vfs_bio.c revision 189627
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 189627 2009-03-10 15:26:50Z jhb $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/limits.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mount.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/proc.h>
59#include <sys/resourcevar.h>
60#include <sys/sysctl.h>
61#include <sys/vmmeter.h>
62#include <sys/vnode.h>
63#include <geom/geom.h>
64#include <vm/vm.h>
65#include <vm/vm_param.h>
66#include <vm/vm_kern.h>
67#include <vm/vm_pageout.h>
68#include <vm/vm_page.h>
69#include <vm/vm_object.h>
70#include <vm/vm_extern.h>
71#include <vm/vm_map.h>
72#include "opt_compat.h"
73#include "opt_directio.h"
74#include "opt_swap.h"
75
76static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
77
78struct	bio_ops bioops;		/* I/O operation notification */
79
80struct	buf_ops buf_ops_bio = {
81	.bop_name	=	"buf_ops_bio",
82	.bop_write	=	bufwrite,
83	.bop_strategy	=	bufstrategy,
84	.bop_sync	=	bufsync,
85	.bop_bdflush	=	bufbdflush,
86};
87
88/*
89 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
90 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
91 */
92struct buf *buf;		/* buffer header pool */
93
94static struct proc *bufdaemonproc;
95
96static int inmem(struct vnode *vp, daddr_t blkno);
97static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
98		vm_offset_t to);
99static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
100		vm_offset_t to);
101static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
102		vm_page_t m);
103static void vfs_clean_pages(struct buf *bp);
104static void vfs_setdirty(struct buf *bp);
105static void vfs_setdirty_locked_object(struct buf *bp);
106static void vfs_vmio_release(struct buf *bp);
107static int vfs_bio_clcheck(struct vnode *vp, int size,
108		daddr_t lblkno, daddr_t blkno);
109static int flushbufqueues(int, int);
110static void buf_daemon(void);
111static void bremfreel(struct buf *bp);
112#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
113    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
114static int sysctl_bufspace(SYSCTL_HANDLER_ARGS);
115#endif
116
117int vmiodirenable = TRUE;
118SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
119    "Use the VM system for directory writes");
120long runningbufspace;
121SYSCTL_LONG(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
122    "Amount of presently outstanding async buffer io");
123static long bufspace;
124#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
125    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
126SYSCTL_PROC(_vfs, OID_AUTO, bufspace, CTLTYPE_LONG|CTLFLAG_MPSAFE|CTLFLAG_RD,
127    &bufspace, 0, sysctl_bufspace, "L", "KVA memory used for bufs");
128#else
129SYSCTL_LONG(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
130    "KVA memory used for bufs");
131#endif
132static long maxbufspace;
133SYSCTL_LONG(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
134    "Maximum allowed value of bufspace (including buf_daemon)");
135static long bufmallocspace;
136SYSCTL_LONG(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
137    "Amount of malloced memory for buffers");
138static long maxbufmallocspace;
139SYSCTL_LONG(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
140    "Maximum amount of malloced memory for buffers");
141static long lobufspace;
142SYSCTL_LONG(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
143    "Minimum amount of buffers we want to have");
144long hibufspace;
145SYSCTL_LONG(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
146    "Maximum allowed value of bufspace (excluding buf_daemon)");
147static int bufreusecnt;
148SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
149    "Number of times we have reused a buffer");
150static int buffreekvacnt;
151SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
152    "Number of times we have freed the KVA space from some buffer");
153static int bufdefragcnt;
154SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
155    "Number of times we have had to repeat buffer allocation to defragment");
156static long lorunningspace;
157SYSCTL_LONG(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
158    "Minimum preferred space used for in-progress I/O");
159static long hirunningspace;
160SYSCTL_LONG(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
161    "Maximum amount of space to use for in-progress I/O");
162int dirtybufferflushes;
163SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
164    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
165int bdwriteskip;
166SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
167    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
168int altbufferflushes;
169SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
170    0, "Number of fsync flushes to limit dirty buffers");
171static int recursiveflushes;
172SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
173    0, "Number of flushes skipped due to being recursive");
174static int numdirtybuffers;
175SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
176    "Number of buffers that are dirty (has unwritten changes) at the moment");
177static int lodirtybuffers;
178SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
179    "How many buffers we want to have free before bufdaemon can sleep");
180static int hidirtybuffers;
181SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
182    "When the number of dirty buffers is considered severe");
183int dirtybufthresh;
184SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
185    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
186static int numfreebuffers;
187SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
188    "Number of free buffers");
189static int lofreebuffers;
190SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
191   "XXX Unused");
192static int hifreebuffers;
193SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
194   "XXX Complicatedly unused");
195static int getnewbufcalls;
196SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
197   "Number of calls to getnewbuf");
198static int getnewbufrestarts;
199SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
200    "Number of times getnewbuf has had to restart a buffer aquisition");
201
202/*
203 * Wakeup point for bufdaemon, as well as indicator of whether it is already
204 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
205 * is idling.
206 */
207static int bd_request;
208
209/*
210 * This lock synchronizes access to bd_request.
211 */
212static struct mtx bdlock;
213
214/*
215 * bogus page -- for I/O to/from partially complete buffers
216 * this is a temporary solution to the problem, but it is not
217 * really that bad.  it would be better to split the buffer
218 * for input in the case of buffers partially already in memory,
219 * but the code is intricate enough already.
220 */
221vm_page_t bogus_page;
222
223/*
224 * Synchronization (sleep/wakeup) variable for active buffer space requests.
225 * Set when wait starts, cleared prior to wakeup().
226 * Used in runningbufwakeup() and waitrunningbufspace().
227 */
228static int runningbufreq;
229
230/*
231 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
232 * waitrunningbufspace().
233 */
234static struct mtx rbreqlock;
235
236/*
237 * Synchronization (sleep/wakeup) variable for buffer requests.
238 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
239 * by and/or.
240 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
241 * getnewbuf(), and getblk().
242 */
243static int needsbuffer;
244
245/*
246 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
247 */
248static struct mtx nblock;
249
250/*
251 * Definitions for the buffer free lists.
252 */
253#define BUFFER_QUEUES	6	/* number of free buffer queues */
254
255#define QUEUE_NONE	0	/* on no queue */
256#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
257#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
258#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
259#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
260#define QUEUE_EMPTY	5	/* empty buffer headers */
261
262/* Queues for free buffers with various properties */
263static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
264
265/* Lock for the bufqueues */
266static struct mtx bqlock;
267
268/*
269 * Single global constant for BUF_WMESG, to avoid getting multiple references.
270 * buf_wmesg is referred from macros.
271 */
272const char *buf_wmesg = BUF_WMESG;
273
274#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
275#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
276#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
277#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
278
279#if defined(COMPAT_FREEBSD4) || defined(COMPAT_FREEBSD5) || \
280    defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD7)
281static int
282sysctl_bufspace(SYSCTL_HANDLER_ARGS)
283{
284	long lvalue;
285	int ivalue;
286
287	if (sizeof(int) == sizeof(long) || req->oldlen == sizeof(long))
288		return (sysctl_handle_long(oidp, arg1, arg2, req));
289	lvalue = *(long *)arg1;
290	ivalue = lvalue > INT_MAX ? INT_MAX : lvalue;
291	return (sysctl_handle_int(oidp, &ivalue, 0, req));
292}
293#endif
294
295#ifdef DIRECTIO
296extern void ffs_rawread_setup(void);
297#endif /* DIRECTIO */
298/*
299 *	numdirtywakeup:
300 *
301 *	If someone is blocked due to there being too many dirty buffers,
302 *	and numdirtybuffers is now reasonable, wake them up.
303 */
304
305static __inline void
306numdirtywakeup(int level)
307{
308
309	if (numdirtybuffers <= level) {
310		mtx_lock(&nblock);
311		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
312			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
313			wakeup(&needsbuffer);
314		}
315		mtx_unlock(&nblock);
316	}
317}
318
319/*
320 *	bufspacewakeup:
321 *
322 *	Called when buffer space is potentially available for recovery.
323 *	getnewbuf() will block on this flag when it is unable to free
324 *	sufficient buffer space.  Buffer space becomes recoverable when
325 *	bp's get placed back in the queues.
326 */
327
328static __inline void
329bufspacewakeup(void)
330{
331
332	/*
333	 * If someone is waiting for BUF space, wake them up.  Even
334	 * though we haven't freed the kva space yet, the waiting
335	 * process will be able to now.
336	 */
337	mtx_lock(&nblock);
338	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
339		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
340		wakeup(&needsbuffer);
341	}
342	mtx_unlock(&nblock);
343}
344
345/*
346 * runningbufwakeup() - in-progress I/O accounting.
347 *
348 */
349void
350runningbufwakeup(struct buf *bp)
351{
352
353	if (bp->b_runningbufspace) {
354		atomic_subtract_long(&runningbufspace, bp->b_runningbufspace);
355		bp->b_runningbufspace = 0;
356		mtx_lock(&rbreqlock);
357		if (runningbufreq && runningbufspace <= lorunningspace) {
358			runningbufreq = 0;
359			wakeup(&runningbufreq);
360		}
361		mtx_unlock(&rbreqlock);
362	}
363}
364
365/*
366 *	bufcountwakeup:
367 *
368 *	Called when a buffer has been added to one of the free queues to
369 *	account for the buffer and to wakeup anyone waiting for free buffers.
370 *	This typically occurs when large amounts of metadata are being handled
371 *	by the buffer cache ( else buffer space runs out first, usually ).
372 */
373
374static __inline void
375bufcountwakeup(void)
376{
377
378	atomic_add_int(&numfreebuffers, 1);
379	mtx_lock(&nblock);
380	if (needsbuffer) {
381		needsbuffer &= ~VFS_BIO_NEED_ANY;
382		if (numfreebuffers >= hifreebuffers)
383			needsbuffer &= ~VFS_BIO_NEED_FREE;
384		wakeup(&needsbuffer);
385	}
386	mtx_unlock(&nblock);
387}
388
389/*
390 *	waitrunningbufspace()
391 *
392 *	runningbufspace is a measure of the amount of I/O currently
393 *	running.  This routine is used in async-write situations to
394 *	prevent creating huge backups of pending writes to a device.
395 *	Only asynchronous writes are governed by this function.
396 *
397 *	Reads will adjust runningbufspace, but will not block based on it.
398 *	The read load has a side effect of reducing the allowed write load.
399 *
400 *	This does NOT turn an async write into a sync write.  It waits
401 *	for earlier writes to complete and generally returns before the
402 *	caller's write has reached the device.
403 */
404void
405waitrunningbufspace(void)
406{
407
408	mtx_lock(&rbreqlock);
409	while (runningbufspace > hirunningspace) {
410		++runningbufreq;
411		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
412	}
413	mtx_unlock(&rbreqlock);
414}
415
416
417/*
418 *	vfs_buf_test_cache:
419 *
420 *	Called when a buffer is extended.  This function clears the B_CACHE
421 *	bit if the newly extended portion of the buffer does not contain
422 *	valid data.
423 */
424static __inline
425void
426vfs_buf_test_cache(struct buf *bp,
427		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
428		  vm_page_t m)
429{
430
431	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
432	if (bp->b_flags & B_CACHE) {
433		int base = (foff + off) & PAGE_MASK;
434		if (vm_page_is_valid(m, base, size) == 0)
435			bp->b_flags &= ~B_CACHE;
436	}
437}
438
439/* Wake up the buffer daemon if necessary */
440static __inline
441void
442bd_wakeup(int dirtybuflevel)
443{
444
445	mtx_lock(&bdlock);
446	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
447		bd_request = 1;
448		wakeup(&bd_request);
449	}
450	mtx_unlock(&bdlock);
451}
452
453/*
454 * bd_speedup - speedup the buffer cache flushing code
455 */
456
457static __inline
458void
459bd_speedup(void)
460{
461
462	bd_wakeup(1);
463}
464
465/*
466 * Calculating buffer cache scaling values and reserve space for buffer
467 * headers.  This is called during low level kernel initialization and
468 * may be called more then once.  We CANNOT write to the memory area
469 * being reserved at this time.
470 */
471caddr_t
472kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
473{
474	int tuned_nbuf;
475	long maxbuf;
476
477	/*
478	 * physmem_est is in pages.  Convert it to kilobytes (assumes
479	 * PAGE_SIZE is >= 1K)
480	 */
481	physmem_est = physmem_est * (PAGE_SIZE / 1024);
482
483	/*
484	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
485	 * For the first 64MB of ram nominally allocate sufficient buffers to
486	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
487	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
488	 * the buffer cache we limit the eventual kva reservation to
489	 * maxbcache bytes.
490	 *
491	 * factor represents the 1/4 x ram conversion.
492	 */
493	if (nbuf == 0) {
494		int factor = 4 * BKVASIZE / 1024;
495
496		nbuf = 50;
497		if (physmem_est > 4096)
498			nbuf += min((physmem_est - 4096) / factor,
499			    65536 / factor);
500		if (physmem_est > 65536)
501			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
502
503		if (maxbcache && nbuf > maxbcache / BKVASIZE)
504			nbuf = maxbcache / BKVASIZE;
505		tuned_nbuf = 1;
506	} else
507		tuned_nbuf = 0;
508
509	/* XXX Avoid unsigned long overflows later on with maxbufspace. */
510	maxbuf = (LONG_MAX / 3) / BKVASIZE;
511	if (nbuf > maxbuf) {
512		if (!tuned_nbuf)
513			printf("Warning: nbufs lowered from %d to %ld\n", nbuf,
514			    maxbuf);
515		nbuf = maxbuf;
516	}
517
518	/*
519	 * swbufs are used as temporary holders for I/O, such as paging I/O.
520	 * We have no less then 16 and no more then 256.
521	 */
522	nswbuf = max(min(nbuf/4, 256), 16);
523#ifdef NSWBUF_MIN
524	if (nswbuf < NSWBUF_MIN)
525		nswbuf = NSWBUF_MIN;
526#endif
527#ifdef DIRECTIO
528	ffs_rawread_setup();
529#endif
530
531	/*
532	 * Reserve space for the buffer cache buffers
533	 */
534	swbuf = (void *)v;
535	v = (caddr_t)(swbuf + nswbuf);
536	buf = (void *)v;
537	v = (caddr_t)(buf + nbuf);
538
539	return(v);
540}
541
542/* Initialize the buffer subsystem.  Called before use of any buffers. */
543void
544bufinit(void)
545{
546	struct buf *bp;
547	int i;
548
549	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
550	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
551	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
552	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
553
554	/* next, make a null set of free lists */
555	for (i = 0; i < BUFFER_QUEUES; i++)
556		TAILQ_INIT(&bufqueues[i]);
557
558	/* finally, initialize each buffer header and stick on empty q */
559	for (i = 0; i < nbuf; i++) {
560		bp = &buf[i];
561		bzero(bp, sizeof *bp);
562		bp->b_flags = B_INVAL;	/* we're just an empty header */
563		bp->b_rcred = NOCRED;
564		bp->b_wcred = NOCRED;
565		bp->b_qindex = QUEUE_EMPTY;
566		bp->b_vflags = 0;
567		bp->b_xflags = 0;
568		LIST_INIT(&bp->b_dep);
569		BUF_LOCKINIT(bp);
570		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
571	}
572
573	/*
574	 * maxbufspace is the absolute maximum amount of buffer space we are
575	 * allowed to reserve in KVM and in real terms.  The absolute maximum
576	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
577	 * used by most other processes.  The differential is required to
578	 * ensure that buf_daemon is able to run when other processes might
579	 * be blocked waiting for buffer space.
580	 *
581	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
582	 * this may result in KVM fragmentation which is not handled optimally
583	 * by the system.
584	 */
585	maxbufspace = (long)nbuf * BKVASIZE;
586	hibufspace = lmax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
587	lobufspace = hibufspace - MAXBSIZE;
588
589	lorunningspace = 512 * 1024;
590	hirunningspace = 1024 * 1024;
591
592/*
593 * Limit the amount of malloc memory since it is wired permanently into
594 * the kernel space.  Even though this is accounted for in the buffer
595 * allocation, we don't want the malloced region to grow uncontrolled.
596 * The malloc scheme improves memory utilization significantly on average
597 * (small) directories.
598 */
599	maxbufmallocspace = hibufspace / 20;
600
601/*
602 * Reduce the chance of a deadlock occuring by limiting the number
603 * of delayed-write dirty buffers we allow to stack up.
604 */
605	hidirtybuffers = nbuf / 4 + 20;
606	dirtybufthresh = hidirtybuffers * 9 / 10;
607	numdirtybuffers = 0;
608/*
609 * To support extreme low-memory systems, make sure hidirtybuffers cannot
610 * eat up all available buffer space.  This occurs when our minimum cannot
611 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
612 * BKVASIZE'd (8K) buffers.
613 */
614	while ((long)hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
615		hidirtybuffers >>= 1;
616	}
617	lodirtybuffers = hidirtybuffers / 2;
618
619/*
620 * Try to keep the number of free buffers in the specified range,
621 * and give special processes (e.g. like buf_daemon) access to an
622 * emergency reserve.
623 */
624	lofreebuffers = nbuf / 18 + 5;
625	hifreebuffers = 2 * lofreebuffers;
626	numfreebuffers = nbuf;
627
628/*
629 * Maximum number of async ops initiated per buf_daemon loop.  This is
630 * somewhat of a hack at the moment, we really need to limit ourselves
631 * based on the number of bytes of I/O in-transit that were initiated
632 * from buf_daemon.
633 */
634
635	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
636	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
637}
638
639/*
640 * bfreekva() - free the kva allocation for a buffer.
641 *
642 *	Since this call frees up buffer space, we call bufspacewakeup().
643 */
644static void
645bfreekva(struct buf *bp)
646{
647
648	if (bp->b_kvasize) {
649		atomic_add_int(&buffreekvacnt, 1);
650		atomic_subtract_long(&bufspace, bp->b_kvasize);
651		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
652		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
653		bp->b_kvasize = 0;
654		bufspacewakeup();
655	}
656}
657
658/*
659 *	bremfree:
660 *
661 *	Mark the buffer for removal from the appropriate free list in brelse.
662 *
663 */
664void
665bremfree(struct buf *bp)
666{
667
668	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
669	KASSERT((bp->b_flags & B_REMFREE) == 0,
670	    ("bremfree: buffer %p already marked for delayed removal.", bp));
671	KASSERT(bp->b_qindex != QUEUE_NONE,
672	    ("bremfree: buffer %p not on a queue.", bp));
673	BUF_ASSERT_HELD(bp);
674
675	bp->b_flags |= B_REMFREE;
676	/* Fixup numfreebuffers count.  */
677	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
678		atomic_subtract_int(&numfreebuffers, 1);
679}
680
681/*
682 *	bremfreef:
683 *
684 *	Force an immediate removal from a free list.  Used only in nfs when
685 *	it abuses the b_freelist pointer.
686 */
687void
688bremfreef(struct buf *bp)
689{
690	mtx_lock(&bqlock);
691	bremfreel(bp);
692	mtx_unlock(&bqlock);
693}
694
695/*
696 *	bremfreel:
697 *
698 *	Removes a buffer from the free list, must be called with the
699 *	bqlock held.
700 */
701static void
702bremfreel(struct buf *bp)
703{
704	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
705	    bp, bp->b_vp, bp->b_flags);
706	KASSERT(bp->b_qindex != QUEUE_NONE,
707	    ("bremfreel: buffer %p not on a queue.", bp));
708	BUF_ASSERT_HELD(bp);
709	mtx_assert(&bqlock, MA_OWNED);
710
711	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
712	bp->b_qindex = QUEUE_NONE;
713	/*
714	 * If this was a delayed bremfree() we only need to remove the buffer
715	 * from the queue and return the stats are already done.
716	 */
717	if (bp->b_flags & B_REMFREE) {
718		bp->b_flags &= ~B_REMFREE;
719		return;
720	}
721	/*
722	 * Fixup numfreebuffers count.  If the buffer is invalid or not
723	 * delayed-write, the buffer was free and we must decrement
724	 * numfreebuffers.
725	 */
726	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
727		atomic_subtract_int(&numfreebuffers, 1);
728}
729
730
731/*
732 * Get a buffer with the specified data.  Look in the cache first.  We
733 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
734 * is set, the buffer is valid and we do not have to do anything ( see
735 * getblk() ).  This is really just a special case of breadn().
736 */
737int
738bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
739    struct buf **bpp)
740{
741
742	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
743}
744
745/*
746 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
747 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
748 * the buffer is valid and we do not have to do anything.
749 */
750void
751breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
752    int cnt, struct ucred * cred)
753{
754	struct buf *rabp;
755	int i;
756
757	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
758		if (inmem(vp, *rablkno))
759			continue;
760		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
761
762		if ((rabp->b_flags & B_CACHE) == 0) {
763			if (!TD_IS_IDLETHREAD(curthread))
764				curthread->td_ru.ru_inblock++;
765			rabp->b_flags |= B_ASYNC;
766			rabp->b_flags &= ~B_INVAL;
767			rabp->b_ioflags &= ~BIO_ERROR;
768			rabp->b_iocmd = BIO_READ;
769			if (rabp->b_rcred == NOCRED && cred != NOCRED)
770				rabp->b_rcred = crhold(cred);
771			vfs_busy_pages(rabp, 0);
772			BUF_KERNPROC(rabp);
773			rabp->b_iooffset = dbtob(rabp->b_blkno);
774			bstrategy(rabp);
775		} else {
776			brelse(rabp);
777		}
778	}
779}
780
781/*
782 * Operates like bread, but also starts asynchronous I/O on
783 * read-ahead blocks.
784 */
785int
786breadn(struct vnode * vp, daddr_t blkno, int size,
787    daddr_t * rablkno, int *rabsize,
788    int cnt, struct ucred * cred, struct buf **bpp)
789{
790	struct buf *bp;
791	int rv = 0, readwait = 0;
792
793	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
794	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
795
796	/* if not found in cache, do some I/O */
797	if ((bp->b_flags & B_CACHE) == 0) {
798		if (!TD_IS_IDLETHREAD(curthread))
799			curthread->td_ru.ru_inblock++;
800		bp->b_iocmd = BIO_READ;
801		bp->b_flags &= ~B_INVAL;
802		bp->b_ioflags &= ~BIO_ERROR;
803		if (bp->b_rcred == NOCRED && cred != NOCRED)
804			bp->b_rcred = crhold(cred);
805		vfs_busy_pages(bp, 0);
806		bp->b_iooffset = dbtob(bp->b_blkno);
807		bstrategy(bp);
808		++readwait;
809	}
810
811	breada(vp, rablkno, rabsize, cnt, cred);
812
813	if (readwait) {
814		rv = bufwait(bp);
815	}
816	return (rv);
817}
818
819/*
820 * Write, release buffer on completion.  (Done by iodone
821 * if async).  Do not bother writing anything if the buffer
822 * is invalid.
823 *
824 * Note that we set B_CACHE here, indicating that buffer is
825 * fully valid and thus cacheable.  This is true even of NFS
826 * now so we set it generally.  This could be set either here
827 * or in biodone() since the I/O is synchronous.  We put it
828 * here.
829 */
830int
831bufwrite(struct buf *bp)
832{
833	int oldflags;
834	struct vnode *vp;
835	int vp_md;
836
837	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
838	if (bp->b_flags & B_INVAL) {
839		brelse(bp);
840		return (0);
841	}
842
843	oldflags = bp->b_flags;
844
845	BUF_ASSERT_HELD(bp);
846
847	if (bp->b_pin_count > 0)
848		bunpin_wait(bp);
849
850	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
851	    ("FFS background buffer should not get here %p", bp));
852
853	vp = bp->b_vp;
854	if (vp)
855		vp_md = vp->v_vflag & VV_MD;
856	else
857		vp_md = 0;
858
859	/* Mark the buffer clean */
860	bundirty(bp);
861
862	bp->b_flags &= ~B_DONE;
863	bp->b_ioflags &= ~BIO_ERROR;
864	bp->b_flags |= B_CACHE;
865	bp->b_iocmd = BIO_WRITE;
866
867	bufobj_wref(bp->b_bufobj);
868	vfs_busy_pages(bp, 1);
869
870	/*
871	 * Normal bwrites pipeline writes
872	 */
873	bp->b_runningbufspace = bp->b_bufsize;
874	atomic_add_long(&runningbufspace, bp->b_runningbufspace);
875
876	if (!TD_IS_IDLETHREAD(curthread))
877		curthread->td_ru.ru_oublock++;
878	if (oldflags & B_ASYNC)
879		BUF_KERNPROC(bp);
880	bp->b_iooffset = dbtob(bp->b_blkno);
881	bstrategy(bp);
882
883	if ((oldflags & B_ASYNC) == 0) {
884		int rtval = bufwait(bp);
885		brelse(bp);
886		return (rtval);
887	} else {
888		/*
889		 * don't allow the async write to saturate the I/O
890		 * system.  We will not deadlock here because
891		 * we are blocking waiting for I/O that is already in-progress
892		 * to complete. We do not block here if it is the update
893		 * or syncer daemon trying to clean up as that can lead
894		 * to deadlock.
895		 */
896		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
897			waitrunningbufspace();
898	}
899
900	return (0);
901}
902
903void
904bufbdflush(struct bufobj *bo, struct buf *bp)
905{
906	struct buf *nbp;
907
908	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
909		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
910		altbufferflushes++;
911	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
912		BO_LOCK(bo);
913		/*
914		 * Try to find a buffer to flush.
915		 */
916		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
917			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
918			    BUF_LOCK(nbp,
919				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
920				continue;
921			if (bp == nbp)
922				panic("bdwrite: found ourselves");
923			BO_UNLOCK(bo);
924			/* Don't countdeps with the bo lock held. */
925			if (buf_countdeps(nbp, 0)) {
926				BO_LOCK(bo);
927				BUF_UNLOCK(nbp);
928				continue;
929			}
930			if (nbp->b_flags & B_CLUSTEROK) {
931				vfs_bio_awrite(nbp);
932			} else {
933				bremfree(nbp);
934				bawrite(nbp);
935			}
936			dirtybufferflushes++;
937			break;
938		}
939		if (nbp == NULL)
940			BO_UNLOCK(bo);
941	}
942}
943
944/*
945 * Delayed write. (Buffer is marked dirty).  Do not bother writing
946 * anything if the buffer is marked invalid.
947 *
948 * Note that since the buffer must be completely valid, we can safely
949 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
950 * biodone() in order to prevent getblk from writing the buffer
951 * out synchronously.
952 */
953void
954bdwrite(struct buf *bp)
955{
956	struct thread *td = curthread;
957	struct vnode *vp;
958	struct bufobj *bo;
959
960	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
961	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
962	BUF_ASSERT_HELD(bp);
963
964	if (bp->b_flags & B_INVAL) {
965		brelse(bp);
966		return;
967	}
968
969	/*
970	 * If we have too many dirty buffers, don't create any more.
971	 * If we are wildly over our limit, then force a complete
972	 * cleanup. Otherwise, just keep the situation from getting
973	 * out of control. Note that we have to avoid a recursive
974	 * disaster and not try to clean up after our own cleanup!
975	 */
976	vp = bp->b_vp;
977	bo = bp->b_bufobj;
978	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
979		td->td_pflags |= TDP_INBDFLUSH;
980		BO_BDFLUSH(bo, bp);
981		td->td_pflags &= ~TDP_INBDFLUSH;
982	} else
983		recursiveflushes++;
984
985	bdirty(bp);
986	/*
987	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
988	 * true even of NFS now.
989	 */
990	bp->b_flags |= B_CACHE;
991
992	/*
993	 * This bmap keeps the system from needing to do the bmap later,
994	 * perhaps when the system is attempting to do a sync.  Since it
995	 * is likely that the indirect block -- or whatever other datastructure
996	 * that the filesystem needs is still in memory now, it is a good
997	 * thing to do this.  Note also, that if the pageout daemon is
998	 * requesting a sync -- there might not be enough memory to do
999	 * the bmap then...  So, this is important to do.
1000	 */
1001	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1002		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1003	}
1004
1005	/*
1006	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1007	 */
1008	vfs_setdirty(bp);
1009
1010	/*
1011	 * We need to do this here to satisfy the vnode_pager and the
1012	 * pageout daemon, so that it thinks that the pages have been
1013	 * "cleaned".  Note that since the pages are in a delayed write
1014	 * buffer -- the VFS layer "will" see that the pages get written
1015	 * out on the next sync, or perhaps the cluster will be completed.
1016	 */
1017	vfs_clean_pages(bp);
1018	bqrelse(bp);
1019
1020	/*
1021	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1022	 * buffers (midpoint between our recovery point and our stall
1023	 * point).
1024	 */
1025	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1026
1027	/*
1028	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1029	 * due to the softdep code.
1030	 */
1031}
1032
1033/*
1034 *	bdirty:
1035 *
1036 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1037 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1038 *	itself to properly update it in the dirty/clean lists.  We mark it
1039 *	B_DONE to ensure that any asynchronization of the buffer properly
1040 *	clears B_DONE ( else a panic will occur later ).
1041 *
1042 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1043 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1044 *	should only be called if the buffer is known-good.
1045 *
1046 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1047 *	count.
1048 *
1049 *	The buffer must be on QUEUE_NONE.
1050 */
1051void
1052bdirty(struct buf *bp)
1053{
1054
1055	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1056	    bp, bp->b_vp, bp->b_flags);
1057	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1058	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1059	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1060	BUF_ASSERT_HELD(bp);
1061	bp->b_flags &= ~(B_RELBUF);
1062	bp->b_iocmd = BIO_WRITE;
1063
1064	if ((bp->b_flags & B_DELWRI) == 0) {
1065		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1066		reassignbuf(bp);
1067		atomic_add_int(&numdirtybuffers, 1);
1068		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1069	}
1070}
1071
1072/*
1073 *	bundirty:
1074 *
1075 *	Clear B_DELWRI for buffer.
1076 *
1077 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1078 *	count.
1079 *
1080 *	The buffer must be on QUEUE_NONE.
1081 */
1082
1083void
1084bundirty(struct buf *bp)
1085{
1086
1087	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1088	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1089	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1090	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1091	BUF_ASSERT_HELD(bp);
1092
1093	if (bp->b_flags & B_DELWRI) {
1094		bp->b_flags &= ~B_DELWRI;
1095		reassignbuf(bp);
1096		atomic_subtract_int(&numdirtybuffers, 1);
1097		numdirtywakeup(lodirtybuffers);
1098	}
1099	/*
1100	 * Since it is now being written, we can clear its deferred write flag.
1101	 */
1102	bp->b_flags &= ~B_DEFERRED;
1103}
1104
1105/*
1106 *	bawrite:
1107 *
1108 *	Asynchronous write.  Start output on a buffer, but do not wait for
1109 *	it to complete.  The buffer is released when the output completes.
1110 *
1111 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1112 *	B_INVAL buffers.  Not us.
1113 */
1114void
1115bawrite(struct buf *bp)
1116{
1117
1118	bp->b_flags |= B_ASYNC;
1119	(void) bwrite(bp);
1120}
1121
1122/*
1123 *	bwillwrite:
1124 *
1125 *	Called prior to the locking of any vnodes when we are expecting to
1126 *	write.  We do not want to starve the buffer cache with too many
1127 *	dirty buffers so we block here.  By blocking prior to the locking
1128 *	of any vnodes we attempt to avoid the situation where a locked vnode
1129 *	prevents the various system daemons from flushing related buffers.
1130 */
1131
1132void
1133bwillwrite(void)
1134{
1135
1136	if (numdirtybuffers >= hidirtybuffers) {
1137		mtx_lock(&nblock);
1138		while (numdirtybuffers >= hidirtybuffers) {
1139			bd_wakeup(1);
1140			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1141			msleep(&needsbuffer, &nblock,
1142			    (PRIBIO + 4), "flswai", 0);
1143		}
1144		mtx_unlock(&nblock);
1145	}
1146}
1147
1148/*
1149 * Return true if we have too many dirty buffers.
1150 */
1151int
1152buf_dirty_count_severe(void)
1153{
1154
1155	return(numdirtybuffers >= hidirtybuffers);
1156}
1157
1158/*
1159 *	brelse:
1160 *
1161 *	Release a busy buffer and, if requested, free its resources.  The
1162 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1163 *	to be accessed later as a cache entity or reused for other purposes.
1164 */
1165void
1166brelse(struct buf *bp)
1167{
1168	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1169	    bp, bp->b_vp, bp->b_flags);
1170	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1171	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1172
1173	if (bp->b_flags & B_MANAGED) {
1174		bqrelse(bp);
1175		return;
1176	}
1177
1178	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1179	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1180		/*
1181		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1182		 * pages from being scrapped.  If the error is anything
1183		 * other than an I/O error (EIO), assume that retryingi
1184		 * is futile.
1185		 */
1186		bp->b_ioflags &= ~BIO_ERROR;
1187		bdirty(bp);
1188	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1189	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1190		/*
1191		 * Either a failed I/O or we were asked to free or not
1192		 * cache the buffer.
1193		 */
1194		bp->b_flags |= B_INVAL;
1195		if (!LIST_EMPTY(&bp->b_dep))
1196			buf_deallocate(bp);
1197		if (bp->b_flags & B_DELWRI) {
1198			atomic_subtract_int(&numdirtybuffers, 1);
1199			numdirtywakeup(lodirtybuffers);
1200		}
1201		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1202		if ((bp->b_flags & B_VMIO) == 0) {
1203			if (bp->b_bufsize)
1204				allocbuf(bp, 0);
1205			if (bp->b_vp)
1206				brelvp(bp);
1207		}
1208	}
1209
1210	/*
1211	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1212	 * is called with B_DELWRI set, the underlying pages may wind up
1213	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1214	 * because pages associated with a B_DELWRI bp are marked clean.
1215	 *
1216	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1217	 * if B_DELWRI is set.
1218	 *
1219	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1220	 * on pages to return pages to the VM page queues.
1221	 */
1222	if (bp->b_flags & B_DELWRI)
1223		bp->b_flags &= ~B_RELBUF;
1224	else if (vm_page_count_severe()) {
1225		/*
1226		 * The locking of the BO_LOCK is not necessary since
1227		 * BKGRDINPROG cannot be set while we hold the buf
1228		 * lock, it can only be cleared if it is already
1229		 * pending.
1230		 */
1231		if (bp->b_vp) {
1232			if (!(bp->b_vflags & BV_BKGRDINPROG))
1233				bp->b_flags |= B_RELBUF;
1234		} else
1235			bp->b_flags |= B_RELBUF;
1236	}
1237
1238	/*
1239	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1240	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1241	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1242	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1243	 *
1244	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1245	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1246	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1247	 *
1248	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1249	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1250	 * the commit state and we cannot afford to lose the buffer. If the
1251	 * buffer has a background write in progress, we need to keep it
1252	 * around to prevent it from being reconstituted and starting a second
1253	 * background write.
1254	 */
1255	if ((bp->b_flags & B_VMIO)
1256	    && !(bp->b_vp->v_mount != NULL &&
1257		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1258		 !vn_isdisk(bp->b_vp, NULL) &&
1259		 (bp->b_flags & B_DELWRI))
1260	    ) {
1261
1262		int i, j, resid;
1263		vm_page_t m;
1264		off_t foff;
1265		vm_pindex_t poff;
1266		vm_object_t obj;
1267
1268		obj = bp->b_bufobj->bo_object;
1269
1270		/*
1271		 * Get the base offset and length of the buffer.  Note that
1272		 * in the VMIO case if the buffer block size is not
1273		 * page-aligned then b_data pointer may not be page-aligned.
1274		 * But our b_pages[] array *IS* page aligned.
1275		 *
1276		 * block sizes less then DEV_BSIZE (usually 512) are not
1277		 * supported due to the page granularity bits (m->valid,
1278		 * m->dirty, etc...).
1279		 *
1280		 * See man buf(9) for more information
1281		 */
1282		resid = bp->b_bufsize;
1283		foff = bp->b_offset;
1284		VM_OBJECT_LOCK(obj);
1285		for (i = 0; i < bp->b_npages; i++) {
1286			int had_bogus = 0;
1287
1288			m = bp->b_pages[i];
1289
1290			/*
1291			 * If we hit a bogus page, fixup *all* the bogus pages
1292			 * now.
1293			 */
1294			if (m == bogus_page) {
1295				poff = OFF_TO_IDX(bp->b_offset);
1296				had_bogus = 1;
1297
1298				for (j = i; j < bp->b_npages; j++) {
1299					vm_page_t mtmp;
1300					mtmp = bp->b_pages[j];
1301					if (mtmp == bogus_page) {
1302						mtmp = vm_page_lookup(obj, poff + j);
1303						if (!mtmp) {
1304							panic("brelse: page missing\n");
1305						}
1306						bp->b_pages[j] = mtmp;
1307					}
1308				}
1309
1310				if ((bp->b_flags & B_INVAL) == 0) {
1311					pmap_qenter(
1312					    trunc_page((vm_offset_t)bp->b_data),
1313					    bp->b_pages, bp->b_npages);
1314				}
1315				m = bp->b_pages[i];
1316			}
1317			if ((bp->b_flags & B_NOCACHE) ||
1318			    (bp->b_ioflags & BIO_ERROR)) {
1319				int poffset = foff & PAGE_MASK;
1320				int presid = resid > (PAGE_SIZE - poffset) ?
1321					(PAGE_SIZE - poffset) : resid;
1322
1323				KASSERT(presid >= 0, ("brelse: extra page"));
1324				vm_page_lock_queues();
1325				vm_page_set_invalid(m, poffset, presid);
1326				vm_page_unlock_queues();
1327				if (had_bogus)
1328					printf("avoided corruption bug in bogus_page/brelse code\n");
1329			}
1330			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1331			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1332		}
1333		VM_OBJECT_UNLOCK(obj);
1334		if (bp->b_flags & (B_INVAL | B_RELBUF))
1335			vfs_vmio_release(bp);
1336
1337	} else if (bp->b_flags & B_VMIO) {
1338
1339		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1340			vfs_vmio_release(bp);
1341		}
1342
1343	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1344		if (bp->b_bufsize != 0)
1345			allocbuf(bp, 0);
1346		if (bp->b_vp != NULL)
1347			brelvp(bp);
1348	}
1349
1350	if (BUF_LOCKRECURSED(bp)) {
1351		/* do not release to free list */
1352		BUF_UNLOCK(bp);
1353		return;
1354	}
1355
1356	/* enqueue */
1357	mtx_lock(&bqlock);
1358	/* Handle delayed bremfree() processing. */
1359	if (bp->b_flags & B_REMFREE)
1360		bremfreel(bp);
1361	if (bp->b_qindex != QUEUE_NONE)
1362		panic("brelse: free buffer onto another queue???");
1363
1364	/* buffers with no memory */
1365	if (bp->b_bufsize == 0) {
1366		bp->b_flags |= B_INVAL;
1367		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1368		if (bp->b_vflags & BV_BKGRDINPROG)
1369			panic("losing buffer 1");
1370		if (bp->b_kvasize) {
1371			bp->b_qindex = QUEUE_EMPTYKVA;
1372		} else {
1373			bp->b_qindex = QUEUE_EMPTY;
1374		}
1375		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1376	/* buffers with junk contents */
1377	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1378	    (bp->b_ioflags & BIO_ERROR)) {
1379		bp->b_flags |= B_INVAL;
1380		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1381		if (bp->b_vflags & BV_BKGRDINPROG)
1382			panic("losing buffer 2");
1383		bp->b_qindex = QUEUE_CLEAN;
1384		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1385	/* remaining buffers */
1386	} else {
1387		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1388		    (B_DELWRI|B_NEEDSGIANT))
1389			bp->b_qindex = QUEUE_DIRTY_GIANT;
1390		else if (bp->b_flags & B_DELWRI)
1391			bp->b_qindex = QUEUE_DIRTY;
1392		else
1393			bp->b_qindex = QUEUE_CLEAN;
1394		if (bp->b_flags & B_AGE)
1395			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1396		else
1397			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1398	}
1399	mtx_unlock(&bqlock);
1400
1401	/*
1402	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1403	 * placed the buffer on the correct queue.  We must also disassociate
1404	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1405	 * find it.
1406	 */
1407	if (bp->b_flags & B_INVAL) {
1408		if (bp->b_flags & B_DELWRI)
1409			bundirty(bp);
1410		if (bp->b_vp)
1411			brelvp(bp);
1412	}
1413
1414	/*
1415	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1416	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1417	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1418	 * if B_INVAL is set ).
1419	 */
1420
1421	if (!(bp->b_flags & B_DELWRI))
1422		bufcountwakeup();
1423
1424	/*
1425	 * Something we can maybe free or reuse
1426	 */
1427	if (bp->b_bufsize || bp->b_kvasize)
1428		bufspacewakeup();
1429
1430	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1431	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1432		panic("brelse: not dirty");
1433	/* unlock */
1434	BUF_UNLOCK(bp);
1435}
1436
1437/*
1438 * Release a buffer back to the appropriate queue but do not try to free
1439 * it.  The buffer is expected to be used again soon.
1440 *
1441 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1442 * biodone() to requeue an async I/O on completion.  It is also used when
1443 * known good buffers need to be requeued but we think we may need the data
1444 * again soon.
1445 *
1446 * XXX we should be able to leave the B_RELBUF hint set on completion.
1447 */
1448void
1449bqrelse(struct buf *bp)
1450{
1451	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1452	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1453	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1454
1455	if (BUF_LOCKRECURSED(bp)) {
1456		/* do not release to free list */
1457		BUF_UNLOCK(bp);
1458		return;
1459	}
1460
1461	if (bp->b_flags & B_MANAGED) {
1462		if (bp->b_flags & B_REMFREE) {
1463			mtx_lock(&bqlock);
1464			bremfreel(bp);
1465			mtx_unlock(&bqlock);
1466		}
1467		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1468		BUF_UNLOCK(bp);
1469		return;
1470	}
1471
1472	mtx_lock(&bqlock);
1473	/* Handle delayed bremfree() processing. */
1474	if (bp->b_flags & B_REMFREE)
1475		bremfreel(bp);
1476	if (bp->b_qindex != QUEUE_NONE)
1477		panic("bqrelse: free buffer onto another queue???");
1478	/* buffers with stale but valid contents */
1479	if (bp->b_flags & B_DELWRI) {
1480		if (bp->b_flags & B_NEEDSGIANT)
1481			bp->b_qindex = QUEUE_DIRTY_GIANT;
1482		else
1483			bp->b_qindex = QUEUE_DIRTY;
1484		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1485	} else {
1486		/*
1487		 * The locking of the BO_LOCK for checking of the
1488		 * BV_BKGRDINPROG is not necessary since the
1489		 * BV_BKGRDINPROG cannot be set while we hold the buf
1490		 * lock, it can only be cleared if it is already
1491		 * pending.
1492		 */
1493		if (!vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1494			bp->b_qindex = QUEUE_CLEAN;
1495			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1496			    b_freelist);
1497		} else {
1498			/*
1499			 * We are too low on memory, we have to try to free
1500			 * the buffer (most importantly: the wired pages
1501			 * making up its backing store) *now*.
1502			 */
1503			mtx_unlock(&bqlock);
1504			brelse(bp);
1505			return;
1506		}
1507	}
1508	mtx_unlock(&bqlock);
1509
1510	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1511		bufcountwakeup();
1512
1513	/*
1514	 * Something we can maybe free or reuse.
1515	 */
1516	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1517		bufspacewakeup();
1518
1519	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1520	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1521		panic("bqrelse: not dirty");
1522	/* unlock */
1523	BUF_UNLOCK(bp);
1524}
1525
1526/* Give pages used by the bp back to the VM system (where possible) */
1527static void
1528vfs_vmio_release(struct buf *bp)
1529{
1530	int i;
1531	vm_page_t m;
1532
1533	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1534	vm_page_lock_queues();
1535	for (i = 0; i < bp->b_npages; i++) {
1536		m = bp->b_pages[i];
1537		bp->b_pages[i] = NULL;
1538		/*
1539		 * In order to keep page LRU ordering consistent, put
1540		 * everything on the inactive queue.
1541		 */
1542		vm_page_unwire(m, 0);
1543		/*
1544		 * We don't mess with busy pages, it is
1545		 * the responsibility of the process that
1546		 * busied the pages to deal with them.
1547		 */
1548		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1549			continue;
1550
1551		if (m->wire_count == 0) {
1552			/*
1553			 * Might as well free the page if we can and it has
1554			 * no valid data.  We also free the page if the
1555			 * buffer was used for direct I/O
1556			 */
1557			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1558			    m->hold_count == 0) {
1559				vm_page_free(m);
1560			} else if (bp->b_flags & B_DIRECT) {
1561				vm_page_try_to_free(m);
1562			} else if (vm_page_count_severe()) {
1563				vm_page_try_to_cache(m);
1564			}
1565		}
1566	}
1567	vm_page_unlock_queues();
1568	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1569	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1570
1571	if (bp->b_bufsize) {
1572		bufspacewakeup();
1573		bp->b_bufsize = 0;
1574	}
1575	bp->b_npages = 0;
1576	bp->b_flags &= ~B_VMIO;
1577	if (bp->b_vp)
1578		brelvp(bp);
1579}
1580
1581/*
1582 * Check to see if a block at a particular lbn is available for a clustered
1583 * write.
1584 */
1585static int
1586vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1587{
1588	struct buf *bpa;
1589	int match;
1590
1591	match = 0;
1592
1593	/* If the buf isn't in core skip it */
1594	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1595		return (0);
1596
1597	/* If the buf is busy we don't want to wait for it */
1598	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1599		return (0);
1600
1601	/* Only cluster with valid clusterable delayed write buffers */
1602	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1603	    (B_DELWRI | B_CLUSTEROK))
1604		goto done;
1605
1606	if (bpa->b_bufsize != size)
1607		goto done;
1608
1609	/*
1610	 * Check to see if it is in the expected place on disk and that the
1611	 * block has been mapped.
1612	 */
1613	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1614		match = 1;
1615done:
1616	BUF_UNLOCK(bpa);
1617	return (match);
1618}
1619
1620/*
1621 *	vfs_bio_awrite:
1622 *
1623 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1624 *	This is much better then the old way of writing only one buffer at
1625 *	a time.  Note that we may not be presented with the buffers in the
1626 *	correct order, so we search for the cluster in both directions.
1627 */
1628int
1629vfs_bio_awrite(struct buf *bp)
1630{
1631	struct bufobj *bo;
1632	int i;
1633	int j;
1634	daddr_t lblkno = bp->b_lblkno;
1635	struct vnode *vp = bp->b_vp;
1636	int ncl;
1637	int nwritten;
1638	int size;
1639	int maxcl;
1640
1641	bo = &vp->v_bufobj;
1642	/*
1643	 * right now we support clustered writing only to regular files.  If
1644	 * we find a clusterable block we could be in the middle of a cluster
1645	 * rather then at the beginning.
1646	 */
1647	if ((vp->v_type == VREG) &&
1648	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1649	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1650
1651		size = vp->v_mount->mnt_stat.f_iosize;
1652		maxcl = MAXPHYS / size;
1653
1654		BO_LOCK(bo);
1655		for (i = 1; i < maxcl; i++)
1656			if (vfs_bio_clcheck(vp, size, lblkno + i,
1657			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1658				break;
1659
1660		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1661			if (vfs_bio_clcheck(vp, size, lblkno - j,
1662			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1663				break;
1664		BO_UNLOCK(bo);
1665		--j;
1666		ncl = i + j;
1667		/*
1668		 * this is a possible cluster write
1669		 */
1670		if (ncl != 1) {
1671			BUF_UNLOCK(bp);
1672			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1673			return nwritten;
1674		}
1675	}
1676	bremfree(bp);
1677	bp->b_flags |= B_ASYNC;
1678	/*
1679	 * default (old) behavior, writing out only one block
1680	 *
1681	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1682	 */
1683	nwritten = bp->b_bufsize;
1684	(void) bwrite(bp);
1685
1686	return nwritten;
1687}
1688
1689/*
1690 *	getnewbuf:
1691 *
1692 *	Find and initialize a new buffer header, freeing up existing buffers
1693 *	in the bufqueues as necessary.  The new buffer is returned locked.
1694 *
1695 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1696 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1697 *
1698 *	We block if:
1699 *		We have insufficient buffer headers
1700 *		We have insufficient buffer space
1701 *		buffer_map is too fragmented ( space reservation fails )
1702 *		If we have to flush dirty buffers ( but we try to avoid this )
1703 *
1704 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1705 *	Instead we ask the buf daemon to do it for us.  We attempt to
1706 *	avoid piecemeal wakeups of the pageout daemon.
1707 */
1708
1709static struct buf *
1710getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1711{
1712	struct buf *bp;
1713	struct buf *nbp;
1714	int defrag = 0;
1715	int nqindex;
1716	static int flushingbufs;
1717
1718	/*
1719	 * We can't afford to block since we might be holding a vnode lock,
1720	 * which may prevent system daemons from running.  We deal with
1721	 * low-memory situations by proactively returning memory and running
1722	 * async I/O rather then sync I/O.
1723	 */
1724
1725	atomic_add_int(&getnewbufcalls, 1);
1726	atomic_subtract_int(&getnewbufrestarts, 1);
1727restart:
1728	atomic_add_int(&getnewbufrestarts, 1);
1729
1730	/*
1731	 * Setup for scan.  If we do not have enough free buffers,
1732	 * we setup a degenerate case that immediately fails.  Note
1733	 * that if we are specially marked process, we are allowed to
1734	 * dip into our reserves.
1735	 *
1736	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1737	 *
1738	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1739	 * However, there are a number of cases (defragging, reusing, ...)
1740	 * where we cannot backup.
1741	 */
1742	mtx_lock(&bqlock);
1743	nqindex = QUEUE_EMPTYKVA;
1744	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1745
1746	if (nbp == NULL) {
1747		/*
1748		 * If no EMPTYKVA buffers and we are either
1749		 * defragging or reusing, locate a CLEAN buffer
1750		 * to free or reuse.  If bufspace useage is low
1751		 * skip this step so we can allocate a new buffer.
1752		 */
1753		if (defrag || bufspace >= lobufspace) {
1754			nqindex = QUEUE_CLEAN;
1755			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1756		}
1757
1758		/*
1759		 * If we could not find or were not allowed to reuse a
1760		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1761		 * buffer.  We can only use an EMPTY buffer if allocating
1762		 * its KVA would not otherwise run us out of buffer space.
1763		 */
1764		if (nbp == NULL && defrag == 0 &&
1765		    bufspace + maxsize < hibufspace) {
1766			nqindex = QUEUE_EMPTY;
1767			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1768		}
1769	}
1770
1771	/*
1772	 * Run scan, possibly freeing data and/or kva mappings on the fly
1773	 * depending.
1774	 */
1775
1776	while ((bp = nbp) != NULL) {
1777		int qindex = nqindex;
1778
1779		/*
1780		 * Calculate next bp ( we can only use it if we do not block
1781		 * or do other fancy things ).
1782		 */
1783		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1784			switch(qindex) {
1785			case QUEUE_EMPTY:
1786				nqindex = QUEUE_EMPTYKVA;
1787				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1788					break;
1789				/* FALLTHROUGH */
1790			case QUEUE_EMPTYKVA:
1791				nqindex = QUEUE_CLEAN;
1792				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1793					break;
1794				/* FALLTHROUGH */
1795			case QUEUE_CLEAN:
1796				/*
1797				 * nbp is NULL.
1798				 */
1799				break;
1800			}
1801		}
1802		/*
1803		 * If we are defragging then we need a buffer with
1804		 * b_kvasize != 0.  XXX this situation should no longer
1805		 * occur, if defrag is non-zero the buffer's b_kvasize
1806		 * should also be non-zero at this point.  XXX
1807		 */
1808		if (defrag && bp->b_kvasize == 0) {
1809			printf("Warning: defrag empty buffer %p\n", bp);
1810			continue;
1811		}
1812
1813		/*
1814		 * Start freeing the bp.  This is somewhat involved.  nbp
1815		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1816		 */
1817		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1818			continue;
1819		if (bp->b_vp) {
1820			BO_LOCK(bp->b_bufobj);
1821			if (bp->b_vflags & BV_BKGRDINPROG) {
1822				BO_UNLOCK(bp->b_bufobj);
1823				BUF_UNLOCK(bp);
1824				continue;
1825			}
1826			BO_UNLOCK(bp->b_bufobj);
1827		}
1828		CTR6(KTR_BUF,
1829		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1830		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1831		    bp->b_kvasize, bp->b_bufsize, qindex);
1832
1833		/*
1834		 * Sanity Checks
1835		 */
1836		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1837
1838		/*
1839		 * Note: we no longer distinguish between VMIO and non-VMIO
1840		 * buffers.
1841		 */
1842
1843		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1844
1845		bremfreel(bp);
1846		mtx_unlock(&bqlock);
1847
1848		if (qindex == QUEUE_CLEAN) {
1849			if (bp->b_flags & B_VMIO) {
1850				bp->b_flags &= ~B_ASYNC;
1851				vfs_vmio_release(bp);
1852			}
1853			if (bp->b_vp)
1854				brelvp(bp);
1855		}
1856
1857		/*
1858		 * NOTE:  nbp is now entirely invalid.  We can only restart
1859		 * the scan from this point on.
1860		 *
1861		 * Get the rest of the buffer freed up.  b_kva* is still
1862		 * valid after this operation.
1863		 */
1864
1865		if (bp->b_rcred != NOCRED) {
1866			crfree(bp->b_rcred);
1867			bp->b_rcred = NOCRED;
1868		}
1869		if (bp->b_wcred != NOCRED) {
1870			crfree(bp->b_wcred);
1871			bp->b_wcred = NOCRED;
1872		}
1873		if (!LIST_EMPTY(&bp->b_dep))
1874			buf_deallocate(bp);
1875		if (bp->b_vflags & BV_BKGRDINPROG)
1876			panic("losing buffer 3");
1877		KASSERT(bp->b_vp == NULL,
1878		    ("bp: %p still has vnode %p.  qindex: %d",
1879		    bp, bp->b_vp, qindex));
1880		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1881		   ("bp: %p still on a buffer list. xflags %X",
1882		    bp, bp->b_xflags));
1883
1884		if (bp->b_bufsize)
1885			allocbuf(bp, 0);
1886
1887		bp->b_flags = 0;
1888		bp->b_ioflags = 0;
1889		bp->b_xflags = 0;
1890		bp->b_vflags = 0;
1891		bp->b_vp = NULL;
1892		bp->b_blkno = bp->b_lblkno = 0;
1893		bp->b_offset = NOOFFSET;
1894		bp->b_iodone = 0;
1895		bp->b_error = 0;
1896		bp->b_resid = 0;
1897		bp->b_bcount = 0;
1898		bp->b_npages = 0;
1899		bp->b_dirtyoff = bp->b_dirtyend = 0;
1900		bp->b_bufobj = NULL;
1901		bp->b_pin_count = 0;
1902		bp->b_fsprivate1 = NULL;
1903		bp->b_fsprivate2 = NULL;
1904		bp->b_fsprivate3 = NULL;
1905
1906		LIST_INIT(&bp->b_dep);
1907
1908		/*
1909		 * If we are defragging then free the buffer.
1910		 */
1911		if (defrag) {
1912			bp->b_flags |= B_INVAL;
1913			bfreekva(bp);
1914			brelse(bp);
1915			defrag = 0;
1916			goto restart;
1917		}
1918
1919		/*
1920		 * Notify any waiters for the buffer lock about
1921		 * identity change by freeing the buffer.
1922		 */
1923		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1924			bp->b_flags |= B_INVAL;
1925			bfreekva(bp);
1926			brelse(bp);
1927			goto restart;
1928		}
1929
1930		/*
1931		 * If we are overcomitted then recover the buffer and its
1932		 * KVM space.  This occurs in rare situations when multiple
1933		 * processes are blocked in getnewbuf() or allocbuf().
1934		 */
1935		if (bufspace >= hibufspace)
1936			flushingbufs = 1;
1937		if (flushingbufs && bp->b_kvasize != 0) {
1938			bp->b_flags |= B_INVAL;
1939			bfreekva(bp);
1940			brelse(bp);
1941			goto restart;
1942		}
1943		if (bufspace < lobufspace)
1944			flushingbufs = 0;
1945		break;
1946	}
1947
1948	/*
1949	 * If we exhausted our list, sleep as appropriate.  We may have to
1950	 * wakeup various daemons and write out some dirty buffers.
1951	 *
1952	 * Generally we are sleeping due to insufficient buffer space.
1953	 */
1954
1955	if (bp == NULL) {
1956		int flags;
1957		char *waitmsg;
1958
1959		if (defrag) {
1960			flags = VFS_BIO_NEED_BUFSPACE;
1961			waitmsg = "nbufkv";
1962		} else if (bufspace >= hibufspace) {
1963			waitmsg = "nbufbs";
1964			flags = VFS_BIO_NEED_BUFSPACE;
1965		} else {
1966			waitmsg = "newbuf";
1967			flags = VFS_BIO_NEED_ANY;
1968		}
1969		mtx_lock(&nblock);
1970		needsbuffer |= flags;
1971		mtx_unlock(&nblock);
1972		mtx_unlock(&bqlock);
1973
1974		bd_speedup();	/* heeeelp */
1975
1976		mtx_lock(&nblock);
1977		while (needsbuffer & flags) {
1978			if (msleep(&needsbuffer, &nblock,
1979			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1980				mtx_unlock(&nblock);
1981				return (NULL);
1982			}
1983		}
1984		mtx_unlock(&nblock);
1985	} else {
1986		/*
1987		 * We finally have a valid bp.  We aren't quite out of the
1988		 * woods, we still have to reserve kva space.  In order
1989		 * to keep fragmentation sane we only allocate kva in
1990		 * BKVASIZE chunks.
1991		 */
1992		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1993
1994		if (maxsize != bp->b_kvasize) {
1995			vm_offset_t addr = 0;
1996
1997			bfreekva(bp);
1998
1999			vm_map_lock(buffer_map);
2000			if (vm_map_findspace(buffer_map,
2001				vm_map_min(buffer_map), maxsize, &addr)) {
2002				/*
2003				 * Uh oh.  Buffer map is to fragmented.  We
2004				 * must defragment the map.
2005				 */
2006				atomic_add_int(&bufdefragcnt, 1);
2007				vm_map_unlock(buffer_map);
2008				defrag = 1;
2009				bp->b_flags |= B_INVAL;
2010				brelse(bp);
2011				goto restart;
2012			}
2013			if (addr) {
2014				vm_map_insert(buffer_map, NULL, 0,
2015					addr, addr + maxsize,
2016					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2017
2018				bp->b_kvabase = (caddr_t) addr;
2019				bp->b_kvasize = maxsize;
2020				atomic_add_long(&bufspace, bp->b_kvasize);
2021				atomic_add_int(&bufreusecnt, 1);
2022			}
2023			vm_map_unlock(buffer_map);
2024		}
2025		bp->b_saveaddr = bp->b_kvabase;
2026		bp->b_data = bp->b_saveaddr;
2027	}
2028	return(bp);
2029}
2030
2031/*
2032 *	buf_daemon:
2033 *
2034 *	buffer flushing daemon.  Buffers are normally flushed by the
2035 *	update daemon but if it cannot keep up this process starts to
2036 *	take the load in an attempt to prevent getnewbuf() from blocking.
2037 */
2038
2039static struct kproc_desc buf_kp = {
2040	"bufdaemon",
2041	buf_daemon,
2042	&bufdaemonproc
2043};
2044SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2045
2046static void
2047buf_daemon()
2048{
2049
2050	/*
2051	 * This process needs to be suspended prior to shutdown sync.
2052	 */
2053	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2054	    SHUTDOWN_PRI_LAST);
2055
2056	/*
2057	 * This process is allowed to take the buffer cache to the limit
2058	 */
2059	curthread->td_pflags |= TDP_NORUNNINGBUF;
2060	mtx_lock(&bdlock);
2061	for (;;) {
2062		bd_request = 0;
2063		mtx_unlock(&bdlock);
2064
2065		kproc_suspend_check(bufdaemonproc);
2066
2067		/*
2068		 * Do the flush.  Limit the amount of in-transit I/O we
2069		 * allow to build up, otherwise we would completely saturate
2070		 * the I/O system.  Wakeup any waiting processes before we
2071		 * normally would so they can run in parallel with our drain.
2072		 */
2073		while (numdirtybuffers > lodirtybuffers) {
2074			int flushed;
2075
2076			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2077			/* The list empty check here is slightly racy */
2078			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2079				mtx_lock(&Giant);
2080				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2081				mtx_unlock(&Giant);
2082			}
2083			if (flushed == 0) {
2084				/*
2085				 * Could not find any buffers without rollback
2086				 * dependencies, so just write the first one
2087				 * in the hopes of eventually making progress.
2088				 */
2089				flushbufqueues(QUEUE_DIRTY, 1);
2090				if (!TAILQ_EMPTY(
2091				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2092					mtx_lock(&Giant);
2093					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2094					mtx_unlock(&Giant);
2095				}
2096				break;
2097			}
2098			uio_yield();
2099		}
2100
2101		/*
2102		 * Only clear bd_request if we have reached our low water
2103		 * mark.  The buf_daemon normally waits 1 second and
2104		 * then incrementally flushes any dirty buffers that have
2105		 * built up, within reason.
2106		 *
2107		 * If we were unable to hit our low water mark and couldn't
2108		 * find any flushable buffers, we sleep half a second.
2109		 * Otherwise we loop immediately.
2110		 */
2111		mtx_lock(&bdlock);
2112		if (numdirtybuffers <= lodirtybuffers) {
2113			/*
2114			 * We reached our low water mark, reset the
2115			 * request and sleep until we are needed again.
2116			 * The sleep is just so the suspend code works.
2117			 */
2118			bd_request = 0;
2119			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2120		} else {
2121			/*
2122			 * We couldn't find any flushable dirty buffers but
2123			 * still have too many dirty buffers, we
2124			 * have to sleep and try again.  (rare)
2125			 */
2126			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2127		}
2128	}
2129}
2130
2131/*
2132 *	flushbufqueues:
2133 *
2134 *	Try to flush a buffer in the dirty queue.  We must be careful to
2135 *	free up B_INVAL buffers instead of write them, which NFS is
2136 *	particularly sensitive to.
2137 */
2138static int flushwithdeps = 0;
2139SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2140    0, "Number of buffers flushed with dependecies that require rollbacks");
2141
2142static int
2143flushbufqueues(int queue, int flushdeps)
2144{
2145	struct buf sentinel;
2146	struct vnode *vp;
2147	struct mount *mp;
2148	struct buf *bp;
2149	int hasdeps;
2150	int flushed;
2151	int target;
2152
2153	target = numdirtybuffers - lodirtybuffers;
2154	if (flushdeps && target > 2)
2155		target /= 2;
2156	flushed = 0;
2157	bp = NULL;
2158	mtx_lock(&bqlock);
2159	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2160	while (flushed != target) {
2161		bp = TAILQ_FIRST(&bufqueues[queue]);
2162		if (bp == &sentinel)
2163			break;
2164		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2165		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2166
2167		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2168			continue;
2169		if (bp->b_pin_count > 0) {
2170			BUF_UNLOCK(bp);
2171			continue;
2172		}
2173		BO_LOCK(bp->b_bufobj);
2174		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2175		    (bp->b_flags & B_DELWRI) == 0) {
2176			BO_UNLOCK(bp->b_bufobj);
2177			BUF_UNLOCK(bp);
2178			continue;
2179		}
2180		BO_UNLOCK(bp->b_bufobj);
2181		if (bp->b_flags & B_INVAL) {
2182			bremfreel(bp);
2183			mtx_unlock(&bqlock);
2184			brelse(bp);
2185			flushed++;
2186			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2187			mtx_lock(&bqlock);
2188			continue;
2189		}
2190
2191		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2192			if (flushdeps == 0) {
2193				BUF_UNLOCK(bp);
2194				continue;
2195			}
2196			hasdeps = 1;
2197		} else
2198			hasdeps = 0;
2199		/*
2200		 * We must hold the lock on a vnode before writing
2201		 * one of its buffers. Otherwise we may confuse, or
2202		 * in the case of a snapshot vnode, deadlock the
2203		 * system.
2204		 *
2205		 * The lock order here is the reverse of the normal
2206		 * of vnode followed by buf lock.  This is ok because
2207		 * the NOWAIT will prevent deadlock.
2208		 */
2209		vp = bp->b_vp;
2210		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2211			BUF_UNLOCK(bp);
2212			continue;
2213		}
2214		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2215			mtx_unlock(&bqlock);
2216			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2217			    bp, bp->b_vp, bp->b_flags);
2218			vfs_bio_awrite(bp);
2219			vn_finished_write(mp);
2220			VOP_UNLOCK(vp, 0);
2221			flushwithdeps += hasdeps;
2222			flushed++;
2223			waitrunningbufspace();
2224			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2225			mtx_lock(&bqlock);
2226			continue;
2227		}
2228		vn_finished_write(mp);
2229		BUF_UNLOCK(bp);
2230	}
2231	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2232	mtx_unlock(&bqlock);
2233	return (flushed);
2234}
2235
2236/*
2237 * Check to see if a block is currently memory resident.
2238 */
2239struct buf *
2240incore(struct bufobj *bo, daddr_t blkno)
2241{
2242	struct buf *bp;
2243
2244	BO_LOCK(bo);
2245	bp = gbincore(bo, blkno);
2246	BO_UNLOCK(bo);
2247	return (bp);
2248}
2249
2250/*
2251 * Returns true if no I/O is needed to access the
2252 * associated VM object.  This is like incore except
2253 * it also hunts around in the VM system for the data.
2254 */
2255
2256static int
2257inmem(struct vnode * vp, daddr_t blkno)
2258{
2259	vm_object_t obj;
2260	vm_offset_t toff, tinc, size;
2261	vm_page_t m;
2262	vm_ooffset_t off;
2263
2264	ASSERT_VOP_LOCKED(vp, "inmem");
2265
2266	if (incore(&vp->v_bufobj, blkno))
2267		return 1;
2268	if (vp->v_mount == NULL)
2269		return 0;
2270	obj = vp->v_object;
2271	if (obj == NULL)
2272		return (0);
2273
2274	size = PAGE_SIZE;
2275	if (size > vp->v_mount->mnt_stat.f_iosize)
2276		size = vp->v_mount->mnt_stat.f_iosize;
2277	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2278
2279	VM_OBJECT_LOCK(obj);
2280	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2281		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2282		if (!m)
2283			goto notinmem;
2284		tinc = size;
2285		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2286			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2287		if (vm_page_is_valid(m,
2288		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2289			goto notinmem;
2290	}
2291	VM_OBJECT_UNLOCK(obj);
2292	return 1;
2293
2294notinmem:
2295	VM_OBJECT_UNLOCK(obj);
2296	return (0);
2297}
2298
2299/*
2300 *	vfs_setdirty:
2301 *
2302 *	Sets the dirty range for a buffer based on the status of the dirty
2303 *	bits in the pages comprising the buffer.
2304 *
2305 *	The range is limited to the size of the buffer.
2306 *
2307 *	This routine is primarily used by NFS, but is generalized for the
2308 *	B_VMIO case.
2309 */
2310static void
2311vfs_setdirty(struct buf *bp)
2312{
2313
2314	/*
2315	 * Degenerate case - empty buffer
2316	 */
2317
2318	if (bp->b_bufsize == 0)
2319		return;
2320
2321	/*
2322	 * We qualify the scan for modified pages on whether the
2323	 * object has been flushed yet.
2324	 */
2325
2326	if ((bp->b_flags & B_VMIO) == 0)
2327		return;
2328
2329	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2330	vfs_setdirty_locked_object(bp);
2331	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2332}
2333
2334static void
2335vfs_setdirty_locked_object(struct buf *bp)
2336{
2337	vm_object_t object;
2338	int i;
2339
2340	object = bp->b_bufobj->bo_object;
2341	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2342	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2343		vm_offset_t boffset;
2344		vm_offset_t eoffset;
2345
2346		vm_page_lock_queues();
2347		/*
2348		 * test the pages to see if they have been modified directly
2349		 * by users through the VM system.
2350		 */
2351		for (i = 0; i < bp->b_npages; i++)
2352			vm_page_test_dirty(bp->b_pages[i]);
2353
2354		/*
2355		 * Calculate the encompassing dirty range, boffset and eoffset,
2356		 * (eoffset - boffset) bytes.
2357		 */
2358
2359		for (i = 0; i < bp->b_npages; i++) {
2360			if (bp->b_pages[i]->dirty)
2361				break;
2362		}
2363		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2364
2365		for (i = bp->b_npages - 1; i >= 0; --i) {
2366			if (bp->b_pages[i]->dirty) {
2367				break;
2368			}
2369		}
2370		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2371
2372		vm_page_unlock_queues();
2373		/*
2374		 * Fit it to the buffer.
2375		 */
2376
2377		if (eoffset > bp->b_bcount)
2378			eoffset = bp->b_bcount;
2379
2380		/*
2381		 * If we have a good dirty range, merge with the existing
2382		 * dirty range.
2383		 */
2384
2385		if (boffset < eoffset) {
2386			if (bp->b_dirtyoff > boffset)
2387				bp->b_dirtyoff = boffset;
2388			if (bp->b_dirtyend < eoffset)
2389				bp->b_dirtyend = eoffset;
2390		}
2391	}
2392}
2393
2394/*
2395 *	getblk:
2396 *
2397 *	Get a block given a specified block and offset into a file/device.
2398 *	The buffers B_DONE bit will be cleared on return, making it almost
2399 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2400 *	return.  The caller should clear B_INVAL prior to initiating a
2401 *	READ.
2402 *
2403 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2404 *	an existing buffer.
2405 *
2406 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2407 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2408 *	and then cleared based on the backing VM.  If the previous buffer is
2409 *	non-0-sized but invalid, B_CACHE will be cleared.
2410 *
2411 *	If getblk() must create a new buffer, the new buffer is returned with
2412 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2413 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2414 *	backing VM.
2415 *
2416 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2417 *	B_CACHE bit is clear.
2418 *
2419 *	What this means, basically, is that the caller should use B_CACHE to
2420 *	determine whether the buffer is fully valid or not and should clear
2421 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2422 *	the buffer by loading its data area with something, the caller needs
2423 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2424 *	the caller should set B_CACHE ( as an optimization ), else the caller
2425 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2426 *	a write attempt or if it was a successfull read.  If the caller
2427 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2428 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2429 */
2430struct buf *
2431getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2432    int flags)
2433{
2434	struct buf *bp;
2435	struct bufobj *bo;
2436	int error;
2437
2438	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2439	ASSERT_VOP_LOCKED(vp, "getblk");
2440	if (size > MAXBSIZE)
2441		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2442
2443	bo = &vp->v_bufobj;
2444loop:
2445	/*
2446	 * Block if we are low on buffers.   Certain processes are allowed
2447	 * to completely exhaust the buffer cache.
2448         *
2449         * If this check ever becomes a bottleneck it may be better to
2450         * move it into the else, when gbincore() fails.  At the moment
2451         * it isn't a problem.
2452	 *
2453	 * XXX remove if 0 sections (clean this up after its proven)
2454         */
2455	if (numfreebuffers == 0) {
2456		if (TD_IS_IDLETHREAD(curthread))
2457			return NULL;
2458		mtx_lock(&nblock);
2459		needsbuffer |= VFS_BIO_NEED_ANY;
2460		mtx_unlock(&nblock);
2461	}
2462
2463	BO_LOCK(bo);
2464	bp = gbincore(bo, blkno);
2465	if (bp != NULL) {
2466		int lockflags;
2467		/*
2468		 * Buffer is in-core.  If the buffer is not busy, it must
2469		 * be on a queue.
2470		 */
2471		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2472
2473		if (flags & GB_LOCK_NOWAIT)
2474			lockflags |= LK_NOWAIT;
2475
2476		error = BUF_TIMELOCK(bp, lockflags,
2477		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2478
2479		/*
2480		 * If we slept and got the lock we have to restart in case
2481		 * the buffer changed identities.
2482		 */
2483		if (error == ENOLCK)
2484			goto loop;
2485		/* We timed out or were interrupted. */
2486		else if (error)
2487			return (NULL);
2488
2489		/*
2490		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2491		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2492		 * and for a VMIO buffer B_CACHE is adjusted according to the
2493		 * backing VM cache.
2494		 */
2495		if (bp->b_flags & B_INVAL)
2496			bp->b_flags &= ~B_CACHE;
2497		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2498			bp->b_flags |= B_CACHE;
2499		bremfree(bp);
2500
2501		/*
2502		 * check for size inconsistancies for non-VMIO case.
2503		 */
2504
2505		if (bp->b_bcount != size) {
2506			if ((bp->b_flags & B_VMIO) == 0 ||
2507			    (size > bp->b_kvasize)) {
2508				if (bp->b_flags & B_DELWRI) {
2509					/*
2510					 * If buffer is pinned and caller does
2511					 * not want sleep  waiting for it to be
2512					 * unpinned, bail out
2513					 * */
2514					if (bp->b_pin_count > 0) {
2515						if (flags & GB_LOCK_NOWAIT) {
2516							bqrelse(bp);
2517							return (NULL);
2518						} else {
2519							bunpin_wait(bp);
2520						}
2521					}
2522					bp->b_flags |= B_NOCACHE;
2523					bwrite(bp);
2524				} else {
2525					if (LIST_EMPTY(&bp->b_dep)) {
2526						bp->b_flags |= B_RELBUF;
2527						brelse(bp);
2528					} else {
2529						bp->b_flags |= B_NOCACHE;
2530						bwrite(bp);
2531					}
2532				}
2533				goto loop;
2534			}
2535		}
2536
2537		/*
2538		 * If the size is inconsistant in the VMIO case, we can resize
2539		 * the buffer.  This might lead to B_CACHE getting set or
2540		 * cleared.  If the size has not changed, B_CACHE remains
2541		 * unchanged from its previous state.
2542		 */
2543
2544		if (bp->b_bcount != size)
2545			allocbuf(bp, size);
2546
2547		KASSERT(bp->b_offset != NOOFFSET,
2548		    ("getblk: no buffer offset"));
2549
2550		/*
2551		 * A buffer with B_DELWRI set and B_CACHE clear must
2552		 * be committed before we can return the buffer in
2553		 * order to prevent the caller from issuing a read
2554		 * ( due to B_CACHE not being set ) and overwriting
2555		 * it.
2556		 *
2557		 * Most callers, including NFS and FFS, need this to
2558		 * operate properly either because they assume they
2559		 * can issue a read if B_CACHE is not set, or because
2560		 * ( for example ) an uncached B_DELWRI might loop due
2561		 * to softupdates re-dirtying the buffer.  In the latter
2562		 * case, B_CACHE is set after the first write completes,
2563		 * preventing further loops.
2564		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2565		 * above while extending the buffer, we cannot allow the
2566		 * buffer to remain with B_CACHE set after the write
2567		 * completes or it will represent a corrupt state.  To
2568		 * deal with this we set B_NOCACHE to scrap the buffer
2569		 * after the write.
2570		 *
2571		 * We might be able to do something fancy, like setting
2572		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2573		 * so the below call doesn't set B_CACHE, but that gets real
2574		 * confusing.  This is much easier.
2575		 */
2576
2577		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2578			bp->b_flags |= B_NOCACHE;
2579			bwrite(bp);
2580			goto loop;
2581		}
2582		bp->b_flags &= ~B_DONE;
2583	} else {
2584		int bsize, maxsize, vmio;
2585		off_t offset;
2586
2587		/*
2588		 * Buffer is not in-core, create new buffer.  The buffer
2589		 * returned by getnewbuf() is locked.  Note that the returned
2590		 * buffer is also considered valid (not marked B_INVAL).
2591		 */
2592		BO_UNLOCK(bo);
2593		/*
2594		 * If the user does not want us to create the buffer, bail out
2595		 * here.
2596		 */
2597		if (flags & GB_NOCREAT)
2598			return NULL;
2599		bsize = bo->bo_bsize;
2600		offset = blkno * bsize;
2601		vmio = vp->v_object != NULL;
2602		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2603		maxsize = imax(maxsize, bsize);
2604
2605		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2606		if (bp == NULL) {
2607			if (slpflag || slptimeo)
2608				return NULL;
2609			goto loop;
2610		}
2611
2612		/*
2613		 * This code is used to make sure that a buffer is not
2614		 * created while the getnewbuf routine is blocked.
2615		 * This can be a problem whether the vnode is locked or not.
2616		 * If the buffer is created out from under us, we have to
2617		 * throw away the one we just created.
2618		 *
2619		 * Note: this must occur before we associate the buffer
2620		 * with the vp especially considering limitations in
2621		 * the splay tree implementation when dealing with duplicate
2622		 * lblkno's.
2623		 */
2624		BO_LOCK(bo);
2625		if (gbincore(bo, blkno)) {
2626			BO_UNLOCK(bo);
2627			bp->b_flags |= B_INVAL;
2628			brelse(bp);
2629			goto loop;
2630		}
2631
2632		/*
2633		 * Insert the buffer into the hash, so that it can
2634		 * be found by incore.
2635		 */
2636		bp->b_blkno = bp->b_lblkno = blkno;
2637		bp->b_offset = offset;
2638		bgetvp(vp, bp);
2639		BO_UNLOCK(bo);
2640
2641		/*
2642		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2643		 * buffer size starts out as 0, B_CACHE will be set by
2644		 * allocbuf() for the VMIO case prior to it testing the
2645		 * backing store for validity.
2646		 */
2647
2648		if (vmio) {
2649			bp->b_flags |= B_VMIO;
2650#if defined(VFS_BIO_DEBUG)
2651			if (vn_canvmio(vp) != TRUE)
2652				printf("getblk: VMIO on vnode type %d\n",
2653					vp->v_type);
2654#endif
2655			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2656			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2657			    bp, vp->v_object, bp->b_bufobj->bo_object));
2658		} else {
2659			bp->b_flags &= ~B_VMIO;
2660			KASSERT(bp->b_bufobj->bo_object == NULL,
2661			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2662			    bp, bp->b_bufobj->bo_object));
2663		}
2664
2665		allocbuf(bp, size);
2666		bp->b_flags &= ~B_DONE;
2667	}
2668	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2669	BUF_ASSERT_HELD(bp);
2670	KASSERT(bp->b_bufobj == bo,
2671	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2672	return (bp);
2673}
2674
2675/*
2676 * Get an empty, disassociated buffer of given size.  The buffer is initially
2677 * set to B_INVAL.
2678 */
2679struct buf *
2680geteblk(int size)
2681{
2682	struct buf *bp;
2683	int maxsize;
2684
2685	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2686	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2687		continue;
2688	allocbuf(bp, size);
2689	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2690	BUF_ASSERT_HELD(bp);
2691	return (bp);
2692}
2693
2694
2695/*
2696 * This code constitutes the buffer memory from either anonymous system
2697 * memory (in the case of non-VMIO operations) or from an associated
2698 * VM object (in the case of VMIO operations).  This code is able to
2699 * resize a buffer up or down.
2700 *
2701 * Note that this code is tricky, and has many complications to resolve
2702 * deadlock or inconsistant data situations.  Tread lightly!!!
2703 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2704 * the caller.  Calling this code willy nilly can result in the loss of data.
2705 *
2706 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2707 * B_CACHE for the non-VMIO case.
2708 */
2709
2710int
2711allocbuf(struct buf *bp, int size)
2712{
2713	int newbsize, mbsize;
2714	int i;
2715
2716	BUF_ASSERT_HELD(bp);
2717
2718	if (bp->b_kvasize < size)
2719		panic("allocbuf: buffer too small");
2720
2721	if ((bp->b_flags & B_VMIO) == 0) {
2722		caddr_t origbuf;
2723		int origbufsize;
2724		/*
2725		 * Just get anonymous memory from the kernel.  Don't
2726		 * mess with B_CACHE.
2727		 */
2728		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2729		if (bp->b_flags & B_MALLOC)
2730			newbsize = mbsize;
2731		else
2732			newbsize = round_page(size);
2733
2734		if (newbsize < bp->b_bufsize) {
2735			/*
2736			 * malloced buffers are not shrunk
2737			 */
2738			if (bp->b_flags & B_MALLOC) {
2739				if (newbsize) {
2740					bp->b_bcount = size;
2741				} else {
2742					free(bp->b_data, M_BIOBUF);
2743					if (bp->b_bufsize) {
2744						atomic_subtract_long(
2745						    &bufmallocspace,
2746						    bp->b_bufsize);
2747						bufspacewakeup();
2748						bp->b_bufsize = 0;
2749					}
2750					bp->b_saveaddr = bp->b_kvabase;
2751					bp->b_data = bp->b_saveaddr;
2752					bp->b_bcount = 0;
2753					bp->b_flags &= ~B_MALLOC;
2754				}
2755				return 1;
2756			}
2757			vm_hold_free_pages(
2758			    bp,
2759			    (vm_offset_t) bp->b_data + newbsize,
2760			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2761		} else if (newbsize > bp->b_bufsize) {
2762			/*
2763			 * We only use malloced memory on the first allocation.
2764			 * and revert to page-allocated memory when the buffer
2765			 * grows.
2766			 */
2767			/*
2768			 * There is a potential smp race here that could lead
2769			 * to bufmallocspace slightly passing the max.  It
2770			 * is probably extremely rare and not worth worrying
2771			 * over.
2772			 */
2773			if ( (bufmallocspace < maxbufmallocspace) &&
2774				(bp->b_bufsize == 0) &&
2775				(mbsize <= PAGE_SIZE/2)) {
2776
2777				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2778				bp->b_bufsize = mbsize;
2779				bp->b_bcount = size;
2780				bp->b_flags |= B_MALLOC;
2781				atomic_add_long(&bufmallocspace, mbsize);
2782				return 1;
2783			}
2784			origbuf = NULL;
2785			origbufsize = 0;
2786			/*
2787			 * If the buffer is growing on its other-than-first allocation,
2788			 * then we revert to the page-allocation scheme.
2789			 */
2790			if (bp->b_flags & B_MALLOC) {
2791				origbuf = bp->b_data;
2792				origbufsize = bp->b_bufsize;
2793				bp->b_data = bp->b_kvabase;
2794				if (bp->b_bufsize) {
2795					atomic_subtract_long(&bufmallocspace,
2796					    bp->b_bufsize);
2797					bufspacewakeup();
2798					bp->b_bufsize = 0;
2799				}
2800				bp->b_flags &= ~B_MALLOC;
2801				newbsize = round_page(newbsize);
2802			}
2803			vm_hold_load_pages(
2804			    bp,
2805			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2806			    (vm_offset_t) bp->b_data + newbsize);
2807			if (origbuf) {
2808				bcopy(origbuf, bp->b_data, origbufsize);
2809				free(origbuf, M_BIOBUF);
2810			}
2811		}
2812	} else {
2813		int desiredpages;
2814
2815		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2816		desiredpages = (size == 0) ? 0 :
2817			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2818
2819		if (bp->b_flags & B_MALLOC)
2820			panic("allocbuf: VMIO buffer can't be malloced");
2821		/*
2822		 * Set B_CACHE initially if buffer is 0 length or will become
2823		 * 0-length.
2824		 */
2825		if (size == 0 || bp->b_bufsize == 0)
2826			bp->b_flags |= B_CACHE;
2827
2828		if (newbsize < bp->b_bufsize) {
2829			/*
2830			 * DEV_BSIZE aligned new buffer size is less then the
2831			 * DEV_BSIZE aligned existing buffer size.  Figure out
2832			 * if we have to remove any pages.
2833			 */
2834			if (desiredpages < bp->b_npages) {
2835				vm_page_t m;
2836
2837				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2838				vm_page_lock_queues();
2839				for (i = desiredpages; i < bp->b_npages; i++) {
2840					/*
2841					 * the page is not freed here -- it
2842					 * is the responsibility of
2843					 * vnode_pager_setsize
2844					 */
2845					m = bp->b_pages[i];
2846					KASSERT(m != bogus_page,
2847					    ("allocbuf: bogus page found"));
2848					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2849						vm_page_lock_queues();
2850
2851					bp->b_pages[i] = NULL;
2852					vm_page_unwire(m, 0);
2853				}
2854				vm_page_unlock_queues();
2855				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2856				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2857				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2858				bp->b_npages = desiredpages;
2859			}
2860		} else if (size > bp->b_bcount) {
2861			/*
2862			 * We are growing the buffer, possibly in a
2863			 * byte-granular fashion.
2864			 */
2865			struct vnode *vp;
2866			vm_object_t obj;
2867			vm_offset_t toff;
2868			vm_offset_t tinc;
2869
2870			/*
2871			 * Step 1, bring in the VM pages from the object,
2872			 * allocating them if necessary.  We must clear
2873			 * B_CACHE if these pages are not valid for the
2874			 * range covered by the buffer.
2875			 */
2876
2877			vp = bp->b_vp;
2878			obj = bp->b_bufobj->bo_object;
2879
2880			VM_OBJECT_LOCK(obj);
2881			while (bp->b_npages < desiredpages) {
2882				vm_page_t m;
2883				vm_pindex_t pi;
2884
2885				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2886				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2887					/*
2888					 * note: must allocate system pages
2889					 * since blocking here could intefere
2890					 * with paging I/O, no matter which
2891					 * process we are.
2892					 */
2893					m = vm_page_alloc(obj, pi,
2894					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2895					    VM_ALLOC_WIRED);
2896					if (m == NULL) {
2897						atomic_add_int(&vm_pageout_deficit,
2898						    desiredpages - bp->b_npages);
2899						VM_OBJECT_UNLOCK(obj);
2900						VM_WAIT;
2901						VM_OBJECT_LOCK(obj);
2902					} else {
2903						if (m->valid == 0)
2904							bp->b_flags &= ~B_CACHE;
2905						bp->b_pages[bp->b_npages] = m;
2906						++bp->b_npages;
2907					}
2908					continue;
2909				}
2910
2911				/*
2912				 * We found a page.  If we have to sleep on it,
2913				 * retry because it might have gotten freed out
2914				 * from under us.
2915				 *
2916				 * We can only test VPO_BUSY here.  Blocking on
2917				 * m->busy might lead to a deadlock:
2918				 *
2919				 *  vm_fault->getpages->cluster_read->allocbuf
2920				 *
2921				 */
2922				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2923					continue;
2924
2925				/*
2926				 * We have a good page.
2927				 */
2928				vm_page_lock_queues();
2929				vm_page_wire(m);
2930				vm_page_unlock_queues();
2931				bp->b_pages[bp->b_npages] = m;
2932				++bp->b_npages;
2933			}
2934
2935			/*
2936			 * Step 2.  We've loaded the pages into the buffer,
2937			 * we have to figure out if we can still have B_CACHE
2938			 * set.  Note that B_CACHE is set according to the
2939			 * byte-granular range ( bcount and size ), new the
2940			 * aligned range ( newbsize ).
2941			 *
2942			 * The VM test is against m->valid, which is DEV_BSIZE
2943			 * aligned.  Needless to say, the validity of the data
2944			 * needs to also be DEV_BSIZE aligned.  Note that this
2945			 * fails with NFS if the server or some other client
2946			 * extends the file's EOF.  If our buffer is resized,
2947			 * B_CACHE may remain set! XXX
2948			 */
2949
2950			toff = bp->b_bcount;
2951			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2952
2953			while ((bp->b_flags & B_CACHE) && toff < size) {
2954				vm_pindex_t pi;
2955
2956				if (tinc > (size - toff))
2957					tinc = size - toff;
2958
2959				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2960				    PAGE_SHIFT;
2961
2962				vfs_buf_test_cache(
2963				    bp,
2964				    bp->b_offset,
2965				    toff,
2966				    tinc,
2967				    bp->b_pages[pi]
2968				);
2969				toff += tinc;
2970				tinc = PAGE_SIZE;
2971			}
2972			VM_OBJECT_UNLOCK(obj);
2973
2974			/*
2975			 * Step 3, fixup the KVM pmap.  Remember that
2976			 * bp->b_data is relative to bp->b_offset, but
2977			 * bp->b_offset may be offset into the first page.
2978			 */
2979
2980			bp->b_data = (caddr_t)
2981			    trunc_page((vm_offset_t)bp->b_data);
2982			pmap_qenter(
2983			    (vm_offset_t)bp->b_data,
2984			    bp->b_pages,
2985			    bp->b_npages
2986			);
2987
2988			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2989			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2990		}
2991	}
2992	if (newbsize < bp->b_bufsize)
2993		bufspacewakeup();
2994	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2995	bp->b_bcount = size;		/* requested buffer size	*/
2996	return 1;
2997}
2998
2999void
3000biodone(struct bio *bp)
3001{
3002	struct mtx *mtxp;
3003	void (*done)(struct bio *);
3004
3005	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3006	mtx_lock(mtxp);
3007	bp->bio_flags |= BIO_DONE;
3008	done = bp->bio_done;
3009	if (done == NULL)
3010		wakeup(bp);
3011	mtx_unlock(mtxp);
3012	if (done != NULL)
3013		done(bp);
3014}
3015
3016/*
3017 * Wait for a BIO to finish.
3018 *
3019 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3020 * case is not yet clear.
3021 */
3022int
3023biowait(struct bio *bp, const char *wchan)
3024{
3025	struct mtx *mtxp;
3026
3027	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3028	mtx_lock(mtxp);
3029	while ((bp->bio_flags & BIO_DONE) == 0)
3030		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
3031	mtx_unlock(mtxp);
3032	if (bp->bio_error != 0)
3033		return (bp->bio_error);
3034	if (!(bp->bio_flags & BIO_ERROR))
3035		return (0);
3036	return (EIO);
3037}
3038
3039void
3040biofinish(struct bio *bp, struct devstat *stat, int error)
3041{
3042
3043	if (error) {
3044		bp->bio_error = error;
3045		bp->bio_flags |= BIO_ERROR;
3046	}
3047	if (stat != NULL)
3048		devstat_end_transaction_bio(stat, bp);
3049	biodone(bp);
3050}
3051
3052/*
3053 *	bufwait:
3054 *
3055 *	Wait for buffer I/O completion, returning error status.  The buffer
3056 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3057 *	error and cleared.
3058 */
3059int
3060bufwait(struct buf *bp)
3061{
3062	if (bp->b_iocmd == BIO_READ)
3063		bwait(bp, PRIBIO, "biord");
3064	else
3065		bwait(bp, PRIBIO, "biowr");
3066	if (bp->b_flags & B_EINTR) {
3067		bp->b_flags &= ~B_EINTR;
3068		return (EINTR);
3069	}
3070	if (bp->b_ioflags & BIO_ERROR) {
3071		return (bp->b_error ? bp->b_error : EIO);
3072	} else {
3073		return (0);
3074	}
3075}
3076
3077 /*
3078  * Call back function from struct bio back up to struct buf.
3079  */
3080static void
3081bufdonebio(struct bio *bip)
3082{
3083	struct buf *bp;
3084
3085	bp = bip->bio_caller2;
3086	bp->b_resid = bp->b_bcount - bip->bio_completed;
3087	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3088	bp->b_ioflags = bip->bio_flags;
3089	bp->b_error = bip->bio_error;
3090	if (bp->b_error)
3091		bp->b_ioflags |= BIO_ERROR;
3092	bufdone(bp);
3093	g_destroy_bio(bip);
3094}
3095
3096void
3097dev_strategy(struct cdev *dev, struct buf *bp)
3098{
3099	struct cdevsw *csw;
3100	struct bio *bip;
3101
3102	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3103		panic("b_iocmd botch");
3104	for (;;) {
3105		bip = g_new_bio();
3106		if (bip != NULL)
3107			break;
3108		/* Try again later */
3109		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3110	}
3111	bip->bio_cmd = bp->b_iocmd;
3112	bip->bio_offset = bp->b_iooffset;
3113	bip->bio_length = bp->b_bcount;
3114	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3115	bip->bio_data = bp->b_data;
3116	bip->bio_done = bufdonebio;
3117	bip->bio_caller2 = bp;
3118	bip->bio_dev = dev;
3119	KASSERT(dev->si_refcount > 0,
3120	    ("dev_strategy on un-referenced struct cdev *(%s)",
3121	    devtoname(dev)));
3122	csw = dev_refthread(dev);
3123	if (csw == NULL) {
3124		g_destroy_bio(bip);
3125		bp->b_error = ENXIO;
3126		bp->b_ioflags = BIO_ERROR;
3127		bufdone(bp);
3128		return;
3129	}
3130	(*csw->d_strategy)(bip);
3131	dev_relthread(dev);
3132}
3133
3134/*
3135 *	bufdone:
3136 *
3137 *	Finish I/O on a buffer, optionally calling a completion function.
3138 *	This is usually called from an interrupt so process blocking is
3139 *	not allowed.
3140 *
3141 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3142 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3143 *	assuming B_INVAL is clear.
3144 *
3145 *	For the VMIO case, we set B_CACHE if the op was a read and no
3146 *	read error occured, or if the op was a write.  B_CACHE is never
3147 *	set if the buffer is invalid or otherwise uncacheable.
3148 *
3149 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3150 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3151 *	in the biodone routine.
3152 */
3153void
3154bufdone(struct buf *bp)
3155{
3156	struct bufobj *dropobj;
3157	void    (*biodone)(struct buf *);
3158
3159	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3160	dropobj = NULL;
3161
3162	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3163	BUF_ASSERT_HELD(bp);
3164
3165	runningbufwakeup(bp);
3166	if (bp->b_iocmd == BIO_WRITE)
3167		dropobj = bp->b_bufobj;
3168	/* call optional completion function if requested */
3169	if (bp->b_iodone != NULL) {
3170		biodone = bp->b_iodone;
3171		bp->b_iodone = NULL;
3172		(*biodone) (bp);
3173		if (dropobj)
3174			bufobj_wdrop(dropobj);
3175		return;
3176	}
3177
3178	bufdone_finish(bp);
3179
3180	if (dropobj)
3181		bufobj_wdrop(dropobj);
3182}
3183
3184void
3185bufdone_finish(struct buf *bp)
3186{
3187	BUF_ASSERT_HELD(bp);
3188
3189	if (!LIST_EMPTY(&bp->b_dep))
3190		buf_complete(bp);
3191
3192	if (bp->b_flags & B_VMIO) {
3193		int i;
3194		vm_ooffset_t foff;
3195		vm_page_t m;
3196		vm_object_t obj;
3197		int iosize;
3198		struct vnode *vp = bp->b_vp;
3199		boolean_t are_queues_locked;
3200
3201		obj = bp->b_bufobj->bo_object;
3202
3203#if defined(VFS_BIO_DEBUG)
3204		mp_fixme("usecount and vflag accessed without locks.");
3205		if (vp->v_usecount == 0) {
3206			panic("biodone: zero vnode ref count");
3207		}
3208
3209		KASSERT(vp->v_object != NULL,
3210			("biodone: vnode %p has no vm_object", vp));
3211#endif
3212
3213		foff = bp->b_offset;
3214		KASSERT(bp->b_offset != NOOFFSET,
3215		    ("biodone: no buffer offset"));
3216
3217		VM_OBJECT_LOCK(obj);
3218#if defined(VFS_BIO_DEBUG)
3219		if (obj->paging_in_progress < bp->b_npages) {
3220			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3221			    obj->paging_in_progress, bp->b_npages);
3222		}
3223#endif
3224
3225		/*
3226		 * Set B_CACHE if the op was a normal read and no error
3227		 * occured.  B_CACHE is set for writes in the b*write()
3228		 * routines.
3229		 */
3230		iosize = bp->b_bcount - bp->b_resid;
3231		if (bp->b_iocmd == BIO_READ &&
3232		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3233		    !(bp->b_ioflags & BIO_ERROR)) {
3234			bp->b_flags |= B_CACHE;
3235		}
3236		if (bp->b_iocmd == BIO_READ) {
3237			vm_page_lock_queues();
3238			are_queues_locked = TRUE;
3239		} else
3240			are_queues_locked = FALSE;
3241		for (i = 0; i < bp->b_npages; i++) {
3242			int bogusflag = 0;
3243			int resid;
3244
3245			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3246			if (resid > iosize)
3247				resid = iosize;
3248
3249			/*
3250			 * cleanup bogus pages, restoring the originals
3251			 */
3252			m = bp->b_pages[i];
3253			if (m == bogus_page) {
3254				bogusflag = 1;
3255				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3256				if (m == NULL)
3257					panic("biodone: page disappeared!");
3258				bp->b_pages[i] = m;
3259				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3260				    bp->b_pages, bp->b_npages);
3261			}
3262#if defined(VFS_BIO_DEBUG)
3263			if (OFF_TO_IDX(foff) != m->pindex) {
3264				printf(
3265"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3266				    (intmax_t)foff, (uintmax_t)m->pindex);
3267			}
3268#endif
3269
3270			/*
3271			 * In the write case, the valid and clean bits are
3272			 * already changed correctly ( see bdwrite() ), so we
3273			 * only need to do this here in the read case.
3274			 */
3275			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3276				vfs_page_set_valid(bp, foff, m);
3277			}
3278
3279			/*
3280			 * when debugging new filesystems or buffer I/O methods, this
3281			 * is the most common error that pops up.  if you see this, you
3282			 * have not set the page busy flag correctly!!!
3283			 */
3284			if (m->busy == 0) {
3285				printf("biodone: page busy < 0, "
3286				    "pindex: %d, foff: 0x(%x,%x), "
3287				    "resid: %d, index: %d\n",
3288				    (int) m->pindex, (int)(foff >> 32),
3289						(int) foff & 0xffffffff, resid, i);
3290				if (!vn_isdisk(vp, NULL))
3291					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3292					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3293					    (intmax_t) bp->b_lblkno,
3294					    bp->b_flags, bp->b_npages);
3295				else
3296					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3297					    (intmax_t) bp->b_lblkno,
3298					    bp->b_flags, bp->b_npages);
3299				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3300				    (u_long)m->valid, (u_long)m->dirty,
3301				    m->wire_count);
3302				panic("biodone: page busy < 0\n");
3303			}
3304			vm_page_io_finish(m);
3305			vm_object_pip_subtract(obj, 1);
3306			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3307			iosize -= resid;
3308		}
3309		if (are_queues_locked)
3310			vm_page_unlock_queues();
3311		vm_object_pip_wakeupn(obj, 0);
3312		VM_OBJECT_UNLOCK(obj);
3313	}
3314
3315	/*
3316	 * For asynchronous completions, release the buffer now. The brelse
3317	 * will do a wakeup there if necessary - so no need to do a wakeup
3318	 * here in the async case. The sync case always needs to do a wakeup.
3319	 */
3320
3321	if (bp->b_flags & B_ASYNC) {
3322		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3323			brelse(bp);
3324		else
3325			bqrelse(bp);
3326	} else
3327		bdone(bp);
3328}
3329
3330/*
3331 * This routine is called in lieu of iodone in the case of
3332 * incomplete I/O.  This keeps the busy status for pages
3333 * consistant.
3334 */
3335void
3336vfs_unbusy_pages(struct buf *bp)
3337{
3338	int i;
3339	vm_object_t obj;
3340	vm_page_t m;
3341
3342	runningbufwakeup(bp);
3343	if (!(bp->b_flags & B_VMIO))
3344		return;
3345
3346	obj = bp->b_bufobj->bo_object;
3347	VM_OBJECT_LOCK(obj);
3348	for (i = 0; i < bp->b_npages; i++) {
3349		m = bp->b_pages[i];
3350		if (m == bogus_page) {
3351			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3352			if (!m)
3353				panic("vfs_unbusy_pages: page missing\n");
3354			bp->b_pages[i] = m;
3355			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3356			    bp->b_pages, bp->b_npages);
3357		}
3358		vm_object_pip_subtract(obj, 1);
3359		vm_page_io_finish(m);
3360	}
3361	vm_object_pip_wakeupn(obj, 0);
3362	VM_OBJECT_UNLOCK(obj);
3363}
3364
3365/*
3366 * vfs_page_set_valid:
3367 *
3368 *	Set the valid bits in a page based on the supplied offset.   The
3369 *	range is restricted to the buffer's size.
3370 *
3371 *	This routine is typically called after a read completes.
3372 */
3373static void
3374vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3375{
3376	vm_ooffset_t soff, eoff;
3377
3378	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3379	/*
3380	 * Start and end offsets in buffer.  eoff - soff may not cross a
3381	 * page boundry or cross the end of the buffer.  The end of the
3382	 * buffer, in this case, is our file EOF, not the allocation size
3383	 * of the buffer.
3384	 */
3385	soff = off;
3386	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3387	if (eoff > bp->b_offset + bp->b_bcount)
3388		eoff = bp->b_offset + bp->b_bcount;
3389
3390	/*
3391	 * Set valid range.  This is typically the entire buffer and thus the
3392	 * entire page.
3393	 */
3394	if (eoff > soff) {
3395		vm_page_set_validclean(
3396		    m,
3397		   (vm_offset_t) (soff & PAGE_MASK),
3398		   (vm_offset_t) (eoff - soff)
3399		);
3400	}
3401}
3402
3403/*
3404 * This routine is called before a device strategy routine.
3405 * It is used to tell the VM system that paging I/O is in
3406 * progress, and treat the pages associated with the buffer
3407 * almost as being VPO_BUSY.  Also the object paging_in_progress
3408 * flag is handled to make sure that the object doesn't become
3409 * inconsistant.
3410 *
3411 * Since I/O has not been initiated yet, certain buffer flags
3412 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3413 * and should be ignored.
3414 */
3415void
3416vfs_busy_pages(struct buf *bp, int clear_modify)
3417{
3418	int i, bogus;
3419	vm_object_t obj;
3420	vm_ooffset_t foff;
3421	vm_page_t m;
3422
3423	if (!(bp->b_flags & B_VMIO))
3424		return;
3425
3426	obj = bp->b_bufobj->bo_object;
3427	foff = bp->b_offset;
3428	KASSERT(bp->b_offset != NOOFFSET,
3429	    ("vfs_busy_pages: no buffer offset"));
3430	VM_OBJECT_LOCK(obj);
3431	if (bp->b_bufsize != 0)
3432		vfs_setdirty_locked_object(bp);
3433retry:
3434	for (i = 0; i < bp->b_npages; i++) {
3435		m = bp->b_pages[i];
3436
3437		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3438			goto retry;
3439	}
3440	bogus = 0;
3441	vm_page_lock_queues();
3442	for (i = 0; i < bp->b_npages; i++) {
3443		m = bp->b_pages[i];
3444
3445		if ((bp->b_flags & B_CLUSTER) == 0) {
3446			vm_object_pip_add(obj, 1);
3447			vm_page_io_start(m);
3448		}
3449		/*
3450		 * When readying a buffer for a read ( i.e
3451		 * clear_modify == 0 ), it is important to do
3452		 * bogus_page replacement for valid pages in
3453		 * partially instantiated buffers.  Partially
3454		 * instantiated buffers can, in turn, occur when
3455		 * reconstituting a buffer from its VM backing store
3456		 * base.  We only have to do this if B_CACHE is
3457		 * clear ( which causes the I/O to occur in the
3458		 * first place ).  The replacement prevents the read
3459		 * I/O from overwriting potentially dirty VM-backed
3460		 * pages.  XXX bogus page replacement is, uh, bogus.
3461		 * It may not work properly with small-block devices.
3462		 * We need to find a better way.
3463		 */
3464		pmap_remove_all(m);
3465		if (clear_modify)
3466			vfs_page_set_valid(bp, foff, m);
3467		else if (m->valid == VM_PAGE_BITS_ALL &&
3468		    (bp->b_flags & B_CACHE) == 0) {
3469			bp->b_pages[i] = bogus_page;
3470			bogus++;
3471		}
3472		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3473	}
3474	vm_page_unlock_queues();
3475	VM_OBJECT_UNLOCK(obj);
3476	if (bogus)
3477		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3478		    bp->b_pages, bp->b_npages);
3479}
3480
3481/*
3482 * Tell the VM system that the pages associated with this buffer
3483 * are clean.  This is used for delayed writes where the data is
3484 * going to go to disk eventually without additional VM intevention.
3485 *
3486 * Note that while we only really need to clean through to b_bcount, we
3487 * just go ahead and clean through to b_bufsize.
3488 */
3489static void
3490vfs_clean_pages(struct buf *bp)
3491{
3492	int i;
3493	vm_ooffset_t foff, noff, eoff;
3494	vm_page_t m;
3495
3496	if (!(bp->b_flags & B_VMIO))
3497		return;
3498
3499	foff = bp->b_offset;
3500	KASSERT(bp->b_offset != NOOFFSET,
3501	    ("vfs_clean_pages: no buffer offset"));
3502	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3503	vm_page_lock_queues();
3504	for (i = 0; i < bp->b_npages; i++) {
3505		m = bp->b_pages[i];
3506		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3507		eoff = noff;
3508
3509		if (eoff > bp->b_offset + bp->b_bufsize)
3510			eoff = bp->b_offset + bp->b_bufsize;
3511		vfs_page_set_valid(bp, foff, m);
3512		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3513		foff = noff;
3514	}
3515	vm_page_unlock_queues();
3516	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3517}
3518
3519/*
3520 *	vfs_bio_set_validclean:
3521 *
3522 *	Set the range within the buffer to valid and clean.  The range is
3523 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3524 *	itself may be offset from the beginning of the first page.
3525 *
3526 */
3527
3528void
3529vfs_bio_set_validclean(struct buf *bp, int base, int size)
3530{
3531	int i, n;
3532	vm_page_t m;
3533
3534	if (!(bp->b_flags & B_VMIO))
3535		return;
3536	/*
3537	 * Fixup base to be relative to beginning of first page.
3538	 * Set initial n to be the maximum number of bytes in the
3539	 * first page that can be validated.
3540	 */
3541
3542	base += (bp->b_offset & PAGE_MASK);
3543	n = PAGE_SIZE - (base & PAGE_MASK);
3544
3545	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3546	vm_page_lock_queues();
3547	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3548		m = bp->b_pages[i];
3549		if (n > size)
3550			n = size;
3551		vm_page_set_validclean(m, base & PAGE_MASK, n);
3552		base += n;
3553		size -= n;
3554		n = PAGE_SIZE;
3555	}
3556	vm_page_unlock_queues();
3557	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3558}
3559
3560/*
3561 *	vfs_bio_clrbuf:
3562 *
3563 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3564 *	to clear BIO_ERROR and B_INVAL.
3565 *
3566 *	Note that while we only theoretically need to clear through b_bcount,
3567 *	we go ahead and clear through b_bufsize.
3568 */
3569
3570void
3571vfs_bio_clrbuf(struct buf *bp)
3572{
3573	int i, j, mask = 0;
3574	caddr_t sa, ea;
3575
3576	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3577		clrbuf(bp);
3578		return;
3579	}
3580
3581	bp->b_flags &= ~B_INVAL;
3582	bp->b_ioflags &= ~BIO_ERROR;
3583	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3584	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3585	    (bp->b_offset & PAGE_MASK) == 0) {
3586		if (bp->b_pages[0] == bogus_page)
3587			goto unlock;
3588		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3589		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3590		if ((bp->b_pages[0]->valid & mask) == mask)
3591			goto unlock;
3592		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3593		    ((bp->b_pages[0]->valid & mask) == 0)) {
3594			bzero(bp->b_data, bp->b_bufsize);
3595			bp->b_pages[0]->valid |= mask;
3596			goto unlock;
3597		}
3598	}
3599	ea = sa = bp->b_data;
3600	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3601		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3602		ea = (caddr_t)(vm_offset_t)ulmin(
3603		    (u_long)(vm_offset_t)ea,
3604		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3605		if (bp->b_pages[i] == bogus_page)
3606			continue;
3607		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3608		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3609		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3610		if ((bp->b_pages[i]->valid & mask) == mask)
3611			continue;
3612		if ((bp->b_pages[i]->valid & mask) == 0) {
3613			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3614				bzero(sa, ea - sa);
3615		} else {
3616			for (; sa < ea; sa += DEV_BSIZE, j++) {
3617				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3618				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3619					bzero(sa, DEV_BSIZE);
3620			}
3621		}
3622		bp->b_pages[i]->valid |= mask;
3623	}
3624unlock:
3625	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3626	bp->b_resid = 0;
3627}
3628
3629/*
3630 * vm_hold_load_pages and vm_hold_free_pages get pages into
3631 * a buffers address space.  The pages are anonymous and are
3632 * not associated with a file object.
3633 */
3634static void
3635vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3636{
3637	vm_offset_t pg;
3638	vm_page_t p;
3639	int index;
3640
3641	to = round_page(to);
3642	from = round_page(from);
3643	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3644
3645	VM_OBJECT_LOCK(kernel_object);
3646	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3647tryagain:
3648		/*
3649		 * note: must allocate system pages since blocking here
3650		 * could intefere with paging I/O, no matter which
3651		 * process we are.
3652		 */
3653		p = vm_page_alloc(kernel_object,
3654			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3655		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3656		if (!p) {
3657			atomic_add_int(&vm_pageout_deficit,
3658			    (to - pg) >> PAGE_SHIFT);
3659			VM_OBJECT_UNLOCK(kernel_object);
3660			VM_WAIT;
3661			VM_OBJECT_LOCK(kernel_object);
3662			goto tryagain;
3663		}
3664		p->valid = VM_PAGE_BITS_ALL;
3665		pmap_qenter(pg, &p, 1);
3666		bp->b_pages[index] = p;
3667	}
3668	VM_OBJECT_UNLOCK(kernel_object);
3669	bp->b_npages = index;
3670}
3671
3672/* Return pages associated with this buf to the vm system */
3673static void
3674vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3675{
3676	vm_offset_t pg;
3677	vm_page_t p;
3678	int index, newnpages;
3679
3680	from = round_page(from);
3681	to = round_page(to);
3682	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3683
3684	VM_OBJECT_LOCK(kernel_object);
3685	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3686		p = bp->b_pages[index];
3687		if (p && (index < bp->b_npages)) {
3688			if (p->busy) {
3689				printf(
3690			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3691				    (intmax_t)bp->b_blkno,
3692				    (intmax_t)bp->b_lblkno);
3693			}
3694			bp->b_pages[index] = NULL;
3695			pmap_qremove(pg, 1);
3696			vm_page_lock_queues();
3697			vm_page_unwire(p, 0);
3698			vm_page_free(p);
3699			vm_page_unlock_queues();
3700		}
3701	}
3702	VM_OBJECT_UNLOCK(kernel_object);
3703	bp->b_npages = newnpages;
3704}
3705
3706/*
3707 * Map an IO request into kernel virtual address space.
3708 *
3709 * All requests are (re)mapped into kernel VA space.
3710 * Notice that we use b_bufsize for the size of the buffer
3711 * to be mapped.  b_bcount might be modified by the driver.
3712 *
3713 * Note that even if the caller determines that the address space should
3714 * be valid, a race or a smaller-file mapped into a larger space may
3715 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3716 * check the return value.
3717 */
3718int
3719vmapbuf(struct buf *bp)
3720{
3721	caddr_t addr, kva;
3722	vm_prot_t prot;
3723	int pidx, i;
3724	struct vm_page *m;
3725	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3726
3727	if (bp->b_bufsize < 0)
3728		return (-1);
3729	prot = VM_PROT_READ;
3730	if (bp->b_iocmd == BIO_READ)
3731		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3732	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3733	     addr < bp->b_data + bp->b_bufsize;
3734	     addr += PAGE_SIZE, pidx++) {
3735		/*
3736		 * Do the vm_fault if needed; do the copy-on-write thing
3737		 * when reading stuff off device into memory.
3738		 *
3739		 * NOTE! Must use pmap_extract() because addr may be in
3740		 * the userland address space, and kextract is only guarenteed
3741		 * to work for the kernland address space (see: sparc64 port).
3742		 */
3743retry:
3744		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3745		    prot) < 0) {
3746			vm_page_lock_queues();
3747			for (i = 0; i < pidx; ++i) {
3748				vm_page_unhold(bp->b_pages[i]);
3749				bp->b_pages[i] = NULL;
3750			}
3751			vm_page_unlock_queues();
3752			return(-1);
3753		}
3754		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3755		if (m == NULL)
3756			goto retry;
3757		bp->b_pages[pidx] = m;
3758	}
3759	if (pidx > btoc(MAXPHYS))
3760		panic("vmapbuf: mapped more than MAXPHYS");
3761	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3762
3763	kva = bp->b_saveaddr;
3764	bp->b_npages = pidx;
3765	bp->b_saveaddr = bp->b_data;
3766	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3767	return(0);
3768}
3769
3770/*
3771 * Free the io map PTEs associated with this IO operation.
3772 * We also invalidate the TLB entries and restore the original b_addr.
3773 */
3774void
3775vunmapbuf(struct buf *bp)
3776{
3777	int pidx;
3778	int npages;
3779
3780	npages = bp->b_npages;
3781	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3782	vm_page_lock_queues();
3783	for (pidx = 0; pidx < npages; pidx++)
3784		vm_page_unhold(bp->b_pages[pidx]);
3785	vm_page_unlock_queues();
3786
3787	bp->b_data = bp->b_saveaddr;
3788}
3789
3790void
3791bdone(struct buf *bp)
3792{
3793	struct mtx *mtxp;
3794
3795	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3796	mtx_lock(mtxp);
3797	bp->b_flags |= B_DONE;
3798	wakeup(bp);
3799	mtx_unlock(mtxp);
3800}
3801
3802void
3803bwait(struct buf *bp, u_char pri, const char *wchan)
3804{
3805	struct mtx *mtxp;
3806
3807	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3808	mtx_lock(mtxp);
3809	while ((bp->b_flags & B_DONE) == 0)
3810		msleep(bp, mtxp, pri, wchan, 0);
3811	mtx_unlock(mtxp);
3812}
3813
3814int
3815bufsync(struct bufobj *bo, int waitfor)
3816{
3817
3818	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3819}
3820
3821void
3822bufstrategy(struct bufobj *bo, struct buf *bp)
3823{
3824	int i = 0;
3825	struct vnode *vp;
3826
3827	vp = bp->b_vp;
3828	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3829	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3830	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3831	i = VOP_STRATEGY(vp, bp);
3832	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3833}
3834
3835void
3836bufobj_wrefl(struct bufobj *bo)
3837{
3838
3839	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3840	ASSERT_BO_LOCKED(bo);
3841	bo->bo_numoutput++;
3842}
3843
3844void
3845bufobj_wref(struct bufobj *bo)
3846{
3847
3848	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3849	BO_LOCK(bo);
3850	bo->bo_numoutput++;
3851	BO_UNLOCK(bo);
3852}
3853
3854void
3855bufobj_wdrop(struct bufobj *bo)
3856{
3857
3858	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3859	BO_LOCK(bo);
3860	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3861	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3862		bo->bo_flag &= ~BO_WWAIT;
3863		wakeup(&bo->bo_numoutput);
3864	}
3865	BO_UNLOCK(bo);
3866}
3867
3868int
3869bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3870{
3871	int error;
3872
3873	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3874	ASSERT_BO_LOCKED(bo);
3875	error = 0;
3876	while (bo->bo_numoutput) {
3877		bo->bo_flag |= BO_WWAIT;
3878		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3879		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3880		if (error)
3881			break;
3882	}
3883	return (error);
3884}
3885
3886void
3887bpin(struct buf *bp)
3888{
3889	struct mtx *mtxp;
3890
3891	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3892	mtx_lock(mtxp);
3893	bp->b_pin_count++;
3894	mtx_unlock(mtxp);
3895}
3896
3897void
3898bunpin(struct buf *bp)
3899{
3900	struct mtx *mtxp;
3901
3902	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3903	mtx_lock(mtxp);
3904	if (--bp->b_pin_count == 0)
3905		wakeup(bp);
3906	mtx_unlock(mtxp);
3907}
3908
3909void
3910bunpin_wait(struct buf *bp)
3911{
3912	struct mtx *mtxp;
3913
3914	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3915	mtx_lock(mtxp);
3916	while (bp->b_pin_count > 0)
3917		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
3918	mtx_unlock(mtxp);
3919}
3920
3921#include "opt_ddb.h"
3922#ifdef DDB
3923#include <ddb/ddb.h>
3924
3925/* DDB command to show buffer data */
3926DB_SHOW_COMMAND(buffer, db_show_buffer)
3927{
3928	/* get args */
3929	struct buf *bp = (struct buf *)addr;
3930
3931	if (!have_addr) {
3932		db_printf("usage: show buffer <addr>\n");
3933		return;
3934	}
3935
3936	db_printf("buf at %p\n", bp);
3937	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3938	db_printf(
3939	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3940	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
3941	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3942	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
3943	    bp->b_dep.lh_first);
3944	if (bp->b_npages) {
3945		int i;
3946		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3947		for (i = 0; i < bp->b_npages; i++) {
3948			vm_page_t m;
3949			m = bp->b_pages[i];
3950			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3951			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3952			if ((i + 1) < bp->b_npages)
3953				db_printf(",");
3954		}
3955		db_printf("\n");
3956	}
3957	db_printf(" ");
3958	lockmgr_printinfo(&bp->b_lock);
3959}
3960
3961DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3962{
3963	struct buf *bp;
3964	int i;
3965
3966	for (i = 0; i < nbuf; i++) {
3967		bp = &buf[i];
3968		if (BUF_ISLOCKED(bp)) {
3969			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3970			db_printf("\n");
3971		}
3972	}
3973}
3974
3975DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
3976{
3977	struct vnode *vp;
3978	struct buf *bp;
3979
3980	if (!have_addr) {
3981		db_printf("usage: show vnodebufs <addr>\n");
3982		return;
3983	}
3984	vp = (struct vnode *)addr;
3985	db_printf("Clean buffers:\n");
3986	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
3987		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3988		db_printf("\n");
3989	}
3990	db_printf("Dirty buffers:\n");
3991	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
3992		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3993		db_printf("\n");
3994	}
3995}
3996#endif /* DDB */
3997