vfs_bio.c revision 172317
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 172317 2007-09-25 06:25:06Z alc $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/limits.h>
52#include <sys/lock.h>
53#include <sys/malloc.h>
54#include <sys/mount.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/kthread.h>
58#include <sys/proc.h>
59#include <sys/resourcevar.h>
60#include <sys/sysctl.h>
61#include <sys/vmmeter.h>
62#include <sys/vnode.h>
63#include <geom/geom.h>
64#include <vm/vm.h>
65#include <vm/vm_param.h>
66#include <vm/vm_kern.h>
67#include <vm/vm_pageout.h>
68#include <vm/vm_page.h>
69#include <vm/vm_object.h>
70#include <vm/vm_extern.h>
71#include <vm/vm_map.h>
72#include "opt_directio.h"
73#include "opt_swap.h"
74
75static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
76
77struct	bio_ops bioops;		/* I/O operation notification */
78
79struct	buf_ops buf_ops_bio = {
80	.bop_name	=	"buf_ops_bio",
81	.bop_write	=	bufwrite,
82	.bop_strategy	=	bufstrategy,
83	.bop_sync	=	bufsync,
84	.bop_bdflush	=	bufbdflush,
85};
86
87/*
88 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
89 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
90 */
91struct buf *buf;		/* buffer header pool */
92
93static struct proc *bufdaemonproc;
94
95static int inmem(struct vnode *vp, daddr_t blkno);
96static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
99		vm_offset_t to);
100static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
101			       int pageno, vm_page_t m);
102static void vfs_clean_pages(struct buf *bp);
103static void vfs_setdirty(struct buf *bp);
104static void vfs_setdirty_locked_object(struct buf *bp);
105static void vfs_vmio_release(struct buf *bp);
106static int vfs_bio_clcheck(struct vnode *vp, int size,
107		daddr_t lblkno, daddr_t blkno);
108static int flushbufqueues(int, int);
109static void buf_daemon(void);
110static void bremfreel(struct buf *bp);
111
112int vmiodirenable = TRUE;
113SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
114    "Use the VM system for directory writes");
115int runningbufspace;
116SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
117    "Amount of presently outstanding async buffer io");
118static int bufspace;
119SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
120    "KVA memory used for bufs");
121static int maxbufspace;
122SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
123    "Maximum allowed value of bufspace (including buf_daemon)");
124static int bufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
126    "Amount of malloced memory for buffers");
127static int maxbufmallocspace;
128SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
129    "Maximum amount of malloced memory for buffers");
130static int lobufspace;
131SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
132    "Minimum amount of buffers we want to have");
133int hibufspace;
134SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
135    "Maximum allowed value of bufspace (excluding buf_daemon)");
136static int bufreusecnt;
137SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
138    "Number of times we have reused a buffer");
139static int buffreekvacnt;
140SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
141    "Number of times we have freed the KVA space from some buffer");
142static int bufdefragcnt;
143SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
144    "Number of times we have had to repeat buffer allocation to defragment");
145static int lorunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
147    "Minimum preferred space used for in-progress I/O");
148static int hirunningspace;
149SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
150    "Maximum amount of space to use for in-progress I/O");
151int dirtybufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
153    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
154int bdwriteskip;
155SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
156    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
157int altbufferflushes;
158SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
159    0, "Number of fsync flushes to limit dirty buffers");
160static int recursiveflushes;
161SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
162    0, "Number of flushes skipped due to being recursive");
163static int numdirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
165    "Number of buffers that are dirty (has unwritten changes) at the moment");
166static int lodirtybuffers;
167SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
168    "How many buffers we want to have free before bufdaemon can sleep");
169static int hidirtybuffers;
170SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
171    "When the number of dirty buffers is considered severe");
172int dirtybufthresh;
173SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
174    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
175static int numfreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
177    "Number of free buffers");
178static int lofreebuffers;
179SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
180   "XXX Unused");
181static int hifreebuffers;
182SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
183   "XXX Complicatedly unused");
184static int getnewbufcalls;
185SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
186   "Number of calls to getnewbuf");
187static int getnewbufrestarts;
188SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
189    "Number of times getnewbuf has had to restart a buffer aquisition");
190
191/*
192 * Wakeup point for bufdaemon, as well as indicator of whether it is already
193 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
194 * is idling.
195 */
196static int bd_request;
197
198/*
199 * This lock synchronizes access to bd_request.
200 */
201static struct mtx bdlock;
202
203/*
204 * bogus page -- for I/O to/from partially complete buffers
205 * this is a temporary solution to the problem, but it is not
206 * really that bad.  it would be better to split the buffer
207 * for input in the case of buffers partially already in memory,
208 * but the code is intricate enough already.
209 */
210vm_page_t bogus_page;
211
212/*
213 * Synchronization (sleep/wakeup) variable for active buffer space requests.
214 * Set when wait starts, cleared prior to wakeup().
215 * Used in runningbufwakeup() and waitrunningbufspace().
216 */
217static int runningbufreq;
218
219/*
220 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
221 * waitrunningbufspace().
222 */
223static struct mtx rbreqlock;
224
225/*
226 * Synchronization (sleep/wakeup) variable for buffer requests.
227 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
228 * by and/or.
229 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
230 * getnewbuf(), and getblk().
231 */
232static int needsbuffer;
233
234/*
235 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
236 */
237static struct mtx nblock;
238
239/*
240 * Lock that protects against bwait()/bdone()/B_DONE races.
241 */
242
243static struct mtx bdonelock;
244
245/*
246 * Lock that protects against bwait()/bdone()/B_DONE races.
247 */
248static struct mtx bpinlock;
249
250/*
251 * Definitions for the buffer free lists.
252 */
253#define BUFFER_QUEUES	6	/* number of free buffer queues */
254
255#define QUEUE_NONE	0	/* on no queue */
256#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
257#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
258#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
259#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
260#define QUEUE_EMPTY	5	/* empty buffer headers */
261
262/* Queues for free buffers with various properties */
263static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
264
265/* Lock for the bufqueues */
266static struct mtx bqlock;
267
268/*
269 * Single global constant for BUF_WMESG, to avoid getting multiple references.
270 * buf_wmesg is referred from macros.
271 */
272const char *buf_wmesg = BUF_WMESG;
273
274#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
275#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
276#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
277#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
278
279#ifdef DIRECTIO
280extern void ffs_rawread_setup(void);
281#endif /* DIRECTIO */
282/*
283 *	numdirtywakeup:
284 *
285 *	If someone is blocked due to there being too many dirty buffers,
286 *	and numdirtybuffers is now reasonable, wake them up.
287 */
288
289static __inline void
290numdirtywakeup(int level)
291{
292
293	if (numdirtybuffers <= level) {
294		mtx_lock(&nblock);
295		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
296			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
297			wakeup(&needsbuffer);
298		}
299		mtx_unlock(&nblock);
300	}
301}
302
303/*
304 *	bufspacewakeup:
305 *
306 *	Called when buffer space is potentially available for recovery.
307 *	getnewbuf() will block on this flag when it is unable to free
308 *	sufficient buffer space.  Buffer space becomes recoverable when
309 *	bp's get placed back in the queues.
310 */
311
312static __inline void
313bufspacewakeup(void)
314{
315
316	/*
317	 * If someone is waiting for BUF space, wake them up.  Even
318	 * though we haven't freed the kva space yet, the waiting
319	 * process will be able to now.
320	 */
321	mtx_lock(&nblock);
322	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
323		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
324		wakeup(&needsbuffer);
325	}
326	mtx_unlock(&nblock);
327}
328
329/*
330 * runningbufwakeup() - in-progress I/O accounting.
331 *
332 */
333void
334runningbufwakeup(struct buf *bp)
335{
336
337	if (bp->b_runningbufspace) {
338		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
339		bp->b_runningbufspace = 0;
340		mtx_lock(&rbreqlock);
341		if (runningbufreq && runningbufspace <= lorunningspace) {
342			runningbufreq = 0;
343			wakeup(&runningbufreq);
344		}
345		mtx_unlock(&rbreqlock);
346	}
347}
348
349/*
350 *	bufcountwakeup:
351 *
352 *	Called when a buffer has been added to one of the free queues to
353 *	account for the buffer and to wakeup anyone waiting for free buffers.
354 *	This typically occurs when large amounts of metadata are being handled
355 *	by the buffer cache ( else buffer space runs out first, usually ).
356 */
357
358static __inline void
359bufcountwakeup(void)
360{
361
362	atomic_add_int(&numfreebuffers, 1);
363	mtx_lock(&nblock);
364	if (needsbuffer) {
365		needsbuffer &= ~VFS_BIO_NEED_ANY;
366		if (numfreebuffers >= hifreebuffers)
367			needsbuffer &= ~VFS_BIO_NEED_FREE;
368		wakeup(&needsbuffer);
369	}
370	mtx_unlock(&nblock);
371}
372
373/*
374 *	waitrunningbufspace()
375 *
376 *	runningbufspace is a measure of the amount of I/O currently
377 *	running.  This routine is used in async-write situations to
378 *	prevent creating huge backups of pending writes to a device.
379 *	Only asynchronous writes are governed by this function.
380 *
381 *	Reads will adjust runningbufspace, but will not block based on it.
382 *	The read load has a side effect of reducing the allowed write load.
383 *
384 *	This does NOT turn an async write into a sync write.  It waits
385 *	for earlier writes to complete and generally returns before the
386 *	caller's write has reached the device.
387 */
388void
389waitrunningbufspace(void)
390{
391
392	mtx_lock(&rbreqlock);
393	while (runningbufspace > hirunningspace) {
394		++runningbufreq;
395		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
396	}
397	mtx_unlock(&rbreqlock);
398}
399
400
401/*
402 *	vfs_buf_test_cache:
403 *
404 *	Called when a buffer is extended.  This function clears the B_CACHE
405 *	bit if the newly extended portion of the buffer does not contain
406 *	valid data.
407 */
408static __inline
409void
410vfs_buf_test_cache(struct buf *bp,
411		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
412		  vm_page_t m)
413{
414
415	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
416	if (bp->b_flags & B_CACHE) {
417		int base = (foff + off) & PAGE_MASK;
418		if (vm_page_is_valid(m, base, size) == 0)
419			bp->b_flags &= ~B_CACHE;
420	}
421}
422
423/* Wake up the buffer daemon if necessary */
424static __inline
425void
426bd_wakeup(int dirtybuflevel)
427{
428
429	mtx_lock(&bdlock);
430	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
431		bd_request = 1;
432		wakeup(&bd_request);
433	}
434	mtx_unlock(&bdlock);
435}
436
437/*
438 * bd_speedup - speedup the buffer cache flushing code
439 */
440
441static __inline
442void
443bd_speedup(void)
444{
445
446	bd_wakeup(1);
447}
448
449/*
450 * Calculating buffer cache scaling values and reserve space for buffer
451 * headers.  This is called during low level kernel initialization and
452 * may be called more then once.  We CANNOT write to the memory area
453 * being reserved at this time.
454 */
455caddr_t
456kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
457{
458	int maxbuf;
459
460	/*
461	 * physmem_est is in pages.  Convert it to kilobytes (assumes
462	 * PAGE_SIZE is >= 1K)
463	 */
464	physmem_est = physmem_est * (PAGE_SIZE / 1024);
465
466	/*
467	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
468	 * For the first 64MB of ram nominally allocate sufficient buffers to
469	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
470	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
471	 * the buffer cache we limit the eventual kva reservation to
472	 * maxbcache bytes.
473	 *
474	 * factor represents the 1/4 x ram conversion.
475	 */
476	if (nbuf == 0) {
477		int factor = 4 * BKVASIZE / 1024;
478
479		nbuf = 50;
480		if (physmem_est > 4096)
481			nbuf += min((physmem_est - 4096) / factor,
482			    65536 / factor);
483		if (physmem_est > 65536)
484			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
485
486		if (maxbcache && nbuf > maxbcache / BKVASIZE)
487			nbuf = maxbcache / BKVASIZE;
488
489		/* XXX Avoid integer overflows later on with maxbufspace. */
490		maxbuf = (INT_MAX / 3) / BKVASIZE;
491		if (nbuf > maxbuf)
492			nbuf = maxbuf;
493	}
494
495#if 0
496	/*
497	 * Do not allow the buffer_map to be more then 1/2 the size of the
498	 * kernel_map.
499	 */
500	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
501	    (BKVASIZE * 2)) {
502		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
503		    (BKVASIZE * 2);
504		printf("Warning: nbufs capped at %d\n", nbuf);
505	}
506#endif
507
508	/*
509	 * swbufs are used as temporary holders for I/O, such as paging I/O.
510	 * We have no less then 16 and no more then 256.
511	 */
512	nswbuf = max(min(nbuf/4, 256), 16);
513#ifdef NSWBUF_MIN
514	if (nswbuf < NSWBUF_MIN)
515		nswbuf = NSWBUF_MIN;
516#endif
517#ifdef DIRECTIO
518	ffs_rawread_setup();
519#endif
520
521	/*
522	 * Reserve space for the buffer cache buffers
523	 */
524	swbuf = (void *)v;
525	v = (caddr_t)(swbuf + nswbuf);
526	buf = (void *)v;
527	v = (caddr_t)(buf + nbuf);
528
529	return(v);
530}
531
532/* Initialize the buffer subsystem.  Called before use of any buffers. */
533void
534bufinit(void)
535{
536	struct buf *bp;
537	int i;
538
539	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
540	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
541	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
542	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
543	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
544	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
545
546	/* next, make a null set of free lists */
547	for (i = 0; i < BUFFER_QUEUES; i++)
548		TAILQ_INIT(&bufqueues[i]);
549
550	/* finally, initialize each buffer header and stick on empty q */
551	for (i = 0; i < nbuf; i++) {
552		bp = &buf[i];
553		bzero(bp, sizeof *bp);
554		bp->b_flags = B_INVAL;	/* we're just an empty header */
555		bp->b_rcred = NOCRED;
556		bp->b_wcred = NOCRED;
557		bp->b_qindex = QUEUE_EMPTY;
558		bp->b_vflags = 0;
559		bp->b_xflags = 0;
560		LIST_INIT(&bp->b_dep);
561		BUF_LOCKINIT(bp);
562		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
563	}
564
565	/*
566	 * maxbufspace is the absolute maximum amount of buffer space we are
567	 * allowed to reserve in KVM and in real terms.  The absolute maximum
568	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
569	 * used by most other processes.  The differential is required to
570	 * ensure that buf_daemon is able to run when other processes might
571	 * be blocked waiting for buffer space.
572	 *
573	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
574	 * this may result in KVM fragmentation which is not handled optimally
575	 * by the system.
576	 */
577	maxbufspace = nbuf * BKVASIZE;
578	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
579	lobufspace = hibufspace - MAXBSIZE;
580
581	lorunningspace = 512 * 1024;
582	hirunningspace = 1024 * 1024;
583
584/*
585 * Limit the amount of malloc memory since it is wired permanently into
586 * the kernel space.  Even though this is accounted for in the buffer
587 * allocation, we don't want the malloced region to grow uncontrolled.
588 * The malloc scheme improves memory utilization significantly on average
589 * (small) directories.
590 */
591	maxbufmallocspace = hibufspace / 20;
592
593/*
594 * Reduce the chance of a deadlock occuring by limiting the number
595 * of delayed-write dirty buffers we allow to stack up.
596 */
597	hidirtybuffers = nbuf / 4 + 20;
598	dirtybufthresh = hidirtybuffers * 9 / 10;
599	numdirtybuffers = 0;
600/*
601 * To support extreme low-memory systems, make sure hidirtybuffers cannot
602 * eat up all available buffer space.  This occurs when our minimum cannot
603 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
604 * BKVASIZE'd (8K) buffers.
605 */
606	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
607		hidirtybuffers >>= 1;
608	}
609	lodirtybuffers = hidirtybuffers / 2;
610
611/*
612 * Try to keep the number of free buffers in the specified range,
613 * and give special processes (e.g. like buf_daemon) access to an
614 * emergency reserve.
615 */
616	lofreebuffers = nbuf / 18 + 5;
617	hifreebuffers = 2 * lofreebuffers;
618	numfreebuffers = nbuf;
619
620/*
621 * Maximum number of async ops initiated per buf_daemon loop.  This is
622 * somewhat of a hack at the moment, we really need to limit ourselves
623 * based on the number of bytes of I/O in-transit that were initiated
624 * from buf_daemon.
625 */
626
627	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
628	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
629}
630
631/*
632 * bfreekva() - free the kva allocation for a buffer.
633 *
634 *	Since this call frees up buffer space, we call bufspacewakeup().
635 */
636static void
637bfreekva(struct buf *bp)
638{
639
640	if (bp->b_kvasize) {
641		atomic_add_int(&buffreekvacnt, 1);
642		atomic_subtract_int(&bufspace, bp->b_kvasize);
643		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
644		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
645		bp->b_kvasize = 0;
646		bufspacewakeup();
647	}
648}
649
650/*
651 *	bremfree:
652 *
653 *	Mark the buffer for removal from the appropriate free list in brelse.
654 *
655 */
656void
657bremfree(struct buf *bp)
658{
659
660	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
661	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
662	KASSERT((bp->b_flags & B_REMFREE) == 0,
663	    ("bremfree: buffer %p already marked for delayed removal.", bp));
664	KASSERT(bp->b_qindex != QUEUE_NONE,
665	    ("bremfree: buffer %p not on a queue.", bp));
666
667	bp->b_flags |= B_REMFREE;
668	/* Fixup numfreebuffers count.  */
669	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
670		atomic_subtract_int(&numfreebuffers, 1);
671}
672
673/*
674 *	bremfreef:
675 *
676 *	Force an immediate removal from a free list.  Used only in nfs when
677 *	it abuses the b_freelist pointer.
678 */
679void
680bremfreef(struct buf *bp)
681{
682	mtx_lock(&bqlock);
683	bremfreel(bp);
684	mtx_unlock(&bqlock);
685}
686
687/*
688 *	bremfreel:
689 *
690 *	Removes a buffer from the free list, must be called with the
691 *	bqlock held.
692 */
693static void
694bremfreel(struct buf *bp)
695{
696	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
697	    bp, bp->b_vp, bp->b_flags);
698	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
699	KASSERT(bp->b_qindex != QUEUE_NONE,
700	    ("bremfreel: buffer %p not on a queue.", bp));
701	mtx_assert(&bqlock, MA_OWNED);
702
703	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
704	bp->b_qindex = QUEUE_NONE;
705	/*
706	 * If this was a delayed bremfree() we only need to remove the buffer
707	 * from the queue and return the stats are already done.
708	 */
709	if (bp->b_flags & B_REMFREE) {
710		bp->b_flags &= ~B_REMFREE;
711		return;
712	}
713	/*
714	 * Fixup numfreebuffers count.  If the buffer is invalid or not
715	 * delayed-write, the buffer was free and we must decrement
716	 * numfreebuffers.
717	 */
718	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
719		atomic_subtract_int(&numfreebuffers, 1);
720}
721
722
723/*
724 * Get a buffer with the specified data.  Look in the cache first.  We
725 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
726 * is set, the buffer is valid and we do not have to do anything ( see
727 * getblk() ).  This is really just a special case of breadn().
728 */
729int
730bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
731    struct buf **bpp)
732{
733
734	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
735}
736
737/*
738 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
739 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
740 * the buffer is valid and we do not have to do anything.
741 */
742void
743breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
744    int cnt, struct ucred * cred)
745{
746	struct buf *rabp;
747	int i;
748
749	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
750		if (inmem(vp, *rablkno))
751			continue;
752		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
753
754		if ((rabp->b_flags & B_CACHE) == 0) {
755			if (!TD_IS_IDLETHREAD(curthread))
756				curthread->td_ru.ru_inblock++;
757			rabp->b_flags |= B_ASYNC;
758			rabp->b_flags &= ~B_INVAL;
759			rabp->b_ioflags &= ~BIO_ERROR;
760			rabp->b_iocmd = BIO_READ;
761			if (rabp->b_rcred == NOCRED && cred != NOCRED)
762				rabp->b_rcred = crhold(cred);
763			vfs_busy_pages(rabp, 0);
764			BUF_KERNPROC(rabp);
765			rabp->b_iooffset = dbtob(rabp->b_blkno);
766			bstrategy(rabp);
767		} else {
768			brelse(rabp);
769		}
770	}
771}
772
773/*
774 * Operates like bread, but also starts asynchronous I/O on
775 * read-ahead blocks.
776 */
777int
778breadn(struct vnode * vp, daddr_t blkno, int size,
779    daddr_t * rablkno, int *rabsize,
780    int cnt, struct ucred * cred, struct buf **bpp)
781{
782	struct buf *bp;
783	int rv = 0, readwait = 0;
784
785	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
786	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
787
788	/* if not found in cache, do some I/O */
789	if ((bp->b_flags & B_CACHE) == 0) {
790		if (!TD_IS_IDLETHREAD(curthread))
791			curthread->td_ru.ru_inblock++;
792		bp->b_iocmd = BIO_READ;
793		bp->b_flags &= ~B_INVAL;
794		bp->b_ioflags &= ~BIO_ERROR;
795		if (bp->b_rcred == NOCRED && cred != NOCRED)
796			bp->b_rcred = crhold(cred);
797		vfs_busy_pages(bp, 0);
798		bp->b_iooffset = dbtob(bp->b_blkno);
799		bstrategy(bp);
800		++readwait;
801	}
802
803	breada(vp, rablkno, rabsize, cnt, cred);
804
805	if (readwait) {
806		rv = bufwait(bp);
807	}
808	return (rv);
809}
810
811/*
812 * Write, release buffer on completion.  (Done by iodone
813 * if async).  Do not bother writing anything if the buffer
814 * is invalid.
815 *
816 * Note that we set B_CACHE here, indicating that buffer is
817 * fully valid and thus cacheable.  This is true even of NFS
818 * now so we set it generally.  This could be set either here
819 * or in biodone() since the I/O is synchronous.  We put it
820 * here.
821 */
822int
823bufwrite(struct buf *bp)
824{
825	int oldflags;
826	struct vnode *vp;
827	int vp_md;
828
829	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
830	if (bp->b_flags & B_INVAL) {
831		brelse(bp);
832		return (0);
833	}
834
835	oldflags = bp->b_flags;
836
837	if (BUF_REFCNT(bp) == 0)
838		panic("bufwrite: buffer is not busy???");
839
840	if (bp->b_pin_count > 0)
841		bunpin_wait(bp);
842
843	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
844	    ("FFS background buffer should not get here %p", bp));
845
846	vp = bp->b_vp;
847	if (vp)
848		vp_md = vp->v_vflag & VV_MD;
849	else
850		vp_md = 0;
851
852	/* Mark the buffer clean */
853	bundirty(bp);
854
855	bp->b_flags &= ~B_DONE;
856	bp->b_ioflags &= ~BIO_ERROR;
857	bp->b_flags |= B_CACHE;
858	bp->b_iocmd = BIO_WRITE;
859
860	bufobj_wref(bp->b_bufobj);
861	vfs_busy_pages(bp, 1);
862
863	/*
864	 * Normal bwrites pipeline writes
865	 */
866	bp->b_runningbufspace = bp->b_bufsize;
867	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
868
869	if (!TD_IS_IDLETHREAD(curthread))
870		curthread->td_ru.ru_oublock++;
871	if (oldflags & B_ASYNC)
872		BUF_KERNPROC(bp);
873	bp->b_iooffset = dbtob(bp->b_blkno);
874	bstrategy(bp);
875
876	if ((oldflags & B_ASYNC) == 0) {
877		int rtval = bufwait(bp);
878		brelse(bp);
879		return (rtval);
880	} else {
881		/*
882		 * don't allow the async write to saturate the I/O
883		 * system.  We will not deadlock here because
884		 * we are blocking waiting for I/O that is already in-progress
885		 * to complete. We do not block here if it is the update
886		 * or syncer daemon trying to clean up as that can lead
887		 * to deadlock.
888		 */
889		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
890			waitrunningbufspace();
891	}
892
893	return (0);
894}
895
896void
897bufbdflush(struct bufobj *bo, struct buf *bp)
898{
899	struct buf *nbp;
900
901	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
902		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
903		altbufferflushes++;
904	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
905		BO_LOCK(bo);
906		/*
907		 * Try to find a buffer to flush.
908		 */
909		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
910			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
911			    BUF_LOCK(nbp,
912				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
913				continue;
914			if (bp == nbp)
915				panic("bdwrite: found ourselves");
916			BO_UNLOCK(bo);
917			/* Don't countdeps with the bo lock held. */
918			if (buf_countdeps(nbp, 0)) {
919				BO_LOCK(bo);
920				BUF_UNLOCK(nbp);
921				continue;
922			}
923			if (nbp->b_flags & B_CLUSTEROK) {
924				vfs_bio_awrite(nbp);
925			} else {
926				bremfree(nbp);
927				bawrite(nbp);
928			}
929			dirtybufferflushes++;
930			break;
931		}
932		if (nbp == NULL)
933			BO_UNLOCK(bo);
934	}
935}
936
937/*
938 * Delayed write. (Buffer is marked dirty).  Do not bother writing
939 * anything if the buffer is marked invalid.
940 *
941 * Note that since the buffer must be completely valid, we can safely
942 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
943 * biodone() in order to prevent getblk from writing the buffer
944 * out synchronously.
945 */
946void
947bdwrite(struct buf *bp)
948{
949	struct thread *td = curthread;
950	struct vnode *vp;
951	struct bufobj *bo;
952
953	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
954	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
955	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
956
957	if (bp->b_flags & B_INVAL) {
958		brelse(bp);
959		return;
960	}
961
962	/*
963	 * If we have too many dirty buffers, don't create any more.
964	 * If we are wildly over our limit, then force a complete
965	 * cleanup. Otherwise, just keep the situation from getting
966	 * out of control. Note that we have to avoid a recursive
967	 * disaster and not try to clean up after our own cleanup!
968	 */
969	vp = bp->b_vp;
970	bo = bp->b_bufobj;
971	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
972		td->td_pflags |= TDP_INBDFLUSH;
973		BO_BDFLUSH(bo, bp);
974		td->td_pflags &= ~TDP_INBDFLUSH;
975	} else
976		recursiveflushes++;
977
978	bdirty(bp);
979	/*
980	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
981	 * true even of NFS now.
982	 */
983	bp->b_flags |= B_CACHE;
984
985	/*
986	 * This bmap keeps the system from needing to do the bmap later,
987	 * perhaps when the system is attempting to do a sync.  Since it
988	 * is likely that the indirect block -- or whatever other datastructure
989	 * that the filesystem needs is still in memory now, it is a good
990	 * thing to do this.  Note also, that if the pageout daemon is
991	 * requesting a sync -- there might not be enough memory to do
992	 * the bmap then...  So, this is important to do.
993	 */
994	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
995		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
996	}
997
998	/*
999	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1000	 */
1001	vfs_setdirty(bp);
1002
1003	/*
1004	 * We need to do this here to satisfy the vnode_pager and the
1005	 * pageout daemon, so that it thinks that the pages have been
1006	 * "cleaned".  Note that since the pages are in a delayed write
1007	 * buffer -- the VFS layer "will" see that the pages get written
1008	 * out on the next sync, or perhaps the cluster will be completed.
1009	 */
1010	vfs_clean_pages(bp);
1011	bqrelse(bp);
1012
1013	/*
1014	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1015	 * buffers (midpoint between our recovery point and our stall
1016	 * point).
1017	 */
1018	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1019
1020	/*
1021	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1022	 * due to the softdep code.
1023	 */
1024}
1025
1026/*
1027 *	bdirty:
1028 *
1029 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1030 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1031 *	itself to properly update it in the dirty/clean lists.  We mark it
1032 *	B_DONE to ensure that any asynchronization of the buffer properly
1033 *	clears B_DONE ( else a panic will occur later ).
1034 *
1035 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1036 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1037 *	should only be called if the buffer is known-good.
1038 *
1039 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1040 *	count.
1041 *
1042 *	The buffer must be on QUEUE_NONE.
1043 */
1044void
1045bdirty(struct buf *bp)
1046{
1047
1048	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1049	    bp, bp->b_vp, bp->b_flags);
1050	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1051	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1052	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1053	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1054	bp->b_flags &= ~(B_RELBUF);
1055	bp->b_iocmd = BIO_WRITE;
1056
1057	if ((bp->b_flags & B_DELWRI) == 0) {
1058		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1059		reassignbuf(bp);
1060		atomic_add_int(&numdirtybuffers, 1);
1061		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1062	}
1063}
1064
1065/*
1066 *	bundirty:
1067 *
1068 *	Clear B_DELWRI for buffer.
1069 *
1070 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1071 *	count.
1072 *
1073 *	The buffer must be on QUEUE_NONE.
1074 */
1075
1076void
1077bundirty(struct buf *bp)
1078{
1079
1080	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1081	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1082	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1083	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1084	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1085
1086	if (bp->b_flags & B_DELWRI) {
1087		bp->b_flags &= ~B_DELWRI;
1088		reassignbuf(bp);
1089		atomic_subtract_int(&numdirtybuffers, 1);
1090		numdirtywakeup(lodirtybuffers);
1091	}
1092	/*
1093	 * Since it is now being written, we can clear its deferred write flag.
1094	 */
1095	bp->b_flags &= ~B_DEFERRED;
1096}
1097
1098/*
1099 *	bawrite:
1100 *
1101 *	Asynchronous write.  Start output on a buffer, but do not wait for
1102 *	it to complete.  The buffer is released when the output completes.
1103 *
1104 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1105 *	B_INVAL buffers.  Not us.
1106 */
1107void
1108bawrite(struct buf *bp)
1109{
1110
1111	bp->b_flags |= B_ASYNC;
1112	(void) bwrite(bp);
1113}
1114
1115/*
1116 *	bwillwrite:
1117 *
1118 *	Called prior to the locking of any vnodes when we are expecting to
1119 *	write.  We do not want to starve the buffer cache with too many
1120 *	dirty buffers so we block here.  By blocking prior to the locking
1121 *	of any vnodes we attempt to avoid the situation where a locked vnode
1122 *	prevents the various system daemons from flushing related buffers.
1123 */
1124
1125void
1126bwillwrite(void)
1127{
1128
1129	if (numdirtybuffers >= hidirtybuffers) {
1130		mtx_lock(&nblock);
1131		while (numdirtybuffers >= hidirtybuffers) {
1132			bd_wakeup(1);
1133			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1134			msleep(&needsbuffer, &nblock,
1135			    (PRIBIO + 4), "flswai", 0);
1136		}
1137		mtx_unlock(&nblock);
1138	}
1139}
1140
1141/*
1142 * Return true if we have too many dirty buffers.
1143 */
1144int
1145buf_dirty_count_severe(void)
1146{
1147
1148	return(numdirtybuffers >= hidirtybuffers);
1149}
1150
1151/*
1152 *	brelse:
1153 *
1154 *	Release a busy buffer and, if requested, free its resources.  The
1155 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1156 *	to be accessed later as a cache entity or reused for other purposes.
1157 */
1158void
1159brelse(struct buf *bp)
1160{
1161	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1162	    bp, bp->b_vp, bp->b_flags);
1163	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1164	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1165
1166	if (bp->b_flags & B_MANAGED) {
1167		bqrelse(bp);
1168		return;
1169	}
1170
1171	if (bp->b_iocmd == BIO_WRITE &&
1172	    (bp->b_ioflags & BIO_ERROR) &&
1173	    !(bp->b_flags & B_INVAL)) {
1174		/*
1175		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1176		 * pages from being scrapped.  If B_INVAL is set then
1177		 * this case is not run and the next case is run to
1178		 * destroy the buffer.  B_INVAL can occur if the buffer
1179		 * is outside the range supported by the underlying device.
1180		 */
1181		bp->b_ioflags &= ~BIO_ERROR;
1182		bdirty(bp);
1183	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1184	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1185		/*
1186		 * Either a failed I/O or we were asked to free or not
1187		 * cache the buffer.
1188		 */
1189		bp->b_flags |= B_INVAL;
1190		if (!LIST_EMPTY(&bp->b_dep))
1191			buf_deallocate(bp);
1192		if (bp->b_flags & B_DELWRI) {
1193			atomic_subtract_int(&numdirtybuffers, 1);
1194			numdirtywakeup(lodirtybuffers);
1195		}
1196		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1197		if ((bp->b_flags & B_VMIO) == 0) {
1198			if (bp->b_bufsize)
1199				allocbuf(bp, 0);
1200			if (bp->b_vp)
1201				brelvp(bp);
1202		}
1203	}
1204
1205	/*
1206	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1207	 * is called with B_DELWRI set, the underlying pages may wind up
1208	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1209	 * because pages associated with a B_DELWRI bp are marked clean.
1210	 *
1211	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1212	 * if B_DELWRI is set.
1213	 *
1214	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1215	 * on pages to return pages to the VM page queues.
1216	 */
1217	if (bp->b_flags & B_DELWRI)
1218		bp->b_flags &= ~B_RELBUF;
1219	else if (vm_page_count_severe()) {
1220		/*
1221		 * XXX This lock may not be necessary since BKGRDINPROG
1222		 * cannot be set while we hold the buf lock, it can only be
1223		 * cleared if it is already pending.
1224		 */
1225		if (bp->b_vp) {
1226			BO_LOCK(bp->b_bufobj);
1227			if (!(bp->b_vflags & BV_BKGRDINPROG))
1228				bp->b_flags |= B_RELBUF;
1229			BO_UNLOCK(bp->b_bufobj);
1230		} else
1231			bp->b_flags |= B_RELBUF;
1232	}
1233
1234	/*
1235	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1236	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1237	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1238	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1239	 *
1240	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1241	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1242	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1243	 *
1244	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1245	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1246	 * the commit state and we cannot afford to lose the buffer. If the
1247	 * buffer has a background write in progress, we need to keep it
1248	 * around to prevent it from being reconstituted and starting a second
1249	 * background write.
1250	 */
1251	if ((bp->b_flags & B_VMIO)
1252	    && !(bp->b_vp->v_mount != NULL &&
1253		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1254		 !vn_isdisk(bp->b_vp, NULL) &&
1255		 (bp->b_flags & B_DELWRI))
1256	    ) {
1257
1258		int i, j, resid;
1259		vm_page_t m;
1260		off_t foff;
1261		vm_pindex_t poff;
1262		vm_object_t obj;
1263
1264		obj = bp->b_bufobj->bo_object;
1265
1266		/*
1267		 * Get the base offset and length of the buffer.  Note that
1268		 * in the VMIO case if the buffer block size is not
1269		 * page-aligned then b_data pointer may not be page-aligned.
1270		 * But our b_pages[] array *IS* page aligned.
1271		 *
1272		 * block sizes less then DEV_BSIZE (usually 512) are not
1273		 * supported due to the page granularity bits (m->valid,
1274		 * m->dirty, etc...).
1275		 *
1276		 * See man buf(9) for more information
1277		 */
1278		resid = bp->b_bufsize;
1279		foff = bp->b_offset;
1280		VM_OBJECT_LOCK(obj);
1281		for (i = 0; i < bp->b_npages; i++) {
1282			int had_bogus = 0;
1283
1284			m = bp->b_pages[i];
1285
1286			/*
1287			 * If we hit a bogus page, fixup *all* the bogus pages
1288			 * now.
1289			 */
1290			if (m == bogus_page) {
1291				poff = OFF_TO_IDX(bp->b_offset);
1292				had_bogus = 1;
1293
1294				for (j = i; j < bp->b_npages; j++) {
1295					vm_page_t mtmp;
1296					mtmp = bp->b_pages[j];
1297					if (mtmp == bogus_page) {
1298						mtmp = vm_page_lookup(obj, poff + j);
1299						if (!mtmp) {
1300							panic("brelse: page missing\n");
1301						}
1302						bp->b_pages[j] = mtmp;
1303					}
1304				}
1305
1306				if ((bp->b_flags & B_INVAL) == 0) {
1307					pmap_qenter(
1308					    trunc_page((vm_offset_t)bp->b_data),
1309					    bp->b_pages, bp->b_npages);
1310				}
1311				m = bp->b_pages[i];
1312			}
1313			if ((bp->b_flags & B_NOCACHE) ||
1314			    (bp->b_ioflags & BIO_ERROR)) {
1315				int poffset = foff & PAGE_MASK;
1316				int presid = resid > (PAGE_SIZE - poffset) ?
1317					(PAGE_SIZE - poffset) : resid;
1318
1319				KASSERT(presid >= 0, ("brelse: extra page"));
1320				vm_page_lock_queues();
1321				vm_page_set_invalid(m, poffset, presid);
1322				vm_page_unlock_queues();
1323				if (had_bogus)
1324					printf("avoided corruption bug in bogus_page/brelse code\n");
1325			}
1326			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1327			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1328		}
1329		VM_OBJECT_UNLOCK(obj);
1330		if (bp->b_flags & (B_INVAL | B_RELBUF))
1331			vfs_vmio_release(bp);
1332
1333	} else if (bp->b_flags & B_VMIO) {
1334
1335		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1336			vfs_vmio_release(bp);
1337		}
1338
1339	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1340		if (bp->b_bufsize != 0)
1341			allocbuf(bp, 0);
1342		if (bp->b_vp != NULL)
1343			brelvp(bp);
1344	}
1345
1346	if (BUF_REFCNT(bp) > 1) {
1347		/* do not release to free list */
1348		BUF_UNLOCK(bp);
1349		return;
1350	}
1351
1352	/* enqueue */
1353	mtx_lock(&bqlock);
1354	/* Handle delayed bremfree() processing. */
1355	if (bp->b_flags & B_REMFREE)
1356		bremfreel(bp);
1357	if (bp->b_qindex != QUEUE_NONE)
1358		panic("brelse: free buffer onto another queue???");
1359
1360	/* buffers with no memory */
1361	if (bp->b_bufsize == 0) {
1362		bp->b_flags |= B_INVAL;
1363		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1364		if (bp->b_vflags & BV_BKGRDINPROG)
1365			panic("losing buffer 1");
1366		if (bp->b_kvasize) {
1367			bp->b_qindex = QUEUE_EMPTYKVA;
1368		} else {
1369			bp->b_qindex = QUEUE_EMPTY;
1370		}
1371		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1372	/* buffers with junk contents */
1373	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1374	    (bp->b_ioflags & BIO_ERROR)) {
1375		bp->b_flags |= B_INVAL;
1376		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1377		if (bp->b_vflags & BV_BKGRDINPROG)
1378			panic("losing buffer 2");
1379		bp->b_qindex = QUEUE_CLEAN;
1380		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1381	/* remaining buffers */
1382	} else {
1383		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1384		    (B_DELWRI|B_NEEDSGIANT))
1385			bp->b_qindex = QUEUE_DIRTY_GIANT;
1386		if (bp->b_flags & B_DELWRI)
1387			bp->b_qindex = QUEUE_DIRTY;
1388		else
1389			bp->b_qindex = QUEUE_CLEAN;
1390		if (bp->b_flags & B_AGE)
1391			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1392		else
1393			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1394	}
1395	mtx_unlock(&bqlock);
1396
1397	/*
1398	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1399	 * placed the buffer on the correct queue.  We must also disassociate
1400	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1401	 * find it.
1402	 */
1403	if (bp->b_flags & B_INVAL) {
1404		if (bp->b_flags & B_DELWRI)
1405			bundirty(bp);
1406		if (bp->b_vp)
1407			brelvp(bp);
1408	}
1409
1410	/*
1411	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1412	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1413	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1414	 * if B_INVAL is set ).
1415	 */
1416
1417	if (!(bp->b_flags & B_DELWRI))
1418		bufcountwakeup();
1419
1420	/*
1421	 * Something we can maybe free or reuse
1422	 */
1423	if (bp->b_bufsize || bp->b_kvasize)
1424		bufspacewakeup();
1425
1426	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1427	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1428		panic("brelse: not dirty");
1429	/* unlock */
1430	BUF_UNLOCK(bp);
1431}
1432
1433/*
1434 * Release a buffer back to the appropriate queue but do not try to free
1435 * it.  The buffer is expected to be used again soon.
1436 *
1437 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1438 * biodone() to requeue an async I/O on completion.  It is also used when
1439 * known good buffers need to be requeued but we think we may need the data
1440 * again soon.
1441 *
1442 * XXX we should be able to leave the B_RELBUF hint set on completion.
1443 */
1444void
1445bqrelse(struct buf *bp)
1446{
1447	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1448	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1449	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1450
1451	if (BUF_REFCNT(bp) > 1) {
1452		/* do not release to free list */
1453		BUF_UNLOCK(bp);
1454		return;
1455	}
1456
1457	if (bp->b_flags & B_MANAGED) {
1458		if (bp->b_flags & B_REMFREE) {
1459			mtx_lock(&bqlock);
1460			bremfreel(bp);
1461			mtx_unlock(&bqlock);
1462		}
1463		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1464		BUF_UNLOCK(bp);
1465		return;
1466	}
1467
1468	mtx_lock(&bqlock);
1469	/* Handle delayed bremfree() processing. */
1470	if (bp->b_flags & B_REMFREE)
1471		bremfreel(bp);
1472	if (bp->b_qindex != QUEUE_NONE)
1473		panic("bqrelse: free buffer onto another queue???");
1474	/* buffers with stale but valid contents */
1475	if (bp->b_flags & B_DELWRI) {
1476		if (bp->b_flags & B_NEEDSGIANT)
1477			bp->b_qindex = QUEUE_DIRTY_GIANT;
1478		else
1479			bp->b_qindex = QUEUE_DIRTY;
1480		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1481	} else {
1482		/*
1483		 * XXX This lock may not be necessary since BKGRDINPROG
1484		 * cannot be set while we hold the buf lock, it can only be
1485		 * cleared if it is already pending.
1486		 */
1487		BO_LOCK(bp->b_bufobj);
1488		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1489			BO_UNLOCK(bp->b_bufobj);
1490			bp->b_qindex = QUEUE_CLEAN;
1491			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1492			    b_freelist);
1493		} else {
1494			/*
1495			 * We are too low on memory, we have to try to free
1496			 * the buffer (most importantly: the wired pages
1497			 * making up its backing store) *now*.
1498			 */
1499			BO_UNLOCK(bp->b_bufobj);
1500			mtx_unlock(&bqlock);
1501			brelse(bp);
1502			return;
1503		}
1504	}
1505	mtx_unlock(&bqlock);
1506
1507	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1508		bufcountwakeup();
1509
1510	/*
1511	 * Something we can maybe free or reuse.
1512	 */
1513	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1514		bufspacewakeup();
1515
1516	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1517	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1518		panic("bqrelse: not dirty");
1519	/* unlock */
1520	BUF_UNLOCK(bp);
1521}
1522
1523/* Give pages used by the bp back to the VM system (where possible) */
1524static void
1525vfs_vmio_release(struct buf *bp)
1526{
1527	int i;
1528	vm_page_t m;
1529
1530	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1531	vm_page_lock_queues();
1532	for (i = 0; i < bp->b_npages; i++) {
1533		m = bp->b_pages[i];
1534		bp->b_pages[i] = NULL;
1535		/*
1536		 * In order to keep page LRU ordering consistent, put
1537		 * everything on the inactive queue.
1538		 */
1539		vm_page_unwire(m, 0);
1540		/*
1541		 * We don't mess with busy pages, it is
1542		 * the responsibility of the process that
1543		 * busied the pages to deal with them.
1544		 */
1545		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1546			continue;
1547
1548		if (m->wire_count == 0) {
1549			/*
1550			 * Might as well free the page if we can and it has
1551			 * no valid data.  We also free the page if the
1552			 * buffer was used for direct I/O
1553			 */
1554			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1555			    m->hold_count == 0) {
1556				vm_page_free(m);
1557			} else if (bp->b_flags & B_DIRECT) {
1558				vm_page_try_to_free(m);
1559			} else if (vm_page_count_severe()) {
1560				vm_page_try_to_cache(m);
1561			}
1562		}
1563	}
1564	vm_page_unlock_queues();
1565	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1566	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1567
1568	if (bp->b_bufsize) {
1569		bufspacewakeup();
1570		bp->b_bufsize = 0;
1571	}
1572	bp->b_npages = 0;
1573	bp->b_flags &= ~B_VMIO;
1574	if (bp->b_vp)
1575		brelvp(bp);
1576}
1577
1578/*
1579 * Check to see if a block at a particular lbn is available for a clustered
1580 * write.
1581 */
1582static int
1583vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1584{
1585	struct buf *bpa;
1586	int match;
1587
1588	match = 0;
1589
1590	/* If the buf isn't in core skip it */
1591	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1592		return (0);
1593
1594	/* If the buf is busy we don't want to wait for it */
1595	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1596		return (0);
1597
1598	/* Only cluster with valid clusterable delayed write buffers */
1599	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1600	    (B_DELWRI | B_CLUSTEROK))
1601		goto done;
1602
1603	if (bpa->b_bufsize != size)
1604		goto done;
1605
1606	/*
1607	 * Check to see if it is in the expected place on disk and that the
1608	 * block has been mapped.
1609	 */
1610	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1611		match = 1;
1612done:
1613	BUF_UNLOCK(bpa);
1614	return (match);
1615}
1616
1617/*
1618 *	vfs_bio_awrite:
1619 *
1620 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1621 *	This is much better then the old way of writing only one buffer at
1622 *	a time.  Note that we may not be presented with the buffers in the
1623 *	correct order, so we search for the cluster in both directions.
1624 */
1625int
1626vfs_bio_awrite(struct buf *bp)
1627{
1628	int i;
1629	int j;
1630	daddr_t lblkno = bp->b_lblkno;
1631	struct vnode *vp = bp->b_vp;
1632	int ncl;
1633	int nwritten;
1634	int size;
1635	int maxcl;
1636
1637	/*
1638	 * right now we support clustered writing only to regular files.  If
1639	 * we find a clusterable block we could be in the middle of a cluster
1640	 * rather then at the beginning.
1641	 */
1642	if ((vp->v_type == VREG) &&
1643	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1644	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1645
1646		size = vp->v_mount->mnt_stat.f_iosize;
1647		maxcl = MAXPHYS / size;
1648
1649		VI_LOCK(vp);
1650		for (i = 1; i < maxcl; i++)
1651			if (vfs_bio_clcheck(vp, size, lblkno + i,
1652			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1653				break;
1654
1655		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1656			if (vfs_bio_clcheck(vp, size, lblkno - j,
1657			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1658				break;
1659
1660		VI_UNLOCK(vp);
1661		--j;
1662		ncl = i + j;
1663		/*
1664		 * this is a possible cluster write
1665		 */
1666		if (ncl != 1) {
1667			BUF_UNLOCK(bp);
1668			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1669			return nwritten;
1670		}
1671	}
1672	bremfree(bp);
1673	bp->b_flags |= B_ASYNC;
1674	/*
1675	 * default (old) behavior, writing out only one block
1676	 *
1677	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1678	 */
1679	nwritten = bp->b_bufsize;
1680	(void) bwrite(bp);
1681
1682	return nwritten;
1683}
1684
1685/*
1686 *	getnewbuf:
1687 *
1688 *	Find and initialize a new buffer header, freeing up existing buffers
1689 *	in the bufqueues as necessary.  The new buffer is returned locked.
1690 *
1691 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1692 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1693 *
1694 *	We block if:
1695 *		We have insufficient buffer headers
1696 *		We have insufficient buffer space
1697 *		buffer_map is too fragmented ( space reservation fails )
1698 *		If we have to flush dirty buffers ( but we try to avoid this )
1699 *
1700 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1701 *	Instead we ask the buf daemon to do it for us.  We attempt to
1702 *	avoid piecemeal wakeups of the pageout daemon.
1703 */
1704
1705static struct buf *
1706getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1707{
1708	struct buf *bp;
1709	struct buf *nbp;
1710	int defrag = 0;
1711	int nqindex;
1712	static int flushingbufs;
1713
1714	/*
1715	 * We can't afford to block since we might be holding a vnode lock,
1716	 * which may prevent system daemons from running.  We deal with
1717	 * low-memory situations by proactively returning memory and running
1718	 * async I/O rather then sync I/O.
1719	 */
1720
1721	atomic_add_int(&getnewbufcalls, 1);
1722	atomic_subtract_int(&getnewbufrestarts, 1);
1723restart:
1724	atomic_add_int(&getnewbufrestarts, 1);
1725
1726	/*
1727	 * Setup for scan.  If we do not have enough free buffers,
1728	 * we setup a degenerate case that immediately fails.  Note
1729	 * that if we are specially marked process, we are allowed to
1730	 * dip into our reserves.
1731	 *
1732	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1733	 *
1734	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1735	 * However, there are a number of cases (defragging, reusing, ...)
1736	 * where we cannot backup.
1737	 */
1738	mtx_lock(&bqlock);
1739	nqindex = QUEUE_EMPTYKVA;
1740	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1741
1742	if (nbp == NULL) {
1743		/*
1744		 * If no EMPTYKVA buffers and we are either
1745		 * defragging or reusing, locate a CLEAN buffer
1746		 * to free or reuse.  If bufspace useage is low
1747		 * skip this step so we can allocate a new buffer.
1748		 */
1749		if (defrag || bufspace >= lobufspace) {
1750			nqindex = QUEUE_CLEAN;
1751			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1752		}
1753
1754		/*
1755		 * If we could not find or were not allowed to reuse a
1756		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1757		 * buffer.  We can only use an EMPTY buffer if allocating
1758		 * its KVA would not otherwise run us out of buffer space.
1759		 */
1760		if (nbp == NULL && defrag == 0 &&
1761		    bufspace + maxsize < hibufspace) {
1762			nqindex = QUEUE_EMPTY;
1763			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1764		}
1765	}
1766
1767	/*
1768	 * Run scan, possibly freeing data and/or kva mappings on the fly
1769	 * depending.
1770	 */
1771
1772	while ((bp = nbp) != NULL) {
1773		int qindex = nqindex;
1774
1775		/*
1776		 * Calculate next bp ( we can only use it if we do not block
1777		 * or do other fancy things ).
1778		 */
1779		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1780			switch(qindex) {
1781			case QUEUE_EMPTY:
1782				nqindex = QUEUE_EMPTYKVA;
1783				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1784					break;
1785				/* FALLTHROUGH */
1786			case QUEUE_EMPTYKVA:
1787				nqindex = QUEUE_CLEAN;
1788				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1789					break;
1790				/* FALLTHROUGH */
1791			case QUEUE_CLEAN:
1792				/*
1793				 * nbp is NULL.
1794				 */
1795				break;
1796			}
1797		}
1798		/*
1799		 * If we are defragging then we need a buffer with
1800		 * b_kvasize != 0.  XXX this situation should no longer
1801		 * occur, if defrag is non-zero the buffer's b_kvasize
1802		 * should also be non-zero at this point.  XXX
1803		 */
1804		if (defrag && bp->b_kvasize == 0) {
1805			printf("Warning: defrag empty buffer %p\n", bp);
1806			continue;
1807		}
1808
1809		/*
1810		 * Start freeing the bp.  This is somewhat involved.  nbp
1811		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1812		 */
1813		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1814			continue;
1815		if (bp->b_vp) {
1816			BO_LOCK(bp->b_bufobj);
1817			if (bp->b_vflags & BV_BKGRDINPROG) {
1818				BO_UNLOCK(bp->b_bufobj);
1819				BUF_UNLOCK(bp);
1820				continue;
1821			}
1822			BO_UNLOCK(bp->b_bufobj);
1823		}
1824		CTR6(KTR_BUF,
1825		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1826		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1827		    bp->b_kvasize, bp->b_bufsize, qindex);
1828
1829		/*
1830		 * Sanity Checks
1831		 */
1832		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1833
1834		/*
1835		 * Note: we no longer distinguish between VMIO and non-VMIO
1836		 * buffers.
1837		 */
1838
1839		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1840
1841		bremfreel(bp);
1842		mtx_unlock(&bqlock);
1843
1844		if (qindex == QUEUE_CLEAN) {
1845			if (bp->b_flags & B_VMIO) {
1846				bp->b_flags &= ~B_ASYNC;
1847				vfs_vmio_release(bp);
1848			}
1849			if (bp->b_vp)
1850				brelvp(bp);
1851		}
1852
1853		/*
1854		 * NOTE:  nbp is now entirely invalid.  We can only restart
1855		 * the scan from this point on.
1856		 *
1857		 * Get the rest of the buffer freed up.  b_kva* is still
1858		 * valid after this operation.
1859		 */
1860
1861		if (bp->b_rcred != NOCRED) {
1862			crfree(bp->b_rcred);
1863			bp->b_rcred = NOCRED;
1864		}
1865		if (bp->b_wcred != NOCRED) {
1866			crfree(bp->b_wcred);
1867			bp->b_wcred = NOCRED;
1868		}
1869		if (!LIST_EMPTY(&bp->b_dep))
1870			buf_deallocate(bp);
1871		if (bp->b_vflags & BV_BKGRDINPROG)
1872			panic("losing buffer 3");
1873		KASSERT(bp->b_vp == NULL,
1874		    ("bp: %p still has vnode %p.  qindex: %d",
1875		    bp, bp->b_vp, qindex));
1876		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1877		   ("bp: %p still on a buffer list. xflags %X",
1878		    bp, bp->b_xflags));
1879
1880		if (bp->b_bufsize)
1881			allocbuf(bp, 0);
1882
1883		bp->b_flags = 0;
1884		bp->b_ioflags = 0;
1885		bp->b_xflags = 0;
1886		bp->b_vflags = 0;
1887		bp->b_vp = NULL;
1888		bp->b_blkno = bp->b_lblkno = 0;
1889		bp->b_offset = NOOFFSET;
1890		bp->b_iodone = 0;
1891		bp->b_error = 0;
1892		bp->b_resid = 0;
1893		bp->b_bcount = 0;
1894		bp->b_npages = 0;
1895		bp->b_dirtyoff = bp->b_dirtyend = 0;
1896		bp->b_bufobj = NULL;
1897		bp->b_pin_count = 0;
1898		bp->b_fsprivate1 = NULL;
1899		bp->b_fsprivate2 = NULL;
1900		bp->b_fsprivate3 = NULL;
1901
1902		LIST_INIT(&bp->b_dep);
1903
1904		/*
1905		 * If we are defragging then free the buffer.
1906		 */
1907		if (defrag) {
1908			bp->b_flags |= B_INVAL;
1909			bfreekva(bp);
1910			brelse(bp);
1911			defrag = 0;
1912			goto restart;
1913		}
1914
1915		/*
1916		 * Notify any waiters for the buffer lock about
1917		 * identity change by freeing the buffer.
1918		 */
1919		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp) > 0) {
1920			bp->b_flags |= B_INVAL;
1921			bfreekva(bp);
1922			brelse(bp);
1923			goto restart;
1924		}
1925
1926		/*
1927		 * If we are overcomitted then recover the buffer and its
1928		 * KVM space.  This occurs in rare situations when multiple
1929		 * processes are blocked in getnewbuf() or allocbuf().
1930		 */
1931		if (bufspace >= hibufspace)
1932			flushingbufs = 1;
1933		if (flushingbufs && bp->b_kvasize != 0) {
1934			bp->b_flags |= B_INVAL;
1935			bfreekva(bp);
1936			brelse(bp);
1937			goto restart;
1938		}
1939		if (bufspace < lobufspace)
1940			flushingbufs = 0;
1941		break;
1942	}
1943
1944	/*
1945	 * If we exhausted our list, sleep as appropriate.  We may have to
1946	 * wakeup various daemons and write out some dirty buffers.
1947	 *
1948	 * Generally we are sleeping due to insufficient buffer space.
1949	 */
1950
1951	if (bp == NULL) {
1952		int flags;
1953		char *waitmsg;
1954
1955		if (defrag) {
1956			flags = VFS_BIO_NEED_BUFSPACE;
1957			waitmsg = "nbufkv";
1958		} else if (bufspace >= hibufspace) {
1959			waitmsg = "nbufbs";
1960			flags = VFS_BIO_NEED_BUFSPACE;
1961		} else {
1962			waitmsg = "newbuf";
1963			flags = VFS_BIO_NEED_ANY;
1964		}
1965		mtx_lock(&nblock);
1966		needsbuffer |= flags;
1967		mtx_unlock(&nblock);
1968		mtx_unlock(&bqlock);
1969
1970		bd_speedup();	/* heeeelp */
1971
1972		mtx_lock(&nblock);
1973		while (needsbuffer & flags) {
1974			if (msleep(&needsbuffer, &nblock,
1975			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1976				mtx_unlock(&nblock);
1977				return (NULL);
1978			}
1979		}
1980		mtx_unlock(&nblock);
1981	} else {
1982		/*
1983		 * We finally have a valid bp.  We aren't quite out of the
1984		 * woods, we still have to reserve kva space.  In order
1985		 * to keep fragmentation sane we only allocate kva in
1986		 * BKVASIZE chunks.
1987		 */
1988		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1989
1990		if (maxsize != bp->b_kvasize) {
1991			vm_offset_t addr = 0;
1992
1993			bfreekva(bp);
1994
1995			vm_map_lock(buffer_map);
1996			if (vm_map_findspace(buffer_map,
1997				vm_map_min(buffer_map), maxsize, &addr)) {
1998				/*
1999				 * Uh oh.  Buffer map is to fragmented.  We
2000				 * must defragment the map.
2001				 */
2002				atomic_add_int(&bufdefragcnt, 1);
2003				vm_map_unlock(buffer_map);
2004				defrag = 1;
2005				bp->b_flags |= B_INVAL;
2006				brelse(bp);
2007				goto restart;
2008			}
2009			if (addr) {
2010				vm_map_insert(buffer_map, NULL, 0,
2011					addr, addr + maxsize,
2012					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2013
2014				bp->b_kvabase = (caddr_t) addr;
2015				bp->b_kvasize = maxsize;
2016				atomic_add_int(&bufspace, bp->b_kvasize);
2017				atomic_add_int(&bufreusecnt, 1);
2018			}
2019			vm_map_unlock(buffer_map);
2020		}
2021		bp->b_saveaddr = bp->b_kvabase;
2022		bp->b_data = bp->b_saveaddr;
2023	}
2024	return(bp);
2025}
2026
2027/*
2028 *	buf_daemon:
2029 *
2030 *	buffer flushing daemon.  Buffers are normally flushed by the
2031 *	update daemon but if it cannot keep up this process starts to
2032 *	take the load in an attempt to prevent getnewbuf() from blocking.
2033 */
2034
2035static struct kproc_desc buf_kp = {
2036	"bufdaemon",
2037	buf_daemon,
2038	&bufdaemonproc
2039};
2040SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2041
2042static void
2043buf_daemon()
2044{
2045
2046	/*
2047	 * This process needs to be suspended prior to shutdown sync.
2048	 */
2049	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2050	    SHUTDOWN_PRI_LAST);
2051
2052	/*
2053	 * This process is allowed to take the buffer cache to the limit
2054	 */
2055	curthread->td_pflags |= TDP_NORUNNINGBUF;
2056	mtx_lock(&bdlock);
2057	for (;;) {
2058		bd_request = 0;
2059		mtx_unlock(&bdlock);
2060
2061		kthread_suspend_check(bufdaemonproc);
2062
2063		/*
2064		 * Do the flush.  Limit the amount of in-transit I/O we
2065		 * allow to build up, otherwise we would completely saturate
2066		 * the I/O system.  Wakeup any waiting processes before we
2067		 * normally would so they can run in parallel with our drain.
2068		 */
2069		while (numdirtybuffers > lodirtybuffers) {
2070			int flushed;
2071
2072			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2073			/* The list empty check here is slightly racy */
2074			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2075				mtx_lock(&Giant);
2076				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2077				mtx_unlock(&Giant);
2078			}
2079			if (flushed == 0) {
2080				/*
2081				 * Could not find any buffers without rollback
2082				 * dependencies, so just write the first one
2083				 * in the hopes of eventually making progress.
2084				 */
2085				flushbufqueues(QUEUE_DIRTY, 1);
2086				if (!TAILQ_EMPTY(
2087				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2088					mtx_lock(&Giant);
2089					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2090					mtx_unlock(&Giant);
2091				}
2092				break;
2093			}
2094			uio_yield();
2095		}
2096
2097		/*
2098		 * Only clear bd_request if we have reached our low water
2099		 * mark.  The buf_daemon normally waits 1 second and
2100		 * then incrementally flushes any dirty buffers that have
2101		 * built up, within reason.
2102		 *
2103		 * If we were unable to hit our low water mark and couldn't
2104		 * find any flushable buffers, we sleep half a second.
2105		 * Otherwise we loop immediately.
2106		 */
2107		mtx_lock(&bdlock);
2108		if (numdirtybuffers <= lodirtybuffers) {
2109			/*
2110			 * We reached our low water mark, reset the
2111			 * request and sleep until we are needed again.
2112			 * The sleep is just so the suspend code works.
2113			 */
2114			bd_request = 0;
2115			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2116		} else {
2117			/*
2118			 * We couldn't find any flushable dirty buffers but
2119			 * still have too many dirty buffers, we
2120			 * have to sleep and try again.  (rare)
2121			 */
2122			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2123		}
2124	}
2125}
2126
2127/*
2128 *	flushbufqueues:
2129 *
2130 *	Try to flush a buffer in the dirty queue.  We must be careful to
2131 *	free up B_INVAL buffers instead of write them, which NFS is
2132 *	particularly sensitive to.
2133 */
2134static int flushwithdeps = 0;
2135SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2136    0, "Number of buffers flushed with dependecies that require rollbacks");
2137
2138static int
2139flushbufqueues(int queue, int flushdeps)
2140{
2141	struct thread *td = curthread;
2142	struct buf sentinel;
2143	struct vnode *vp;
2144	struct mount *mp;
2145	struct buf *bp;
2146	int hasdeps;
2147	int flushed;
2148	int target;
2149
2150	target = numdirtybuffers - lodirtybuffers;
2151	if (flushdeps && target > 2)
2152		target /= 2;
2153	flushed = 0;
2154	bp = NULL;
2155	mtx_lock(&bqlock);
2156	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2157	while (flushed != target) {
2158		bp = TAILQ_FIRST(&bufqueues[queue]);
2159		if (bp == &sentinel)
2160			break;
2161		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2162		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2163
2164		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2165			continue;
2166		if (bp->b_pin_count > 0) {
2167			BUF_UNLOCK(bp);
2168			continue;
2169		}
2170		BO_LOCK(bp->b_bufobj);
2171		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2172		    (bp->b_flags & B_DELWRI) == 0) {
2173			BO_UNLOCK(bp->b_bufobj);
2174			BUF_UNLOCK(bp);
2175			continue;
2176		}
2177		BO_UNLOCK(bp->b_bufobj);
2178		if (bp->b_flags & B_INVAL) {
2179			bremfreel(bp);
2180			mtx_unlock(&bqlock);
2181			brelse(bp);
2182			flushed++;
2183			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2184			mtx_lock(&bqlock);
2185			continue;
2186		}
2187
2188		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2189			if (flushdeps == 0) {
2190				BUF_UNLOCK(bp);
2191				continue;
2192			}
2193			hasdeps = 1;
2194		} else
2195			hasdeps = 0;
2196		/*
2197		 * We must hold the lock on a vnode before writing
2198		 * one of its buffers. Otherwise we may confuse, or
2199		 * in the case of a snapshot vnode, deadlock the
2200		 * system.
2201		 *
2202		 * The lock order here is the reverse of the normal
2203		 * of vnode followed by buf lock.  This is ok because
2204		 * the NOWAIT will prevent deadlock.
2205		 */
2206		vp = bp->b_vp;
2207		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2208			BUF_UNLOCK(bp);
2209			continue;
2210		}
2211		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2212			mtx_unlock(&bqlock);
2213			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2214			    bp, bp->b_vp, bp->b_flags);
2215			vfs_bio_awrite(bp);
2216			vn_finished_write(mp);
2217			VOP_UNLOCK(vp, 0, td);
2218			flushwithdeps += hasdeps;
2219			flushed++;
2220			waitrunningbufspace();
2221			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2222			mtx_lock(&bqlock);
2223			continue;
2224		}
2225		vn_finished_write(mp);
2226		BUF_UNLOCK(bp);
2227	}
2228	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2229	mtx_unlock(&bqlock);
2230	return (flushed);
2231}
2232
2233/*
2234 * Check to see if a block is currently memory resident.
2235 */
2236struct buf *
2237incore(struct bufobj *bo, daddr_t blkno)
2238{
2239	struct buf *bp;
2240
2241	BO_LOCK(bo);
2242	bp = gbincore(bo, blkno);
2243	BO_UNLOCK(bo);
2244	return (bp);
2245}
2246
2247/*
2248 * Returns true if no I/O is needed to access the
2249 * associated VM object.  This is like incore except
2250 * it also hunts around in the VM system for the data.
2251 */
2252
2253static int
2254inmem(struct vnode * vp, daddr_t blkno)
2255{
2256	vm_object_t obj;
2257	vm_offset_t toff, tinc, size;
2258	vm_page_t m;
2259	vm_ooffset_t off;
2260
2261	ASSERT_VOP_LOCKED(vp, "inmem");
2262
2263	if (incore(&vp->v_bufobj, blkno))
2264		return 1;
2265	if (vp->v_mount == NULL)
2266		return 0;
2267	obj = vp->v_object;
2268	if (obj == NULL)
2269		return (0);
2270
2271	size = PAGE_SIZE;
2272	if (size > vp->v_mount->mnt_stat.f_iosize)
2273		size = vp->v_mount->mnt_stat.f_iosize;
2274	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2275
2276	VM_OBJECT_LOCK(obj);
2277	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2278		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2279		if (!m)
2280			goto notinmem;
2281		tinc = size;
2282		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2283			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2284		if (vm_page_is_valid(m,
2285		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2286			goto notinmem;
2287	}
2288	VM_OBJECT_UNLOCK(obj);
2289	return 1;
2290
2291notinmem:
2292	VM_OBJECT_UNLOCK(obj);
2293	return (0);
2294}
2295
2296/*
2297 *	vfs_setdirty:
2298 *
2299 *	Sets the dirty range for a buffer based on the status of the dirty
2300 *	bits in the pages comprising the buffer.
2301 *
2302 *	The range is limited to the size of the buffer.
2303 *
2304 *	This routine is primarily used by NFS, but is generalized for the
2305 *	B_VMIO case.
2306 */
2307static void
2308vfs_setdirty(struct buf *bp)
2309{
2310
2311	/*
2312	 * Degenerate case - empty buffer
2313	 */
2314
2315	if (bp->b_bufsize == 0)
2316		return;
2317
2318	/*
2319	 * We qualify the scan for modified pages on whether the
2320	 * object has been flushed yet.
2321	 */
2322
2323	if ((bp->b_flags & B_VMIO) == 0)
2324		return;
2325
2326	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2327	vfs_setdirty_locked_object(bp);
2328	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2329}
2330
2331static void
2332vfs_setdirty_locked_object(struct buf *bp)
2333{
2334	vm_object_t object;
2335	int i;
2336
2337	object = bp->b_bufobj->bo_object;
2338	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2339	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2340		vm_offset_t boffset;
2341		vm_offset_t eoffset;
2342
2343		vm_page_lock_queues();
2344		/*
2345		 * test the pages to see if they have been modified directly
2346		 * by users through the VM system.
2347		 */
2348		for (i = 0; i < bp->b_npages; i++)
2349			vm_page_test_dirty(bp->b_pages[i]);
2350
2351		/*
2352		 * Calculate the encompassing dirty range, boffset and eoffset,
2353		 * (eoffset - boffset) bytes.
2354		 */
2355
2356		for (i = 0; i < bp->b_npages; i++) {
2357			if (bp->b_pages[i]->dirty)
2358				break;
2359		}
2360		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2361
2362		for (i = bp->b_npages - 1; i >= 0; --i) {
2363			if (bp->b_pages[i]->dirty) {
2364				break;
2365			}
2366		}
2367		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2368
2369		vm_page_unlock_queues();
2370		/*
2371		 * Fit it to the buffer.
2372		 */
2373
2374		if (eoffset > bp->b_bcount)
2375			eoffset = bp->b_bcount;
2376
2377		/*
2378		 * If we have a good dirty range, merge with the existing
2379		 * dirty range.
2380		 */
2381
2382		if (boffset < eoffset) {
2383			if (bp->b_dirtyoff > boffset)
2384				bp->b_dirtyoff = boffset;
2385			if (bp->b_dirtyend < eoffset)
2386				bp->b_dirtyend = eoffset;
2387		}
2388	}
2389}
2390
2391/*
2392 *	getblk:
2393 *
2394 *	Get a block given a specified block and offset into a file/device.
2395 *	The buffers B_DONE bit will be cleared on return, making it almost
2396 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2397 *	return.  The caller should clear B_INVAL prior to initiating a
2398 *	READ.
2399 *
2400 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2401 *	an existing buffer.
2402 *
2403 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2404 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2405 *	and then cleared based on the backing VM.  If the previous buffer is
2406 *	non-0-sized but invalid, B_CACHE will be cleared.
2407 *
2408 *	If getblk() must create a new buffer, the new buffer is returned with
2409 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2410 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2411 *	backing VM.
2412 *
2413 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2414 *	B_CACHE bit is clear.
2415 *
2416 *	What this means, basically, is that the caller should use B_CACHE to
2417 *	determine whether the buffer is fully valid or not and should clear
2418 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2419 *	the buffer by loading its data area with something, the caller needs
2420 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2421 *	the caller should set B_CACHE ( as an optimization ), else the caller
2422 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2423 *	a write attempt or if it was a successfull read.  If the caller
2424 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2425 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2426 */
2427struct buf *
2428getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2429    int flags)
2430{
2431	struct buf *bp;
2432	struct bufobj *bo;
2433	int error;
2434
2435	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2436	ASSERT_VOP_LOCKED(vp, "getblk");
2437	if (size > MAXBSIZE)
2438		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2439
2440	bo = &vp->v_bufobj;
2441loop:
2442	/*
2443	 * Block if we are low on buffers.   Certain processes are allowed
2444	 * to completely exhaust the buffer cache.
2445         *
2446         * If this check ever becomes a bottleneck it may be better to
2447         * move it into the else, when gbincore() fails.  At the moment
2448         * it isn't a problem.
2449	 *
2450	 * XXX remove if 0 sections (clean this up after its proven)
2451         */
2452	if (numfreebuffers == 0) {
2453		if (TD_IS_IDLETHREAD(curthread))
2454			return NULL;
2455		mtx_lock(&nblock);
2456		needsbuffer |= VFS_BIO_NEED_ANY;
2457		mtx_unlock(&nblock);
2458	}
2459
2460	BO_LOCK(bo);
2461	bp = gbincore(bo, blkno);
2462	if (bp != NULL) {
2463		int lockflags;
2464		/*
2465		 * Buffer is in-core.  If the buffer is not busy, it must
2466		 * be on a queue.
2467		 */
2468		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2469
2470		if (flags & GB_LOCK_NOWAIT)
2471			lockflags |= LK_NOWAIT;
2472
2473		error = BUF_TIMELOCK(bp, lockflags,
2474		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2475
2476		/*
2477		 * If we slept and got the lock we have to restart in case
2478		 * the buffer changed identities.
2479		 */
2480		if (error == ENOLCK)
2481			goto loop;
2482		/* We timed out or were interrupted. */
2483		else if (error)
2484			return (NULL);
2485
2486		/*
2487		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2488		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2489		 * and for a VMIO buffer B_CACHE is adjusted according to the
2490		 * backing VM cache.
2491		 */
2492		if (bp->b_flags & B_INVAL)
2493			bp->b_flags &= ~B_CACHE;
2494		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2495			bp->b_flags |= B_CACHE;
2496		bremfree(bp);
2497
2498		/*
2499		 * check for size inconsistancies for non-VMIO case.
2500		 */
2501
2502		if (bp->b_bcount != size) {
2503			if ((bp->b_flags & B_VMIO) == 0 ||
2504			    (size > bp->b_kvasize)) {
2505				if (bp->b_flags & B_DELWRI) {
2506					/*
2507					 * If buffer is pinned and caller does
2508					 * not want sleep  waiting for it to be
2509					 * unpinned, bail out
2510					 * */
2511					if (bp->b_pin_count > 0) {
2512						if (flags & GB_LOCK_NOWAIT) {
2513							bqrelse(bp);
2514							return (NULL);
2515						} else {
2516							bunpin_wait(bp);
2517						}
2518					}
2519					bp->b_flags |= B_NOCACHE;
2520					bwrite(bp);
2521				} else {
2522					if (LIST_EMPTY(&bp->b_dep)) {
2523						bp->b_flags |= B_RELBUF;
2524						brelse(bp);
2525					} else {
2526						bp->b_flags |= B_NOCACHE;
2527						bwrite(bp);
2528					}
2529				}
2530				goto loop;
2531			}
2532		}
2533
2534		/*
2535		 * If the size is inconsistant in the VMIO case, we can resize
2536		 * the buffer.  This might lead to B_CACHE getting set or
2537		 * cleared.  If the size has not changed, B_CACHE remains
2538		 * unchanged from its previous state.
2539		 */
2540
2541		if (bp->b_bcount != size)
2542			allocbuf(bp, size);
2543
2544		KASSERT(bp->b_offset != NOOFFSET,
2545		    ("getblk: no buffer offset"));
2546
2547		/*
2548		 * A buffer with B_DELWRI set and B_CACHE clear must
2549		 * be committed before we can return the buffer in
2550		 * order to prevent the caller from issuing a read
2551		 * ( due to B_CACHE not being set ) and overwriting
2552		 * it.
2553		 *
2554		 * Most callers, including NFS and FFS, need this to
2555		 * operate properly either because they assume they
2556		 * can issue a read if B_CACHE is not set, or because
2557		 * ( for example ) an uncached B_DELWRI might loop due
2558		 * to softupdates re-dirtying the buffer.  In the latter
2559		 * case, B_CACHE is set after the first write completes,
2560		 * preventing further loops.
2561		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2562		 * above while extending the buffer, we cannot allow the
2563		 * buffer to remain with B_CACHE set after the write
2564		 * completes or it will represent a corrupt state.  To
2565		 * deal with this we set B_NOCACHE to scrap the buffer
2566		 * after the write.
2567		 *
2568		 * We might be able to do something fancy, like setting
2569		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2570		 * so the below call doesn't set B_CACHE, but that gets real
2571		 * confusing.  This is much easier.
2572		 */
2573
2574		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2575			bp->b_flags |= B_NOCACHE;
2576			bwrite(bp);
2577			goto loop;
2578		}
2579		bp->b_flags &= ~B_DONE;
2580	} else {
2581		int bsize, maxsize, vmio;
2582		off_t offset;
2583
2584		/*
2585		 * Buffer is not in-core, create new buffer.  The buffer
2586		 * returned by getnewbuf() is locked.  Note that the returned
2587		 * buffer is also considered valid (not marked B_INVAL).
2588		 */
2589		BO_UNLOCK(bo);
2590		/*
2591		 * If the user does not want us to create the buffer, bail out
2592		 * here.
2593		 */
2594		if (flags & GB_NOCREAT)
2595			return NULL;
2596		bsize = bo->bo_bsize;
2597		offset = blkno * bsize;
2598		vmio = vp->v_object != NULL;
2599		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2600		maxsize = imax(maxsize, bsize);
2601
2602		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2603		if (bp == NULL) {
2604			if (slpflag || slptimeo)
2605				return NULL;
2606			goto loop;
2607		}
2608
2609		/*
2610		 * This code is used to make sure that a buffer is not
2611		 * created while the getnewbuf routine is blocked.
2612		 * This can be a problem whether the vnode is locked or not.
2613		 * If the buffer is created out from under us, we have to
2614		 * throw away the one we just created.
2615		 *
2616		 * Note: this must occur before we associate the buffer
2617		 * with the vp especially considering limitations in
2618		 * the splay tree implementation when dealing with duplicate
2619		 * lblkno's.
2620		 */
2621		BO_LOCK(bo);
2622		if (gbincore(bo, blkno)) {
2623			BO_UNLOCK(bo);
2624			bp->b_flags |= B_INVAL;
2625			brelse(bp);
2626			goto loop;
2627		}
2628
2629		/*
2630		 * Insert the buffer into the hash, so that it can
2631		 * be found by incore.
2632		 */
2633		bp->b_blkno = bp->b_lblkno = blkno;
2634		bp->b_offset = offset;
2635		bgetvp(vp, bp);
2636		BO_UNLOCK(bo);
2637
2638		/*
2639		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2640		 * buffer size starts out as 0, B_CACHE will be set by
2641		 * allocbuf() for the VMIO case prior to it testing the
2642		 * backing store for validity.
2643		 */
2644
2645		if (vmio) {
2646			bp->b_flags |= B_VMIO;
2647#if defined(VFS_BIO_DEBUG)
2648			if (vn_canvmio(vp) != TRUE)
2649				printf("getblk: VMIO on vnode type %d\n",
2650					vp->v_type);
2651#endif
2652			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2653			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2654			    bp, vp->v_object, bp->b_bufobj->bo_object));
2655		} else {
2656			bp->b_flags &= ~B_VMIO;
2657			KASSERT(bp->b_bufobj->bo_object == NULL,
2658			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2659			    bp, bp->b_bufobj->bo_object));
2660		}
2661
2662		allocbuf(bp, size);
2663		bp->b_flags &= ~B_DONE;
2664	}
2665	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2666	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2667	KASSERT(bp->b_bufobj == bo,
2668	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2669	return (bp);
2670}
2671
2672/*
2673 * Get an empty, disassociated buffer of given size.  The buffer is initially
2674 * set to B_INVAL.
2675 */
2676struct buf *
2677geteblk(int size)
2678{
2679	struct buf *bp;
2680	int maxsize;
2681
2682	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2683	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2684		continue;
2685	allocbuf(bp, size);
2686	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2687	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2688	return (bp);
2689}
2690
2691
2692/*
2693 * This code constitutes the buffer memory from either anonymous system
2694 * memory (in the case of non-VMIO operations) or from an associated
2695 * VM object (in the case of VMIO operations).  This code is able to
2696 * resize a buffer up or down.
2697 *
2698 * Note that this code is tricky, and has many complications to resolve
2699 * deadlock or inconsistant data situations.  Tread lightly!!!
2700 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2701 * the caller.  Calling this code willy nilly can result in the loss of data.
2702 *
2703 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2704 * B_CACHE for the non-VMIO case.
2705 */
2706
2707int
2708allocbuf(struct buf *bp, int size)
2709{
2710	int newbsize, mbsize;
2711	int i;
2712
2713	if (BUF_REFCNT(bp) == 0)
2714		panic("allocbuf: buffer not busy");
2715
2716	if (bp->b_kvasize < size)
2717		panic("allocbuf: buffer too small");
2718
2719	if ((bp->b_flags & B_VMIO) == 0) {
2720		caddr_t origbuf;
2721		int origbufsize;
2722		/*
2723		 * Just get anonymous memory from the kernel.  Don't
2724		 * mess with B_CACHE.
2725		 */
2726		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2727		if (bp->b_flags & B_MALLOC)
2728			newbsize = mbsize;
2729		else
2730			newbsize = round_page(size);
2731
2732		if (newbsize < bp->b_bufsize) {
2733			/*
2734			 * malloced buffers are not shrunk
2735			 */
2736			if (bp->b_flags & B_MALLOC) {
2737				if (newbsize) {
2738					bp->b_bcount = size;
2739				} else {
2740					free(bp->b_data, M_BIOBUF);
2741					if (bp->b_bufsize) {
2742						atomic_subtract_int(
2743						    &bufmallocspace,
2744						    bp->b_bufsize);
2745						bufspacewakeup();
2746						bp->b_bufsize = 0;
2747					}
2748					bp->b_saveaddr = bp->b_kvabase;
2749					bp->b_data = bp->b_saveaddr;
2750					bp->b_bcount = 0;
2751					bp->b_flags &= ~B_MALLOC;
2752				}
2753				return 1;
2754			}
2755			vm_hold_free_pages(
2756			    bp,
2757			    (vm_offset_t) bp->b_data + newbsize,
2758			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2759		} else if (newbsize > bp->b_bufsize) {
2760			/*
2761			 * We only use malloced memory on the first allocation.
2762			 * and revert to page-allocated memory when the buffer
2763			 * grows.
2764			 */
2765			/*
2766			 * There is a potential smp race here that could lead
2767			 * to bufmallocspace slightly passing the max.  It
2768			 * is probably extremely rare and not worth worrying
2769			 * over.
2770			 */
2771			if ( (bufmallocspace < maxbufmallocspace) &&
2772				(bp->b_bufsize == 0) &&
2773				(mbsize <= PAGE_SIZE/2)) {
2774
2775				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2776				bp->b_bufsize = mbsize;
2777				bp->b_bcount = size;
2778				bp->b_flags |= B_MALLOC;
2779				atomic_add_int(&bufmallocspace, mbsize);
2780				return 1;
2781			}
2782			origbuf = NULL;
2783			origbufsize = 0;
2784			/*
2785			 * If the buffer is growing on its other-than-first allocation,
2786			 * then we revert to the page-allocation scheme.
2787			 */
2788			if (bp->b_flags & B_MALLOC) {
2789				origbuf = bp->b_data;
2790				origbufsize = bp->b_bufsize;
2791				bp->b_data = bp->b_kvabase;
2792				if (bp->b_bufsize) {
2793					atomic_subtract_int(&bufmallocspace,
2794					    bp->b_bufsize);
2795					bufspacewakeup();
2796					bp->b_bufsize = 0;
2797				}
2798				bp->b_flags &= ~B_MALLOC;
2799				newbsize = round_page(newbsize);
2800			}
2801			vm_hold_load_pages(
2802			    bp,
2803			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2804			    (vm_offset_t) bp->b_data + newbsize);
2805			if (origbuf) {
2806				bcopy(origbuf, bp->b_data, origbufsize);
2807				free(origbuf, M_BIOBUF);
2808			}
2809		}
2810	} else {
2811		int desiredpages;
2812
2813		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2814		desiredpages = (size == 0) ? 0 :
2815			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2816
2817		if (bp->b_flags & B_MALLOC)
2818			panic("allocbuf: VMIO buffer can't be malloced");
2819		/*
2820		 * Set B_CACHE initially if buffer is 0 length or will become
2821		 * 0-length.
2822		 */
2823		if (size == 0 || bp->b_bufsize == 0)
2824			bp->b_flags |= B_CACHE;
2825
2826		if (newbsize < bp->b_bufsize) {
2827			/*
2828			 * DEV_BSIZE aligned new buffer size is less then the
2829			 * DEV_BSIZE aligned existing buffer size.  Figure out
2830			 * if we have to remove any pages.
2831			 */
2832			if (desiredpages < bp->b_npages) {
2833				vm_page_t m;
2834
2835				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2836				vm_page_lock_queues();
2837				for (i = desiredpages; i < bp->b_npages; i++) {
2838					/*
2839					 * the page is not freed here -- it
2840					 * is the responsibility of
2841					 * vnode_pager_setsize
2842					 */
2843					m = bp->b_pages[i];
2844					KASSERT(m != bogus_page,
2845					    ("allocbuf: bogus page found"));
2846					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2847						vm_page_lock_queues();
2848
2849					bp->b_pages[i] = NULL;
2850					vm_page_unwire(m, 0);
2851				}
2852				vm_page_unlock_queues();
2853				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2854				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2855				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2856				bp->b_npages = desiredpages;
2857			}
2858		} else if (size > bp->b_bcount) {
2859			/*
2860			 * We are growing the buffer, possibly in a
2861			 * byte-granular fashion.
2862			 */
2863			struct vnode *vp;
2864			vm_object_t obj;
2865			vm_offset_t toff;
2866			vm_offset_t tinc;
2867
2868			/*
2869			 * Step 1, bring in the VM pages from the object,
2870			 * allocating them if necessary.  We must clear
2871			 * B_CACHE if these pages are not valid for the
2872			 * range covered by the buffer.
2873			 */
2874
2875			vp = bp->b_vp;
2876			obj = bp->b_bufobj->bo_object;
2877
2878			VM_OBJECT_LOCK(obj);
2879			while (bp->b_npages < desiredpages) {
2880				vm_page_t m;
2881				vm_pindex_t pi;
2882
2883				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2884				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2885					/*
2886					 * note: must allocate system pages
2887					 * since blocking here could intefere
2888					 * with paging I/O, no matter which
2889					 * process we are.
2890					 */
2891					m = vm_page_alloc(obj, pi,
2892					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2893					    VM_ALLOC_WIRED);
2894					if (m == NULL) {
2895						atomic_add_int(&vm_pageout_deficit,
2896						    desiredpages - bp->b_npages);
2897						VM_OBJECT_UNLOCK(obj);
2898						VM_WAIT;
2899						VM_OBJECT_LOCK(obj);
2900					} else {
2901						if (m->valid == 0)
2902							bp->b_flags &= ~B_CACHE;
2903						bp->b_pages[bp->b_npages] = m;
2904						++bp->b_npages;
2905					}
2906					continue;
2907				}
2908
2909				/*
2910				 * We found a page.  If we have to sleep on it,
2911				 * retry because it might have gotten freed out
2912				 * from under us.
2913				 *
2914				 * We can only test VPO_BUSY here.  Blocking on
2915				 * m->busy might lead to a deadlock:
2916				 *
2917				 *  vm_fault->getpages->cluster_read->allocbuf
2918				 *
2919				 */
2920				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2921					continue;
2922
2923				/*
2924				 * We have a good page.
2925				 */
2926				vm_page_lock_queues();
2927				vm_page_wire(m);
2928				vm_page_unlock_queues();
2929				bp->b_pages[bp->b_npages] = m;
2930				++bp->b_npages;
2931			}
2932
2933			/*
2934			 * Step 2.  We've loaded the pages into the buffer,
2935			 * we have to figure out if we can still have B_CACHE
2936			 * set.  Note that B_CACHE is set according to the
2937			 * byte-granular range ( bcount and size ), new the
2938			 * aligned range ( newbsize ).
2939			 *
2940			 * The VM test is against m->valid, which is DEV_BSIZE
2941			 * aligned.  Needless to say, the validity of the data
2942			 * needs to also be DEV_BSIZE aligned.  Note that this
2943			 * fails with NFS if the server or some other client
2944			 * extends the file's EOF.  If our buffer is resized,
2945			 * B_CACHE may remain set! XXX
2946			 */
2947
2948			toff = bp->b_bcount;
2949			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2950
2951			while ((bp->b_flags & B_CACHE) && toff < size) {
2952				vm_pindex_t pi;
2953
2954				if (tinc > (size - toff))
2955					tinc = size - toff;
2956
2957				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2958				    PAGE_SHIFT;
2959
2960				vfs_buf_test_cache(
2961				    bp,
2962				    bp->b_offset,
2963				    toff,
2964				    tinc,
2965				    bp->b_pages[pi]
2966				);
2967				toff += tinc;
2968				tinc = PAGE_SIZE;
2969			}
2970			VM_OBJECT_UNLOCK(obj);
2971
2972			/*
2973			 * Step 3, fixup the KVM pmap.  Remember that
2974			 * bp->b_data is relative to bp->b_offset, but
2975			 * bp->b_offset may be offset into the first page.
2976			 */
2977
2978			bp->b_data = (caddr_t)
2979			    trunc_page((vm_offset_t)bp->b_data);
2980			pmap_qenter(
2981			    (vm_offset_t)bp->b_data,
2982			    bp->b_pages,
2983			    bp->b_npages
2984			);
2985
2986			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2987			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2988		}
2989	}
2990	if (newbsize < bp->b_bufsize)
2991		bufspacewakeup();
2992	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2993	bp->b_bcount = size;		/* requested buffer size	*/
2994	return 1;
2995}
2996
2997void
2998biodone(struct bio *bp)
2999{
3000	void (*done)(struct bio *);
3001
3002	mtx_lock(&bdonelock);
3003	bp->bio_flags |= BIO_DONE;
3004	done = bp->bio_done;
3005	if (done == NULL)
3006		wakeup(bp);
3007	mtx_unlock(&bdonelock);
3008	if (done != NULL)
3009		done(bp);
3010}
3011
3012/*
3013 * Wait for a BIO to finish.
3014 *
3015 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3016 * case is not yet clear.
3017 */
3018int
3019biowait(struct bio *bp, const char *wchan)
3020{
3021
3022	mtx_lock(&bdonelock);
3023	while ((bp->bio_flags & BIO_DONE) == 0)
3024		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3025	mtx_unlock(&bdonelock);
3026	if (bp->bio_error != 0)
3027		return (bp->bio_error);
3028	if (!(bp->bio_flags & BIO_ERROR))
3029		return (0);
3030	return (EIO);
3031}
3032
3033void
3034biofinish(struct bio *bp, struct devstat *stat, int error)
3035{
3036
3037	if (error) {
3038		bp->bio_error = error;
3039		bp->bio_flags |= BIO_ERROR;
3040	}
3041	if (stat != NULL)
3042		devstat_end_transaction_bio(stat, bp);
3043	biodone(bp);
3044}
3045
3046/*
3047 *	bufwait:
3048 *
3049 *	Wait for buffer I/O completion, returning error status.  The buffer
3050 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3051 *	error and cleared.
3052 */
3053int
3054bufwait(struct buf *bp)
3055{
3056	if (bp->b_iocmd == BIO_READ)
3057		bwait(bp, PRIBIO, "biord");
3058	else
3059		bwait(bp, PRIBIO, "biowr");
3060	if (bp->b_flags & B_EINTR) {
3061		bp->b_flags &= ~B_EINTR;
3062		return (EINTR);
3063	}
3064	if (bp->b_ioflags & BIO_ERROR) {
3065		return (bp->b_error ? bp->b_error : EIO);
3066	} else {
3067		return (0);
3068	}
3069}
3070
3071 /*
3072  * Call back function from struct bio back up to struct buf.
3073  */
3074static void
3075bufdonebio(struct bio *bip)
3076{
3077	struct buf *bp;
3078
3079	bp = bip->bio_caller2;
3080	bp->b_resid = bp->b_bcount - bip->bio_completed;
3081	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3082	bp->b_ioflags = bip->bio_flags;
3083	bp->b_error = bip->bio_error;
3084	if (bp->b_error)
3085		bp->b_ioflags |= BIO_ERROR;
3086	bufdone(bp);
3087	g_destroy_bio(bip);
3088}
3089
3090void
3091dev_strategy(struct cdev *dev, struct buf *bp)
3092{
3093	struct cdevsw *csw;
3094	struct bio *bip;
3095
3096	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3097		panic("b_iocmd botch");
3098	for (;;) {
3099		bip = g_new_bio();
3100		if (bip != NULL)
3101			break;
3102		/* Try again later */
3103		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3104	}
3105	bip->bio_cmd = bp->b_iocmd;
3106	bip->bio_offset = bp->b_iooffset;
3107	bip->bio_length = bp->b_bcount;
3108	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3109	bip->bio_data = bp->b_data;
3110	bip->bio_done = bufdonebio;
3111	bip->bio_caller2 = bp;
3112	bip->bio_dev = dev;
3113	KASSERT(dev->si_refcount > 0,
3114	    ("dev_strategy on un-referenced struct cdev *(%s)",
3115	    devtoname(dev)));
3116	csw = dev_refthread(dev);
3117	if (csw == NULL) {
3118		g_destroy_bio(bip);
3119		bp->b_error = ENXIO;
3120		bp->b_ioflags = BIO_ERROR;
3121		bufdone(bp);
3122		return;
3123	}
3124	(*csw->d_strategy)(bip);
3125	dev_relthread(dev);
3126}
3127
3128/*
3129 *	bufdone:
3130 *
3131 *	Finish I/O on a buffer, optionally calling a completion function.
3132 *	This is usually called from an interrupt so process blocking is
3133 *	not allowed.
3134 *
3135 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3136 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3137 *	assuming B_INVAL is clear.
3138 *
3139 *	For the VMIO case, we set B_CACHE if the op was a read and no
3140 *	read error occured, or if the op was a write.  B_CACHE is never
3141 *	set if the buffer is invalid or otherwise uncacheable.
3142 *
3143 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3144 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3145 *	in the biodone routine.
3146 */
3147void
3148bufdone(struct buf *bp)
3149{
3150	struct bufobj *dropobj;
3151	void    (*biodone)(struct buf *);
3152
3153	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3154	dropobj = NULL;
3155
3156	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3157	    BUF_REFCNT(bp)));
3158	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3159
3160	runningbufwakeup(bp);
3161	if (bp->b_iocmd == BIO_WRITE)
3162		dropobj = bp->b_bufobj;
3163	/* call optional completion function if requested */
3164	if (bp->b_iodone != NULL) {
3165		biodone = bp->b_iodone;
3166		bp->b_iodone = NULL;
3167		(*biodone) (bp);
3168		if (dropobj)
3169			bufobj_wdrop(dropobj);
3170		return;
3171	}
3172
3173	bufdone_finish(bp);
3174
3175	if (dropobj)
3176		bufobj_wdrop(dropobj);
3177}
3178
3179void
3180bufdone_finish(struct buf *bp)
3181{
3182	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3183	    BUF_REFCNT(bp)));
3184
3185	if (!LIST_EMPTY(&bp->b_dep))
3186		buf_complete(bp);
3187
3188	if (bp->b_flags & B_VMIO) {
3189		int i;
3190		vm_ooffset_t foff;
3191		vm_page_t m;
3192		vm_object_t obj;
3193		int iosize;
3194		struct vnode *vp = bp->b_vp;
3195		boolean_t are_queues_locked;
3196
3197		obj = bp->b_bufobj->bo_object;
3198
3199#if defined(VFS_BIO_DEBUG)
3200		mp_fixme("usecount and vflag accessed without locks.");
3201		if (vp->v_usecount == 0) {
3202			panic("biodone: zero vnode ref count");
3203		}
3204
3205		KASSERT(vp->v_object != NULL,
3206			("biodone: vnode %p has no vm_object", vp));
3207#endif
3208
3209		foff = bp->b_offset;
3210		KASSERT(bp->b_offset != NOOFFSET,
3211		    ("biodone: no buffer offset"));
3212
3213		VM_OBJECT_LOCK(obj);
3214#if defined(VFS_BIO_DEBUG)
3215		if (obj->paging_in_progress < bp->b_npages) {
3216			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3217			    obj->paging_in_progress, bp->b_npages);
3218		}
3219#endif
3220
3221		/*
3222		 * Set B_CACHE if the op was a normal read and no error
3223		 * occured.  B_CACHE is set for writes in the b*write()
3224		 * routines.
3225		 */
3226		iosize = bp->b_bcount - bp->b_resid;
3227		if (bp->b_iocmd == BIO_READ &&
3228		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3229		    !(bp->b_ioflags & BIO_ERROR)) {
3230			bp->b_flags |= B_CACHE;
3231		}
3232		if (bp->b_iocmd == BIO_READ) {
3233			vm_page_lock_queues();
3234			are_queues_locked = TRUE;
3235		} else
3236			are_queues_locked = FALSE;
3237		for (i = 0; i < bp->b_npages; i++) {
3238			int bogusflag = 0;
3239			int resid;
3240
3241			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3242			if (resid > iosize)
3243				resid = iosize;
3244
3245			/*
3246			 * cleanup bogus pages, restoring the originals
3247			 */
3248			m = bp->b_pages[i];
3249			if (m == bogus_page) {
3250				bogusflag = 1;
3251				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3252				if (m == NULL)
3253					panic("biodone: page disappeared!");
3254				bp->b_pages[i] = m;
3255				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3256				    bp->b_pages, bp->b_npages);
3257			}
3258#if defined(VFS_BIO_DEBUG)
3259			if (OFF_TO_IDX(foff) != m->pindex) {
3260				printf(
3261"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3262				    (intmax_t)foff, (uintmax_t)m->pindex);
3263			}
3264#endif
3265
3266			/*
3267			 * In the write case, the valid and clean bits are
3268			 * already changed correctly ( see bdwrite() ), so we
3269			 * only need to do this here in the read case.
3270			 */
3271			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3272				vfs_page_set_valid(bp, foff, i, m);
3273			}
3274
3275			/*
3276			 * when debugging new filesystems or buffer I/O methods, this
3277			 * is the most common error that pops up.  if you see this, you
3278			 * have not set the page busy flag correctly!!!
3279			 */
3280			if (m->busy == 0) {
3281				printf("biodone: page busy < 0, "
3282				    "pindex: %d, foff: 0x(%x,%x), "
3283				    "resid: %d, index: %d\n",
3284				    (int) m->pindex, (int)(foff >> 32),
3285						(int) foff & 0xffffffff, resid, i);
3286				if (!vn_isdisk(vp, NULL))
3287					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3288					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3289					    (intmax_t) bp->b_lblkno,
3290					    bp->b_flags, bp->b_npages);
3291				else
3292					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3293					    (intmax_t) bp->b_lblkno,
3294					    bp->b_flags, bp->b_npages);
3295				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3296				    (u_long)m->valid, (u_long)m->dirty,
3297				    m->wire_count);
3298				panic("biodone: page busy < 0\n");
3299			}
3300			vm_page_io_finish(m);
3301			vm_object_pip_subtract(obj, 1);
3302			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3303			iosize -= resid;
3304		}
3305		if (are_queues_locked)
3306			vm_page_unlock_queues();
3307		vm_object_pip_wakeupn(obj, 0);
3308		VM_OBJECT_UNLOCK(obj);
3309	}
3310
3311	/*
3312	 * For asynchronous completions, release the buffer now. The brelse
3313	 * will do a wakeup there if necessary - so no need to do a wakeup
3314	 * here in the async case. The sync case always needs to do a wakeup.
3315	 */
3316
3317	if (bp->b_flags & B_ASYNC) {
3318		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3319			brelse(bp);
3320		else
3321			bqrelse(bp);
3322	} else
3323		bdone(bp);
3324}
3325
3326/*
3327 * This routine is called in lieu of iodone in the case of
3328 * incomplete I/O.  This keeps the busy status for pages
3329 * consistant.
3330 */
3331void
3332vfs_unbusy_pages(struct buf *bp)
3333{
3334	int i;
3335	vm_object_t obj;
3336	vm_page_t m;
3337
3338	runningbufwakeup(bp);
3339	if (!(bp->b_flags & B_VMIO))
3340		return;
3341
3342	obj = bp->b_bufobj->bo_object;
3343	VM_OBJECT_LOCK(obj);
3344	for (i = 0; i < bp->b_npages; i++) {
3345		m = bp->b_pages[i];
3346		if (m == bogus_page) {
3347			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3348			if (!m)
3349				panic("vfs_unbusy_pages: page missing\n");
3350			bp->b_pages[i] = m;
3351			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3352			    bp->b_pages, bp->b_npages);
3353		}
3354		vm_object_pip_subtract(obj, 1);
3355		vm_page_io_finish(m);
3356	}
3357	vm_object_pip_wakeupn(obj, 0);
3358	VM_OBJECT_UNLOCK(obj);
3359}
3360
3361/*
3362 * vfs_page_set_valid:
3363 *
3364 *	Set the valid bits in a page based on the supplied offset.   The
3365 *	range is restricted to the buffer's size.
3366 *
3367 *	This routine is typically called after a read completes.
3368 */
3369static void
3370vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3371{
3372	vm_ooffset_t soff, eoff;
3373
3374	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3375	/*
3376	 * Start and end offsets in buffer.  eoff - soff may not cross a
3377	 * page boundry or cross the end of the buffer.  The end of the
3378	 * buffer, in this case, is our file EOF, not the allocation size
3379	 * of the buffer.
3380	 */
3381	soff = off;
3382	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3383	if (eoff > bp->b_offset + bp->b_bcount)
3384		eoff = bp->b_offset + bp->b_bcount;
3385
3386	/*
3387	 * Set valid range.  This is typically the entire buffer and thus the
3388	 * entire page.
3389	 */
3390	if (eoff > soff) {
3391		vm_page_set_validclean(
3392		    m,
3393		   (vm_offset_t) (soff & PAGE_MASK),
3394		   (vm_offset_t) (eoff - soff)
3395		);
3396	}
3397}
3398
3399/*
3400 * This routine is called before a device strategy routine.
3401 * It is used to tell the VM system that paging I/O is in
3402 * progress, and treat the pages associated with the buffer
3403 * almost as being VPO_BUSY.  Also the object paging_in_progress
3404 * flag is handled to make sure that the object doesn't become
3405 * inconsistant.
3406 *
3407 * Since I/O has not been initiated yet, certain buffer flags
3408 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3409 * and should be ignored.
3410 */
3411void
3412vfs_busy_pages(struct buf *bp, int clear_modify)
3413{
3414	int i, bogus;
3415	vm_object_t obj;
3416	vm_ooffset_t foff;
3417	vm_page_t m;
3418
3419	if (!(bp->b_flags & B_VMIO))
3420		return;
3421
3422	obj = bp->b_bufobj->bo_object;
3423	foff = bp->b_offset;
3424	KASSERT(bp->b_offset != NOOFFSET,
3425	    ("vfs_busy_pages: no buffer offset"));
3426	VM_OBJECT_LOCK(obj);
3427	if (bp->b_bufsize != 0)
3428		vfs_setdirty_locked_object(bp);
3429retry:
3430	for (i = 0; i < bp->b_npages; i++) {
3431		m = bp->b_pages[i];
3432
3433		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3434			goto retry;
3435	}
3436	bogus = 0;
3437	vm_page_lock_queues();
3438	for (i = 0; i < bp->b_npages; i++) {
3439		m = bp->b_pages[i];
3440
3441		if ((bp->b_flags & B_CLUSTER) == 0) {
3442			vm_object_pip_add(obj, 1);
3443			vm_page_io_start(m);
3444		}
3445		/*
3446		 * When readying a buffer for a read ( i.e
3447		 * clear_modify == 0 ), it is important to do
3448		 * bogus_page replacement for valid pages in
3449		 * partially instantiated buffers.  Partially
3450		 * instantiated buffers can, in turn, occur when
3451		 * reconstituting a buffer from its VM backing store
3452		 * base.  We only have to do this if B_CACHE is
3453		 * clear ( which causes the I/O to occur in the
3454		 * first place ).  The replacement prevents the read
3455		 * I/O from overwriting potentially dirty VM-backed
3456		 * pages.  XXX bogus page replacement is, uh, bogus.
3457		 * It may not work properly with small-block devices.
3458		 * We need to find a better way.
3459		 */
3460		pmap_remove_all(m);
3461		if (clear_modify)
3462			vfs_page_set_valid(bp, foff, i, m);
3463		else if (m->valid == VM_PAGE_BITS_ALL &&
3464		    (bp->b_flags & B_CACHE) == 0) {
3465			bp->b_pages[i] = bogus_page;
3466			bogus++;
3467		}
3468		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3469	}
3470	vm_page_unlock_queues();
3471	VM_OBJECT_UNLOCK(obj);
3472	if (bogus)
3473		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3474		    bp->b_pages, bp->b_npages);
3475}
3476
3477/*
3478 * Tell the VM system that the pages associated with this buffer
3479 * are clean.  This is used for delayed writes where the data is
3480 * going to go to disk eventually without additional VM intevention.
3481 *
3482 * Note that while we only really need to clean through to b_bcount, we
3483 * just go ahead and clean through to b_bufsize.
3484 */
3485static void
3486vfs_clean_pages(struct buf *bp)
3487{
3488	int i;
3489	vm_ooffset_t foff, noff, eoff;
3490	vm_page_t m;
3491
3492	if (!(bp->b_flags & B_VMIO))
3493		return;
3494
3495	foff = bp->b_offset;
3496	KASSERT(bp->b_offset != NOOFFSET,
3497	    ("vfs_clean_pages: no buffer offset"));
3498	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3499	vm_page_lock_queues();
3500	for (i = 0; i < bp->b_npages; i++) {
3501		m = bp->b_pages[i];
3502		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3503		eoff = noff;
3504
3505		if (eoff > bp->b_offset + bp->b_bufsize)
3506			eoff = bp->b_offset + bp->b_bufsize;
3507		vfs_page_set_valid(bp, foff, i, m);
3508		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3509		foff = noff;
3510	}
3511	vm_page_unlock_queues();
3512	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3513}
3514
3515/*
3516 *	vfs_bio_set_validclean:
3517 *
3518 *	Set the range within the buffer to valid and clean.  The range is
3519 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3520 *	itself may be offset from the beginning of the first page.
3521 *
3522 */
3523
3524void
3525vfs_bio_set_validclean(struct buf *bp, int base, int size)
3526{
3527	int i, n;
3528	vm_page_t m;
3529
3530	if (!(bp->b_flags & B_VMIO))
3531		return;
3532	/*
3533	 * Fixup base to be relative to beginning of first page.
3534	 * Set initial n to be the maximum number of bytes in the
3535	 * first page that can be validated.
3536	 */
3537
3538	base += (bp->b_offset & PAGE_MASK);
3539	n = PAGE_SIZE - (base & PAGE_MASK);
3540
3541	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3542	vm_page_lock_queues();
3543	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3544		m = bp->b_pages[i];
3545		if (n > size)
3546			n = size;
3547		vm_page_set_validclean(m, base & PAGE_MASK, n);
3548		base += n;
3549		size -= n;
3550		n = PAGE_SIZE;
3551	}
3552	vm_page_unlock_queues();
3553	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3554}
3555
3556/*
3557 *	vfs_bio_clrbuf:
3558 *
3559 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3560 *	to clear BIO_ERROR and B_INVAL.
3561 *
3562 *	Note that while we only theoretically need to clear through b_bcount,
3563 *	we go ahead and clear through b_bufsize.
3564 */
3565
3566void
3567vfs_bio_clrbuf(struct buf *bp)
3568{
3569	int i, j, mask = 0;
3570	caddr_t sa, ea;
3571
3572	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3573		clrbuf(bp);
3574		return;
3575	}
3576
3577	bp->b_flags &= ~B_INVAL;
3578	bp->b_ioflags &= ~BIO_ERROR;
3579	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3580	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3581	    (bp->b_offset & PAGE_MASK) == 0) {
3582		if (bp->b_pages[0] == bogus_page)
3583			goto unlock;
3584		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3585		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3586		if ((bp->b_pages[0]->valid & mask) == mask)
3587			goto unlock;
3588		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3589		    ((bp->b_pages[0]->valid & mask) == 0)) {
3590			bzero(bp->b_data, bp->b_bufsize);
3591			bp->b_pages[0]->valid |= mask;
3592			goto unlock;
3593		}
3594	}
3595	ea = sa = bp->b_data;
3596	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3597		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3598		ea = (caddr_t)(vm_offset_t)ulmin(
3599		    (u_long)(vm_offset_t)ea,
3600		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3601		if (bp->b_pages[i] == bogus_page)
3602			continue;
3603		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3604		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3605		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3606		if ((bp->b_pages[i]->valid & mask) == mask)
3607			continue;
3608		if ((bp->b_pages[i]->valid & mask) == 0) {
3609			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3610				bzero(sa, ea - sa);
3611		} else {
3612			for (; sa < ea; sa += DEV_BSIZE, j++) {
3613				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3614				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3615					bzero(sa, DEV_BSIZE);
3616			}
3617		}
3618		bp->b_pages[i]->valid |= mask;
3619	}
3620unlock:
3621	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3622	bp->b_resid = 0;
3623}
3624
3625/*
3626 * vm_hold_load_pages and vm_hold_free_pages get pages into
3627 * a buffers address space.  The pages are anonymous and are
3628 * not associated with a file object.
3629 */
3630static void
3631vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3632{
3633	vm_offset_t pg;
3634	vm_page_t p;
3635	int index;
3636
3637	to = round_page(to);
3638	from = round_page(from);
3639	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3640
3641	VM_OBJECT_LOCK(kernel_object);
3642	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3643tryagain:
3644		/*
3645		 * note: must allocate system pages since blocking here
3646		 * could intefere with paging I/O, no matter which
3647		 * process we are.
3648		 */
3649		p = vm_page_alloc(kernel_object,
3650			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3651		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3652		if (!p) {
3653			atomic_add_int(&vm_pageout_deficit,
3654			    (to - pg) >> PAGE_SHIFT);
3655			VM_OBJECT_UNLOCK(kernel_object);
3656			VM_WAIT;
3657			VM_OBJECT_LOCK(kernel_object);
3658			goto tryagain;
3659		}
3660		p->valid = VM_PAGE_BITS_ALL;
3661		pmap_qenter(pg, &p, 1);
3662		bp->b_pages[index] = p;
3663	}
3664	VM_OBJECT_UNLOCK(kernel_object);
3665	bp->b_npages = index;
3666}
3667
3668/* Return pages associated with this buf to the vm system */
3669static void
3670vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3671{
3672	vm_offset_t pg;
3673	vm_page_t p;
3674	int index, newnpages;
3675
3676	from = round_page(from);
3677	to = round_page(to);
3678	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3679
3680	VM_OBJECT_LOCK(kernel_object);
3681	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3682		p = bp->b_pages[index];
3683		if (p && (index < bp->b_npages)) {
3684			if (p->busy) {
3685				printf(
3686			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3687				    (intmax_t)bp->b_blkno,
3688				    (intmax_t)bp->b_lblkno);
3689			}
3690			bp->b_pages[index] = NULL;
3691			pmap_qremove(pg, 1);
3692			vm_page_lock_queues();
3693			vm_page_unwire(p, 0);
3694			vm_page_free(p);
3695			vm_page_unlock_queues();
3696		}
3697	}
3698	VM_OBJECT_UNLOCK(kernel_object);
3699	bp->b_npages = newnpages;
3700}
3701
3702/*
3703 * Map an IO request into kernel virtual address space.
3704 *
3705 * All requests are (re)mapped into kernel VA space.
3706 * Notice that we use b_bufsize for the size of the buffer
3707 * to be mapped.  b_bcount might be modified by the driver.
3708 *
3709 * Note that even if the caller determines that the address space should
3710 * be valid, a race or a smaller-file mapped into a larger space may
3711 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3712 * check the return value.
3713 */
3714int
3715vmapbuf(struct buf *bp)
3716{
3717	caddr_t addr, kva;
3718	vm_prot_t prot;
3719	int pidx, i;
3720	struct vm_page *m;
3721	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3722
3723	if (bp->b_bufsize < 0)
3724		return (-1);
3725	prot = VM_PROT_READ;
3726	if (bp->b_iocmd == BIO_READ)
3727		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3728	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3729	     addr < bp->b_data + bp->b_bufsize;
3730	     addr += PAGE_SIZE, pidx++) {
3731		/*
3732		 * Do the vm_fault if needed; do the copy-on-write thing
3733		 * when reading stuff off device into memory.
3734		 *
3735		 * NOTE! Must use pmap_extract() because addr may be in
3736		 * the userland address space, and kextract is only guarenteed
3737		 * to work for the kernland address space (see: sparc64 port).
3738		 */
3739retry:
3740		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3741		    prot) < 0) {
3742			vm_page_lock_queues();
3743			for (i = 0; i < pidx; ++i) {
3744				vm_page_unhold(bp->b_pages[i]);
3745				bp->b_pages[i] = NULL;
3746			}
3747			vm_page_unlock_queues();
3748			return(-1);
3749		}
3750		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3751		if (m == NULL)
3752			goto retry;
3753		bp->b_pages[pidx] = m;
3754	}
3755	if (pidx > btoc(MAXPHYS))
3756		panic("vmapbuf: mapped more than MAXPHYS");
3757	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3758
3759	kva = bp->b_saveaddr;
3760	bp->b_npages = pidx;
3761	bp->b_saveaddr = bp->b_data;
3762	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3763	return(0);
3764}
3765
3766/*
3767 * Free the io map PTEs associated with this IO operation.
3768 * We also invalidate the TLB entries and restore the original b_addr.
3769 */
3770void
3771vunmapbuf(struct buf *bp)
3772{
3773	int pidx;
3774	int npages;
3775
3776	npages = bp->b_npages;
3777	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3778	vm_page_lock_queues();
3779	for (pidx = 0; pidx < npages; pidx++)
3780		vm_page_unhold(bp->b_pages[pidx]);
3781	vm_page_unlock_queues();
3782
3783	bp->b_data = bp->b_saveaddr;
3784}
3785
3786void
3787bdone(struct buf *bp)
3788{
3789
3790	mtx_lock(&bdonelock);
3791	bp->b_flags |= B_DONE;
3792	wakeup(bp);
3793	mtx_unlock(&bdonelock);
3794}
3795
3796void
3797bwait(struct buf *bp, u_char pri, const char *wchan)
3798{
3799
3800	mtx_lock(&bdonelock);
3801	while ((bp->b_flags & B_DONE) == 0)
3802		msleep(bp, &bdonelock, pri, wchan, 0);
3803	mtx_unlock(&bdonelock);
3804}
3805
3806int
3807bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3808{
3809
3810	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3811}
3812
3813void
3814bufstrategy(struct bufobj *bo, struct buf *bp)
3815{
3816	int i = 0;
3817	struct vnode *vp;
3818
3819	vp = bp->b_vp;
3820	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3821	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3822	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3823	i = VOP_STRATEGY(vp, bp);
3824	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3825}
3826
3827void
3828bufobj_wrefl(struct bufobj *bo)
3829{
3830
3831	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3832	ASSERT_BO_LOCKED(bo);
3833	bo->bo_numoutput++;
3834}
3835
3836void
3837bufobj_wref(struct bufobj *bo)
3838{
3839
3840	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3841	BO_LOCK(bo);
3842	bo->bo_numoutput++;
3843	BO_UNLOCK(bo);
3844}
3845
3846void
3847bufobj_wdrop(struct bufobj *bo)
3848{
3849
3850	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3851	BO_LOCK(bo);
3852	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3853	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3854		bo->bo_flag &= ~BO_WWAIT;
3855		wakeup(&bo->bo_numoutput);
3856	}
3857	BO_UNLOCK(bo);
3858}
3859
3860int
3861bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3862{
3863	int error;
3864
3865	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3866	ASSERT_BO_LOCKED(bo);
3867	error = 0;
3868	while (bo->bo_numoutput) {
3869		bo->bo_flag |= BO_WWAIT;
3870		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3871		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3872		if (error)
3873			break;
3874	}
3875	return (error);
3876}
3877
3878void
3879bpin(struct buf *bp)
3880{
3881	mtx_lock(&bpinlock);
3882	bp->b_pin_count++;
3883	mtx_unlock(&bpinlock);
3884}
3885
3886void
3887bunpin(struct buf *bp)
3888{
3889	mtx_lock(&bpinlock);
3890	if (--bp->b_pin_count == 0)
3891		wakeup(bp);
3892	mtx_unlock(&bpinlock);
3893}
3894
3895void
3896bunpin_wait(struct buf *bp)
3897{
3898	mtx_lock(&bpinlock);
3899	while (bp->b_pin_count > 0)
3900		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3901	mtx_unlock(&bpinlock);
3902}
3903
3904#include "opt_ddb.h"
3905#ifdef DDB
3906#include <ddb/ddb.h>
3907
3908/* DDB command to show buffer data */
3909DB_SHOW_COMMAND(buffer, db_show_buffer)
3910{
3911	/* get args */
3912	struct buf *bp = (struct buf *)addr;
3913
3914	if (!have_addr) {
3915		db_printf("usage: show buffer <addr>\n");
3916		return;
3917	}
3918
3919	db_printf("buf at %p\n", bp);
3920	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3921	db_printf(
3922	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3923	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3924	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3925	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3926	if (bp->b_npages) {
3927		int i;
3928		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3929		for (i = 0; i < bp->b_npages; i++) {
3930			vm_page_t m;
3931			m = bp->b_pages[i];
3932			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3933			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3934			if ((i + 1) < bp->b_npages)
3935				db_printf(",");
3936		}
3937		db_printf("\n");
3938	}
3939	lockmgr_printinfo(&bp->b_lock);
3940}
3941
3942DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3943{
3944	struct buf *bp;
3945	int i;
3946
3947	for (i = 0; i < nbuf; i++) {
3948		bp = &buf[i];
3949		if (lockcount(&bp->b_lock)) {
3950			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3951			db_printf("\n");
3952		}
3953	}
3954}
3955#endif /* DDB */
3956