vfs_bio.c revision 193637
1132451Sroberto/*-
2132451Sroberto * Copyright (c) 2004 Poul-Henning Kamp
3132451Sroberto * Copyright (c) 1994,1997 John S. Dyson
4132451Sroberto * All rights reserved.
5132451Sroberto *
6132451Sroberto * Redistribution and use in source and binary forms, with or without
7132451Sroberto * modification, are permitted provided that the following conditions
8132451Sroberto * are met:
9132451Sroberto * 1. Redistributions of source code must retain the above copyright
10132451Sroberto *    notice, this list of conditions and the following disclaimer.
11132451Sroberto * 2. Redistributions in binary form must reproduce the above copyright
12132451Sroberto *    notice, this list of conditions and the following disclaimer in the
13132451Sroberto *    documentation and/or other materials provided with the distribution.
14132451Sroberto *
15132451Sroberto * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16132451Sroberto * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17132451Sroberto * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18132451Sroberto * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19132451Sroberto * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20132451Sroberto * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21132451Sroberto * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22132451Sroberto * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23132451Sroberto * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24132451Sroberto * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25132451Sroberto * SUCH DAMAGE.
26132451Sroberto */
27132451Sroberto
28132451Sroberto/*
29132451Sroberto * this file contains a new buffer I/O scheme implementing a coherent
30132451Sroberto * VM object and buffer cache scheme.  Pains have been taken to make
31132451Sroberto * sure that the performance degradation associated with schemes such
32132451Sroberto * as this is not realized.
33132451Sroberto *
34132451Sroberto * Author:  John S. Dyson
35132451Sroberto * Significant help during the development and debugging phases
36132451Sroberto * had been provided by David Greenman, also of the FreeBSD core team.
37132451Sroberto *
38132451Sroberto * see man buf(9) for more info.
39132451Sroberto */
40132451Sroberto
41132451Sroberto#include <sys/cdefs.h>
42132451Sroberto__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 193637 2009-06-07 18:19:04Z alc $");
43132451Sroberto
44132451Sroberto#include <sys/param.h>
45132451Sroberto#include <sys/systm.h>
46132451Sroberto#include <sys/bio.h>
47132451Sroberto#include <sys/conf.h>
48132451Sroberto#include <sys/buf.h>
49132451Sroberto#include <sys/devicestat.h>
50132451Sroberto#include <sys/eventhandler.h>
51132451Sroberto#include <sys/fail.h>
52132451Sroberto#include <sys/limits.h>
53132451Sroberto#include <sys/lock.h>
54132451Sroberto#include <sys/malloc.h>
55132451Sroberto#include <sys/mount.h>
56132451Sroberto#include <sys/mutex.h>
57132451Sroberto#include <sys/kernel.h>
58132451Sroberto#include <sys/kthread.h>
59132451Sroberto#include <sys/proc.h>
60132451Sroberto#include <sys/resourcevar.h>
61132451Sroberto#include <sys/sysctl.h>
62132451Sroberto#include <sys/vmmeter.h>
63132451Sroberto#include <sys/vnode.h>
64132451Sroberto#include <geom/geom.h>
65132451Sroberto#include <vm/vm.h>
66132451Sroberto#include <vm/vm_param.h>
67132451Sroberto#include <vm/vm_kern.h>
68132451Sroberto#include <vm/vm_pageout.h>
69132451Sroberto#include <vm/vm_page.h>
70132451Sroberto#include <vm/vm_object.h>
71132451Sroberto#include <vm/vm_extern.h>
72132451Sroberto#include <vm/vm_map.h>
73132451Sroberto#include "opt_compat.h"
74132451Sroberto#include "opt_directio.h"
75132451Sroberto#include "opt_swap.h"
76132451Sroberto
77132451Srobertostatic MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
78132451Sroberto
79132451Srobertostruct	bio_ops bioops;		/* I/O operation notification */
80132451Sroberto
81132451Srobertostruct	buf_ops buf_ops_bio = {
82132451Sroberto	.bop_name	=	"buf_ops_bio",
83132451Sroberto	.bop_write	=	bufwrite,
84132451Sroberto	.bop_strategy	=	bufstrategy,
85132451Sroberto	.bop_sync	=	bufsync,
86132451Sroberto	.bop_bdflush	=	bufbdflush,
87132451Sroberto};
88132451Sroberto
89132451Sroberto/*
90132451Sroberto * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
91132451Sroberto * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
92132451Sroberto */
93132451Srobertostruct buf *buf;		/* buffer header pool */
94132451Sroberto
95132451Srobertostatic struct proc *bufdaemonproc;
96132451Sroberto
97132451Srobertostatic int inmem(struct vnode *vp, daddr_t blkno);
98132451Srobertostatic void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
99182007Sroberto		vm_offset_t to);
100132451Srobertostatic void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
101132451Sroberto		vm_offset_t to);
102182007Srobertostatic void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m);
103182007Srobertostatic void vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off,
104132451Sroberto		vm_page_t m);
105132451Srobertostatic void vfs_clean_pages(struct buf *bp);
106132451Srobertostatic void vfs_setdirty(struct buf *bp);
107132451Srobertostatic void vfs_setdirty_locked_object(struct buf *bp);
108132451Srobertostatic void vfs_vmio_release(struct buf *bp);
109132451Srobertostatic int vfs_bio_clcheck(struct vnode *vp, int size,
110132451Sroberto		daddr_t lblkno, daddr_t blkno);
111132451Srobertostatic int buf_do_flush(struct vnode *vp);
112132451Srobertostatic int flushbufqueues(struct vnode *, int, int);
113132451Srobertostatic void buf_daemon(void);
114132451Srobertostatic void bremfreel(struct buf *bp);
115132451Sroberto#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
116132451Sroberto    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
117132451Srobertostatic int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
118132451Sroberto#endif
119132451Sroberto
120132451Srobertoint vmiodirenable = TRUE;
121132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
122132451Sroberto    "Use the VM system for directory writes");
123132451Srobertolong runningbufspace;
124132451SrobertoSYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
125132451Sroberto    "Amount of presently outstanding async buffer io");
126132451Srobertostatic long bufspace;
127132451Sroberto#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
128132451Sroberto    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
129132451SrobertoSYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
130132451Sroberto    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
131132451Sroberto#else
132132451SrobertoSYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
133132451Sroberto    "Virtual memory used for buffers");
134132451Sroberto#endif
135132451Srobertostatic long maxbufspace;
136132451SrobertoSYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
137132451Sroberto    "Maximum allowed value of bufspace (including buf_daemon)");
138132451Srobertostatic long bufmallocspace;
139132451SrobertoSYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
140132451Sroberto    "Amount of malloced memory for buffers");
141132451Srobertostatic long maxbufmallocspace;
142132451SrobertoSYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
143132451Sroberto    "Maximum amount of malloced memory for buffers");
144132451Srobertostatic long lobufspace;
145132451SrobertoSYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
146132451Sroberto    "Minimum amount of buffers we want to have");
147132451Srobertolong hibufspace;
148132451SrobertoSYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
149132451Sroberto    "Maximum allowed value of bufspace (excluding buf_daemon)");
150132451Srobertostatic int bufreusecnt;
151132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
152132451Sroberto    "Number of times we have reused a buffer");
153132451Srobertostatic int buffreekvacnt;
154132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
155132451Sroberto    "Number of times we have freed the KVA space from some buffer");
156132451Srobertostatic int bufdefragcnt;
157132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
158132451Sroberto    "Number of times we have had to repeat buffer allocation to defragment");
159132451Srobertostatic long lorunningspace;
160132451SrobertoSYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
161132451Sroberto    "Minimum preferred space used for in-progress I/O");
162132451Srobertostatic long hirunningspace;
163132451SrobertoSYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
164132451Sroberto    "Maximum amount of space to use for in-progress I/O");
165132536Srobertoint dirtybufferflushes;
166132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
167132536Sroberto    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
168132451Srobertoint bdwriteskip;
169132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
170132451Sroberto    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
171132451Srobertoint altbufferflushes;
172132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
173132451Sroberto    0, "Number of fsync flushes to limit dirty buffers");
174132451Srobertostatic int recursiveflushes;
175132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
176132451Sroberto    0, "Number of flushes skipped due to being recursive");
177132451Srobertostatic int numdirtybuffers;
178132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
179132451Sroberto    "Number of buffers that are dirty (has unwritten changes) at the moment");
180132451Srobertostatic int lodirtybuffers;
181132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
182132451Sroberto    "How many buffers we want to have free before bufdaemon can sleep");
183132451Srobertostatic int hidirtybuffers;
184132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
185132451Sroberto    "When the number of dirty buffers is considered severe");
186132451Srobertoint dirtybufthresh;
187132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
188132451Sroberto    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
189132451Srobertostatic int numfreebuffers;
190132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
191132451Sroberto    "Number of free buffers");
192132451Srobertostatic int lofreebuffers;
193132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
194132451Sroberto   "XXX Unused");
195132451Srobertostatic int hifreebuffers;
196132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
197132451Sroberto   "XXX Complicatedly unused");
198132451Srobertostatic int getnewbufcalls;
199132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
200132451Sroberto   "Number of calls to getnewbuf");
201132451Srobertostatic int getnewbufrestarts;
202132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
203132451Sroberto    "Number of times getnewbuf has had to restart a buffer aquisition");
204132451Srobertostatic int flushbufqtarget = 100;
205132451SrobertoSYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
206132451Sroberto    "Amount of work to do in flushbufqueues when helping bufdaemon");
207132451Srobertostatic long notbufdflashes;
208132451SrobertoSYSCTL_LONG(_vfs, OID_AUTO, notbufdflashes, CTLFLAG_RD, &notbufdflashes, 0,
209132451Sroberto    "Number of dirty buffer flushes done by the bufdaemon helpers");
210132451Sroberto
211132451Sroberto/*
212132451Sroberto * Wakeup point for bufdaemon, as well as indicator of whether it is already
213132451Sroberto * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
214132451Sroberto * is idling.
215132451Sroberto */
216132451Srobertostatic int bd_request;
217132451Sroberto
218132451Sroberto/*
219132451Sroberto * This lock synchronizes access to bd_request.
220132451Sroberto */
221132451Srobertostatic struct mtx bdlock;
222182007Sroberto
223132451Sroberto/*
224132451Sroberto * bogus page -- for I/O to/from partially complete buffers
225132451Sroberto * this is a temporary solution to the problem, but it is not
226132451Sroberto * really that bad.  it would be better to split the buffer
227132451Sroberto * for input in the case of buffers partially already in memory,
228132451Sroberto * but the code is intricate enough already.
229132451Sroberto */
230132451Srobertovm_page_t bogus_page;
231132451Sroberto
232132451Sroberto/*
233132451Sroberto * Synchronization (sleep/wakeup) variable for active buffer space requests.
234132451Sroberto * Set when wait starts, cleared prior to wakeup().
235132451Sroberto * Used in runningbufwakeup() and waitrunningbufspace().
236132451Sroberto */
237132451Srobertostatic int runningbufreq;
238132451Sroberto
239132451Sroberto/*
240132451Sroberto * This lock protects the runningbufreq and synchronizes runningbufwakeup and
241132451Sroberto * waitrunningbufspace().
242132451Sroberto */
243132451Srobertostatic struct mtx rbreqlock;
244132451Sroberto
245182007Sroberto/*
246182007Sroberto * Synchronization (sleep/wakeup) variable for buffer requests.
247132451Sroberto * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
248132536Sroberto * by and/or.
249132451Sroberto * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
250132451Sroberto * getnewbuf(), and getblk().
251132451Sroberto */
252132451Srobertostatic int needsbuffer;
253132451Sroberto
254132451Sroberto/*
255132451Sroberto * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
256132451Sroberto */
257132451Srobertostatic struct mtx nblock;
258182007Sroberto
259182007Sroberto/*
260182007Sroberto * Definitions for the buffer free lists.
261182007Sroberto */
262182007Sroberto#define BUFFER_QUEUES	6	/* number of free buffer queues */
263132451Sroberto
264132451Sroberto#define QUEUE_NONE	0	/* on no queue */
265132451Sroberto#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
266132451Sroberto#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
267132451Sroberto#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
268132451Sroberto#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
269132451Sroberto#define QUEUE_EMPTY	5	/* empty buffer headers */
270132451Sroberto#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
271132451Sroberto
272132451Sroberto/* Queues for free buffers with various properties */
273132451Srobertostatic TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
274132451Sroberto
275132451Sroberto/* Lock for the bufqueues */
276132451Srobertostatic struct mtx bqlock;
277132451Sroberto
278132451Sroberto/*
279132536Sroberto * Single global constant for BUF_WMESG, to avoid getting multiple references.
280132451Sroberto * buf_wmesg is referred from macros.
281132451Sroberto */
282132536Srobertoconst char *buf_wmesg = BUF_WMESG;
283132451Sroberto
284132451Sroberto#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
285132451Sroberto#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
286132451Sroberto#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
287132451Sroberto#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
288132451Sroberto
289132451Sroberto#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
290132451Sroberto    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
291182007Srobertostatic int
292182007Srobertosysctl_bufspace(SYSCTL_HANDLER_ARGS)
293182007Sroberto{
294182007Sroberto	long lvalue;
295182007Sroberto	int ivalue;
296182007Sroberto
297132536Sroberto	if (sizeof(int) == sizeof(long) || req->oldlen >= sizeof(long))
298182007Sroberto		return (sysctl_handle_long(oidp, arg1, arg2, req));
299182007Sroberto	lvalue = *(long *)arg1;
300132536Sroberto	if (lvalue > INT_MAX)
301132451Sroberto		/* On overflow, still write out a long to trigger ENOMEM. */
302182007Sroberto		return (sysctl_handle_long(oidp, &lvalue, 0, req));
303132451Sroberto	ivalue = lvalue;
304132536Sroberto	return (sysctl_handle_int(oidp, &ivalue, 0, req));
305182007Sroberto}
306182007Sroberto#endif
307132451Sroberto
308182007Sroberto#ifdef DIRECTIO
309182007Srobertoextern void ffs_rawread_setup(void);
310132451Sroberto#endif /* DIRECTIO */
311182007Sroberto/*
312182007Sroberto *	numdirtywakeup:
313132451Sroberto *
314182007Sroberto *	If someone is blocked due to there being too many dirty buffers,
315182007Sroberto *	and numdirtybuffers is now reasonable, wake them up.
316132451Sroberto */
317182007Sroberto
318182007Srobertostatic __inline void
319132536Srobertonumdirtywakeup(int level)
320132451Sroberto{
321182007Sroberto
322182007Sroberto	if (numdirtybuffers <= level) {
323132451Sroberto		mtx_lock(&nblock);
324132536Sroberto		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
325182007Sroberto			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
326182007Sroberto			wakeup(&needsbuffer);
327132536Sroberto		}
328182007Sroberto		mtx_unlock(&nblock);
329182007Sroberto	}
330132451Sroberto}
331182007Sroberto
332182007Sroberto/*
333132451Sroberto *	bufspacewakeup:
334182007Sroberto *
335182007Sroberto *	Called when buffer space is potentially available for recovery.
336132451Sroberto *	getnewbuf() will block on this flag when it is unable to free
337182007Sroberto *	sufficient buffer space.  Buffer space becomes recoverable when
338182007Sroberto *	bp's get placed back in the queues.
339132451Sroberto */
340182007Sroberto
341182007Srobertostatic __inline void
342132536Srobertobufspacewakeup(void)
343182007Sroberto{
344182007Sroberto
345132451Sroberto	/*
346182007Sroberto	 * If someone is waiting for BUF space, wake them up.  Even
347182007Sroberto	 * though we haven't freed the kva space yet, the waiting
348182007Sroberto	 * process will be able to now.
349182007Sroberto	 */
350132451Sroberto	mtx_lock(&nblock);
351182007Sroberto	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
352182007Sroberto		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
353182007Sroberto		wakeup(&needsbuffer);
354182007Sroberto	}
355132536Sroberto	mtx_unlock(&nblock);
356132451Sroberto}
357132451Sroberto
358132451Sroberto/*
359132451Sroberto * runningbufwakeup() - in-progress I/O accounting.
360132451Sroberto *
361132451Sroberto */
362132451Srobertovoid
363132451Srobertorunningbufwakeup(struct buf *bp)
364132451Sroberto{
365132451Sroberto
366132451Sroberto	if (bp->b_runningbufspace) {
367132451Sroberto		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
368132451Sroberto		bp->b_runningbufspace = 0;
369132451Sroberto		mtx_lock(&rbreqlock);
370132451Sroberto		if (runningbufreq && runningbufspace <= lorunningspace) {
371132451Sroberto			runningbufreq = 0;
372132451Sroberto			wakeup(&runningbufreq);
373132451Sroberto		}
374132451Sroberto		mtx_unlock(&rbreqlock);
375132451Sroberto	}
376132451Sroberto}
377132451Sroberto
378132451Sroberto/*
379132536Sroberto *	bufcountwakeup:
380132451Sroberto *
381132451Sroberto *	Called when a buffer has been added to one of the free queues to
382132451Sroberto *	account for the buffer and to wakeup anyone waiting for free buffers.
383132451Sroberto *	This typically occurs when large amounts of metadata are being handled
384132451Sroberto *	by the buffer cache ( else buffer space runs out first, usually ).
385132451Sroberto */
386132451Sroberto
387132536Srobertostatic __inline void
388132451Srobertobufcountwakeup(void)
389132451Sroberto{
390132451Sroberto
391132451Sroberto	atomic_add_int(&numfreebuffers, 1);
392132451Sroberto	mtx_lock(&nblock);
393132451Sroberto	if (needsbuffer) {
394132451Sroberto		needsbuffer &= ~VFS_BIO_NEED_ANY;
395132451Sroberto		if (numfreebuffers >= hifreebuffers)
396132451Sroberto			needsbuffer &= ~VFS_BIO_NEED_FREE;
397132451Sroberto		wakeup(&needsbuffer);
398132451Sroberto	}
399132451Sroberto	mtx_unlock(&nblock);
400132451Sroberto}
401132451Sroberto
402132451Sroberto/*
403182007Sroberto *	waitrunningbufspace()
404132451Sroberto *
405132451Sroberto *	runningbufspace is a measure of the amount of I/O currently
406132451Sroberto *	running.  This routine is used in async-write situations to
407132451Sroberto *	prevent creating huge backups of pending writes to a device.
408132451Sroberto *	Only asynchronous writes are governed by this function.
409132451Sroberto *
410132451Sroberto *	Reads will adjust runningbufspace, but will not block based on it.
411132451Sroberto *	The read load has a side effect of reducing the allowed write load.
412132451Sroberto *
413132451Sroberto *	This does NOT turn an async write into a sync write.  It waits
414132451Sroberto *	for earlier writes to complete and generally returns before the
415132451Sroberto *	caller's write has reached the device.
416132451Sroberto */
417132451Srobertovoid
418132451Srobertowaitrunningbufspace(void)
419132451Sroberto{
420132451Sroberto
421132451Sroberto	mtx_lock(&rbreqlock);
422132451Sroberto	while (runningbufspace > hirunningspace) {
423132451Sroberto		++runningbufreq;
424132451Sroberto		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
425132451Sroberto	}
426132451Sroberto	mtx_unlock(&rbreqlock);
427132451Sroberto}
428132451Sroberto
429132451Sroberto
430132451Sroberto/*
431132451Sroberto *	vfs_buf_test_cache:
432132451Sroberto *
433182007Sroberto *	Called when a buffer is extended.  This function clears the B_CACHE
434132451Sroberto *	bit if the newly extended portion of the buffer does not contain
435132451Sroberto *	valid data.
436132451Sroberto */
437132451Srobertostatic __inline
438132451Srobertovoid
439132451Srobertovfs_buf_test_cache(struct buf *bp,
440132451Sroberto		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
441132451Sroberto		  vm_page_t m)
442132451Sroberto{
443132451Sroberto
444132451Sroberto	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
445132451Sroberto	if (bp->b_flags & B_CACHE) {
446132451Sroberto		int base = (foff + off) & PAGE_MASK;
447132451Sroberto		if (vm_page_is_valid(m, base, size) == 0)
448132451Sroberto			bp->b_flags &= ~B_CACHE;
449132451Sroberto	}
450132451Sroberto}
451132451Sroberto
452132451Sroberto/* Wake up the buffer daemon if necessary */
453132451Srobertostatic __inline
454132451Srobertovoid
455132451Srobertobd_wakeup(int dirtybuflevel)
456132451Sroberto{
457132451Sroberto
458132451Sroberto	mtx_lock(&bdlock);
459132451Sroberto	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
460132451Sroberto		bd_request = 1;
461132451Sroberto		wakeup(&bd_request);
462132451Sroberto	}
463132451Sroberto	mtx_unlock(&bdlock);
464132451Sroberto}
465132451Sroberto
466132451Sroberto/*
467132451Sroberto * bd_speedup - speedup the buffer cache flushing code
468132451Sroberto */
469132451Sroberto
470132451Srobertostatic __inline
471132451Srobertovoid
472132451Srobertobd_speedup(void)
473132451Sroberto{
474132451Sroberto
475132451Sroberto	bd_wakeup(1);
476132451Sroberto}
477132451Sroberto
478132451Sroberto/*
479132451Sroberto * Calculating buffer cache scaling values and reserve space for buffer
480132451Sroberto * headers.  This is called during low level kernel initialization and
481132451Sroberto * may be called more then once.  We CANNOT write to the memory area
482132451Sroberto * being reserved at this time.
483182007Sroberto */
484132451Srobertocaddr_t
485132451Srobertokern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
486132451Sroberto{
487132451Sroberto	int tuned_nbuf;
488132451Sroberto	long maxbuf;
489132451Sroberto
490132451Sroberto	/*
491132451Sroberto	 * physmem_est is in pages.  Convert it to kilobytes (assumes
492132451Sroberto	 * PAGE_SIZE is >= 1K)
493132451Sroberto	 */
494132451Sroberto	physmem_est = physmem_est * (PAGE_SIZE / 1024);
495132451Sroberto
496132451Sroberto	/*
497132451Sroberto	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
498132451Sroberto	 * For the first 64MB of ram nominally allocate sufficient buffers to
499132451Sroberto	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
500132451Sroberto	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
501132451Sroberto	 * the buffer cache we limit the eventual kva reservation to
502132451Sroberto	 * maxbcache bytes.
503132451Sroberto	 *
504132451Sroberto	 * factor represents the 1/4 x ram conversion.
505132451Sroberto	 */
506132451Sroberto	if (nbuf == 0) {
507132451Sroberto		int factor = 4 * BKVASIZE / 1024;
508132451Sroberto
509132451Sroberto		nbuf = 50;
510132451Sroberto		if (physmem_est > 4096)
511132451Sroberto			nbuf += min((physmem_est - 4096) / factor,
512132451Sroberto			    65536 / factor);
513132451Sroberto		if (physmem_est > 65536)
514132451Sroberto			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
515182007Sroberto
516132451Sroberto		if (maxbcache && nbuf > maxbcache / BKVASIZE)
517132451Sroberto			nbuf = maxbcache / BKVASIZE;
518132451Sroberto		tuned_nbuf = 1;
519132451Sroberto	} else
520132451Sroberto		tuned_nbuf = 0;
521132451Sroberto
522132451Sroberto	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
523132451Sroberto	maxbuf = (LONG_MAX / 3) / BKVASIZE;
524132451Sroberto	if (nbuf > maxbuf) {
525132451Sroberto		if (!tuned_nbuf)
526132451Sroberto			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
527132451Sroberto			    maxbuf);
528132451Sroberto		nbuf = maxbuf;
529132451Sroberto	}
530132451Sroberto
531132451Sroberto	/*
532132451Sroberto	 * swbufs are used as temporary holders for I/O, such as paging I/O.
533132451Sroberto	 * We have no less then 16 and no more then 256.
534132451Sroberto	 */
535132451Sroberto	nswbuf = max(min(nbuf/4, 256), 16);
536132451Sroberto#ifdef NSWBUF_MIN
537132451Sroberto	if (nswbuf < NSWBUF_MIN)
538182007Sroberto		nswbuf = NSWBUF_MIN;
539132451Sroberto#endif
540132451Sroberto#ifdef DIRECTIO
541132451Sroberto	ffs_rawread_setup();
542132451Sroberto#endif
543132451Sroberto
544132451Sroberto	/*
545132451Sroberto	 * Reserve space for the buffer cache buffers
546132451Sroberto	 */
547132451Sroberto	swbuf = (void *)v;
548132451Sroberto	v = (caddr_t)(swbuf + nswbuf);
549132451Sroberto	buf = (void *)v;
550132451Sroberto	v = (caddr_t)(buf + nbuf);
551132451Sroberto
552132451Sroberto	return(v);
553132451Sroberto}
554182007Sroberto
555132451Sroberto/* Initialize the buffer subsystem.  Called before use of any buffers. */
556132451Srobertovoid
557182007Srobertobufinit(void)
558132451Sroberto{
559132451Sroberto	struct buf *bp;
560182007Sroberto	int i;
561182007Sroberto
562132451Sroberto	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
563182007Sroberto	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
564182007Sroberto	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
565132451Sroberto	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
566132451Sroberto
567132451Sroberto	/* next, make a null set of free lists */
568132451Sroberto	for (i = 0; i < BUFFER_QUEUES; i++)
569132451Sroberto		TAILQ_INIT(&bufqueues[i]);
570132451Sroberto
571132451Sroberto	/* finally, initialize each buffer header and stick on empty q */
572132451Sroberto	for (i = 0; i < nbuf; i++) {
573132451Sroberto		bp = &buf[i];
574132451Sroberto		bzero(bp, sizeof *bp);
575132451Sroberto		bp->b_flags = B_INVAL;	/* we're just an empty header */
576132451Sroberto		bp->b_rcred = NOCRED;
577132451Sroberto		bp->b_wcred = NOCRED;
578132451Sroberto		bp->b_qindex = QUEUE_EMPTY;
579132451Sroberto		bp->b_vflags = 0;
580132451Sroberto		bp->b_xflags = 0;
581132451Sroberto		LIST_INIT(&bp->b_dep);
582132451Sroberto		BUF_LOCKINIT(bp);
583132451Sroberto		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
584132451Sroberto	}
585132451Sroberto
586132451Sroberto	/*
587132451Sroberto	 * maxbufspace is the absolute maximum amount of buffer space we are
588132451Sroberto	 * allowed to reserve in KVM and in real terms.  The absolute maximum
589132451Sroberto	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
590132451Sroberto	 * used by most other processes.  The differential is required to
591132451Sroberto	 * ensure that buf_daemon is able to run when other processes might
592132451Sroberto	 * be blocked waiting for buffer space.
593132451Sroberto	 *
594132451Sroberto	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
595132451Sroberto	 * this may result in KVM fragmentation which is not handled optimally
596132451Sroberto	 * by the system.
597132451Sroberto	 */
598132451Sroberto	maxbufspace = (long)nbuf * BKVASIZE;
599132451Sroberto	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
600132451Sroberto	lobufspace = hibufspace - MAXBSIZE;
601132451Sroberto
602132451Sroberto	lorunningspace = 512 * 1024;
603132451Sroberto	hirunningspace = 1024 * 1024;
604132451Sroberto
605132451Sroberto/*
606132451Sroberto * Limit the amount of malloc memory since it is wired permanently into
607132451Sroberto * the kernel space.  Even though this is accounted for in the buffer
608132451Sroberto * allocation, we don't want the malloced region to grow uncontrolled.
609132451Sroberto * The malloc scheme improves memory utilization significantly on average
610132451Sroberto * (small) directories.
611132451Sroberto */
612132451Sroberto	maxbufmallocspace = hibufspace / 20;
613132451Sroberto
614132451Sroberto/*
615132451Sroberto * Reduce the chance of a deadlock occuring by limiting the number
616132451Sroberto * of delayed-write dirty buffers we allow to stack up.
617132451Sroberto */
618132451Sroberto	hidirtybuffers = nbuf / 4 + 20;
619132451Sroberto	dirtybufthresh = hidirtybuffers * 9 / 10;
620132451Sroberto	numdirtybuffers = 0;
621132451Sroberto/*
622132451Sroberto * To support extreme low-memory systems, make sure hidirtybuffers cannot
623132451Sroberto * eat up all available buffer space.  This occurs when our minimum cannot
624132451Sroberto * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
625132451Sroberto * BKVASIZE'd (8K) buffers.
626132451Sroberto */
627132451Sroberto	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
628132451Sroberto		hidirtybuffers >>= 1;
629132451Sroberto	}
630132451Sroberto	lodirtybuffers = hidirtybuffers / 2;
631132451Sroberto
632132451Sroberto/*
633132451Sroberto * Try to keep the number of free buffers in the specified range,
634132451Sroberto * and give special processes (e.g. like buf_daemon) access to an
635132451Sroberto * emergency reserve.
636132451Sroberto */
637132451Sroberto	lofreebuffers = nbuf / 18 + 5;
638132451Sroberto	hifreebuffers = 2 * lofreebuffers;
639132451Sroberto	numfreebuffers = nbuf;
640132451Sroberto
641182007Sroberto	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
642132451Sroberto	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
643132451Sroberto}
644132451Sroberto
645276158Sdes/*
646132451Sroberto * bfreekva() - free the kva allocation for a buffer.
647132451Sroberto *
648132451Sroberto *	Since this call frees up buffer space, we call bufspacewakeup().
649132451Sroberto */
650132451Srobertostatic void
651132451Srobertobfreekva(struct buf *bp)
652132451Sroberto{
653132536Sroberto
654132451Sroberto	if (bp->b_kvasize) {
655132451Sroberto		atomic_add_int(&buffreekvacnt, 1);
656132451Sroberto		atomic_subtract_long(&bufspace, bp->b_kvasize);
657132451Sroberto		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
658132451Sroberto		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
659132451Sroberto		bp->b_kvasize = 0;
660132451Sroberto		bufspacewakeup();
661132451Sroberto	}
662132451Sroberto}
663132451Sroberto
664132451Sroberto/*
665132451Sroberto *	bremfree:
666132451Sroberto *
667132451Sroberto *	Mark the buffer for removal from the appropriate free list in brelse.
668132451Sroberto *
669132451Sroberto */
670132451Srobertovoid
671132451Srobertobremfree(struct buf *bp)
672132451Sroberto{
673132451Sroberto
674132451Sroberto	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
675132451Sroberto	KASSERT((bp->b_flags & B_REMFREE) == 0,
676132451Sroberto	    ("bremfree: buffer %p already marked for delayed removal.", bp));
677132451Sroberto	KASSERT(bp->b_qindex != QUEUE_NONE,
678276158Sdes	    ("bremfree: buffer %p not on a queue.", bp));
679132451Sroberto	BUF_ASSERT_HELD(bp);
680132451Sroberto
681132451Sroberto	bp->b_flags |= B_REMFREE;
682132451Sroberto	/* Fixup numfreebuffers count.  */
683132451Sroberto	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
684132451Sroberto		atomic_subtract_int(&numfreebuffers, 1);
685132451Sroberto}
686132451Sroberto
687132451Sroberto/*
688132451Sroberto *	bremfreef:
689132451Sroberto *
690132451Sroberto *	Force an immediate removal from a free list.  Used only in nfs when
691132451Sroberto *	it abuses the b_freelist pointer.
692132451Sroberto */
693132451Srobertovoid
694132451Srobertobremfreef(struct buf *bp)
695132451Sroberto{
696132451Sroberto	mtx_lock(&bqlock);
697132451Sroberto	bremfreel(bp);
698132451Sroberto	mtx_unlock(&bqlock);
699132451Sroberto}
700132451Sroberto
701132451Sroberto/*
702132451Sroberto *	bremfreel:
703132451Sroberto *
704132451Sroberto *	Removes a buffer from the free list, must be called with the
705132451Sroberto *	bqlock held.
706132451Sroberto */
707132451Srobertostatic void
708132451Srobertobremfreel(struct buf *bp)
709132451Sroberto{
710132451Sroberto	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
711132451Sroberto	    bp, bp->b_vp, bp->b_flags);
712132451Sroberto	KASSERT(bp->b_qindex != QUEUE_NONE,
713132451Sroberto	    ("bremfreel: buffer %p not on a queue.", bp));
714132451Sroberto	BUF_ASSERT_HELD(bp);
715132451Sroberto	mtx_assert(&bqlock, MA_OWNED);
716132451Sroberto
717132451Sroberto	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
718132451Sroberto	bp->b_qindex = QUEUE_NONE;
719132451Sroberto	/*
720132451Sroberto	 * If this was a delayed bremfree() we only need to remove the buffer
721132451Sroberto	 * from the queue and return the stats are already done.
722132451Sroberto	 */
723132451Sroberto	if (bp->b_flags & B_REMFREE) {
724132451Sroberto		bp->b_flags &= ~B_REMFREE;
725132451Sroberto		return;
726132451Sroberto	}
727132451Sroberto	/*
728132451Sroberto	 * Fixup numfreebuffers count.  If the buffer is invalid or not
729132451Sroberto	 * delayed-write, the buffer was free and we must decrement
730132451Sroberto	 * numfreebuffers.
731132451Sroberto	 */
732132451Sroberto	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
733132451Sroberto		atomic_subtract_int(&numfreebuffers, 1);
734132451Sroberto}
735132451Sroberto
736132451Sroberto
737132451Sroberto/*
738132451Sroberto * Get a buffer with the specified data.  Look in the cache first.  We
739132451Sroberto * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
740132451Sroberto * is set, the buffer is valid and we do not have to do anything ( see
741132451Sroberto * getblk() ).  This is really just a special case of breadn().
742132451Sroberto */
743132451Srobertoint
744132451Srobertobread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
745132451Sroberto    struct buf **bpp)
746132451Sroberto{
747132451Sroberto
748132451Sroberto	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
749132451Sroberto}
750132451Sroberto
751132451Sroberto/*
752132451Sroberto * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
753132451Sroberto * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
754132451Sroberto * the buffer is valid and we do not have to do anything.
755132451Sroberto */
756132451Srobertovoid
757132451Srobertobreada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
758132451Sroberto    int cnt, struct ucred * cred)
759132451Sroberto{
760132451Sroberto	struct buf *rabp;
761132451Sroberto	int i;
762132451Sroberto
763132451Sroberto	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
764132451Sroberto		if (inmem(vp, *rablkno))
765132451Sroberto			continue;
766132451Sroberto		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
767132451Sroberto
768132451Sroberto		if ((rabp->b_flags & B_CACHE) == 0) {
769132451Sroberto			if (!TD_IS_IDLETHREAD(curthread))
770132451Sroberto				curthread->td_ru.ru_inblock++;
771132451Sroberto			rabp->b_flags |= B_ASYNC;
772132451Sroberto			rabp->b_flags &= ~B_INVAL;
773132451Sroberto			rabp->b_ioflags &= ~BIO_ERROR;
774132451Sroberto			rabp->b_iocmd = BIO_READ;
775132451Sroberto			if (rabp->b_rcred == NOCRED && cred != NOCRED)
776132451Sroberto				rabp->b_rcred = crhold(cred);
777132451Sroberto			vfs_busy_pages(rabp, 0);
778132451Sroberto			BUF_KERNPROC(rabp);
779132451Sroberto			rabp->b_iooffset = dbtob(rabp->b_blkno);
780132451Sroberto			bstrategy(rabp);
781132451Sroberto		} else {
782132451Sroberto			brelse(rabp);
783132451Sroberto		}
784132451Sroberto	}
785132451Sroberto}
786132451Sroberto
787132451Sroberto/*
788132451Sroberto * Operates like bread, but also starts asynchronous I/O on
789132451Sroberto * read-ahead blocks.
790132451Sroberto */
791132451Srobertoint
792132451Srobertobreadn(struct vnode * vp, daddr_t blkno, int size,
793132451Sroberto    daddr_t * rablkno, int *rabsize,
794132451Sroberto    int cnt, struct ucred * cred, struct buf **bpp)
795132451Sroberto{
796132451Sroberto	struct buf *bp;
797132451Sroberto	int rv = 0, readwait = 0;
798132451Sroberto
799132451Sroberto	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
800132451Sroberto	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
801132451Sroberto
802132451Sroberto	/* if not found in cache, do some I/O */
803132451Sroberto	if ((bp->b_flags & B_CACHE) == 0) {
804132451Sroberto		if (!TD_IS_IDLETHREAD(curthread))
805132451Sroberto			curthread->td_ru.ru_inblock++;
806132451Sroberto		bp->b_iocmd = BIO_READ;
807132451Sroberto		bp->b_flags &= ~B_INVAL;
808132451Sroberto		bp->b_ioflags &= ~BIO_ERROR;
809132451Sroberto		if (bp->b_rcred == NOCRED && cred != NOCRED)
810132451Sroberto			bp->b_rcred = crhold(cred);
811132451Sroberto		vfs_busy_pages(bp, 0);
812132451Sroberto		bp->b_iooffset = dbtob(bp->b_blkno);
813132451Sroberto		bstrategy(bp);
814132451Sroberto		++readwait;
815132451Sroberto	}
816132451Sroberto
817132451Sroberto	breada(vp, rablkno, rabsize, cnt, cred);
818132451Sroberto
819132451Sroberto	if (readwait) {
820132451Sroberto		rv = bufwait(bp);
821132451Sroberto	}
822132451Sroberto	return (rv);
823132451Sroberto}
824132451Sroberto
825132451Sroberto/*
826132451Sroberto * Write, release buffer on completion.  (Done by iodone
827132451Sroberto * if async).  Do not bother writing anything if the buffer
828132451Sroberto * is invalid.
829132451Sroberto *
830132451Sroberto * Note that we set B_CACHE here, indicating that buffer is
831132451Sroberto * fully valid and thus cacheable.  This is true even of NFS
832132451Sroberto * now so we set it generally.  This could be set either here
833132451Sroberto * or in biodone() since the I/O is synchronous.  We put it
834132451Sroberto * here.
835132451Sroberto */
836132451Srobertoint
837132451Srobertobufwrite(struct buf *bp)
838132451Sroberto{
839132451Sroberto	int oldflags;
840132451Sroberto	struct vnode *vp;
841132451Sroberto	int vp_md;
842132451Sroberto
843132451Sroberto	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
844132451Sroberto	if (bp->b_flags & B_INVAL) {
845132451Sroberto		brelse(bp);
846132451Sroberto		return (0);
847132451Sroberto	}
848132451Sroberto
849132451Sroberto	oldflags = bp->b_flags;
850132451Sroberto
851132451Sroberto	BUF_ASSERT_HELD(bp);
852132451Sroberto
853132451Sroberto	if (bp->b_pin_count > 0)
854132451Sroberto		bunpin_wait(bp);
855132451Sroberto
856132451Sroberto	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
857132451Sroberto	    ("FFS background buffer should not get here %p", bp));
858132451Sroberto
859132451Sroberto	vp = bp->b_vp;
860132451Sroberto	if (vp)
861132451Sroberto		vp_md = vp->v_vflag & VV_MD;
862132451Sroberto	else
863132451Sroberto		vp_md = 0;
864132451Sroberto
865132451Sroberto	/* Mark the buffer clean */
866132451Sroberto	bundirty(bp);
867132451Sroberto
868132451Sroberto	bp->b_flags &= ~B_DONE;
869132451Sroberto	bp->b_ioflags &= ~BIO_ERROR;
870132451Sroberto	bp->b_flags |= B_CACHE;
871132451Sroberto	bp->b_iocmd = BIO_WRITE;
872132451Sroberto
873132451Sroberto	bufobj_wref(bp->b_bufobj);
874132451Sroberto	vfs_busy_pages(bp, 1);
875132451Sroberto
876132451Sroberto	/*
877132451Sroberto	 * Normal bwrites pipeline writes
878132451Sroberto	 */
879132451Sroberto	bp->b_runningbufspace = bp->b_bufsize;
880132451Sroberto	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
881132451Sroberto
882132451Sroberto	if (!TD_IS_IDLETHREAD(curthread))
883132451Sroberto		curthread->td_ru.ru_oublock++;
884132451Sroberto	if (oldflags & B_ASYNC)
885132451Sroberto		BUF_KERNPROC(bp);
886132451Sroberto	bp->b_iooffset = dbtob(bp->b_blkno);
887132451Sroberto	bstrategy(bp);
888132451Sroberto
889132451Sroberto	if ((oldflags & B_ASYNC) == 0) {
890132451Sroberto		int rtval = bufwait(bp);
891132451Sroberto		brelse(bp);
892132451Sroberto		return (rtval);
893132451Sroberto	} else {
894132451Sroberto		/*
895132451Sroberto		 * don't allow the async write to saturate the I/O
896132451Sroberto		 * system.  We will not deadlock here because
897132451Sroberto		 * we are blocking waiting for I/O that is already in-progress
898132451Sroberto		 * to complete. We do not block here if it is the update
899132451Sroberto		 * or syncer daemon trying to clean up as that can lead
900132451Sroberto		 * to deadlock.
901132451Sroberto		 */
902132451Sroberto		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
903132451Sroberto			waitrunningbufspace();
904132451Sroberto	}
905132451Sroberto
906132451Sroberto	return (0);
907132451Sroberto}
908132451Sroberto
909132451Srobertovoid
910132451Srobertobufbdflush(struct bufobj *bo, struct buf *bp)
911132451Sroberto{
912132451Sroberto	struct buf *nbp;
913132451Sroberto
914132451Sroberto	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
915132451Sroberto		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
916132451Sroberto		altbufferflushes++;
917132451Sroberto	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
918132451Sroberto		BO_LOCK(bo);
919132451Sroberto		/*
920132451Sroberto		 * Try to find a buffer to flush.
921132451Sroberto		 */
922132451Sroberto		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
923132451Sroberto			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
924132451Sroberto			    BUF_LOCK(nbp,
925132451Sroberto				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
926132451Sroberto				continue;
927132451Sroberto			if (bp == nbp)
928132451Sroberto				panic("bdwrite: found ourselves");
929132451Sroberto			BO_UNLOCK(bo);
930132451Sroberto			/* Don't countdeps with the bo lock held. */
931132451Sroberto			if (buf_countdeps(nbp, 0)) {
932132451Sroberto				BO_LOCK(bo);
933132451Sroberto				BUF_UNLOCK(nbp);
934132451Sroberto				continue;
935132451Sroberto			}
936132451Sroberto			if (nbp->b_flags & B_CLUSTEROK) {
937132451Sroberto				vfs_bio_awrite(nbp);
938132451Sroberto			} else {
939132451Sroberto				bremfree(nbp);
940132451Sroberto				bawrite(nbp);
941132451Sroberto			}
942132451Sroberto			dirtybufferflushes++;
943132451Sroberto			break;
944132451Sroberto		}
945132451Sroberto		if (nbp == NULL)
946132451Sroberto			BO_UNLOCK(bo);
947132451Sroberto	}
948132451Sroberto}
949132451Sroberto
950132451Sroberto/*
951132451Sroberto * Delayed write. (Buffer is marked dirty).  Do not bother writing
952132451Sroberto * anything if the buffer is marked invalid.
953132451Sroberto *
954132451Sroberto * Note that since the buffer must be completely valid, we can safely
955132451Sroberto * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
956132451Sroberto * biodone() in order to prevent getblk from writing the buffer
957276158Sdes * out synchronously.
958132451Sroberto */
959132451Srobertovoid
960132451Srobertobdwrite(struct buf *bp)
961132451Sroberto{
962132451Sroberto	struct thread *td = curthread;
963132451Sroberto	struct vnode *vp;
964132451Sroberto	struct bufobj *bo;
965132451Sroberto
966132451Sroberto	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
967132451Sroberto	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
968132451Sroberto	BUF_ASSERT_HELD(bp);
969132451Sroberto
970132451Sroberto	if (bp->b_flags & B_INVAL) {
971132451Sroberto		brelse(bp);
972132451Sroberto		return;
973132451Sroberto	}
974132451Sroberto
975132451Sroberto	/*
976132451Sroberto	 * If we have too many dirty buffers, don't create any more.
977132451Sroberto	 * If we are wildly over our limit, then force a complete
978132451Sroberto	 * cleanup. Otherwise, just keep the situation from getting
979132451Sroberto	 * out of control. Note that we have to avoid a recursive
980132451Sroberto	 * disaster and not try to clean up after our own cleanup!
981132451Sroberto	 */
982132451Sroberto	vp = bp->b_vp;
983132451Sroberto	bo = bp->b_bufobj;
984132451Sroberto	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
985132451Sroberto		td->td_pflags |= TDP_INBDFLUSH;
986132451Sroberto		BO_BDFLUSH(bo, bp);
987132451Sroberto		td->td_pflags &= ~TDP_INBDFLUSH;
988132451Sroberto	} else
989132451Sroberto		recursiveflushes++;
990132451Sroberto
991132451Sroberto	bdirty(bp);
992132451Sroberto	/*
993132451Sroberto	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
994132451Sroberto	 * true even of NFS now.
995132451Sroberto	 */
996132451Sroberto	bp->b_flags |= B_CACHE;
997132451Sroberto
998132451Sroberto	/*
999132451Sroberto	 * This bmap keeps the system from needing to do the bmap later,
1000132451Sroberto	 * perhaps when the system is attempting to do a sync.  Since it
1001132451Sroberto	 * is likely that the indirect block -- or whatever other datastructure
1002132451Sroberto	 * that the filesystem needs is still in memory now, it is a good
1003132451Sroberto	 * thing to do this.  Note also, that if the pageout daemon is
1004132451Sroberto	 * requesting a sync -- there might not be enough memory to do
1005132451Sroberto	 * the bmap then...  So, this is important to do.
1006132451Sroberto	 */
1007132451Sroberto	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1008132451Sroberto		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1009132451Sroberto	}
1010132451Sroberto
1011132451Sroberto	/*
1012132451Sroberto	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1013132451Sroberto	 */
1014132451Sroberto	vfs_setdirty(bp);
1015132451Sroberto
1016132451Sroberto	/*
1017132451Sroberto	 * We need to do this here to satisfy the vnode_pager and the
1018132451Sroberto	 * pageout daemon, so that it thinks that the pages have been
1019132451Sroberto	 * "cleaned".  Note that since the pages are in a delayed write
1020132451Sroberto	 * buffer -- the VFS layer "will" see that the pages get written
1021132451Sroberto	 * out on the next sync, or perhaps the cluster will be completed.
1022132451Sroberto	 */
1023132451Sroberto	vfs_clean_pages(bp);
1024132451Sroberto	bqrelse(bp);
1025132451Sroberto
1026132451Sroberto	/*
1027132451Sroberto	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1028132451Sroberto	 * buffers (midpoint between our recovery point and our stall
1029132451Sroberto	 * point).
1030132451Sroberto	 */
1031132451Sroberto	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1032132451Sroberto
1033132451Sroberto	/*
1034132451Sroberto	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1035132451Sroberto	 * due to the softdep code.
1036132451Sroberto	 */
1037132451Sroberto}
1038132451Sroberto
1039132451Sroberto/*
1040132451Sroberto *	bdirty:
1041132451Sroberto *
1042132451Sroberto *	Turn buffer into delayed write request.  We must clear BIO_READ and
1043132451Sroberto *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1044132451Sroberto *	itself to properly update it in the dirty/clean lists.  We mark it
1045132451Sroberto *	B_DONE to ensure that any asynchronization of the buffer properly
1046132451Sroberto *	clears B_DONE ( else a panic will occur later ).
1047132451Sroberto *
1048132451Sroberto *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1049132451Sroberto *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1050132451Sroberto *	should only be called if the buffer is known-good.
1051132451Sroberto *
1052132451Sroberto *	Since the buffer is not on a queue, we do not update the numfreebuffers
1053132451Sroberto *	count.
1054132451Sroberto *
1055132451Sroberto *	The buffer must be on QUEUE_NONE.
1056132451Sroberto */
1057132451Srobertovoid
1058132451Srobertobdirty(struct buf *bp)
1059132451Sroberto{
1060132451Sroberto
1061132451Sroberto	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1062132451Sroberto	    bp, bp->b_vp, bp->b_flags);
1063132451Sroberto	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1064132451Sroberto	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1065132451Sroberto	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1066132451Sroberto	BUF_ASSERT_HELD(bp);
1067132451Sroberto	bp->b_flags &= ~(B_RELBUF);
1068132451Sroberto	bp->b_iocmd = BIO_WRITE;
1069132451Sroberto
1070132451Sroberto	if ((bp->b_flags & B_DELWRI) == 0) {
1071132451Sroberto		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1072132451Sroberto		reassignbuf(bp);
1073132451Sroberto		atomic_add_int(&numdirtybuffers, 1);
1074132451Sroberto		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1075132451Sroberto	}
1076132451Sroberto}
1077132451Sroberto
1078132451Sroberto/*
1079132451Sroberto *	bundirty:
1080132451Sroberto *
1081132451Sroberto *	Clear B_DELWRI for buffer.
1082132451Sroberto *
1083132451Sroberto *	Since the buffer is not on a queue, we do not update the numfreebuffers
1084132451Sroberto *	count.
1085132451Sroberto *
1086132451Sroberto *	The buffer must be on QUEUE_NONE.
1087132451Sroberto */
1088132451Sroberto
1089132451Srobertovoid
1090132451Srobertobundirty(struct buf *bp)
1091132451Sroberto{
1092132451Sroberto
1093132451Sroberto	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1094132451Sroberto	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1095132451Sroberto	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1096132451Sroberto	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1097132451Sroberto	BUF_ASSERT_HELD(bp);
1098132451Sroberto
1099132451Sroberto	if (bp->b_flags & B_DELWRI) {
1100132451Sroberto		bp->b_flags &= ~B_DELWRI;
1101132451Sroberto		reassignbuf(bp);
1102132451Sroberto		atomic_subtract_int(&numdirtybuffers, 1);
1103132451Sroberto		numdirtywakeup(lodirtybuffers);
1104132451Sroberto	}
1105132451Sroberto	/*
1106132451Sroberto	 * Since it is now being written, we can clear its deferred write flag.
1107132451Sroberto	 */
1108132451Sroberto	bp->b_flags &= ~B_DEFERRED;
1109132451Sroberto}
1110132451Sroberto
1111132451Sroberto/*
1112132451Sroberto *	bawrite:
1113132451Sroberto *
1114132451Sroberto *	Asynchronous write.  Start output on a buffer, but do not wait for
1115132451Sroberto *	it to complete.  The buffer is released when the output completes.
1116132451Sroberto *
1117132451Sroberto *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1118132451Sroberto *	B_INVAL buffers.  Not us.
1119132451Sroberto */
1120132451Srobertovoid
1121132451Srobertobawrite(struct buf *bp)
1122132451Sroberto{
1123132451Sroberto
1124132451Sroberto	bp->b_flags |= B_ASYNC;
1125132451Sroberto	(void) bwrite(bp);
1126132451Sroberto}
1127132451Sroberto
1128132451Sroberto/*
1129132451Sroberto *	bwillwrite:
1130132451Sroberto *
1131132451Sroberto *	Called prior to the locking of any vnodes when we are expecting to
1132132451Sroberto *	write.  We do not want to starve the buffer cache with too many
1133132451Sroberto *	dirty buffers so we block here.  By blocking prior to the locking
1134132451Sroberto *	of any vnodes we attempt to avoid the situation where a locked vnode
1135132451Sroberto *	prevents the various system daemons from flushing related buffers.
1136132451Sroberto */
1137132451Sroberto
1138132451Srobertovoid
1139132451Srobertobwillwrite(void)
1140132451Sroberto{
1141132451Sroberto
1142132451Sroberto	if (numdirtybuffers >= hidirtybuffers) {
1143132451Sroberto		mtx_lock(&nblock);
1144132451Sroberto		while (numdirtybuffers >= hidirtybuffers) {
1145132451Sroberto			bd_wakeup(1);
1146132451Sroberto			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1147132451Sroberto			msleep(&needsbuffer, &nblock,
1148132451Sroberto			    (PRIBIO + 4), "flswai", 0);
1149132451Sroberto		}
1150132451Sroberto		mtx_unlock(&nblock);
1151132451Sroberto	}
1152132451Sroberto}
1153132451Sroberto
1154132451Sroberto/*
1155132451Sroberto * Return true if we have too many dirty buffers.
1156132451Sroberto */
1157132451Srobertoint
1158132451Srobertobuf_dirty_count_severe(void)
1159132451Sroberto{
1160132451Sroberto
1161132451Sroberto	return(numdirtybuffers >= hidirtybuffers);
1162132451Sroberto}
1163132451Sroberto
1164132451Srobertostatic __noinline int
1165132451Srobertobuf_vm_page_count_severe(void)
1166132451Sroberto{
1167132451Sroberto
1168132451Sroberto	KFAIL_POINT_CODE(DEBUG_FP, buf_pressure, return 1);
1169132451Sroberto
1170132451Sroberto	return vm_page_count_severe();
1171132451Sroberto}
1172132451Sroberto
1173132451Sroberto/*
1174132451Sroberto *	brelse:
1175132451Sroberto *
1176132451Sroberto *	Release a busy buffer and, if requested, free its resources.  The
1177132451Sroberto *	buffer will be stashed in the appropriate bufqueue[] allowing it
1178132451Sroberto *	to be accessed later as a cache entity or reused for other purposes.
1179132451Sroberto */
1180132451Srobertovoid
1181132451Srobertobrelse(struct buf *bp)
1182132451Sroberto{
1183132451Sroberto	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1184132536Sroberto	    bp, bp->b_vp, bp->b_flags);
1185132451Sroberto	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1186132451Sroberto	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1187132451Sroberto
1188132451Sroberto	if (bp->b_flags & B_MANAGED) {
1189132451Sroberto		bqrelse(bp);
1190132451Sroberto		return;
1191132451Sroberto	}
1192132451Sroberto
1193132451Sroberto	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1194132451Sroberto	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1195132451Sroberto		/*
1196132451Sroberto		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1197132451Sroberto		 * pages from being scrapped.  If the error is anything
1198132451Sroberto		 * other than an I/O error (EIO), assume that retrying
1199132451Sroberto		 * is futile.
1200132451Sroberto		 */
1201132451Sroberto		bp->b_ioflags &= ~BIO_ERROR;
1202132451Sroberto		bdirty(bp);
1203132451Sroberto	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1204132451Sroberto	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1205132451Sroberto		/*
1206132451Sroberto		 * Either a failed I/O or we were asked to free or not
1207132451Sroberto		 * cache the buffer.
1208132451Sroberto		 */
1209132451Sroberto		bp->b_flags |= B_INVAL;
1210132451Sroberto		if (!LIST_EMPTY(&bp->b_dep))
1211132451Sroberto			buf_deallocate(bp);
1212132451Sroberto		if (bp->b_flags & B_DELWRI) {
1213132451Sroberto			atomic_subtract_int(&numdirtybuffers, 1);
1214132451Sroberto			numdirtywakeup(lodirtybuffers);
1215132451Sroberto		}
1216132451Sroberto		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1217132451Sroberto		if ((bp->b_flags & B_VMIO) == 0) {
1218132451Sroberto			if (bp->b_bufsize)
1219132451Sroberto				allocbuf(bp, 0);
1220132451Sroberto			if (bp->b_vp)
1221132451Sroberto				brelvp(bp);
1222132451Sroberto		}
1223132536Sroberto	}
1224132451Sroberto
1225132451Sroberto	/*
1226132451Sroberto	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1227132451Sroberto	 * is called with B_DELWRI set, the underlying pages may wind up
1228132451Sroberto	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1229132451Sroberto	 * because pages associated with a B_DELWRI bp are marked clean.
1230132451Sroberto	 *
1231132451Sroberto	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1232132451Sroberto	 * if B_DELWRI is set.
1233132451Sroberto	 *
1234132451Sroberto	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1235132451Sroberto	 * on pages to return pages to the VM page queues.
1236132451Sroberto	 */
1237132451Sroberto	if (bp->b_flags & B_DELWRI)
1238132451Sroberto		bp->b_flags &= ~B_RELBUF;
1239132451Sroberto	else if (buf_vm_page_count_severe()) {
1240132451Sroberto		/*
1241132451Sroberto		 * The locking of the BO_LOCK is not necessary since
1242132451Sroberto		 * BKGRDINPROG cannot be set while we hold the buf
1243132451Sroberto		 * lock, it can only be cleared if it is already
1244132451Sroberto		 * pending.
1245132451Sroberto		 */
1246132451Sroberto		if (bp->b_vp) {
1247132451Sroberto			if (!(bp->b_vflags & BV_BKGRDINPROG))
1248132451Sroberto				bp->b_flags |= B_RELBUF;
1249132451Sroberto		} else
1250132451Sroberto			bp->b_flags |= B_RELBUF;
1251132451Sroberto	}
1252132451Sroberto
1253132451Sroberto	/*
1254132451Sroberto	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1255132451Sroberto	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1256132451Sroberto	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1257132451Sroberto	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1258132451Sroberto	 *
1259132451Sroberto	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1260132451Sroberto	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1261132451Sroberto	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1262132451Sroberto	 *
1263132451Sroberto	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1264132451Sroberto	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1265132451Sroberto	 * the commit state and we cannot afford to lose the buffer. If the
1266132451Sroberto	 * buffer has a background write in progress, we need to keep it
1267132451Sroberto	 * around to prevent it from being reconstituted and starting a second
1268132451Sroberto	 * background write.
1269132451Sroberto	 */
1270132451Sroberto	if ((bp->b_flags & B_VMIO)
1271132451Sroberto	    && !(bp->b_vp->v_mount != NULL &&
1272132451Sroberto		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1273132451Sroberto		 !vn_isdisk(bp->b_vp, NULL) &&
1274132451Sroberto		 (bp->b_flags & B_DELWRI))
1275132451Sroberto	    ) {
1276132451Sroberto
1277132451Sroberto		int i, j, resid;
1278132451Sroberto		vm_page_t m;
1279132451Sroberto		off_t foff;
1280132451Sroberto		vm_pindex_t poff;
1281132451Sroberto		vm_object_t obj;
1282132451Sroberto
1283132451Sroberto		obj = bp->b_bufobj->bo_object;
1284132451Sroberto
1285132451Sroberto		/*
1286132451Sroberto		 * Get the base offset and length of the buffer.  Note that
1287132451Sroberto		 * in the VMIO case if the buffer block size is not
1288132451Sroberto		 * page-aligned then b_data pointer may not be page-aligned.
1289132451Sroberto		 * But our b_pages[] array *IS* page aligned.
1290132451Sroberto		 *
1291132451Sroberto		 * block sizes less then DEV_BSIZE (usually 512) are not
1292132451Sroberto		 * supported due to the page granularity bits (m->valid,
1293132451Sroberto		 * m->dirty, etc...).
1294132451Sroberto		 *
1295132451Sroberto		 * See man buf(9) for more information
1296132451Sroberto		 */
1297132451Sroberto		resid = bp->b_bufsize;
1298132451Sroberto		foff = bp->b_offset;
1299132451Sroberto		VM_OBJECT_LOCK(obj);
1300132451Sroberto		for (i = 0; i < bp->b_npages; i++) {
1301132451Sroberto			int had_bogus = 0;
1302132451Sroberto
1303132451Sroberto			m = bp->b_pages[i];
1304132451Sroberto
1305132451Sroberto			/*
1306132451Sroberto			 * If we hit a bogus page, fixup *all* the bogus pages
1307132451Sroberto			 * now.
1308132451Sroberto			 */
1309132451Sroberto			if (m == bogus_page) {
1310132451Sroberto				poff = OFF_TO_IDX(bp->b_offset);
1311132451Sroberto				had_bogus = 1;
1312132451Sroberto
1313132451Sroberto				for (j = i; j < bp->b_npages; j++) {
1314132451Sroberto					vm_page_t mtmp;
1315132451Sroberto					mtmp = bp->b_pages[j];
1316132451Sroberto					if (mtmp == bogus_page) {
1317132451Sroberto						mtmp = vm_page_lookup(obj, poff + j);
1318132451Sroberto						if (!mtmp) {
1319132451Sroberto							panic("brelse: page missing\n");
1320132451Sroberto						}
1321132451Sroberto						bp->b_pages[j] = mtmp;
1322132451Sroberto					}
1323132451Sroberto				}
1324132451Sroberto
1325132451Sroberto				if ((bp->b_flags & B_INVAL) == 0) {
1326132451Sroberto					pmap_qenter(
1327132451Sroberto					    trunc_page((vm_offset_t)bp->b_data),
1328132451Sroberto					    bp->b_pages, bp->b_npages);
1329132451Sroberto				}
1330132451Sroberto				m = bp->b_pages[i];
1331132451Sroberto			}
1332132451Sroberto			if ((bp->b_flags & B_NOCACHE) ||
1333132451Sroberto			    (bp->b_ioflags & BIO_ERROR)) {
1334132451Sroberto				int poffset = foff & PAGE_MASK;
1335132451Sroberto				int presid = resid > (PAGE_SIZE - poffset) ?
1336132451Sroberto					(PAGE_SIZE - poffset) : resid;
1337132451Sroberto
1338132451Sroberto				KASSERT(presid >= 0, ("brelse: extra page"));
1339132451Sroberto				vm_page_lock_queues();
1340132451Sroberto				vm_page_set_invalid(m, poffset, presid);
1341132451Sroberto				vm_page_unlock_queues();
1342132451Sroberto				if (had_bogus)
1343132451Sroberto					printf("avoided corruption bug in bogus_page/brelse code\n");
1344132451Sroberto			}
1345132451Sroberto			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1346132451Sroberto			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1347132451Sroberto		}
1348132451Sroberto		VM_OBJECT_UNLOCK(obj);
1349132451Sroberto		if (bp->b_flags & (B_INVAL | B_RELBUF))
1350132451Sroberto			vfs_vmio_release(bp);
1351132451Sroberto
1352132451Sroberto	} else if (bp->b_flags & B_VMIO) {
1353132451Sroberto
1354132451Sroberto		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1355132451Sroberto			vfs_vmio_release(bp);
1356132451Sroberto		}
1357132451Sroberto
1358132451Sroberto	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1359132451Sroberto		if (bp->b_bufsize != 0)
1360132451Sroberto			allocbuf(bp, 0);
1361132451Sroberto		if (bp->b_vp != NULL)
1362132451Sroberto			brelvp(bp);
1363132451Sroberto	}
1364132451Sroberto
1365132451Sroberto	if (BUF_LOCKRECURSED(bp)) {
1366132451Sroberto		/* do not release to free list */
1367132451Sroberto		BUF_UNLOCK(bp);
1368132451Sroberto		return;
1369132451Sroberto	}
1370132451Sroberto
1371132451Sroberto	/* enqueue */
1372132451Sroberto	mtx_lock(&bqlock);
1373132451Sroberto	/* Handle delayed bremfree() processing. */
1374132451Sroberto	if (bp->b_flags & B_REMFREE)
1375132451Sroberto		bremfreel(bp);
1376132451Sroberto	if (bp->b_qindex != QUEUE_NONE)
1377132451Sroberto		panic("brelse: free buffer onto another queue???");
1378132451Sroberto
1379132451Sroberto	/*
1380132451Sroberto	 * If the buffer has junk contents signal it and eventually
1381132451Sroberto	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1382132451Sroberto	 * doesn't find it.
1383132451Sroberto	 */
1384132451Sroberto	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1385132451Sroberto	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1386132451Sroberto		bp->b_flags |= B_INVAL;
1387132451Sroberto	if (bp->b_flags & B_INVAL) {
1388132451Sroberto		if (bp->b_flags & B_DELWRI)
1389132451Sroberto			bundirty(bp);
1390132451Sroberto		if (bp->b_vp)
1391132451Sroberto			brelvp(bp);
1392132451Sroberto	}
1393132451Sroberto
1394132451Sroberto	/* buffers with no memory */
1395132451Sroberto	if (bp->b_bufsize == 0) {
1396132451Sroberto		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1397132451Sroberto		if (bp->b_vflags & BV_BKGRDINPROG)
1398132451Sroberto			panic("losing buffer 1");
1399132451Sroberto		if (bp->b_kvasize) {
1400132451Sroberto			bp->b_qindex = QUEUE_EMPTYKVA;
1401132451Sroberto		} else {
1402132451Sroberto			bp->b_qindex = QUEUE_EMPTY;
1403132451Sroberto		}
1404132451Sroberto		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1405132451Sroberto	/* buffers with junk contents */
1406132451Sroberto	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1407132451Sroberto	    (bp->b_ioflags & BIO_ERROR)) {
1408132451Sroberto		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1409132451Sroberto		if (bp->b_vflags & BV_BKGRDINPROG)
1410132451Sroberto			panic("losing buffer 2");
1411132451Sroberto		bp->b_qindex = QUEUE_CLEAN;
1412132451Sroberto		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1413132451Sroberto	/* remaining buffers */
1414132451Sroberto	} else {
1415132451Sroberto		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1416132451Sroberto		    (B_DELWRI|B_NEEDSGIANT))
1417132451Sroberto			bp->b_qindex = QUEUE_DIRTY_GIANT;
1418132451Sroberto		else if (bp->b_flags & B_DELWRI)
1419132451Sroberto			bp->b_qindex = QUEUE_DIRTY;
1420132451Sroberto		else
1421132451Sroberto			bp->b_qindex = QUEUE_CLEAN;
1422132451Sroberto		if (bp->b_flags & B_AGE)
1423132451Sroberto			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1424132451Sroberto		else
1425132451Sroberto			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1426132451Sroberto	}
1427132451Sroberto	mtx_unlock(&bqlock);
1428132451Sroberto
1429132451Sroberto	/*
1430132451Sroberto	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1431132451Sroberto	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1432132451Sroberto	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1433132451Sroberto	 * if B_INVAL is set ).
1434132451Sroberto	 */
1435132451Sroberto
1436132451Sroberto	if (!(bp->b_flags & B_DELWRI))
1437132451Sroberto		bufcountwakeup();
1438132451Sroberto
1439132451Sroberto	/*
1440132451Sroberto	 * Something we can maybe free or reuse
1441132451Sroberto	 */
1442132451Sroberto	if (bp->b_bufsize || bp->b_kvasize)
1443132451Sroberto		bufspacewakeup();
1444132451Sroberto
1445132451Sroberto	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1446132451Sroberto	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1447132451Sroberto		panic("brelse: not dirty");
1448132451Sroberto	/* unlock */
1449132451Sroberto	BUF_UNLOCK(bp);
1450132451Sroberto}
1451132451Sroberto
1452132451Sroberto/*
1453132451Sroberto * Release a buffer back to the appropriate queue but do not try to free
1454132451Sroberto * it.  The buffer is expected to be used again soon.
1455132451Sroberto *
1456132451Sroberto * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1457132451Sroberto * biodone() to requeue an async I/O on completion.  It is also used when
1458132451Sroberto * known good buffers need to be requeued but we think we may need the data
1459132451Sroberto * again soon.
1460132451Sroberto *
1461132451Sroberto * XXX we should be able to leave the B_RELBUF hint set on completion.
1462132451Sroberto */
1463132451Srobertovoid
1464132451Srobertobqrelse(struct buf *bp)
1465132451Sroberto{
1466132451Sroberto	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1467132451Sroberto	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1468132451Sroberto	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1469132451Sroberto
1470132451Sroberto	if (BUF_LOCKRECURSED(bp)) {
1471132451Sroberto		/* do not release to free list */
1472132451Sroberto		BUF_UNLOCK(bp);
1473132451Sroberto		return;
1474132451Sroberto	}
1475132451Sroberto
1476132451Sroberto	if (bp->b_flags & B_MANAGED) {
1477132451Sroberto		if (bp->b_flags & B_REMFREE) {
1478132451Sroberto			mtx_lock(&bqlock);
1479132451Sroberto			bremfreel(bp);
1480132451Sroberto			mtx_unlock(&bqlock);
1481132451Sroberto		}
1482132451Sroberto		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1483132451Sroberto		BUF_UNLOCK(bp);
1484132451Sroberto		return;
1485132451Sroberto	}
1486132451Sroberto
1487132451Sroberto	mtx_lock(&bqlock);
1488132451Sroberto	/* Handle delayed bremfree() processing. */
1489132451Sroberto	if (bp->b_flags & B_REMFREE)
1490132451Sroberto		bremfreel(bp);
1491132451Sroberto	if (bp->b_qindex != QUEUE_NONE)
1492132451Sroberto		panic("bqrelse: free buffer onto another queue???");
1493132451Sroberto	/* buffers with stale but valid contents */
1494132451Sroberto	if (bp->b_flags & B_DELWRI) {
1495132451Sroberto		if (bp->b_flags & B_NEEDSGIANT)
1496132451Sroberto			bp->b_qindex = QUEUE_DIRTY_GIANT;
1497132451Sroberto		else
1498132451Sroberto			bp->b_qindex = QUEUE_DIRTY;
1499132451Sroberto		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1500132451Sroberto	} else {
1501132451Sroberto		/*
1502132451Sroberto		 * The locking of the BO_LOCK for checking of the
1503132451Sroberto		 * BV_BKGRDINPROG is not necessary since the
1504132451Sroberto		 * BV_BKGRDINPROG cannot be set while we hold the buf
1505132451Sroberto		 * lock, it can only be cleared if it is already
1506132451Sroberto		 * pending.
1507132451Sroberto		 */
1508132451Sroberto		if (!buf_vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1509132451Sroberto			bp->b_qindex = QUEUE_CLEAN;
1510132451Sroberto			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1511132451Sroberto			    b_freelist);
1512132451Sroberto		} else {
1513132451Sroberto			/*
1514132451Sroberto			 * We are too low on memory, we have to try to free
1515132451Sroberto			 * the buffer (most importantly: the wired pages
1516132451Sroberto			 * making up its backing store) *now*.
1517132451Sroberto			 */
1518132451Sroberto			mtx_unlock(&bqlock);
1519132451Sroberto			brelse(bp);
1520132451Sroberto			return;
1521132451Sroberto		}
1522132451Sroberto	}
1523132451Sroberto	mtx_unlock(&bqlock);
1524132451Sroberto
1525132451Sroberto	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1526132451Sroberto		bufcountwakeup();
1527132451Sroberto
1528132536Sroberto	/*
1529132451Sroberto	 * Something we can maybe free or reuse.
1530132451Sroberto	 */
1531132451Sroberto	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1532132451Sroberto		bufspacewakeup();
1533132451Sroberto
1534132451Sroberto	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1535132451Sroberto	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1536132451Sroberto		panic("bqrelse: not dirty");
1537132451Sroberto	/* unlock */
1538132451Sroberto	BUF_UNLOCK(bp);
1539132451Sroberto}
1540132451Sroberto
1541132451Sroberto/* Give pages used by the bp back to the VM system (where possible) */
1542132451Srobertostatic void
1543132451Srobertovfs_vmio_release(struct buf *bp)
1544132451Sroberto{
1545132451Sroberto	int i;
1546132451Sroberto	vm_page_t m;
1547132451Sroberto
1548132451Sroberto	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1549132451Sroberto	vm_page_lock_queues();
1550132451Sroberto	for (i = 0; i < bp->b_npages; i++) {
1551132451Sroberto		m = bp->b_pages[i];
1552132451Sroberto		bp->b_pages[i] = NULL;
1553132451Sroberto		/*
1554132451Sroberto		 * In order to keep page LRU ordering consistent, put
1555132451Sroberto		 * everything on the inactive queue.
1556132451Sroberto		 */
1557132451Sroberto		vm_page_unwire(m, 0);
1558132451Sroberto		/*
1559132451Sroberto		 * We don't mess with busy pages, it is
1560132451Sroberto		 * the responsibility of the process that
1561132536Sroberto		 * busied the pages to deal with them.
1562132536Sroberto		 */
1563132536Sroberto		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1564132451Sroberto			continue;
1565132451Sroberto
1566132451Sroberto		if (m->wire_count == 0) {
1567132451Sroberto			/*
1568132451Sroberto			 * Might as well free the page if we can and it has
1569132451Sroberto			 * no valid data.  We also free the page if the
1570132536Sroberto			 * buffer was used for direct I/O
1571132451Sroberto			 */
1572132451Sroberto			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1573132451Sroberto			    m->hold_count == 0) {
1574132451Sroberto				vm_page_free(m);
1575132451Sroberto			} else if (bp->b_flags & B_DIRECT) {
1576132451Sroberto				vm_page_try_to_free(m);
1577132451Sroberto			} else if (buf_vm_page_count_severe()) {
1578132451Sroberto				vm_page_try_to_cache(m);
1579132451Sroberto			}
1580132451Sroberto		}
1581132451Sroberto	}
1582132451Sroberto	vm_page_unlock_queues();
1583132536Sroberto	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1584132451Sroberto	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1585132451Sroberto
1586132451Sroberto	if (bp->b_bufsize) {
1587132451Sroberto		bufspacewakeup();
1588132451Sroberto		bp->b_bufsize = 0;
1589132451Sroberto	}
1590132451Sroberto	bp->b_npages = 0;
1591132451Sroberto	bp->b_flags &= ~B_VMIO;
1592132451Sroberto	if (bp->b_vp)
1593132451Sroberto		brelvp(bp);
1594132451Sroberto}
1595132451Sroberto
1596132451Sroberto/*
1597132451Sroberto * Check to see if a block at a particular lbn is available for a clustered
1598132451Sroberto * write.
1599132451Sroberto */
1600132451Srobertostatic int
1601132451Srobertovfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1602132451Sroberto{
1603132451Sroberto	struct buf *bpa;
1604132451Sroberto	int match;
1605132451Sroberto
1606132451Sroberto	match = 0;
1607132451Sroberto
1608132451Sroberto	/* If the buf isn't in core skip it */
1609132451Sroberto	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1610132451Sroberto		return (0);
1611132451Sroberto
1612132451Sroberto	/* If the buf is busy we don't want to wait for it */
1613132451Sroberto	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1614132451Sroberto		return (0);
1615132451Sroberto
1616132451Sroberto	/* Only cluster with valid clusterable delayed write buffers */
1617132451Sroberto	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1618132451Sroberto	    (B_DELWRI | B_CLUSTEROK))
1619132451Sroberto		goto done;
1620132451Sroberto
1621132451Sroberto	if (bpa->b_bufsize != size)
1622132451Sroberto		goto done;
1623132451Sroberto
1624132451Sroberto	/*
1625132451Sroberto	 * Check to see if it is in the expected place on disk and that the
1626132451Sroberto	 * block has been mapped.
1627132451Sroberto	 */
1628132451Sroberto	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1629132451Sroberto		match = 1;
1630132451Srobertodone:
1631132451Sroberto	BUF_UNLOCK(bpa);
1632132451Sroberto	return (match);
1633132451Sroberto}
1634132451Sroberto
1635132451Sroberto/*
1636132451Sroberto *	vfs_bio_awrite:
1637182007Sroberto *
1638182007Sroberto *	Implement clustered async writes for clearing out B_DELWRI buffers.
1639132451Sroberto *	This is much better then the old way of writing only one buffer at
1640132451Sroberto *	a time.  Note that we may not be presented with the buffers in the
1641132451Sroberto *	correct order, so we search for the cluster in both directions.
1642132451Sroberto */
1643132451Srobertoint
1644132451Srobertovfs_bio_awrite(struct buf *bp)
1645132451Sroberto{
1646132451Sroberto	struct bufobj *bo;
1647132451Sroberto	int i;
1648132451Sroberto	int j;
1649132451Sroberto	daddr_t lblkno = bp->b_lblkno;
1650132451Sroberto	struct vnode *vp = bp->b_vp;
1651132451Sroberto	int ncl;
1652132451Sroberto	int nwritten;
1653132451Sroberto	int size;
1654132451Sroberto	int maxcl;
1655132451Sroberto
1656132451Sroberto	bo = &vp->v_bufobj;
1657132451Sroberto	/*
1658132451Sroberto	 * right now we support clustered writing only to regular files.  If
1659132451Sroberto	 * we find a clusterable block we could be in the middle of a cluster
1660132451Sroberto	 * rather then at the beginning.
1661132451Sroberto	 */
1662132451Sroberto	if ((vp->v_type == VREG) &&
1663132451Sroberto	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1664132451Sroberto	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1665132451Sroberto
1666132451Sroberto		size = vp->v_mount->mnt_stat.f_iosize;
1667132451Sroberto		maxcl = MAXPHYS / size;
1668132451Sroberto
1669132451Sroberto		BO_LOCK(bo);
1670132451Sroberto		for (i = 1; i < maxcl; i++)
1671132451Sroberto			if (vfs_bio_clcheck(vp, size, lblkno + i,
1672132451Sroberto			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1673132451Sroberto				break;
1674132451Sroberto
1675132451Sroberto		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1676132451Sroberto			if (vfs_bio_clcheck(vp, size, lblkno - j,
1677132451Sroberto			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1678132451Sroberto				break;
1679132451Sroberto		BO_UNLOCK(bo);
1680132451Sroberto		--j;
1681132451Sroberto		ncl = i + j;
1682132451Sroberto		/*
1683132451Sroberto		 * this is a possible cluster write
1684132451Sroberto		 */
1685132451Sroberto		if (ncl != 1) {
1686132451Sroberto			BUF_UNLOCK(bp);
1687132451Sroberto			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1688132451Sroberto			return nwritten;
1689132451Sroberto		}
1690132451Sroberto	}
1691132451Sroberto	bremfree(bp);
1692132451Sroberto	bp->b_flags |= B_ASYNC;
1693132451Sroberto	/*
1694132451Sroberto	 * default (old) behavior, writing out only one block
1695132451Sroberto	 *
1696132451Sroberto	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1697132451Sroberto	 */
1698132451Sroberto	nwritten = bp->b_bufsize;
1699132451Sroberto	(void) bwrite(bp);
1700132451Sroberto
1701132451Sroberto	return nwritten;
1702132451Sroberto}
1703132451Sroberto
1704132451Sroberto/*
1705132451Sroberto *	getnewbuf:
1706132451Sroberto *
1707132451Sroberto *	Find and initialize a new buffer header, freeing up existing buffers
1708132451Sroberto *	in the bufqueues as necessary.  The new buffer is returned locked.
1709132451Sroberto *
1710132451Sroberto *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1711132451Sroberto *	buffer away, the caller must set B_INVAL prior to calling brelse().
1712132451Sroberto *
1713132451Sroberto *	We block if:
1714132451Sroberto *		We have insufficient buffer headers
1715132451Sroberto *		We have insufficient buffer space
1716132451Sroberto *		buffer_map is too fragmented ( space reservation fails )
1717132451Sroberto *		If we have to flush dirty buffers ( but we try to avoid this )
1718132451Sroberto *
1719132451Sroberto *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1720132451Sroberto *	Instead we ask the buf daemon to do it for us.  We attempt to
1721132451Sroberto *	avoid piecemeal wakeups of the pageout daemon.
1722132451Sroberto */
1723132451Sroberto
1724132451Srobertostatic struct buf *
1725132451Srobertogetnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1726132451Sroberto    int gbflags)
1727132451Sroberto{
1728132451Sroberto	struct thread *td;
1729132451Sroberto	struct buf *bp;
1730132451Sroberto	struct buf *nbp;
1731132451Sroberto	int defrag = 0;
1732132451Sroberto	int nqindex;
1733132451Sroberto	static int flushingbufs;
1734132451Sroberto
1735132451Sroberto	td = curthread;
1736132451Sroberto	/*
1737132451Sroberto	 * We can't afford to block since we might be holding a vnode lock,
1738132451Sroberto	 * which may prevent system daemons from running.  We deal with
1739132451Sroberto	 * low-memory situations by proactively returning memory and running
1740132451Sroberto	 * async I/O rather then sync I/O.
1741132451Sroberto	 */
1742132451Sroberto	atomic_add_int(&getnewbufcalls, 1);
1743132451Sroberto	atomic_subtract_int(&getnewbufrestarts, 1);
1744132451Srobertorestart:
1745132451Sroberto	atomic_add_int(&getnewbufrestarts, 1);
1746132451Sroberto
1747132451Sroberto	/*
1748132451Sroberto	 * Setup for scan.  If we do not have enough free buffers,
1749132451Sroberto	 * we setup a degenerate case that immediately fails.  Note
1750132451Sroberto	 * that if we are specially marked process, we are allowed to
1751132451Sroberto	 * dip into our reserves.
1752132451Sroberto	 *
1753132451Sroberto	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1754132451Sroberto	 *
1755132451Sroberto	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1756132451Sroberto	 * However, there are a number of cases (defragging, reusing, ...)
1757132451Sroberto	 * where we cannot backup.
1758132451Sroberto	 */
1759132451Sroberto	mtx_lock(&bqlock);
1760132451Sroberto	nqindex = QUEUE_EMPTYKVA;
1761132451Sroberto	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1762132451Sroberto
1763132451Sroberto	if (nbp == NULL) {
1764132451Sroberto		/*
1765132451Sroberto		 * If no EMPTYKVA buffers and we are either
1766132451Sroberto		 * defragging or reusing, locate a CLEAN buffer
1767132451Sroberto		 * to free or reuse.  If bufspace useage is low
1768132451Sroberto		 * skip this step so we can allocate a new buffer.
1769132451Sroberto		 */
1770132451Sroberto		if (defrag || bufspace >= lobufspace) {
1771132451Sroberto			nqindex = QUEUE_CLEAN;
1772132451Sroberto			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1773132451Sroberto		}
1774132451Sroberto
1775132451Sroberto		/*
1776132451Sroberto		 * If we could not find or were not allowed to reuse a
1777132451Sroberto		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1778132451Sroberto		 * buffer.  We can only use an EMPTY buffer if allocating
1779132451Sroberto		 * its KVA would not otherwise run us out of buffer space.
1780132451Sroberto		 */
1781132451Sroberto		if (nbp == NULL && defrag == 0 &&
1782132451Sroberto		    bufspace + maxsize < hibufspace) {
1783132451Sroberto			nqindex = QUEUE_EMPTY;
1784132451Sroberto			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1785132451Sroberto		}
1786132451Sroberto	}
1787132451Sroberto
1788132451Sroberto	/*
1789132451Sroberto	 * Run scan, possibly freeing data and/or kva mappings on the fly
1790132451Sroberto	 * depending.
1791132451Sroberto	 */
1792132451Sroberto
1793132451Sroberto	while ((bp = nbp) != NULL) {
1794132451Sroberto		int qindex = nqindex;
1795132451Sroberto
1796132451Sroberto		/*
1797132451Sroberto		 * Calculate next bp ( we can only use it if we do not block
1798132451Sroberto		 * or do other fancy things ).
1799132451Sroberto		 */
1800132451Sroberto		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1801132451Sroberto			switch(qindex) {
1802132451Sroberto			case QUEUE_EMPTY:
1803132451Sroberto				nqindex = QUEUE_EMPTYKVA;
1804132451Sroberto				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1805132451Sroberto					break;
1806132451Sroberto				/* FALLTHROUGH */
1807132451Sroberto			case QUEUE_EMPTYKVA:
1808132451Sroberto				nqindex = QUEUE_CLEAN;
1809132451Sroberto				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1810132451Sroberto					break;
1811132451Sroberto				/* FALLTHROUGH */
1812132451Sroberto			case QUEUE_CLEAN:
1813132451Sroberto				/*
1814132451Sroberto				 * nbp is NULL.
1815132451Sroberto				 */
1816132451Sroberto				break;
1817132451Sroberto			}
1818132451Sroberto		}
1819132451Sroberto		/*
1820132451Sroberto		 * If we are defragging then we need a buffer with
1821132451Sroberto		 * b_kvasize != 0.  XXX this situation should no longer
1822132451Sroberto		 * occur, if defrag is non-zero the buffer's b_kvasize
1823132451Sroberto		 * should also be non-zero at this point.  XXX
1824132451Sroberto		 */
1825132451Sroberto		if (defrag && bp->b_kvasize == 0) {
1826132451Sroberto			printf("Warning: defrag empty buffer %p\n", bp);
1827132451Sroberto			continue;
1828132451Sroberto		}
1829132451Sroberto
1830132451Sroberto		/*
1831132451Sroberto		 * Start freeing the bp.  This is somewhat involved.  nbp
1832132451Sroberto		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1833132451Sroberto		 */
1834132451Sroberto		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1835132451Sroberto			continue;
1836132451Sroberto		if (bp->b_vp) {
1837132451Sroberto			BO_LOCK(bp->b_bufobj);
1838132451Sroberto			if (bp->b_vflags & BV_BKGRDINPROG) {
1839132451Sroberto				BO_UNLOCK(bp->b_bufobj);
1840132451Sroberto				BUF_UNLOCK(bp);
1841132451Sroberto				continue;
1842132451Sroberto			}
1843132451Sroberto			BO_UNLOCK(bp->b_bufobj);
1844132451Sroberto		}
1845132451Sroberto		CTR6(KTR_BUF,
1846132536Sroberto		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1847132451Sroberto		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1848132451Sroberto		    bp->b_kvasize, bp->b_bufsize, qindex);
1849132451Sroberto
1850132451Sroberto		/*
1851132451Sroberto		 * Sanity Checks
1852132451Sroberto		 */
1853132451Sroberto		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1854132451Sroberto
1855132451Sroberto		/*
1856132451Sroberto		 * Note: we no longer distinguish between VMIO and non-VMIO
1857132451Sroberto		 * buffers.
1858132451Sroberto		 */
1859132451Sroberto
1860132451Sroberto		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1861132451Sroberto
1862132451Sroberto		bremfreel(bp);
1863132451Sroberto		mtx_unlock(&bqlock);
1864132451Sroberto
1865132451Sroberto		if (qindex == QUEUE_CLEAN) {
1866132451Sroberto			if (bp->b_flags & B_VMIO) {
1867132451Sroberto				bp->b_flags &= ~B_ASYNC;
1868132451Sroberto				vfs_vmio_release(bp);
1869132451Sroberto			}
1870132451Sroberto			if (bp->b_vp)
1871132451Sroberto				brelvp(bp);
1872132451Sroberto		}
1873132451Sroberto
1874132451Sroberto		/*
1875132451Sroberto		 * NOTE:  nbp is now entirely invalid.  We can only restart
1876132451Sroberto		 * the scan from this point on.
1877132451Sroberto		 *
1878132451Sroberto		 * Get the rest of the buffer freed up.  b_kva* is still
1879132451Sroberto		 * valid after this operation.
1880132451Sroberto		 */
1881132451Sroberto
1882132451Sroberto		if (bp->b_rcred != NOCRED) {
1883132451Sroberto			crfree(bp->b_rcred);
1884132451Sroberto			bp->b_rcred = NOCRED;
1885132451Sroberto		}
1886132451Sroberto		if (bp->b_wcred != NOCRED) {
1887132451Sroberto			crfree(bp->b_wcred);
1888132451Sroberto			bp->b_wcred = NOCRED;
1889132451Sroberto		}
1890132451Sroberto		if (!LIST_EMPTY(&bp->b_dep))
1891			buf_deallocate(bp);
1892		if (bp->b_vflags & BV_BKGRDINPROG)
1893			panic("losing buffer 3");
1894		KASSERT(bp->b_vp == NULL,
1895		    ("bp: %p still has vnode %p.  qindex: %d",
1896		    bp, bp->b_vp, qindex));
1897		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1898		   ("bp: %p still on a buffer list. xflags %X",
1899		    bp, bp->b_xflags));
1900
1901		if (bp->b_bufsize)
1902			allocbuf(bp, 0);
1903
1904		bp->b_flags = 0;
1905		bp->b_ioflags = 0;
1906		bp->b_xflags = 0;
1907		bp->b_vflags = 0;
1908		bp->b_vp = NULL;
1909		bp->b_blkno = bp->b_lblkno = 0;
1910		bp->b_offset = NOOFFSET;
1911		bp->b_iodone = 0;
1912		bp->b_error = 0;
1913		bp->b_resid = 0;
1914		bp->b_bcount = 0;
1915		bp->b_npages = 0;
1916		bp->b_dirtyoff = bp->b_dirtyend = 0;
1917		bp->b_bufobj = NULL;
1918		bp->b_pin_count = 0;
1919		bp->b_fsprivate1 = NULL;
1920		bp->b_fsprivate2 = NULL;
1921		bp->b_fsprivate3 = NULL;
1922
1923		LIST_INIT(&bp->b_dep);
1924
1925		/*
1926		 * If we are defragging then free the buffer.
1927		 */
1928		if (defrag) {
1929			bp->b_flags |= B_INVAL;
1930			bfreekva(bp);
1931			brelse(bp);
1932			defrag = 0;
1933			goto restart;
1934		}
1935
1936		/*
1937		 * Notify any waiters for the buffer lock about
1938		 * identity change by freeing the buffer.
1939		 */
1940		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1941			bp->b_flags |= B_INVAL;
1942			bfreekva(bp);
1943			brelse(bp);
1944			goto restart;
1945		}
1946
1947		/*
1948		 * If we are overcomitted then recover the buffer and its
1949		 * KVM space.  This occurs in rare situations when multiple
1950		 * processes are blocked in getnewbuf() or allocbuf().
1951		 */
1952		if (bufspace >= hibufspace)
1953			flushingbufs = 1;
1954		if (flushingbufs && bp->b_kvasize != 0) {
1955			bp->b_flags |= B_INVAL;
1956			bfreekva(bp);
1957			brelse(bp);
1958			goto restart;
1959		}
1960		if (bufspace < lobufspace)
1961			flushingbufs = 0;
1962		break;
1963	}
1964
1965	/*
1966	 * If we exhausted our list, sleep as appropriate.  We may have to
1967	 * wakeup various daemons and write out some dirty buffers.
1968	 *
1969	 * Generally we are sleeping due to insufficient buffer space.
1970	 */
1971
1972	if (bp == NULL) {
1973		int flags, norunbuf;
1974		char *waitmsg;
1975		int fl;
1976
1977		if (defrag) {
1978			flags = VFS_BIO_NEED_BUFSPACE;
1979			waitmsg = "nbufkv";
1980		} else if (bufspace >= hibufspace) {
1981			waitmsg = "nbufbs";
1982			flags = VFS_BIO_NEED_BUFSPACE;
1983		} else {
1984			waitmsg = "newbuf";
1985			flags = VFS_BIO_NEED_ANY;
1986		}
1987		mtx_lock(&nblock);
1988		needsbuffer |= flags;
1989		mtx_unlock(&nblock);
1990		mtx_unlock(&bqlock);
1991
1992		bd_speedup();	/* heeeelp */
1993		if (gbflags & GB_NOWAIT_BD)
1994			return (NULL);
1995
1996		mtx_lock(&nblock);
1997		while (needsbuffer & flags) {
1998			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
1999				mtx_unlock(&nblock);
2000				/*
2001				 * getblk() is called with a vnode
2002				 * locked, and some majority of the
2003				 * dirty buffers may as well belong to
2004				 * the vnode. Flushing the buffers
2005				 * there would make a progress that
2006				 * cannot be achieved by the
2007				 * buf_daemon, that cannot lock the
2008				 * vnode.
2009				 */
2010				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2011				    (td->td_pflags & TDP_NORUNNINGBUF);
2012				/* play bufdaemon */
2013				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2014				fl = buf_do_flush(vp);
2015				td->td_pflags &= norunbuf;
2016				mtx_lock(&nblock);
2017				if (fl != 0)
2018					continue;
2019				if ((needsbuffer & flags) == 0)
2020					break;
2021			}
2022			if (msleep(&needsbuffer, &nblock,
2023			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2024				mtx_unlock(&nblock);
2025				return (NULL);
2026			}
2027		}
2028		mtx_unlock(&nblock);
2029	} else {
2030		/*
2031		 * We finally have a valid bp.  We aren't quite out of the
2032		 * woods, we still have to reserve kva space.  In order
2033		 * to keep fragmentation sane we only allocate kva in
2034		 * BKVASIZE chunks.
2035		 */
2036		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2037
2038		if (maxsize != bp->b_kvasize) {
2039			vm_offset_t addr = 0;
2040
2041			bfreekva(bp);
2042
2043			vm_map_lock(buffer_map);
2044			if (vm_map_findspace(buffer_map,
2045				vm_map_min(buffer_map), maxsize, &addr)) {
2046				/*
2047				 * Uh oh.  Buffer map is to fragmented.  We
2048				 * must defragment the map.
2049				 */
2050				atomic_add_int(&bufdefragcnt, 1);
2051				vm_map_unlock(buffer_map);
2052				defrag = 1;
2053				bp->b_flags |= B_INVAL;
2054				brelse(bp);
2055				goto restart;
2056			}
2057			if (addr) {
2058				vm_map_insert(buffer_map, NULL, 0,
2059					addr, addr + maxsize,
2060					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2061
2062				bp->b_kvabase = (caddr_t) addr;
2063				bp->b_kvasize = maxsize;
2064				atomic_add_long(&bufspace, bp->b_kvasize);
2065				atomic_add_int(&bufreusecnt, 1);
2066			}
2067			vm_map_unlock(buffer_map);
2068		}
2069		bp->b_saveaddr = bp->b_kvabase;
2070		bp->b_data = bp->b_saveaddr;
2071	}
2072	return(bp);
2073}
2074
2075/*
2076 *	buf_daemon:
2077 *
2078 *	buffer flushing daemon.  Buffers are normally flushed by the
2079 *	update daemon but if it cannot keep up this process starts to
2080 *	take the load in an attempt to prevent getnewbuf() from blocking.
2081 */
2082
2083static struct kproc_desc buf_kp = {
2084	"bufdaemon",
2085	buf_daemon,
2086	&bufdaemonproc
2087};
2088SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2089
2090static int
2091buf_do_flush(struct vnode *vp)
2092{
2093	int flushed;
2094
2095	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2096	/* The list empty check here is slightly racy */
2097	if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2098		mtx_lock(&Giant);
2099		flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
2100		mtx_unlock(&Giant);
2101	}
2102	if (flushed == 0) {
2103		/*
2104		 * Could not find any buffers without rollback
2105		 * dependencies, so just write the first one
2106		 * in the hopes of eventually making progress.
2107		 */
2108		flushbufqueues(vp, QUEUE_DIRTY, 1);
2109		if (!TAILQ_EMPTY(
2110			    &bufqueues[QUEUE_DIRTY_GIANT])) {
2111			mtx_lock(&Giant);
2112			flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
2113			mtx_unlock(&Giant);
2114		}
2115	}
2116	return (flushed);
2117}
2118
2119static void
2120buf_daemon()
2121{
2122
2123	/*
2124	 * This process needs to be suspended prior to shutdown sync.
2125	 */
2126	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2127	    SHUTDOWN_PRI_LAST);
2128
2129	/*
2130	 * This process is allowed to take the buffer cache to the limit
2131	 */
2132	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2133	mtx_lock(&bdlock);
2134	for (;;) {
2135		bd_request = 0;
2136		mtx_unlock(&bdlock);
2137
2138		kproc_suspend_check(bufdaemonproc);
2139
2140		/*
2141		 * Do the flush.  Limit the amount of in-transit I/O we
2142		 * allow to build up, otherwise we would completely saturate
2143		 * the I/O system.  Wakeup any waiting processes before we
2144		 * normally would so they can run in parallel with our drain.
2145		 */
2146		while (numdirtybuffers > lodirtybuffers) {
2147			if (buf_do_flush(NULL) == 0)
2148				break;
2149			uio_yield();
2150		}
2151
2152		/*
2153		 * Only clear bd_request if we have reached our low water
2154		 * mark.  The buf_daemon normally waits 1 second and
2155		 * then incrementally flushes any dirty buffers that have
2156		 * built up, within reason.
2157		 *
2158		 * If we were unable to hit our low water mark and couldn't
2159		 * find any flushable buffers, we sleep half a second.
2160		 * Otherwise we loop immediately.
2161		 */
2162		mtx_lock(&bdlock);
2163		if (numdirtybuffers <= lodirtybuffers) {
2164			/*
2165			 * We reached our low water mark, reset the
2166			 * request and sleep until we are needed again.
2167			 * The sleep is just so the suspend code works.
2168			 */
2169			bd_request = 0;
2170			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2171		} else {
2172			/*
2173			 * We couldn't find any flushable dirty buffers but
2174			 * still have too many dirty buffers, we
2175			 * have to sleep and try again.  (rare)
2176			 */
2177			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2178		}
2179	}
2180}
2181
2182/*
2183 *	flushbufqueues:
2184 *
2185 *	Try to flush a buffer in the dirty queue.  We must be careful to
2186 *	free up B_INVAL buffers instead of write them, which NFS is
2187 *	particularly sensitive to.
2188 */
2189static int flushwithdeps = 0;
2190SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2191    0, "Number of buffers flushed with dependecies that require rollbacks");
2192
2193static int
2194flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2195{
2196	struct buf *sentinel;
2197	struct vnode *vp;
2198	struct mount *mp;
2199	struct buf *bp;
2200	int hasdeps;
2201	int flushed;
2202	int target;
2203
2204	if (lvp == NULL) {
2205		target = numdirtybuffers - lodirtybuffers;
2206		if (flushdeps && target > 2)
2207			target /= 2;
2208	} else
2209		target = flushbufqtarget;
2210	flushed = 0;
2211	bp = NULL;
2212	sentinel = malloc(sizeof(struct buf), M_TEMP, M_WAITOK | M_ZERO);
2213	sentinel->b_qindex = QUEUE_SENTINEL;
2214	mtx_lock(&bqlock);
2215	TAILQ_INSERT_HEAD(&bufqueues[queue], sentinel, b_freelist);
2216	while (flushed != target) {
2217		bp = TAILQ_NEXT(sentinel, b_freelist);
2218		if (bp != NULL) {
2219			TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2220			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, sentinel,
2221			    b_freelist);
2222		} else
2223			break;
2224		/*
2225		 * Skip sentinels inserted by other invocations of the
2226		 * flushbufqueues(), taking care to not reorder them.
2227		 */
2228		if (bp->b_qindex == QUEUE_SENTINEL)
2229			continue;
2230		/*
2231		 * Only flush the buffers that belong to the
2232		 * vnode locked by the curthread.
2233		 */
2234		if (lvp != NULL && bp->b_vp != lvp)
2235			continue;
2236		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2237			continue;
2238		if (bp->b_pin_count > 0) {
2239			BUF_UNLOCK(bp);
2240			continue;
2241		}
2242		BO_LOCK(bp->b_bufobj);
2243		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2244		    (bp->b_flags & B_DELWRI) == 0) {
2245			BO_UNLOCK(bp->b_bufobj);
2246			BUF_UNLOCK(bp);
2247			continue;
2248		}
2249		BO_UNLOCK(bp->b_bufobj);
2250		if (bp->b_flags & B_INVAL) {
2251			bremfreel(bp);
2252			mtx_unlock(&bqlock);
2253			brelse(bp);
2254			flushed++;
2255			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2256			mtx_lock(&bqlock);
2257			continue;
2258		}
2259
2260		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2261			if (flushdeps == 0) {
2262				BUF_UNLOCK(bp);
2263				continue;
2264			}
2265			hasdeps = 1;
2266		} else
2267			hasdeps = 0;
2268		/*
2269		 * We must hold the lock on a vnode before writing
2270		 * one of its buffers. Otherwise we may confuse, or
2271		 * in the case of a snapshot vnode, deadlock the
2272		 * system.
2273		 *
2274		 * The lock order here is the reverse of the normal
2275		 * of vnode followed by buf lock.  This is ok because
2276		 * the NOWAIT will prevent deadlock.
2277		 */
2278		vp = bp->b_vp;
2279		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2280			BUF_UNLOCK(bp);
2281			continue;
2282		}
2283		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2284			mtx_unlock(&bqlock);
2285			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2286			    bp, bp->b_vp, bp->b_flags);
2287			if (curproc == bufdaemonproc)
2288				vfs_bio_awrite(bp);
2289			else {
2290				bremfree(bp);
2291				bwrite(bp);
2292				notbufdflashes++;
2293			}
2294			vn_finished_write(mp);
2295			VOP_UNLOCK(vp, 0);
2296			flushwithdeps += hasdeps;
2297			flushed++;
2298
2299			/*
2300			 * Sleeping on runningbufspace while holding
2301			 * vnode lock leads to deadlock.
2302			 */
2303			if (curproc == bufdaemonproc)
2304				waitrunningbufspace();
2305			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2306			mtx_lock(&bqlock);
2307			continue;
2308		}
2309		vn_finished_write(mp);
2310		BUF_UNLOCK(bp);
2311	}
2312	TAILQ_REMOVE(&bufqueues[queue], sentinel, b_freelist);
2313	mtx_unlock(&bqlock);
2314	free(sentinel, M_TEMP);
2315	return (flushed);
2316}
2317
2318/*
2319 * Check to see if a block is currently memory resident.
2320 */
2321struct buf *
2322incore(struct bufobj *bo, daddr_t blkno)
2323{
2324	struct buf *bp;
2325
2326	BO_LOCK(bo);
2327	bp = gbincore(bo, blkno);
2328	BO_UNLOCK(bo);
2329	return (bp);
2330}
2331
2332/*
2333 * Returns true if no I/O is needed to access the
2334 * associated VM object.  This is like incore except
2335 * it also hunts around in the VM system for the data.
2336 */
2337
2338static int
2339inmem(struct vnode * vp, daddr_t blkno)
2340{
2341	vm_object_t obj;
2342	vm_offset_t toff, tinc, size;
2343	vm_page_t m;
2344	vm_ooffset_t off;
2345
2346	ASSERT_VOP_LOCKED(vp, "inmem");
2347
2348	if (incore(&vp->v_bufobj, blkno))
2349		return 1;
2350	if (vp->v_mount == NULL)
2351		return 0;
2352	obj = vp->v_object;
2353	if (obj == NULL)
2354		return (0);
2355
2356	size = PAGE_SIZE;
2357	if (size > vp->v_mount->mnt_stat.f_iosize)
2358		size = vp->v_mount->mnt_stat.f_iosize;
2359	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2360
2361	VM_OBJECT_LOCK(obj);
2362	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2363		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2364		if (!m)
2365			goto notinmem;
2366		tinc = size;
2367		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2368			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2369		if (vm_page_is_valid(m,
2370		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2371			goto notinmem;
2372	}
2373	VM_OBJECT_UNLOCK(obj);
2374	return 1;
2375
2376notinmem:
2377	VM_OBJECT_UNLOCK(obj);
2378	return (0);
2379}
2380
2381/*
2382 *	vfs_setdirty:
2383 *
2384 *	Sets the dirty range for a buffer based on the status of the dirty
2385 *	bits in the pages comprising the buffer.
2386 *
2387 *	The range is limited to the size of the buffer.
2388 *
2389 *	This routine is primarily used by NFS, but is generalized for the
2390 *	B_VMIO case.
2391 */
2392static void
2393vfs_setdirty(struct buf *bp)
2394{
2395
2396	/*
2397	 * Degenerate case - empty buffer
2398	 */
2399	if (bp->b_bufsize == 0)
2400		return;
2401
2402	if ((bp->b_flags & B_VMIO) == 0)
2403		return;
2404
2405	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2406	vfs_setdirty_locked_object(bp);
2407	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2408}
2409
2410static void
2411vfs_setdirty_locked_object(struct buf *bp)
2412{
2413	vm_object_t object;
2414	int i;
2415
2416	object = bp->b_bufobj->bo_object;
2417	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2418
2419	/*
2420	 * We qualify the scan for modified pages on whether the
2421	 * object has been flushed yet.
2422	 */
2423	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2424		vm_offset_t boffset;
2425		vm_offset_t eoffset;
2426
2427		vm_page_lock_queues();
2428		/*
2429		 * test the pages to see if they have been modified directly
2430		 * by users through the VM system.
2431		 */
2432		for (i = 0; i < bp->b_npages; i++)
2433			vm_page_test_dirty(bp->b_pages[i]);
2434
2435		/*
2436		 * Calculate the encompassing dirty range, boffset and eoffset,
2437		 * (eoffset - boffset) bytes.
2438		 */
2439
2440		for (i = 0; i < bp->b_npages; i++) {
2441			if (bp->b_pages[i]->dirty)
2442				break;
2443		}
2444		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2445
2446		for (i = bp->b_npages - 1; i >= 0; --i) {
2447			if (bp->b_pages[i]->dirty) {
2448				break;
2449			}
2450		}
2451		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2452
2453		vm_page_unlock_queues();
2454		/*
2455		 * Fit it to the buffer.
2456		 */
2457
2458		if (eoffset > bp->b_bcount)
2459			eoffset = bp->b_bcount;
2460
2461		/*
2462		 * If we have a good dirty range, merge with the existing
2463		 * dirty range.
2464		 */
2465
2466		if (boffset < eoffset) {
2467			if (bp->b_dirtyoff > boffset)
2468				bp->b_dirtyoff = boffset;
2469			if (bp->b_dirtyend < eoffset)
2470				bp->b_dirtyend = eoffset;
2471		}
2472	}
2473}
2474
2475/*
2476 *	getblk:
2477 *
2478 *	Get a block given a specified block and offset into a file/device.
2479 *	The buffers B_DONE bit will be cleared on return, making it almost
2480 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2481 *	return.  The caller should clear B_INVAL prior to initiating a
2482 *	READ.
2483 *
2484 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2485 *	an existing buffer.
2486 *
2487 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2488 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2489 *	and then cleared based on the backing VM.  If the previous buffer is
2490 *	non-0-sized but invalid, B_CACHE will be cleared.
2491 *
2492 *	If getblk() must create a new buffer, the new buffer is returned with
2493 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2494 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2495 *	backing VM.
2496 *
2497 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2498 *	B_CACHE bit is clear.
2499 *
2500 *	What this means, basically, is that the caller should use B_CACHE to
2501 *	determine whether the buffer is fully valid or not and should clear
2502 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2503 *	the buffer by loading its data area with something, the caller needs
2504 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2505 *	the caller should set B_CACHE ( as an optimization ), else the caller
2506 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2507 *	a write attempt or if it was a successfull read.  If the caller
2508 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2509 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2510 */
2511struct buf *
2512getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2513    int flags)
2514{
2515	struct buf *bp;
2516	struct bufobj *bo;
2517	int error;
2518
2519	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2520	ASSERT_VOP_LOCKED(vp, "getblk");
2521	if (size > MAXBSIZE)
2522		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2523
2524	bo = &vp->v_bufobj;
2525loop:
2526	/*
2527	 * Block if we are low on buffers.   Certain processes are allowed
2528	 * to completely exhaust the buffer cache.
2529         *
2530         * If this check ever becomes a bottleneck it may be better to
2531         * move it into the else, when gbincore() fails.  At the moment
2532         * it isn't a problem.
2533	 *
2534	 * XXX remove if 0 sections (clean this up after its proven)
2535         */
2536	if (numfreebuffers == 0) {
2537		if (TD_IS_IDLETHREAD(curthread))
2538			return NULL;
2539		mtx_lock(&nblock);
2540		needsbuffer |= VFS_BIO_NEED_ANY;
2541		mtx_unlock(&nblock);
2542	}
2543
2544	BO_LOCK(bo);
2545	bp = gbincore(bo, blkno);
2546	if (bp != NULL) {
2547		int lockflags;
2548		/*
2549		 * Buffer is in-core.  If the buffer is not busy, it must
2550		 * be on a queue.
2551		 */
2552		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2553
2554		if (flags & GB_LOCK_NOWAIT)
2555			lockflags |= LK_NOWAIT;
2556
2557		error = BUF_TIMELOCK(bp, lockflags,
2558		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2559
2560		/*
2561		 * If we slept and got the lock we have to restart in case
2562		 * the buffer changed identities.
2563		 */
2564		if (error == ENOLCK)
2565			goto loop;
2566		/* We timed out or were interrupted. */
2567		else if (error)
2568			return (NULL);
2569
2570		/*
2571		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2572		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2573		 * and for a VMIO buffer B_CACHE is adjusted according to the
2574		 * backing VM cache.
2575		 */
2576		if (bp->b_flags & B_INVAL)
2577			bp->b_flags &= ~B_CACHE;
2578		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2579			bp->b_flags |= B_CACHE;
2580		bremfree(bp);
2581
2582		/*
2583		 * check for size inconsistancies for non-VMIO case.
2584		 */
2585
2586		if (bp->b_bcount != size) {
2587			if ((bp->b_flags & B_VMIO) == 0 ||
2588			    (size > bp->b_kvasize)) {
2589				if (bp->b_flags & B_DELWRI) {
2590					/*
2591					 * If buffer is pinned and caller does
2592					 * not want sleep  waiting for it to be
2593					 * unpinned, bail out
2594					 * */
2595					if (bp->b_pin_count > 0) {
2596						if (flags & GB_LOCK_NOWAIT) {
2597							bqrelse(bp);
2598							return (NULL);
2599						} else {
2600							bunpin_wait(bp);
2601						}
2602					}
2603					bp->b_flags |= B_NOCACHE;
2604					bwrite(bp);
2605				} else {
2606					if (LIST_EMPTY(&bp->b_dep)) {
2607						bp->b_flags |= B_RELBUF;
2608						brelse(bp);
2609					} else {
2610						bp->b_flags |= B_NOCACHE;
2611						bwrite(bp);
2612					}
2613				}
2614				goto loop;
2615			}
2616		}
2617
2618		/*
2619		 * If the size is inconsistant in the VMIO case, we can resize
2620		 * the buffer.  This might lead to B_CACHE getting set or
2621		 * cleared.  If the size has not changed, B_CACHE remains
2622		 * unchanged from its previous state.
2623		 */
2624
2625		if (bp->b_bcount != size)
2626			allocbuf(bp, size);
2627
2628		KASSERT(bp->b_offset != NOOFFSET,
2629		    ("getblk: no buffer offset"));
2630
2631		/*
2632		 * A buffer with B_DELWRI set and B_CACHE clear must
2633		 * be committed before we can return the buffer in
2634		 * order to prevent the caller from issuing a read
2635		 * ( due to B_CACHE not being set ) and overwriting
2636		 * it.
2637		 *
2638		 * Most callers, including NFS and FFS, need this to
2639		 * operate properly either because they assume they
2640		 * can issue a read if B_CACHE is not set, or because
2641		 * ( for example ) an uncached B_DELWRI might loop due
2642		 * to softupdates re-dirtying the buffer.  In the latter
2643		 * case, B_CACHE is set after the first write completes,
2644		 * preventing further loops.
2645		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2646		 * above while extending the buffer, we cannot allow the
2647		 * buffer to remain with B_CACHE set after the write
2648		 * completes or it will represent a corrupt state.  To
2649		 * deal with this we set B_NOCACHE to scrap the buffer
2650		 * after the write.
2651		 *
2652		 * We might be able to do something fancy, like setting
2653		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2654		 * so the below call doesn't set B_CACHE, but that gets real
2655		 * confusing.  This is much easier.
2656		 */
2657
2658		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2659			bp->b_flags |= B_NOCACHE;
2660			bwrite(bp);
2661			goto loop;
2662		}
2663		bp->b_flags &= ~B_DONE;
2664	} else {
2665		int bsize, maxsize, vmio;
2666		off_t offset;
2667
2668		/*
2669		 * Buffer is not in-core, create new buffer.  The buffer
2670		 * returned by getnewbuf() is locked.  Note that the returned
2671		 * buffer is also considered valid (not marked B_INVAL).
2672		 */
2673		BO_UNLOCK(bo);
2674		/*
2675		 * If the user does not want us to create the buffer, bail out
2676		 * here.
2677		 */
2678		if (flags & GB_NOCREAT)
2679			return NULL;
2680		bsize = bo->bo_bsize;
2681		offset = blkno * bsize;
2682		vmio = vp->v_object != NULL;
2683		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2684		maxsize = imax(maxsize, bsize);
2685
2686		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2687		if (bp == NULL) {
2688			if (slpflag || slptimeo)
2689				return NULL;
2690			goto loop;
2691		}
2692
2693		/*
2694		 * This code is used to make sure that a buffer is not
2695		 * created while the getnewbuf routine is blocked.
2696		 * This can be a problem whether the vnode is locked or not.
2697		 * If the buffer is created out from under us, we have to
2698		 * throw away the one we just created.
2699		 *
2700		 * Note: this must occur before we associate the buffer
2701		 * with the vp especially considering limitations in
2702		 * the splay tree implementation when dealing with duplicate
2703		 * lblkno's.
2704		 */
2705		BO_LOCK(bo);
2706		if (gbincore(bo, blkno)) {
2707			BO_UNLOCK(bo);
2708			bp->b_flags |= B_INVAL;
2709			brelse(bp);
2710			goto loop;
2711		}
2712
2713		/*
2714		 * Insert the buffer into the hash, so that it can
2715		 * be found by incore.
2716		 */
2717		bp->b_blkno = bp->b_lblkno = blkno;
2718		bp->b_offset = offset;
2719		bgetvp(vp, bp);
2720		BO_UNLOCK(bo);
2721
2722		/*
2723		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2724		 * buffer size starts out as 0, B_CACHE will be set by
2725		 * allocbuf() for the VMIO case prior to it testing the
2726		 * backing store for validity.
2727		 */
2728
2729		if (vmio) {
2730			bp->b_flags |= B_VMIO;
2731#if defined(VFS_BIO_DEBUG)
2732			if (vn_canvmio(vp) != TRUE)
2733				printf("getblk: VMIO on vnode type %d\n",
2734					vp->v_type);
2735#endif
2736			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2737			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2738			    bp, vp->v_object, bp->b_bufobj->bo_object));
2739		} else {
2740			bp->b_flags &= ~B_VMIO;
2741			KASSERT(bp->b_bufobj->bo_object == NULL,
2742			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2743			    bp, bp->b_bufobj->bo_object));
2744		}
2745
2746		allocbuf(bp, size);
2747		bp->b_flags &= ~B_DONE;
2748	}
2749	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2750	BUF_ASSERT_HELD(bp);
2751	KASSERT(bp->b_bufobj == bo,
2752	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2753	return (bp);
2754}
2755
2756/*
2757 * Get an empty, disassociated buffer of given size.  The buffer is initially
2758 * set to B_INVAL.
2759 */
2760struct buf *
2761geteblk(int size, int flags)
2762{
2763	struct buf *bp;
2764	int maxsize;
2765
2766	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2767	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2768		if ((flags & GB_NOWAIT_BD) &&
2769		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2770			return (NULL);
2771	}
2772	allocbuf(bp, size);
2773	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2774	BUF_ASSERT_HELD(bp);
2775	return (bp);
2776}
2777
2778
2779/*
2780 * This code constitutes the buffer memory from either anonymous system
2781 * memory (in the case of non-VMIO operations) or from an associated
2782 * VM object (in the case of VMIO operations).  This code is able to
2783 * resize a buffer up or down.
2784 *
2785 * Note that this code is tricky, and has many complications to resolve
2786 * deadlock or inconsistant data situations.  Tread lightly!!!
2787 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2788 * the caller.  Calling this code willy nilly can result in the loss of data.
2789 *
2790 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2791 * B_CACHE for the non-VMIO case.
2792 */
2793
2794int
2795allocbuf(struct buf *bp, int size)
2796{
2797	int newbsize, mbsize;
2798	int i;
2799
2800	BUF_ASSERT_HELD(bp);
2801
2802	if (bp->b_kvasize < size)
2803		panic("allocbuf: buffer too small");
2804
2805	if ((bp->b_flags & B_VMIO) == 0) {
2806		caddr_t origbuf;
2807		int origbufsize;
2808		/*
2809		 * Just get anonymous memory from the kernel.  Don't
2810		 * mess with B_CACHE.
2811		 */
2812		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2813		if (bp->b_flags & B_MALLOC)
2814			newbsize = mbsize;
2815		else
2816			newbsize = round_page(size);
2817
2818		if (newbsize < bp->b_bufsize) {
2819			/*
2820			 * malloced buffers are not shrunk
2821			 */
2822			if (bp->b_flags & B_MALLOC) {
2823				if (newbsize) {
2824					bp->b_bcount = size;
2825				} else {
2826					free(bp->b_data, M_BIOBUF);
2827					if (bp->b_bufsize) {
2828						atomic_subtract_long(
2829						    &bufmallocspace,
2830						    bp->b_bufsize);
2831						bufspacewakeup();
2832						bp->b_bufsize = 0;
2833					}
2834					bp->b_saveaddr = bp->b_kvabase;
2835					bp->b_data = bp->b_saveaddr;
2836					bp->b_bcount = 0;
2837					bp->b_flags &= ~B_MALLOC;
2838				}
2839				return 1;
2840			}
2841			vm_hold_free_pages(
2842			    bp,
2843			    (vm_offset_t) bp->b_data + newbsize,
2844			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2845		} else if (newbsize > bp->b_bufsize) {
2846			/*
2847			 * We only use malloced memory on the first allocation.
2848			 * and revert to page-allocated memory when the buffer
2849			 * grows.
2850			 */
2851			/*
2852			 * There is a potential smp race here that could lead
2853			 * to bufmallocspace slightly passing the max.  It
2854			 * is probably extremely rare and not worth worrying
2855			 * over.
2856			 */
2857			if ( (bufmallocspace < maxbufmallocspace) &&
2858				(bp->b_bufsize == 0) &&
2859				(mbsize <= PAGE_SIZE/2)) {
2860
2861				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2862				bp->b_bufsize = mbsize;
2863				bp->b_bcount = size;
2864				bp->b_flags |= B_MALLOC;
2865				atomic_add_long(&bufmallocspace, mbsize);
2866				return 1;
2867			}
2868			origbuf = NULL;
2869			origbufsize = 0;
2870			/*
2871			 * If the buffer is growing on its other-than-first allocation,
2872			 * then we revert to the page-allocation scheme.
2873			 */
2874			if (bp->b_flags & B_MALLOC) {
2875				origbuf = bp->b_data;
2876				origbufsize = bp->b_bufsize;
2877				bp->b_data = bp->b_kvabase;
2878				if (bp->b_bufsize) {
2879					atomic_subtract_long(&bufmallocspace,
2880					    bp->b_bufsize);
2881					bufspacewakeup();
2882					bp->b_bufsize = 0;
2883				}
2884				bp->b_flags &= ~B_MALLOC;
2885				newbsize = round_page(newbsize);
2886			}
2887			vm_hold_load_pages(
2888			    bp,
2889			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2890			    (vm_offset_t) bp->b_data + newbsize);
2891			if (origbuf) {
2892				bcopy(origbuf, bp->b_data, origbufsize);
2893				free(origbuf, M_BIOBUF);
2894			}
2895		}
2896	} else {
2897		int desiredpages;
2898
2899		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2900		desiredpages = (size == 0) ? 0 :
2901			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2902
2903		if (bp->b_flags & B_MALLOC)
2904			panic("allocbuf: VMIO buffer can't be malloced");
2905		/*
2906		 * Set B_CACHE initially if buffer is 0 length or will become
2907		 * 0-length.
2908		 */
2909		if (size == 0 || bp->b_bufsize == 0)
2910			bp->b_flags |= B_CACHE;
2911
2912		if (newbsize < bp->b_bufsize) {
2913			/*
2914			 * DEV_BSIZE aligned new buffer size is less then the
2915			 * DEV_BSIZE aligned existing buffer size.  Figure out
2916			 * if we have to remove any pages.
2917			 */
2918			if (desiredpages < bp->b_npages) {
2919				vm_page_t m;
2920
2921				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2922				vm_page_lock_queues();
2923				for (i = desiredpages; i < bp->b_npages; i++) {
2924					/*
2925					 * the page is not freed here -- it
2926					 * is the responsibility of
2927					 * vnode_pager_setsize
2928					 */
2929					m = bp->b_pages[i];
2930					KASSERT(m != bogus_page,
2931					    ("allocbuf: bogus page found"));
2932					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2933						vm_page_lock_queues();
2934
2935					bp->b_pages[i] = NULL;
2936					vm_page_unwire(m, 0);
2937				}
2938				vm_page_unlock_queues();
2939				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2940				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2941				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2942				bp->b_npages = desiredpages;
2943			}
2944		} else if (size > bp->b_bcount) {
2945			/*
2946			 * We are growing the buffer, possibly in a
2947			 * byte-granular fashion.
2948			 */
2949			vm_object_t obj;
2950			vm_offset_t toff;
2951			vm_offset_t tinc;
2952
2953			/*
2954			 * Step 1, bring in the VM pages from the object,
2955			 * allocating them if necessary.  We must clear
2956			 * B_CACHE if these pages are not valid for the
2957			 * range covered by the buffer.
2958			 */
2959
2960			obj = bp->b_bufobj->bo_object;
2961
2962			VM_OBJECT_LOCK(obj);
2963			while (bp->b_npages < desiredpages) {
2964				vm_page_t m;
2965				vm_pindex_t pi;
2966
2967				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2968				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2969					/*
2970					 * note: must allocate system pages
2971					 * since blocking here could intefere
2972					 * with paging I/O, no matter which
2973					 * process we are.
2974					 */
2975					m = vm_page_alloc(obj, pi,
2976					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2977					    VM_ALLOC_WIRED);
2978					if (m == NULL) {
2979						atomic_add_int(&vm_pageout_deficit,
2980						    desiredpages - bp->b_npages);
2981						VM_OBJECT_UNLOCK(obj);
2982						VM_WAIT;
2983						VM_OBJECT_LOCK(obj);
2984					} else {
2985						if (m->valid == 0)
2986							bp->b_flags &= ~B_CACHE;
2987						bp->b_pages[bp->b_npages] = m;
2988						++bp->b_npages;
2989					}
2990					continue;
2991				}
2992
2993				/*
2994				 * We found a page.  If we have to sleep on it,
2995				 * retry because it might have gotten freed out
2996				 * from under us.
2997				 *
2998				 * We can only test VPO_BUSY here.  Blocking on
2999				 * m->busy might lead to a deadlock:
3000				 *
3001				 *  vm_fault->getpages->cluster_read->allocbuf
3002				 *
3003				 */
3004				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
3005					continue;
3006
3007				/*
3008				 * We have a good page.
3009				 */
3010				vm_page_lock_queues();
3011				vm_page_wire(m);
3012				vm_page_unlock_queues();
3013				bp->b_pages[bp->b_npages] = m;
3014				++bp->b_npages;
3015			}
3016
3017			/*
3018			 * Step 2.  We've loaded the pages into the buffer,
3019			 * we have to figure out if we can still have B_CACHE
3020			 * set.  Note that B_CACHE is set according to the
3021			 * byte-granular range ( bcount and size ), new the
3022			 * aligned range ( newbsize ).
3023			 *
3024			 * The VM test is against m->valid, which is DEV_BSIZE
3025			 * aligned.  Needless to say, the validity of the data
3026			 * needs to also be DEV_BSIZE aligned.  Note that this
3027			 * fails with NFS if the server or some other client
3028			 * extends the file's EOF.  If our buffer is resized,
3029			 * B_CACHE may remain set! XXX
3030			 */
3031
3032			toff = bp->b_bcount;
3033			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3034
3035			while ((bp->b_flags & B_CACHE) && toff < size) {
3036				vm_pindex_t pi;
3037
3038				if (tinc > (size - toff))
3039					tinc = size - toff;
3040
3041				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3042				    PAGE_SHIFT;
3043
3044				vfs_buf_test_cache(
3045				    bp,
3046				    bp->b_offset,
3047				    toff,
3048				    tinc,
3049				    bp->b_pages[pi]
3050				);
3051				toff += tinc;
3052				tinc = PAGE_SIZE;
3053			}
3054			VM_OBJECT_UNLOCK(obj);
3055
3056			/*
3057			 * Step 3, fixup the KVM pmap.  Remember that
3058			 * bp->b_data is relative to bp->b_offset, but
3059			 * bp->b_offset may be offset into the first page.
3060			 */
3061
3062			bp->b_data = (caddr_t)
3063			    trunc_page((vm_offset_t)bp->b_data);
3064			pmap_qenter(
3065			    (vm_offset_t)bp->b_data,
3066			    bp->b_pages,
3067			    bp->b_npages
3068			);
3069
3070			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3071			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3072		}
3073	}
3074	if (newbsize < bp->b_bufsize)
3075		bufspacewakeup();
3076	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3077	bp->b_bcount = size;		/* requested buffer size	*/
3078	return 1;
3079}
3080
3081void
3082biodone(struct bio *bp)
3083{
3084	struct mtx *mtxp;
3085	void (*done)(struct bio *);
3086
3087	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3088	mtx_lock(mtxp);
3089	bp->bio_flags |= BIO_DONE;
3090	done = bp->bio_done;
3091	if (done == NULL)
3092		wakeup(bp);
3093	mtx_unlock(mtxp);
3094	if (done != NULL)
3095		done(bp);
3096}
3097
3098/*
3099 * Wait for a BIO to finish.
3100 *
3101 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3102 * case is not yet clear.
3103 */
3104int
3105biowait(struct bio *bp, const char *wchan)
3106{
3107	struct mtx *mtxp;
3108
3109	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3110	mtx_lock(mtxp);
3111	while ((bp->bio_flags & BIO_DONE) == 0)
3112		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3113	mtx_unlock(mtxp);
3114	if (bp->bio_error != 0)
3115		return (bp->bio_error);
3116	if (!(bp->bio_flags & BIO_ERROR))
3117		return (0);
3118	return (EIO);
3119}
3120
3121void
3122biofinish(struct bio *bp, struct devstat *stat, int error)
3123{
3124
3125	if (error) {
3126		bp->bio_error = error;
3127		bp->bio_flags |= BIO_ERROR;
3128	}
3129	if (stat != NULL)
3130		devstat_end_transaction_bio(stat, bp);
3131	biodone(bp);
3132}
3133
3134/*
3135 *	bufwait:
3136 *
3137 *	Wait for buffer I/O completion, returning error status.  The buffer
3138 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3139 *	error and cleared.
3140 */
3141int
3142bufwait(struct buf *bp)
3143{
3144	if (bp->b_iocmd == BIO_READ)
3145		bwait(bp, PRIBIO, "biord");
3146	else
3147		bwait(bp, PRIBIO, "biowr");
3148	if (bp->b_flags & B_EINTR) {
3149		bp->b_flags &= ~B_EINTR;
3150		return (EINTR);
3151	}
3152	if (bp->b_ioflags & BIO_ERROR) {
3153		return (bp->b_error ? bp->b_error : EIO);
3154	} else {
3155		return (0);
3156	}
3157}
3158
3159 /*
3160  * Call back function from struct bio back up to struct buf.
3161  */
3162static void
3163bufdonebio(struct bio *bip)
3164{
3165	struct buf *bp;
3166
3167	bp = bip->bio_caller2;
3168	bp->b_resid = bp->b_bcount - bip->bio_completed;
3169	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3170	bp->b_ioflags = bip->bio_flags;
3171	bp->b_error = bip->bio_error;
3172	if (bp->b_error)
3173		bp->b_ioflags |= BIO_ERROR;
3174	bufdone(bp);
3175	g_destroy_bio(bip);
3176}
3177
3178void
3179dev_strategy(struct cdev *dev, struct buf *bp)
3180{
3181	struct cdevsw *csw;
3182	struct bio *bip;
3183
3184	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3185		panic("b_iocmd botch");
3186	for (;;) {
3187		bip = g_new_bio();
3188		if (bip != NULL)
3189			break;
3190		/* Try again later */
3191		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3192	}
3193	bip->bio_cmd = bp->b_iocmd;
3194	bip->bio_offset = bp->b_iooffset;
3195	bip->bio_length = bp->b_bcount;
3196	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3197	bip->bio_data = bp->b_data;
3198	bip->bio_done = bufdonebio;
3199	bip->bio_caller2 = bp;
3200	bip->bio_dev = dev;
3201	KASSERT(dev->si_refcount > 0,
3202	    ("dev_strategy on un-referenced struct cdev *(%s)",
3203	    devtoname(dev)));
3204	csw = dev_refthread(dev);
3205	if (csw == NULL) {
3206		g_destroy_bio(bip);
3207		bp->b_error = ENXIO;
3208		bp->b_ioflags = BIO_ERROR;
3209		bufdone(bp);
3210		return;
3211	}
3212	(*csw->d_strategy)(bip);
3213	dev_relthread(dev);
3214}
3215
3216/*
3217 *	bufdone:
3218 *
3219 *	Finish I/O on a buffer, optionally calling a completion function.
3220 *	This is usually called from an interrupt so process blocking is
3221 *	not allowed.
3222 *
3223 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3224 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3225 *	assuming B_INVAL is clear.
3226 *
3227 *	For the VMIO case, we set B_CACHE if the op was a read and no
3228 *	read error occured, or if the op was a write.  B_CACHE is never
3229 *	set if the buffer is invalid or otherwise uncacheable.
3230 *
3231 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3232 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3233 *	in the biodone routine.
3234 */
3235void
3236bufdone(struct buf *bp)
3237{
3238	struct bufobj *dropobj;
3239	void    (*biodone)(struct buf *);
3240
3241	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3242	dropobj = NULL;
3243
3244	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3245	BUF_ASSERT_HELD(bp);
3246
3247	runningbufwakeup(bp);
3248	if (bp->b_iocmd == BIO_WRITE)
3249		dropobj = bp->b_bufobj;
3250	/* call optional completion function if requested */
3251	if (bp->b_iodone != NULL) {
3252		biodone = bp->b_iodone;
3253		bp->b_iodone = NULL;
3254		(*biodone) (bp);
3255		if (dropobj)
3256			bufobj_wdrop(dropobj);
3257		return;
3258	}
3259
3260	bufdone_finish(bp);
3261
3262	if (dropobj)
3263		bufobj_wdrop(dropobj);
3264}
3265
3266void
3267bufdone_finish(struct buf *bp)
3268{
3269	BUF_ASSERT_HELD(bp);
3270
3271	if (!LIST_EMPTY(&bp->b_dep))
3272		buf_complete(bp);
3273
3274	if (bp->b_flags & B_VMIO) {
3275		int i;
3276		vm_ooffset_t foff;
3277		vm_page_t m;
3278		vm_object_t obj;
3279		int iosize;
3280		struct vnode *vp = bp->b_vp;
3281
3282		obj = bp->b_bufobj->bo_object;
3283
3284#if defined(VFS_BIO_DEBUG)
3285		mp_fixme("usecount and vflag accessed without locks.");
3286		if (vp->v_usecount == 0) {
3287			panic("biodone: zero vnode ref count");
3288		}
3289
3290		KASSERT(vp->v_object != NULL,
3291			("biodone: vnode %p has no vm_object", vp));
3292#endif
3293
3294		foff = bp->b_offset;
3295		KASSERT(bp->b_offset != NOOFFSET,
3296		    ("biodone: no buffer offset"));
3297
3298		VM_OBJECT_LOCK(obj);
3299#if defined(VFS_BIO_DEBUG)
3300		if (obj->paging_in_progress < bp->b_npages) {
3301			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3302			    obj->paging_in_progress, bp->b_npages);
3303		}
3304#endif
3305
3306		/*
3307		 * Set B_CACHE if the op was a normal read and no error
3308		 * occured.  B_CACHE is set for writes in the b*write()
3309		 * routines.
3310		 */
3311		iosize = bp->b_bcount - bp->b_resid;
3312		if (bp->b_iocmd == BIO_READ &&
3313		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3314		    !(bp->b_ioflags & BIO_ERROR)) {
3315			bp->b_flags |= B_CACHE;
3316		}
3317		for (i = 0; i < bp->b_npages; i++) {
3318			int bogusflag = 0;
3319			int resid;
3320
3321			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3322			if (resid > iosize)
3323				resid = iosize;
3324
3325			/*
3326			 * cleanup bogus pages, restoring the originals
3327			 */
3328			m = bp->b_pages[i];
3329			if (m == bogus_page) {
3330				bogusflag = 1;
3331				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3332				if (m == NULL)
3333					panic("biodone: page disappeared!");
3334				bp->b_pages[i] = m;
3335				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3336				    bp->b_pages, bp->b_npages);
3337			}
3338#if defined(VFS_BIO_DEBUG)
3339			if (OFF_TO_IDX(foff) != m->pindex) {
3340				printf(
3341"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3342				    (intmax_t)foff, (uintmax_t)m->pindex);
3343			}
3344#endif
3345
3346			/*
3347			 * In the write case, the valid and clean bits are
3348			 * already changed correctly ( see bdwrite() ), so we
3349			 * only need to do this here in the read case.
3350			 */
3351			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3352				KASSERT((m->dirty & vm_page_bits(foff &
3353				    PAGE_MASK, resid)) == 0, ("bufdone_finish:"
3354				    " page %p has unexpected dirty bits", m));
3355				vfs_page_set_valid(bp, foff, m);
3356			}
3357
3358			/*
3359			 * when debugging new filesystems or buffer I/O methods, this
3360			 * is the most common error that pops up.  if you see this, you
3361			 * have not set the page busy flag correctly!!!
3362			 */
3363			if (m->busy == 0) {
3364				printf("biodone: page busy < 0, "
3365				    "pindex: %d, foff: 0x(%x,%x), "
3366				    "resid: %d, index: %d\n",
3367				    (int) m->pindex, (int)(foff >> 32),
3368						(int) foff & 0xffffffff, resid, i);
3369				if (!vn_isdisk(vp, NULL))
3370					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3371					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3372					    (intmax_t) bp->b_lblkno,
3373					    bp->b_flags, bp->b_npages);
3374				else
3375					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3376					    (intmax_t) bp->b_lblkno,
3377					    bp->b_flags, bp->b_npages);
3378				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3379				    (u_long)m->valid, (u_long)m->dirty,
3380				    m->wire_count);
3381				panic("biodone: page busy < 0\n");
3382			}
3383			vm_page_io_finish(m);
3384			vm_object_pip_subtract(obj, 1);
3385			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3386			iosize -= resid;
3387		}
3388		vm_object_pip_wakeupn(obj, 0);
3389		VM_OBJECT_UNLOCK(obj);
3390	}
3391
3392	/*
3393	 * For asynchronous completions, release the buffer now. The brelse
3394	 * will do a wakeup there if necessary - so no need to do a wakeup
3395	 * here in the async case. The sync case always needs to do a wakeup.
3396	 */
3397
3398	if (bp->b_flags & B_ASYNC) {
3399		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3400			brelse(bp);
3401		else
3402			bqrelse(bp);
3403	} else
3404		bdone(bp);
3405}
3406
3407/*
3408 * This routine is called in lieu of iodone in the case of
3409 * incomplete I/O.  This keeps the busy status for pages
3410 * consistant.
3411 */
3412void
3413vfs_unbusy_pages(struct buf *bp)
3414{
3415	int i;
3416	vm_object_t obj;
3417	vm_page_t m;
3418
3419	runningbufwakeup(bp);
3420	if (!(bp->b_flags & B_VMIO))
3421		return;
3422
3423	obj = bp->b_bufobj->bo_object;
3424	VM_OBJECT_LOCK(obj);
3425	for (i = 0; i < bp->b_npages; i++) {
3426		m = bp->b_pages[i];
3427		if (m == bogus_page) {
3428			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3429			if (!m)
3430				panic("vfs_unbusy_pages: page missing\n");
3431			bp->b_pages[i] = m;
3432			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3433			    bp->b_pages, bp->b_npages);
3434		}
3435		vm_object_pip_subtract(obj, 1);
3436		vm_page_io_finish(m);
3437	}
3438	vm_object_pip_wakeupn(obj, 0);
3439	VM_OBJECT_UNLOCK(obj);
3440}
3441
3442/*
3443 * vfs_page_set_valid:
3444 *
3445 *	Set the valid bits in a page based on the supplied offset.   The
3446 *	range is restricted to the buffer's size.
3447 *
3448 *	This routine is typically called after a read completes.
3449 */
3450static void
3451vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3452{
3453	vm_ooffset_t eoff;
3454
3455	/*
3456	 * Compute the end offset, eoff, such that [off, eoff) does not span a
3457	 * page boundary and eoff is not greater than the end of the buffer.
3458	 * The end of the buffer, in this case, is our file EOF, not the
3459	 * allocation size of the buffer.
3460	 */
3461	eoff = (off + PAGE_SIZE) & ~(vm_ooffset_t)PAGE_MASK;
3462	if (eoff > bp->b_offset + bp->b_bcount)
3463		eoff = bp->b_offset + bp->b_bcount;
3464
3465	/*
3466	 * Set valid range.  This is typically the entire buffer and thus the
3467	 * entire page.
3468	 */
3469	if (eoff > off)
3470		vm_page_set_valid(m, off & PAGE_MASK, eoff - off);
3471}
3472
3473/*
3474 * vfs_page_set_validclean:
3475 *
3476 *	Set the valid bits and clear the dirty bits in a page based on the
3477 *	supplied offset.   The range is restricted to the buffer's size.
3478 */
3479static void
3480vfs_page_set_validclean(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3481{
3482	vm_ooffset_t soff, eoff;
3483
3484	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3485	/*
3486	 * Start and end offsets in buffer.  eoff - soff may not cross a
3487	 * page boundry or cross the end of the buffer.  The end of the
3488	 * buffer, in this case, is our file EOF, not the allocation size
3489	 * of the buffer.
3490	 */
3491	soff = off;
3492	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3493	if (eoff > bp->b_offset + bp->b_bcount)
3494		eoff = bp->b_offset + bp->b_bcount;
3495
3496	/*
3497	 * Set valid range.  This is typically the entire buffer and thus the
3498	 * entire page.
3499	 */
3500	if (eoff > soff) {
3501		vm_page_set_validclean(
3502		    m,
3503		   (vm_offset_t) (soff & PAGE_MASK),
3504		   (vm_offset_t) (eoff - soff)
3505		);
3506	}
3507}
3508
3509/*
3510 * This routine is called before a device strategy routine.
3511 * It is used to tell the VM system that paging I/O is in
3512 * progress, and treat the pages associated with the buffer
3513 * almost as being VPO_BUSY.  Also the object paging_in_progress
3514 * flag is handled to make sure that the object doesn't become
3515 * inconsistant.
3516 *
3517 * Since I/O has not been initiated yet, certain buffer flags
3518 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3519 * and should be ignored.
3520 */
3521void
3522vfs_busy_pages(struct buf *bp, int clear_modify)
3523{
3524	int i, bogus;
3525	vm_object_t obj;
3526	vm_ooffset_t foff;
3527	vm_page_t m;
3528
3529	if (!(bp->b_flags & B_VMIO))
3530		return;
3531
3532	obj = bp->b_bufobj->bo_object;
3533	foff = bp->b_offset;
3534	KASSERT(bp->b_offset != NOOFFSET,
3535	    ("vfs_busy_pages: no buffer offset"));
3536	VM_OBJECT_LOCK(obj);
3537	if (bp->b_bufsize != 0)
3538		vfs_setdirty_locked_object(bp);
3539retry:
3540	for (i = 0; i < bp->b_npages; i++) {
3541		m = bp->b_pages[i];
3542
3543		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3544			goto retry;
3545	}
3546	bogus = 0;
3547	if (clear_modify)
3548		vm_page_lock_queues();
3549	for (i = 0; i < bp->b_npages; i++) {
3550		m = bp->b_pages[i];
3551
3552		if ((bp->b_flags & B_CLUSTER) == 0) {
3553			vm_object_pip_add(obj, 1);
3554			vm_page_io_start(m);
3555		}
3556		/*
3557		 * When readying a buffer for a read ( i.e
3558		 * clear_modify == 0 ), it is important to do
3559		 * bogus_page replacement for valid pages in
3560		 * partially instantiated buffers.  Partially
3561		 * instantiated buffers can, in turn, occur when
3562		 * reconstituting a buffer from its VM backing store
3563		 * base.  We only have to do this if B_CACHE is
3564		 * clear ( which causes the I/O to occur in the
3565		 * first place ).  The replacement prevents the read
3566		 * I/O from overwriting potentially dirty VM-backed
3567		 * pages.  XXX bogus page replacement is, uh, bogus.
3568		 * It may not work properly with small-block devices.
3569		 * We need to find a better way.
3570		 */
3571		if (clear_modify) {
3572			pmap_remove_write(m);
3573			vfs_page_set_validclean(bp, foff, m);
3574		} else if (m->valid == VM_PAGE_BITS_ALL &&
3575		    (bp->b_flags & B_CACHE) == 0) {
3576			bp->b_pages[i] = bogus_page;
3577			bogus++;
3578		}
3579		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3580	}
3581	if (clear_modify)
3582		vm_page_unlock_queues();
3583	VM_OBJECT_UNLOCK(obj);
3584	if (bogus)
3585		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3586		    bp->b_pages, bp->b_npages);
3587}
3588
3589/*
3590 * Tell the VM system that the pages associated with this buffer
3591 * are clean.  This is used for delayed writes where the data is
3592 * going to go to disk eventually without additional VM intevention.
3593 *
3594 * Note that while we only really need to clean through to b_bcount, we
3595 * just go ahead and clean through to b_bufsize.
3596 */
3597static void
3598vfs_clean_pages(struct buf *bp)
3599{
3600	int i;
3601	vm_ooffset_t foff, noff, eoff;
3602	vm_page_t m;
3603
3604	if (!(bp->b_flags & B_VMIO))
3605		return;
3606
3607	foff = bp->b_offset;
3608	KASSERT(bp->b_offset != NOOFFSET,
3609	    ("vfs_clean_pages: no buffer offset"));
3610	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3611	vm_page_lock_queues();
3612	for (i = 0; i < bp->b_npages; i++) {
3613		m = bp->b_pages[i];
3614		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3615		eoff = noff;
3616
3617		if (eoff > bp->b_offset + bp->b_bufsize)
3618			eoff = bp->b_offset + bp->b_bufsize;
3619		vfs_page_set_validclean(bp, foff, m);
3620		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3621		foff = noff;
3622	}
3623	vm_page_unlock_queues();
3624	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3625}
3626
3627/*
3628 *	vfs_bio_set_valid:
3629 *
3630 *	Set the range within the buffer to valid.  The range is
3631 *	relative to the beginning of the buffer, b_offset.  Note that
3632 *	b_offset itself may be offset from the beginning of the first
3633 *	page.
3634 */
3635void
3636vfs_bio_set_valid(struct buf *bp, int base, int size)
3637{
3638	int i, n;
3639	vm_page_t m;
3640
3641	if (!(bp->b_flags & B_VMIO))
3642		return;
3643
3644	/*
3645	 * Fixup base to be relative to beginning of first page.
3646	 * Set initial n to be the maximum number of bytes in the
3647	 * first page that can be validated.
3648	 */
3649	base += (bp->b_offset & PAGE_MASK);
3650	n = PAGE_SIZE - (base & PAGE_MASK);
3651
3652	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3653	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3654		m = bp->b_pages[i];
3655		if (n > size)
3656			n = size;
3657		vm_page_set_valid(m, base & PAGE_MASK, n);
3658		base += n;
3659		size -= n;
3660		n = PAGE_SIZE;
3661	}
3662	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3663}
3664
3665/*
3666 *	vfs_bio_clrbuf:
3667 *
3668 *	If the specified buffer is a non-VMIO buffer, clear the entire
3669 *	buffer.  If the specified buffer is a VMIO buffer, clear and
3670 *	validate only the previously invalid portions of the buffer.
3671 *	This routine essentially fakes an I/O, so we need to clear
3672 *	BIO_ERROR and B_INVAL.
3673 *
3674 *	Note that while we only theoretically need to clear through b_bcount,
3675 *	we go ahead and clear through b_bufsize.
3676 */
3677void
3678vfs_bio_clrbuf(struct buf *bp)
3679{
3680	int i, j, mask;
3681	caddr_t sa, ea;
3682
3683	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3684		clrbuf(bp);
3685		return;
3686	}
3687	bp->b_flags &= ~B_INVAL;
3688	bp->b_ioflags &= ~BIO_ERROR;
3689	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3690	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3691	    (bp->b_offset & PAGE_MASK) == 0) {
3692		if (bp->b_pages[0] == bogus_page)
3693			goto unlock;
3694		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3695		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3696		if ((bp->b_pages[0]->valid & mask) == mask)
3697			goto unlock;
3698		if ((bp->b_pages[0]->valid & mask) == 0) {
3699			bzero(bp->b_data, bp->b_bufsize);
3700			bp->b_pages[0]->valid |= mask;
3701			goto unlock;
3702		}
3703	}
3704	ea = sa = bp->b_data;
3705	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3706		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3707		ea = (caddr_t)(vm_offset_t)ulmin(
3708		    (u_long)(vm_offset_t)ea,
3709		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3710		if (bp->b_pages[i] == bogus_page)
3711			continue;
3712		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3713		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3714		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3715		if ((bp->b_pages[i]->valid & mask) == mask)
3716			continue;
3717		if ((bp->b_pages[i]->valid & mask) == 0)
3718			bzero(sa, ea - sa);
3719		else {
3720			for (; sa < ea; sa += DEV_BSIZE, j++) {
3721				if ((bp->b_pages[i]->valid & (1 << j)) == 0)
3722					bzero(sa, DEV_BSIZE);
3723			}
3724		}
3725		bp->b_pages[i]->valid |= mask;
3726	}
3727unlock:
3728	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3729	bp->b_resid = 0;
3730}
3731
3732/*
3733 * vm_hold_load_pages and vm_hold_free_pages get pages into
3734 * a buffers address space.  The pages are anonymous and are
3735 * not associated with a file object.
3736 */
3737static void
3738vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3739{
3740	vm_offset_t pg;
3741	vm_page_t p;
3742	int index;
3743
3744	to = round_page(to);
3745	from = round_page(from);
3746	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3747
3748	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3749tryagain:
3750		/*
3751		 * note: must allocate system pages since blocking here
3752		 * could interfere with paging I/O, no matter which
3753		 * process we are.
3754		 */
3755		p = vm_page_alloc(NULL, pg >> PAGE_SHIFT, VM_ALLOC_NOOBJ |
3756		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3757		if (!p) {
3758			atomic_add_int(&vm_pageout_deficit,
3759			    (to - pg) >> PAGE_SHIFT);
3760			VM_WAIT;
3761			goto tryagain;
3762		}
3763		pmap_qenter(pg, &p, 1);
3764		bp->b_pages[index] = p;
3765	}
3766	bp->b_npages = index;
3767}
3768
3769/* Return pages associated with this buf to the vm system */
3770static void
3771vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3772{
3773	vm_offset_t pg;
3774	vm_page_t p;
3775	int index, newnpages;
3776
3777	from = round_page(from);
3778	to = round_page(to);
3779	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3780
3781	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3782		p = bp->b_pages[index];
3783		if (p && (index < bp->b_npages)) {
3784			if (p->busy) {
3785				printf(
3786			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3787				    (intmax_t)bp->b_blkno,
3788				    (intmax_t)bp->b_lblkno);
3789			}
3790			bp->b_pages[index] = NULL;
3791			pmap_qremove(pg, 1);
3792			p->wire_count--;
3793			vm_page_free(p);
3794			atomic_subtract_int(&cnt.v_wire_count, 1);
3795		}
3796	}
3797	bp->b_npages = newnpages;
3798}
3799
3800/*
3801 * Map an IO request into kernel virtual address space.
3802 *
3803 * All requests are (re)mapped into kernel VA space.
3804 * Notice that we use b_bufsize for the size of the buffer
3805 * to be mapped.  b_bcount might be modified by the driver.
3806 *
3807 * Note that even if the caller determines that the address space should
3808 * be valid, a race or a smaller-file mapped into a larger space may
3809 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3810 * check the return value.
3811 */
3812int
3813vmapbuf(struct buf *bp)
3814{
3815	caddr_t addr, kva;
3816	vm_prot_t prot;
3817	int pidx, i;
3818	struct vm_page *m;
3819	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3820
3821	if (bp->b_bufsize < 0)
3822		return (-1);
3823	prot = VM_PROT_READ;
3824	if (bp->b_iocmd == BIO_READ)
3825		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3826	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3827	     addr < bp->b_data + bp->b_bufsize;
3828	     addr += PAGE_SIZE, pidx++) {
3829		/*
3830		 * Do the vm_fault if needed; do the copy-on-write thing
3831		 * when reading stuff off device into memory.
3832		 *
3833		 * NOTE! Must use pmap_extract() because addr may be in
3834		 * the userland address space, and kextract is only guarenteed
3835		 * to work for the kernland address space (see: sparc64 port).
3836		 */
3837retry:
3838		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3839		    prot) < 0) {
3840			vm_page_lock_queues();
3841			for (i = 0; i < pidx; ++i) {
3842				vm_page_unhold(bp->b_pages[i]);
3843				bp->b_pages[i] = NULL;
3844			}
3845			vm_page_unlock_queues();
3846			return(-1);
3847		}
3848		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3849		if (m == NULL)
3850			goto retry;
3851		bp->b_pages[pidx] = m;
3852	}
3853	if (pidx > btoc(MAXPHYS))
3854		panic("vmapbuf: mapped more than MAXPHYS");
3855	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3856
3857	kva = bp->b_saveaddr;
3858	bp->b_npages = pidx;
3859	bp->b_saveaddr = bp->b_data;
3860	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3861	return(0);
3862}
3863
3864/*
3865 * Free the io map PTEs associated with this IO operation.
3866 * We also invalidate the TLB entries and restore the original b_addr.
3867 */
3868void
3869vunmapbuf(struct buf *bp)
3870{
3871	int pidx;
3872	int npages;
3873
3874	npages = bp->b_npages;
3875	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3876	vm_page_lock_queues();
3877	for (pidx = 0; pidx < npages; pidx++)
3878		vm_page_unhold(bp->b_pages[pidx]);
3879	vm_page_unlock_queues();
3880
3881	bp->b_data = bp->b_saveaddr;
3882}
3883
3884void
3885bdone(struct buf *bp)
3886{
3887	struct mtx *mtxp;
3888
3889	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3890	mtx_lock(mtxp);
3891	bp->b_flags |= B_DONE;
3892	wakeup(bp);
3893	mtx_unlock(mtxp);
3894}
3895
3896void
3897bwait(struct buf *bp, u_char pri, const char *wchan)
3898{
3899	struct mtx *mtxp;
3900
3901	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3902	mtx_lock(mtxp);
3903	while ((bp->b_flags & B_DONE) == 0)
3904		msleep(bp, mtxp, pri, wchan, 0);
3905	mtx_unlock(mtxp);
3906}
3907
3908int
3909bufsync(struct bufobj *bo, int waitfor)
3910{
3911
3912	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3913}
3914
3915void
3916bufstrategy(struct bufobj *bo, struct buf *bp)
3917{
3918	int i = 0;
3919	struct vnode *vp;
3920
3921	vp = bp->b_vp;
3922	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3923	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3924	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3925	i = VOP_STRATEGY(vp, bp);
3926	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3927}
3928
3929void
3930bufobj_wrefl(struct bufobj *bo)
3931{
3932
3933	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3934	ASSERT_BO_LOCKED(bo);
3935	bo->bo_numoutput++;
3936}
3937
3938void
3939bufobj_wref(struct bufobj *bo)
3940{
3941
3942	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3943	BO_LOCK(bo);
3944	bo->bo_numoutput++;
3945	BO_UNLOCK(bo);
3946}
3947
3948void
3949bufobj_wdrop(struct bufobj *bo)
3950{
3951
3952	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3953	BO_LOCK(bo);
3954	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3955	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3956		bo->bo_flag &= ~BO_WWAIT;
3957		wakeup(&bo->bo_numoutput);
3958	}
3959	BO_UNLOCK(bo);
3960}
3961
3962int
3963bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3964{
3965	int error;
3966
3967	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3968	ASSERT_BO_LOCKED(bo);
3969	error = 0;
3970	while (bo->bo_numoutput) {
3971		bo->bo_flag |= BO_WWAIT;
3972		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3973		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3974		if (error)
3975			break;
3976	}
3977	return (error);
3978}
3979
3980void
3981bpin(struct buf *bp)
3982{
3983	struct mtx *mtxp;
3984
3985	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3986	mtx_lock(mtxp);
3987	bp->b_pin_count++;
3988	mtx_unlock(mtxp);
3989}
3990
3991void
3992bunpin(struct buf *bp)
3993{
3994	struct mtx *mtxp;
3995
3996	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3997	mtx_lock(mtxp);
3998	if (--bp->b_pin_count == 0)
3999		wakeup(bp);
4000	mtx_unlock(mtxp);
4001}
4002
4003void
4004bunpin_wait(struct buf *bp)
4005{
4006	struct mtx *mtxp;
4007
4008	mtxp = mtx_pool_find(mtxpool_sleep, bp);
4009	mtx_lock(mtxp);
4010	while (bp->b_pin_count > 0)
4011		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
4012	mtx_unlock(mtxp);
4013}
4014
4015#include "opt_ddb.h"
4016#ifdef DDB
4017#include <ddb/ddb.h>
4018
4019/* DDB command to show buffer data */
4020DB_SHOW_COMMAND(buffer, db_show_buffer)
4021{
4022	/* get args */
4023	struct buf *bp = (struct buf *)addr;
4024
4025	if (!have_addr) {
4026		db_printf("usage: show buffer <addr>\n");
4027		return;
4028	}
4029
4030	db_printf("buf at %p\n", bp);
4031	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4032	db_printf(
4033	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4034	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
4035	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4036	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4037	    bp->b_dep.lh_first);
4038	if (bp->b_npages) {
4039		int i;
4040		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4041		for (i = 0; i < bp->b_npages; i++) {
4042			vm_page_t m;
4043			m = bp->b_pages[i];
4044			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4045			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4046			if ((i + 1) < bp->b_npages)
4047				db_printf(",");
4048		}
4049		db_printf("\n");
4050	}
4051	db_printf(" ");
4052	lockmgr_printinfo(&bp->b_lock);
4053}
4054
4055DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4056{
4057	struct buf *bp;
4058	int i;
4059
4060	for (i = 0; i < nbuf; i++) {
4061		bp = &buf[i];
4062		if (BUF_ISLOCKED(bp)) {
4063			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4064			db_printf("\n");
4065		}
4066	}
4067}
4068
4069DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4070{
4071	struct vnode *vp;
4072	struct buf *bp;
4073
4074	if (!have_addr) {
4075		db_printf("usage: show vnodebufs <addr>\n");
4076		return;
4077	}
4078	vp = (struct vnode *)addr;
4079	db_printf("Clean buffers:\n");
4080	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4081		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4082		db_printf("\n");
4083	}
4084	db_printf("Dirty buffers:\n");
4085	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4086		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4087		db_printf("\n");
4088	}
4089}
4090#endif /* DDB */
4091