1816				 */
1817				break;
1818			}
1819		}
1820		/*
1821		 * If we are defragging then we need a buffer with
1822		 * b_kvasize != 0.  XXX this situation should no longer
1823		 * occur, if defrag is non-zero the buffer's b_kvasize
1824		 * should also be non-zero at this point.  XXX
1825		 */
1826		if (defrag && bp->b_kvasize == 0) {
1827			printf("Warning: defrag empty buffer %p\n", bp);
1828			continue;
1829		}
1830
1831		/*
1832		 * Start freeing the bp.  This is somewhat involved.  nbp
1833		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1834		 */
1835		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1836			continue;
1837		if (bp->b_vp) {
1838			BO_LOCK(bp->b_bufobj);
1839			if (bp->b_vflags & BV_BKGRDINPROG) {
1840				BO_UNLOCK(bp->b_bufobj);
1841				BUF_UNLOCK(bp);
1842				continue;
1843			}
1844			BO_UNLOCK(bp->b_bufobj);
1845		}
1846		CTR6(KTR_BUF,
1847		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1848		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1849		    bp->b_kvasize, bp->b_bufsize, qindex);
1850
1851		/*
1852		 * Sanity Checks
1853		 */
1854		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1855
1856		/*
1857		 * Note: we no longer distinguish between VMIO and non-VMIO
1858		 * buffers.
1859		 */
1860
1861		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1862
1863		bremfreel(bp);
1864		mtx_unlock(&bqlock);
1865
1866		if (qindex == QUEUE_CLEAN) {
1867			if (bp->b_flags & B_VMIO) {
1868				bp->b_flags &= ~B_ASYNC;
1869				vfs_vmio_release(bp);
1870			}
1871			if (bp->b_vp)
1872				brelvp(bp);
1873		}
1874
1875		/*
1876		 * NOTE:  nbp is now entirely invalid.  We can only restart
1877		 * the scan from this point on.
1878		 *
1879		 * Get the rest of the buffer freed up.  b_kva* is still
1880		 * valid after this operation.
1881		 */
1882
1883		if (bp->b_rcred != NOCRED) {
1884			crfree(bp->b_rcred);
1885			bp->b_rcred = NOCRED;
1886		}
1887		if (bp->b_wcred != NOCRED) {
1888			crfree(bp->b_wcred);
1889			bp->b_wcred = NOCRED;
1890		}
1891		if (!LIST_EMPTY(&bp->b_dep))
1892			buf_deallocate(bp);
1893		if (bp->b_vflags & BV_BKGRDINPROG)
1894			panic("losing buffer 3");
1895		KASSERT(bp->b_vp == NULL,
1896		    ("bp: %p still has vnode %p.  qindex: %d",
1897		    bp, bp->b_vp, qindex));
1898		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1899		   ("bp: %p still on a buffer list. xflags %X",
1900		    bp, bp->b_xflags));
1901
1902		if (bp->b_bufsize)
1903			allocbuf(bp, 0);
1904
1905		bp->b_flags = 0;
1906		bp->b_ioflags = 0;
1907		bp->b_xflags = 0;
1908		bp->b_vflags = 0;
1909		bp->b_vp = NULL;
1910		bp->b_blkno = bp->b_lblkno = 0;
1911		bp->b_offset = NOOFFSET;
1912		bp->b_iodone = 0;
1913		bp->b_error = 0;
1914		bp->b_resid = 0;
1915		bp->b_bcount = 0;
1916		bp->b_npages = 0;
1917		bp->b_dirtyoff = bp->b_dirtyend = 0;
1918		bp->b_bufobj = NULL;
1919		bp->b_pin_count = 0;
1920		bp->b_fsprivate1 = NULL;
1921		bp->b_fsprivate2 = NULL;
1922		bp->b_fsprivate3 = NULL;
1923
1924		LIST_INIT(&bp->b_dep);
1925
1926		/*
1927		 * If we are defragging then free the buffer.
1928		 */
1929		if (defrag) {
1930			bp->b_flags |= B_INVAL;
1931			bfreekva(bp);
1932			brelse(bp);
1933			defrag = 0;
1934			goto restart;
1935		}
1936
1937		/*
1938		 * Notify any waiters for the buffer lock about
1939		 * identity change by freeing the buffer.
1940		 */
1941		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1942			bp->b_flags |= B_INVAL;
1943			bfreekva(bp);
1944			brelse(bp);
1945			goto restart;
1946		}
1947
1948		/*
1949		 * If we are overcomitted then recover the buffer and its
1950		 * KVM space.  This occurs in rare situations when multiple
1951		 * processes are blocked in getnewbuf() or allocbuf().
1952		 */
1953		if (bufspace >= hibufspace)
1954			flushingbufs = 1;
1955		if (flushingbufs && bp->b_kvasize != 0) {
1956			bp->b_flags |= B_INVAL;
1957			bfreekva(bp);
1958			brelse(bp);
1959			goto restart;
1960		}
1961		if (bufspace < lobufspace)
1962			flushingbufs = 0;
1963		break;
1964	}
1965
1966	/*
1967	 * If we exhausted our list, sleep as appropriate.  We may have to
1968	 * wakeup various daemons and write out some dirty buffers.
1969	 *
1970	 * Generally we are sleeping due to insufficient buffer space.
1971	 */
1972
1973	if (bp == NULL) {
1974		int flags, norunbuf;
1975		char *waitmsg;
1976		int fl;
1977
1978		if (defrag) {
1979			flags = VFS_BIO_NEED_BUFSPACE;
1980			waitmsg = "nbufkv";
1981		} else if (bufspace >= hibufspace) {
1982			waitmsg = "nbufbs";
1983			flags = VFS_BIO_NEED_BUFSPACE;
1984		} else {
1985			waitmsg = "newbuf";
1986			flags = VFS_BIO_NEED_ANY;
1987		}
1988		mtx_lock(&nblock);
1989		needsbuffer |= flags;
1990		mtx_unlock(&nblock);
1991		mtx_unlock(&bqlock);
1992
1993		bd_speedup();	/* heeeelp */
1994		if (gbflags & GB_NOWAIT_BD)
1995			return (NULL);
1996
1997		mtx_lock(&nblock);
1998		while (needsbuffer & flags) {
1999			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
2000				mtx_unlock(&nblock);
2001				/*
2002				 * getblk() is called with a vnode
2003				 * locked, and some majority of the
2004				 * dirty buffers may as well belong to
2005				 * the vnode. Flushing the buffers
2006				 * there would make a progress that
2007				 * cannot be achieved by the
2008				 * buf_daemon, that cannot lock the
2009				 * vnode.
2010				 */
2011				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2012				    (td->td_pflags & TDP_NORUNNINGBUF);
2013				/* play bufdaemon */
2014				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2015				fl = buf_do_flush(vp);
2016				td->td_pflags &= norunbuf;
2017				mtx_lock(&nblock);
2018				if (fl != 0)
2019					continue;
2020				if ((needsbuffer & flags) == 0)
2021					break;
2022			}
2023			if (msleep(&needsbuffer, &nblock,
2024			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2025				mtx_unlock(&nblock);
2026				return (NULL);
2027			}
2028		}
2029		mtx_unlock(&nblock);
2030	} else {
2031		/*
2032		 * We finally have a valid bp.  We aren't quite out of the
2033		 * woods, we still have to reserve kva space.  In order
2034		 * to keep fragmentation sane we only allocate kva in
2035		 * BKVASIZE chunks.
2036		 */
2037		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2038
2039		if (maxsize != bp->b_kvasize) {
2040			vm_offset_t addr = 0;
2041
2042			bfreekva(bp);
2043
2044			vm_map_lock(buffer_map);
2045			if (vm_map_findspace(buffer_map,
2046				vm_map_min(buffer_map), maxsize, &addr)) {
2047				/*
2048				 * Uh oh.  Buffer map is to fragmented.  We
2049				 * must defragment the map.
2050				 */
2051				atomic_add_int(&bufdefragcnt, 1);
2052				vm_map_unlock(buffer_map);
2053				defrag = 1;
2054				bp->b_flags |= B_INVAL;
2055				brelse(bp);
2056				goto restart;
2057			}
2058			if (addr) {
2059				vm_map_insert(buffer_map, NULL, 0,
2060					addr, addr + maxsize,
2061					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2062
2063				bp->b_kvabase = (caddr_t) addr;
2064				bp->b_kvasize = maxsize;
2065				atomic_add_long(&bufspace, bp->b_kvasize);
2066				atomic_add_int(&bufreusecnt, 1);
2067			}
2068			vm_map_unlock(buffer_map);
2069		}
2070		bp->b_saveaddr = bp->b_kvabase;
2071		bp->b_data = bp->b_saveaddr;
2072	}
2073	return(bp);
2074}
2075
2076/*
2077 *	buf_daemon:
2078 *
2079 *	buffer flushing daemon.  Buffers are normally flushed by the
2080 *	update daemon but if it cannot keep up this process starts to
2081 *	take the load in an attempt to prevent getnewbuf() from blocking.
2082 */
2083
2084static struct kproc_desc buf_kp = {
2085	"bufdaemon",
2086	buf_daemon,
2087	&bufdaemonproc
2088};
2089SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2090
2091static int
2092buf_do_flush(struct vnode *vp)
2093{
2094	int flushed;
2095
2096	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2097	/* The list empty check here is slightly racy */
2098	if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2099		mtx_lock(&Giant);
2100		flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
2101		mtx_unlock(&Giant);
2102	}
2103	if (flushed == 0) {
2104		/*
2105		 * Could not find any buffers without rollback
2106		 * dependencies, so just write the first one
2107		 * in the hopes of eventually making progress.
2108		 */
2109		flushbufqueues(vp, QUEUE_DIRTY, 1);
2110		if (!TAILQ_EMPTY(
2111			    &bufqueues[QUEUE_DIRTY_GIANT])) {
2112			mtx_lock(&Giant);
2113			flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
2114			mtx_unlock(&Giant);
2115		}
2116	}
2117	return (flushed);
2118}
2119
2120static void
2121buf_daemon()
2122{
2123
2124	/*
2125	 * This process needs to be suspended prior to shutdown sync.
2126	 */
2127	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2128	    SHUTDOWN_PRI_LAST);
2129
2130	/*
2131	 * This process is allowed to take the buffer cache to the limit
2132	 */
2133	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2134	mtx_lock(&bdlock);
2135	for (;;) {
2136		bd_request = 0;
2137		mtx_unlock(&bdlock);
2138
2139		kproc_suspend_check(bufdaemonproc);
2140
2141		/*
2142		 * Do the flush.  Limit the amount of in-transit I/O we
2143		 * allow to build up, otherwise we would completely saturate
2144		 * the I/O system.  Wakeup any waiting processes before we
2145		 * normally would so they can run in parallel with our drain.
2146		 */
2147		while (numdirtybuffers > lodirtybuffers) {
2148			if (buf_do_flush(NULL) == 0)
2149				break;
2150			uio_yield();
2151		}
2152
2153		/*
2154		 * Only clear bd_request if we have reached our low water
2155		 * mark.  The buf_daemon normally waits 1 second and
2156		 * then incrementally flushes any dirty buffers that have
2157		 * built up, within reason.
2158		 *
2159		 * If we were unable to hit our low water mark and couldn't
2160		 * find any flushable buffers, we sleep half a second.
2161		 * Otherwise we loop immediately.
2162		 */
2163		mtx_lock(&bdlock);
2164		if (numdirtybuffers <= lodirtybuffers) {
2165			/*
2166			 * We reached our low water mark, reset the
2167			 * request and sleep until we are needed again.
2168			 * The sleep is just so the suspend code works.
2169			 */
2170			bd_request = 0;
2171			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2172		} else {
2173			/*
2174			 * We couldn't find any flushable dirty buffers but
2175			 * still have too many dirty buffers, we
2176			 * have to sleep and try again.  (rare)
2177			 */
2178			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2179		}
2180	}
2181}
2182
2183/*
2184 *	flushbufqueues:
2185 *
2186 *	Try to flush a buffer in the dirty queue.  We must be careful to
2187 *	free up B_INVAL buffers instead of write them, which NFS is
2188 *	particularly sensitive to.
2189 */
2190static int flushwithdeps = 0;
2191SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2192    0, "Number of buffers flushed with dependecies that require rollbacks");
2193
2194static int
2195flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2196{
2197	struct buf *sentinel;
2198	struct vnode *vp;
2199	struct mount *mp;
2200	struct buf *bp;
2201	int hasdeps;
2202	int flushed;
2203	int target;
2204
2205	if (lvp == NULL) {
2206		target = numdirtybuffers - lodirtybuffers;
2207		if (flushdeps && target > 2)
2208			target /= 2;
2209	} else
2210		target = flushbufqtarget;
2211	flushed = 0;
2212	bp = NULL;
2213	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2214	sentinel->b_qindex = QUEUE_SENTINEL;
2215	mtx_lock(&bqlock);
2216	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2217	while (flushed != target) {
2218		bp = TAILQ_NEXT(sentinel, b_freelist);
2219		if (bp != NULL) {
2220			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2221			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2222			    b_freelist);
2223		} else
2224			break;
2225		/*
2226		 * Skip sentinels inserted by other invocations of the
2227		 * flushbufqueues(), taking care to not reorder them.
2228		 */
2229		if (bp->b_qindex == QUEUE_SENTINEL)
2230			continue;
2231		/*
2232		 * Only flush the buffers that belong to the
2233		 * vnode locked by the curthread.
2234		 */
2235		if (lvp != NULL && bp->b_vp != lvp)
2236			continue;
2237		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2238			continue;
2239		if (bp->b_pin_count > 0) {
2240			BUF_UNLOCK(bp);
2241			continue;
2242		}
2243		BO_LOCK(bp->b_bufobj);
2244		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2245		    (bp->b_flags & B_DELWRI) == 0) {
2246			BO_UNLOCK(bp->b_bufobj);
2247			BUF_UNLOCK(bp);
2248			continue;
2249		}
2250		BO_UNLOCK(bp->b_bufobj);
2251		if (bp->b_flags & B_INVAL) {
2252			bremfreel(bp);
2253			mtx_unlock(&bqlock);
2254			brelse(bp);
2255			flushed++;
2256			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2257			mtx_lock(&bqlock);
2258			continue;
2259		}
2260
2261		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2262			if (flushdeps == 0) {
2263				BUF_UNLOCK(bp);
2264				continue;
2265			}
2266			hasdeps = 1;
2267		} else
2268			hasdeps = 0;
2269		/*
2270		 * We must hold the lock on a vnode before writing
2271		 * one of its buffers. Otherwise we may confuse, or
2272		 * in the case of a snapshot vnode, deadlock the
2273		 * system.
2274		 *
2275		 * The lock order here is the reverse of the normal
2276		 * of vnode followed by buf lock.  This is ok because
2277		 * the NOWAIT will prevent deadlock.
2278		 */
2279		vp = bp->b_vp;
2280		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2281			BUF_UNLOCK(bp);
2282			continue;
2283		}
2284		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2285			mtx_unlock(&bqlock);
2286			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2287			    bp, bp->b_vp, bp->b_flags);
2288			if (curproc == bufdaemonproc)
2289				vfs_bio_awrite(bp);
2290			else {
2291				bremfree(bp);
2292				bwrite(bp);
2293				notbufdflashes++;
2294			}
2295			vn_finished_write(mp);
2296			VOP_UNLOCK(vp, 0);
2297			flushwithdeps += hasdeps;
2298			flushed++;
2299
2300			/*
2301			 * Sleeping on runningbufspace while holding
2302			 * vnode lock leads to deadlock.
2303			 */
2304			if (curproc == bufdaemonproc)
2305				waitrunningbufspace();
2306			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2307			mtx_lock(&bqlock);
2308			continue;
2309		}
2310		vn_finished_write(mp);
2311		BUF_UNLOCK(bp);
2312	}
2313	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2314	mtx_unlock(&bqlock);
2315	free(sentinel, M_TEMP);
2316	return (flushed);
2317}
2318
2319/*
2320 * Check to see if a block is currently memory resident.
2321 */
2322struct buf *
2323incore(struct bufobj *bo, daddr_t blkno)
2324{
2325	struct buf *bp;
2326
2327	BO_LOCK(bo);
2328	bp = gbincore(bo, blkno);
2329	BO_UNLOCK(bo);
2330	return (bp);
2331}
2332
2333/*
2334 * Returns true if no I/O is needed to access the
2335 * associated VM object.  This is like incore except
2336 * it also hunts around in the VM system for the data.
2337 */
2338
2339static int
2340inmem(struct vnode * vp, daddr_t blkno)
2341{
2342	vm_object_t obj;
2343	vm_offset_t toff, tinc, size;
2344	vm_page_t m;
2345	vm_ooffset_t off;
2346
2347	ASSERT_VOP_LOCKED(vp, "inmem");
2348
2349	if (incore(&vp->v_bufobj, blkno))
2350		return 1;
2351	if (vp->v_mount == NULL)
2352		return 0;
2353	obj = vp->v_object;
2354	if (obj == NULL)
2355		return (0);
2356
2357	size = PAGE_SIZE;
2358	if (size > vp->v_mount->mnt_stat.f_iosize)
2359		size = vp->v_mount->mnt_stat.f_iosize;
2360	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2361
2362	VM_OBJECT_LOCK(obj);
2363	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2364		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2365		if (!m)
2366			goto notinmem;
2367		tinc = size;
2368		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2369			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2370		if (vm_page_is_valid(m,
2371		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2372			goto notinmem;
2373	}
2374	VM_OBJECT_UNLOCK(obj);
2375	return 1;
2376
2377notinmem:
2378	VM_OBJECT_UNLOCK(obj);
2379	return (0);
2380}
2381
2382/*
2383 *	vfs_setdirty:
2384 *
2385 *	Sets the dirty range for a buffer based on the status of the dirty
2386 *	bits in the pages comprising the buffer.
2387 *
2388 *	The range is limited to the size of the buffer.
2389 *
2390 *	This routine is primarily used by NFS, but is generalized for the
2391 *	B_VMIO case.
2392 */
2393static void
2394vfs_setdirty(struct buf *bp)
2395{
2396
2397	/*
2398	 * Degenerate case - empty buffer
2399	 */
2400	if (bp->b_bufsize == 0)
2401		return;
2402
2403	if ((bp->b_flags & B_VMIO) == 0)
2404		return;
2405
2406	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2407	vfs_setdirty_locked_object(bp);
2408	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2409}
2410
2411static void
2412vfs_setdirty_locked_object(struct buf *bp)
2413{
2414	vm_object_t object;
2415	int i;
2416
2417	object = bp->b_bufobj->bo_object;
2418	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2419
2420	/*
2421	 * We qualify the scan for modified pages on whether the
2422	 * object has been flushed yet.
2423	 */
2424	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2425		vm_offset_t boffset;
2426		vm_offset_t eoffset;
2427
2428		vm_page_lock_queues();
2429		/*
2430		 * test the pages to see if they have been modified directly
2431		 * by users through the VM system.
2432		 */
2433		for (i = 0; i < bp->b_npages; i++)
2434			vm_page_test_dirty(bp->b_pages[i]);
2435
2436		/*
2437		 * Calculate the encompassing dirty range, boffset and eoffset,
2438		 * (eoffset - boffset) bytes.
2439		 */
2440
2441		for (i = 0; i < bp->b_npages; i++) {
2442			if (bp->b_pages[i]->dirty)
2443				break;
2444		}
2445		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2446
2447		for (i = bp->b_npages - 1; i >= 0; --i) {
2448			if (bp->b_pages[i]->dirty) {
2449				break;
2450			}
2451		}
2452		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2453
2454		vm_page_unlock_queues();
2455		/*
2456		 * Fit it to the buffer.
2457		 */
2458
2459		if (eoffset > bp->b_bcount)
2460			eoffset = bp->b_bcount;
2461
2462		/*
2463		 * If we have a good dirty range, merge with the existing
2464		 * dirty range.
2465		 */
2466
2467		if (boffset < eoffset) {
2468			if (bp->b_dirtyoff > boffset)
2469				bp->b_dirtyoff = boffset;
2470			if (bp->b_dirtyend < eoffset)
2471				bp->b_dirtyend = eoffset;
2472		}
2473	}
2474}
2475
2476/*
2477 *	getblk:
2478 *
2479 *	Get a block given a specified block and offset into a file/device.
2480 *	The buffers B_DONE bit will be cleared on return, making it almost
2481 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2482 *	return.  The caller should clear B_INVAL prior to initiating a
2483 *	READ.
2484 *
2485 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2486 *	an existing buffer.
2487 *
2488 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2489 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2490 *	and then cleared based on the backing VM.  If the previous buffer is
2491 *	non-0-sized but invalid, B_CACHE will be cleared.
2492 *
2493 *	If getblk() must create a new buffer, the new buffer is returned with
2494 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2495 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2496 *	backing VM.
2497 *
2498 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2499 *	B_CACHE bit is clear.
2500 *
2501 *	What this means, basically, is that the caller should use B_CACHE to
2502 *	determine whether the buffer is fully valid or not and should clear
2503 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2504 *	the buffer by loading its data area with something, the caller needs
2505 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2506 *	the caller should set B_CACHE ( as an optimization ), else the caller
2507 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2508 *	a write attempt or if it was a successfull read.  If the caller
2509 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2510 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2511 */
2512struct buf *
2513getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2514    int flags)
2515{
2516	struct buf *bp;
2517	struct bufobj *bo;
2518	int error;
2519
2520	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2521	ASSERT_VOP_LOCKED(vp, "getblk");
2522	if (size > MAXBSIZE)
2523		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2524
2525	bo = &vp->v_bufobj;
2526loop:
2527	/*
2528	 * Block if we are low on buffers.   Certain processes are allowed
2529	 * to completely exhaust the buffer cache.
2530         *
2531         * If this check ever becomes a bottleneck it may be better to
2532         * move it into the else, when gbincore() fails.  At the moment
2533         * it isn't a problem.
2534	 *
2535	 * XXX remove if 0 sections (clean this up after its proven)
2536         */
2537	if (numfreebuffers == 0) {
2538		if (TD_IS_IDLETHREAD(curthread))
2539			return NULL;
2540		mtx_lock(&nblock);
2541		needsbuffer |= VFS_BIO_NEED_ANY;
2542		mtx_unlock(&nblock);
2543	}
2544
2545	BO_LOCK(bo);
2546	bp = gbincore(bo, blkno);
2547	if (bp != NULL) {
2548		int lockflags;
2549		/*
2550		 * Buffer is in-core.  If the buffer is not busy, it must
2551		 * be on a queue.
2552		 */
2553		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2554
2555		if (flags & GB_LOCK_NOWAIT)
2556			lockflags |= LK_NOWAIT;
2557
2558		error = BUF_TIMELOCK(bp, lockflags,
2559		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2560
2561		/*
2562		 * If we slept and got the lock we have to restart in case
2563		 * the buffer changed identities.
2564		 */
2565		if (error == ENOLCK)
2566			goto loop;
2567		/* We timed out or were interrupted. */
2568		else if (error)
2569			return (NULL);
2570
2571		/*
2572		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2573		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2574		 * and for a VMIO buffer B_CACHE is adjusted according to the
2575		 * backing VM cache.
2576		 */
2577		if (bp->b_flags & B_INVAL)
2578			bp->b_flags &= ~B_CACHE;
2579		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2580			bp->b_flags |= B_CACHE;
2581		bremfree(bp);
2582
2583		/*
2584		 * check for size inconsistancies for non-VMIO case.
2585		 */
2586
2587		if (bp->b_bcount != size) {
2588			if ((bp->b_flags & B_VMIO) == 0 ||
2589			    (size > bp->b_kvasize)) {
2590				if (bp->b_flags & B_DELWRI) {
2591					/*
2592					 * If buffer is pinned and caller does
2593					 * not want sleep  waiting for it to be
2594					 * unpinned, bail out
2595					 * */
2596					if (bp->b_pin_count > 0) {
2597						if (flags & GB_LOCK_NOWAIT) {
2598							bqrelse(bp);
2599							return (NULL);
2600						} else {
2601							bunpin_wait(bp);
2602						}
2603					}
2604					bp->b_flags |= B_NOCACHE;
2605					bwrite(bp);
2606				} else {
2607					if (LIST_EMPTY(&bp->b_dep)) {
2608						bp->b_flags |= B_RELBUF;
2609						brelse(bp);
2610					} else {
2611						bp->b_flags |= B_NOCACHE;
2612						bwrite(bp);
2613					}
2614				}
2615				goto loop;
2616			}
2617		}
2618
2619		/*
2620		 * If the size is inconsistant in the VMIO case, we can resize
2621		 * the buffer.  This might lead to B_CACHE getting set or
2622		 * cleared.  If the size has not changed, B_CACHE remains
2623		 * unchanged from its previous state.
2624		 */
2625
2626		if (bp->b_bcount != size)
2627			allocbuf(bp, size);
2628
2629		KASSERT(bp->b_offset != NOOFFSET,
2630		    ("getblk: no buffer offset"));
2631
2632		/*
2633		 * A buffer with B_DELWRI set and B_CACHE clear must
2634		 * be committed before we can return the buffer in
2635		 * order to prevent the caller from issuing a read
2636		 * ( due to B_CACHE not being set ) and overwriting
2637		 * it.
2638		 *
2639		 * Most callers, including NFS and FFS, need this to
2640		 * operate properly either because they assume they
2641		 * can issue a read if B_CACHE is not set, or because
2642		 * ( for example ) an uncached B_DELWRI might loop due
2643		 * to softupdates re-dirtying the buffer.  In the latter
2644		 * case, B_CACHE is set after the first write completes,
2645		 * preventing further loops.
2646		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2647		 * above while extending the buffer, we cannot allow the
2648		 * buffer to remain with B_CACHE set after the write
2649		 * completes or it will represent a corrupt state.  To
2650		 * deal with this we set B_NOCACHE to scrap the buffer
2651		 * after the write.
2652		 *
2653		 * We might be able to do something fancy, like setting
2654		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2655		 * so the below call doesn't set B_CACHE, but that gets real
2656		 * confusing.  This is much easier.
2657		 */
2658
2659		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2660			bp->b_flags |= B_NOCACHE;
2661			bwrite(bp);
2662			goto loop;
2663		}
2664		bp->b_flags &= ~B_DONE;
2665	} else {
2666		int bsize, maxsize, vmio;
2667		off_t offset;
2668
2669		/*
2670		 * Buffer is not in-core, create new buffer.  The buffer
2671		 * returned by getnewbuf() is locked.  Note that the returned
2672		 * buffer is also considered valid (not marked B_INVAL).
2673		 */
2674		BO_UNLOCK(bo);
2675		/*
2676		 * If the user does not want us to create the buffer, bail out
2677		 * here.
2678		 */
2679		if (flags & GB_NOCREAT)
2680			return NULL;
2681		bsize = bo->bo_bsize;
2682		offset = blkno * bsize;
2683		vmio = vp->v_object != NULL;
2684		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2685		maxsize = imax(maxsize, bsize);
2686
2687		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2688		if (bp == NULL) {
2689			if (slpflag || slptimeo)
2690				return NULL;
2691			goto loop;
2692		}
2693
2694		/*
2695		 * This code is used to make sure that a buffer is not
2696		 * created while the getnewbuf routine is blocked.
2697		 * This can be a problem whether the vnode is locked or not.
2698		 * If the buffer is created out from under us, we have to
2699		 * throw away the one we just created.
2700		 *
2701		 * Note: this must occur before we associate the buffer
2702		 * with the vp especially considering limitations in
2703		 * the splay tree implementation when dealing with duplicate
2704		 * lblkno's.
2705		 */
2706		BO_LOCK(bo);
2707		if (gbincore(bo, blkno)) {
2708			BO_UNLOCK(bo);
2709			bp->b_flags |= B_INVAL;
2710			brelse(bp);
2711			goto loop;
2712		}
2713
2714		/*
2715		 * Insert the buffer into the hash, so that it can
2716		 * be found by incore.
2717		 */
2718		bp->b_blkno = bp->b_lblkno = blkno;
2719		bp->b_offset = offset;
2720		bgetvp(vp, bp);
2721		BO_UNLOCK(bo);
2722
2723		/*
2724		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2725		 * buffer size starts out as 0, B_CACHE will be set by
2726		 * allocbuf() for the VMIO case prior to it testing the
2727		 * backing store for validity.
2728		 */
2729
2730		if (vmio) {
2731			bp->b_flags |= B_VMIO;
2732#if defined(VFS_BIO_DEBUG)
2733			if (vn_canvmio(vp) != TRUE)
2734				printf("getblk: VMIO on vnode type %d\n",
2735					vp->v_type);
2736#endif
2737			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2738			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2739			    bp, vp->v_object, bp->b_bufobj->bo_object));
2740		} else {
2741			bp->b_flags &= ~B_VMIO;
2742			KASSERT(bp->b_bufobj->bo_object == NULL,
2743			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2744			    bp, bp->b_bufobj->bo_object));
2745		}
2746
2747		allocbuf(bp, size);
2748		bp->b_flags &= ~B_DONE;
2749	}
2750	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2751	BUF_ASSERT_HELD(bp);
2752	KASSERT(bp->b_bufobj == bo,
2753	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2754	return (bp);
2755}
2756
2757/*
2758 * Get an empty, disassociated buffer of given size.  The buffer is initially
2759 * set to B_INVAL.
2760 */
2761struct buf *
2762geteblk(int size, int flags)
2763{
2764	struct buf *bp;
2765	int maxsize;
2766
2767	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2768	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2769		if ((flags & GB_NOWAIT_BD) &&
2770		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2771			return (NULL);
2772	}
2773	allocbuf(bp, size);
2774	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2775	BUF_ASSERT_HELD(bp);
2776	return (bp);
2777}
2778
2779
2780/*
2781 * This code constitutes the buffer memory from either anonymous system
2782 * memory (in the case of non-VMIO operations) or from an associated
2783 * VM object (in the case of VMIO operations).  This code is able to
2784 * resize a buffer up or down.
2785 *
2786 * Note that this code is tricky, and has many complications to resolve
2787 * deadlock or inconsistant data situations.  Tread lightly!!!
2788 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2789 * the caller.  Calling this code willy nilly can result in the loss of data.
2790 *
2791 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2792 * B_CACHE for the non-VMIO case.
2793 */
2794
2795int
2796allocbuf(struct buf *bp, int size)
2797{
2798	int newbsize, mbsize;
2799	int i;
2800
2801	BUF_ASSERT_HELD(bp);
2802
2803	if (bp->b_kvasize < size)
2804		panic("allocbuf: buffer too small");
2805
2806	if ((bp->b_flags & B_VMIO) == 0) {
2807		caddr_t origbuf;
2808		int origbufsize;
2809		/*
2810		 * Just get anonymous memory from the kernel.  Don't
2811		 * mess with B_CACHE.
2812		 */
2813		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2814		if (bp->b_flags & B_MALLOC)
2815			newbsize = mbsize;
2816		else
2817			newbsize = round_page(size);
2818
2819		if (newbsize < bp->b_bufsize) {
2820			/*
2821			 * malloced buffers are not shrunk
2822			 */
2823			if (bp->b_flags & B_MALLOC) {
2824				if (newbsize) {
2825					bp->b_bcount = size;
2826				} else {
2827					free(bp->b_data, M_BIOBUF);
2828					if (bp->b_bufsize) {
2829						atomic_subtract_long(
2830						    &bufmallocspace,
2831						    bp->b_bufsize);
2832						bufspacewakeup();
2833						bp->b_bufsize = 0;
2834					}
2835					bp->b_saveaddr = bp->b_kvabase;
2836					bp->b_data = bp->b_saveaddr;
2837					bp->b_bcount = 0;
2838					bp->b_flags &= ~B_MALLOC;
2839				}
2840				return 1;
2841			}
2842			vm_hold_free_pages(
2843			    bp,
2844			    (vm_offset_t) bp->b_data + newbsize,
2845			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2846		} else if (newbsize > bp->b_bufsize) {
2847			/*
2848			 * We only use malloced memory on the first allocation.
2849			 * and revert to page-allocated memory when the buffer
2850			 * grows.
2851			 */
2852			/*
2853			 * There is a potential smp race here that could lead
2854			 * to bufmallocspace slightly passing the max.  It
2855			 * is probably extremely rare and not worth worrying
2856			 * over.
2857			 */
2858			if ( (bufmallocspace < maxbufmallocspace) &&
2859				(bp->b_bufsize == 0) &&
2860				(mbsize <= PAGE_SIZE/2)) {
2861
2862				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2863				bp->b_bufsize = mbsize;
2864				bp->b_bcount = size;
2865				bp->b_flags |= B_MALLOC;
2866				atomic_add_long(&bufmallocspace, mbsize);
2867				return 1;
2868			}
2869			origbuf = NULL;
2870			origbufsize = 0;
2871			/*
2872			 * If the buffer is growing on its other-than-first allocation,
2873			 * then we revert to the page-allocation scheme.
2874			 */
2875			if (bp->b_flags & B_MALLOC) {
2876				origbuf = bp->b_data;
2877				origbufsize = bp->b_bufsize;
2878				bp->b_data = bp->b_kvabase;
2879				if (bp->b_bufsize) {
2880					atomic_subtract_long(&bufmallocspace,
2881					    bp->b_bufsize);
2882					bufspacewakeup();
2883					bp->b_bufsize = 0;
2884				}
2885				bp->b_flags &= ~B_MALLOC;
2886				newbsize = round_page(newbsize);
2887			}
2888			vm_hold_load_pages(
2889			    bp,
2890			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2891			    (vm_offset_t) bp->b_data + newbsize);
2892			if (origbuf) {
2893				bcopy(origbuf, bp->b_data, origbufsize);
2894				free(origbuf, M_BIOBUF);
2895			}
2896		}
2897	} else {
2898		int desiredpages;
2899
2900		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2901		desiredpages = (size == 0) ? 0 :
2902			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2903
2904		if (bp->b_flags & B_MALLOC)
2905			panic("allocbuf: VMIO buffer can't be malloced");
2906		/*
2907		 * Set B_CACHE initially if buffer is 0 length or will become
2908		 * 0-length.
2909		 */
2910		if (size == 0 || bp->b_bufsize == 0)
2911			bp->b_flags |= B_CACHE;
2912
2913		if (newbsize < bp->b_bufsize) {
2914			/*
2915			 * DEV_BSIZE aligned new buffer size is less then the
2916			 * DEV_BSIZE aligned existing buffer size.  Figure out
2917			 * if we have to remove any pages.
2918			 */
2919			if (desiredpages < bp->b_npages) {
2920				vm_page_t m;
2921
2922				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2923				vm_page_lock_queues();
2924				for (i = desiredpages; i < bp->b_npages; i++) {
2925					/*
2926					 * the page is not freed here -- it
2927					 * is the responsibility of
2928					 * vnode_pager_setsize
2929					 */
2930					m = bp->b_pages[i];
2931					KASSERT(m != bogus_page,
2932					    ("allocbuf: bogus page found"));
2933					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2934						vm_page_lock_queues();
2935
2936					bp->b_pages[i] = NULL;
2937					vm_page_unwire(m, 0);
2938				}
2939				vm_page_unlock_queues();
2940				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2941				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2942				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2943				bp->b_npages = desiredpages;
2944			}
2945		} else if (size > bp->b_bcount) {
2946			/*
2947			 * We are growing the buffer, possibly in a
2948			 * byte-granular fashion.
2949			 */
2950			vm_object_t obj;
2951			vm_offset_t toff;
2952			vm_offset_t tinc;
2953
2954			/*
2955			 * Step 1, bring in the VM pages from the object,
2956			 * allocating them if necessary.  We must clear
2957			 * B_CACHE if these pages are not valid for the
2958			 * range covered by the buffer.
2959			 */
2960
2961			obj = bp->b_bufobj->bo_object;
2962
2963			VM_OBJECT_LOCK(obj);
2964			while (bp->b_npages < desiredpages) {
2965				vm_page_t m;
2966				vm_pindex_t pi;
2967
2968				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2969				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2970					/*
2971					 * note: must allocate system pages
2972					 * since blocking here could intefere
2973					 * with paging I/O, no matter which
2974					 * process we are.
2975					 */
2976					m = vm_page_alloc(obj, pi,
2977					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2978					    VM_ALLOC_WIRED);
2979					if (m == NULL) {
2980						atomic_add_int(&vm_pageout_deficit,
2981						    desiredpages - bp->b_npages);
2982						VM_OBJECT_UNLOCK(obj);
2983						VM_WAIT;
2984						VM_OBJECT_LOCK(obj);
2985					} else {
2986						if (m->valid == 0)
2987							bp->b_flags &= ~B_CACHE;
2988						bp->b_pages[bp->b_npages] = m;
2989						++bp->b_npages;
2990					}
2991					continue;
2992				}
2993
2994				/*
2995				 * We found a page.  If we have to sleep on it,
2996				 * retry because it might have gotten freed out
2997				 * from under us.
2998				 *
2999				 * We can only test VPO_BUSY here.  Blocking on
3000				 * m->busy might lead to a deadlock:
3001				 *
3002				 *  vm_fault->getpages->cluster_read->allocbuf
3003				 *
3004				 */
3005				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
3006					continue;
3007
3008				/*
3009				 * We have a good page.
3010				 */
3011				vm_page_lock_queues();
3012				vm_page_wire(m);
3013				vm_page_unlock_queues();
3014				bp->b_pages[bp->b_npages] = m;
3015				++bp->b_npages;
3016			}
3017
3018			/*
3019			 * Step 2.  We've loaded the pages into the buffer,
3020			 * we have to figure out if we can still have B_CACHE
3021			 * set.  Note that B_CACHE is set according to the
3022			 * byte-granular range ( bcount and size ), new the
3023			 * aligned range ( newbsize ).
3024			 *
3025			 * The VM test is against m->valid, which is DEV_BSIZE
3026			 * aligned.  Needless to say, the validity of the data
3027			 * needs to also be DEV_BSIZE aligned.  Note that this
3028			 * fails with NFS if the server or some other client
3029			 * extends the file's EOF.  If our buffer is resized,
3030			 * B_CACHE may remain set! XXX
3031			 */
3032
3033			toff = bp->b_bcount;
3034			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3035
3036			while ((bp->b_flags & B_CACHE) && toff < size) {
3037				vm_pindex_t pi;
3038
3039				if (tinc > (size - toff))
3040					tinc = size - toff;
3041
3042				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3043				    PAGE_SHIFT;
3044
3045				vfs_buf_test_cache(
3046				    bp,
3047				    bp->b_offset,
3048				    toff,
3049				    tinc,
3050				    bp->b_pages[pi]
3051				);
3052				toff += tinc;
3053				tinc = PAGE_SIZE;
3054			}
3055			VM_OBJECT_UNLOCK(obj);
3056
3057			/*
3058			 * Step 3, fixup the KVM pmap.  Remember that
3059			 * bp->b_data is relative to bp->b_offset, but
3060			 * bp->b_offset may be offset into the first page.
3061			 */
3062
3063			bp->b_data = (caddr_t)
3064			    trunc_page((vm_offset_t)bp->b_data);
3065			pmap_qenter(
3066			    (vm_offset_t)bp->b_data,
3067			    bp->b_pages,
3068			    bp->b_npages
3069			);
3070
3071			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3072			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3073		}
3074	}
3075	if (newbsize < bp->b_bufsize)
3076		bufspacewakeup();
3077	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3078	bp->b_bcount = size;		/* requested buffer size	*/
3079	return 1;
3080}
3081
3082void
3083biodone(struct bio *bp)
3084{
3085	struct mtx *mtxp;
3086	void (*done)(struct bio *);
3087
3088	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3089	mtx_lock(mtxp);
3090	bp->bio_flags |= BIO_DONE;
3091	done = bp->bio_done;
3092	if (done == NULL)
3093		wakeup(bp);
3094	mtx_unlock(mtxp);
3095	if (done != NULL)
3096		done(bp);
3097}
3098
3099/*
3100 * Wait for a BIO to finish.
3101 *
3102 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3103 * case is not yet clear.
3104 */
3105int
3106biowait(struct bio *bp, const char *wchan)
3107{
3108	struct mtx *mtxp;
3109
3110	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3111	mtx_lock(mtxp);
3112	while ((bp->bio_flags & BIO_DONE) == 0)
3113		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3114	mtx_unlock(mtxp);
3115	if (bp->bio_error != 0)
3116		return (bp->bio_error);
3117	if (!(bp->bio_flags & BIO_ERROR))
3118		return (0);
3119	return (EIO);
3120}
3121
3122void
3123biofinish(struct bio *bp, struct devstat *stat, int error)
3124{
3125
3126	if (error) {
3127		bp->bio_error = error;
3128		bp->bio_flags |= BIO_ERROR;
3129	}
3130	if (stat != NULL)
3131		devstat_end_transaction_bio(stat, bp);
3132	biodone(bp);
3133}
3134
3135/*
3136 *	bufwait:
3137 *
3138 *	Wait for buffer I/O completion, returning error status.  The buffer
3139 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3140 *	error and cleared.
3141 */
3142int
3143bufwait(struct buf *bp)
3144{
3145	if (bp->b_iocmd == BIO_READ)
3146		bwait(bp, PRIBIO, "biord");
3147	else
3148		bwait(bp, PRIBIO, "biowr");
3149	if (bp->b_flags & B_EINTR) {
3150		bp->b_flags &= ~B_EINTR;
3151		return (EINTR);
3152	}
3153	if (bp->b_ioflags & BIO_ERROR) {
3154		return (bp->b_error ? bp->b_error : EIO);
3155	} else {
3156		return (0);
3157	}
3158}
3159
3160 /*
3161  * Call back function from struct bio back up to struct buf.
3162  */
3163static void
3164bufdonebio(struct bio *bip)
3165{
3166	struct buf *bp;
3167
3168	bp = bip->bio_caller2;
3169	bp->b_resid = bp->b_bcount - bip->bio_completed;
3170	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3171	bp->b_ioflags = bip->bio_flags;
3172	bp->b_error = bip->bio_error;
3173	if (bp->b_error)
3174		bp->b_ioflags |= BIO_ERROR;
3175	bufdone(bp);
3176	g_destroy_bio(bip);
3177}
3178
3179void
3180dev_strategy(struct cdev *dev, struct buf *bp)
3181{
3182	struct cdevsw *csw;
3183	struct bio *bip;
3184
3185	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3186		panic("b_iocmd botch");
3187	for (;;) {
3188		bip = g_new_bio();
3189		if (bip != NULL)
3190			break;
3191		/* Try again later */
3192		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3193	}
3194	bip->bio_cmd = bp->b_iocmd;
3195	bip->bio_offset = bp->b_iooffset;
3196	bip->bio_length = bp->b_bcount;
3197	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3198	bip->bio_data = bp->b_data;
3199	bip->bio_done = bufdonebio;
3200	bip->bio_caller2 = bp;
3201	bip->bio_dev = dev;
3202	KASSERT(dev->si_refcount > 0,
3203	    ("dev_strategy on un-referenced struct cdev *(%s)",
3204	    devtoname(dev)));
3205	csw = dev_refthread(dev);
3206	if (csw == NULL) {
3207		g_destroy_bio(bip);
3208		bp->b_error = ENXIO;
3209		bp->b_ioflags = BIO_ERROR;
3210		bufdone(bp);
3211		return;
3212	}
3213	(*csw->d_strategy)(bip);
3214	dev_relthread(dev);
3215}
3216
3217/*
3218 *	bufdone:
3219 *
3220 *	Finish I/O on a buffer, optionally calling a completion function.
3221 *	This is usually called from an interrupt so process blocking is
3222 *	not allowed.
3223 *
3224 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3225 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3226 *	assuming B_INVAL is clear.
3227 *
3228 *	For the VMIO case, we set B_CACHE if the op was a read and no
3229 *	read error occured, or if the op was a write.  B_CACHE is never
3230 *	set if the buffer is invalid or otherwise uncacheable.
3231 *
3232 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3233 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3234 *	in the biodone routine.
3235 */
3236void
3237bufdone(struct buf *bp)
3238{
3239	struct bufobj *dropobj;
3240	void    (*biodone)(struct buf *);
3241
3242	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3243	dropobj = NULL;
3244
3245	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3246	BUF_ASSERT_HELD(bp);
3247
3248	runningbufwakeup(bp);
3249	if (bp->b_iocmd == BIO_WRITE)
3250		dropobj = bp->b_bufobj;
3251	/* call optional completion function if requested */
3252	if (bp->b_iodone != NULL) {
3253		biodone = bp->b_iodone;
3254		bp->b_iodone = NULL;
3255		(*biodone) (bp);
3256		if (dropobj)
3257			bufobj_wdrop(dropobj);
3258		return;
3259	}
3260
3261	bufdone_finish(bp);
3262
3263	if (dropobj)
3264		bufobj_wdrop(dropobj);
3265}
3266
3267void
3268bufdone_finish(struct buf *bp)
3269{
3270	BUF_ASSERT_HELD(bp);
3271
3272	if (!LIST_EMPTY(&bp->b_dep))
3273		buf_complete(bp);
3274
3275	if (bp->b_flags & B_VMIO) {
3276		int i;
3277		vm_ooffset_t foff;
3278		vm_page_t m;
3279		vm_object_t obj;
3280		int iosize;
3281		struct vnode *vp = bp->b_vp;
3282
3283		obj = bp->b_bufobj->bo_object;
3284
3285#if defined(VFS_BIO_DEBUG)
3286		mp_fixme("usecount and vflag accessed without locks.");
3287		if (vp->v_usecount == 0) {
3288			panic("biodone: zero vnode ref count");
3289		}
3290
3291		KASSERT(vp->v_object != NULL,
3292			("biodone: vnode %p has no vm_object", vp));
3293#endif
3294
3295		foff = bp->b_offset;
3296		KASSERT(bp->b_offset != NOOFFSET,
3297		    ("biodone: no buffer offset"));
3298
3299		VM_OBJECT_LOCK(obj);
3300#if defined(VFS_BIO_DEBUG)
3301		if (obj->paging_in_progress < bp->b_npages) {
3302			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3303			    obj->paging_in_progress, bp->b_npages);
3304		}
3305#endif
3306
3307		/*
3308		 * Set B_CACHE if the op was a normal read and no error
3309		 * occured.  B_CACHE is set for writes in the b*write()
3310		 * routines.
3311		 */
3312		iosize = bp->b_bcount - bp->b_resid;
3313		if (bp->b_iocmd == BIO_READ &&
3314		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3315		    !(bp->b_ioflags & BIO_ERROR)) {
3316			bp->b_flags |= B_CACHE;
3317		}
3318		for (i = 0; i < bp->b_npages; i++) {
3319			int bogusflag = 0;
3320			int resid;
3321
3322			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3323			if (resid > iosize)
3324				resid = iosize;
3325
3326			/*
3327			 * cleanup bogus pages, restoring the originals
3328			 */
3329			m = bp->b_pages[i];
3330			if (m == bogus_page) {
3331				bogusflag = 1;
3332				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3333				if (m == NULL)
3334					panic("biodone: page disappeared!");
3335				bp->b_pages[i] = m;
3336				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3337				    bp->b_pages, bp->b_npages);
3338			}
3339#if defined(VFS_BIO_DEBUG)
3340			if (OFF_TO_IDX(foff) != m->pindex) {
3341				printf(
3342"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3343				    (intmax_t)foff, (uintmax_t)m->pindex);
3344			}
3345#endif
3346
3347			/*
3348			 * In the write case, the valid and clean bits are
3349			 * already changed correctly ( see bdwrite() ), so we
3350			 * only need to do this here in the read case.
3351			 */
3352			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3353				KASSERT((m->dirty & vm_page_bits(foff &
3354				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3355				    " page %p has unexpected dirty bits", m));
3356				vfs_page_set_valid(bp, foff, m);
3357			}
3358
3359			/*
3360			 * when debugging new filesystems or buffer I/O methods, this
3361			 * is the most common error that pops up.  if you see this, you
3362			 * have not set the page busy flag correctly!!!
3363			 */
3364			if (m->busy == 0) {
3365				printf("biodone: page busy < 0, "
3366				    "pindex: %d, foff: 0x(%x,%x), "
3367				    "resid: %d, index: %d\n",
3368				    (int) m->pindex, (int)(foff >> 32),
3369						(int) foff & 0xffffffff, resid, i);
3370				if (!vn_isdisk(vp, NULL))
3371					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3372					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3373					    (intmax_t) bp->b_lblkno,
3374					    bp->b_flags, bp->b_npages);
3375				else
3376					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3377					    (intmax_t) bp->b_lblkno,
3378					    bp->b_flags, bp->b_npages);
3379				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3380				    (u_long)m->valid, (u_long)m->dirty,
3381				    m->wire_count);
3382				panic("biodone: page busy < 0\n");
3383			}
3384			vm_page_io_finish(m);
3385			vm_object_pip_subtract(obj, 1);
3386			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3387			iosize -= resid;
3388		}
3389		vm_object_pip_wakeupn(obj, 0);
3390		VM_OBJECT_UNLOCK(obj);
3391	}
3392
3393	/*
3394	 * For asynchronous completions, release the buffer now. The brelse
3395	 * will do a wakeup there if necessary - so no need to do a wakeup
3396	 * here in the async case. The sync case always needs to do a wakeup.
3397	 */
3398
3399	if (bp->b_flags & B_ASYNC) {
3400		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3401			brelse(bp);
3402		else
3403			bqrelse(bp);
3404	} else
3405		bdone(bp);
3406}
3407
3408/*
3409 * This routine is called in lieu of iodone in the case of
3410 * incomplete I/O.  This keeps the busy status for pages
3411 * consistant.
3412 */
3413void
3414vfs_unbusy_pages(struct buf *bp)
3415{
3416	int i;
3417	vm_object_t obj;
3418	vm_page_t m;
3419
3420	runningbufwakeup(bp);
3421	if (!(bp->b_flags & B_VMIO))
3422		return;
3423
3424	obj = bp->b_bufobj->bo_object;
3425	VM_OBJECT_LOCK(obj);
3426	for (i = 0; i < bp->b_npages; i++) {
3427		m = bp->b_pages[i];
3428		if (m == bogus_page) {
3429			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3430			if (!m)
3431				panic("vfs_unbusy_pages: page missing\n");
3432			bp->b_pages[i] = m;
3433			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3434			    bp->b_pages, bp->b_npages);
3435		}
3436		vm_object_pip_subtract(obj, 1);
3437		vm_page_io_finish(m);
3438	}
3439	vm_object_pip_wakeupn(obj, 0);
3440	VM_OBJECT_UNLOCK(obj);
3441}
3442
3443/*
3444 * vfs_page_set_valid:
3445 *
3446 *	Set the valid bits in a page based on the supplied offset.   The
3447 *	range is restricted to the buffer's size.
3448 *
3449 *	This routine is typically called after a read completes.
3450 */
3451static void
3452vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3453{
3454	vm_ooffset_t eoff;
3455
3456	/*
3457	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3458	 * page boundary and eoff is not greater than the end of the buffer.
3459	 * The end of the buffer, in this case, is our file EOF, not the
3460	 * allocation size of the buffer.
3461	 */
3462	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3463	if (eoff > bp->b_offset + bp->b_bcount)
3464		eoff = bp->b_offset + bp->b_bcount;
3465
3466	/*
3467	 * Set valid range.  This is typically the entire buffer and thus the
3468	 * entire page.
3469	 */
3470	if (eoff > off)
3471		vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
3472}
3473
3474/*
3475 * vfs_page_set_validclean:
3476 *
3477 *	Set the valid bits and clear the dirty bits in a page based on the
3478 *	supplied offset.   The range is restricted to the buffer's size.
3479 */
3480static void
3481vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3482{
3483	vm_ooffset_t soff, eoff;
3484
3485	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3486	/*
3487	 * Start and end offsets in buffer.  eoff - soff may not cross a
3488	 * page boundry or cross the end of the buffer.  The end of the
3489	 * buffer, in this case, is our file EOF, not the allocation size
3490	 * of the buffer.
3491	 */
3492	soff = off;
3493	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3494	if (eoff > bp->b_offset + bp->b_bcount)
3495		eoff = bp->b_offset + bp->b_bcount;
3496
3497	/*
3498	 * Set valid range.  This is typically the entire buffer and thus the
3499	 * entire page.
3500	 */
3501	if (eoff > soff) {
3502		vm_page_set_validclean(
3503		    m,
3504		   (vm_offset_t) (soff & PAGE_MASK),
3505		   (vm_offset_t) (eoff - soff)
3506		);
3507	}
3508}
3509
3510/*
3511 * This routine is called before a device strategy routine.
3512 * It is used to tell the VM system that paging I/O is in
3513 * progress, and treat the pages associated with the buffer
3514 * almost as being VPO_BUSY.  Also the object paging_in_progress
3515 * flag is handled to make sure that the object doesn't become
3516 * inconsistant.
3517 *
3518 * Since I/O has not been initiated yet, certain buffer flags
3519 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3520 * and should be ignored.
3521 */
3522void
3523vfs_busy_pages(struct buf *bp, int clear_modify)
3524{
3525	int i, bogus;
3526	vm_object_t obj;
3527	vm_ooffset_t foff;
3528	vm_page_t m;
3529
3530	if (!(bp->b_flags & B_VMIO))
3531		return;
3532
3533	obj = bp->b_bufobj->bo_object;
3534	foff = bp->b_offset;
3535	KASSERT(bp->b_offset != NOOFFSET,
3536	    ("vfs_busy_pages: no buffer offset"));
3537	VM_OBJECT_LOCK(obj);
3538	if (bp->b_bufsize != 0)
3539		vfs_setdirty_locked_object(bp);
3540retry:
3541	for (i = 0; i < bp->b_npages; i++) {
3542		m = bp->b_pages[i];
3543
3544		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3545			goto retry;
3546	}
3547	bogus = 0;
3548	if (clear_modify)
3549		vm_page_lock_queues();
3550	for (i = 0; i < bp->b_npages; i++) {
3551		m = bp->b_pages[i];
3552
3553		if ((bp->b_flags & B_CLUSTER) == 0) {
3554			vm_object_pip_add(obj, 1);
3555			vm_page_io_start(m);
3556		}
3557		/*
3558		 * When readying a buffer for a read ( i.e
3559		 * clear_modify == 0 ), it is important to do
3560		 * bogus_page replacement for valid pages in
3561		 * partially instantiated buffers.  Partially
3562		 * instantiated buffers can, in turn, occur when
3563		 * reconstituting a buffer from its VM backing store
3564		 * base.  We only have to do this if B_CACHE is
3565		 * clear ( which causes the I/O to occur in the
3566		 * first place ).  The replacement prevents the read
3567		 * I/O from overwriting potentially dirty VM-backed
3568		 * pages.  XXX bogus page replacement is, uh, bogus.
3569		 * It may not work properly with small-block devices.
3570		 * We need to find a better way.
3571		 */
3572		if (clear_modify) {
3573			pmap_remove_write(m);
3574			vfs_page_set_validclean(bp, foff, m);
3575		} else if (m->valid == VM_PAGE_BITS_ALL &&
3576		    (bp->b_flags & B_CACHE) == 0) {
3577			bp->b_pages[i] = bogus_page;
3578			bogus++;
3579		}
3580		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3581	}
3582	if (clear_modify)
3583		vm_page_unlock_queues();
3584	VM_OBJECT_UNLOCK(obj);
3585	if (bogus)
3586		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3587		    bp->b_pages, bp->b_npages);
3588}
3589
3590/*
3591 * Tell the VM system that the pages associated with this buffer
3592 * are clean.  This is used for delayed writes where the data is
3593 * going to go to disk eventually without additional VM intevention.
3594 *
3595 * Note that while we only really need to clean through to b_bcount, we
3596 * just go ahead and clean through to b_bufsize.
3597 */
3598static void
3599vfs_clean_pages(struct buf *bp)
3600{
3601	int i;
3602	vm_ooffset_t foff, noff, eoff;
3603	vm_page_t m;
3604
3605	if (!(bp->b_flags & B_VMIO))
3606		return;
3607
3608	foff = bp->b_offset;
3609	KASSERT(bp->b_offset != NOOFFSET,
3610	    ("vfs_clean_pages: no buffer offset"));
3611	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3612	vm_page_lock_queues();
3613	for (i = 0; i < bp->b_npages; i++) {
3614		m = bp->b_pages[i];
3615		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3616		eoff = noff;
3617
3618		if (eoff > bp->b_offset + bp->b_bufsize)
3619			eoff = bp->b_offset + bp->b_bufsize;
3620		vfs_page_set_validclean(bp, foff, m);
3621		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3622		foff = noff;
3623	}
3624	vm_page_unlock_queues();
3625	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3626}
3627
3628/*
3629 *	vfs_bio_set_valid:
3630 *
3631 *	Set the range within the buffer to valid.  The range is
3632 *	relative to the beginning of the buffer, b_offset.  Note that
3633 *	b_offset itself may be offset from the beginning of the first
3634 *	page.
3635 */
3636void
3637vfs_bio_set_valid(struct buf *bp, int base, int size)
3638{
3639	int i, n;
3640	vm_page_t m;
3641
3642	if (!(bp->b_flags & B_VMIO))
3643		return;
3644
3645	/*
3646	 * Fixup base to be relative to beginning of first page.
3647	 * Set initial n to be the maximum number of bytes in the
3648	 * first page that can be validated.
3649	 */
3650	base += (bp->b_offset & PAGE_MASK);
3651	n = PAGE_SIZE - (base & PAGE_MASK);
3652
3653	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3654	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3655		m = bp->b_pages[i];
3656		if (n > size)
3657			n = size;
3658		vm_page_set_valid(m, base & PAGE_MASK, n);
3659		base += n;
3660		size -= n;
3661		n = PAGE_SIZE;
3662	}
3663	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3664}
3665
3666/*
3667 *	vfs_bio_clrbuf:
3668 *
3669 *	If the specified buffer is a non-VMIO buffer, clear the entire
3670 *	buffer.  If the specified buffer is a VMIO buffer, clear and
3671 *	validate only the previously invalid portions of the buffer.
3672 *	This routine essentially fakes an I/O, so we need to clear
3673 *	BIO_ERROR and B_INVAL.
3674 *
3675 *	Note that while we only theoretically need to clear through b_bcount,
3676 *	we go ahead and clear through b_bufsize.
3677 */
3678void
3679vfs_bio_clrbuf(struct buf *bp)
3680{
3681	int i, j, mask;
3682	caddr_t sa, ea;
3683
3684	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3685		clrbuf(bp);
3686		return;
3687	}
3688	bp->b_flags &= ~B_INVAL;
3689	bp->b_ioflags &= ~BIO_ERROR;
3690	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3691	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3692	    (bp->b_offset & PAGE_MASK) == 0) {
3693		if (bp->b_pages[0] == bogus_page)
3694			goto unlock;
3695		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3696		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3697		if ((bp->b_pages[0]->valid & mask) == mask)
3698			goto unlock;
3699		if ((bp->b_pages[0]->valid & mask) == 0) {
3700			bzero(bp->b_data, bp->b_bufsize);
3701			bp->b_pages[0]->valid |= mask;
3702			goto unlock;
3703		}
3704	}
3705	ea = sa = bp->b_data;
3706	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3707		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3708		ea = (caddr_t)(vm_offset_t)ulmin(
3709		    (u_long)(vm_offset_t)ea,
3710		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3711		if (bp->b_pages[i] == bogus_page)
3712			continue;
3713		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3714		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3715		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3716		if ((bp->b_pages[i]->valid & mask) == mask)
3717			continue;
3718		if ((bp->b_pages[i]->valid & mask) == 0)
3719			bzero(sa, ea - sa);
3720		else {
3721			for (; sa < ea; sa += DEV_BSIZE, j++) {
3722				if ((bp->b_pages[i]->valid & (1 << j)) == 0)
3723					bzero(sa, DEV_BSIZE);
3724			}
3725		}
3726		bp->b_pages[i]->valid |= mask;
3727	}
3728unlock:
3729	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3730	bp->b_resid = 0;
3731}
3732
3733/*
3734 * vm_hold_load_pages and vm_hold_free_pages get pages into
3735 * a buffers address space.  The pages are anonymous and are
3736 * not associated with a file object.
3737 */
3738static void
3739vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3740{
3741	vm_offset_t pg;
3742	vm_page_t p;
3743	int index;
3744
3745	to = round_page(to);
3746	from = round_page(from);
3747	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3748
3749	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3750tryagain:
3751		/*
3752		 * note: must allocate system pages since blocking here
3753		 * could interfere with paging I/O, no matter which
3754		 * process we are.
3755		 */
3756		p = vm_page_alloc(NULL, pg >> PAGE_SHIFT, VM_ALLOC_NOOBJ |
3757		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3758		if (!p) {
3759			atomic_add_int(&vm_pageout_deficit,
3760			    (to - pg) >> PAGE_SHIFT);
3761			VM_WAIT;
3762			goto tryagain;
3763		}
3764		pmap_qenter(pg, &p, 1);
3765		bp->b_pages[index] = p;
3766	}
3767	bp->b_npages = index;
3768}
3769
3770/* Return pages associated with this buf to the vm system */
3771static void
3772vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3773{
3774	vm_offset_t pg;
3775	vm_page_t p;
3776	int index, newnpages;
3777
3778	from = round_page(from);
3779	to = round_page(to);
3780	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3781
3782	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3783		p = bp->b_pages[index];
3784		if (p && (index < bp->b_npages)) {
3785			if (p->busy) {
3786				printf(
3787			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3788				    (intmax_t)bp->b_blkno,
3789				    (intmax_t)bp->b_lblkno);
3790			}
3791			bp->b_pages[index] = NULL;
3792			pmap_qremove(pg, 1);
3793			p->wire_count--;
3794			vm_page_free(p);
3795			atomic_subtract_int(&cnt.v_wire_count, 1);
3796		}
3797	}
3798	bp->b_npages = newnpages;
3799}
3800
3801/*
3802 * Map an IO request into kernel virtual address space.
3803 *
3804 * All requests are (re)mapped into kernel VA space.
3805 * Notice that we use b_bufsize for the size of the buffer
3806 * to be mapped.  b_bcount might be modified by the driver.
3807 *
3808 * Note that even if the caller determines that the address space should
3809 * be valid, a race or a smaller-file mapped into a larger space may
3810 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3811 * check the return value.
3812 */
3813int
3814vmapbuf(struct buf *bp)
3815{
3816	caddr_t addr, kva;
3817	vm_prot_t prot;
3818	int pidx, i;
3819	struct vm_page *m;
3820	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3821
3822	if (bp->b_bufsize < 0)
3823		return (-1);
3824	prot = VM_PROT_READ;
3825	if (bp->b_iocmd == BIO_READ)
3826		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3827	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3828	     addr < bp->b_data + bp->b_bufsize;
3829	     addr += PAGE_SIZE, pidx++) {
3830		/*
3831		 * Do the vm_fault if needed; do the copy-on-write thing
3832		 * when reading stuff off device into memory.
3833		 *
3834		 * NOTE! Must use pmap_extract() because addr may be in
3835		 * the userland address space, and kextract is only guarenteed
3836		 * to work for the kernland address space (see: sparc64 port).
3837		 */
3838retry:
3839		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3840		    prot) < 0) {
3841			vm_page_lock_queues();
3842			for (i = 0; i < pidx; ++i) {
3843				vm_page_unhold(bp->b_pages[i]);
3844				bp->b_pages[i] = NULL;
3845			}
3846			vm_page_unlock_queues();
3847			return(-1);
3848		}
3849		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3850		if (m == NULL)
3851			goto retry;
3852		bp->b_pages[pidx] = m;
3853	}
3854	if (pidx > btoc(MAXPHYS))
3855		panic("vmapbuf: mapped more than MAXPHYS");
3856	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3857
3858	kva = bp->b_saveaddr;
3859	bp->b_npages = pidx;
3860	bp->b_saveaddr = bp->b_data;
3861	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3862	return(0);
3863}
3864
3865/*
3866 * Free the io map PTEs associated with this IO operation.
3867 * We also invalidate the TLB entries and restore the original b_addr.
3868 */
3869void
3870vunmapbuf(struct buf *bp)
3871{
3872	int pidx;
3873	int npages;
3874
3875	npages = bp->b_npages;
3876	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3877	vm_page_lock_queues();
3878	for (pidx = 0; pidx < npages; pidx++)
3879		vm_page_unhold(bp->b_pages[pidx]);
3880	vm_page_unlock_queues();
3881
3882	bp->b_data = bp->b_saveaddr;
3883}
3884
3885void
3886bdone(struct buf *bp)
3887{
3888	struct mtx *mtxp;
3889
3890	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3891	mtx_lock(mtxp);
3892	bp->b_flags |= B_DONE;
3893	wakeup(bp);
3894	mtx_unlock(mtxp);
3895}
3896
3897void
3898bwait(struct buf *bp, u_char pri, const char *wchan)
3899{
3900	struct mtx *mtxp;
3901
3902	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3903	mtx_lock(mtxp);
3904	while ((bp->b_flags & B_DONE) == 0)
3905		msleep(bp, mtxp, pri, wchan, 0);
3906	mtx_unlock(mtxp);
3907}
3908
3909int
3910bufsync(struct bufobj *bo, int waitfor)
3911{
3912
3913	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3914}
3915
3916void
3917bufstrategy(struct bufobj *bo, struct buf *bp)
3918{
3919	int i = 0;
3920	struct vnode *vp;
3921
3922	vp = bp->b_vp;
3923	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3924	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3925	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3926	i = VOP_STRATEGY(vp, bp);
3927	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3928}
3929
3930void
3931bufobj_wrefl(struct bufobj *bo)
3932{
3933
3934	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3935	ASSERT_BO_LOCKED(bo);
3936	bo->bo_numoutput++;
3937}
3938
3939void
3940bufobj_wref(struct bufobj *bo)
3941{
3942
3943	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3944	BO_LOCK(bo);
3945	bo->bo_numoutput++;
3946	BO_UNLOCK(bo);
3947}
3948
3949void
3950bufobj_wdrop(struct bufobj *bo)
3951{
3952
3953	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3954	BO_LOCK(bo);
3955	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3956	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3957		bo->bo_flag &= ~BO_WWAIT;
3958		wakeup(&bo->bo_numoutput);
3959	}
3960	BO_UNLOCK(bo);
3961}
3962
3963int
3964bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3965{
3966	int error;
3967
3968	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3969	ASSERT_BO_LOCKED(bo);
3970	error = 0;
3971	while (bo->bo_numoutput) {
3972		bo->bo_flag |= BO_WWAIT;
3973		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3974		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3975		if (error)
3976			break;
3977	}
3978	return (error);
3979}
3980
3981void
3982bpin(struct buf *bp)
3983{
3984	struct mtx *mtxp;
3985
3986	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3987	mtx_lock(mtxp);
3988	bp->b_pin_count++;
3989	mtx_unlock(mtxp);
3990}
3991
3992void
3993bunpin(struct buf *bp)
3994{
3995	struct mtx *mtxp;
3996
3997	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3998	mtx_lock(mtxp);
3999	if (--bp->b_pin_count == 0)
4000		wakeup(bp);
4001	mtx_unlock(mtxp);
4002}
4003
4004void
4005bunpin_wait(struct buf *bp)
4006{
4007	struct mtx *mtxp;
4008
4009	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4010	mtx_lock(mtxp);
4011	while (bp->b_pin_count > 0)
4012		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4013	mtx_unlock(mtxp);
4014}
4015
4016#include "opt_ddb.h"
4017#ifdef DDB
4018#include <ddb/ddb.h>
4019
4020/* DDB command to show buffer data */
4021DB_SHOW_COMMAND(buffer, db_show_buffer)
4022{
4023	/* get args */
4024	struct buf *bp = (struct buf *)addr;
4025
4026	if (!have_addr) {
4027		db_printf("usage: show buffer <addr>\n");
4028		return;
4029	}
4030
4031	db_printf("buf at %p\n", bp);
4032	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4033	db_printf(
4034	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4035	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
4036	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4037	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4038	    bp->b_dep.lh_first);
4039	if (bp->b_npages) {
4040		int i;
4041		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4042		for (i = 0; i < bp->b_npages; i++) {
4043			vm_page_t m;
4044			m = bp->b_pages[i];
4045			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4046			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4047			if ((i + 1) < bp->b_npages)
4048				db_printf(",");
4049		}
4050		db_printf("\n");
4051	}
4052	db_printf(" ");
4053	lockmgr_printinfo(&bp->b_lock);
4054}
4055
4056DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4057{
4058	struct buf *bp;
4059	int i;
4060
4061	for (i = 0; i < nbuf; i++) {
4062		bp = &buf[i];
4063		if (BUF_ISLOCKED(bp)) {
4064			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4065			db_printf("\n");
4066		}
4067	}
4068}
4069
4070DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4071{
4072	struct vnode *vp;
4073	struct buf *bp;
4074
4075	if (!have_addr) {
4076		db_printf("usage: show vnodebufs <addr>\n");
4077		return;
4078	}
4079	vp = (struct vnode *)addr;
4080	db_printf("Clean buffers:\n");
4081	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4082		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4083		db_printf("\n");
4084	}
4085	db_printf("Dirty buffers:\n");
4086	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4087		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4088		db_printf("\n");
4089	}
4090}
4091#endif /* DDB */
4092