vfs_bio.c revision 18737
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.102 1996/09/20 02:26:35 dyson Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#include "opt_bounce.h"
36
37#define VMIO
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/vmmeter.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_prot.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_pageout.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_extern.h>
54#include <sys/buf.h>
55#include <sys/mount.h>
56#include <sys/malloc.h>
57#include <sys/resourcevar.h>
58#include <sys/proc.h>
59
60#include <miscfs/specfs/specdev.h>
61
62static void vfs_update __P((void));
63static struct	proc *updateproc;
64static struct kproc_desc up_kp = {
65	"update",
66	vfs_update,
67	&updateproc
68};
69SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
70
71struct buf *buf;		/* buffer header pool */
72struct swqueue bswlist;
73
74int count_lock_queue __P((void));
75static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
78		vm_offset_t to);
79static void vfs_clean_pages(struct buf * bp);
80static void vfs_setdirty(struct buf *bp);
81static void vfs_vmio_release(struct buf *bp);
82
83int needsbuffer;
84
85/*
86 * Internal update daemon, process 3
87 *	The variable vfs_update_wakeup allows for internal syncs.
88 */
89int vfs_update_wakeup;
90
91
92/*
93 * buffers base kva
94 */
95caddr_t buffers_kva;
96
97/*
98 * bogus page -- for I/O to/from partially complete buffers
99 * this is a temporary solution to the problem, but it is not
100 * really that bad.  it would be better to split the buffer
101 * for input in the case of buffers partially already in memory,
102 * but the code is intricate enough already.
103 */
104vm_page_t bogus_page;
105static vm_offset_t bogus_offset;
106
107static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
108	bufmallocspace, maxbufmallocspace;
109
110static struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
111static struct bqueues bufqueues[BUFFER_QUEUES];
112
113extern int vm_swap_size;
114
115#define BUF_MAXUSE 16
116
117/*
118 * Initialize buffer headers and related structures.
119 */
120void
121bufinit()
122{
123	struct buf *bp;
124	int i;
125
126	TAILQ_INIT(&bswlist);
127	LIST_INIT(&invalhash);
128
129	/* first, make a null hash table */
130	for (i = 0; i < BUFHSZ; i++)
131		LIST_INIT(&bufhashtbl[i]);
132
133	/* next, make a null set of free lists */
134	for (i = 0; i < BUFFER_QUEUES; i++)
135		TAILQ_INIT(&bufqueues[i]);
136
137	buffers_kva = (caddr_t) kmem_alloc_pageable(buffer_map, MAXBSIZE * nbuf);
138	/* finally, initialize each buffer header and stick on empty q */
139	for (i = 0; i < nbuf; i++) {
140		bp = &buf[i];
141		bzero(bp, sizeof *bp);
142		bp->b_flags = B_INVAL;	/* we're just an empty header */
143		bp->b_dev = NODEV;
144		bp->b_rcred = NOCRED;
145		bp->b_wcred = NOCRED;
146		bp->b_qindex = QUEUE_EMPTY;
147		bp->b_vnbufs.le_next = NOLIST;
148		bp->b_data = buffers_kva + i * MAXBSIZE;
149		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
150		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
151	}
152/*
153 * maxbufspace is currently calculated to support all filesystem blocks
154 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
155 * cache is still the same as it would be for 8K filesystems.  This
156 * keeps the size of the buffer cache "in check" for big block filesystems.
157 */
158	maxbufspace = 2 * (nbuf + 8) * PAGE_SIZE;
159/*
160 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
161 */
162	maxvmiobufspace = 2 * maxbufspace / 3;
163/*
164 * Limit the amount of malloc memory since it is wired permanently into
165 * the kernel space.  Even though this is accounted for in the buffer
166 * allocation, we don't want the malloced region to grow uncontrolled.
167 * The malloc scheme improves memory utilization significantly on average
168 * (small) directories.
169 */
170	maxbufmallocspace = maxbufspace / 20;
171
172	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
173	bogus_page = vm_page_alloc(kernel_object,
174			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
175			VM_ALLOC_NORMAL);
176
177}
178
179/*
180 * remove the buffer from the appropriate free list
181 */
182void
183bremfree(struct buf * bp)
184{
185	int s = splbio();
186
187	if (bp->b_qindex != QUEUE_NONE) {
188		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
189		bp->b_qindex = QUEUE_NONE;
190	} else {
191		panic("bremfree: removing a buffer when not on a queue");
192	}
193	splx(s);
194}
195
196/*
197 * Get a buffer with the specified data.  Look in the cache first.
198 */
199int
200bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
201    struct buf ** bpp)
202{
203	struct buf *bp;
204
205	bp = getblk(vp, blkno, size, 0, 0);
206	*bpp = bp;
207
208	/* if not found in cache, do some I/O */
209	if ((bp->b_flags & B_CACHE) == 0) {
210		if (curproc != NULL)
211			curproc->p_stats->p_ru.ru_inblock++;
212		bp->b_flags |= B_READ;
213		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
214		if (bp->b_rcred == NOCRED) {
215			if (cred != NOCRED)
216				crhold(cred);
217			bp->b_rcred = cred;
218		}
219		vfs_busy_pages(bp, 0);
220		VOP_STRATEGY(bp);
221		return (biowait(bp));
222	}
223	return (0);
224}
225
226/*
227 * Operates like bread, but also starts asynchronous I/O on
228 * read-ahead blocks.
229 */
230int
231breadn(struct vnode * vp, daddr_t blkno, int size,
232    daddr_t * rablkno, int *rabsize,
233    int cnt, struct ucred * cred, struct buf ** bpp)
234{
235	struct buf *bp, *rabp;
236	int i;
237	int rv = 0, readwait = 0;
238
239	*bpp = bp = getblk(vp, blkno, size, 0, 0);
240
241	/* if not found in cache, do some I/O */
242	if ((bp->b_flags & B_CACHE) == 0) {
243		if (curproc != NULL)
244			curproc->p_stats->p_ru.ru_inblock++;
245		bp->b_flags |= B_READ;
246		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
247		if (bp->b_rcred == NOCRED) {
248			if (cred != NOCRED)
249				crhold(cred);
250			bp->b_rcred = cred;
251		}
252		vfs_busy_pages(bp, 0);
253		VOP_STRATEGY(bp);
254		++readwait;
255	}
256	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
257		if (inmem(vp, *rablkno))
258			continue;
259		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
260
261		if ((rabp->b_flags & B_CACHE) == 0) {
262			if (curproc != NULL)
263				curproc->p_stats->p_ru.ru_inblock++;
264			rabp->b_flags |= B_READ | B_ASYNC;
265			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
266			if (rabp->b_rcred == NOCRED) {
267				if (cred != NOCRED)
268					crhold(cred);
269				rabp->b_rcred = cred;
270			}
271			vfs_busy_pages(rabp, 0);
272			VOP_STRATEGY(rabp);
273		} else {
274			brelse(rabp);
275		}
276	}
277
278	if (readwait) {
279		rv = biowait(bp);
280	}
281	return (rv);
282}
283
284/*
285 * Write, release buffer on completion.  (Done by iodone
286 * if async.)
287 */
288int
289bwrite(struct buf * bp)
290{
291	int oldflags = bp->b_flags;
292
293	if (bp->b_flags & B_INVAL) {
294		brelse(bp);
295		return (0);
296	}
297	if (!(bp->b_flags & B_BUSY))
298		panic("bwrite: buffer is not busy???");
299
300	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
301	bp->b_flags |= B_WRITEINPROG;
302
303	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
304		reassignbuf(bp, bp->b_vp);
305	}
306
307	bp->b_vp->v_numoutput++;
308	vfs_busy_pages(bp, 1);
309	if (curproc != NULL)
310		curproc->p_stats->p_ru.ru_oublock++;
311	VOP_STRATEGY(bp);
312
313	/*
314	 * Handle ordered writes here.
315	 * If the write was originally flagged as ordered,
316	 * then we check to see if it was converted to async.
317	 * If it was converted to async, and is done now, then
318	 * we release the buffer.  Otherwise we clear the
319	 * ordered flag because it is not needed anymore.
320	 *
321 	 * Note that biodone has been modified so that it does
322	 * not release ordered buffers.  This allows us to have
323	 * a chance to determine whether or not the driver
324	 * has set the async flag in the strategy routine.  Otherwise
325	 * if biodone was not modified, then the buffer may have been
326	 * reused before we have had a chance to check the flag.
327	 */
328
329	if ((oldflags & B_ORDERED) == B_ORDERED) {
330		int s;
331		s = splbio();
332		if (bp->b_flags & B_ASYNC)  {
333			if ((bp->b_flags & B_DONE)) {
334				if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
335					brelse(bp);
336				else
337					bqrelse(bp);
338			}
339			splx(s);
340			return (0);
341		} else {
342			bp->b_flags &= ~B_ORDERED;
343		}
344		splx(s);
345	}
346
347	if ((oldflags & B_ASYNC) == 0) {
348		int rtval = biowait(bp);
349
350		if (oldflags & B_DELWRI) {
351			reassignbuf(bp, bp->b_vp);
352		}
353		brelse(bp);
354		return (rtval);
355	}
356	return (0);
357}
358
359int
360vn_bwrite(ap)
361	struct vop_bwrite_args *ap;
362{
363	return (bwrite(ap->a_bp));
364}
365
366/*
367 * Delayed write. (Buffer is marked dirty).
368 */
369void
370bdwrite(struct buf * bp)
371{
372
373	if ((bp->b_flags & B_BUSY) == 0) {
374		panic("bdwrite: buffer is not busy");
375	}
376	if (bp->b_flags & B_INVAL) {
377		brelse(bp);
378		return;
379	}
380	if (bp->b_flags & B_TAPE) {
381		bawrite(bp);
382		return;
383	}
384	bp->b_flags &= ~(B_READ|B_RELBUF);
385	if ((bp->b_flags & B_DELWRI) == 0) {
386		bp->b_flags |= B_DONE | B_DELWRI;
387		reassignbuf(bp, bp->b_vp);
388	}
389
390	/*
391	 * This bmap keeps the system from needing to do the bmap later,
392	 * perhaps when the system is attempting to do a sync.  Since it
393	 * is likely that the indirect block -- or whatever other datastructure
394	 * that the filesystem needs is still in memory now, it is a good
395	 * thing to do this.  Note also, that if the pageout daemon is
396	 * requesting a sync -- there might not be enough memory to do
397	 * the bmap then...  So, this is important to do.
398	 */
399	if( bp->b_lblkno == bp->b_blkno) {
400		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
401	}
402
403	/*
404	 * Set the *dirty* buffer range based upon the VM system dirty pages.
405	 */
406	vfs_setdirty(bp);
407
408	/*
409	 * We need to do this here to satisfy the vnode_pager and the
410	 * pageout daemon, so that it thinks that the pages have been
411	 * "cleaned".  Note that since the pages are in a delayed write
412	 * buffer -- the VFS layer "will" see that the pages get written
413	 * out on the next sync, or perhaps the cluster will be completed.
414	 */
415	vfs_clean_pages(bp);
416	bqrelse(bp);
417	return;
418}
419
420/*
421 * Asynchronous write.
422 * Start output on a buffer, but do not wait for it to complete.
423 * The buffer is released when the output completes.
424 */
425void
426bawrite(struct buf * bp)
427{
428	bp->b_flags |= B_ASYNC;
429	(void) VOP_BWRITE(bp);
430}
431
432/*
433 * Ordered write.
434 * Start output on a buffer, but only wait for it to complete if the
435 * output device cannot guarantee ordering in some other way.  Devices
436 * that can perform asynchronous ordered writes will set the B_ASYNC
437 * flag in their strategy routine.
438 * The buffer is released when the output completes.
439 */
440int
441bowrite(struct buf * bp)
442{
443	bp->b_flags |= B_ORDERED;
444	return (VOP_BWRITE(bp));
445}
446
447/*
448 * Release a buffer.
449 */
450void
451brelse(struct buf * bp)
452{
453	int s;
454
455	if (bp->b_flags & B_CLUSTER) {
456		relpbuf(bp);
457		return;
458	}
459	/* anyone need a "free" block? */
460	s = splbio();
461
462	/* anyone need this block? */
463	if (bp->b_flags & B_WANTED) {
464		bp->b_flags &= ~(B_WANTED | B_AGE);
465		wakeup(bp);
466	}
467
468	if (bp->b_flags & B_LOCKED)
469		bp->b_flags &= ~B_ERROR;
470
471	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
472	    (bp->b_bufsize <= 0)) {
473		bp->b_flags |= B_INVAL;
474		bp->b_flags &= ~(B_DELWRI | B_CACHE);
475		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
476			if (bp->b_bufsize)
477				allocbuf(bp, 0);
478			brelvp(bp);
479		}
480	}
481
482	/*
483	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
484	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
485	 * but the VM object is kept around.  The B_NOCACHE flag is used to
486	 * invalidate the pages in the VM object.
487	 */
488	if (bp->b_flags & B_VMIO) {
489		vm_ooffset_t foff;
490		vm_object_t obj;
491		int i, resid;
492		vm_page_t m;
493		struct vnode *vp;
494		int iototal = bp->b_bufsize;
495
496		vp = bp->b_vp;
497		if (!vp)
498			panic("brelse: missing vp");
499
500		if (bp->b_npages) {
501			vm_pindex_t poff;
502			obj = (vm_object_t) vp->v_object;
503			if (vp->v_type == VBLK)
504				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
505			else
506				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
507			poff = OFF_TO_IDX(foff);
508			for (i = 0; i < bp->b_npages; i++) {
509				m = bp->b_pages[i];
510				if (m == bogus_page) {
511					m = vm_page_lookup(obj, poff + i);
512					if (!m) {
513						panic("brelse: page missing\n");
514					}
515					bp->b_pages[i] = m;
516					pmap_qenter(trunc_page(bp->b_data),
517						bp->b_pages, bp->b_npages);
518				}
519				resid = IDX_TO_OFF(m->pindex+1) - foff;
520				if (resid > iototal)
521					resid = iototal;
522				if (resid > 0) {
523					/*
524					 * Don't invalidate the page if the local machine has already
525					 * modified it.  This is the lesser of two evils, and should
526					 * be fixed.
527					 */
528					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
529						vm_page_test_dirty(m);
530						if (m->dirty == 0) {
531							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
532							if (m->valid == 0)
533								vm_page_protect(m, VM_PROT_NONE);
534						}
535					}
536					if (resid >= PAGE_SIZE) {
537						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
538							bp->b_flags |= B_INVAL;
539						}
540					} else {
541						if (!vm_page_is_valid(m,
542							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
543							bp->b_flags |= B_INVAL;
544						}
545					}
546				}
547				foff += resid;
548				iototal -= resid;
549			}
550		}
551		if (bp->b_flags & (B_INVAL | B_RELBUF))
552			vfs_vmio_release(bp);
553	}
554	if (bp->b_qindex != QUEUE_NONE)
555		panic("brelse: free buffer onto another queue???");
556
557	/* enqueue */
558	/* buffers with no memory */
559	if (bp->b_bufsize == 0) {
560		bp->b_qindex = QUEUE_EMPTY;
561		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
562		LIST_REMOVE(bp, b_hash);
563		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
564		bp->b_dev = NODEV;
565		if (needsbuffer) {
566			wakeup(&needsbuffer);
567			needsbuffer=0;
568		}
569		/* buffers with junk contents */
570	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
571		bp->b_qindex = QUEUE_AGE;
572		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
573		LIST_REMOVE(bp, b_hash);
574		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
575		bp->b_dev = NODEV;
576		if (needsbuffer) {
577			wakeup(&needsbuffer);
578			needsbuffer=0;
579		}
580		/* buffers that are locked */
581	} else if (bp->b_flags & B_LOCKED) {
582		bp->b_qindex = QUEUE_LOCKED;
583		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
584		/* buffers with stale but valid contents */
585	} else if (bp->b_flags & B_AGE) {
586		bp->b_qindex = QUEUE_AGE;
587		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
588		if (needsbuffer) {
589			wakeup(&needsbuffer);
590			needsbuffer=0;
591		}
592		/* buffers with valid and quite potentially reuseable contents */
593	} else {
594		bp->b_qindex = QUEUE_LRU;
595		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
596		if (needsbuffer) {
597			wakeup(&needsbuffer);
598			needsbuffer=0;
599		}
600	}
601
602	/* unlock */
603	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
604				B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
605	splx(s);
606}
607
608/*
609 * Release a buffer.
610 */
611void
612bqrelse(struct buf * bp)
613{
614	int s;
615
616	s = splbio();
617
618
619	/* anyone need this block? */
620	if (bp->b_flags & B_WANTED) {
621		bp->b_flags &= ~(B_WANTED | B_AGE);
622		wakeup(bp);
623	}
624
625	if (bp->b_qindex != QUEUE_NONE)
626		panic("bqrelse: free buffer onto another queue???");
627
628	if (bp->b_flags & B_LOCKED) {
629		bp->b_flags &= ~B_ERROR;
630		bp->b_qindex = QUEUE_LOCKED;
631		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
632		/* buffers with stale but valid contents */
633	} else {
634		bp->b_qindex = QUEUE_LRU;
635		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
636		if (needsbuffer) {
637			wakeup(&needsbuffer);
638			needsbuffer=0;
639		}
640	}
641
642	/* unlock */
643	bp->b_flags &= ~(B_ORDERED | B_WANTED | B_BUSY |
644		B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
645	splx(s);
646}
647
648static void
649vfs_vmio_release(bp)
650	struct buf *bp;
651{
652	int i;
653	vm_page_t m;
654
655	for (i = 0; i < bp->b_npages; i++) {
656		m = bp->b_pages[i];
657		bp->b_pages[i] = NULL;
658		if ((bp->b_flags & B_ASYNC) == 0) {
659			while ((m->flags & PG_BUSY) || (m->busy != 0)) {
660				m->flags |= PG_WANTED;
661				tsleep(m, PVM, "vmiorl", 0);
662			}
663		}
664
665		vm_page_unwire(m);
666
667		if (m->wire_count == 0) {
668
669			if (m->flags & PG_WANTED) {
670				m->flags &= ~PG_WANTED;
671				wakeup(m);
672			}
673
674			if (bp->b_flags & B_ASYNC) {
675				if (m->hold_count == 0) {
676					if ((m->flags & PG_BUSY) == 0 &&
677						(m->busy == 0) &&
678						(m->valid == 0)) {
679						if(m->dirty == 0)
680							vm_page_test_dirty(m);
681						if (m->dirty == 0) {
682							vm_page_protect(m, VM_PROT_NONE);
683							vm_page_free(m);
684						} else {
685							pagedaemon_wakeup();
686						}
687					/*
688					 * This is likely at interrupt time,
689					 * and we cannot block here.
690					 */
691					} else if (cnt.v_free_count < cnt.v_free_min) {
692						pagedaemon_wakeup();
693					}
694				}
695				continue;
696			}
697
698			if (m->valid) {
699				if(m->dirty == 0)
700					vm_page_test_dirty(m);
701				/*
702				 * this keeps pressure off of the process memory
703				 */
704				if ((vm_swap_size == 0) ||
705					(cnt.v_free_count < cnt.v_free_min)) {
706					if ((m->dirty == 0) &&
707						(m->hold_count == 0))
708						vm_page_cache(m);
709					else
710						vm_page_deactivate(m);
711				}
712			} else if (m->hold_count == 0) {
713				vm_page_protect(m, VM_PROT_NONE);
714				vm_page_free(m);
715			}
716		}
717	}
718	bufspace -= bp->b_bufsize;
719	vmiospace -= bp->b_bufsize;
720	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
721	bp->b_npages = 0;
722	bp->b_bufsize = 0;
723	bp->b_flags &= ~B_VMIO;
724	if (bp->b_vp)
725		brelvp(bp);
726}
727
728/*
729 * Check to see if a block is currently memory resident.
730 */
731__inline struct buf *
732gbincore(struct vnode * vp, daddr_t blkno)
733{
734	struct buf *bp;
735	struct bufhashhdr *bh;
736
737	bh = BUFHASH(vp, blkno);
738	bp = bh->lh_first;
739
740	/* Search hash chain */
741	while (bp != NULL) {
742		/* hit */
743		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
744		    (bp->b_flags & B_INVAL) == 0) {
745			break;
746		}
747		bp = bp->b_hash.le_next;
748	}
749	return (bp);
750}
751
752/*
753 * this routine implements clustered async writes for
754 * clearing out B_DELWRI buffers...  This is much better
755 * than the old way of writing only one buffer at a time.
756 */
757int
758vfs_bio_awrite(struct buf * bp)
759{
760	int i;
761	daddr_t lblkno = bp->b_lblkno;
762	struct vnode *vp = bp->b_vp;
763	int s;
764	int ncl;
765	struct buf *bpa;
766	int nwritten;
767
768	s = splbio();
769	/*
770	 * right now we support clustered writing only to regular files
771	 */
772	if ((vp->v_type == VREG) &&
773	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
774	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
775		int size;
776		int maxcl;
777
778		size = vp->v_mount->mnt_stat.f_iosize;
779		maxcl = MAXPHYS / size;
780
781		for (i = 1; i < maxcl; i++) {
782			if ((bpa = gbincore(vp, lblkno + i)) &&
783			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
784			    (B_DELWRI | B_CLUSTEROK)) &&
785			    (bpa->b_bufsize == size)) {
786				if ((bpa->b_blkno == bpa->b_lblkno) ||
787				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
788					break;
789			} else {
790				break;
791			}
792		}
793		ncl = i;
794		/*
795		 * this is a possible cluster write
796		 */
797		if (ncl != 1) {
798			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
799			splx(s);
800			return nwritten;
801		}
802	}
803	bremfree(bp);
804	splx(s);
805	/*
806	 * default (old) behavior, writing out only one block
807	 */
808	bp->b_flags |= B_BUSY | B_ASYNC;
809	nwritten = bp->b_bufsize;
810	(void) VOP_BWRITE(bp);
811	return nwritten;
812}
813
814
815/*
816 * Find a buffer header which is available for use.
817 */
818static struct buf *
819getnewbuf(int slpflag, int slptimeo, int doingvmio)
820{
821	struct buf *bp;
822	int nbyteswritten = 0;
823
824start:
825	if (bufspace >= maxbufspace)
826		goto trytofreespace;
827
828	/* can we constitute a new buffer? */
829	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]))) {
830		if (bp->b_qindex != QUEUE_EMPTY)
831			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
832			    bp->b_qindex);
833		bp->b_flags |= B_BUSY;
834		bremfree(bp);
835		goto fillbuf;
836	}
837trytofreespace:
838	/*
839	 * We keep the file I/O from hogging metadata I/O
840	 * This is desirable because file data is cached in the
841	 * VM/Buffer cache even if a buffer is freed.
842	 */
843	if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_AGE]))) {
844		if (bp->b_qindex != QUEUE_AGE)
845			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
846			    bp->b_qindex);
847	} else if ((bp = TAILQ_FIRST(&bufqueues[QUEUE_LRU]))) {
848		if (bp->b_qindex != QUEUE_LRU)
849			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
850			    bp->b_qindex);
851	}
852	if (!bp) {
853		/* wait for a free buffer of any kind */
854		needsbuffer = 1;
855		tsleep(&needsbuffer,
856			(PRIBIO + 1) | slpflag, "newbuf", slptimeo);
857		return (0);
858	}
859
860#if defined(DIAGNOSTIC)
861	if (bp->b_flags & B_BUSY) {
862		panic("getnewbuf: busy buffer on free list\n");
863	}
864#endif
865
866	/*
867	 * We are fairly aggressive about freeing VMIO buffers, but since
868	 * the buffering is intact without buffer headers, there is not
869	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
870	 */
871	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
872		if ((bp->b_flags & B_VMIO) == 0 ||
873			(vmiospace < maxvmiobufspace)) {
874			--bp->b_usecount;
875			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
876			if (TAILQ_FIRST(&bufqueues[QUEUE_LRU]) != NULL) {
877				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
878				goto start;
879			}
880			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
881		}
882	}
883
884	/* if we are a delayed write, convert to an async write */
885	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
886		nbyteswritten += vfs_bio_awrite(bp);
887		if (!slpflag && !slptimeo) {
888			return (0);
889		}
890		goto start;
891	}
892
893	if (bp->b_flags & B_WANTED) {
894		bp->b_flags &= ~B_WANTED;
895		wakeup(bp);
896	}
897	bremfree(bp);
898	bp->b_flags |= B_BUSY;
899
900	if (bp->b_flags & B_VMIO) {
901		bp->b_flags &= ~B_ASYNC;
902		vfs_vmio_release(bp);
903	}
904
905	if (bp->b_vp)
906		brelvp(bp);
907
908fillbuf:
909	/* we are not free, nor do we contain interesting data */
910	if (bp->b_rcred != NOCRED) {
911		crfree(bp->b_rcred);
912		bp->b_rcred = NOCRED;
913	}
914	if (bp->b_wcred != NOCRED) {
915		crfree(bp->b_wcred);
916		bp->b_wcred = NOCRED;
917	}
918
919	LIST_REMOVE(bp, b_hash);
920	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
921	if (bp->b_bufsize) {
922		allocbuf(bp, 0);
923	}
924	bp->b_flags = B_BUSY;
925	bp->b_dev = NODEV;
926	bp->b_vp = NULL;
927	bp->b_blkno = bp->b_lblkno = 0;
928	bp->b_iodone = 0;
929	bp->b_error = 0;
930	bp->b_resid = 0;
931	bp->b_bcount = 0;
932	bp->b_npages = 0;
933	bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
934	bp->b_dirtyoff = bp->b_dirtyend = 0;
935	bp->b_validoff = bp->b_validend = 0;
936	bp->b_usecount = 4;
937	if (bufspace >= maxbufspace + nbyteswritten) {
938		bp->b_flags |= B_INVAL;
939		brelse(bp);
940		goto trytofreespace;
941	}
942	return (bp);
943}
944
945/*
946 * Check to see if a block is currently memory resident.
947 */
948struct buf *
949incore(struct vnode * vp, daddr_t blkno)
950{
951	struct buf *bp;
952
953	int s = splbio();
954	bp = gbincore(vp, blkno);
955	splx(s);
956	return (bp);
957}
958
959/*
960 * Returns true if no I/O is needed to access the
961 * associated VM object.  This is like incore except
962 * it also hunts around in the VM system for the data.
963 */
964
965int
966inmem(struct vnode * vp, daddr_t blkno)
967{
968	vm_object_t obj;
969	vm_offset_t toff, tinc;
970	vm_page_t m;
971	vm_ooffset_t off;
972
973	if (incore(vp, blkno))
974		return 1;
975	if (vp->v_mount == NULL)
976		return 0;
977	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
978		return 0;
979
980	obj = vp->v_object;
981	tinc = PAGE_SIZE;
982	if (tinc > vp->v_mount->mnt_stat.f_iosize)
983		tinc = vp->v_mount->mnt_stat.f_iosize;
984	off = blkno * vp->v_mount->mnt_stat.f_iosize;
985
986	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
987
988		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
989		if (!m)
990			return 0;
991		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
992			return 0;
993	}
994	return 1;
995}
996
997/*
998 * now we set the dirty range for the buffer --
999 * for NFS -- if the file is mapped and pages have
1000 * been written to, let it know.  We want the
1001 * entire range of the buffer to be marked dirty if
1002 * any of the pages have been written to for consistancy
1003 * with the b_validoff, b_validend set in the nfs write
1004 * code, and used by the nfs read code.
1005 */
1006static void
1007vfs_setdirty(struct buf *bp) {
1008	int i;
1009	vm_object_t object;
1010	vm_offset_t boffset, offset;
1011	/*
1012	 * We qualify the scan for modified pages on whether the
1013	 * object has been flushed yet.  The OBJ_WRITEABLE flag
1014	 * is not cleared simply by protecting pages off.
1015	 */
1016	if ((bp->b_flags & B_VMIO) &&
1017		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
1018		/*
1019		 * test the pages to see if they have been modified directly
1020		 * by users through the VM system.
1021		 */
1022		for (i = 0; i < bp->b_npages; i++)
1023			vm_page_test_dirty(bp->b_pages[i]);
1024
1025		/*
1026		 * scan forwards for the first page modified
1027		 */
1028		for (i = 0; i < bp->b_npages; i++) {
1029			if (bp->b_pages[i]->dirty) {
1030				break;
1031			}
1032		}
1033		boffset = (i << PAGE_SHIFT);
1034		if (boffset < bp->b_dirtyoff) {
1035			bp->b_dirtyoff = boffset;
1036		}
1037
1038		/*
1039		 * scan backwards for the last page modified
1040		 */
1041		for (i = bp->b_npages - 1; i >= 0; --i) {
1042			if (bp->b_pages[i]->dirty) {
1043				break;
1044			}
1045		}
1046		boffset = (i + 1);
1047		offset = boffset + bp->b_pages[0]->pindex;
1048		if (offset >= object->size)
1049			boffset = object->size - bp->b_pages[0]->pindex;
1050		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
1051			bp->b_dirtyend = (boffset << PAGE_SHIFT);
1052	}
1053}
1054
1055/*
1056 * Get a block given a specified block and offset into a file/device.
1057 */
1058struct buf *
1059getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
1060{
1061	struct buf *bp;
1062	int s;
1063	struct bufhashhdr *bh;
1064
1065	s = splbio();
1066loop:
1067	if ((bp = gbincore(vp, blkno))) {
1068		if (bp->b_flags & B_BUSY) {
1069			bp->b_flags |= B_WANTED;
1070			if (bp->b_usecount < BUF_MAXUSE)
1071				++bp->b_usecount;
1072			if (!tsleep(bp,
1073				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
1074				goto loop;
1075
1076			splx(s);
1077			return (struct buf *) NULL;
1078		}
1079		bp->b_flags |= B_BUSY | B_CACHE;
1080		bremfree(bp);
1081
1082		/*
1083		 * check for size inconsistancies (note that they shouldn't happen
1084		 * but do when filesystems don't handle the size changes correctly.)
1085		 * We are conservative on metadata and don't just extend the buffer
1086		 * but write and re-constitute it.
1087		 */
1088
1089		if (bp->b_bcount != size) {
1090			if (bp->b_flags & B_VMIO) {
1091				allocbuf(bp, size);
1092			} else {
1093				bp->b_flags |= B_NOCACHE;
1094				VOP_BWRITE(bp);
1095				goto loop;
1096			}
1097		}
1098
1099		if (bp->b_usecount < BUF_MAXUSE)
1100			++bp->b_usecount;
1101		splx(s);
1102		return (bp);
1103	} else {
1104		vm_object_t obj;
1105		int doingvmio;
1106
1107		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1108			doingvmio = 1;
1109		} else {
1110			doingvmio = 0;
1111		}
1112		if ((bp = getnewbuf(slpflag, slptimeo, doingvmio)) == 0) {
1113			if (slpflag || slptimeo) {
1114				splx(s);
1115				return NULL;
1116			}
1117			goto loop;
1118		}
1119
1120		/*
1121		 * This code is used to make sure that a buffer is not
1122		 * created while the getnewbuf routine is blocked.
1123		 * Normally the vnode is locked so this isn't a problem.
1124		 * VBLK type I/O requests, however, don't lock the vnode.
1125		 */
1126		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1127			bp->b_flags |= B_INVAL;
1128			brelse(bp);
1129			goto loop;
1130		}
1131
1132		/*
1133		 * Insert the buffer into the hash, so that it can
1134		 * be found by incore.
1135		 */
1136		bp->b_blkno = bp->b_lblkno = blkno;
1137		bgetvp(vp, bp);
1138		LIST_REMOVE(bp, b_hash);
1139		bh = BUFHASH(vp, blkno);
1140		LIST_INSERT_HEAD(bh, bp, b_hash);
1141
1142		if (doingvmio) {
1143			bp->b_flags |= (B_VMIO | B_CACHE);
1144#if defined(VFS_BIO_DEBUG)
1145			if (vp->v_type != VREG && vp->v_type != VBLK)
1146				printf("getblk: vmioing file type %d???\n", vp->v_type);
1147#endif
1148		} else {
1149			bp->b_flags &= ~B_VMIO;
1150		}
1151		splx(s);
1152
1153		allocbuf(bp, size);
1154#ifdef	PC98
1155		/*
1156		 * 1024byte/sector support
1157		 */
1158#define B_XXX2 0x8000000
1159		if (vp->v_flag & 0x10000) bp->b_flags |= B_XXX2;
1160#endif
1161		return (bp);
1162	}
1163}
1164
1165/*
1166 * Get an empty, disassociated buffer of given size.
1167 */
1168struct buf *
1169geteblk(int size)
1170{
1171	struct buf *bp;
1172	int s;
1173
1174	s = splbio();
1175	while ((bp = getnewbuf(0, 0, 0)) == 0);
1176	splx(s);
1177	allocbuf(bp, size);
1178	bp->b_flags |= B_INVAL;
1179	return (bp);
1180}
1181
1182
1183/*
1184 * This code constitutes the buffer memory from either anonymous system
1185 * memory (in the case of non-VMIO operations) or from an associated
1186 * VM object (in the case of VMIO operations).
1187 *
1188 * Note that this code is tricky, and has many complications to resolve
1189 * deadlock or inconsistant data situations.  Tread lightly!!!
1190 *
1191 * Modify the length of a buffer's underlying buffer storage without
1192 * destroying information (unless, of course the buffer is shrinking).
1193 */
1194int
1195allocbuf(struct buf * bp, int size)
1196{
1197
1198	int s;
1199	int newbsize, mbsize;
1200	int i;
1201
1202	if (!(bp->b_flags & B_BUSY))
1203		panic("allocbuf: buffer not busy");
1204
1205	if ((bp->b_flags & B_VMIO) == 0) {
1206		caddr_t origbuf;
1207		int origbufsize;
1208		/*
1209		 * Just get anonymous memory from the kernel
1210		 */
1211		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1212#if !defined(NO_B_MALLOC)
1213		if (bp->b_flags & B_MALLOC)
1214			newbsize = mbsize;
1215		else
1216#endif
1217			newbsize = round_page(size);
1218
1219		if (newbsize < bp->b_bufsize) {
1220#if !defined(NO_B_MALLOC)
1221			/*
1222			 * malloced buffers are not shrunk
1223			 */
1224			if (bp->b_flags & B_MALLOC) {
1225				if (newbsize) {
1226					bp->b_bcount = size;
1227				} else {
1228					free(bp->b_data, M_BIOBUF);
1229					bufspace -= bp->b_bufsize;
1230					bufmallocspace -= bp->b_bufsize;
1231					bp->b_data = (caddr_t) buffers_kva + (bp - buf) * MAXBSIZE;
1232					bp->b_bufsize = 0;
1233					bp->b_bcount = 0;
1234					bp->b_flags &= ~B_MALLOC;
1235				}
1236				return 1;
1237			}
1238#endif
1239			vm_hold_free_pages(
1240			    bp,
1241			    (vm_offset_t) bp->b_data + newbsize,
1242			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1243		} else if (newbsize > bp->b_bufsize) {
1244#if !defined(NO_B_MALLOC)
1245			/*
1246			 * We only use malloced memory on the first allocation.
1247			 * and revert to page-allocated memory when the buffer grows.
1248			 */
1249			if ( (bufmallocspace < maxbufmallocspace) &&
1250				(bp->b_bufsize == 0) &&
1251				(mbsize <= PAGE_SIZE/2)) {
1252
1253				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
1254				bp->b_bufsize = mbsize;
1255				bp->b_bcount = size;
1256				bp->b_flags |= B_MALLOC;
1257				bufspace += mbsize;
1258				bufmallocspace += mbsize;
1259				return 1;
1260			}
1261#endif
1262			origbuf = NULL;
1263			origbufsize = 0;
1264#if !defined(NO_B_MALLOC)
1265			/*
1266			 * If the buffer is growing on it's other-than-first allocation,
1267			 * then we revert to the page-allocation scheme.
1268			 */
1269			if (bp->b_flags & B_MALLOC) {
1270				origbuf = bp->b_data;
1271				origbufsize = bp->b_bufsize;
1272				bp->b_data = (caddr_t) buffers_kva + (bp - buf) * MAXBSIZE;
1273				bufspace -= bp->b_bufsize;
1274				bufmallocspace -= bp->b_bufsize;
1275				bp->b_bufsize = 0;
1276				bp->b_flags &= ~B_MALLOC;
1277				newbsize = round_page(newbsize);
1278			}
1279#endif
1280			vm_hold_load_pages(
1281			    bp,
1282			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1283			    (vm_offset_t) bp->b_data + newbsize);
1284#if !defined(NO_B_MALLOC)
1285			if (origbuf) {
1286				bcopy(origbuf, bp->b_data, origbufsize);
1287				free(origbuf, M_BIOBUF);
1288			}
1289#endif
1290		}
1291	} else {
1292		vm_page_t m;
1293		int desiredpages;
1294
1295		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1296		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1297
1298#if !defined(NO_B_MALLOC)
1299		if (bp->b_flags & B_MALLOC)
1300			panic("allocbuf: VMIO buffer can't be malloced");
1301#endif
1302
1303		if (newbsize < bp->b_bufsize) {
1304			if (desiredpages < bp->b_npages) {
1305				for (i = desiredpages; i < bp->b_npages; i++) {
1306					/*
1307					 * the page is not freed here -- it
1308					 * is the responsibility of vnode_pager_setsize
1309					 */
1310					m = bp->b_pages[i];
1311#if defined(DIAGNOSTIC)
1312					if (m == bogus_page)
1313						panic("allocbuf: bogus page found");
1314#endif
1315					s = splvm();
1316					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1317						m->flags |= PG_WANTED;
1318						tsleep(m, PVM, "biodep", 0);
1319					}
1320					splx(s);
1321
1322					bp->b_pages[i] = NULL;
1323					vm_page_unwire(m);
1324				}
1325				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1326				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1327				bp->b_npages = desiredpages;
1328			}
1329		} else if (newbsize > bp->b_bufsize) {
1330			vm_object_t obj;
1331			vm_offset_t tinc, toff;
1332			vm_ooffset_t off;
1333			vm_pindex_t objoff;
1334			int pageindex, curbpnpages;
1335			struct vnode *vp;
1336			int bsize;
1337
1338			vp = bp->b_vp;
1339
1340			if (vp->v_type == VBLK)
1341				bsize = DEV_BSIZE;
1342			else
1343				bsize = vp->v_mount->mnt_stat.f_iosize;
1344
1345			if (bp->b_npages < desiredpages) {
1346				obj = vp->v_object;
1347				tinc = PAGE_SIZE;
1348				if (tinc > bsize)
1349					tinc = bsize;
1350				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1351				curbpnpages = bp->b_npages;
1352		doretry:
1353				bp->b_flags |= B_CACHE;
1354				for (toff = 0; toff < newbsize; toff += tinc) {
1355					int bytesinpage;
1356
1357					pageindex = toff >> PAGE_SHIFT;
1358					objoff = OFF_TO_IDX(off + toff);
1359					if (pageindex < curbpnpages) {
1360
1361						m = bp->b_pages[pageindex];
1362#ifdef VFS_BIO_DIAG
1363						if (m->pindex != objoff)
1364							panic("allocbuf: page changed offset??!!!?");
1365#endif
1366						bytesinpage = tinc;
1367						if (tinc > (newbsize - toff))
1368							bytesinpage = newbsize - toff;
1369						if ((bp->b_flags & B_CACHE) &&
1370							!vm_page_is_valid(m,
1371							(vm_offset_t) ((toff + off) & PAGE_MASK),
1372							bytesinpage)) {
1373							bp->b_flags &= ~B_CACHE;
1374						}
1375						continue;
1376					}
1377					m = vm_page_lookup(obj, objoff);
1378					if (!m) {
1379						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1380						if (!m) {
1381							VM_WAIT;
1382							goto doretry;
1383						}
1384						/*
1385						 * Normally it is unwise to clear PG_BUSY without
1386						 * PAGE_WAKEUP -- but it is okay here, as there is
1387						 * no chance for blocking between here and vm_page_alloc
1388						 */
1389						m->flags &= ~PG_BUSY;
1390						vm_page_wire(m);
1391						bp->b_flags &= ~B_CACHE;
1392					} else if (m->flags & PG_BUSY) {
1393						s = splvm();
1394						if (m->flags & PG_BUSY) {
1395							m->flags |= PG_WANTED;
1396							tsleep(m, PVM, "pgtblk", 0);
1397						}
1398						splx(s);
1399						goto doretry;
1400					} else {
1401						if ((curproc != pageproc) &&
1402							((m->queue - m->pc) == PQ_CACHE) &&
1403						    ((cnt.v_free_count + cnt.v_cache_count) <
1404								(cnt.v_free_min + cnt.v_cache_min))) {
1405							pagedaemon_wakeup();
1406						}
1407						bytesinpage = tinc;
1408						if (tinc > (newbsize - toff))
1409							bytesinpage = newbsize - toff;
1410						if ((bp->b_flags & B_CACHE) &&
1411							!vm_page_is_valid(m,
1412							(vm_offset_t) ((toff + off) & PAGE_MASK),
1413							bytesinpage)) {
1414							bp->b_flags &= ~B_CACHE;
1415						}
1416						vm_page_wire(m);
1417					}
1418					bp->b_pages[pageindex] = m;
1419					curbpnpages = pageindex + 1;
1420				}
1421				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1422				bp->b_npages = curbpnpages;
1423				pmap_qenter((vm_offset_t) bp->b_data,
1424					bp->b_pages, bp->b_npages);
1425				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1426			}
1427		}
1428	}
1429	if (bp->b_flags & B_VMIO)
1430		vmiospace += bp->b_bufsize;
1431	bufspace += (newbsize - bp->b_bufsize);
1432	bp->b_bufsize = newbsize;
1433	bp->b_bcount = size;
1434	return 1;
1435}
1436
1437/*
1438 * Wait for buffer I/O completion, returning error status.
1439 */
1440int
1441biowait(register struct buf * bp)
1442{
1443	int s;
1444
1445	s = splbio();
1446	while ((bp->b_flags & B_DONE) == 0)
1447		tsleep(bp, PRIBIO, "biowait", 0);
1448	splx(s);
1449	if (bp->b_flags & B_EINTR) {
1450		bp->b_flags &= ~B_EINTR;
1451		return (EINTR);
1452	}
1453	if (bp->b_flags & B_ERROR) {
1454		return (bp->b_error ? bp->b_error : EIO);
1455	} else {
1456		return (0);
1457	}
1458}
1459
1460/*
1461 * Finish I/O on a buffer, calling an optional function.
1462 * This is usually called from interrupt level, so process blocking
1463 * is not *a good idea*.
1464 */
1465void
1466biodone(register struct buf * bp)
1467{
1468	int s;
1469
1470	s = splbio();
1471	if (!(bp->b_flags & B_BUSY))
1472		panic("biodone: buffer not busy");
1473
1474	if (bp->b_flags & B_DONE) {
1475		splx(s);
1476		printf("biodone: buffer already done\n");
1477		return;
1478	}
1479	bp->b_flags |= B_DONE;
1480
1481	if ((bp->b_flags & B_READ) == 0) {
1482		vwakeup(bp);
1483	}
1484#ifdef BOUNCE_BUFFERS
1485	if (bp->b_flags & B_BOUNCE)
1486		vm_bounce_free(bp);
1487#endif
1488
1489	/* call optional completion function if requested */
1490	if (bp->b_flags & B_CALL) {
1491		bp->b_flags &= ~B_CALL;
1492		(*bp->b_iodone) (bp);
1493		splx(s);
1494		return;
1495	}
1496	if (bp->b_flags & B_VMIO) {
1497		int i, resid;
1498		vm_ooffset_t foff;
1499		vm_page_t m;
1500		vm_object_t obj;
1501		int iosize;
1502		struct vnode *vp = bp->b_vp;
1503
1504		if (vp->v_type == VBLK)
1505			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1506		else
1507			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1508		obj = vp->v_object;
1509		if (!obj) {
1510			panic("biodone: no object");
1511		}
1512#if defined(VFS_BIO_DEBUG)
1513		if (obj->paging_in_progress < bp->b_npages) {
1514			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1515			    obj->paging_in_progress, bp->b_npages);
1516		}
1517#endif
1518		iosize = bp->b_bufsize;
1519		for (i = 0; i < bp->b_npages; i++) {
1520			int bogusflag = 0;
1521			m = bp->b_pages[i];
1522			if (m == bogus_page) {
1523				bogusflag = 1;
1524				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1525				if (!m) {
1526#if defined(VFS_BIO_DEBUG)
1527					printf("biodone: page disappeared\n");
1528#endif
1529					--obj->paging_in_progress;
1530					continue;
1531				}
1532				bp->b_pages[i] = m;
1533				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1534			}
1535#if defined(VFS_BIO_DEBUG)
1536			if (OFF_TO_IDX(foff) != m->pindex) {
1537				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1538			}
1539#endif
1540			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1541			if (resid > iosize)
1542				resid = iosize;
1543			/*
1544			 * In the write case, the valid and clean bits are
1545			 * already changed correctly, so we only need to do this
1546			 * here in the read case.
1547			 */
1548			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1549				vm_page_set_validclean(m,
1550					(vm_offset_t) (foff & PAGE_MASK), resid);
1551			}
1552
1553			/*
1554			 * when debugging new filesystems or buffer I/O methods, this
1555			 * is the most common error that pops up.  if you see this, you
1556			 * have not set the page busy flag correctly!!!
1557			 */
1558			if (m->busy == 0) {
1559				printf("biodone: page busy < 0, "
1560				    "pindex: %d, foff: 0x(%x,%x), "
1561				    "resid: %d, index: %d\n",
1562				    (int) m->pindex, (int)(foff >> 32),
1563						(int) foff & 0xffffffff, resid, i);
1564				if (vp->v_type != VBLK)
1565					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1566					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1567					    (int) bp->b_lblkno,
1568					    bp->b_flags, bp->b_npages);
1569				else
1570					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1571					    (int) bp->b_lblkno,
1572					    bp->b_flags, bp->b_npages);
1573				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1574				    m->valid, m->dirty, m->wire_count);
1575				panic("biodone: page busy < 0\n");
1576			}
1577			--m->busy;
1578			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1579				m->flags &= ~PG_WANTED;
1580				wakeup(m);
1581			}
1582			--obj->paging_in_progress;
1583			foff += resid;
1584			iosize -= resid;
1585		}
1586		if (obj && obj->paging_in_progress == 0 &&
1587		    (obj->flags & OBJ_PIPWNT)) {
1588			obj->flags &= ~OBJ_PIPWNT;
1589			wakeup(obj);
1590		}
1591	}
1592	/*
1593	 * For asynchronous completions, release the buffer now. The brelse
1594	 * checks for B_WANTED and will do the wakeup there if necessary - so
1595	 * no need to do a wakeup here in the async case.
1596	 */
1597
1598	if (bp->b_flags & B_ASYNC) {
1599		if ((bp->b_flags & B_ORDERED) == 0) {
1600			if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1601				brelse(bp);
1602			else
1603				bqrelse(bp);
1604		}
1605	} else {
1606		bp->b_flags &= ~B_WANTED;
1607		wakeup(bp);
1608	}
1609	splx(s);
1610}
1611
1612int
1613count_lock_queue()
1614{
1615	int count;
1616	struct buf *bp;
1617
1618	count = 0;
1619	for (bp = TAILQ_FIRST(&bufqueues[QUEUE_LOCKED]);
1620	    bp != NULL;
1621	    bp = TAILQ_NEXT(bp, b_freelist))
1622		count++;
1623	return (count);
1624}
1625
1626int vfs_update_interval = 30;
1627
1628static void
1629vfs_update()
1630{
1631	(void) spl0();		/* XXX redundant?  wrong place? */
1632	while (1) {
1633		tsleep(&vfs_update_wakeup, PUSER, "update",
1634		    hz * vfs_update_interval);
1635		vfs_update_wakeup = 0;
1636		sync(curproc, NULL, NULL);
1637	}
1638}
1639
1640static int
1641sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1642{
1643	int error = sysctl_handle_int(oidp,
1644		oidp->oid_arg1, oidp->oid_arg2, req);
1645	if (!error)
1646		wakeup(&vfs_update_wakeup);
1647	return error;
1648}
1649
1650SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1651	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1652
1653
1654/*
1655 * This routine is called in lieu of iodone in the case of
1656 * incomplete I/O.  This keeps the busy status for pages
1657 * consistant.
1658 */
1659void
1660vfs_unbusy_pages(struct buf * bp)
1661{
1662	int i;
1663
1664	if (bp->b_flags & B_VMIO) {
1665		struct vnode *vp = bp->b_vp;
1666		vm_object_t obj = vp->v_object;
1667		vm_ooffset_t foff;
1668
1669		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1670
1671		for (i = 0; i < bp->b_npages; i++) {
1672			vm_page_t m = bp->b_pages[i];
1673
1674			if (m == bogus_page) {
1675				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1676				if (!m) {
1677					panic("vfs_unbusy_pages: page missing\n");
1678				}
1679				bp->b_pages[i] = m;
1680				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1681			}
1682			--obj->paging_in_progress;
1683			--m->busy;
1684			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1685				m->flags &= ~PG_WANTED;
1686				wakeup(m);
1687			}
1688		}
1689		if (obj->paging_in_progress == 0 &&
1690		    (obj->flags & OBJ_PIPWNT)) {
1691			obj->flags &= ~OBJ_PIPWNT;
1692			wakeup(obj);
1693		}
1694	}
1695}
1696
1697/*
1698 * This routine is called before a device strategy routine.
1699 * It is used to tell the VM system that paging I/O is in
1700 * progress, and treat the pages associated with the buffer
1701 * almost as being PG_BUSY.  Also the object paging_in_progress
1702 * flag is handled to make sure that the object doesn't become
1703 * inconsistant.
1704 */
1705void
1706vfs_busy_pages(struct buf * bp, int clear_modify)
1707{
1708	int i;
1709
1710	if (bp->b_flags & B_VMIO) {
1711		vm_object_t obj = bp->b_vp->v_object;
1712		vm_ooffset_t foff;
1713		int iocount = bp->b_bufsize;
1714
1715		if (bp->b_vp->v_type == VBLK)
1716			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1717		else
1718			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1719		vfs_setdirty(bp);
1720		for (i = 0; i < bp->b_npages; i++) {
1721			vm_page_t m = bp->b_pages[i];
1722			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1723
1724			if (resid > iocount)
1725				resid = iocount;
1726			if ((bp->b_flags & B_CLUSTER) == 0) {
1727				obj->paging_in_progress++;
1728				m->busy++;
1729			}
1730			vm_page_protect(m, VM_PROT_NONE);
1731			if (clear_modify) {
1732				vm_page_set_validclean(m,
1733					(vm_offset_t) (foff & PAGE_MASK), resid);
1734			} else if (bp->b_bcount >= PAGE_SIZE) {
1735				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1736					bp->b_pages[i] = bogus_page;
1737					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1738				}
1739			}
1740			foff += resid;
1741			iocount -= resid;
1742		}
1743	}
1744}
1745
1746/*
1747 * Tell the VM system that the pages associated with this buffer
1748 * are clean.  This is used for delayed writes where the data is
1749 * going to go to disk eventually without additional VM intevention.
1750 */
1751void
1752vfs_clean_pages(struct buf * bp)
1753{
1754	int i;
1755
1756	if (bp->b_flags & B_VMIO) {
1757		vm_ooffset_t foff;
1758		int iocount = bp->b_bufsize;
1759
1760		if (bp->b_vp->v_type == VBLK)
1761			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1762		else
1763			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1764
1765		for (i = 0; i < bp->b_npages; i++) {
1766			vm_page_t m = bp->b_pages[i];
1767			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1768
1769			if (resid > iocount)
1770				resid = iocount;
1771			if (resid > 0) {
1772				vm_page_set_validclean(m,
1773					((vm_offset_t) foff & PAGE_MASK), resid);
1774			}
1775			foff += resid;
1776			iocount -= resid;
1777		}
1778	}
1779}
1780
1781void
1782vfs_bio_clrbuf(struct buf *bp) {
1783	int i;
1784	if( bp->b_flags & B_VMIO) {
1785		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1786			int mask;
1787			mask = 0;
1788			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
1789				mask |= (1 << (i/DEV_BSIZE));
1790			if( bp->b_pages[0]->valid != mask) {
1791				bzero(bp->b_data, bp->b_bufsize);
1792			}
1793			bp->b_pages[0]->valid = mask;
1794			bp->b_resid = 0;
1795			return;
1796		}
1797		for(i=0;i<bp->b_npages;i++) {
1798			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1799				continue;
1800			if( bp->b_pages[i]->valid == 0) {
1801				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
1802					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
1803				}
1804			} else {
1805				int j;
1806				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1807					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1808						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
1809				}
1810			}
1811			/* bp->b_pages[i]->valid = VM_PAGE_BITS_ALL; */
1812		}
1813		bp->b_resid = 0;
1814	} else {
1815		clrbuf(bp);
1816	}
1817}
1818
1819/*
1820 * vm_hold_load_pages and vm_hold_unload pages get pages into
1821 * a buffers address space.  The pages are anonymous and are
1822 * not associated with a file object.
1823 */
1824void
1825vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1826{
1827	vm_offset_t pg;
1828	vm_page_t p;
1829	int index;
1830
1831	to = round_page(to);
1832	from = round_page(from);
1833	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1834
1835	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1836
1837tryagain:
1838
1839		p = vm_page_alloc(kernel_object, ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
1840		    VM_ALLOC_NORMAL);
1841		if (!p) {
1842			VM_WAIT;
1843			goto tryagain;
1844		}
1845		vm_page_wire(p);
1846		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1847		bp->b_pages[index] = p;
1848		PAGE_WAKEUP(p);
1849	}
1850	bp->b_npages = to >> PAGE_SHIFT;
1851}
1852
1853void
1854vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1855{
1856	vm_offset_t pg;
1857	vm_page_t p;
1858	int index;
1859
1860	from = round_page(from);
1861	to = round_page(to);
1862	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1863
1864	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1865		p = bp->b_pages[index];
1866		if (p && (index < bp->b_npages)) {
1867			if (p->busy) {
1868				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
1869					bp->b_blkno, bp->b_lblkno);
1870			}
1871			bp->b_pages[index] = NULL;
1872			pmap_kremove(pg);
1873			vm_page_unwire(p);
1874			vm_page_free(p);
1875		}
1876	}
1877	bp->b_npages = from >> PAGE_SHIFT;
1878}
1879