vfs_bio.c revision 190331
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 190331 2009-03-23 20:18:06Z jhb $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/limits.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mount.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/proc.h>
59#include <sys/resourcevar.h>
60#include <sys/sysctl.h>
61#include <sys/vmmeter.h>
62#include <sys/vnode.h>
63#include <geom/geom.h>
64#include <vm/vm.h>
65#include <vm/vm_param.h>
66#include <vm/vm_kern.h>
67#include <vm/vm_pageout.h>
68#include <vm/vm_page.h>
69#include <vm/vm_object.h>
70#include <vm/vm_extern.h>
71#include <vm/vm_map.h>
72#include "opt_compat.h"
73#include "opt_directio.h"
74#include "opt_swap.h"
75
76static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
77
78struct	bio_ops bioops;		/* I/O operation notification */
79
80struct	buf_ops buf_ops_bio = {
81	.bop_name	=	"buf_ops_bio",
82	.bop_write	=	bufwrite,
83	.bop_strategy	=	bufstrategy,
84	.bop_sync	=	bufsync,
85	.bop_bdflush	=	bufbdflush,
86};
87
88/*
89 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
90 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
91 */
92struct buf *buf;		/* buffer header pool */
93
94static struct proc *bufdaemonproc;
95
96static int inmem(struct vnode *vp, daddr_t blkno);
97static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
98		vm_offset_t to);
99static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
100		vm_offset_t to);
101static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
102		vm_page_t m);
103static void vfs_clean_pages(struct buf *bp);
104static void vfs_setdirty(struct buf *bp);
105static void vfs_setdirty_locked_object(struct buf *bp);
106static void vfs_vmio_release(struct buf *bp);
107static int vfs_bio_clcheck(struct vnode *vp, int size,
108		daddr_t lblkno, daddr_t blkno);
109static int buf_do_flush(struct vnode *vp);
110static int flushbufqueues(struct vnode *, int, int);
111static void buf_daemon(void);
112static void bremfreel(struct buf *bp);
113#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
114    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
115static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
116#endif
117
118int vmiodirenable = TRUE;
119SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
120    "Use the VM system for directory writes");
121long runningbufspace;
122SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
123    "Amount of presently outstanding async buffer io");
124static long bufspace;
125#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
126    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
127SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
128    &bufspace, 0, sysctl_bufspace, "L", "Virtual memory used for buffers");
129#else
130SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
131    "Virtual memory used for buffers");
132#endif
133static long maxbufspace;
134SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
135    "Maximum allowed value of bufspace (including buf_daemon)");
136static long bufmallocspace;
137SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
138    "Amount of malloced memory for buffers");
139static long maxbufmallocspace;
140SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
141    "Maximum amount of malloced memory for buffers");
142static long lobufspace;
143SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
144    "Minimum amount of buffers we want to have");
145long hibufspace;
146SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
147    "Maximum allowed value of bufspace (excluding buf_daemon)");
148static int bufreusecnt;
149SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
150    "Number of times we have reused a buffer");
151static int buffreekvacnt;
152SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
153    "Number of times we have freed the KVA space from some buffer");
154static int bufdefragcnt;
155SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
156    "Number of times we have had to repeat buffer allocation to defragment");
157static long lorunningspace;
158SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
159    "Minimum preferred space used for in-progress I/O");
160static long hirunningspace;
161SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
162    "Maximum amount of space to use for in-progress I/O");
163int dirtybufferflushes;
164SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
165    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
166int bdwriteskip;
167SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
168    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
169int altbufferflushes;
170SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
171    0, "Number of fsync flushes to limit dirty buffers");
172static int recursiveflushes;
173SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
174    0, "Number of flushes skipped due to being recursive");
175static int numdirtybuffers;
176SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
177    "Number of buffers that are dirty (has unwritten changes) at the moment");
178static int lodirtybuffers;
179SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
180    "How many buffers we want to have free before bufdaemon can sleep");
181static int hidirtybuffers;
182SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
183    "When the number of dirty buffers is considered severe");
184int dirtybufthresh;
185SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
186    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
187static int numfreebuffers;
188SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
189    "Number of free buffers");
190static int lofreebuffers;
191SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
192   "XXX Unused");
193static int hifreebuffers;
194SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
195   "XXX Complicatedly unused");
196static int getnewbufcalls;
197SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
198   "Number of calls to getnewbuf");
199static int getnewbufrestarts;
200SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
201    "Number of times getnewbuf has had to restart a buffer aquisition");
202static int flushbufqtarget = 100;
203SYSCTL_INT(_vfs, OID_AUTO, flushbufqtarget, CTLFLAG_RW, &flushbufqtarget, 0,
204    "Amount of work to do in flushbufqueues when helping bufdaemon");
205
206/*
207 * Wakeup point for bufdaemon, as well as indicator of whether it is already
208 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
209 * is idling.
210 */
211static int bd_request;
212
213/*
214 * This lock synchronizes access to bd_request.
215 */
216static struct mtx bdlock;
217
218/*
219 * bogus page -- for I/O to/from partially complete buffers
220 * this is a temporary solution to the problem, but it is not
221 * really that bad.  it would be better to split the buffer
222 * for input in the case of buffers partially already in memory,
223 * but the code is intricate enough already.
224 */
225vm_page_t bogus_page;
226
227/*
228 * Synchronization (sleep/wakeup) variable for active buffer space requests.
229 * Set when wait starts, cleared prior to wakeup().
230 * Used in runningbufwakeup() and waitrunningbufspace().
231 */
232static int runningbufreq;
233
234/*
235 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
236 * waitrunningbufspace().
237 */
238static struct mtx rbreqlock;
239
240/*
241 * Synchronization (sleep/wakeup) variable for buffer requests.
242 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
243 * by and/or.
244 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
245 * getnewbuf(), and getblk().
246 */
247static int needsbuffer;
248
249/*
250 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
251 */
252static struct mtx nblock;
253
254/*
255 * Definitions for the buffer free lists.
256 */
257#define BUFFER_QUEUES	6	/* number of free buffer queues */
258
259#define QUEUE_NONE	0	/* on no queue */
260#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
261#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
262#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
263#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
264#define QUEUE_EMPTY	5	/* empty buffer headers */
265#define QUEUE_SENTINEL	1024	/* not an queue index, but mark for sentinel */
266
267/* Queues for free buffers with various properties */
268static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
269
270/* Lock for the bufqueues */
271static struct mtx bqlock;
272
273/*
274 * Single global constant for BUF_WMESG, to avoid getting multiple references.
275 * buf_wmesg is referred from macros.
276 */
277const char *buf_wmesg = BUF_WMESG;
278
279#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
280#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
281#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
282#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
283
284#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
285    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
286static int
287sysctl_bufspace(SYSCTL_HANDLER_ARGS)
288{
289	long lvalue;
290	int ivalue;
291
292	if (sizeof(int) == sizeof(long) || req->oldlen == sizeof(long))
293		return (sysctl_handle_long(oidp, arg1, arg2, req));
294	lvalue = *(long *)arg1;
295	if (lvalue > INT_MAX)
296		/* On overflow, still write out a long to trigger ENOMEM. */
297		return (sysctl_handle_long(oidp, &lvalue, 0, req));
298	ivalue = lvalue;
299	return (sysctl_handle_int(oidp, &ivalue, 0, req));
300}
301#endif
302
303#ifdef DIRECTIO
304extern void ffs_rawread_setup(void);
305#endif /* DIRECTIO */
306/*
307 *	numdirtywakeup:
308 *
309 *	If someone is blocked due to there being too many dirty buffers,
310 *	and numdirtybuffers is now reasonable, wake them up.
311 */
312
313static __inline void
314numdirtywakeup(int level)
315{
316
317	if (numdirtybuffers <= level) {
318		mtx_lock(&nblock);
319		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
320			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
321			wakeup(&needsbuffer);
322		}
323		mtx_unlock(&nblock);
324	}
325}
326
327/*
328 *	bufspacewakeup:
329 *
330 *	Called when buffer space is potentially available for recovery.
331 *	getnewbuf() will block on this flag when it is unable to free
332 *	sufficient buffer space.  Buffer space becomes recoverable when
333 *	bp's get placed back in the queues.
334 */
335
336static __inline void
337bufspacewakeup(void)
338{
339
340	/*
341	 * If someone is waiting for BUF space, wake them up.  Even
342	 * though we haven't freed the kva space yet, the waiting
343	 * process will be able to now.
344	 */
345	mtx_lock(&nblock);
346	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
347		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
348		wakeup(&needsbuffer);
349	}
350	mtx_unlock(&nblock);
351}
352
353/*
354 * runningbufwakeup() - in-progress I/O accounting.
355 *
356 */
357void
358runningbufwakeup(struct buf *bp)
359{
360
361	if (bp->b_runningbufspace) {
362		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
363		bp->b_runningbufspace = 0;
364		mtx_lock(&rbreqlock);
365		if (runningbufreq && runningbufspace <= lorunningspace) {
366			runningbufreq = 0;
367			wakeup(&runningbufreq);
368		}
369		mtx_unlock(&rbreqlock);
370	}
371}
372
373/*
374 *	bufcountwakeup:
375 *
376 *	Called when a buffer has been added to one of the free queues to
377 *	account for the buffer and to wakeup anyone waiting for free buffers.
378 *	This typically occurs when large amounts of metadata are being handled
379 *	by the buffer cache ( else buffer space runs out first, usually ).
380 */
381
382static __inline void
383bufcountwakeup(void)
384{
385
386	atomic_add_int(&numfreebuffers, 1);
387	mtx_lock(&nblock);
388	if (needsbuffer) {
389		needsbuffer &= ~VFS_BIO_NEED_ANY;
390		if (numfreebuffers >= hifreebuffers)
391			needsbuffer &= ~VFS_BIO_NEED_FREE;
392		wakeup(&needsbuffer);
393	}
394	mtx_unlock(&nblock);
395}
396
397/*
398 *	waitrunningbufspace()
399 *
400 *	runningbufspace is a measure of the amount of I/O currently
401 *	running.  This routine is used in async-write situations to
402 *	prevent creating huge backups of pending writes to a device.
403 *	Only asynchronous writes are governed by this function.
404 *
405 *	Reads will adjust runningbufspace, but will not block based on it.
406 *	The read load has a side effect of reducing the allowed write load.
407 *
408 *	This does NOT turn an async write into a sync write.  It waits
409 *	for earlier writes to complete and generally returns before the
410 *	caller's write has reached the device.
411 */
412void
413waitrunningbufspace(void)
414{
415
416	mtx_lock(&rbreqlock);
417	while (runningbufspace > hirunningspace) {
418		++runningbufreq;
419		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
420	}
421	mtx_unlock(&rbreqlock);
422}
423
424
425/*
426 *	vfs_buf_test_cache:
427 *
428 *	Called when a buffer is extended.  This function clears the B_CACHE
429 *	bit if the newly extended portion of the buffer does not contain
430 *	valid data.
431 */
432static __inline
433void
434vfs_buf_test_cache(struct buf *bp,
435		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
436		  vm_page_t m)
437{
438
439	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
440	if (bp->b_flags & B_CACHE) {
441		int base = (foff + off) & PAGE_MASK;
442		if (vm_page_is_valid(m, base, size) == 0)
443			bp->b_flags &= ~B_CACHE;
444	}
445}
446
447/* Wake up the buffer daemon if necessary */
448static __inline
449void
450bd_wakeup(int dirtybuflevel)
451{
452
453	mtx_lock(&bdlock);
454	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
455		bd_request = 1;
456		wakeup(&bd_request);
457	}
458	mtx_unlock(&bdlock);
459}
460
461/*
462 * bd_speedup - speedup the buffer cache flushing code
463 */
464
465static __inline
466void
467bd_speedup(void)
468{
469
470	bd_wakeup(1);
471}
472
473/*
474 * Calculating buffer cache scaling values and reserve space for buffer
475 * headers.  This is called during low level kernel initialization and
476 * may be called more then once.  We CANNOT write to the memory area
477 * being reserved at this time.
478 */
479caddr_t
480kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
481{
482	int tuned_nbuf;
483	long maxbuf;
484
485	/*
486	 * physmem_est is in pages.  Convert it to kilobytes (assumes
487	 * PAGE_SIZE is >= 1K)
488	 */
489	physmem_est = physmem_est * (PAGE_SIZE / 1024);
490
491	/*
492	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
493	 * For the first 64MB of ram nominally allocate sufficient buffers to
494	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
495	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
496	 * the buffer cache we limit the eventual kva reservation to
497	 * maxbcache bytes.
498	 *
499	 * factor represents the 1/4 x ram conversion.
500	 */
501	if (nbuf == 0) {
502		int factor = 4 * BKVASIZE / 1024;
503
504		nbuf = 50;
505		if (physmem_est > 4096)
506			nbuf += min((physmem_est - 4096) / factor,
507			    65536 / factor);
508		if (physmem_est > 65536)
509			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
510
511		if (maxbcache && nbuf > maxbcache / BKVASIZE)
512			nbuf = maxbcache / BKVASIZE;
513		tuned_nbuf = 1;
514	} else
515		tuned_nbuf = 0;
516
517	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
518	maxbuf = (LONG_MAX / 3) / BKVASIZE;
519	if (nbuf > maxbuf) {
520		if (!tuned_nbuf)
521			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
522			    maxbuf);
523		nbuf = maxbuf;
524	}
525
526	/*
527	 * swbufs are used as temporary holders for I/O, such as paging I/O.
528	 * We have no less then 16 and no more then 256.
529	 */
530	nswbuf = max(min(nbuf/4, 256), 16);
531#ifdef NSWBUF_MIN
532	if (nswbuf < NSWBUF_MIN)
533		nswbuf = NSWBUF_MIN;
534#endif
535#ifdef DIRECTIO
536	ffs_rawread_setup();
537#endif
538
539	/*
540	 * Reserve space for the buffer cache buffers
541	 */
542	swbuf = (void *)v;
543	v = (caddr_t)(swbuf + nswbuf);
544	buf = (void *)v;
545	v = (caddr_t)(buf + nbuf);
546
547	return(v);
548}
549
550/* Initialize the buffer subsystem.  Called before use of any buffers. */
551void
552bufinit(void)
553{
554	struct buf *bp;
555	int i;
556
557	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
558	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
559	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
560	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
561
562	/* next, make a null set of free lists */
563	for (i = 0; i < BUFFER_QUEUES; i++)
564		TAILQ_INIT(&bufqueues[i]);
565
566	/* finally, initialize each buffer header and stick on empty q */
567	for (i = 0; i < nbuf; i++) {
568		bp = &buf[i];
569		bzero(bp, sizeof *bp);
570		bp->b_flags = B_INVAL;	/* we're just an empty header */
571		bp->b_rcred = NOCRED;
572		bp->b_wcred = NOCRED;
573		bp->b_qindex = QUEUE_EMPTY;
574		bp->b_vflags = 0;
575		bp->b_xflags = 0;
576		LIST_INIT(&bp->b_dep);
577		BUF_LOCKINIT(bp);
578		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
579	}
580
581	/*
582	 * maxbufspace is the absolute maximum amount of buffer space we are
583	 * allowed to reserve in KVM and in real terms.  The absolute maximum
584	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
585	 * used by most other processes.  The differential is required to
586	 * ensure that buf_daemon is able to run when other processes might
587	 * be blocked waiting for buffer space.
588	 *
589	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
590	 * this may result in KVM fragmentation which is not handled optimally
591	 * by the system.
592	 */
593	maxbufspace = (long)nbuf * BKVASIZE;
594	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
595	lobufspace = hibufspace - MAXBSIZE;
596
597	lorunningspace = 512 * 1024;
598	hirunningspace = 1024 * 1024;
599
600/*
601 * Limit the amount of malloc memory since it is wired permanently into
602 * the kernel space.  Even though this is accounted for in the buffer
603 * allocation, we don't want the malloced region to grow uncontrolled.
604 * The malloc scheme improves memory utilization significantly on average
605 * (small) directories.
606 */
607	maxbufmallocspace = hibufspace / 20;
608
609/*
610 * Reduce the chance of a deadlock occuring by limiting the number
611 * of delayed-write dirty buffers we allow to stack up.
612 */
613	hidirtybuffers = nbuf / 4 + 20;
614	dirtybufthresh = hidirtybuffers * 9 / 10;
615	numdirtybuffers = 0;
616/*
617 * To support extreme low-memory systems, make sure hidirtybuffers cannot
618 * eat up all available buffer space.  This occurs when our minimum cannot
619 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
620 * BKVASIZE'd (8K) buffers.
621 */
622	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
623		hidirtybuffers >>= 1;
624	}
625	lodirtybuffers = hidirtybuffers / 2;
626
627/*
628 * Try to keep the number of free buffers in the specified range,
629 * and give special processes (e.g. like buf_daemon) access to an
630 * emergency reserve.
631 */
632	lofreebuffers = nbuf / 18 + 5;
633	hifreebuffers = 2 * lofreebuffers;
634	numfreebuffers = nbuf;
635
636/*
637 * Maximum number of async ops initiated per buf_daemon loop.  This is
638 * somewhat of a hack at the moment, we really need to limit ourselves
639 * based on the number of bytes of I/O in-transit that were initiated
640 * from buf_daemon.
641 */
642
643	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
644	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
645}
646
647/*
648 * bfreekva() - free the kva allocation for a buffer.
649 *
650 *	Since this call frees up buffer space, we call bufspacewakeup().
651 */
652static void
653bfreekva(struct buf *bp)
654{
655
656	if (bp->b_kvasize) {
657		atomic_add_int(&buffreekvacnt, 1);
658		atomic_subtract_long(&bufspace, bp->b_kvasize);
659		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
660		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
661		bp->b_kvasize = 0;
662		bufspacewakeup();
663	}
664}
665
666/*
667 *	bremfree:
668 *
669 *	Mark the buffer for removal from the appropriate free list in brelse.
670 *
671 */
672void
673bremfree(struct buf *bp)
674{
675
676	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
677	KASSERT((bp->b_flags & B_REMFREE) == 0,
678	    ("bremfree: buffer %p already marked for delayed removal.", bp));
679	KASSERT(bp->b_qindex != QUEUE_NONE,
680	    ("bremfree: buffer %p not on a queue.", bp));
681	BUF_ASSERT_HELD(bp);
682
683	bp->b_flags |= B_REMFREE;
684	/* Fixup numfreebuffers count.  */
685	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
686		atomic_subtract_int(&numfreebuffers, 1);
687}
688
689/*
690 *	bremfreef:
691 *
692 *	Force an immediate removal from a free list.  Used only in nfs when
693 *	it abuses the b_freelist pointer.
694 */
695void
696bremfreef(struct buf *bp)
697{
698	mtx_lock(&bqlock);
699	bremfreel(bp);
700	mtx_unlock(&bqlock);
701}
702
703/*
704 *	bremfreel:
705 *
706 *	Removes a buffer from the free list, must be called with the
707 *	bqlock held.
708 */
709static void
710bremfreel(struct buf *bp)
711{
712	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
713	    bp, bp->b_vp, bp->b_flags);
714	KASSERT(bp->b_qindex != QUEUE_NONE,
715	    ("bremfreel: buffer %p not on a queue.", bp));
716	BUF_ASSERT_HELD(bp);
717	mtx_assert(&bqlock, MA_OWNED);
718
719	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
720	bp->b_qindex = QUEUE_NONE;
721	/*
722	 * If this was a delayed bremfree() we only need to remove the buffer
723	 * from the queue and return the stats are already done.
724	 */
725	if (bp->b_flags & B_REMFREE) {
726		bp->b_flags &= ~B_REMFREE;
727		return;
728	}
729	/*
730	 * Fixup numfreebuffers count.  If the buffer is invalid or not
731	 * delayed-write, the buffer was free and we must decrement
732	 * numfreebuffers.
733	 */
734	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
735		atomic_subtract_int(&numfreebuffers, 1);
736}
737
738
739/*
740 * Get a buffer with the specified data.  Look in the cache first.  We
741 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
742 * is set, the buffer is valid and we do not have to do anything ( see
743 * getblk() ).  This is really just a special case of breadn().
744 */
745int
746bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
747    struct buf **bpp)
748{
749
750	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
751}
752
753/*
754 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
755 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
756 * the buffer is valid and we do not have to do anything.
757 */
758void
759breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
760    int cnt, struct ucred * cred)
761{
762	struct buf *rabp;
763	int i;
764
765	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
766		if (inmem(vp, *rablkno))
767			continue;
768		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
769
770		if ((rabp->b_flags & B_CACHE) == 0) {
771			if (!TD_IS_IDLETHREAD(curthread))
772				curthread->td_ru.ru_inblock++;
773			rabp->b_flags |= B_ASYNC;
774			rabp->b_flags &= ~B_INVAL;
775			rabp->b_ioflags &= ~BIO_ERROR;
776			rabp->b_iocmd = BIO_READ;
777			if (rabp->b_rcred == NOCRED && cred != NOCRED)
778				rabp->b_rcred = crhold(cred);
779			vfs_busy_pages(rabp, 0);
780			BUF_KERNPROC(rabp);
781			rabp->b_iooffset = dbtob(rabp->b_blkno);
782			bstrategy(rabp);
783		} else {
784			brelse(rabp);
785		}
786	}
787}
788
789/*
790 * Operates like bread, but also starts asynchronous I/O on
791 * read-ahead blocks.
792 */
793int
794breadn(struct vnode * vp, daddr_t blkno, int size,
795    daddr_t * rablkno, int *rabsize,
796    int cnt, struct ucred * cred, struct buf **bpp)
797{
798	struct buf *bp;
799	int rv = 0, readwait = 0;
800
801	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
802	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
803
804	/* if not found in cache, do some I/O */
805	if ((bp->b_flags & B_CACHE) == 0) {
806		if (!TD_IS_IDLETHREAD(curthread))
807			curthread->td_ru.ru_inblock++;
808		bp->b_iocmd = BIO_READ;
809		bp->b_flags &= ~B_INVAL;
810		bp->b_ioflags &= ~BIO_ERROR;
811		if (bp->b_rcred == NOCRED && cred != NOCRED)
812			bp->b_rcred = crhold(cred);
813		vfs_busy_pages(bp, 0);
814		bp->b_iooffset = dbtob(bp->b_blkno);
815		bstrategy(bp);
816		++readwait;
817	}
818
819	breada(vp, rablkno, rabsize, cnt, cred);
820
821	if (readwait) {
822		rv = bufwait(bp);
823	}
824	return (rv);
825}
826
827/*
828 * Write, release buffer on completion.  (Done by iodone
829 * if async).  Do not bother writing anything if the buffer
830 * is invalid.
831 *
832 * Note that we set B_CACHE here, indicating that buffer is
833 * fully valid and thus cacheable.  This is true even of NFS
834 * now so we set it generally.  This could be set either here
835 * or in biodone() since the I/O is synchronous.  We put it
836 * here.
837 */
838int
839bufwrite(struct buf *bp)
840{
841	int oldflags;
842	struct vnode *vp;
843	int vp_md;
844
845	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
846	if (bp->b_flags & B_INVAL) {
847		brelse(bp);
848		return (0);
849	}
850
851	oldflags = bp->b_flags;
852
853	BUF_ASSERT_HELD(bp);
854
855	if (bp->b_pin_count > 0)
856		bunpin_wait(bp);
857
858	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
859	    ("FFS background buffer should not get here %p", bp));
860
861	vp = bp->b_vp;
862	if (vp)
863		vp_md = vp->v_vflag & VV_MD;
864	else
865		vp_md = 0;
866
867	/* Mark the buffer clean */
868	bundirty(bp);
869
870	bp->b_flags &= ~B_DONE;
871	bp->b_ioflags &= ~BIO_ERROR;
872	bp->b_flags |= B_CACHE;
873	bp->b_iocmd = BIO_WRITE;
874
875	bufobj_wref(bp->b_bufobj);
876	vfs_busy_pages(bp, 1);
877
878	/*
879	 * Normal bwrites pipeline writes
880	 */
881	bp->b_runningbufspace = bp->b_bufsize;
882	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
883
884	if (!TD_IS_IDLETHREAD(curthread))
885		curthread->td_ru.ru_oublock++;
886	if (oldflags & B_ASYNC)
887		BUF_KERNPROC(bp);
888	bp->b_iooffset = dbtob(bp->b_blkno);
889	bstrategy(bp);
890
891	if ((oldflags & B_ASYNC) == 0) {
892		int rtval = bufwait(bp);
893		brelse(bp);
894		return (rtval);
895	} else {
896		/*
897		 * don't allow the async write to saturate the I/O
898		 * system.  We will not deadlock here because
899		 * we are blocking waiting for I/O that is already in-progress
900		 * to complete. We do not block here if it is the update
901		 * or syncer daemon trying to clean up as that can lead
902		 * to deadlock.
903		 */
904		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
905			waitrunningbufspace();
906	}
907
908	return (0);
909}
910
911void
912bufbdflush(struct bufobj *bo, struct buf *bp)
913{
914	struct buf *nbp;
915
916	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
917		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
918		altbufferflushes++;
919	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
920		BO_LOCK(bo);
921		/*
922		 * Try to find a buffer to flush.
923		 */
924		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
925			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
926			    BUF_LOCK(nbp,
927				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
928				continue;
929			if (bp == nbp)
930				panic("bdwrite: found ourselves");
931			BO_UNLOCK(bo);
932			/* Don't countdeps with the bo lock held. */
933			if (buf_countdeps(nbp, 0)) {
934				BO_LOCK(bo);
935				BUF_UNLOCK(nbp);
936				continue;
937			}
938			if (nbp->b_flags & B_CLUSTEROK) {
939				vfs_bio_awrite(nbp);
940			} else {
941				bremfree(nbp);
942				bawrite(nbp);
943			}
944			dirtybufferflushes++;
945			break;
946		}
947		if (nbp == NULL)
948			BO_UNLOCK(bo);
949	}
950}
951
952/*
953 * Delayed write. (Buffer is marked dirty).  Do not bother writing
954 * anything if the buffer is marked invalid.
955 *
956 * Note that since the buffer must be completely valid, we can safely
957 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
958 * biodone() in order to prevent getblk from writing the buffer
959 * out synchronously.
960 */
961void
962bdwrite(struct buf *bp)
963{
964	struct thread *td = curthread;
965	struct vnode *vp;
966	struct bufobj *bo;
967
968	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
969	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
970	BUF_ASSERT_HELD(bp);
971
972	if (bp->b_flags & B_INVAL) {
973		brelse(bp);
974		return;
975	}
976
977	/*
978	 * If we have too many dirty buffers, don't create any more.
979	 * If we are wildly over our limit, then force a complete
980	 * cleanup. Otherwise, just keep the situation from getting
981	 * out of control. Note that we have to avoid a recursive
982	 * disaster and not try to clean up after our own cleanup!
983	 */
984	vp = bp->b_vp;
985	bo = bp->b_bufobj;
986	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
987		td->td_pflags |= TDP_INBDFLUSH;
988		BO_BDFLUSH(bo, bp);
989		td->td_pflags &= ~TDP_INBDFLUSH;
990	} else
991		recursiveflushes++;
992
993	bdirty(bp);
994	/*
995	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
996	 * true even of NFS now.
997	 */
998	bp->b_flags |= B_CACHE;
999
1000	/*
1001	 * This bmap keeps the system from needing to do the bmap later,
1002	 * perhaps when the system is attempting to do a sync.  Since it
1003	 * is likely that the indirect block -- or whatever other datastructure
1004	 * that the filesystem needs is still in memory now, it is a good
1005	 * thing to do this.  Note also, that if the pageout daemon is
1006	 * requesting a sync -- there might not be enough memory to do
1007	 * the bmap then...  So, this is important to do.
1008	 */
1009	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1010		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1011	}
1012
1013	/*
1014	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1015	 */
1016	vfs_setdirty(bp);
1017
1018	/*
1019	 * We need to do this here to satisfy the vnode_pager and the
1020	 * pageout daemon, so that it thinks that the pages have been
1021	 * "cleaned".  Note that since the pages are in a delayed write
1022	 * buffer -- the VFS layer "will" see that the pages get written
1023	 * out on the next sync, or perhaps the cluster will be completed.
1024	 */
1025	vfs_clean_pages(bp);
1026	bqrelse(bp);
1027
1028	/*
1029	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1030	 * buffers (midpoint between our recovery point and our stall
1031	 * point).
1032	 */
1033	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1034
1035	/*
1036	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1037	 * due to the softdep code.
1038	 */
1039}
1040
1041/*
1042 *	bdirty:
1043 *
1044 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1045 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1046 *	itself to properly update it in the dirty/clean lists.  We mark it
1047 *	B_DONE to ensure that any asynchronization of the buffer properly
1048 *	clears B_DONE ( else a panic will occur later ).
1049 *
1050 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1051 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1052 *	should only be called if the buffer is known-good.
1053 *
1054 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1055 *	count.
1056 *
1057 *	The buffer must be on QUEUE_NONE.
1058 */
1059void
1060bdirty(struct buf *bp)
1061{
1062
1063	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1064	    bp, bp->b_vp, bp->b_flags);
1065	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1066	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1067	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1068	BUF_ASSERT_HELD(bp);
1069	bp->b_flags &= ~(B_RELBUF);
1070	bp->b_iocmd = BIO_WRITE;
1071
1072	if ((bp->b_flags & B_DELWRI) == 0) {
1073		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1074		reassignbuf(bp);
1075		atomic_add_int(&numdirtybuffers, 1);
1076		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1077	}
1078}
1079
1080/*
1081 *	bundirty:
1082 *
1083 *	Clear B_DELWRI for buffer.
1084 *
1085 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1086 *	count.
1087 *
1088 *	The buffer must be on QUEUE_NONE.
1089 */
1090
1091void
1092bundirty(struct buf *bp)
1093{
1094
1095	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1096	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1097	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1098	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1099	BUF_ASSERT_HELD(bp);
1100
1101	if (bp->b_flags & B_DELWRI) {
1102		bp->b_flags &= ~B_DELWRI;
1103		reassignbuf(bp);
1104		atomic_subtract_int(&numdirtybuffers, 1);
1105		numdirtywakeup(lodirtybuffers);
1106	}
1107	/*
1108	 * Since it is now being written, we can clear its deferred write flag.
1109	 */
1110	bp->b_flags &= ~B_DEFERRED;
1111}
1112
1113/*
1114 *	bawrite:
1115 *
1116 *	Asynchronous write.  Start output on a buffer, but do not wait for
1117 *	it to complete.  The buffer is released when the output completes.
1118 *
1119 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1120 *	B_INVAL buffers.  Not us.
1121 */
1122void
1123bawrite(struct buf *bp)
1124{
1125
1126	bp->b_flags |= B_ASYNC;
1127	(void) bwrite(bp);
1128}
1129
1130/*
1131 *	bwillwrite:
1132 *
1133 *	Called prior to the locking of any vnodes when we are expecting to
1134 *	write.  We do not want to starve the buffer cache with too many
1135 *	dirty buffers so we block here.  By blocking prior to the locking
1136 *	of any vnodes we attempt to avoid the situation where a locked vnode
1137 *	prevents the various system daemons from flushing related buffers.
1138 */
1139
1140void
1141bwillwrite(void)
1142{
1143
1144	if (numdirtybuffers >= hidirtybuffers) {
1145		mtx_lock(&nblock);
1146		while (numdirtybuffers >= hidirtybuffers) {
1147			bd_wakeup(1);
1148			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1149			msleep(&needsbuffer, &nblock,
1150			    (PRIBIO + 4), "flswai", 0);
1151		}
1152		mtx_unlock(&nblock);
1153	}
1154}
1155
1156/*
1157 * Return true if we have too many dirty buffers.
1158 */
1159int
1160buf_dirty_count_severe(void)
1161{
1162
1163	return(numdirtybuffers >= hidirtybuffers);
1164}
1165
1166/*
1167 *	brelse:
1168 *
1169 *	Release a busy buffer and, if requested, free its resources.  The
1170 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1171 *	to be accessed later as a cache entity or reused for other purposes.
1172 */
1173void
1174brelse(struct buf *bp)
1175{
1176	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1177	    bp, bp->b_vp, bp->b_flags);
1178	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1179	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1180
1181	if (bp->b_flags & B_MANAGED) {
1182		bqrelse(bp);
1183		return;
1184	}
1185
1186	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1187	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1188		/*
1189		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1190		 * pages from being scrapped.  If the error is anything
1191		 * other than an I/O error (EIO), assume that retryingi
1192		 * is futile.
1193		 */
1194		bp->b_ioflags &= ~BIO_ERROR;
1195		bdirty(bp);
1196	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1197	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1198		/*
1199		 * Either a failed I/O or we were asked to free or not
1200		 * cache the buffer.
1201		 */
1202		bp->b_flags |= B_INVAL;
1203		if (!LIST_EMPTY(&bp->b_dep))
1204			buf_deallocate(bp);
1205		if (bp->b_flags & B_DELWRI) {
1206			atomic_subtract_int(&numdirtybuffers, 1);
1207			numdirtywakeup(lodirtybuffers);
1208		}
1209		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1210		if ((bp->b_flags & B_VMIO) == 0) {
1211			if (bp->b_bufsize)
1212				allocbuf(bp, 0);
1213			if (bp->b_vp)
1214				brelvp(bp);
1215		}
1216	}
1217
1218	/*
1219	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1220	 * is called with B_DELWRI set, the underlying pages may wind up
1221	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1222	 * because pages associated with a B_DELWRI bp are marked clean.
1223	 *
1224	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1225	 * if B_DELWRI is set.
1226	 *
1227	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1228	 * on pages to return pages to the VM page queues.
1229	 */
1230	if (bp->b_flags & B_DELWRI)
1231		bp->b_flags &= ~B_RELBUF;
1232	else if (vm_page_count_severe()) {
1233		/*
1234		 * The locking of the BO_LOCK is not necessary since
1235		 * BKGRDINPROG cannot be set while we hold the buf
1236		 * lock, it can only be cleared if it is already
1237		 * pending.
1238		 */
1239		if (bp->b_vp) {
1240			if (!(bp->b_vflags & BV_BKGRDINPROG))
1241				bp->b_flags |= B_RELBUF;
1242		} else
1243			bp->b_flags |= B_RELBUF;
1244	}
1245
1246	/*
1247	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1248	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1249	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1250	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1251	 *
1252	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1253	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1254	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1255	 *
1256	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1257	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1258	 * the commit state and we cannot afford to lose the buffer. If the
1259	 * buffer has a background write in progress, we need to keep it
1260	 * around to prevent it from being reconstituted and starting a second
1261	 * background write.
1262	 */
1263	if ((bp->b_flags & B_VMIO)
1264	    && !(bp->b_vp->v_mount != NULL &&
1265		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1266		 !vn_isdisk(bp->b_vp, NULL) &&
1267		 (bp->b_flags & B_DELWRI))
1268	    ) {
1269
1270		int i, j, resid;
1271		vm_page_t m;
1272		off_t foff;
1273		vm_pindex_t poff;
1274		vm_object_t obj;
1275
1276		obj = bp->b_bufobj->bo_object;
1277
1278		/*
1279		 * Get the base offset and length of the buffer.  Note that
1280		 * in the VMIO case if the buffer block size is not
1281		 * page-aligned then b_data pointer may not be page-aligned.
1282		 * But our b_pages[] array *IS* page aligned.
1283		 *
1284		 * block sizes less then DEV_BSIZE (usually 512) are not
1285		 * supported due to the page granularity bits (m->valid,
1286		 * m->dirty, etc...).
1287		 *
1288		 * See man buf(9) for more information
1289		 */
1290		resid = bp->b_bufsize;
1291		foff = bp->b_offset;
1292		VM_OBJECT_LOCK(obj);
1293		for (i = 0; i < bp->b_npages; i++) {
1294			int had_bogus = 0;
1295
1296			m = bp->b_pages[i];
1297
1298			/*
1299			 * If we hit a bogus page, fixup *all* the bogus pages
1300			 * now.
1301			 */
1302			if (m == bogus_page) {
1303				poff = OFF_TO_IDX(bp->b_offset);
1304				had_bogus = 1;
1305
1306				for (j = i; j < bp->b_npages; j++) {
1307					vm_page_t mtmp;
1308					mtmp = bp->b_pages[j];
1309					if (mtmp == bogus_page) {
1310						mtmp = vm_page_lookup(obj, poff + j);
1311						if (!mtmp) {
1312							panic("brelse: page missing\n");
1313						}
1314						bp->b_pages[j] = mtmp;
1315					}
1316				}
1317
1318				if ((bp->b_flags & B_INVAL) == 0) {
1319					pmap_qenter(
1320					    trunc_page((vm_offset_t)bp->b_data),
1321					    bp->b_pages, bp->b_npages);
1322				}
1323				m = bp->b_pages[i];
1324			}
1325			if ((bp->b_flags & B_NOCACHE) ||
1326			    (bp->b_ioflags & BIO_ERROR)) {
1327				int poffset = foff & PAGE_MASK;
1328				int presid = resid > (PAGE_SIZE - poffset) ?
1329					(PAGE_SIZE - poffset) : resid;
1330
1331				KASSERT(presid >= 0, ("brelse: extra page"));
1332				vm_page_lock_queues();
1333				vm_page_set_invalid(m, poffset, presid);
1334				vm_page_unlock_queues();
1335				if (had_bogus)
1336					printf("avoided corruption bug in bogus_page/brelse code\n");
1337			}
1338			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1339			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1340		}
1341		VM_OBJECT_UNLOCK(obj);
1342		if (bp->b_flags & (B_INVAL | B_RELBUF))
1343			vfs_vmio_release(bp);
1344
1345	} else if (bp->b_flags & B_VMIO) {
1346
1347		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1348			vfs_vmio_release(bp);
1349		}
1350
1351	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1352		if (bp->b_bufsize != 0)
1353			allocbuf(bp, 0);
1354		if (bp->b_vp != NULL)
1355			brelvp(bp);
1356	}
1357
1358	if (BUF_LOCKRECURSED(bp)) {
1359		/* do not release to free list */
1360		BUF_UNLOCK(bp);
1361		return;
1362	}
1363
1364	/* enqueue */
1365	mtx_lock(&bqlock);
1366	/* Handle delayed bremfree() processing. */
1367	if (bp->b_flags & B_REMFREE)
1368		bremfreel(bp);
1369	if (bp->b_qindex != QUEUE_NONE)
1370		panic("brelse: free buffer onto another queue???");
1371
1372	/*
1373	 * If the buffer has junk contents signal it and eventually
1374	 * clean up B_DELWRI and diassociate the vnode so that gbincore()
1375	 * doesn't find it.
1376	 */
1377	if (bp->b_bufsize == 0 || (bp->b_ioflags & BIO_ERROR) != 0 ||
1378	    (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF)) != 0)
1379		bp->b_flags |= B_INVAL;
1380	if (bp->b_flags & B_INVAL) {
1381		if (bp->b_flags & B_DELWRI)
1382			bundirty(bp);
1383		if (bp->b_vp)
1384			brelvp(bp);
1385	}
1386
1387	/* buffers with no memory */
1388	if (bp->b_bufsize == 0) {
1389		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1390		if (bp->b_vflags & BV_BKGRDINPROG)
1391			panic("losing buffer 1");
1392		if (bp->b_kvasize) {
1393			bp->b_qindex = QUEUE_EMPTYKVA;
1394		} else {
1395			bp->b_qindex = QUEUE_EMPTY;
1396		}
1397		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1398	/* buffers with junk contents */
1399	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1400	    (bp->b_ioflags & BIO_ERROR)) {
1401		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1402		if (bp->b_vflags & BV_BKGRDINPROG)
1403			panic("losing buffer 2");
1404		bp->b_qindex = QUEUE_CLEAN;
1405		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1406	/* remaining buffers */
1407	} else {
1408		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1409		    (B_DELWRI|B_NEEDSGIANT))
1410			bp->b_qindex = QUEUE_DIRTY_GIANT;
1411		else if (bp->b_flags & B_DELWRI)
1412			bp->b_qindex = QUEUE_DIRTY;
1413		else
1414			bp->b_qindex = QUEUE_CLEAN;
1415		if (bp->b_flags & B_AGE)
1416			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1417		else
1418			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1419	}
1420	mtx_unlock(&bqlock);
1421
1422	/*
1423	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1424	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1425	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1426	 * if B_INVAL is set ).
1427	 */
1428
1429	if (!(bp->b_flags & B_DELWRI))
1430		bufcountwakeup();
1431
1432	/*
1433	 * Something we can maybe free or reuse
1434	 */
1435	if (bp->b_bufsize || bp->b_kvasize)
1436		bufspacewakeup();
1437
1438	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1439	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1440		panic("brelse: not dirty");
1441	/* unlock */
1442	BUF_UNLOCK(bp);
1443}
1444
1445/*
1446 * Release a buffer back to the appropriate queue but do not try to free
1447 * it.  The buffer is expected to be used again soon.
1448 *
1449 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1450 * biodone() to requeue an async I/O on completion.  It is also used when
1451 * known good buffers need to be requeued but we think we may need the data
1452 * again soon.
1453 *
1454 * XXX we should be able to leave the B_RELBUF hint set on completion.
1455 */
1456void
1457bqrelse(struct buf *bp)
1458{
1459	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1460	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1461	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1462
1463	if (BUF_LOCKRECURSED(bp)) {
1464		/* do not release to free list */
1465		BUF_UNLOCK(bp);
1466		return;
1467	}
1468
1469	if (bp->b_flags & B_MANAGED) {
1470		if (bp->b_flags & B_REMFREE) {
1471			mtx_lock(&bqlock);
1472			bremfreel(bp);
1473			mtx_unlock(&bqlock);
1474		}
1475		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1476		BUF_UNLOCK(bp);
1477		return;
1478	}
1479
1480	mtx_lock(&bqlock);
1481	/* Handle delayed bremfree() processing. */
1482	if (bp->b_flags & B_REMFREE)
1483		bremfreel(bp);
1484	if (bp->b_qindex != QUEUE_NONE)
1485		panic("bqrelse: free buffer onto another queue???");
1486	/* buffers with stale but valid contents */
1487	if (bp->b_flags & B_DELWRI) {
1488		if (bp->b_flags & B_NEEDSGIANT)
1489			bp->b_qindex = QUEUE_DIRTY_GIANT;
1490		else
1491			bp->b_qindex = QUEUE_DIRTY;
1492		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1493	} else {
1494		/*
1495		 * The locking of the BO_LOCK for checking of the
1496		 * BV_BKGRDINPROG is not necessary since the
1497		 * BV_BKGRDINPROG cannot be set while we hold the buf
1498		 * lock, it can only be cleared if it is already
1499		 * pending.
1500		 */
1501		if (!vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1502			bp->b_qindex = QUEUE_CLEAN;
1503			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1504			    b_freelist);
1505		} else {
1506			/*
1507			 * We are too low on memory, we have to try to free
1508			 * the buffer (most importantly: the wired pages
1509			 * making up its backing store) *now*.
1510			 */
1511			mtx_unlock(&bqlock);
1512			brelse(bp);
1513			return;
1514		}
1515	}
1516	mtx_unlock(&bqlock);
1517
1518	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1519		bufcountwakeup();
1520
1521	/*
1522	 * Something we can maybe free or reuse.
1523	 */
1524	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1525		bufspacewakeup();
1526
1527	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1528	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1529		panic("bqrelse: not dirty");
1530	/* unlock */
1531	BUF_UNLOCK(bp);
1532}
1533
1534/* Give pages used by the bp back to the VM system (where possible) */
1535static void
1536vfs_vmio_release(struct buf *bp)
1537{
1538	int i;
1539	vm_page_t m;
1540
1541	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1542	vm_page_lock_queues();
1543	for (i = 0; i < bp->b_npages; i++) {
1544		m = bp->b_pages[i];
1545		bp->b_pages[i] = NULL;
1546		/*
1547		 * In order to keep page LRU ordering consistent, put
1548		 * everything on the inactive queue.
1549		 */
1550		vm_page_unwire(m, 0);
1551		/*
1552		 * We don't mess with busy pages, it is
1553		 * the responsibility of the process that
1554		 * busied the pages to deal with them.
1555		 */
1556		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1557			continue;
1558
1559		if (m->wire_count == 0) {
1560			/*
1561			 * Might as well free the page if we can and it has
1562			 * no valid data.  We also free the page if the
1563			 * buffer was used for direct I/O
1564			 */
1565			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1566			    m->hold_count == 0) {
1567				vm_page_free(m);
1568			} else if (bp->b_flags & B_DIRECT) {
1569				vm_page_try_to_free(m);
1570			} else if (vm_page_count_severe()) {
1571				vm_page_try_to_cache(m);
1572			}
1573		}
1574	}
1575	vm_page_unlock_queues();
1576	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1577	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1578
1579	if (bp->b_bufsize) {
1580		bufspacewakeup();
1581		bp->b_bufsize = 0;
1582	}
1583	bp->b_npages = 0;
1584	bp->b_flags &= ~B_VMIO;
1585	if (bp->b_vp)
1586		brelvp(bp);
1587}
1588
1589/*
1590 * Check to see if a block at a particular lbn is available for a clustered
1591 * write.
1592 */
1593static int
1594vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1595{
1596	struct buf *bpa;
1597	int match;
1598
1599	match = 0;
1600
1601	/* If the buf isn't in core skip it */
1602	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1603		return (0);
1604
1605	/* If the buf is busy we don't want to wait for it */
1606	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1607		return (0);
1608
1609	/* Only cluster with valid clusterable delayed write buffers */
1610	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1611	    (B_DELWRI | B_CLUSTEROK))
1612		goto done;
1613
1614	if (bpa->b_bufsize != size)
1615		goto done;
1616
1617	/*
1618	 * Check to see if it is in the expected place on disk and that the
1619	 * block has been mapped.
1620	 */
1621	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1622		match = 1;
1623done:
1624	BUF_UNLOCK(bpa);
1625	return (match);
1626}
1627
1628/*
1629 *	vfs_bio_awrite:
1630 *
1631 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1632 *	This is much better then the old way of writing only one buffer at
1633 *	a time.  Note that we may not be presented with the buffers in the
1634 *	correct order, so we search for the cluster in both directions.
1635 */
1636int
1637vfs_bio_awrite(struct buf *bp)
1638{
1639	struct bufobj *bo;
1640	int i;
1641	int j;
1642	daddr_t lblkno = bp->b_lblkno;
1643	struct vnode *vp = bp->b_vp;
1644	int ncl;
1645	int nwritten;
1646	int size;
1647	int maxcl;
1648
1649	bo = &vp->v_bufobj;
1650	/*
1651	 * right now we support clustered writing only to regular files.  If
1652	 * we find a clusterable block we could be in the middle of a cluster
1653	 * rather then at the beginning.
1654	 */
1655	if ((vp->v_type == VREG) &&
1656	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1657	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1658
1659		size = vp->v_mount->mnt_stat.f_iosize;
1660		maxcl = MAXPHYS / size;
1661
1662		BO_LOCK(bo);
1663		for (i = 1; i < maxcl; i++)
1664			if (vfs_bio_clcheck(vp, size, lblkno + i,
1665			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1666				break;
1667
1668		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1669			if (vfs_bio_clcheck(vp, size, lblkno - j,
1670			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1671				break;
1672		BO_UNLOCK(bo);
1673		--j;
1674		ncl = i + j;
1675		/*
1676		 * this is a possible cluster write
1677		 */
1678		if (ncl != 1) {
1679			BUF_UNLOCK(bp);
1680			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1681			return nwritten;
1682		}
1683	}
1684	bremfree(bp);
1685	bp->b_flags |= B_ASYNC;
1686	/*
1687	 * default (old) behavior, writing out only one block
1688	 *
1689	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1690	 */
1691	nwritten = bp->b_bufsize;
1692	(void) bwrite(bp);
1693
1694	return nwritten;
1695}
1696
1697/*
1698 *	getnewbuf:
1699 *
1700 *	Find and initialize a new buffer header, freeing up existing buffers
1701 *	in the bufqueues as necessary.  The new buffer is returned locked.
1702 *
1703 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1704 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1705 *
1706 *	We block if:
1707 *		We have insufficient buffer headers
1708 *		We have insufficient buffer space
1709 *		buffer_map is too fragmented ( space reservation fails )
1710 *		If we have to flush dirty buffers ( but we try to avoid this )
1711 *
1712 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1713 *	Instead we ask the buf daemon to do it for us.  We attempt to
1714 *	avoid piecemeal wakeups of the pageout daemon.
1715 */
1716
1717static struct buf *
1718getnewbuf(struct vnode *vp, int slpflag, int slptimeo, int size, int maxsize,
1719    int gbflags)
1720{
1721	struct thread *td;
1722	struct buf *bp;
1723	struct buf *nbp;
1724	int defrag = 0;
1725	int nqindex;
1726	static int flushingbufs;
1727
1728	td = curthread;
1729	/*
1730	 * We can't afford to block since we might be holding a vnode lock,
1731	 * which may prevent system daemons from running.  We deal with
1732	 * low-memory situations by proactively returning memory and running
1733	 * async I/O rather then sync I/O.
1734	 */
1735	atomic_add_int(&getnewbufcalls, 1);
1736	atomic_subtract_int(&getnewbufrestarts, 1);
1737restart:
1738	atomic_add_int(&getnewbufrestarts, 1);
1739
1740	/*
1741	 * Setup for scan.  If we do not have enough free buffers,
1742	 * we setup a degenerate case that immediately fails.  Note
1743	 * that if we are specially marked process, we are allowed to
1744	 * dip into our reserves.
1745	 *
1746	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1747	 *
1748	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1749	 * However, there are a number of cases (defragging, reusing, ...)
1750	 * where we cannot backup.
1751	 */
1752	mtx_lock(&bqlock);
1753	nqindex = QUEUE_EMPTYKVA;
1754	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1755
1756	if (nbp == NULL) {
1757		/*
1758		 * If no EMPTYKVA buffers and we are either
1759		 * defragging or reusing, locate a CLEAN buffer
1760		 * to free or reuse.  If bufspace useage is low
1761		 * skip this step so we can allocate a new buffer.
1762		 */
1763		if (defrag || bufspace >= lobufspace) {
1764			nqindex = QUEUE_CLEAN;
1765			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1766		}
1767
1768		/*
1769		 * If we could not find or were not allowed to reuse a
1770		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1771		 * buffer.  We can only use an EMPTY buffer if allocating
1772		 * its KVA would not otherwise run us out of buffer space.
1773		 */
1774		if (nbp == NULL && defrag == 0 &&
1775		    bufspace + maxsize < hibufspace) {
1776			nqindex = QUEUE_EMPTY;
1777			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1778		}
1779	}
1780
1781	/*
1782	 * Run scan, possibly freeing data and/or kva mappings on the fly
1783	 * depending.
1784	 */
1785
1786	while ((bp = nbp) != NULL) {
1787		int qindex = nqindex;
1788
1789		/*
1790		 * Calculate next bp ( we can only use it if we do not block
1791		 * or do other fancy things ).
1792		 */
1793		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1794			switch(qindex) {
1795			case QUEUE_EMPTY:
1796				nqindex = QUEUE_EMPTYKVA;
1797				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1798					break;
1799				/* FALLTHROUGH */
1800			case QUEUE_EMPTYKVA:
1801				nqindex = QUEUE_CLEAN;
1802				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1803					break;
1804				/* FALLTHROUGH */
1805			case QUEUE_CLEAN:
1806				/*
1807				 * nbp is NULL.
1808				 */
1809				break;
1810			}
1811		}
1812		/*
1813		 * If we are defragging then we need a buffer with
1814		 * b_kvasize != 0.  XXX this situation should no longer
1815		 * occur, if defrag is non-zero the buffer's b_kvasize
1816		 * should also be non-zero at this point.  XXX
1817		 */
1818		if (defrag && bp->b_kvasize == 0) {
1819			printf("Warning: defrag empty buffer %p\n", bp);
1820			continue;
1821		}
1822
1823		/*
1824		 * Start freeing the bp.  This is somewhat involved.  nbp
1825		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1826		 */
1827		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1828			continue;
1829		if (bp->b_vp) {
1830			BO_LOCK(bp->b_bufobj);
1831			if (bp->b_vflags & BV_BKGRDINPROG) {
1832				BO_UNLOCK(bp->b_bufobj);
1833				BUF_UNLOCK(bp);
1834				continue;
1835			}
1836			BO_UNLOCK(bp->b_bufobj);
1837		}
1838		CTR6(KTR_BUF,
1839		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1840		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1841		    bp->b_kvasize, bp->b_bufsize, qindex);
1842
1843		/*
1844		 * Sanity Checks
1845		 */
1846		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1847
1848		/*
1849		 * Note: we no longer distinguish between VMIO and non-VMIO
1850		 * buffers.
1851		 */
1852
1853		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1854
1855		bremfreel(bp);
1856		mtx_unlock(&bqlock);
1857
1858		if (qindex == QUEUE_CLEAN) {
1859			if (bp->b_flags & B_VMIO) {
1860				bp->b_flags &= ~B_ASYNC;
1861				vfs_vmio_release(bp);
1862			}
1863			if (bp->b_vp)
1864				brelvp(bp);
1865		}
1866
1867		/*
1868		 * NOTE:  nbp is now entirely invalid.  We can only restart
1869		 * the scan from this point on.
1870		 *
1871		 * Get the rest of the buffer freed up.  b_kva* is still
1872		 * valid after this operation.
1873		 */
1874
1875		if (bp->b_rcred != NOCRED) {
1876			crfree(bp->b_rcred);
1877			bp->b_rcred = NOCRED;
1878		}
1879		if (bp->b_wcred != NOCRED) {
1880			crfree(bp->b_wcred);
1881			bp->b_wcred = NOCRED;
1882		}
1883		if (!LIST_EMPTY(&bp->b_dep))
1884			buf_deallocate(bp);
1885		if (bp->b_vflags & BV_BKGRDINPROG)
1886			panic("losing buffer 3");
1887		KASSERT(bp->b_vp == NULL,
1888		    ("bp: %p still has vnode %p.  qindex: %d",
1889		    bp, bp->b_vp, qindex));
1890		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1891		   ("bp: %p still on a buffer list. xflags %X",
1892		    bp, bp->b_xflags));
1893
1894		if (bp->b_bufsize)
1895			allocbuf(bp, 0);
1896
1897		bp->b_flags = 0;
1898		bp->b_ioflags = 0;
1899		bp->b_xflags = 0;
1900		bp->b_vflags = 0;
1901		bp->b_vp = NULL;
1902		bp->b_blkno = bp->b_lblkno = 0;
1903		bp->b_offset = NOOFFSET;
1904		bp->b_iodone = 0;
1905		bp->b_error = 0;
1906		bp->b_resid = 0;
1907		bp->b_bcount = 0;
1908		bp->b_npages = 0;
1909		bp->b_dirtyoff = bp->b_dirtyend = 0;
1910		bp->b_bufobj = NULL;
1911		bp->b_pin_count = 0;
1912		bp->b_fsprivate1 = NULL;
1913		bp->b_fsprivate2 = NULL;
1914		bp->b_fsprivate3 = NULL;
1915
1916		LIST_INIT(&bp->b_dep);
1917
1918		/*
1919		 * If we are defragging then free the buffer.
1920		 */
1921		if (defrag) {
1922			bp->b_flags |= B_INVAL;
1923			bfreekva(bp);
1924			brelse(bp);
1925			defrag = 0;
1926			goto restart;
1927		}
1928
1929		/*
1930		 * Notify any waiters for the buffer lock about
1931		 * identity change by freeing the buffer.
1932		 */
1933		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1934			bp->b_flags |= B_INVAL;
1935			bfreekva(bp);
1936			brelse(bp);
1937			goto restart;
1938		}
1939
1940		/*
1941		 * If we are overcomitted then recover the buffer and its
1942		 * KVM space.  This occurs in rare situations when multiple
1943		 * processes are blocked in getnewbuf() or allocbuf().
1944		 */
1945		if (bufspace >= hibufspace)
1946			flushingbufs = 1;
1947		if (flushingbufs && bp->b_kvasize != 0) {
1948			bp->b_flags |= B_INVAL;
1949			bfreekva(bp);
1950			brelse(bp);
1951			goto restart;
1952		}
1953		if (bufspace < lobufspace)
1954			flushingbufs = 0;
1955		break;
1956	}
1957
1958	/*
1959	 * If we exhausted our list, sleep as appropriate.  We may have to
1960	 * wakeup various daemons and write out some dirty buffers.
1961	 *
1962	 * Generally we are sleeping due to insufficient buffer space.
1963	 */
1964
1965	if (bp == NULL) {
1966		int flags, norunbuf;
1967		char *waitmsg;
1968		int fl;
1969
1970		if (defrag) {
1971			flags = VFS_BIO_NEED_BUFSPACE;
1972			waitmsg = "nbufkv";
1973		} else if (bufspace >= hibufspace) {
1974			waitmsg = "nbufbs";
1975			flags = VFS_BIO_NEED_BUFSPACE;
1976		} else {
1977			waitmsg = "newbuf";
1978			flags = VFS_BIO_NEED_ANY;
1979		}
1980		mtx_lock(&nblock);
1981		needsbuffer |= flags;
1982		mtx_unlock(&nblock);
1983		mtx_unlock(&bqlock);
1984
1985		bd_speedup();	/* heeeelp */
1986		if (gbflags & GB_NOWAIT_BD)
1987			return (NULL);
1988
1989		mtx_lock(&nblock);
1990		while (needsbuffer & flags) {
1991			if (vp != NULL && (td->td_pflags & TDP_BUFNEED) == 0) {
1992				mtx_unlock(&nblock);
1993				/*
1994				 * getblk() is called with a vnode
1995				 * locked, and some majority of the
1996				 * dirty buffers may as well belong to
1997				 * the vnode. Flushing the buffers
1998				 * there would make a progress that
1999				 * cannot be achieved by the
2000				 * buf_daemon, that cannot lock the
2001				 * vnode.
2002				 */
2003				norunbuf = ~(TDP_BUFNEED | TDP_NORUNNINGBUF) |
2004				    (td->td_pflags & TDP_NORUNNINGBUF);
2005				/* play bufdaemon */
2006				td->td_pflags |= TDP_BUFNEED | TDP_NORUNNINGBUF;
2007				fl = buf_do_flush(vp);
2008				td->td_pflags &= norunbuf;
2009				mtx_lock(&nblock);
2010				if (fl != 0)
2011					continue;
2012				if ((needsbuffer & flags) == 0)
2013					break;
2014			}
2015			if (msleep(&needsbuffer, &nblock,
2016			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2017				mtx_unlock(&nblock);
2018				return (NULL);
2019			}
2020		}
2021		mtx_unlock(&nblock);
2022	} else {
2023		/*
2024		 * We finally have a valid bp.  We aren't quite out of the
2025		 * woods, we still have to reserve kva space.  In order
2026		 * to keep fragmentation sane we only allocate kva in
2027		 * BKVASIZE chunks.
2028		 */
2029		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2030
2031		if (maxsize != bp->b_kvasize) {
2032			vm_offset_t addr = 0;
2033
2034			bfreekva(bp);
2035
2036			vm_map_lock(buffer_map);
2037			if (vm_map_findspace(buffer_map,
2038				vm_map_min(buffer_map), maxsize, &addr)) {
2039				/*
2040				 * Uh oh.  Buffer map is to fragmented.  We
2041				 * must defragment the map.
2042				 */
2043				atomic_add_int(&bufdefragcnt, 1);
2044				vm_map_unlock(buffer_map);
2045				defrag = 1;
2046				bp->b_flags |= B_INVAL;
2047				brelse(bp);
2048				goto restart;
2049			}
2050			if (addr) {
2051				vm_map_insert(buffer_map, NULL, 0,
2052					addr, addr + maxsize,
2053					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2054
2055				bp->b_kvabase = (caddr_t) addr;
2056				bp->b_kvasize = maxsize;
2057				atomic_add_long(&bufspace, bp->b_kvasize);
2058				atomic_add_int(&bufreusecnt, 1);
2059			}
2060			vm_map_unlock(buffer_map);
2061		}
2062		bp->b_saveaddr = bp->b_kvabase;
2063		bp->b_data = bp->b_saveaddr;
2064	}
2065	return(bp);
2066}
2067
2068/*
2069 *	buf_daemon:
2070 *
2071 *	buffer flushing daemon.  Buffers are normally flushed by the
2072 *	update daemon but if it cannot keep up this process starts to
2073 *	take the load in an attempt to prevent getnewbuf() from blocking.
2074 */
2075
2076static struct kproc_desc buf_kp = {
2077	"bufdaemon",
2078	buf_daemon,
2079	&bufdaemonproc
2080};
2081SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2082
2083static int
2084buf_do_flush(struct vnode *vp)
2085{
2086	int flushed;
2087
2088	flushed = flushbufqueues(vp, QUEUE_DIRTY, 0);
2089	/* The list empty check here is slightly racy */
2090	if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2091		mtx_lock(&Giant);
2092		flushed += flushbufqueues(vp, QUEUE_DIRTY_GIANT, 0);
2093		mtx_unlock(&Giant);
2094	}
2095	if (flushed == 0) {
2096		/*
2097		 * Could not find any buffers without rollback
2098		 * dependencies, so just write the first one
2099		 * in the hopes of eventually making progress.
2100		 */
2101		flushbufqueues(vp, QUEUE_DIRTY, 1);
2102		if (!TAILQ_EMPTY(
2103			    &bufqueues[QUEUE_DIRTY_GIANT])) {
2104			mtx_lock(&Giant);
2105			flushbufqueues(vp, QUEUE_DIRTY_GIANT, 1);
2106			mtx_unlock(&Giant);
2107		}
2108	}
2109	return (flushed);
2110}
2111
2112static void
2113buf_daemon()
2114{
2115
2116	/*
2117	 * This process needs to be suspended prior to shutdown sync.
2118	 */
2119	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2120	    SHUTDOWN_PRI_LAST);
2121
2122	/*
2123	 * This process is allowed to take the buffer cache to the limit
2124	 */
2125	curthread->td_pflags |= TDP_NORUNNINGBUF | TDP_BUFNEED;
2126	mtx_lock(&bdlock);
2127	for (;;) {
2128		bd_request = 0;
2129		mtx_unlock(&bdlock);
2130
2131		kproc_suspend_check(bufdaemonproc);
2132
2133		/*
2134		 * Do the flush.  Limit the amount of in-transit I/O we
2135		 * allow to build up, otherwise we would completely saturate
2136		 * the I/O system.  Wakeup any waiting processes before we
2137		 * normally would so they can run in parallel with our drain.
2138		 */
2139		while (numdirtybuffers > lodirtybuffers) {
2140			if (buf_do_flush(NULL) == 0)
2141				break;
2142			uio_yield();
2143		}
2144
2145		/*
2146		 * Only clear bd_request if we have reached our low water
2147		 * mark.  The buf_daemon normally waits 1 second and
2148		 * then incrementally flushes any dirty buffers that have
2149		 * built up, within reason.
2150		 *
2151		 * If we were unable to hit our low water mark and couldn't
2152		 * find any flushable buffers, we sleep half a second.
2153		 * Otherwise we loop immediately.
2154		 */
2155		mtx_lock(&bdlock);
2156		if (numdirtybuffers <= lodirtybuffers) {
2157			/*
2158			 * We reached our low water mark, reset the
2159			 * request and sleep until we are needed again.
2160			 * The sleep is just so the suspend code works.
2161			 */
2162			bd_request = 0;
2163			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2164		} else {
2165			/*
2166			 * We couldn't find any flushable dirty buffers but
2167			 * still have too many dirty buffers, we
2168			 * have to sleep and try again.  (rare)
2169			 */
2170			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2171		}
2172	}
2173}
2174
2175/*
2176 *	flushbufqueues:
2177 *
2178 *	Try to flush a buffer in the dirty queue.  We must be careful to
2179 *	free up B_INVAL buffers instead of write them, which NFS is
2180 *	particularly sensitive to.
2181 */
2182static int flushwithdeps = 0;
2183SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2184    0, "Number of buffers flushed with dependecies that require rollbacks");
2185
2186static int
2187flushbufqueues(struct vnode *lvp, int queue, int flushdeps)
2188{
2189	struct buf sentinel;
2190	struct vnode *vp;
2191	struct mount *mp;
2192	struct buf *bp;
2193	int hasdeps;
2194	int flushed;
2195	int target;
2196
2197	if (lvp == NULL) {
2198		target = numdirtybuffers - lodirtybuffers;
2199		if (flushdeps && target > 2)
2200			target /= 2;
2201	} else
2202		target = flushbufqtarget;
2203	flushed = 0;
2204	bp = NULL;
2205	sentinel.b_qindex = QUEUE_SENTINEL;
2206	mtx_lock(&bqlock);
2207	TAILQ_INSERT_HEAD(&bufqueues[queue], &sentinel, b_freelist);
2208	while (flushed != target) {
2209		bp = TAILQ_NEXT(&sentinel, b_freelist);
2210		if (bp != NULL) {
2211			TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2212			TAILQ_INSERT_AFTER(&bufqueues[queue], bp, &sentinel,
2213			    b_freelist);
2214		} else
2215			break;
2216		/*
2217		 * Skip sentinels inserted by other invocations of the
2218		 * flushbufqueues(), taking care to not reorder them.
2219		 */
2220		if (bp->b_qindex == QUEUE_SENTINEL)
2221			continue;
2222		/*
2223		 * Only flush the buffers that belong to the
2224		 * vnode locked by the curthread.
2225		 */
2226		if (lvp != NULL && bp->b_vp != lvp)
2227			continue;
2228		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2229			continue;
2230		if (bp->b_pin_count > 0) {
2231			BUF_UNLOCK(bp);
2232			continue;
2233		}
2234		BO_LOCK(bp->b_bufobj);
2235		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2236		    (bp->b_flags & B_DELWRI) == 0) {
2237			BO_UNLOCK(bp->b_bufobj);
2238			BUF_UNLOCK(bp);
2239			continue;
2240		}
2241		BO_UNLOCK(bp->b_bufobj);
2242		if (bp->b_flags & B_INVAL) {
2243			bremfreel(bp);
2244			mtx_unlock(&bqlock);
2245			brelse(bp);
2246			flushed++;
2247			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2248			mtx_lock(&bqlock);
2249			continue;
2250		}
2251
2252		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2253			if (flushdeps == 0) {
2254				BUF_UNLOCK(bp);
2255				continue;
2256			}
2257			hasdeps = 1;
2258		} else
2259			hasdeps = 0;
2260		/*
2261		 * We must hold the lock on a vnode before writing
2262		 * one of its buffers. Otherwise we may confuse, or
2263		 * in the case of a snapshot vnode, deadlock the
2264		 * system.
2265		 *
2266		 * The lock order here is the reverse of the normal
2267		 * of vnode followed by buf lock.  This is ok because
2268		 * the NOWAIT will prevent deadlock.
2269		 */
2270		vp = bp->b_vp;
2271		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2272			BUF_UNLOCK(bp);
2273			continue;
2274		}
2275		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_CANRECURSE) == 0) {
2276			mtx_unlock(&bqlock);
2277			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2278			    bp, bp->b_vp, bp->b_flags);
2279			if (curproc == bufdaemonproc)
2280				vfs_bio_awrite(bp);
2281			else {
2282				bremfree(bp);
2283				bwrite(bp);
2284			}
2285			vn_finished_write(mp);
2286			VOP_UNLOCK(vp, 0);
2287			flushwithdeps += hasdeps;
2288			flushed++;
2289
2290			/*
2291			 * Sleeping on runningbufspace while holding
2292			 * vnode lock leads to deadlock.
2293			 */
2294			if (curproc == bufdaemonproc)
2295				waitrunningbufspace();
2296			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2297			mtx_lock(&bqlock);
2298			continue;
2299		}
2300		vn_finished_write(mp);
2301		BUF_UNLOCK(bp);
2302	}
2303	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2304	mtx_unlock(&bqlock);
2305	return (flushed);
2306}
2307
2308/*
2309 * Check to see if a block is currently memory resident.
2310 */
2311struct buf *
2312incore(struct bufobj *bo, daddr_t blkno)
2313{
2314	struct buf *bp;
2315
2316	BO_LOCK(bo);
2317	bp = gbincore(bo, blkno);
2318	BO_UNLOCK(bo);
2319	return (bp);
2320}
2321
2322/*
2323 * Returns true if no I/O is needed to access the
2324 * associated VM object.  This is like incore except
2325 * it also hunts around in the VM system for the data.
2326 */
2327
2328static int
2329inmem(struct vnode * vp, daddr_t blkno)
2330{
2331	vm_object_t obj;
2332	vm_offset_t toff, tinc, size;
2333	vm_page_t m;
2334	vm_ooffset_t off;
2335
2336	ASSERT_VOP_LOCKED(vp, "inmem");
2337
2338	if (incore(&vp->v_bufobj, blkno))
2339		return 1;
2340	if (vp->v_mount == NULL)
2341		return 0;
2342	obj = vp->v_object;
2343	if (obj == NULL)
2344		return (0);
2345
2346	size = PAGE_SIZE;
2347	if (size > vp->v_mount->mnt_stat.f_iosize)
2348		size = vp->v_mount->mnt_stat.f_iosize;
2349	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2350
2351	VM_OBJECT_LOCK(obj);
2352	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2353		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2354		if (!m)
2355			goto notinmem;
2356		tinc = size;
2357		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2358			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2359		if (vm_page_is_valid(m,
2360		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2361			goto notinmem;
2362	}
2363	VM_OBJECT_UNLOCK(obj);
2364	return 1;
2365
2366notinmem:
2367	VM_OBJECT_UNLOCK(obj);
2368	return (0);
2369}
2370
2371/*
2372 *	vfs_setdirty:
2373 *
2374 *	Sets the dirty range for a buffer based on the status of the dirty
2375 *	bits in the pages comprising the buffer.
2376 *
2377 *	The range is limited to the size of the buffer.
2378 *
2379 *	This routine is primarily used by NFS, but is generalized for the
2380 *	B_VMIO case.
2381 */
2382static void
2383vfs_setdirty(struct buf *bp)
2384{
2385
2386	/*
2387	 * Degenerate case - empty buffer
2388	 */
2389
2390	if (bp->b_bufsize == 0)
2391		return;
2392
2393	/*
2394	 * We qualify the scan for modified pages on whether the
2395	 * object has been flushed yet.
2396	 */
2397
2398	if ((bp->b_flags & B_VMIO) == 0)
2399		return;
2400
2401	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2402	vfs_setdirty_locked_object(bp);
2403	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2404}
2405
2406static void
2407vfs_setdirty_locked_object(struct buf *bp)
2408{
2409	vm_object_t object;
2410	int i;
2411
2412	object = bp->b_bufobj->bo_object;
2413	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2414	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2415		vm_offset_t boffset;
2416		vm_offset_t eoffset;
2417
2418		vm_page_lock_queues();
2419		/*
2420		 * test the pages to see if they have been modified directly
2421		 * by users through the VM system.
2422		 */
2423		for (i = 0; i < bp->b_npages; i++)
2424			vm_page_test_dirty(bp->b_pages[i]);
2425
2426		/*
2427		 * Calculate the encompassing dirty range, boffset and eoffset,
2428		 * (eoffset - boffset) bytes.
2429		 */
2430
2431		for (i = 0; i < bp->b_npages; i++) {
2432			if (bp->b_pages[i]->dirty)
2433				break;
2434		}
2435		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2436
2437		for (i = bp->b_npages - 1; i >= 0; --i) {
2438			if (bp->b_pages[i]->dirty) {
2439				break;
2440			}
2441		}
2442		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2443
2444		vm_page_unlock_queues();
2445		/*
2446		 * Fit it to the buffer.
2447		 */
2448
2449		if (eoffset > bp->b_bcount)
2450			eoffset = bp->b_bcount;
2451
2452		/*
2453		 * If we have a good dirty range, merge with the existing
2454		 * dirty range.
2455		 */
2456
2457		if (boffset < eoffset) {
2458			if (bp->b_dirtyoff > boffset)
2459				bp->b_dirtyoff = boffset;
2460			if (bp->b_dirtyend < eoffset)
2461				bp->b_dirtyend = eoffset;
2462		}
2463	}
2464}
2465
2466/*
2467 *	getblk:
2468 *
2469 *	Get a block given a specified block and offset into a file/device.
2470 *	The buffers B_DONE bit will be cleared on return, making it almost
2471 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2472 *	return.  The caller should clear B_INVAL prior to initiating a
2473 *	READ.
2474 *
2475 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2476 *	an existing buffer.
2477 *
2478 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2479 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2480 *	and then cleared based on the backing VM.  If the previous buffer is
2481 *	non-0-sized but invalid, B_CACHE will be cleared.
2482 *
2483 *	If getblk() must create a new buffer, the new buffer is returned with
2484 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2485 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2486 *	backing VM.
2487 *
2488 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2489 *	B_CACHE bit is clear.
2490 *
2491 *	What this means, basically, is that the caller should use B_CACHE to
2492 *	determine whether the buffer is fully valid or not and should clear
2493 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2494 *	the buffer by loading its data area with something, the caller needs
2495 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2496 *	the caller should set B_CACHE ( as an optimization ), else the caller
2497 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2498 *	a write attempt or if it was a successfull read.  If the caller
2499 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2500 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2501 */
2502struct buf *
2503getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2504    int flags)
2505{
2506	struct buf *bp;
2507	struct bufobj *bo;
2508	int error;
2509
2510	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2511	ASSERT_VOP_LOCKED(vp, "getblk");
2512	if (size > MAXBSIZE)
2513		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2514
2515	bo = &vp->v_bufobj;
2516loop:
2517	/*
2518	 * Block if we are low on buffers.   Certain processes are allowed
2519	 * to completely exhaust the buffer cache.
2520         *
2521         * If this check ever becomes a bottleneck it may be better to
2522         * move it into the else, when gbincore() fails.  At the moment
2523         * it isn't a problem.
2524	 *
2525	 * XXX remove if 0 sections (clean this up after its proven)
2526         */
2527	if (numfreebuffers == 0) {
2528		if (TD_IS_IDLETHREAD(curthread))
2529			return NULL;
2530		mtx_lock(&nblock);
2531		needsbuffer |= VFS_BIO_NEED_ANY;
2532		mtx_unlock(&nblock);
2533	}
2534
2535	BO_LOCK(bo);
2536	bp = gbincore(bo, blkno);
2537	if (bp != NULL) {
2538		int lockflags;
2539		/*
2540		 * Buffer is in-core.  If the buffer is not busy, it must
2541		 * be on a queue.
2542		 */
2543		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2544
2545		if (flags & GB_LOCK_NOWAIT)
2546			lockflags |= LK_NOWAIT;
2547
2548		error = BUF_TIMELOCK(bp, lockflags,
2549		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2550
2551		/*
2552		 * If we slept and got the lock we have to restart in case
2553		 * the buffer changed identities.
2554		 */
2555		if (error == ENOLCK)
2556			goto loop;
2557		/* We timed out or were interrupted. */
2558		else if (error)
2559			return (NULL);
2560
2561		/*
2562		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2563		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2564		 * and for a VMIO buffer B_CACHE is adjusted according to the
2565		 * backing VM cache.
2566		 */
2567		if (bp->b_flags & B_INVAL)
2568			bp->b_flags &= ~B_CACHE;
2569		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2570			bp->b_flags |= B_CACHE;
2571		bremfree(bp);
2572
2573		/*
2574		 * check for size inconsistancies for non-VMIO case.
2575		 */
2576
2577		if (bp->b_bcount != size) {
2578			if ((bp->b_flags & B_VMIO) == 0 ||
2579			    (size > bp->b_kvasize)) {
2580				if (bp->b_flags & B_DELWRI) {
2581					/*
2582					 * If buffer is pinned and caller does
2583					 * not want sleep  waiting for it to be
2584					 * unpinned, bail out
2585					 * */
2586					if (bp->b_pin_count > 0) {
2587						if (flags & GB_LOCK_NOWAIT) {
2588							bqrelse(bp);
2589							return (NULL);
2590						} else {
2591							bunpin_wait(bp);
2592						}
2593					}
2594					bp->b_flags |= B_NOCACHE;
2595					bwrite(bp);
2596				} else {
2597					if (LIST_EMPTY(&bp->b_dep)) {
2598						bp->b_flags |= B_RELBUF;
2599						brelse(bp);
2600					} else {
2601						bp->b_flags |= B_NOCACHE;
2602						bwrite(bp);
2603					}
2604				}
2605				goto loop;
2606			}
2607		}
2608
2609		/*
2610		 * If the size is inconsistant in the VMIO case, we can resize
2611		 * the buffer.  This might lead to B_CACHE getting set or
2612		 * cleared.  If the size has not changed, B_CACHE remains
2613		 * unchanged from its previous state.
2614		 */
2615
2616		if (bp->b_bcount != size)
2617			allocbuf(bp, size);
2618
2619		KASSERT(bp->b_offset != NOOFFSET,
2620		    ("getblk: no buffer offset"));
2621
2622		/*
2623		 * A buffer with B_DELWRI set and B_CACHE clear must
2624		 * be committed before we can return the buffer in
2625		 * order to prevent the caller from issuing a read
2626		 * ( due to B_CACHE not being set ) and overwriting
2627		 * it.
2628		 *
2629		 * Most callers, including NFS and FFS, need this to
2630		 * operate properly either because they assume they
2631		 * can issue a read if B_CACHE is not set, or because
2632		 * ( for example ) an uncached B_DELWRI might loop due
2633		 * to softupdates re-dirtying the buffer.  In the latter
2634		 * case, B_CACHE is set after the first write completes,
2635		 * preventing further loops.
2636		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2637		 * above while extending the buffer, we cannot allow the
2638		 * buffer to remain with B_CACHE set after the write
2639		 * completes or it will represent a corrupt state.  To
2640		 * deal with this we set B_NOCACHE to scrap the buffer
2641		 * after the write.
2642		 *
2643		 * We might be able to do something fancy, like setting
2644		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2645		 * so the below call doesn't set B_CACHE, but that gets real
2646		 * confusing.  This is much easier.
2647		 */
2648
2649		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2650			bp->b_flags |= B_NOCACHE;
2651			bwrite(bp);
2652			goto loop;
2653		}
2654		bp->b_flags &= ~B_DONE;
2655	} else {
2656		int bsize, maxsize, vmio;
2657		off_t offset;
2658
2659		/*
2660		 * Buffer is not in-core, create new buffer.  The buffer
2661		 * returned by getnewbuf() is locked.  Note that the returned
2662		 * buffer is also considered valid (not marked B_INVAL).
2663		 */
2664		BO_UNLOCK(bo);
2665		/*
2666		 * If the user does not want us to create the buffer, bail out
2667		 * here.
2668		 */
2669		if (flags & GB_NOCREAT)
2670			return NULL;
2671		bsize = bo->bo_bsize;
2672		offset = blkno * bsize;
2673		vmio = vp->v_object != NULL;
2674		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2675		maxsize = imax(maxsize, bsize);
2676
2677		bp = getnewbuf(vp, slpflag, slptimeo, size, maxsize, flags);
2678		if (bp == NULL) {
2679			if (slpflag || slptimeo)
2680				return NULL;
2681			goto loop;
2682		}
2683
2684		/*
2685		 * This code is used to make sure that a buffer is not
2686		 * created while the getnewbuf routine is blocked.
2687		 * This can be a problem whether the vnode is locked or not.
2688		 * If the buffer is created out from under us, we have to
2689		 * throw away the one we just created.
2690		 *
2691		 * Note: this must occur before we associate the buffer
2692		 * with the vp especially considering limitations in
2693		 * the splay tree implementation when dealing with duplicate
2694		 * lblkno's.
2695		 */
2696		BO_LOCK(bo);
2697		if (gbincore(bo, blkno)) {
2698			BO_UNLOCK(bo);
2699			bp->b_flags |= B_INVAL;
2700			brelse(bp);
2701			goto loop;
2702		}
2703
2704		/*
2705		 * Insert the buffer into the hash, so that it can
2706		 * be found by incore.
2707		 */
2708		bp->b_blkno = bp->b_lblkno = blkno;
2709		bp->b_offset = offset;
2710		bgetvp(vp, bp);
2711		BO_UNLOCK(bo);
2712
2713		/*
2714		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2715		 * buffer size starts out as 0, B_CACHE will be set by
2716		 * allocbuf() for the VMIO case prior to it testing the
2717		 * backing store for validity.
2718		 */
2719
2720		if (vmio) {
2721			bp->b_flags |= B_VMIO;
2722#if defined(VFS_BIO_DEBUG)
2723			if (vn_canvmio(vp) != TRUE)
2724				printf("getblk: VMIO on vnode type %d\n",
2725					vp->v_type);
2726#endif
2727			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2728			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2729			    bp, vp->v_object, bp->b_bufobj->bo_object));
2730		} else {
2731			bp->b_flags &= ~B_VMIO;
2732			KASSERT(bp->b_bufobj->bo_object == NULL,
2733			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2734			    bp, bp->b_bufobj->bo_object));
2735		}
2736
2737		allocbuf(bp, size);
2738		bp->b_flags &= ~B_DONE;
2739	}
2740	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2741	BUF_ASSERT_HELD(bp);
2742	KASSERT(bp->b_bufobj == bo,
2743	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2744	return (bp);
2745}
2746
2747/*
2748 * Get an empty, disassociated buffer of given size.  The buffer is initially
2749 * set to B_INVAL.
2750 */
2751struct buf *
2752geteblk(int size, int flags)
2753{
2754	struct buf *bp;
2755	int maxsize;
2756
2757	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2758	while ((bp = getnewbuf(NULL, 0, 0, size, maxsize, flags)) == NULL) {
2759		if ((flags & GB_NOWAIT_BD) &&
2760		    (curthread->td_pflags & TDP_BUFNEED) != 0)
2761			return (NULL);
2762	}
2763	allocbuf(bp, size);
2764	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2765	BUF_ASSERT_HELD(bp);
2766	return (bp);
2767}
2768
2769
2770/*
2771 * This code constitutes the buffer memory from either anonymous system
2772 * memory (in the case of non-VMIO operations) or from an associated
2773 * VM object (in the case of VMIO operations).  This code is able to
2774 * resize a buffer up or down.
2775 *
2776 * Note that this code is tricky, and has many complications to resolve
2777 * deadlock or inconsistant data situations.  Tread lightly!!!
2778 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2779 * the caller.  Calling this code willy nilly can result in the loss of data.
2780 *
2781 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2782 * B_CACHE for the non-VMIO case.
2783 */
2784
2785int
2786allocbuf(struct buf *bp, int size)
2787{
2788	int newbsize, mbsize;
2789	int i;
2790
2791	BUF_ASSERT_HELD(bp);
2792
2793	if (bp->b_kvasize < size)
2794		panic("allocbuf: buffer too small");
2795
2796	if ((bp->b_flags & B_VMIO) == 0) {
2797		caddr_t origbuf;
2798		int origbufsize;
2799		/*
2800		 * Just get anonymous memory from the kernel.  Don't
2801		 * mess with B_CACHE.
2802		 */
2803		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2804		if (bp->b_flags & B_MALLOC)
2805			newbsize = mbsize;
2806		else
2807			newbsize = round_page(size);
2808
2809		if (newbsize < bp->b_bufsize) {
2810			/*
2811			 * malloced buffers are not shrunk
2812			 */
2813			if (bp->b_flags & B_MALLOC) {
2814				if (newbsize) {
2815					bp->b_bcount = size;
2816				} else {
2817					free(bp->b_data, M_BIOBUF);
2818					if (bp->b_bufsize) {
2819						atomic_subtract_long(
2820						    &bufmallocspace,
2821						    bp->b_bufsize);
2822						bufspacewakeup();
2823						bp->b_bufsize = 0;
2824					}
2825					bp->b_saveaddr = bp->b_kvabase;
2826					bp->b_data = bp->b_saveaddr;
2827					bp->b_bcount = 0;
2828					bp->b_flags &= ~B_MALLOC;
2829				}
2830				return 1;
2831			}
2832			vm_hold_free_pages(
2833			    bp,
2834			    (vm_offset_t) bp->b_data + newbsize,
2835			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2836		} else if (newbsize > bp->b_bufsize) {
2837			/*
2838			 * We only use malloced memory on the first allocation.
2839			 * and revert to page-allocated memory when the buffer
2840			 * grows.
2841			 */
2842			/*
2843			 * There is a potential smp race here that could lead
2844			 * to bufmallocspace slightly passing the max.  It
2845			 * is probably extremely rare and not worth worrying
2846			 * over.
2847			 */
2848			if ( (bufmallocspace < maxbufmallocspace) &&
2849				(bp->b_bufsize == 0) &&
2850				(mbsize <= PAGE_SIZE/2)) {
2851
2852				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2853				bp->b_bufsize = mbsize;
2854				bp->b_bcount = size;
2855				bp->b_flags |= B_MALLOC;
2856				atomic_add_long(&bufmallocspace, mbsize);
2857				return 1;
2858			}
2859			origbuf = NULL;
2860			origbufsize = 0;
2861			/*
2862			 * If the buffer is growing on its other-than-first allocation,
2863			 * then we revert to the page-allocation scheme.
2864			 */
2865			if (bp->b_flags & B_MALLOC) {
2866				origbuf = bp->b_data;
2867				origbufsize = bp->b_bufsize;
2868				bp->b_data = bp->b_kvabase;
2869				if (bp->b_bufsize) {
2870					atomic_subtract_long(&bufmallocspace,
2871					    bp->b_bufsize);
2872					bufspacewakeup();
2873					bp->b_bufsize = 0;
2874				}
2875				bp->b_flags &= ~B_MALLOC;
2876				newbsize = round_page(newbsize);
2877			}
2878			vm_hold_load_pages(
2879			    bp,
2880			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2881			    (vm_offset_t) bp->b_data + newbsize);
2882			if (origbuf) {
2883				bcopy(origbuf, bp->b_data, origbufsize);
2884				free(origbuf, M_BIOBUF);
2885			}
2886		}
2887	} else {
2888		int desiredpages;
2889
2890		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2891		desiredpages = (size == 0) ? 0 :
2892			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2893
2894		if (bp->b_flags & B_MALLOC)
2895			panic("allocbuf: VMIO buffer can't be malloced");
2896		/*
2897		 * Set B_CACHE initially if buffer is 0 length or will become
2898		 * 0-length.
2899		 */
2900		if (size == 0 || bp->b_bufsize == 0)
2901			bp->b_flags |= B_CACHE;
2902
2903		if (newbsize < bp->b_bufsize) {
2904			/*
2905			 * DEV_BSIZE aligned new buffer size is less then the
2906			 * DEV_BSIZE aligned existing buffer size.  Figure out
2907			 * if we have to remove any pages.
2908			 */
2909			if (desiredpages < bp->b_npages) {
2910				vm_page_t m;
2911
2912				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2913				vm_page_lock_queues();
2914				for (i = desiredpages; i < bp->b_npages; i++) {
2915					/*
2916					 * the page is not freed here -- it
2917					 * is the responsibility of
2918					 * vnode_pager_setsize
2919					 */
2920					m = bp->b_pages[i];
2921					KASSERT(m != bogus_page,
2922					    ("allocbuf: bogus page found"));
2923					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2924						vm_page_lock_queues();
2925
2926					bp->b_pages[i] = NULL;
2927					vm_page_unwire(m, 0);
2928				}
2929				vm_page_unlock_queues();
2930				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2931				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2932				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2933				bp->b_npages = desiredpages;
2934			}
2935		} else if (size > bp->b_bcount) {
2936			/*
2937			 * We are growing the buffer, possibly in a
2938			 * byte-granular fashion.
2939			 */
2940			struct vnode *vp;
2941			vm_object_t obj;
2942			vm_offset_t toff;
2943			vm_offset_t tinc;
2944
2945			/*
2946			 * Step 1, bring in the VM pages from the object,
2947			 * allocating them if necessary.  We must clear
2948			 * B_CACHE if these pages are not valid for the
2949			 * range covered by the buffer.
2950			 */
2951
2952			vp = bp->b_vp;
2953			obj = bp->b_bufobj->bo_object;
2954
2955			VM_OBJECT_LOCK(obj);
2956			while (bp->b_npages < desiredpages) {
2957				vm_page_t m;
2958				vm_pindex_t pi;
2959
2960				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2961				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2962					/*
2963					 * note: must allocate system pages
2964					 * since blocking here could intefere
2965					 * with paging I/O, no matter which
2966					 * process we are.
2967					 */
2968					m = vm_page_alloc(obj, pi,
2969					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2970					    VM_ALLOC_WIRED);
2971					if (m == NULL) {
2972						atomic_add_int(&vm_pageout_deficit,
2973						    desiredpages - bp->b_npages);
2974						VM_OBJECT_UNLOCK(obj);
2975						VM_WAIT;
2976						VM_OBJECT_LOCK(obj);
2977					} else {
2978						if (m->valid == 0)
2979							bp->b_flags &= ~B_CACHE;
2980						bp->b_pages[bp->b_npages] = m;
2981						++bp->b_npages;
2982					}
2983					continue;
2984				}
2985
2986				/*
2987				 * We found a page.  If we have to sleep on it,
2988				 * retry because it might have gotten freed out
2989				 * from under us.
2990				 *
2991				 * We can only test VPO_BUSY here.  Blocking on
2992				 * m->busy might lead to a deadlock:
2993				 *
2994				 *  vm_fault->getpages->cluster_read->allocbuf
2995				 *
2996				 */
2997				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2998					continue;
2999
3000				/*
3001				 * We have a good page.
3002				 */
3003				vm_page_lock_queues();
3004				vm_page_wire(m);
3005				vm_page_unlock_queues();
3006				bp->b_pages[bp->b_npages] = m;
3007				++bp->b_npages;
3008			}
3009
3010			/*
3011			 * Step 2.  We've loaded the pages into the buffer,
3012			 * we have to figure out if we can still have B_CACHE
3013			 * set.  Note that B_CACHE is set according to the
3014			 * byte-granular range ( bcount and size ), new the
3015			 * aligned range ( newbsize ).
3016			 *
3017			 * The VM test is against m->valid, which is DEV_BSIZE
3018			 * aligned.  Needless to say, the validity of the data
3019			 * needs to also be DEV_BSIZE aligned.  Note that this
3020			 * fails with NFS if the server or some other client
3021			 * extends the file's EOF.  If our buffer is resized,
3022			 * B_CACHE may remain set! XXX
3023			 */
3024
3025			toff = bp->b_bcount;
3026			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
3027
3028			while ((bp->b_flags & B_CACHE) && toff < size) {
3029				vm_pindex_t pi;
3030
3031				if (tinc > (size - toff))
3032					tinc = size - toff;
3033
3034				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
3035				    PAGE_SHIFT;
3036
3037				vfs_buf_test_cache(
3038				    bp,
3039				    bp->b_offset,
3040				    toff,
3041				    tinc,
3042				    bp->b_pages[pi]
3043				);
3044				toff += tinc;
3045				tinc = PAGE_SIZE;
3046			}
3047			VM_OBJECT_UNLOCK(obj);
3048
3049			/*
3050			 * Step 3, fixup the KVM pmap.  Remember that
3051			 * bp->b_data is relative to bp->b_offset, but
3052			 * bp->b_offset may be offset into the first page.
3053			 */
3054
3055			bp->b_data = (caddr_t)
3056			    trunc_page((vm_offset_t)bp->b_data);
3057			pmap_qenter(
3058			    (vm_offset_t)bp->b_data,
3059			    bp->b_pages,
3060			    bp->b_npages
3061			);
3062
3063			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3064			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3065		}
3066	}
3067	if (newbsize < bp->b_bufsize)
3068		bufspacewakeup();
3069	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3070	bp->b_bcount = size;		/* requested buffer size	*/
3071	return 1;
3072}
3073
3074void
3075biodone(struct bio *bp)
3076{
3077	struct mtx *mtxp;
3078	void (*done)(struct bio *);
3079
3080	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3081	mtx_lock(mtxp);
3082	bp->bio_flags |= BIO_DONE;
3083	done = bp->bio_done;
3084	if (done == NULL)
3085		wakeup(bp);
3086	mtx_unlock(mtxp);
3087	if (done != NULL)
3088		done(bp);
3089}
3090
3091/*
3092 * Wait for a BIO to finish.
3093 *
3094 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3095 * case is not yet clear.
3096 */
3097int
3098biowait(struct bio *bp, const char *wchan)
3099{
3100	struct mtx *mtxp;
3101
3102	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3103	mtx_lock(mtxp);
3104	while ((bp->bio_flags & BIO_DONE) == 0)
3105		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3106	mtx_unlock(mtxp);
3107	if (bp->bio_error != 0)
3108		return (bp->bio_error);
3109	if (!(bp->bio_flags & BIO_ERROR))
3110		return (0);
3111	return (EIO);
3112}
3113
3114void
3115biofinish(struct bio *bp, struct devstat *stat, int error)
3116{
3117
3118	if (error) {
3119		bp->bio_error = error;
3120		bp->bio_flags |= BIO_ERROR;
3121	}
3122	if (stat != NULL)
3123		devstat_end_transaction_bio(stat, bp);
3124	biodone(bp);
3125}
3126
3127/*
3128 *	bufwait:
3129 *
3130 *	Wait for buffer I/O completion, returning error status.  The buffer
3131 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3132 *	error and cleared.
3133 */
3134int
3135bufwait(struct buf *bp)
3136{
3137	if (bp->b_iocmd == BIO_READ)
3138		bwait(bp, PRIBIO, "biord");
3139	else
3140		bwait(bp, PRIBIO, "biowr");
3141	if (bp->b_flags & B_EINTR) {
3142		bp->b_flags &= ~B_EINTR;
3143		return (EINTR);
3144	}
3145	if (bp->b_ioflags & BIO_ERROR) {
3146		return (bp->b_error ? bp->b_error : EIO);
3147	} else {
3148		return (0);
3149	}
3150}
3151
3152 /*
3153  * Call back function from struct bio back up to struct buf.
3154  */
3155static void
3156bufdonebio(struct bio *bip)
3157{
3158	struct buf *bp;
3159
3160	bp = bip->bio_caller2;
3161	bp->b_resid = bp->b_bcount - bip->bio_completed;
3162	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3163	bp->b_ioflags = bip->bio_flags;
3164	bp->b_error = bip->bio_error;
3165	if (bp->b_error)
3166		bp->b_ioflags |= BIO_ERROR;
3167	bufdone(bp);
3168	g_destroy_bio(bip);
3169}
3170
3171void
3172dev_strategy(struct cdev *dev, struct buf *bp)
3173{
3174	struct cdevsw *csw;
3175	struct bio *bip;
3176
3177	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3178		panic("b_iocmd botch");
3179	for (;;) {
3180		bip = g_new_bio();
3181		if (bip != NULL)
3182			break;
3183		/* Try again later */
3184		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3185	}
3186	bip->bio_cmd = bp->b_iocmd;
3187	bip->bio_offset = bp->b_iooffset;
3188	bip->bio_length = bp->b_bcount;
3189	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3190	bip->bio_data = bp->b_data;
3191	bip->bio_done = bufdonebio;
3192	bip->bio_caller2 = bp;
3193	bip->bio_dev = dev;
3194	KASSERT(dev->si_refcount > 0,
3195	    ("dev_strategy on un-referenced struct cdev *(%s)",
3196	    devtoname(dev)));
3197	csw = dev_refthread(dev);
3198	if (csw == NULL) {
3199		g_destroy_bio(bip);
3200		bp->b_error = ENXIO;
3201		bp->b_ioflags = BIO_ERROR;
3202		bufdone(bp);
3203		return;
3204	}
3205	(*csw->d_strategy)(bip);
3206	dev_relthread(dev);
3207}
3208
3209/*
3210 *	bufdone:
3211 *
3212 *	Finish I/O on a buffer, optionally calling a completion function.
3213 *	This is usually called from an interrupt so process blocking is
3214 *	not allowed.
3215 *
3216 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3217 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3218 *	assuming B_INVAL is clear.
3219 *
3220 *	For the VMIO case, we set B_CACHE if the op was a read and no
3221 *	read error occured, or if the op was a write.  B_CACHE is never
3222 *	set if the buffer is invalid or otherwise uncacheable.
3223 *
3224 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3225 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3226 *	in the biodone routine.
3227 */
3228void
3229bufdone(struct buf *bp)
3230{
3231	struct bufobj *dropobj;
3232	void    (*biodone)(struct buf *);
3233
3234	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3235	dropobj = NULL;
3236
3237	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3238	BUF_ASSERT_HELD(bp);
3239
3240	runningbufwakeup(bp);
3241	if (bp->b_iocmd == BIO_WRITE)
3242		dropobj = bp->b_bufobj;
3243	/* call optional completion function if requested */
3244	if (bp->b_iodone != NULL) {
3245		biodone = bp->b_iodone;
3246		bp->b_iodone = NULL;
3247		(*biodone) (bp);
3248		if (dropobj)
3249			bufobj_wdrop(dropobj);
3250		return;
3251	}
3252
3253	bufdone_finish(bp);
3254
3255	if (dropobj)
3256		bufobj_wdrop(dropobj);
3257}
3258
3259void
3260bufdone_finish(struct buf *bp)
3261{
3262	BUF_ASSERT_HELD(bp);
3263
3264	if (!LIST_EMPTY(&bp->b_dep))
3265		buf_complete(bp);
3266
3267	if (bp->b_flags & B_VMIO) {
3268		int i;
3269		vm_ooffset_t foff;
3270		vm_page_t m;
3271		vm_object_t obj;
3272		int iosize;
3273		struct vnode *vp = bp->b_vp;
3274		boolean_t are_queues_locked;
3275
3276		obj = bp->b_bufobj->bo_object;
3277
3278#if defined(VFS_BIO_DEBUG)
3279		mp_fixme("usecount and vflag accessed without locks.");
3280		if (vp->v_usecount == 0) {
3281			panic("biodone: zero vnode ref count");
3282		}
3283
3284		KASSERT(vp->v_object != NULL,
3285			("biodone: vnode %p has no vm_object", vp));
3286#endif
3287
3288		foff = bp->b_offset;
3289		KASSERT(bp->b_offset != NOOFFSET,
3290		    ("biodone: no buffer offset"));
3291
3292		VM_OBJECT_LOCK(obj);
3293#if defined(VFS_BIO_DEBUG)
3294		if (obj->paging_in_progress < bp->b_npages) {
3295			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3296			    obj->paging_in_progress, bp->b_npages);
3297		}
3298#endif
3299
3300		/*
3301		 * Set B_CACHE if the op was a normal read and no error
3302		 * occured.  B_CACHE is set for writes in the b*write()
3303		 * routines.
3304		 */
3305		iosize = bp->b_bcount - bp->b_resid;
3306		if (bp->b_iocmd == BIO_READ &&
3307		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3308		    !(bp->b_ioflags & BIO_ERROR)) {
3309			bp->b_flags |= B_CACHE;
3310		}
3311		if (bp->b_iocmd == BIO_READ) {
3312			vm_page_lock_queues();
3313			are_queues_locked = TRUE;
3314		} else
3315			are_queues_locked = FALSE;
3316		for (i = 0; i < bp->b_npages; i++) {
3317			int bogusflag = 0;
3318			int resid;
3319
3320			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3321			if (resid > iosize)
3322				resid = iosize;
3323
3324			/*
3325			 * cleanup bogus pages, restoring the originals
3326			 */
3327			m = bp->b_pages[i];
3328			if (m == bogus_page) {
3329				bogusflag = 1;
3330				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3331				if (m == NULL)
3332					panic("biodone: page disappeared!");
3333				bp->b_pages[i] = m;
3334				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3335				    bp->b_pages, bp->b_npages);
3336			}
3337#if defined(VFS_BIO_DEBUG)
3338			if (OFF_TO_IDX(foff) != m->pindex) {
3339				printf(
3340"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3341				    (intmax_t)foff, (uintmax_t)m->pindex);
3342			}
3343#endif
3344
3345			/*
3346			 * In the write case, the valid and clean bits are
3347			 * already changed correctly ( see bdwrite() ), so we
3348			 * only need to do this here in the read case.
3349			 */
3350			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3351				vfs_page_set_valid(bp, foff, m);
3352			}
3353
3354			/*
3355			 * when debugging new filesystems or buffer I/O methods, this
3356			 * is the most common error that pops up.  if you see this, you
3357			 * have not set the page busy flag correctly!!!
3358			 */
3359			if (m->busy == 0) {
3360				printf("biodone: page busy < 0, "
3361				    "pindex: %d, foff: 0x(%x,%x), "
3362				    "resid: %d, index: %d\n",
3363				    (int) m->pindex, (int)(foff >> 32),
3364						(int) foff & 0xffffffff, resid, i);
3365				if (!vn_isdisk(vp, NULL))
3366					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3367					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3368					    (intmax_t) bp->b_lblkno,
3369					    bp->b_flags, bp->b_npages);
3370				else
3371					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3372					    (intmax_t) bp->b_lblkno,
3373					    bp->b_flags, bp->b_npages);
3374				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3375				    (u_long)m->valid, (u_long)m->dirty,
3376				    m->wire_count);
3377				panic("biodone: page busy < 0\n");
3378			}
3379			vm_page_io_finish(m);
3380			vm_object_pip_subtract(obj, 1);
3381			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3382			iosize -= resid;
3383		}
3384		if (are_queues_locked)
3385			vm_page_unlock_queues();
3386		vm_object_pip_wakeupn(obj, 0);
3387		VM_OBJECT_UNLOCK(obj);
3388	}
3389
3390	/*
3391	 * For asynchronous completions, release the buffer now. The brelse
3392	 * will do a wakeup there if necessary - so no need to do a wakeup
3393	 * here in the async case. The sync case always needs to do a wakeup.
3394	 */
3395
3396	if (bp->b_flags & B_ASYNC) {
3397		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3398			brelse(bp);
3399		else
3400			bqrelse(bp);
3401	} else
3402		bdone(bp);
3403}
3404
3405/*
3406 * This routine is called in lieu of iodone in the case of
3407 * incomplete I/O.  This keeps the busy status for pages
3408 * consistant.
3409 */
3410void
3411vfs_unbusy_pages(struct buf *bp)
3412{
3413	int i;
3414	vm_object_t obj;
3415	vm_page_t m;
3416
3417	runningbufwakeup(bp);
3418	if (!(bp->b_flags & B_VMIO))
3419		return;
3420
3421	obj = bp->b_bufobj->bo_object;
3422	VM_OBJECT_LOCK(obj);
3423	for (i = 0; i < bp->b_npages; i++) {
3424		m = bp->b_pages[i];
3425		if (m == bogus_page) {
3426			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3427			if (!m)
3428				panic("vfs_unbusy_pages: page missing\n");
3429			bp->b_pages[i] = m;
3430			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3431			    bp->b_pages, bp->b_npages);
3432		}
3433		vm_object_pip_subtract(obj, 1);
3434		vm_page_io_finish(m);
3435	}
3436	vm_object_pip_wakeupn(obj, 0);
3437	VM_OBJECT_UNLOCK(obj);
3438}
3439
3440/*
3441 * vfs_page_set_valid:
3442 *
3443 *	Set the valid bits in a page based on the supplied offset.   The
3444 *	range is restricted to the buffer's size.
3445 *
3446 *	This routine is typically called after a read completes.
3447 */
3448static void
3449vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3450{
3451	vm_ooffset_t soff, eoff;
3452
3453	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3454	/*
3455	 * Start and end offsets in buffer.  eoff - soff may not cross a
3456	 * page boundry or cross the end of the buffer.  The end of the
3457	 * buffer, in this case, is our file EOF, not the allocation size
3458	 * of the buffer.
3459	 */
3460	soff = off;
3461	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3462	if (eoff > bp->b_offset + bp->b_bcount)
3463		eoff = bp->b_offset + bp->b_bcount;
3464
3465	/*
3466	 * Set valid range.  This is typically the entire buffer and thus the
3467	 * entire page.
3468	 */
3469	if (eoff > soff) {
3470		vm_page_set_validclean(
3471		    m,
3472		   (vm_offset_t) (soff & PAGE_MASK),
3473		   (vm_offset_t) (eoff - soff)
3474		);
3475	}
3476}
3477
3478/*
3479 * This routine is called before a device strategy routine.
3480 * It is used to tell the VM system that paging I/O is in
3481 * progress, and treat the pages associated with the buffer
3482 * almost as being VPO_BUSY.  Also the object paging_in_progress
3483 * flag is handled to make sure that the object doesn't become
3484 * inconsistant.
3485 *
3486 * Since I/O has not been initiated yet, certain buffer flags
3487 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3488 * and should be ignored.
3489 */
3490void
3491vfs_busy_pages(struct buf *bp, int clear_modify)
3492{
3493	int i, bogus;
3494	vm_object_t obj;
3495	vm_ooffset_t foff;
3496	vm_page_t m;
3497
3498	if (!(bp->b_flags & B_VMIO))
3499		return;
3500
3501	obj = bp->b_bufobj->bo_object;
3502	foff = bp->b_offset;
3503	KASSERT(bp->b_offset != NOOFFSET,
3504	    ("vfs_busy_pages: no buffer offset"));
3505	VM_OBJECT_LOCK(obj);
3506	if (bp->b_bufsize != 0)
3507		vfs_setdirty_locked_object(bp);
3508retry:
3509	for (i = 0; i < bp->b_npages; i++) {
3510		m = bp->b_pages[i];
3511
3512		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3513			goto retry;
3514	}
3515	bogus = 0;
3516	vm_page_lock_queues();
3517	for (i = 0; i < bp->b_npages; i++) {
3518		m = bp->b_pages[i];
3519
3520		if ((bp->b_flags & B_CLUSTER) == 0) {
3521			vm_object_pip_add(obj, 1);
3522			vm_page_io_start(m);
3523		}
3524		/*
3525		 * When readying a buffer for a read ( i.e
3526		 * clear_modify == 0 ), it is important to do
3527		 * bogus_page replacement for valid pages in
3528		 * partially instantiated buffers.  Partially
3529		 * instantiated buffers can, in turn, occur when
3530		 * reconstituting a buffer from its VM backing store
3531		 * base.  We only have to do this if B_CACHE is
3532		 * clear ( which causes the I/O to occur in the
3533		 * first place ).  The replacement prevents the read
3534		 * I/O from overwriting potentially dirty VM-backed
3535		 * pages.  XXX bogus page replacement is, uh, bogus.
3536		 * It may not work properly with small-block devices.
3537		 * We need to find a better way.
3538		 */
3539		pmap_remove_all(m);
3540		if (clear_modify)
3541			vfs_page_set_valid(bp, foff, m);
3542		else if (m->valid == VM_PAGE_BITS_ALL &&
3543		    (bp->b_flags & B_CACHE) == 0) {
3544			bp->b_pages[i] = bogus_page;
3545			bogus++;
3546		}
3547		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3548	}
3549	vm_page_unlock_queues();
3550	VM_OBJECT_UNLOCK(obj);
3551	if (bogus)
3552		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3553		    bp->b_pages, bp->b_npages);
3554}
3555
3556/*
3557 * Tell the VM system that the pages associated with this buffer
3558 * are clean.  This is used for delayed writes where the data is
3559 * going to go to disk eventually without additional VM intevention.
3560 *
3561 * Note that while we only really need to clean through to b_bcount, we
3562 * just go ahead and clean through to b_bufsize.
3563 */
3564static void
3565vfs_clean_pages(struct buf *bp)
3566{
3567	int i;
3568	vm_ooffset_t foff, noff, eoff;
3569	vm_page_t m;
3570
3571	if (!(bp->b_flags & B_VMIO))
3572		return;
3573
3574	foff = bp->b_offset;
3575	KASSERT(bp->b_offset != NOOFFSET,
3576	    ("vfs_clean_pages: no buffer offset"));
3577	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3578	vm_page_lock_queues();
3579	for (i = 0; i < bp->b_npages; i++) {
3580		m = bp->b_pages[i];
3581		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3582		eoff = noff;
3583
3584		if (eoff > bp->b_offset + bp->b_bufsize)
3585			eoff = bp->b_offset + bp->b_bufsize;
3586		vfs_page_set_valid(bp, foff, m);
3587		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3588		foff = noff;
3589	}
3590	vm_page_unlock_queues();
3591	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3592}
3593
3594/*
3595 *	vfs_bio_set_validclean:
3596 *
3597 *	Set the range within the buffer to valid and clean.  The range is
3598 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3599 *	itself may be offset from the beginning of the first page.
3600 *
3601 */
3602
3603void
3604vfs_bio_set_validclean(struct buf *bp, int base, int size)
3605{
3606	int i, n;
3607	vm_page_t m;
3608
3609	if (!(bp->b_flags & B_VMIO))
3610		return;
3611	/*
3612	 * Fixup base to be relative to beginning of first page.
3613	 * Set initial n to be the maximum number of bytes in the
3614	 * first page that can be validated.
3615	 */
3616
3617	base += (bp->b_offset & PAGE_MASK);
3618	n = PAGE_SIZE - (base & PAGE_MASK);
3619
3620	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3621	vm_page_lock_queues();
3622	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3623		m = bp->b_pages[i];
3624		if (n > size)
3625			n = size;
3626		vm_page_set_validclean(m, base & PAGE_MASK, n);
3627		base += n;
3628		size -= n;
3629		n = PAGE_SIZE;
3630	}
3631	vm_page_unlock_queues();
3632	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3633}
3634
3635/*
3636 *	vfs_bio_clrbuf:
3637 *
3638 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3639 *	to clear BIO_ERROR and B_INVAL.
3640 *
3641 *	Note that while we only theoretically need to clear through b_bcount,
3642 *	we go ahead and clear through b_bufsize.
3643 */
3644
3645void
3646vfs_bio_clrbuf(struct buf *bp)
3647{
3648	int i, j, mask = 0;
3649	caddr_t sa, ea;
3650
3651	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3652		clrbuf(bp);
3653		return;
3654	}
3655
3656	bp->b_flags &= ~B_INVAL;
3657	bp->b_ioflags &= ~BIO_ERROR;
3658	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3659	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3660	    (bp->b_offset & PAGE_MASK) == 0) {
3661		if (bp->b_pages[0] == bogus_page)
3662			goto unlock;
3663		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3664		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3665		if ((bp->b_pages[0]->valid & mask) == mask)
3666			goto unlock;
3667		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3668		    ((bp->b_pages[0]->valid & mask) == 0)) {
3669			bzero(bp->b_data, bp->b_bufsize);
3670			bp->b_pages[0]->valid |= mask;
3671			goto unlock;
3672		}
3673	}
3674	ea = sa = bp->b_data;
3675	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3676		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3677		ea = (caddr_t)(vm_offset_t)ulmin(
3678		    (u_long)(vm_offset_t)ea,
3679		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3680		if (bp->b_pages[i] == bogus_page)
3681			continue;
3682		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3683		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3684		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3685		if ((bp->b_pages[i]->valid & mask) == mask)
3686			continue;
3687		if ((bp->b_pages[i]->valid & mask) == 0) {
3688			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3689				bzero(sa, ea - sa);
3690		} else {
3691			for (; sa < ea; sa += DEV_BSIZE, j++) {
3692				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3693				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3694					bzero(sa, DEV_BSIZE);
3695			}
3696		}
3697		bp->b_pages[i]->valid |= mask;
3698	}
3699unlock:
3700	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3701	bp->b_resid = 0;
3702}
3703
3704/*
3705 * vm_hold_load_pages and vm_hold_free_pages get pages into
3706 * a buffers address space.  The pages are anonymous and are
3707 * not associated with a file object.
3708 */
3709static void
3710vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3711{
3712	vm_offset_t pg;
3713	vm_page_t p;
3714	int index;
3715
3716	to = round_page(to);
3717	from = round_page(from);
3718	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3719
3720	VM_OBJECT_LOCK(kernel_object);
3721	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3722tryagain:
3723		/*
3724		 * note: must allocate system pages since blocking here
3725		 * could intefere with paging I/O, no matter which
3726		 * process we are.
3727		 */
3728		p = vm_page_alloc(kernel_object,
3729			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3730		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3731		if (!p) {
3732			atomic_add_int(&vm_pageout_deficit,
3733			    (to - pg) >> PAGE_SHIFT);
3734			VM_OBJECT_UNLOCK(kernel_object);
3735			VM_WAIT;
3736			VM_OBJECT_LOCK(kernel_object);
3737			goto tryagain;
3738		}
3739		p->valid = VM_PAGE_BITS_ALL;
3740		pmap_qenter(pg, &p, 1);
3741		bp->b_pages[index] = p;
3742	}
3743	VM_OBJECT_UNLOCK(kernel_object);
3744	bp->b_npages = index;
3745}
3746
3747/* Return pages associated with this buf to the vm system */
3748static void
3749vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3750{
3751	vm_offset_t pg;
3752	vm_page_t p;
3753	int index, newnpages;
3754
3755	from = round_page(from);
3756	to = round_page(to);
3757	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3758
3759	VM_OBJECT_LOCK(kernel_object);
3760	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3761		p = bp->b_pages[index];
3762		if (p && (index < bp->b_npages)) {
3763			if (p->busy) {
3764				printf(
3765			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3766				    (intmax_t)bp->b_blkno,
3767				    (intmax_t)bp->b_lblkno);
3768			}
3769			bp->b_pages[index] = NULL;
3770			pmap_qremove(pg, 1);
3771			vm_page_lock_queues();
3772			vm_page_unwire(p, 0);
3773			vm_page_free(p);
3774			vm_page_unlock_queues();
3775		}
3776	}
3777	VM_OBJECT_UNLOCK(kernel_object);
3778	bp->b_npages = newnpages;
3779}
3780
3781/*
3782 * Map an IO request into kernel virtual address space.
3783 *
3784 * All requests are (re)mapped into kernel VA space.
3785 * Notice that we use b_bufsize for the size of the buffer
3786 * to be mapped.  b_bcount might be modified by the driver.
3787 *
3788 * Note that even if the caller determines that the address space should
3789 * be valid, a race or a smaller-file mapped into a larger space may
3790 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3791 * check the return value.
3792 */
3793int
3794vmapbuf(struct buf *bp)
3795{
3796	caddr_t addr, kva;
3797	vm_prot_t prot;
3798	int pidx, i;
3799	struct vm_page *m;
3800	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3801
3802	if (bp->b_bufsize < 0)
3803		return (-1);
3804	prot = VM_PROT_READ;
3805	if (bp->b_iocmd == BIO_READ)
3806		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3807	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3808	     addr < bp->b_data + bp->b_bufsize;
3809	     addr += PAGE_SIZE, pidx++) {
3810		/*
3811		 * Do the vm_fault if needed; do the copy-on-write thing
3812		 * when reading stuff off device into memory.
3813		 *
3814		 * NOTE! Must use pmap_extract() because addr may be in
3815		 * the userland address space, and kextract is only guarenteed
3816		 * to work for the kernland address space (see: sparc64 port).
3817		 */
3818retry:
3819		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3820		    prot) < 0) {
3821			vm_page_lock_queues();
3822			for (i = 0; i < pidx; ++i) {
3823				vm_page_unhold(bp->b_pages[i]);
3824				bp->b_pages[i] = NULL;
3825			}
3826			vm_page_unlock_queues();
3827			return(-1);
3828		}
3829		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3830		if (m == NULL)
3831			goto retry;
3832		bp->b_pages[pidx] = m;
3833	}
3834	if (pidx > btoc(MAXPHYS))
3835		panic("vmapbuf: mapped more than MAXPHYS");
3836	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3837
3838	kva = bp->b_saveaddr;
3839	bp->b_npages = pidx;
3840	bp->b_saveaddr = bp->b_data;
3841	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3842	return(0);
3843}
3844
3845/*
3846 * Free the io map PTEs associated with this IO operation.
3847 * We also invalidate the TLB entries and restore the original b_addr.
3848 */
3849void
3850vunmapbuf(struct buf *bp)
3851{
3852	int pidx;
3853	int npages;
3854
3855	npages = bp->b_npages;
3856	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3857	vm_page_lock_queues();
3858	for (pidx = 0; pidx < npages; pidx++)
3859		vm_page_unhold(bp->b_pages[pidx]);
3860	vm_page_unlock_queues();
3861
3862	bp->b_data = bp->b_saveaddr;
3863}
3864
3865void
3866bdone(struct buf *bp)
3867{
3868	struct mtx *mtxp;
3869
3870	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3871	mtx_lock(mtxp);
3872	bp->b_flags |= B_DONE;
3873	wakeup(bp);
3874	mtx_unlock(mtxp);
3875}
3876
3877void
3878bwait(struct buf *bp, u_char pri, const char *wchan)
3879{
3880	struct mtx *mtxp;
3881
3882	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3883	mtx_lock(mtxp);
3884	while ((bp->b_flags & B_DONE) == 0)
3885		msleep(bp, mtxp, pri, wchan, 0);
3886	mtx_unlock(mtxp);
3887}
3888
3889int
3890bufsync(struct bufobj *bo, int waitfor)
3891{
3892
3893	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3894}
3895
3896void
3897bufstrategy(struct bufobj *bo, struct buf *bp)
3898{
3899	int i = 0;
3900	struct vnode *vp;
3901
3902	vp = bp->b_vp;
3903	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3904	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3905	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3906	i = VOP_STRATEGY(vp, bp);
3907	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3908}
3909
3910void
3911bufobj_wrefl(struct bufobj *bo)
3912{
3913
3914	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3915	ASSERT_BO_LOCKED(bo);
3916	bo->bo_numoutput++;
3917}
3918
3919void
3920bufobj_wref(struct bufobj *bo)
3921{
3922
3923	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3924	BO_LOCK(bo);
3925	bo->bo_numoutput++;
3926	BO_UNLOCK(bo);
3927}
3928
3929void
3930bufobj_wdrop(struct bufobj *bo)
3931{
3932
3933	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3934	BO_LOCK(bo);
3935	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3936	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3937		bo->bo_flag &= ~BO_WWAIT;
3938		wakeup(&bo->bo_numoutput);
3939	}
3940	BO_UNLOCK(bo);
3941}
3942
3943int
3944bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3945{
3946	int error;
3947
3948	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3949	ASSERT_BO_LOCKED(bo);
3950	error = 0;
3951	while (bo->bo_numoutput) {
3952		bo->bo_flag |= BO_WWAIT;
3953		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3954		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3955		if (error)
3956			break;
3957	}
3958	return (error);
3959}
3960
3961void
3962bpin(struct buf *bp)
3963{
3964	struct mtx *mtxp;
3965
3966	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3967	mtx_lock(mtxp);
3968	bp->b_pin_count++;
3969	mtx_unlock(mtxp);
3970}
3971
3972void
3973bunpin(struct buf *bp)
3974{
3975	struct mtx *mtxp;
3976
3977	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3978	mtx_lock(mtxp);
3979	if (--bp->b_pin_count == 0)
3980		wakeup(bp);
3981	mtx_unlock(mtxp);
3982}
3983
3984void
3985bunpin_wait(struct buf *bp)
3986{
3987	struct mtx *mtxp;
3988
3989	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3990	mtx_lock(mtxp);
3991	while (bp->b_pin_count > 0)
3992		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
3993	mtx_unlock(mtxp);
3994}
3995
3996#include "opt_ddb.h"
3997#ifdef DDB
3998#include <ddb/ddb.h>
3999
4000/* DDB command to show buffer data */
4001DB_SHOW_COMMAND(buffer, db_show_buffer)
4002{
4003	/* get args */
4004	struct buf *bp = (struct buf *)addr;
4005
4006	if (!have_addr) {
4007		db_printf("usage: show buffer <addr>\n");
4008		return;
4009	}
4010
4011	db_printf("buf at %p\n", bp);
4012	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
4013	db_printf(
4014	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
4015	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
4016	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
4017	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
4018	    bp->b_dep.lh_first);
4019	if (bp->b_npages) {
4020		int i;
4021		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
4022		for (i = 0; i < bp->b_npages; i++) {
4023			vm_page_t m;
4024			m = bp->b_pages[i];
4025			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
4026			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
4027			if ((i + 1) < bp->b_npages)
4028				db_printf(",");
4029		}
4030		db_printf("\n");
4031	}
4032	db_printf(" ");
4033	lockmgr_printinfo(&bp->b_lock);
4034}
4035
4036DB_SHOW_COMMAND(lockedbufs, lockedbufs)
4037{
4038	struct buf *bp;
4039	int i;
4040
4041	for (i = 0; i < nbuf; i++) {
4042		bp = &buf[i];
4043		if (BUF_ISLOCKED(bp)) {
4044			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4045			db_printf("\n");
4046		}
4047	}
4048}
4049
4050DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
4051{
4052	struct vnode *vp;
4053	struct buf *bp;
4054
4055	if (!have_addr) {
4056		db_printf("usage: show vnodebufs <addr>\n");
4057		return;
4058	}
4059	vp = (struct vnode *)addr;
4060	db_printf("Clean buffers:\n");
4061	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
4062		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4063		db_printf("\n");
4064	}
4065	db_printf("Dirty buffers:\n");
4066	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
4067		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
4068		db_printf("\n");
4069	}
4070}
4071#endif /* DDB */
4072