vfs_bio.c revision 188244
1212795Sdim/*-
2212795Sdim * Copyright (c) 2004 Poul-Henning Kamp
3212795Sdim * Copyright (c) 1994,1997 John S. Dyson
4212795Sdim * All rights reserved.
5212795Sdim *
6212795Sdim * Redistribution and use in source and binary forms, with or without
7212795Sdim * modification, are permitted provided that the following conditions
8212795Sdim * are met:
9212795Sdim * 1. Redistributions of source code must retain the above copyright
10221345Sdim *    notice, this list of conditions and the following disclaimer.
11212795Sdim * 2. Redistributions in binary form must reproduce the above copyright
12212795Sdim *    notice, this list of conditions and the following disclaimer in the
13212795Sdim *    documentation and/or other materials provided with the distribution.
14212795Sdim *
15212795Sdim * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16212795Sdim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17212795Sdim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18212795Sdim * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19212795Sdim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20212795Sdim * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21212795Sdim * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22249423Sdim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23263508Sdim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24218893Sdim * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25212795Sdim * SUCH DAMAGE.
26218893Sdim */
27212795Sdim
28212795Sdim/*
29212795Sdim * this file contains a new buffer I/O scheme implementing a coherent
30212795Sdim * VM object and buffer cache scheme.  Pains have been taken to make
31263508Sdim * sure that the performance degradation associated with schemes such
32263508Sdim * as this is not realized.
33263508Sdim *
34263508Sdim * Author:  John S. Dyson
35263508Sdim * Significant help during the development and debugging phases
36263508Sdim * had been provided by David Greenman, also of the FreeBSD core team.
37263508Sdim *
38263508Sdim * see man buf(9) for more info.
39263508Sdim */
40263508Sdim
41263508Sdim#include <sys/cdefs.h>
42263508Sdim__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 188244 2009-02-06 20:06:48Z jhb $");
43263508Sdim
44212795Sdim#include <sys/param.h>
45212795Sdim#include <sys/systm.h>
46212795Sdim#include <sys/bio.h>
47212795Sdim#include <sys/conf.h>
48212795Sdim#include <sys/buf.h>
49212795Sdim#include <sys/devicestat.h>
50249423Sdim#include <sys/eventhandler.h>
51249423Sdim#include <sys/limits.h>
52249423Sdim#include <sys/lock.h>
53249423Sdim#include <sys/malloc.h>
54249423Sdim#include <sys/mount.h>
55249423Sdim#include <sys/mutex.h>
56249423Sdim#include <sys/kernel.h>
57249423Sdim#include <sys/kthread.h>
58249423Sdim#include <sys/proc.h>
59212795Sdim#include <sys/resourcevar.h>
60218893Sdim#include <sys/sysctl.h>
61239462Sdim#include <sys/vmmeter.h>
62218893Sdim#include <sys/vnode.h>
63218893Sdim#include <geom/geom.h>
64218893Sdim#include <vm/vm.h>
65218893Sdim#include <vm/vm_param.h>
66218893Sdim#include <vm/vm_kern.h>
67218893Sdim#include <vm/vm_pageout.h>
68218893Sdim#include <vm/vm_page.h>
69218893Sdim#include <vm/vm_object.h>
70218893Sdim#include <vm/vm_extern.h>
71218893Sdim#include <vm/vm_map.h>
72218893Sdim#include "opt_directio.h"
73218893Sdim#include "opt_swap.h"
74218893Sdim
75226633Sdimstatic MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
76218893Sdim
77218893Sdimstruct	bio_ops bioops;		/* I/O operation notification */
78263508Sdim
79263508Sdimstruct	buf_ops buf_ops_bio = {
80263508Sdim	.bop_name	=	"buf_ops_bio",
81263508Sdim	.bop_write	=	bufwrite,
82212795Sdim	.bop_strategy	=	bufstrategy,
83212795Sdim	.bop_sync	=	bufsync,
84212795Sdim	.bop_bdflush	=	bufbdflush,
85212795Sdim};
86212795Sdim
87212795Sdim/*
88212795Sdim * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
89212795Sdim * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
90212795Sdim */
91212795Sdimstruct buf *buf;		/* buffer header pool */
92212795Sdim
93212795Sdimstatic struct proc *bufdaemonproc;
94212795Sdim
95212795Sdimstatic int inmem(struct vnode *vp, daddr_t blkno);
96212795Sdimstatic void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
99		vm_offset_t to);
100static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
101		vm_page_t m);
102static void vfs_clean_pages(struct buf *bp);
103static void vfs_setdirty(struct buf *bp);
104static void vfs_setdirty_locked_object(struct buf *bp);
105static void vfs_vmio_release(struct buf *bp);
106static int vfs_bio_clcheck(struct vnode *vp, int size,
107		daddr_t lblkno, daddr_t blkno);
108static int flushbufqueues(int, int);
109static void buf_daemon(void);
110static void bremfreel(struct buf *bp);
111
112int vmiodirenable = TRUE;
113SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
114    "Use the VM system for directory writes");
115int runningbufspace;
116SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
117    "Amount of presently outstanding async buffer io");
118static int bufspace;
119SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
120    "KVA memory used for bufs");
121static int maxbufspace;
122SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
123    "Maximum allowed value of bufspace (including buf_daemon)");
124static int bufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
126    "Amount of malloced memory for buffers");
127static int maxbufmallocspace;
128SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
129    "Maximum amount of malloced memory for buffers");
130static int lobufspace;
131SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
132    "Minimum amount of buffers we want to have");
133int hibufspace;
134SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
135    "Maximum allowed value of bufspace (excluding buf_daemon)");
136static int bufreusecnt;
137SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
138    "Number of times we have reused a buffer");
139static int buffreekvacnt;
140SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
141    "Number of times we have freed the KVA space from some buffer");
142static int bufdefragcnt;
143SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
144    "Number of times we have had to repeat buffer allocation to defragment");
145static int lorunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
147    "Minimum preferred space used for in-progress I/O");
148static int hirunningspace;
149SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
150    "Maximum amount of space to use for in-progress I/O");
151int dirtybufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
153    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
154int bdwriteskip;
155SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
156    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
157int altbufferflushes;
158SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
159    0, "Number of fsync flushes to limit dirty buffers");
160static int recursiveflushes;
161SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
162    0, "Number of flushes skipped due to being recursive");
163static int numdirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
165    "Number of buffers that are dirty (has unwritten changes) at the moment");
166static int lodirtybuffers;
167SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
168    "How many buffers we want to have free before bufdaemon can sleep");
169static int hidirtybuffers;
170SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
171    "When the number of dirty buffers is considered severe");
172int dirtybufthresh;
173SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
174    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
175static int numfreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
177    "Number of free buffers");
178static int lofreebuffers;
179SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
180   "XXX Unused");
181static int hifreebuffers;
182SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
183   "XXX Complicatedly unused");
184static int getnewbufcalls;
185SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
186   "Number of calls to getnewbuf");
187static int getnewbufrestarts;
188SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
189    "Number of times getnewbuf has had to restart a buffer aquisition");
190
191/*
192 * Wakeup point for bufdaemon, as well as indicator of whether it is already
193 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
194 * is idling.
195 */
196static int bd_request;
197
198/*
199 * This lock synchronizes access to bd_request.
200 */
201static struct mtx bdlock;
202
203/*
204 * bogus page -- for I/O to/from partially complete buffers
205 * this is a temporary solution to the problem, but it is not
206 * really that bad.  it would be better to split the buffer
207 * for input in the case of buffers partially already in memory,
208 * but the code is intricate enough already.
209 */
210vm_page_t bogus_page;
211
212/*
213 * Synchronization (sleep/wakeup) variable for active buffer space requests.
214 * Set when wait starts, cleared prior to wakeup().
215 * Used in runningbufwakeup() and waitrunningbufspace().
216 */
217static int runningbufreq;
218
219/*
220 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
221 * waitrunningbufspace().
222 */
223static struct mtx rbreqlock;
224
225/*
226 * Synchronization (sleep/wakeup) variable for buffer requests.
227 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
228 * by and/or.
229 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
230 * getnewbuf(), and getblk().
231 */
232static int needsbuffer;
233
234/*
235 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
236 */
237static struct mtx nblock;
238
239/*
240 * Definitions for the buffer free lists.
241 */
242#define BUFFER_QUEUES	6	/* number of free buffer queues */
243
244#define QUEUE_NONE	0	/* on no queue */
245#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
246#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
247#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
248#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
249#define QUEUE_EMPTY	5	/* empty buffer headers */
250
251/* Queues for free buffers with various properties */
252static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
253
254/* Lock for the bufqueues */
255static struct mtx bqlock;
256
257/*
258 * Single global constant for BUF_WMESG, to avoid getting multiple references.
259 * buf_wmesg is referred from macros.
260 */
261const char *buf_wmesg = BUF_WMESG;
262
263#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
264#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
265#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
266#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
267
268#ifdef DIRECTIO
269extern void ffs_rawread_setup(void);
270#endif /* DIRECTIO */
271/*
272 *	numdirtywakeup:
273 *
274 *	If someone is blocked due to there being too many dirty buffers,
275 *	and numdirtybuffers is now reasonable, wake them up.
276 */
277
278static __inline void
279numdirtywakeup(int level)
280{
281
282	if (numdirtybuffers <= level) {
283		mtx_lock(&nblock);
284		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
285			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
286			wakeup(&needsbuffer);
287		}
288		mtx_unlock(&nblock);
289	}
290}
291
292/*
293 *	bufspacewakeup:
294 *
295 *	Called when buffer space is potentially available for recovery.
296 *	getnewbuf() will block on this flag when it is unable to free
297 *	sufficient buffer space.  Buffer space becomes recoverable when
298 *	bp's get placed back in the queues.
299 */
300
301static __inline void
302bufspacewakeup(void)
303{
304
305	/*
306	 * If someone is waiting for BUF space, wake them up.  Even
307	 * though we haven't freed the kva space yet, the waiting
308	 * process will be able to now.
309	 */
310	mtx_lock(&nblock);
311	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
312		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
313		wakeup(&needsbuffer);
314	}
315	mtx_unlock(&nblock);
316}
317
318/*
319 * runningbufwakeup() - in-progress I/O accounting.
320 *
321 */
322void
323runningbufwakeup(struct buf *bp)
324{
325
326	if (bp->b_runningbufspace) {
327		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
328		bp->b_runningbufspace = 0;
329		mtx_lock(&rbreqlock);
330		if (runningbufreq && runningbufspace <= lorunningspace) {
331			runningbufreq = 0;
332			wakeup(&runningbufreq);
333		}
334		mtx_unlock(&rbreqlock);
335	}
336}
337
338/*
339 *	bufcountwakeup:
340 *
341 *	Called when a buffer has been added to one of the free queues to
342 *	account for the buffer and to wakeup anyone waiting for free buffers.
343 *	This typically occurs when large amounts of metadata are being handled
344 *	by the buffer cache ( else buffer space runs out first, usually ).
345 */
346
347static __inline void
348bufcountwakeup(void)
349{
350
351	atomic_add_int(&numfreebuffers, 1);
352	mtx_lock(&nblock);
353	if (needsbuffer) {
354		needsbuffer &= ~VFS_BIO_NEED_ANY;
355		if (numfreebuffers >= hifreebuffers)
356			needsbuffer &= ~VFS_BIO_NEED_FREE;
357		wakeup(&needsbuffer);
358	}
359	mtx_unlock(&nblock);
360}
361
362/*
363 *	waitrunningbufspace()
364 *
365 *	runningbufspace is a measure of the amount of I/O currently
366 *	running.  This routine is used in async-write situations to
367 *	prevent creating huge backups of pending writes to a device.
368 *	Only asynchronous writes are governed by this function.
369 *
370 *	Reads will adjust runningbufspace, but will not block based on it.
371 *	The read load has a side effect of reducing the allowed write load.
372 *
373 *	This does NOT turn an async write into a sync write.  It waits
374 *	for earlier writes to complete and generally returns before the
375 *	caller's write has reached the device.
376 */
377void
378waitrunningbufspace(void)
379{
380
381	mtx_lock(&rbreqlock);
382	while (runningbufspace > hirunningspace) {
383		++runningbufreq;
384		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
385	}
386	mtx_unlock(&rbreqlock);
387}
388
389
390/*
391 *	vfs_buf_test_cache:
392 *
393 *	Called when a buffer is extended.  This function clears the B_CACHE
394 *	bit if the newly extended portion of the buffer does not contain
395 *	valid data.
396 */
397static __inline
398void
399vfs_buf_test_cache(struct buf *bp,
400		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
401		  vm_page_t m)
402{
403
404	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
405	if (bp->b_flags & B_CACHE) {
406		int base = (foff + off) & PAGE_MASK;
407		if (vm_page_is_valid(m, base, size) == 0)
408			bp->b_flags &= ~B_CACHE;
409	}
410}
411
412/* Wake up the buffer daemon if necessary */
413static __inline
414void
415bd_wakeup(int dirtybuflevel)
416{
417
418	mtx_lock(&bdlock);
419	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
420		bd_request = 1;
421		wakeup(&bd_request);
422	}
423	mtx_unlock(&bdlock);
424}
425
426/*
427 * bd_speedup - speedup the buffer cache flushing code
428 */
429
430static __inline
431void
432bd_speedup(void)
433{
434
435	bd_wakeup(1);
436}
437
438/*
439 * Calculating buffer cache scaling values and reserve space for buffer
440 * headers.  This is called during low level kernel initialization and
441 * may be called more then once.  We CANNOT write to the memory area
442 * being reserved at this time.
443 */
444caddr_t
445kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
446{
447	int maxbuf;
448
449	/*
450	 * physmem_est is in pages.  Convert it to kilobytes (assumes
451	 * PAGE_SIZE is >= 1K)
452	 */
453	physmem_est = physmem_est * (PAGE_SIZE / 1024);
454
455	/*
456	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
457	 * For the first 64MB of ram nominally allocate sufficient buffers to
458	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
459	 * buffers to cover 1/10 of our ram over 64MB.  When auto-sizing
460	 * the buffer cache we limit the eventual kva reservation to
461	 * maxbcache bytes.
462	 *
463	 * factor represents the 1/4 x ram conversion.
464	 */
465	if (nbuf == 0) {
466		int factor = 4 * BKVASIZE / 1024;
467
468		nbuf = 50;
469		if (physmem_est > 4096)
470			nbuf += min((physmem_est - 4096) / factor,
471			    65536 / factor);
472		if (physmem_est > 65536)
473			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
474
475		if (maxbcache && nbuf > maxbcache / BKVASIZE)
476			nbuf = maxbcache / BKVASIZE;
477
478		/* XXX Avoid integer overflows later on with maxbufspace. */
479		maxbuf = (INT_MAX / 3) / BKVASIZE;
480		if (nbuf > maxbuf)
481			nbuf = maxbuf;
482	}
483
484	/*
485	 * swbufs are used as temporary holders for I/O, such as paging I/O.
486	 * We have no less then 16 and no more then 256.
487	 */
488	nswbuf = max(min(nbuf/4, 256), 16);
489#ifdef NSWBUF_MIN
490	if (nswbuf < NSWBUF_MIN)
491		nswbuf = NSWBUF_MIN;
492#endif
493#ifdef DIRECTIO
494	ffs_rawread_setup();
495#endif
496
497	/*
498	 * Reserve space for the buffer cache buffers
499	 */
500	swbuf = (void *)v;
501	v = (caddr_t)(swbuf + nswbuf);
502	buf = (void *)v;
503	v = (caddr_t)(buf + nbuf);
504
505	return(v);
506}
507
508/* Initialize the buffer subsystem.  Called before use of any buffers. */
509void
510bufinit(void)
511{
512	struct buf *bp;
513	int i;
514
515	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
516	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
517	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
518	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
519
520	/* next, make a null set of free lists */
521	for (i = 0; i < BUFFER_QUEUES; i++)
522		TAILQ_INIT(&bufqueues[i]);
523
524	/* finally, initialize each buffer header and stick on empty q */
525	for (i = 0; i < nbuf; i++) {
526		bp = &buf[i];
527		bzero(bp, sizeof *bp);
528		bp->b_flags = B_INVAL;	/* we're just an empty header */
529		bp->b_rcred = NOCRED;
530		bp->b_wcred = NOCRED;
531		bp->b_qindex = QUEUE_EMPTY;
532		bp->b_vflags = 0;
533		bp->b_xflags = 0;
534		LIST_INIT(&bp->b_dep);
535		BUF_LOCKINIT(bp);
536		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
537	}
538
539	/*
540	 * maxbufspace is the absolute maximum amount of buffer space we are
541	 * allowed to reserve in KVM and in real terms.  The absolute maximum
542	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
543	 * used by most other processes.  The differential is required to
544	 * ensure that buf_daemon is able to run when other processes might
545	 * be blocked waiting for buffer space.
546	 *
547	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
548	 * this may result in KVM fragmentation which is not handled optimally
549	 * by the system.
550	 */
551	maxbufspace = nbuf * BKVASIZE;
552	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
553	lobufspace = hibufspace - MAXBSIZE;
554
555	lorunningspace = 512 * 1024;
556	hirunningspace = 1024 * 1024;
557
558/*
559 * Limit the amount of malloc memory since it is wired permanently into
560 * the kernel space.  Even though this is accounted for in the buffer
561 * allocation, we don't want the malloced region to grow uncontrolled.
562 * The malloc scheme improves memory utilization significantly on average
563 * (small) directories.
564 */
565	maxbufmallocspace = hibufspace / 20;
566
567/*
568 * Reduce the chance of a deadlock occuring by limiting the number
569 * of delayed-write dirty buffers we allow to stack up.
570 */
571	hidirtybuffers = nbuf / 4 + 20;
572	dirtybufthresh = hidirtybuffers * 9 / 10;
573	numdirtybuffers = 0;
574/*
575 * To support extreme low-memory systems, make sure hidirtybuffers cannot
576 * eat up all available buffer space.  This occurs when our minimum cannot
577 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
578 * BKVASIZE'd (8K) buffers.
579 */
580	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
581		hidirtybuffers >>= 1;
582	}
583	lodirtybuffers = hidirtybuffers / 2;
584
585/*
586 * Try to keep the number of free buffers in the specified range,
587 * and give special processes (e.g. like buf_daemon) access to an
588 * emergency reserve.
589 */
590	lofreebuffers = nbuf / 18 + 5;
591	hifreebuffers = 2 * lofreebuffers;
592	numfreebuffers = nbuf;
593
594/*
595 * Maximum number of async ops initiated per buf_daemon loop.  This is
596 * somewhat of a hack at the moment, we really need to limit ourselves
597 * based on the number of bytes of I/O in-transit that were initiated
598 * from buf_daemon.
599 */
600
601	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
602	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
603}
604
605/*
606 * bfreekva() - free the kva allocation for a buffer.
607 *
608 *	Since this call frees up buffer space, we call bufspacewakeup().
609 */
610static void
611bfreekva(struct buf *bp)
612{
613
614	if (bp->b_kvasize) {
615		atomic_add_int(&buffreekvacnt, 1);
616		atomic_subtract_int(&bufspace, bp->b_kvasize);
617		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
618		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
619		bp->b_kvasize = 0;
620		bufspacewakeup();
621	}
622}
623
624/*
625 *	bremfree:
626 *
627 *	Mark the buffer for removal from the appropriate free list in brelse.
628 *
629 */
630void
631bremfree(struct buf *bp)
632{
633
634	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
635	KASSERT((bp->b_flags & B_REMFREE) == 0,
636	    ("bremfree: buffer %p already marked for delayed removal.", bp));
637	KASSERT(bp->b_qindex != QUEUE_NONE,
638	    ("bremfree: buffer %p not on a queue.", bp));
639	BUF_ASSERT_HELD(bp);
640
641	bp->b_flags |= B_REMFREE;
642	/* Fixup numfreebuffers count.  */
643	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
644		atomic_subtract_int(&numfreebuffers, 1);
645}
646
647/*
648 *	bremfreef:
649 *
650 *	Force an immediate removal from a free list.  Used only in nfs when
651 *	it abuses the b_freelist pointer.
652 */
653void
654bremfreef(struct buf *bp)
655{
656	mtx_lock(&bqlock);
657	bremfreel(bp);
658	mtx_unlock(&bqlock);
659}
660
661/*
662 *	bremfreel:
663 *
664 *	Removes a buffer from the free list, must be called with the
665 *	bqlock held.
666 */
667static void
668bremfreel(struct buf *bp)
669{
670	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
671	    bp, bp->b_vp, bp->b_flags);
672	KASSERT(bp->b_qindex != QUEUE_NONE,
673	    ("bremfreel: buffer %p not on a queue.", bp));
674	BUF_ASSERT_HELD(bp);
675	mtx_assert(&bqlock, MA_OWNED);
676
677	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
678	bp->b_qindex = QUEUE_NONE;
679	/*
680	 * If this was a delayed bremfree() we only need to remove the buffer
681	 * from the queue and return the stats are already done.
682	 */
683	if (bp->b_flags & B_REMFREE) {
684		bp->b_flags &= ~B_REMFREE;
685		return;
686	}
687	/*
688	 * Fixup numfreebuffers count.  If the buffer is invalid or not
689	 * delayed-write, the buffer was free and we must decrement
690	 * numfreebuffers.
691	 */
692	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
693		atomic_subtract_int(&numfreebuffers, 1);
694}
695
696
697/*
698 * Get a buffer with the specified data.  Look in the cache first.  We
699 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
700 * is set, the buffer is valid and we do not have to do anything ( see
701 * getblk() ).  This is really just a special case of breadn().
702 */
703int
704bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
705    struct buf **bpp)
706{
707
708	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
709}
710
711/*
712 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
713 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
714 * the buffer is valid and we do not have to do anything.
715 */
716void
717breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
718    int cnt, struct ucred * cred)
719{
720	struct buf *rabp;
721	int i;
722
723	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
724		if (inmem(vp, *rablkno))
725			continue;
726		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
727
728		if ((rabp->b_flags & B_CACHE) == 0) {
729			if (!TD_IS_IDLETHREAD(curthread))
730				curthread->td_ru.ru_inblock++;
731			rabp->b_flags |= B_ASYNC;
732			rabp->b_flags &= ~B_INVAL;
733			rabp->b_ioflags &= ~BIO_ERROR;
734			rabp->b_iocmd = BIO_READ;
735			if (rabp->b_rcred == NOCRED && cred != NOCRED)
736				rabp->b_rcred = crhold(cred);
737			vfs_busy_pages(rabp, 0);
738			BUF_KERNPROC(rabp);
739			rabp->b_iooffset = dbtob(rabp->b_blkno);
740			bstrategy(rabp);
741		} else {
742			brelse(rabp);
743		}
744	}
745}
746
747/*
748 * Operates like bread, but also starts asynchronous I/O on
749 * read-ahead blocks.
750 */
751int
752breadn(struct vnode * vp, daddr_t blkno, int size,
753    daddr_t * rablkno, int *rabsize,
754    int cnt, struct ucred * cred, struct buf **bpp)
755{
756	struct buf *bp;
757	int rv = 0, readwait = 0;
758
759	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
760	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
761
762	/* if not found in cache, do some I/O */
763	if ((bp->b_flags & B_CACHE) == 0) {
764		if (!TD_IS_IDLETHREAD(curthread))
765			curthread->td_ru.ru_inblock++;
766		bp->b_iocmd = BIO_READ;
767		bp->b_flags &= ~B_INVAL;
768		bp->b_ioflags &= ~BIO_ERROR;
769		if (bp->b_rcred == NOCRED && cred != NOCRED)
770			bp->b_rcred = crhold(cred);
771		vfs_busy_pages(bp, 0);
772		bp->b_iooffset = dbtob(bp->b_blkno);
773		bstrategy(bp);
774		++readwait;
775	}
776
777	breada(vp, rablkno, rabsize, cnt, cred);
778
779	if (readwait) {
780		rv = bufwait(bp);
781	}
782	return (rv);
783}
784
785/*
786 * Write, release buffer on completion.  (Done by iodone
787 * if async).  Do not bother writing anything if the buffer
788 * is invalid.
789 *
790 * Note that we set B_CACHE here, indicating that buffer is
791 * fully valid and thus cacheable.  This is true even of NFS
792 * now so we set it generally.  This could be set either here
793 * or in biodone() since the I/O is synchronous.  We put it
794 * here.
795 */
796int
797bufwrite(struct buf *bp)
798{
799	int oldflags;
800	struct vnode *vp;
801	int vp_md;
802
803	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
804	if (bp->b_flags & B_INVAL) {
805		brelse(bp);
806		return (0);
807	}
808
809	oldflags = bp->b_flags;
810
811	BUF_ASSERT_HELD(bp);
812
813	if (bp->b_pin_count > 0)
814		bunpin_wait(bp);
815
816	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
817	    ("FFS background buffer should not get here %p", bp));
818
819	vp = bp->b_vp;
820	if (vp)
821		vp_md = vp->v_vflag & VV_MD;
822	else
823		vp_md = 0;
824
825	/* Mark the buffer clean */
826	bundirty(bp);
827
828	bp->b_flags &= ~B_DONE;
829	bp->b_ioflags &= ~BIO_ERROR;
830	bp->b_flags |= B_CACHE;
831	bp->b_iocmd = BIO_WRITE;
832
833	bufobj_wref(bp->b_bufobj);
834	vfs_busy_pages(bp, 1);
835
836	/*
837	 * Normal bwrites pipeline writes
838	 */
839	bp->b_runningbufspace = bp->b_bufsize;
840	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
841
842	if (!TD_IS_IDLETHREAD(curthread))
843		curthread->td_ru.ru_oublock++;
844	if (oldflags & B_ASYNC)
845		BUF_KERNPROC(bp);
846	bp->b_iooffset = dbtob(bp->b_blkno);
847	bstrategy(bp);
848
849	if ((oldflags & B_ASYNC) == 0) {
850		int rtval = bufwait(bp);
851		brelse(bp);
852		return (rtval);
853	} else {
854		/*
855		 * don't allow the async write to saturate the I/O
856		 * system.  We will not deadlock here because
857		 * we are blocking waiting for I/O that is already in-progress
858		 * to complete. We do not block here if it is the update
859		 * or syncer daemon trying to clean up as that can lead
860		 * to deadlock.
861		 */
862		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
863			waitrunningbufspace();
864	}
865
866	return (0);
867}
868
869void
870bufbdflush(struct bufobj *bo, struct buf *bp)
871{
872	struct buf *nbp;
873
874	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
875		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
876		altbufferflushes++;
877	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
878		BO_LOCK(bo);
879		/*
880		 * Try to find a buffer to flush.
881		 */
882		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
883			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
884			    BUF_LOCK(nbp,
885				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
886				continue;
887			if (bp == nbp)
888				panic("bdwrite: found ourselves");
889			BO_UNLOCK(bo);
890			/* Don't countdeps with the bo lock held. */
891			if (buf_countdeps(nbp, 0)) {
892				BO_LOCK(bo);
893				BUF_UNLOCK(nbp);
894				continue;
895			}
896			if (nbp->b_flags & B_CLUSTEROK) {
897				vfs_bio_awrite(nbp);
898			} else {
899				bremfree(nbp);
900				bawrite(nbp);
901			}
902			dirtybufferflushes++;
903			break;
904		}
905		if (nbp == NULL)
906			BO_UNLOCK(bo);
907	}
908}
909
910/*
911 * Delayed write. (Buffer is marked dirty).  Do not bother writing
912 * anything if the buffer is marked invalid.
913 *
914 * Note that since the buffer must be completely valid, we can safely
915 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
916 * biodone() in order to prevent getblk from writing the buffer
917 * out synchronously.
918 */
919void
920bdwrite(struct buf *bp)
921{
922	struct thread *td = curthread;
923	struct vnode *vp;
924	struct bufobj *bo;
925
926	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
927	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
928	BUF_ASSERT_HELD(bp);
929
930	if (bp->b_flags & B_INVAL) {
931		brelse(bp);
932		return;
933	}
934
935	/*
936	 * If we have too many dirty buffers, don't create any more.
937	 * If we are wildly over our limit, then force a complete
938	 * cleanup. Otherwise, just keep the situation from getting
939	 * out of control. Note that we have to avoid a recursive
940	 * disaster and not try to clean up after our own cleanup!
941	 */
942	vp = bp->b_vp;
943	bo = bp->b_bufobj;
944	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
945		td->td_pflags |= TDP_INBDFLUSH;
946		BO_BDFLUSH(bo, bp);
947		td->td_pflags &= ~TDP_INBDFLUSH;
948	} else
949		recursiveflushes++;
950
951	bdirty(bp);
952	/*
953	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
954	 * true even of NFS now.
955	 */
956	bp->b_flags |= B_CACHE;
957
958	/*
959	 * This bmap keeps the system from needing to do the bmap later,
960	 * perhaps when the system is attempting to do a sync.  Since it
961	 * is likely that the indirect block -- or whatever other datastructure
962	 * that the filesystem needs is still in memory now, it is a good
963	 * thing to do this.  Note also, that if the pageout daemon is
964	 * requesting a sync -- there might not be enough memory to do
965	 * the bmap then...  So, this is important to do.
966	 */
967	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
968		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
969	}
970
971	/*
972	 * Set the *dirty* buffer range based upon the VM system dirty pages.
973	 */
974	vfs_setdirty(bp);
975
976	/*
977	 * We need to do this here to satisfy the vnode_pager and the
978	 * pageout daemon, so that it thinks that the pages have been
979	 * "cleaned".  Note that since the pages are in a delayed write
980	 * buffer -- the VFS layer "will" see that the pages get written
981	 * out on the next sync, or perhaps the cluster will be completed.
982	 */
983	vfs_clean_pages(bp);
984	bqrelse(bp);
985
986	/*
987	 * Wakeup the buffer flushing daemon if we have a lot of dirty
988	 * buffers (midpoint between our recovery point and our stall
989	 * point).
990	 */
991	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
992
993	/*
994	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
995	 * due to the softdep code.
996	 */
997}
998
999/*
1000 *	bdirty:
1001 *
1002 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1003 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1004 *	itself to properly update it in the dirty/clean lists.  We mark it
1005 *	B_DONE to ensure that any asynchronization of the buffer properly
1006 *	clears B_DONE ( else a panic will occur later ).
1007 *
1008 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1009 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1010 *	should only be called if the buffer is known-good.
1011 *
1012 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1013 *	count.
1014 *
1015 *	The buffer must be on QUEUE_NONE.
1016 */
1017void
1018bdirty(struct buf *bp)
1019{
1020
1021	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1022	    bp, bp->b_vp, bp->b_flags);
1023	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1024	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1025	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1026	BUF_ASSERT_HELD(bp);
1027	bp->b_flags &= ~(B_RELBUF);
1028	bp->b_iocmd = BIO_WRITE;
1029
1030	if ((bp->b_flags & B_DELWRI) == 0) {
1031		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1032		reassignbuf(bp);
1033		atomic_add_int(&numdirtybuffers, 1);
1034		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1035	}
1036}
1037
1038/*
1039 *	bundirty:
1040 *
1041 *	Clear B_DELWRI for buffer.
1042 *
1043 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1044 *	count.
1045 *
1046 *	The buffer must be on QUEUE_NONE.
1047 */
1048
1049void
1050bundirty(struct buf *bp)
1051{
1052
1053	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1054	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1055	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1056	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1057	BUF_ASSERT_HELD(bp);
1058
1059	if (bp->b_flags & B_DELWRI) {
1060		bp->b_flags &= ~B_DELWRI;
1061		reassignbuf(bp);
1062		atomic_subtract_int(&numdirtybuffers, 1);
1063		numdirtywakeup(lodirtybuffers);
1064	}
1065	/*
1066	 * Since it is now being written, we can clear its deferred write flag.
1067	 */
1068	bp->b_flags &= ~B_DEFERRED;
1069}
1070
1071/*
1072 *	bawrite:
1073 *
1074 *	Asynchronous write.  Start output on a buffer, but do not wait for
1075 *	it to complete.  The buffer is released when the output completes.
1076 *
1077 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1078 *	B_INVAL buffers.  Not us.
1079 */
1080void
1081bawrite(struct buf *bp)
1082{
1083
1084	bp->b_flags |= B_ASYNC;
1085	(void) bwrite(bp);
1086}
1087
1088/*
1089 *	bwillwrite:
1090 *
1091 *	Called prior to the locking of any vnodes when we are expecting to
1092 *	write.  We do not want to starve the buffer cache with too many
1093 *	dirty buffers so we block here.  By blocking prior to the locking
1094 *	of any vnodes we attempt to avoid the situation where a locked vnode
1095 *	prevents the various system daemons from flushing related buffers.
1096 */
1097
1098void
1099bwillwrite(void)
1100{
1101
1102	if (numdirtybuffers >= hidirtybuffers) {
1103		mtx_lock(&nblock);
1104		while (numdirtybuffers >= hidirtybuffers) {
1105			bd_wakeup(1);
1106			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1107			msleep(&needsbuffer, &nblock,
1108			    (PRIBIO + 4), "flswai", 0);
1109		}
1110		mtx_unlock(&nblock);
1111	}
1112}
1113
1114/*
1115 * Return true if we have too many dirty buffers.
1116 */
1117int
1118buf_dirty_count_severe(void)
1119{
1120
1121	return(numdirtybuffers >= hidirtybuffers);
1122}
1123
1124/*
1125 *	brelse:
1126 *
1127 *	Release a busy buffer and, if requested, free its resources.  The
1128 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1129 *	to be accessed later as a cache entity or reused for other purposes.
1130 */
1131void
1132brelse(struct buf *bp)
1133{
1134	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1135	    bp, bp->b_vp, bp->b_flags);
1136	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1137	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1138
1139	if (bp->b_flags & B_MANAGED) {
1140		bqrelse(bp);
1141		return;
1142	}
1143
1144	if (bp->b_iocmd == BIO_WRITE && (bp->b_ioflags & BIO_ERROR) &&
1145	    bp->b_error == EIO && !(bp->b_flags & B_INVAL)) {
1146		/*
1147		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1148		 * pages from being scrapped.  If the error is anything
1149		 * other than an I/O error (EIO), assume that retryingi
1150		 * is futile.
1151		 */
1152		bp->b_ioflags &= ~BIO_ERROR;
1153		bdirty(bp);
1154	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1155	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1156		/*
1157		 * Either a failed I/O or we were asked to free or not
1158		 * cache the buffer.
1159		 */
1160		bp->b_flags |= B_INVAL;
1161		if (!LIST_EMPTY(&bp->b_dep))
1162			buf_deallocate(bp);
1163		if (bp->b_flags & B_DELWRI) {
1164			atomic_subtract_int(&numdirtybuffers, 1);
1165			numdirtywakeup(lodirtybuffers);
1166		}
1167		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1168		if ((bp->b_flags & B_VMIO) == 0) {
1169			if (bp->b_bufsize)
1170				allocbuf(bp, 0);
1171			if (bp->b_vp)
1172				brelvp(bp);
1173		}
1174	}
1175
1176	/*
1177	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1178	 * is called with B_DELWRI set, the underlying pages may wind up
1179	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1180	 * because pages associated with a B_DELWRI bp are marked clean.
1181	 *
1182	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1183	 * if B_DELWRI is set.
1184	 *
1185	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1186	 * on pages to return pages to the VM page queues.
1187	 */
1188	if (bp->b_flags & B_DELWRI)
1189		bp->b_flags &= ~B_RELBUF;
1190	else if (vm_page_count_severe()) {
1191		/*
1192		 * The locking of the BO_LOCK is not necessary since
1193		 * BKGRDINPROG cannot be set while we hold the buf
1194		 * lock, it can only be cleared if it is already
1195		 * pending.
1196		 */
1197		if (bp->b_vp) {
1198			if (!(bp->b_vflags & BV_BKGRDINPROG))
1199				bp->b_flags |= B_RELBUF;
1200		} else
1201			bp->b_flags |= B_RELBUF;
1202	}
1203
1204	/*
1205	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1206	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1207	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1208	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1209	 *
1210	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1211	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1212	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1213	 *
1214	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1215	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1216	 * the commit state and we cannot afford to lose the buffer. If the
1217	 * buffer has a background write in progress, we need to keep it
1218	 * around to prevent it from being reconstituted and starting a second
1219	 * background write.
1220	 */
1221	if ((bp->b_flags & B_VMIO)
1222	    && !(bp->b_vp->v_mount != NULL &&
1223		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1224		 !vn_isdisk(bp->b_vp, NULL) &&
1225		 (bp->b_flags & B_DELWRI))
1226	    ) {
1227
1228		int i, j, resid;
1229		vm_page_t m;
1230		off_t foff;
1231		vm_pindex_t poff;
1232		vm_object_t obj;
1233
1234		obj = bp->b_bufobj->bo_object;
1235
1236		/*
1237		 * Get the base offset and length of the buffer.  Note that
1238		 * in the VMIO case if the buffer block size is not
1239		 * page-aligned then b_data pointer may not be page-aligned.
1240		 * But our b_pages[] array *IS* page aligned.
1241		 *
1242		 * block sizes less then DEV_BSIZE (usually 512) are not
1243		 * supported due to the page granularity bits (m->valid,
1244		 * m->dirty, etc...).
1245		 *
1246		 * See man buf(9) for more information
1247		 */
1248		resid = bp->b_bufsize;
1249		foff = bp->b_offset;
1250		VM_OBJECT_LOCK(obj);
1251		for (i = 0; i < bp->b_npages; i++) {
1252			int had_bogus = 0;
1253
1254			m = bp->b_pages[i];
1255
1256			/*
1257			 * If we hit a bogus page, fixup *all* the bogus pages
1258			 * now.
1259			 */
1260			if (m == bogus_page) {
1261				poff = OFF_TO_IDX(bp->b_offset);
1262				had_bogus = 1;
1263
1264				for (j = i; j < bp->b_npages; j++) {
1265					vm_page_t mtmp;
1266					mtmp = bp->b_pages[j];
1267					if (mtmp == bogus_page) {
1268						mtmp = vm_page_lookup(obj, poff + j);
1269						if (!mtmp) {
1270							panic("brelse: page missing\n");
1271						}
1272						bp->b_pages[j] = mtmp;
1273					}
1274				}
1275
1276				if ((bp->b_flags & B_INVAL) == 0) {
1277					pmap_qenter(
1278					    trunc_page((vm_offset_t)bp->b_data),
1279					    bp->b_pages, bp->b_npages);
1280				}
1281				m = bp->b_pages[i];
1282			}
1283			if ((bp->b_flags & B_NOCACHE) ||
1284			    (bp->b_ioflags & BIO_ERROR)) {
1285				int poffset = foff & PAGE_MASK;
1286				int presid = resid > (PAGE_SIZE - poffset) ?
1287					(PAGE_SIZE - poffset) : resid;
1288
1289				KASSERT(presid >= 0, ("brelse: extra page"));
1290				vm_page_lock_queues();
1291				vm_page_set_invalid(m, poffset, presid);
1292				vm_page_unlock_queues();
1293				if (had_bogus)
1294					printf("avoided corruption bug in bogus_page/brelse code\n");
1295			}
1296			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1297			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1298		}
1299		VM_OBJECT_UNLOCK(obj);
1300		if (bp->b_flags & (B_INVAL | B_RELBUF))
1301			vfs_vmio_release(bp);
1302
1303	} else if (bp->b_flags & B_VMIO) {
1304
1305		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1306			vfs_vmio_release(bp);
1307		}
1308
1309	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1310		if (bp->b_bufsize != 0)
1311			allocbuf(bp, 0);
1312		if (bp->b_vp != NULL)
1313			brelvp(bp);
1314	}
1315
1316	if (BUF_LOCKRECURSED(bp)) {
1317		/* do not release to free list */
1318		BUF_UNLOCK(bp);
1319		return;
1320	}
1321
1322	/* enqueue */
1323	mtx_lock(&bqlock);
1324	/* Handle delayed bremfree() processing. */
1325	if (bp->b_flags & B_REMFREE)
1326		bremfreel(bp);
1327	if (bp->b_qindex != QUEUE_NONE)
1328		panic("brelse: free buffer onto another queue???");
1329
1330	/* buffers with no memory */
1331	if (bp->b_bufsize == 0) {
1332		bp->b_flags |= B_INVAL;
1333		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1334		if (bp->b_vflags & BV_BKGRDINPROG)
1335			panic("losing buffer 1");
1336		if (bp->b_kvasize) {
1337			bp->b_qindex = QUEUE_EMPTYKVA;
1338		} else {
1339			bp->b_qindex = QUEUE_EMPTY;
1340		}
1341		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1342	/* buffers with junk contents */
1343	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1344	    (bp->b_ioflags & BIO_ERROR)) {
1345		bp->b_flags |= B_INVAL;
1346		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1347		if (bp->b_vflags & BV_BKGRDINPROG)
1348			panic("losing buffer 2");
1349		bp->b_qindex = QUEUE_CLEAN;
1350		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1351	/* remaining buffers */
1352	} else {
1353		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1354		    (B_DELWRI|B_NEEDSGIANT))
1355			bp->b_qindex = QUEUE_DIRTY_GIANT;
1356		else if (bp->b_flags & B_DELWRI)
1357			bp->b_qindex = QUEUE_DIRTY;
1358		else
1359			bp->b_qindex = QUEUE_CLEAN;
1360		if (bp->b_flags & B_AGE)
1361			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1362		else
1363			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1364	}
1365	mtx_unlock(&bqlock);
1366
1367	/*
1368	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1369	 * placed the buffer on the correct queue.  We must also disassociate
1370	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1371	 * find it.
1372	 */
1373	if (bp->b_flags & B_INVAL) {
1374		if (bp->b_flags & B_DELWRI)
1375			bundirty(bp);
1376		if (bp->b_vp)
1377			brelvp(bp);
1378	}
1379
1380	/*
1381	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1382	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1383	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1384	 * if B_INVAL is set ).
1385	 */
1386
1387	if (!(bp->b_flags & B_DELWRI))
1388		bufcountwakeup();
1389
1390	/*
1391	 * Something we can maybe free or reuse
1392	 */
1393	if (bp->b_bufsize || bp->b_kvasize)
1394		bufspacewakeup();
1395
1396	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1397	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1398		panic("brelse: not dirty");
1399	/* unlock */
1400	BUF_UNLOCK(bp);
1401}
1402
1403/*
1404 * Release a buffer back to the appropriate queue but do not try to free
1405 * it.  The buffer is expected to be used again soon.
1406 *
1407 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1408 * biodone() to requeue an async I/O on completion.  It is also used when
1409 * known good buffers need to be requeued but we think we may need the data
1410 * again soon.
1411 *
1412 * XXX we should be able to leave the B_RELBUF hint set on completion.
1413 */
1414void
1415bqrelse(struct buf *bp)
1416{
1417	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1418	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1419	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1420
1421	if (BUF_LOCKRECURSED(bp)) {
1422		/* do not release to free list */
1423		BUF_UNLOCK(bp);
1424		return;
1425	}
1426
1427	if (bp->b_flags & B_MANAGED) {
1428		if (bp->b_flags & B_REMFREE) {
1429			mtx_lock(&bqlock);
1430			bremfreel(bp);
1431			mtx_unlock(&bqlock);
1432		}
1433		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1434		BUF_UNLOCK(bp);
1435		return;
1436	}
1437
1438	mtx_lock(&bqlock);
1439	/* Handle delayed bremfree() processing. */
1440	if (bp->b_flags & B_REMFREE)
1441		bremfreel(bp);
1442	if (bp->b_qindex != QUEUE_NONE)
1443		panic("bqrelse: free buffer onto another queue???");
1444	/* buffers with stale but valid contents */
1445	if (bp->b_flags & B_DELWRI) {
1446		if (bp->b_flags & B_NEEDSGIANT)
1447			bp->b_qindex = QUEUE_DIRTY_GIANT;
1448		else
1449			bp->b_qindex = QUEUE_DIRTY;
1450		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1451	} else {
1452		/*
1453		 * The locking of the BO_LOCK for checking of the
1454		 * BV_BKGRDINPROG is not necessary since the
1455		 * BV_BKGRDINPROG cannot be set while we hold the buf
1456		 * lock, it can only be cleared if it is already
1457		 * pending.
1458		 */
1459		if (!vm_page_count_severe() || (bp->b_vflags & BV_BKGRDINPROG)) {
1460			bp->b_qindex = QUEUE_CLEAN;
1461			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1462			    b_freelist);
1463		} else {
1464			/*
1465			 * We are too low on memory, we have to try to free
1466			 * the buffer (most importantly: the wired pages
1467			 * making up its backing store) *now*.
1468			 */
1469			mtx_unlock(&bqlock);
1470			brelse(bp);
1471			return;
1472		}
1473	}
1474	mtx_unlock(&bqlock);
1475
1476	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1477		bufcountwakeup();
1478
1479	/*
1480	 * Something we can maybe free or reuse.
1481	 */
1482	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1483		bufspacewakeup();
1484
1485	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1486	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1487		panic("bqrelse: not dirty");
1488	/* unlock */
1489	BUF_UNLOCK(bp);
1490}
1491
1492/* Give pages used by the bp back to the VM system (where possible) */
1493static void
1494vfs_vmio_release(struct buf *bp)
1495{
1496	int i;
1497	vm_page_t m;
1498
1499	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1500	vm_page_lock_queues();
1501	for (i = 0; i < bp->b_npages; i++) {
1502		m = bp->b_pages[i];
1503		bp->b_pages[i] = NULL;
1504		/*
1505		 * In order to keep page LRU ordering consistent, put
1506		 * everything on the inactive queue.
1507		 */
1508		vm_page_unwire(m, 0);
1509		/*
1510		 * We don't mess with busy pages, it is
1511		 * the responsibility of the process that
1512		 * busied the pages to deal with them.
1513		 */
1514		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1515			continue;
1516
1517		if (m->wire_count == 0) {
1518			/*
1519			 * Might as well free the page if we can and it has
1520			 * no valid data.  We also free the page if the
1521			 * buffer was used for direct I/O
1522			 */
1523			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1524			    m->hold_count == 0) {
1525				vm_page_free(m);
1526			} else if (bp->b_flags & B_DIRECT) {
1527				vm_page_try_to_free(m);
1528			} else if (vm_page_count_severe()) {
1529				vm_page_try_to_cache(m);
1530			}
1531		}
1532	}
1533	vm_page_unlock_queues();
1534	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1535	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1536
1537	if (bp->b_bufsize) {
1538		bufspacewakeup();
1539		bp->b_bufsize = 0;
1540	}
1541	bp->b_npages = 0;
1542	bp->b_flags &= ~B_VMIO;
1543	if (bp->b_vp)
1544		brelvp(bp);
1545}
1546
1547/*
1548 * Check to see if a block at a particular lbn is available for a clustered
1549 * write.
1550 */
1551static int
1552vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1553{
1554	struct buf *bpa;
1555	int match;
1556
1557	match = 0;
1558
1559	/* If the buf isn't in core skip it */
1560	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1561		return (0);
1562
1563	/* If the buf is busy we don't want to wait for it */
1564	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1565		return (0);
1566
1567	/* Only cluster with valid clusterable delayed write buffers */
1568	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1569	    (B_DELWRI | B_CLUSTEROK))
1570		goto done;
1571
1572	if (bpa->b_bufsize != size)
1573		goto done;
1574
1575	/*
1576	 * Check to see if it is in the expected place on disk and that the
1577	 * block has been mapped.
1578	 */
1579	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1580		match = 1;
1581done:
1582	BUF_UNLOCK(bpa);
1583	return (match);
1584}
1585
1586/*
1587 *	vfs_bio_awrite:
1588 *
1589 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1590 *	This is much better then the old way of writing only one buffer at
1591 *	a time.  Note that we may not be presented with the buffers in the
1592 *	correct order, so we search for the cluster in both directions.
1593 */
1594int
1595vfs_bio_awrite(struct buf *bp)
1596{
1597	struct bufobj *bo;
1598	int i;
1599	int j;
1600	daddr_t lblkno = bp->b_lblkno;
1601	struct vnode *vp = bp->b_vp;
1602	int ncl;
1603	int nwritten;
1604	int size;
1605	int maxcl;
1606
1607	bo = &vp->v_bufobj;
1608	/*
1609	 * right now we support clustered writing only to regular files.  If
1610	 * we find a clusterable block we could be in the middle of a cluster
1611	 * rather then at the beginning.
1612	 */
1613	if ((vp->v_type == VREG) &&
1614	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1615	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1616
1617		size = vp->v_mount->mnt_stat.f_iosize;
1618		maxcl = MAXPHYS / size;
1619
1620		BO_LOCK(bo);
1621		for (i = 1; i < maxcl; i++)
1622			if (vfs_bio_clcheck(vp, size, lblkno + i,
1623			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1624				break;
1625
1626		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1627			if (vfs_bio_clcheck(vp, size, lblkno - j,
1628			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1629				break;
1630		BO_UNLOCK(bo);
1631		--j;
1632		ncl = i + j;
1633		/*
1634		 * this is a possible cluster write
1635		 */
1636		if (ncl != 1) {
1637			BUF_UNLOCK(bp);
1638			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1639			return nwritten;
1640		}
1641	}
1642	bremfree(bp);
1643	bp->b_flags |= B_ASYNC;
1644	/*
1645	 * default (old) behavior, writing out only one block
1646	 *
1647	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1648	 */
1649	nwritten = bp->b_bufsize;
1650	(void) bwrite(bp);
1651
1652	return nwritten;
1653}
1654
1655/*
1656 *	getnewbuf:
1657 *
1658 *	Find and initialize a new buffer header, freeing up existing buffers
1659 *	in the bufqueues as necessary.  The new buffer is returned locked.
1660 *
1661 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1662 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1663 *
1664 *	We block if:
1665 *		We have insufficient buffer headers
1666 *		We have insufficient buffer space
1667 *		buffer_map is too fragmented ( space reservation fails )
1668 *		If we have to flush dirty buffers ( but we try to avoid this )
1669 *
1670 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1671 *	Instead we ask the buf daemon to do it for us.  We attempt to
1672 *	avoid piecemeal wakeups of the pageout daemon.
1673 */
1674
1675static struct buf *
1676getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1677{
1678	struct buf *bp;
1679	struct buf *nbp;
1680	int defrag = 0;
1681	int nqindex;
1682	static int flushingbufs;
1683
1684	/*
1685	 * We can't afford to block since we might be holding a vnode lock,
1686	 * which may prevent system daemons from running.  We deal with
1687	 * low-memory situations by proactively returning memory and running
1688	 * async I/O rather then sync I/O.
1689	 */
1690
1691	atomic_add_int(&getnewbufcalls, 1);
1692	atomic_subtract_int(&getnewbufrestarts, 1);
1693restart:
1694	atomic_add_int(&getnewbufrestarts, 1);
1695
1696	/*
1697	 * Setup for scan.  If we do not have enough free buffers,
1698	 * we setup a degenerate case that immediately fails.  Note
1699	 * that if we are specially marked process, we are allowed to
1700	 * dip into our reserves.
1701	 *
1702	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1703	 *
1704	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1705	 * However, there are a number of cases (defragging, reusing, ...)
1706	 * where we cannot backup.
1707	 */
1708	mtx_lock(&bqlock);
1709	nqindex = QUEUE_EMPTYKVA;
1710	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1711
1712	if (nbp == NULL) {
1713		/*
1714		 * If no EMPTYKVA buffers and we are either
1715		 * defragging or reusing, locate a CLEAN buffer
1716		 * to free or reuse.  If bufspace useage is low
1717		 * skip this step so we can allocate a new buffer.
1718		 */
1719		if (defrag || bufspace >= lobufspace) {
1720			nqindex = QUEUE_CLEAN;
1721			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1722		}
1723
1724		/*
1725		 * If we could not find or were not allowed to reuse a
1726		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1727		 * buffer.  We can only use an EMPTY buffer if allocating
1728		 * its KVA would not otherwise run us out of buffer space.
1729		 */
1730		if (nbp == NULL && defrag == 0 &&
1731		    bufspace + maxsize < hibufspace) {
1732			nqindex = QUEUE_EMPTY;
1733			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1734		}
1735	}
1736
1737	/*
1738	 * Run scan, possibly freeing data and/or kva mappings on the fly
1739	 * depending.
1740	 */
1741
1742	while ((bp = nbp) != NULL) {
1743		int qindex = nqindex;
1744
1745		/*
1746		 * Calculate next bp ( we can only use it if we do not block
1747		 * or do other fancy things ).
1748		 */
1749		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1750			switch(qindex) {
1751			case QUEUE_EMPTY:
1752				nqindex = QUEUE_EMPTYKVA;
1753				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1754					break;
1755				/* FALLTHROUGH */
1756			case QUEUE_EMPTYKVA:
1757				nqindex = QUEUE_CLEAN;
1758				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1759					break;
1760				/* FALLTHROUGH */
1761			case QUEUE_CLEAN:
1762				/*
1763				 * nbp is NULL.
1764				 */
1765				break;
1766			}
1767		}
1768		/*
1769		 * If we are defragging then we need a buffer with
1770		 * b_kvasize != 0.  XXX this situation should no longer
1771		 * occur, if defrag is non-zero the buffer's b_kvasize
1772		 * should also be non-zero at this point.  XXX
1773		 */
1774		if (defrag && bp->b_kvasize == 0) {
1775			printf("Warning: defrag empty buffer %p\n", bp);
1776			continue;
1777		}
1778
1779		/*
1780		 * Start freeing the bp.  This is somewhat involved.  nbp
1781		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1782		 */
1783		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1784			continue;
1785		if (bp->b_vp) {
1786			BO_LOCK(bp->b_bufobj);
1787			if (bp->b_vflags & BV_BKGRDINPROG) {
1788				BO_UNLOCK(bp->b_bufobj);
1789				BUF_UNLOCK(bp);
1790				continue;
1791			}
1792			BO_UNLOCK(bp->b_bufobj);
1793		}
1794		CTR6(KTR_BUF,
1795		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1796		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1797		    bp->b_kvasize, bp->b_bufsize, qindex);
1798
1799		/*
1800		 * Sanity Checks
1801		 */
1802		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1803
1804		/*
1805		 * Note: we no longer distinguish between VMIO and non-VMIO
1806		 * buffers.
1807		 */
1808
1809		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1810
1811		bremfreel(bp);
1812		mtx_unlock(&bqlock);
1813
1814		if (qindex == QUEUE_CLEAN) {
1815			if (bp->b_flags & B_VMIO) {
1816				bp->b_flags &= ~B_ASYNC;
1817				vfs_vmio_release(bp);
1818			}
1819			if (bp->b_vp)
1820				brelvp(bp);
1821		}
1822
1823		/*
1824		 * NOTE:  nbp is now entirely invalid.  We can only restart
1825		 * the scan from this point on.
1826		 *
1827		 * Get the rest of the buffer freed up.  b_kva* is still
1828		 * valid after this operation.
1829		 */
1830
1831		if (bp->b_rcred != NOCRED) {
1832			crfree(bp->b_rcred);
1833			bp->b_rcred = NOCRED;
1834		}
1835		if (bp->b_wcred != NOCRED) {
1836			crfree(bp->b_wcred);
1837			bp->b_wcred = NOCRED;
1838		}
1839		if (!LIST_EMPTY(&bp->b_dep))
1840			buf_deallocate(bp);
1841		if (bp->b_vflags & BV_BKGRDINPROG)
1842			panic("losing buffer 3");
1843		KASSERT(bp->b_vp == NULL,
1844		    ("bp: %p still has vnode %p.  qindex: %d",
1845		    bp, bp->b_vp, qindex));
1846		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1847		   ("bp: %p still on a buffer list. xflags %X",
1848		    bp, bp->b_xflags));
1849
1850		if (bp->b_bufsize)
1851			allocbuf(bp, 0);
1852
1853		bp->b_flags = 0;
1854		bp->b_ioflags = 0;
1855		bp->b_xflags = 0;
1856		bp->b_vflags = 0;
1857		bp->b_vp = NULL;
1858		bp->b_blkno = bp->b_lblkno = 0;
1859		bp->b_offset = NOOFFSET;
1860		bp->b_iodone = 0;
1861		bp->b_error = 0;
1862		bp->b_resid = 0;
1863		bp->b_bcount = 0;
1864		bp->b_npages = 0;
1865		bp->b_dirtyoff = bp->b_dirtyend = 0;
1866		bp->b_bufobj = NULL;
1867		bp->b_pin_count = 0;
1868		bp->b_fsprivate1 = NULL;
1869		bp->b_fsprivate2 = NULL;
1870		bp->b_fsprivate3 = NULL;
1871
1872		LIST_INIT(&bp->b_dep);
1873
1874		/*
1875		 * If we are defragging then free the buffer.
1876		 */
1877		if (defrag) {
1878			bp->b_flags |= B_INVAL;
1879			bfreekva(bp);
1880			brelse(bp);
1881			defrag = 0;
1882			goto restart;
1883		}
1884
1885		/*
1886		 * Notify any waiters for the buffer lock about
1887		 * identity change by freeing the buffer.
1888		 */
1889		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp)) {
1890			bp->b_flags |= B_INVAL;
1891			bfreekva(bp);
1892			brelse(bp);
1893			goto restart;
1894		}
1895
1896		/*
1897		 * If we are overcomitted then recover the buffer and its
1898		 * KVM space.  This occurs in rare situations when multiple
1899		 * processes are blocked in getnewbuf() or allocbuf().
1900		 */
1901		if (bufspace >= hibufspace)
1902			flushingbufs = 1;
1903		if (flushingbufs && bp->b_kvasize != 0) {
1904			bp->b_flags |= B_INVAL;
1905			bfreekva(bp);
1906			brelse(bp);
1907			goto restart;
1908		}
1909		if (bufspace < lobufspace)
1910			flushingbufs = 0;
1911		break;
1912	}
1913
1914	/*
1915	 * If we exhausted our list, sleep as appropriate.  We may have to
1916	 * wakeup various daemons and write out some dirty buffers.
1917	 *
1918	 * Generally we are sleeping due to insufficient buffer space.
1919	 */
1920
1921	if (bp == NULL) {
1922		int flags;
1923		char *waitmsg;
1924
1925		if (defrag) {
1926			flags = VFS_BIO_NEED_BUFSPACE;
1927			waitmsg = "nbufkv";
1928		} else if (bufspace >= hibufspace) {
1929			waitmsg = "nbufbs";
1930			flags = VFS_BIO_NEED_BUFSPACE;
1931		} else {
1932			waitmsg = "newbuf";
1933			flags = VFS_BIO_NEED_ANY;
1934		}
1935		mtx_lock(&nblock);
1936		needsbuffer |= flags;
1937		mtx_unlock(&nblock);
1938		mtx_unlock(&bqlock);
1939
1940		bd_speedup();	/* heeeelp */
1941
1942		mtx_lock(&nblock);
1943		while (needsbuffer & flags) {
1944			if (msleep(&needsbuffer, &nblock,
1945			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1946				mtx_unlock(&nblock);
1947				return (NULL);
1948			}
1949		}
1950		mtx_unlock(&nblock);
1951	} else {
1952		/*
1953		 * We finally have a valid bp.  We aren't quite out of the
1954		 * woods, we still have to reserve kva space.  In order
1955		 * to keep fragmentation sane we only allocate kva in
1956		 * BKVASIZE chunks.
1957		 */
1958		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1959
1960		if (maxsize != bp->b_kvasize) {
1961			vm_offset_t addr = 0;
1962
1963			bfreekva(bp);
1964
1965			vm_map_lock(buffer_map);
1966			if (vm_map_findspace(buffer_map,
1967				vm_map_min(buffer_map), maxsize, &addr)) {
1968				/*
1969				 * Uh oh.  Buffer map is to fragmented.  We
1970				 * must defragment the map.
1971				 */
1972				atomic_add_int(&bufdefragcnt, 1);
1973				vm_map_unlock(buffer_map);
1974				defrag = 1;
1975				bp->b_flags |= B_INVAL;
1976				brelse(bp);
1977				goto restart;
1978			}
1979			if (addr) {
1980				vm_map_insert(buffer_map, NULL, 0,
1981					addr, addr + maxsize,
1982					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1983
1984				bp->b_kvabase = (caddr_t) addr;
1985				bp->b_kvasize = maxsize;
1986				atomic_add_int(&bufspace, bp->b_kvasize);
1987				atomic_add_int(&bufreusecnt, 1);
1988			}
1989			vm_map_unlock(buffer_map);
1990		}
1991		bp->b_saveaddr = bp->b_kvabase;
1992		bp->b_data = bp->b_saveaddr;
1993	}
1994	return(bp);
1995}
1996
1997/*
1998 *	buf_daemon:
1999 *
2000 *	buffer flushing daemon.  Buffers are normally flushed by the
2001 *	update daemon but if it cannot keep up this process starts to
2002 *	take the load in an attempt to prevent getnewbuf() from blocking.
2003 */
2004
2005static struct kproc_desc buf_kp = {
2006	"bufdaemon",
2007	buf_daemon,
2008	&bufdaemonproc
2009};
2010SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp);
2011
2012static void
2013buf_daemon()
2014{
2015
2016	/*
2017	 * This process needs to be suspended prior to shutdown sync.
2018	 */
2019	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2020	    SHUTDOWN_PRI_LAST);
2021
2022	/*
2023	 * This process is allowed to take the buffer cache to the limit
2024	 */
2025	curthread->td_pflags |= TDP_NORUNNINGBUF;
2026	mtx_lock(&bdlock);
2027	for (;;) {
2028		bd_request = 0;
2029		mtx_unlock(&bdlock);
2030
2031		kproc_suspend_check(bufdaemonproc);
2032
2033		/*
2034		 * Do the flush.  Limit the amount of in-transit I/O we
2035		 * allow to build up, otherwise we would completely saturate
2036		 * the I/O system.  Wakeup any waiting processes before we
2037		 * normally would so they can run in parallel with our drain.
2038		 */
2039		while (numdirtybuffers > lodirtybuffers) {
2040			int flushed;
2041
2042			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2043			/* The list empty check here is slightly racy */
2044			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2045				mtx_lock(&Giant);
2046				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2047				mtx_unlock(&Giant);
2048			}
2049			if (flushed == 0) {
2050				/*
2051				 * Could not find any buffers without rollback
2052				 * dependencies, so just write the first one
2053				 * in the hopes of eventually making progress.
2054				 */
2055				flushbufqueues(QUEUE_DIRTY, 1);
2056				if (!TAILQ_EMPTY(
2057				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2058					mtx_lock(&Giant);
2059					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2060					mtx_unlock(&Giant);
2061				}
2062				break;
2063			}
2064			uio_yield();
2065		}
2066
2067		/*
2068		 * Only clear bd_request if we have reached our low water
2069		 * mark.  The buf_daemon normally waits 1 second and
2070		 * then incrementally flushes any dirty buffers that have
2071		 * built up, within reason.
2072		 *
2073		 * If we were unable to hit our low water mark and couldn't
2074		 * find any flushable buffers, we sleep half a second.
2075		 * Otherwise we loop immediately.
2076		 */
2077		mtx_lock(&bdlock);
2078		if (numdirtybuffers <= lodirtybuffers) {
2079			/*
2080			 * We reached our low water mark, reset the
2081			 * request and sleep until we are needed again.
2082			 * The sleep is just so the suspend code works.
2083			 */
2084			bd_request = 0;
2085			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2086		} else {
2087			/*
2088			 * We couldn't find any flushable dirty buffers but
2089			 * still have too many dirty buffers, we
2090			 * have to sleep and try again.  (rare)
2091			 */
2092			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2093		}
2094	}
2095}
2096
2097/*
2098 *	flushbufqueues:
2099 *
2100 *	Try to flush a buffer in the dirty queue.  We must be careful to
2101 *	free up B_INVAL buffers instead of write them, which NFS is
2102 *	particularly sensitive to.
2103 */
2104static int flushwithdeps = 0;
2105SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2106    0, "Number of buffers flushed with dependecies that require rollbacks");
2107
2108static int
2109flushbufqueues(int queue, int flushdeps)
2110{
2111	struct buf sentinel;
2112	struct vnode *vp;
2113	struct mount *mp;
2114	struct buf *bp;
2115	int hasdeps;
2116	int flushed;
2117	int target;
2118
2119	target = numdirtybuffers - lodirtybuffers;
2120	if (flushdeps && target > 2)
2121		target /= 2;
2122	flushed = 0;
2123	bp = NULL;
2124	mtx_lock(&bqlock);
2125	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2126	while (flushed != target) {
2127		bp = TAILQ_FIRST(&bufqueues[queue]);
2128		if (bp == &sentinel)
2129			break;
2130		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2131		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2132
2133		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2134			continue;
2135		if (bp->b_pin_count > 0) {
2136			BUF_UNLOCK(bp);
2137			continue;
2138		}
2139		BO_LOCK(bp->b_bufobj);
2140		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2141		    (bp->b_flags & B_DELWRI) == 0) {
2142			BO_UNLOCK(bp->b_bufobj);
2143			BUF_UNLOCK(bp);
2144			continue;
2145		}
2146		BO_UNLOCK(bp->b_bufobj);
2147		if (bp->b_flags & B_INVAL) {
2148			bremfreel(bp);
2149			mtx_unlock(&bqlock);
2150			brelse(bp);
2151			flushed++;
2152			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2153			mtx_lock(&bqlock);
2154			continue;
2155		}
2156
2157		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2158			if (flushdeps == 0) {
2159				BUF_UNLOCK(bp);
2160				continue;
2161			}
2162			hasdeps = 1;
2163		} else
2164			hasdeps = 0;
2165		/*
2166		 * We must hold the lock on a vnode before writing
2167		 * one of its buffers. Otherwise we may confuse, or
2168		 * in the case of a snapshot vnode, deadlock the
2169		 * system.
2170		 *
2171		 * The lock order here is the reverse of the normal
2172		 * of vnode followed by buf lock.  This is ok because
2173		 * the NOWAIT will prevent deadlock.
2174		 */
2175		vp = bp->b_vp;
2176		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2177			BUF_UNLOCK(bp);
2178			continue;
2179		}
2180		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT) == 0) {
2181			mtx_unlock(&bqlock);
2182			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2183			    bp, bp->b_vp, bp->b_flags);
2184			vfs_bio_awrite(bp);
2185			vn_finished_write(mp);
2186			VOP_UNLOCK(vp, 0);
2187			flushwithdeps += hasdeps;
2188			flushed++;
2189			waitrunningbufspace();
2190			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2191			mtx_lock(&bqlock);
2192			continue;
2193		}
2194		vn_finished_write(mp);
2195		BUF_UNLOCK(bp);
2196	}
2197	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2198	mtx_unlock(&bqlock);
2199	return (flushed);
2200}
2201
2202/*
2203 * Check to see if a block is currently memory resident.
2204 */
2205struct buf *
2206incore(struct bufobj *bo, daddr_t blkno)
2207{
2208	struct buf *bp;
2209
2210	BO_LOCK(bo);
2211	bp = gbincore(bo, blkno);
2212	BO_UNLOCK(bo);
2213	return (bp);
2214}
2215
2216/*
2217 * Returns true if no I/O is needed to access the
2218 * associated VM object.  This is like incore except
2219 * it also hunts around in the VM system for the data.
2220 */
2221
2222static int
2223inmem(struct vnode * vp, daddr_t blkno)
2224{
2225	vm_object_t obj;
2226	vm_offset_t toff, tinc, size;
2227	vm_page_t m;
2228	vm_ooffset_t off;
2229
2230	ASSERT_VOP_LOCKED(vp, "inmem");
2231
2232	if (incore(&vp->v_bufobj, blkno))
2233		return 1;
2234	if (vp->v_mount == NULL)
2235		return 0;
2236	obj = vp->v_object;
2237	if (obj == NULL)
2238		return (0);
2239
2240	size = PAGE_SIZE;
2241	if (size > vp->v_mount->mnt_stat.f_iosize)
2242		size = vp->v_mount->mnt_stat.f_iosize;
2243	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2244
2245	VM_OBJECT_LOCK(obj);
2246	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2247		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2248		if (!m)
2249			goto notinmem;
2250		tinc = size;
2251		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2252			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2253		if (vm_page_is_valid(m,
2254		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2255			goto notinmem;
2256	}
2257	VM_OBJECT_UNLOCK(obj);
2258	return 1;
2259
2260notinmem:
2261	VM_OBJECT_UNLOCK(obj);
2262	return (0);
2263}
2264
2265/*
2266 *	vfs_setdirty:
2267 *
2268 *	Sets the dirty range for a buffer based on the status of the dirty
2269 *	bits in the pages comprising the buffer.
2270 *
2271 *	The range is limited to the size of the buffer.
2272 *
2273 *	This routine is primarily used by NFS, but is generalized for the
2274 *	B_VMIO case.
2275 */
2276static void
2277vfs_setdirty(struct buf *bp)
2278{
2279
2280	/*
2281	 * Degenerate case - empty buffer
2282	 */
2283
2284	if (bp->b_bufsize == 0)
2285		return;
2286
2287	/*
2288	 * We qualify the scan for modified pages on whether the
2289	 * object has been flushed yet.
2290	 */
2291
2292	if ((bp->b_flags & B_VMIO) == 0)
2293		return;
2294
2295	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2296	vfs_setdirty_locked_object(bp);
2297	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2298}
2299
2300static void
2301vfs_setdirty_locked_object(struct buf *bp)
2302{
2303	vm_object_t object;
2304	int i;
2305
2306	object = bp->b_bufobj->bo_object;
2307	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2308	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2309		vm_offset_t boffset;
2310		vm_offset_t eoffset;
2311
2312		vm_page_lock_queues();
2313		/*
2314		 * test the pages to see if they have been modified directly
2315		 * by users through the VM system.
2316		 */
2317		for (i = 0; i < bp->b_npages; i++)
2318			vm_page_test_dirty(bp->b_pages[i]);
2319
2320		/*
2321		 * Calculate the encompassing dirty range, boffset and eoffset,
2322		 * (eoffset - boffset) bytes.
2323		 */
2324
2325		for (i = 0; i < bp->b_npages; i++) {
2326			if (bp->b_pages[i]->dirty)
2327				break;
2328		}
2329		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2330
2331		for (i = bp->b_npages - 1; i >= 0; --i) {
2332			if (bp->b_pages[i]->dirty) {
2333				break;
2334			}
2335		}
2336		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2337
2338		vm_page_unlock_queues();
2339		/*
2340		 * Fit it to the buffer.
2341		 */
2342
2343		if (eoffset > bp->b_bcount)
2344			eoffset = bp->b_bcount;
2345
2346		/*
2347		 * If we have a good dirty range, merge with the existing
2348		 * dirty range.
2349		 */
2350
2351		if (boffset < eoffset) {
2352			if (bp->b_dirtyoff > boffset)
2353				bp->b_dirtyoff = boffset;
2354			if (bp->b_dirtyend < eoffset)
2355				bp->b_dirtyend = eoffset;
2356		}
2357	}
2358}
2359
2360/*
2361 *	getblk:
2362 *
2363 *	Get a block given a specified block and offset into a file/device.
2364 *	The buffers B_DONE bit will be cleared on return, making it almost
2365 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2366 *	return.  The caller should clear B_INVAL prior to initiating a
2367 *	READ.
2368 *
2369 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2370 *	an existing buffer.
2371 *
2372 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2373 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2374 *	and then cleared based on the backing VM.  If the previous buffer is
2375 *	non-0-sized but invalid, B_CACHE will be cleared.
2376 *
2377 *	If getblk() must create a new buffer, the new buffer is returned with
2378 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2379 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2380 *	backing VM.
2381 *
2382 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2383 *	B_CACHE bit is clear.
2384 *
2385 *	What this means, basically, is that the caller should use B_CACHE to
2386 *	determine whether the buffer is fully valid or not and should clear
2387 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2388 *	the buffer by loading its data area with something, the caller needs
2389 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2390 *	the caller should set B_CACHE ( as an optimization ), else the caller
2391 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2392 *	a write attempt or if it was a successfull read.  If the caller
2393 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2394 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2395 */
2396struct buf *
2397getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2398    int flags)
2399{
2400	struct buf *bp;
2401	struct bufobj *bo;
2402	int error;
2403
2404	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2405	ASSERT_VOP_LOCKED(vp, "getblk");
2406	if (size > MAXBSIZE)
2407		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2408
2409	bo = &vp->v_bufobj;
2410loop:
2411	/*
2412	 * Block if we are low on buffers.   Certain processes are allowed
2413	 * to completely exhaust the buffer cache.
2414         *
2415         * If this check ever becomes a bottleneck it may be better to
2416         * move it into the else, when gbincore() fails.  At the moment
2417         * it isn't a problem.
2418	 *
2419	 * XXX remove if 0 sections (clean this up after its proven)
2420         */
2421	if (numfreebuffers == 0) {
2422		if (TD_IS_IDLETHREAD(curthread))
2423			return NULL;
2424		mtx_lock(&nblock);
2425		needsbuffer |= VFS_BIO_NEED_ANY;
2426		mtx_unlock(&nblock);
2427	}
2428
2429	BO_LOCK(bo);
2430	bp = gbincore(bo, blkno);
2431	if (bp != NULL) {
2432		int lockflags;
2433		/*
2434		 * Buffer is in-core.  If the buffer is not busy, it must
2435		 * be on a queue.
2436		 */
2437		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2438
2439		if (flags & GB_LOCK_NOWAIT)
2440			lockflags |= LK_NOWAIT;
2441
2442		error = BUF_TIMELOCK(bp, lockflags,
2443		    BO_MTX(bo), "getblk", slpflag, slptimeo);
2444
2445		/*
2446		 * If we slept and got the lock we have to restart in case
2447		 * the buffer changed identities.
2448		 */
2449		if (error == ENOLCK)
2450			goto loop;
2451		/* We timed out or were interrupted. */
2452		else if (error)
2453			return (NULL);
2454
2455		/*
2456		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2457		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2458		 * and for a VMIO buffer B_CACHE is adjusted according to the
2459		 * backing VM cache.
2460		 */
2461		if (bp->b_flags & B_INVAL)
2462			bp->b_flags &= ~B_CACHE;
2463		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2464			bp->b_flags |= B_CACHE;
2465		bremfree(bp);
2466
2467		/*
2468		 * check for size inconsistancies for non-VMIO case.
2469		 */
2470
2471		if (bp->b_bcount != size) {
2472			if ((bp->b_flags & B_VMIO) == 0 ||
2473			    (size > bp->b_kvasize)) {
2474				if (bp->b_flags & B_DELWRI) {
2475					/*
2476					 * If buffer is pinned and caller does
2477					 * not want sleep  waiting for it to be
2478					 * unpinned, bail out
2479					 * */
2480					if (bp->b_pin_count > 0) {
2481						if (flags & GB_LOCK_NOWAIT) {
2482							bqrelse(bp);
2483							return (NULL);
2484						} else {
2485							bunpin_wait(bp);
2486						}
2487					}
2488					bp->b_flags |= B_NOCACHE;
2489					bwrite(bp);
2490				} else {
2491					if (LIST_EMPTY(&bp->b_dep)) {
2492						bp->b_flags |= B_RELBUF;
2493						brelse(bp);
2494					} else {
2495						bp->b_flags |= B_NOCACHE;
2496						bwrite(bp);
2497					}
2498				}
2499				goto loop;
2500			}
2501		}
2502
2503		/*
2504		 * If the size is inconsistant in the VMIO case, we can resize
2505		 * the buffer.  This might lead to B_CACHE getting set or
2506		 * cleared.  If the size has not changed, B_CACHE remains
2507		 * unchanged from its previous state.
2508		 */
2509
2510		if (bp->b_bcount != size)
2511			allocbuf(bp, size);
2512
2513		KASSERT(bp->b_offset != NOOFFSET,
2514		    ("getblk: no buffer offset"));
2515
2516		/*
2517		 * A buffer with B_DELWRI set and B_CACHE clear must
2518		 * be committed before we can return the buffer in
2519		 * order to prevent the caller from issuing a read
2520		 * ( due to B_CACHE not being set ) and overwriting
2521		 * it.
2522		 *
2523		 * Most callers, including NFS and FFS, need this to
2524		 * operate properly either because they assume they
2525		 * can issue a read if B_CACHE is not set, or because
2526		 * ( for example ) an uncached B_DELWRI might loop due
2527		 * to softupdates re-dirtying the buffer.  In the latter
2528		 * case, B_CACHE is set after the first write completes,
2529		 * preventing further loops.
2530		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2531		 * above while extending the buffer, we cannot allow the
2532		 * buffer to remain with B_CACHE set after the write
2533		 * completes or it will represent a corrupt state.  To
2534		 * deal with this we set B_NOCACHE to scrap the buffer
2535		 * after the write.
2536		 *
2537		 * We might be able to do something fancy, like setting
2538		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2539		 * so the below call doesn't set B_CACHE, but that gets real
2540		 * confusing.  This is much easier.
2541		 */
2542
2543		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2544			bp->b_flags |= B_NOCACHE;
2545			bwrite(bp);
2546			goto loop;
2547		}
2548		bp->b_flags &= ~B_DONE;
2549	} else {
2550		int bsize, maxsize, vmio;
2551		off_t offset;
2552
2553		/*
2554		 * Buffer is not in-core, create new buffer.  The buffer
2555		 * returned by getnewbuf() is locked.  Note that the returned
2556		 * buffer is also considered valid (not marked B_INVAL).
2557		 */
2558		BO_UNLOCK(bo);
2559		/*
2560		 * If the user does not want us to create the buffer, bail out
2561		 * here.
2562		 */
2563		if (flags & GB_NOCREAT)
2564			return NULL;
2565		bsize = bo->bo_bsize;
2566		offset = blkno * bsize;
2567		vmio = vp->v_object != NULL;
2568		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2569		maxsize = imax(maxsize, bsize);
2570
2571		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2572		if (bp == NULL) {
2573			if (slpflag || slptimeo)
2574				return NULL;
2575			goto loop;
2576		}
2577
2578		/*
2579		 * This code is used to make sure that a buffer is not
2580		 * created while the getnewbuf routine is blocked.
2581		 * This can be a problem whether the vnode is locked or not.
2582		 * If the buffer is created out from under us, we have to
2583		 * throw away the one we just created.
2584		 *
2585		 * Note: this must occur before we associate the buffer
2586		 * with the vp especially considering limitations in
2587		 * the splay tree implementation when dealing with duplicate
2588		 * lblkno's.
2589		 */
2590		BO_LOCK(bo);
2591		if (gbincore(bo, blkno)) {
2592			BO_UNLOCK(bo);
2593			bp->b_flags |= B_INVAL;
2594			brelse(bp);
2595			goto loop;
2596		}
2597
2598		/*
2599		 * Insert the buffer into the hash, so that it can
2600		 * be found by incore.
2601		 */
2602		bp->b_blkno = bp->b_lblkno = blkno;
2603		bp->b_offset = offset;
2604		bgetvp(vp, bp);
2605		BO_UNLOCK(bo);
2606
2607		/*
2608		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2609		 * buffer size starts out as 0, B_CACHE will be set by
2610		 * allocbuf() for the VMIO case prior to it testing the
2611		 * backing store for validity.
2612		 */
2613
2614		if (vmio) {
2615			bp->b_flags |= B_VMIO;
2616#if defined(VFS_BIO_DEBUG)
2617			if (vn_canvmio(vp) != TRUE)
2618				printf("getblk: VMIO on vnode type %d\n",
2619					vp->v_type);
2620#endif
2621			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2622			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2623			    bp, vp->v_object, bp->b_bufobj->bo_object));
2624		} else {
2625			bp->b_flags &= ~B_VMIO;
2626			KASSERT(bp->b_bufobj->bo_object == NULL,
2627			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2628			    bp, bp->b_bufobj->bo_object));
2629		}
2630
2631		allocbuf(bp, size);
2632		bp->b_flags &= ~B_DONE;
2633	}
2634	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2635	BUF_ASSERT_HELD(bp);
2636	KASSERT(bp->b_bufobj == bo,
2637	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2638	return (bp);
2639}
2640
2641/*
2642 * Get an empty, disassociated buffer of given size.  The buffer is initially
2643 * set to B_INVAL.
2644 */
2645struct buf *
2646geteblk(int size)
2647{
2648	struct buf *bp;
2649	int maxsize;
2650
2651	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2652	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2653		continue;
2654	allocbuf(bp, size);
2655	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2656	BUF_ASSERT_HELD(bp);
2657	return (bp);
2658}
2659
2660
2661/*
2662 * This code constitutes the buffer memory from either anonymous system
2663 * memory (in the case of non-VMIO operations) or from an associated
2664 * VM object (in the case of VMIO operations).  This code is able to
2665 * resize a buffer up or down.
2666 *
2667 * Note that this code is tricky, and has many complications to resolve
2668 * deadlock or inconsistant data situations.  Tread lightly!!!
2669 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2670 * the caller.  Calling this code willy nilly can result in the loss of data.
2671 *
2672 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2673 * B_CACHE for the non-VMIO case.
2674 */
2675
2676int
2677allocbuf(struct buf *bp, int size)
2678{
2679	int newbsize, mbsize;
2680	int i;
2681
2682	BUF_ASSERT_HELD(bp);
2683
2684	if (bp->b_kvasize < size)
2685		panic("allocbuf: buffer too small");
2686
2687	if ((bp->b_flags & B_VMIO) == 0) {
2688		caddr_t origbuf;
2689		int origbufsize;
2690		/*
2691		 * Just get anonymous memory from the kernel.  Don't
2692		 * mess with B_CACHE.
2693		 */
2694		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2695		if (bp->b_flags & B_MALLOC)
2696			newbsize = mbsize;
2697		else
2698			newbsize = round_page(size);
2699
2700		if (newbsize < bp->b_bufsize) {
2701			/*
2702			 * malloced buffers are not shrunk
2703			 */
2704			if (bp->b_flags & B_MALLOC) {
2705				if (newbsize) {
2706					bp->b_bcount = size;
2707				} else {
2708					free(bp->b_data, M_BIOBUF);
2709					if (bp->b_bufsize) {
2710						atomic_subtract_int(
2711						    &bufmallocspace,
2712						    bp->b_bufsize);
2713						bufspacewakeup();
2714						bp->b_bufsize = 0;
2715					}
2716					bp->b_saveaddr = bp->b_kvabase;
2717					bp->b_data = bp->b_saveaddr;
2718					bp->b_bcount = 0;
2719					bp->b_flags &= ~B_MALLOC;
2720				}
2721				return 1;
2722			}
2723			vm_hold_free_pages(
2724			    bp,
2725			    (vm_offset_t) bp->b_data + newbsize,
2726			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2727		} else if (newbsize > bp->b_bufsize) {
2728			/*
2729			 * We only use malloced memory on the first allocation.
2730			 * and revert to page-allocated memory when the buffer
2731			 * grows.
2732			 */
2733			/*
2734			 * There is a potential smp race here that could lead
2735			 * to bufmallocspace slightly passing the max.  It
2736			 * is probably extremely rare and not worth worrying
2737			 * over.
2738			 */
2739			if ( (bufmallocspace < maxbufmallocspace) &&
2740				(bp->b_bufsize == 0) &&
2741				(mbsize <= PAGE_SIZE/2)) {
2742
2743				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2744				bp->b_bufsize = mbsize;
2745				bp->b_bcount = size;
2746				bp->b_flags |= B_MALLOC;
2747				atomic_add_int(&bufmallocspace, mbsize);
2748				return 1;
2749			}
2750			origbuf = NULL;
2751			origbufsize = 0;
2752			/*
2753			 * If the buffer is growing on its other-than-first allocation,
2754			 * then we revert to the page-allocation scheme.
2755			 */
2756			if (bp->b_flags & B_MALLOC) {
2757				origbuf = bp->b_data;
2758				origbufsize = bp->b_bufsize;
2759				bp->b_data = bp->b_kvabase;
2760				if (bp->b_bufsize) {
2761					atomic_subtract_int(&bufmallocspace,
2762					    bp->b_bufsize);
2763					bufspacewakeup();
2764					bp->b_bufsize = 0;
2765				}
2766				bp->b_flags &= ~B_MALLOC;
2767				newbsize = round_page(newbsize);
2768			}
2769			vm_hold_load_pages(
2770			    bp,
2771			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2772			    (vm_offset_t) bp->b_data + newbsize);
2773			if (origbuf) {
2774				bcopy(origbuf, bp->b_data, origbufsize);
2775				free(origbuf, M_BIOBUF);
2776			}
2777		}
2778	} else {
2779		int desiredpages;
2780
2781		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2782		desiredpages = (size == 0) ? 0 :
2783			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2784
2785		if (bp->b_flags & B_MALLOC)
2786			panic("allocbuf: VMIO buffer can't be malloced");
2787		/*
2788		 * Set B_CACHE initially if buffer is 0 length or will become
2789		 * 0-length.
2790		 */
2791		if (size == 0 || bp->b_bufsize == 0)
2792			bp->b_flags |= B_CACHE;
2793
2794		if (newbsize < bp->b_bufsize) {
2795			/*
2796			 * DEV_BSIZE aligned new buffer size is less then the
2797			 * DEV_BSIZE aligned existing buffer size.  Figure out
2798			 * if we have to remove any pages.
2799			 */
2800			if (desiredpages < bp->b_npages) {
2801				vm_page_t m;
2802
2803				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2804				vm_page_lock_queues();
2805				for (i = desiredpages; i < bp->b_npages; i++) {
2806					/*
2807					 * the page is not freed here -- it
2808					 * is the responsibility of
2809					 * vnode_pager_setsize
2810					 */
2811					m = bp->b_pages[i];
2812					KASSERT(m != bogus_page,
2813					    ("allocbuf: bogus page found"));
2814					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2815						vm_page_lock_queues();
2816
2817					bp->b_pages[i] = NULL;
2818					vm_page_unwire(m, 0);
2819				}
2820				vm_page_unlock_queues();
2821				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2822				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2823				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2824				bp->b_npages = desiredpages;
2825			}
2826		} else if (size > bp->b_bcount) {
2827			/*
2828			 * We are growing the buffer, possibly in a
2829			 * byte-granular fashion.
2830			 */
2831			struct vnode *vp;
2832			vm_object_t obj;
2833			vm_offset_t toff;
2834			vm_offset_t tinc;
2835
2836			/*
2837			 * Step 1, bring in the VM pages from the object,
2838			 * allocating them if necessary.  We must clear
2839			 * B_CACHE if these pages are not valid for the
2840			 * range covered by the buffer.
2841			 */
2842
2843			vp = bp->b_vp;
2844			obj = bp->b_bufobj->bo_object;
2845
2846			VM_OBJECT_LOCK(obj);
2847			while (bp->b_npages < desiredpages) {
2848				vm_page_t m;
2849				vm_pindex_t pi;
2850
2851				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2852				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2853					/*
2854					 * note: must allocate system pages
2855					 * since blocking here could intefere
2856					 * with paging I/O, no matter which
2857					 * process we are.
2858					 */
2859					m = vm_page_alloc(obj, pi,
2860					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2861					    VM_ALLOC_WIRED);
2862					if (m == NULL) {
2863						atomic_add_int(&vm_pageout_deficit,
2864						    desiredpages - bp->b_npages);
2865						VM_OBJECT_UNLOCK(obj);
2866						VM_WAIT;
2867						VM_OBJECT_LOCK(obj);
2868					} else {
2869						if (m->valid == 0)
2870							bp->b_flags &= ~B_CACHE;
2871						bp->b_pages[bp->b_npages] = m;
2872						++bp->b_npages;
2873					}
2874					continue;
2875				}
2876
2877				/*
2878				 * We found a page.  If we have to sleep on it,
2879				 * retry because it might have gotten freed out
2880				 * from under us.
2881				 *
2882				 * We can only test VPO_BUSY here.  Blocking on
2883				 * m->busy might lead to a deadlock:
2884				 *
2885				 *  vm_fault->getpages->cluster_read->allocbuf
2886				 *
2887				 */
2888				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2889					continue;
2890
2891				/*
2892				 * We have a good page.
2893				 */
2894				vm_page_lock_queues();
2895				vm_page_wire(m);
2896				vm_page_unlock_queues();
2897				bp->b_pages[bp->b_npages] = m;
2898				++bp->b_npages;
2899			}
2900
2901			/*
2902			 * Step 2.  We've loaded the pages into the buffer,
2903			 * we have to figure out if we can still have B_CACHE
2904			 * set.  Note that B_CACHE is set according to the
2905			 * byte-granular range ( bcount and size ), new the
2906			 * aligned range ( newbsize ).
2907			 *
2908			 * The VM test is against m->valid, which is DEV_BSIZE
2909			 * aligned.  Needless to say, the validity of the data
2910			 * needs to also be DEV_BSIZE aligned.  Note that this
2911			 * fails with NFS if the server or some other client
2912			 * extends the file's EOF.  If our buffer is resized,
2913			 * B_CACHE may remain set! XXX
2914			 */
2915
2916			toff = bp->b_bcount;
2917			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2918
2919			while ((bp->b_flags & B_CACHE) && toff < size) {
2920				vm_pindex_t pi;
2921
2922				if (tinc > (size - toff))
2923					tinc = size - toff;
2924
2925				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2926				    PAGE_SHIFT;
2927
2928				vfs_buf_test_cache(
2929				    bp,
2930				    bp->b_offset,
2931				    toff,
2932				    tinc,
2933				    bp->b_pages[pi]
2934				);
2935				toff += tinc;
2936				tinc = PAGE_SIZE;
2937			}
2938			VM_OBJECT_UNLOCK(obj);
2939
2940			/*
2941			 * Step 3, fixup the KVM pmap.  Remember that
2942			 * bp->b_data is relative to bp->b_offset, but
2943			 * bp->b_offset may be offset into the first page.
2944			 */
2945
2946			bp->b_data = (caddr_t)
2947			    trunc_page((vm_offset_t)bp->b_data);
2948			pmap_qenter(
2949			    (vm_offset_t)bp->b_data,
2950			    bp->b_pages,
2951			    bp->b_npages
2952			);
2953
2954			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2955			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2956		}
2957	}
2958	if (newbsize < bp->b_bufsize)
2959		bufspacewakeup();
2960	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2961	bp->b_bcount = size;		/* requested buffer size	*/
2962	return 1;
2963}
2964
2965void
2966biodone(struct bio *bp)
2967{
2968	struct mtx *mtxp;
2969	void (*done)(struct bio *);
2970
2971	mtxp = mtx_pool_find(mtxpool_sleep, bp);
2972	mtx_lock(mtxp);
2973	bp->bio_flags |= BIO_DONE;
2974	done = bp->bio_done;
2975	if (done == NULL)
2976		wakeup(bp);
2977	mtx_unlock(mtxp);
2978	if (done != NULL)
2979		done(bp);
2980}
2981
2982/*
2983 * Wait for a BIO to finish.
2984 *
2985 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2986 * case is not yet clear.
2987 */
2988int
2989biowait(struct bio *bp, const char *wchan)
2990{
2991	struct mtx *mtxp;
2992
2993	mtxp = mtx_pool_find(mtxpool_sleep, bp);
2994	mtx_lock(mtxp);
2995	while ((bp->bio_flags & BIO_DONE) == 0)
2996		msleep(bp, mtxp, PRIBIO, wchan, hz / 10);
2997	mtx_unlock(mtxp);
2998	if (bp->bio_error != 0)
2999		return (bp->bio_error);
3000	if (!(bp->bio_flags & BIO_ERROR))
3001		return (0);
3002	return (EIO);
3003}
3004
3005void
3006biofinish(struct bio *bp, struct devstat *stat, int error)
3007{
3008
3009	if (error) {
3010		bp->bio_error = error;
3011		bp->bio_flags |= BIO_ERROR;
3012	}
3013	if (stat != NULL)
3014		devstat_end_transaction_bio(stat, bp);
3015	biodone(bp);
3016}
3017
3018/*
3019 *	bufwait:
3020 *
3021 *	Wait for buffer I/O completion, returning error status.  The buffer
3022 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3023 *	error and cleared.
3024 */
3025int
3026bufwait(struct buf *bp)
3027{
3028	if (bp->b_iocmd == BIO_READ)
3029		bwait(bp, PRIBIO, "biord");
3030	else
3031		bwait(bp, PRIBIO, "biowr");
3032	if (bp->b_flags & B_EINTR) {
3033		bp->b_flags &= ~B_EINTR;
3034		return (EINTR);
3035	}
3036	if (bp->b_ioflags & BIO_ERROR) {
3037		return (bp->b_error ? bp->b_error : EIO);
3038	} else {
3039		return (0);
3040	}
3041}
3042
3043 /*
3044  * Call back function from struct bio back up to struct buf.
3045  */
3046static void
3047bufdonebio(struct bio *bip)
3048{
3049	struct buf *bp;
3050
3051	bp = bip->bio_caller2;
3052	bp->b_resid = bp->b_bcount - bip->bio_completed;
3053	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3054	bp->b_ioflags = bip->bio_flags;
3055	bp->b_error = bip->bio_error;
3056	if (bp->b_error)
3057		bp->b_ioflags |= BIO_ERROR;
3058	bufdone(bp);
3059	g_destroy_bio(bip);
3060}
3061
3062void
3063dev_strategy(struct cdev *dev, struct buf *bp)
3064{
3065	struct cdevsw *csw;
3066	struct bio *bip;
3067
3068	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3069		panic("b_iocmd botch");
3070	for (;;) {
3071		bip = g_new_bio();
3072		if (bip != NULL)
3073			break;
3074		/* Try again later */
3075		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3076	}
3077	bip->bio_cmd = bp->b_iocmd;
3078	bip->bio_offset = bp->b_iooffset;
3079	bip->bio_length = bp->b_bcount;
3080	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3081	bip->bio_data = bp->b_data;
3082	bip->bio_done = bufdonebio;
3083	bip->bio_caller2 = bp;
3084	bip->bio_dev = dev;
3085	KASSERT(dev->si_refcount > 0,
3086	    ("dev_strategy on un-referenced struct cdev *(%s)",
3087	    devtoname(dev)));
3088	csw = dev_refthread(dev);
3089	if (csw == NULL) {
3090		g_destroy_bio(bip);
3091		bp->b_error = ENXIO;
3092		bp->b_ioflags = BIO_ERROR;
3093		bufdone(bp);
3094		return;
3095	}
3096	(*csw->d_strategy)(bip);
3097	dev_relthread(dev);
3098}
3099
3100/*
3101 *	bufdone:
3102 *
3103 *	Finish I/O on a buffer, optionally calling a completion function.
3104 *	This is usually called from an interrupt so process blocking is
3105 *	not allowed.
3106 *
3107 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3108 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3109 *	assuming B_INVAL is clear.
3110 *
3111 *	For the VMIO case, we set B_CACHE if the op was a read and no
3112 *	read error occured, or if the op was a write.  B_CACHE is never
3113 *	set if the buffer is invalid or otherwise uncacheable.
3114 *
3115 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3116 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3117 *	in the biodone routine.
3118 */
3119void
3120bufdone(struct buf *bp)
3121{
3122	struct bufobj *dropobj;
3123	void    (*biodone)(struct buf *);
3124
3125	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3126	dropobj = NULL;
3127
3128	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3129	BUF_ASSERT_HELD(bp);
3130
3131	runningbufwakeup(bp);
3132	if (bp->b_iocmd == BIO_WRITE)
3133		dropobj = bp->b_bufobj;
3134	/* call optional completion function if requested */
3135	if (bp->b_iodone != NULL) {
3136		biodone = bp->b_iodone;
3137		bp->b_iodone = NULL;
3138		(*biodone) (bp);
3139		if (dropobj)
3140			bufobj_wdrop(dropobj);
3141		return;
3142	}
3143
3144	bufdone_finish(bp);
3145
3146	if (dropobj)
3147		bufobj_wdrop(dropobj);
3148}
3149
3150void
3151bufdone_finish(struct buf *bp)
3152{
3153	BUF_ASSERT_HELD(bp);
3154
3155	if (!LIST_EMPTY(&bp->b_dep))
3156		buf_complete(bp);
3157
3158	if (bp->b_flags & B_VMIO) {
3159		int i;
3160		vm_ooffset_t foff;
3161		vm_page_t m;
3162		vm_object_t obj;
3163		int iosize;
3164		struct vnode *vp = bp->b_vp;
3165		boolean_t are_queues_locked;
3166
3167		obj = bp->b_bufobj->bo_object;
3168
3169#if defined(VFS_BIO_DEBUG)
3170		mp_fixme("usecount and vflag accessed without locks.");
3171		if (vp->v_usecount == 0) {
3172			panic("biodone: zero vnode ref count");
3173		}
3174
3175		KASSERT(vp->v_object != NULL,
3176			("biodone: vnode %p has no vm_object", vp));
3177#endif
3178
3179		foff = bp->b_offset;
3180		KASSERT(bp->b_offset != NOOFFSET,
3181		    ("biodone: no buffer offset"));
3182
3183		VM_OBJECT_LOCK(obj);
3184#if defined(VFS_BIO_DEBUG)
3185		if (obj->paging_in_progress < bp->b_npages) {
3186			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3187			    obj->paging_in_progress, bp->b_npages);
3188		}
3189#endif
3190
3191		/*
3192		 * Set B_CACHE if the op was a normal read and no error
3193		 * occured.  B_CACHE is set for writes in the b*write()
3194		 * routines.
3195		 */
3196		iosize = bp->b_bcount - bp->b_resid;
3197		if (bp->b_iocmd == BIO_READ &&
3198		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3199		    !(bp->b_ioflags & BIO_ERROR)) {
3200			bp->b_flags |= B_CACHE;
3201		}
3202		if (bp->b_iocmd == BIO_READ) {
3203			vm_page_lock_queues();
3204			are_queues_locked = TRUE;
3205		} else
3206			are_queues_locked = FALSE;
3207		for (i = 0; i < bp->b_npages; i++) {
3208			int bogusflag = 0;
3209			int resid;
3210
3211			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3212			if (resid > iosize)
3213				resid = iosize;
3214
3215			/*
3216			 * cleanup bogus pages, restoring the originals
3217			 */
3218			m = bp->b_pages[i];
3219			if (m == bogus_page) {
3220				bogusflag = 1;
3221				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3222				if (m == NULL)
3223					panic("biodone: page disappeared!");
3224				bp->b_pages[i] = m;
3225				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3226				    bp->b_pages, bp->b_npages);
3227			}
3228#if defined(VFS_BIO_DEBUG)
3229			if (OFF_TO_IDX(foff) != m->pindex) {
3230				printf(
3231"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3232				    (intmax_t)foff, (uintmax_t)m->pindex);
3233			}
3234#endif
3235
3236			/*
3237			 * In the write case, the valid and clean bits are
3238			 * already changed correctly ( see bdwrite() ), so we
3239			 * only need to do this here in the read case.
3240			 */
3241			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3242				vfs_page_set_valid(bp, foff, m);
3243			}
3244
3245			/*
3246			 * when debugging new filesystems or buffer I/O methods, this
3247			 * is the most common error that pops up.  if you see this, you
3248			 * have not set the page busy flag correctly!!!
3249			 */
3250			if (m->busy == 0) {
3251				printf("biodone: page busy < 0, "
3252				    "pindex: %d, foff: 0x(%x,%x), "
3253				    "resid: %d, index: %d\n",
3254				    (int) m->pindex, (int)(foff >> 32),
3255						(int) foff & 0xffffffff, resid, i);
3256				if (!vn_isdisk(vp, NULL))
3257					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3258					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3259					    (intmax_t) bp->b_lblkno,
3260					    bp->b_flags, bp->b_npages);
3261				else
3262					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3263					    (intmax_t) bp->b_lblkno,
3264					    bp->b_flags, bp->b_npages);
3265				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3266				    (u_long)m->valid, (u_long)m->dirty,
3267				    m->wire_count);
3268				panic("biodone: page busy < 0\n");
3269			}
3270			vm_page_io_finish(m);
3271			vm_object_pip_subtract(obj, 1);
3272			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3273			iosize -= resid;
3274		}
3275		if (are_queues_locked)
3276			vm_page_unlock_queues();
3277		vm_object_pip_wakeupn(obj, 0);
3278		VM_OBJECT_UNLOCK(obj);
3279	}
3280
3281	/*
3282	 * For asynchronous completions, release the buffer now. The brelse
3283	 * will do a wakeup there if necessary - so no need to do a wakeup
3284	 * here in the async case. The sync case always needs to do a wakeup.
3285	 */
3286
3287	if (bp->b_flags & B_ASYNC) {
3288		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3289			brelse(bp);
3290		else
3291			bqrelse(bp);
3292	} else
3293		bdone(bp);
3294}
3295
3296/*
3297 * This routine is called in lieu of iodone in the case of
3298 * incomplete I/O.  This keeps the busy status for pages
3299 * consistant.
3300 */
3301void
3302vfs_unbusy_pages(struct buf *bp)
3303{
3304	int i;
3305	vm_object_t obj;
3306	vm_page_t m;
3307
3308	runningbufwakeup(bp);
3309	if (!(bp->b_flags & B_VMIO))
3310		return;
3311
3312	obj = bp->b_bufobj->bo_object;
3313	VM_OBJECT_LOCK(obj);
3314	for (i = 0; i < bp->b_npages; i++) {
3315		m = bp->b_pages[i];
3316		if (m == bogus_page) {
3317			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3318			if (!m)
3319				panic("vfs_unbusy_pages: page missing\n");
3320			bp->b_pages[i] = m;
3321			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3322			    bp->b_pages, bp->b_npages);
3323		}
3324		vm_object_pip_subtract(obj, 1);
3325		vm_page_io_finish(m);
3326	}
3327	vm_object_pip_wakeupn(obj, 0);
3328	VM_OBJECT_UNLOCK(obj);
3329}
3330
3331/*
3332 * vfs_page_set_valid:
3333 *
3334 *	Set the valid bits in a page based on the supplied offset.   The
3335 *	range is restricted to the buffer's size.
3336 *
3337 *	This routine is typically called after a read completes.
3338 */
3339static void
3340vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, vm_page_t m)
3341{
3342	vm_ooffset_t soff, eoff;
3343
3344	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3345	/*
3346	 * Start and end offsets in buffer.  eoff - soff may not cross a
3347	 * page boundry or cross the end of the buffer.  The end of the
3348	 * buffer, in this case, is our file EOF, not the allocation size
3349	 * of the buffer.
3350	 */
3351	soff = off;
3352	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3353	if (eoff > bp->b_offset + bp->b_bcount)
3354		eoff = bp->b_offset + bp->b_bcount;
3355
3356	/*
3357	 * Set valid range.  This is typically the entire buffer and thus the
3358	 * entire page.
3359	 */
3360	if (eoff > soff) {
3361		vm_page_set_validclean(
3362		    m,
3363		   (vm_offset_t) (soff & PAGE_MASK),
3364		   (vm_offset_t) (eoff - soff)
3365		);
3366	}
3367}
3368
3369/*
3370 * This routine is called before a device strategy routine.
3371 * It is used to tell the VM system that paging I/O is in
3372 * progress, and treat the pages associated with the buffer
3373 * almost as being VPO_BUSY.  Also the object paging_in_progress
3374 * flag is handled to make sure that the object doesn't become
3375 * inconsistant.
3376 *
3377 * Since I/O has not been initiated yet, certain buffer flags
3378 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3379 * and should be ignored.
3380 */
3381void
3382vfs_busy_pages(struct buf *bp, int clear_modify)
3383{
3384	int i, bogus;
3385	vm_object_t obj;
3386	vm_ooffset_t foff;
3387	vm_page_t m;
3388
3389	if (!(bp->b_flags & B_VMIO))
3390		return;
3391
3392	obj = bp->b_bufobj->bo_object;
3393	foff = bp->b_offset;
3394	KASSERT(bp->b_offset != NOOFFSET,
3395	    ("vfs_busy_pages: no buffer offset"));
3396	VM_OBJECT_LOCK(obj);
3397	if (bp->b_bufsize != 0)
3398		vfs_setdirty_locked_object(bp);
3399retry:
3400	for (i = 0; i < bp->b_npages; i++) {
3401		m = bp->b_pages[i];
3402
3403		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3404			goto retry;
3405	}
3406	bogus = 0;
3407	vm_page_lock_queues();
3408	for (i = 0; i < bp->b_npages; i++) {
3409		m = bp->b_pages[i];
3410
3411		if ((bp->b_flags & B_CLUSTER) == 0) {
3412			vm_object_pip_add(obj, 1);
3413			vm_page_io_start(m);
3414		}
3415		/*
3416		 * When readying a buffer for a read ( i.e
3417		 * clear_modify == 0 ), it is important to do
3418		 * bogus_page replacement for valid pages in
3419		 * partially instantiated buffers.  Partially
3420		 * instantiated buffers can, in turn, occur when
3421		 * reconstituting a buffer from its VM backing store
3422		 * base.  We only have to do this if B_CACHE is
3423		 * clear ( which causes the I/O to occur in the
3424		 * first place ).  The replacement prevents the read
3425		 * I/O from overwriting potentially dirty VM-backed
3426		 * pages.  XXX bogus page replacement is, uh, bogus.
3427		 * It may not work properly with small-block devices.
3428		 * We need to find a better way.
3429		 */
3430		pmap_remove_all(m);
3431		if (clear_modify)
3432			vfs_page_set_valid(bp, foff, m);
3433		else if (m->valid == VM_PAGE_BITS_ALL &&
3434		    (bp->b_flags & B_CACHE) == 0) {
3435			bp->b_pages[i] = bogus_page;
3436			bogus++;
3437		}
3438		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3439	}
3440	vm_page_unlock_queues();
3441	VM_OBJECT_UNLOCK(obj);
3442	if (bogus)
3443		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3444		    bp->b_pages, bp->b_npages);
3445}
3446
3447/*
3448 * Tell the VM system that the pages associated with this buffer
3449 * are clean.  This is used for delayed writes where the data is
3450 * going to go to disk eventually without additional VM intevention.
3451 *
3452 * Note that while we only really need to clean through to b_bcount, we
3453 * just go ahead and clean through to b_bufsize.
3454 */
3455static void
3456vfs_clean_pages(struct buf *bp)
3457{
3458	int i;
3459	vm_ooffset_t foff, noff, eoff;
3460	vm_page_t m;
3461
3462	if (!(bp->b_flags & B_VMIO))
3463		return;
3464
3465	foff = bp->b_offset;
3466	KASSERT(bp->b_offset != NOOFFSET,
3467	    ("vfs_clean_pages: no buffer offset"));
3468	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3469	vm_page_lock_queues();
3470	for (i = 0; i < bp->b_npages; i++) {
3471		m = bp->b_pages[i];
3472		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3473		eoff = noff;
3474
3475		if (eoff > bp->b_offset + bp->b_bufsize)
3476			eoff = bp->b_offset + bp->b_bufsize;
3477		vfs_page_set_valid(bp, foff, m);
3478		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3479		foff = noff;
3480	}
3481	vm_page_unlock_queues();
3482	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3483}
3484
3485/*
3486 *	vfs_bio_set_validclean:
3487 *
3488 *	Set the range within the buffer to valid and clean.  The range is
3489 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3490 *	itself may be offset from the beginning of the first page.
3491 *
3492 */
3493
3494void
3495vfs_bio_set_validclean(struct buf *bp, int base, int size)
3496{
3497	int i, n;
3498	vm_page_t m;
3499
3500	if (!(bp->b_flags & B_VMIO))
3501		return;
3502	/*
3503	 * Fixup base to be relative to beginning of first page.
3504	 * Set initial n to be the maximum number of bytes in the
3505	 * first page that can be validated.
3506	 */
3507
3508	base += (bp->b_offset & PAGE_MASK);
3509	n = PAGE_SIZE - (base & PAGE_MASK);
3510
3511	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3512	vm_page_lock_queues();
3513	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3514		m = bp->b_pages[i];
3515		if (n > size)
3516			n = size;
3517		vm_page_set_validclean(m, base & PAGE_MASK, n);
3518		base += n;
3519		size -= n;
3520		n = PAGE_SIZE;
3521	}
3522	vm_page_unlock_queues();
3523	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3524}
3525
3526/*
3527 *	vfs_bio_clrbuf:
3528 *
3529 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3530 *	to clear BIO_ERROR and B_INVAL.
3531 *
3532 *	Note that while we only theoretically need to clear through b_bcount,
3533 *	we go ahead and clear through b_bufsize.
3534 */
3535
3536void
3537vfs_bio_clrbuf(struct buf *bp)
3538{
3539	int i, j, mask = 0;
3540	caddr_t sa, ea;
3541
3542	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3543		clrbuf(bp);
3544		return;
3545	}
3546
3547	bp->b_flags &= ~B_INVAL;
3548	bp->b_ioflags &= ~BIO_ERROR;
3549	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3550	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3551	    (bp->b_offset & PAGE_MASK) == 0) {
3552		if (bp->b_pages[0] == bogus_page)
3553			goto unlock;
3554		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3555		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3556		if ((bp->b_pages[0]->valid & mask) == mask)
3557			goto unlock;
3558		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3559		    ((bp->b_pages[0]->valid & mask) == 0)) {
3560			bzero(bp->b_data, bp->b_bufsize);
3561			bp->b_pages[0]->valid |= mask;
3562			goto unlock;
3563		}
3564	}
3565	ea = sa = bp->b_data;
3566	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3567		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3568		ea = (caddr_t)(vm_offset_t)ulmin(
3569		    (u_long)(vm_offset_t)ea,
3570		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3571		if (bp->b_pages[i] == bogus_page)
3572			continue;
3573		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3574		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3575		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3576		if ((bp->b_pages[i]->valid & mask) == mask)
3577			continue;
3578		if ((bp->b_pages[i]->valid & mask) == 0) {
3579			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3580				bzero(sa, ea - sa);
3581		} else {
3582			for (; sa < ea; sa += DEV_BSIZE, j++) {
3583				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3584				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3585					bzero(sa, DEV_BSIZE);
3586			}
3587		}
3588		bp->b_pages[i]->valid |= mask;
3589	}
3590unlock:
3591	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3592	bp->b_resid = 0;
3593}
3594
3595/*
3596 * vm_hold_load_pages and vm_hold_free_pages get pages into
3597 * a buffers address space.  The pages are anonymous and are
3598 * not associated with a file object.
3599 */
3600static void
3601vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3602{
3603	vm_offset_t pg;
3604	vm_page_t p;
3605	int index;
3606
3607	to = round_page(to);
3608	from = round_page(from);
3609	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3610
3611	VM_OBJECT_LOCK(kernel_object);
3612	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3613tryagain:
3614		/*
3615		 * note: must allocate system pages since blocking here
3616		 * could intefere with paging I/O, no matter which
3617		 * process we are.
3618		 */
3619		p = vm_page_alloc(kernel_object,
3620			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3621		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3622		if (!p) {
3623			atomic_add_int(&vm_pageout_deficit,
3624			    (to - pg) >> PAGE_SHIFT);
3625			VM_OBJECT_UNLOCK(kernel_object);
3626			VM_WAIT;
3627			VM_OBJECT_LOCK(kernel_object);
3628			goto tryagain;
3629		}
3630		p->valid = VM_PAGE_BITS_ALL;
3631		pmap_qenter(pg, &p, 1);
3632		bp->b_pages[index] = p;
3633	}
3634	VM_OBJECT_UNLOCK(kernel_object);
3635	bp->b_npages = index;
3636}
3637
3638/* Return pages associated with this buf to the vm system */
3639static void
3640vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3641{
3642	vm_offset_t pg;
3643	vm_page_t p;
3644	int index, newnpages;
3645
3646	from = round_page(from);
3647	to = round_page(to);
3648	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3649
3650	VM_OBJECT_LOCK(kernel_object);
3651	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3652		p = bp->b_pages[index];
3653		if (p && (index < bp->b_npages)) {
3654			if (p->busy) {
3655				printf(
3656			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3657				    (intmax_t)bp->b_blkno,
3658				    (intmax_t)bp->b_lblkno);
3659			}
3660			bp->b_pages[index] = NULL;
3661			pmap_qremove(pg, 1);
3662			vm_page_lock_queues();
3663			vm_page_unwire(p, 0);
3664			vm_page_free(p);
3665			vm_page_unlock_queues();
3666		}
3667	}
3668	VM_OBJECT_UNLOCK(kernel_object);
3669	bp->b_npages = newnpages;
3670}
3671
3672/*
3673 * Map an IO request into kernel virtual address space.
3674 *
3675 * All requests are (re)mapped into kernel VA space.
3676 * Notice that we use b_bufsize for the size of the buffer
3677 * to be mapped.  b_bcount might be modified by the driver.
3678 *
3679 * Note that even if the caller determines that the address space should
3680 * be valid, a race or a smaller-file mapped into a larger space may
3681 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3682 * check the return value.
3683 */
3684int
3685vmapbuf(struct buf *bp)
3686{
3687	caddr_t addr, kva;
3688	vm_prot_t prot;
3689	int pidx, i;
3690	struct vm_page *m;
3691	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3692
3693	if (bp->b_bufsize < 0)
3694		return (-1);
3695	prot = VM_PROT_READ;
3696	if (bp->b_iocmd == BIO_READ)
3697		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3698	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3699	     addr < bp->b_data + bp->b_bufsize;
3700	     addr += PAGE_SIZE, pidx++) {
3701		/*
3702		 * Do the vm_fault if needed; do the copy-on-write thing
3703		 * when reading stuff off device into memory.
3704		 *
3705		 * NOTE! Must use pmap_extract() because addr may be in
3706		 * the userland address space, and kextract is only guarenteed
3707		 * to work for the kernland address space (see: sparc64 port).
3708		 */
3709retry:
3710		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3711		    prot) < 0) {
3712			vm_page_lock_queues();
3713			for (i = 0; i < pidx; ++i) {
3714				vm_page_unhold(bp->b_pages[i]);
3715				bp->b_pages[i] = NULL;
3716			}
3717			vm_page_unlock_queues();
3718			return(-1);
3719		}
3720		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3721		if (m == NULL)
3722			goto retry;
3723		bp->b_pages[pidx] = m;
3724	}
3725	if (pidx > btoc(MAXPHYS))
3726		panic("vmapbuf: mapped more than MAXPHYS");
3727	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3728
3729	kva = bp->b_saveaddr;
3730	bp->b_npages = pidx;
3731	bp->b_saveaddr = bp->b_data;
3732	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3733	return(0);
3734}
3735
3736/*
3737 * Free the io map PTEs associated with this IO operation.
3738 * We also invalidate the TLB entries and restore the original b_addr.
3739 */
3740void
3741vunmapbuf(struct buf *bp)
3742{
3743	int pidx;
3744	int npages;
3745
3746	npages = bp->b_npages;
3747	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3748	vm_page_lock_queues();
3749	for (pidx = 0; pidx < npages; pidx++)
3750		vm_page_unhold(bp->b_pages[pidx]);
3751	vm_page_unlock_queues();
3752
3753	bp->b_data = bp->b_saveaddr;
3754}
3755
3756void
3757bdone(struct buf *bp)
3758{
3759	struct mtx *mtxp;
3760
3761	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3762	mtx_lock(mtxp);
3763	bp->b_flags |= B_DONE;
3764	wakeup(bp);
3765	mtx_unlock(mtxp);
3766}
3767
3768void
3769bwait(struct buf *bp, u_char pri, const char *wchan)
3770{
3771	struct mtx *mtxp;
3772
3773	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3774	mtx_lock(mtxp);
3775	while ((bp->b_flags & B_DONE) == 0)
3776		msleep(bp, mtxp, pri, wchan, 0);
3777	mtx_unlock(mtxp);
3778}
3779
3780int
3781bufsync(struct bufobj *bo, int waitfor)
3782{
3783
3784	return (VOP_FSYNC(bo->__bo_vnode, waitfor, curthread));
3785}
3786
3787void
3788bufstrategy(struct bufobj *bo, struct buf *bp)
3789{
3790	int i = 0;
3791	struct vnode *vp;
3792
3793	vp = bp->b_vp;
3794	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3795	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3796	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3797	i = VOP_STRATEGY(vp, bp);
3798	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3799}
3800
3801void
3802bufobj_wrefl(struct bufobj *bo)
3803{
3804
3805	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3806	ASSERT_BO_LOCKED(bo);
3807	bo->bo_numoutput++;
3808}
3809
3810void
3811bufobj_wref(struct bufobj *bo)
3812{
3813
3814	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3815	BO_LOCK(bo);
3816	bo->bo_numoutput++;
3817	BO_UNLOCK(bo);
3818}
3819
3820void
3821bufobj_wdrop(struct bufobj *bo)
3822{
3823
3824	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3825	BO_LOCK(bo);
3826	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3827	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3828		bo->bo_flag &= ~BO_WWAIT;
3829		wakeup(&bo->bo_numoutput);
3830	}
3831	BO_UNLOCK(bo);
3832}
3833
3834int
3835bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3836{
3837	int error;
3838
3839	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3840	ASSERT_BO_LOCKED(bo);
3841	error = 0;
3842	while (bo->bo_numoutput) {
3843		bo->bo_flag |= BO_WWAIT;
3844		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3845		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3846		if (error)
3847			break;
3848	}
3849	return (error);
3850}
3851
3852void
3853bpin(struct buf *bp)
3854{
3855	struct mtx *mtxp;
3856
3857	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3858	mtx_lock(mtxp);
3859	bp->b_pin_count++;
3860	mtx_unlock(mtxp);
3861}
3862
3863void
3864bunpin(struct buf *bp)
3865{
3866	struct mtx *mtxp;
3867
3868	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3869	mtx_lock(mtxp);
3870	if (--bp->b_pin_count == 0)
3871		wakeup(bp);
3872	mtx_unlock(mtxp);
3873}
3874
3875void
3876bunpin_wait(struct buf *bp)
3877{
3878	struct mtx *mtxp;
3879
3880	mtxp = mtx_pool_find(mtxpool_sleep, bp);
3881	mtx_lock(mtxp);
3882	while (bp->b_pin_count > 0)
3883		msleep(bp, mtxp, PRIBIO, "bwunpin", 0);
3884	mtx_unlock(mtxp);
3885}
3886
3887#include "opt_ddb.h"
3888#ifdef DDB
3889#include <ddb/ddb.h>
3890
3891/* DDB command to show buffer data */
3892DB_SHOW_COMMAND(buffer, db_show_buffer)
3893{
3894	/* get args */
3895	struct buf *bp = (struct buf *)addr;
3896
3897	if (!have_addr) {
3898		db_printf("usage: show buffer <addr>\n");
3899		return;
3900	}
3901
3902	db_printf("buf at %p\n", bp);
3903	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3904	db_printf(
3905	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3906	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd, b_dep = %p\n",
3907	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3908	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno,
3909	    bp->b_dep.lh_first);
3910	if (bp->b_npages) {
3911		int i;
3912		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3913		for (i = 0; i < bp->b_npages; i++) {
3914			vm_page_t m;
3915			m = bp->b_pages[i];
3916			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3917			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3918			if ((i + 1) < bp->b_npages)
3919				db_printf(",");
3920		}
3921		db_printf("\n");
3922	}
3923	db_printf(" ");
3924	lockmgr_printinfo(&bp->b_lock);
3925}
3926
3927DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3928{
3929	struct buf *bp;
3930	int i;
3931
3932	for (i = 0; i < nbuf; i++) {
3933		bp = &buf[i];
3934		if (BUF_ISLOCKED(bp)) {
3935			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3936			db_printf("\n");
3937		}
3938	}
3939}
3940
3941DB_SHOW_COMMAND(vnodebufs, db_show_vnodebufs)
3942{
3943	struct vnode *vp;
3944	struct buf *bp;
3945
3946	if (!have_addr) {
3947		db_printf("usage: show vnodebufs <addr>\n");
3948		return;
3949	}
3950	vp = (struct vnode *)addr;
3951	db_printf("Clean buffers:\n");
3952	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_clean.bv_hd, b_bobufs) {
3953		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3954		db_printf("\n");
3955	}
3956	db_printf("Dirty buffers:\n");
3957	TAILQ_FOREACH(bp, &vp->v_bufobj.bo_dirty.bv_hd, b_bobufs) {
3958		db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3959		db_printf("\n");
3960	}
3961}
3962#endif /* DDB */
3963