vfs_bio.c revision 170174
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 170174 2007-06-01 01:12:45Z jeff $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82	.bop_sync	=	bufsync,
83	.bop_bdflush	=	bufbdflush,
84};
85
86/*
87 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
88 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
89 */
90struct buf *buf;		/* buffer header pool */
91
92static struct proc *bufdaemonproc;
93
94static int inmem(struct vnode *vp, daddr_t blkno);
95static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
96		vm_offset_t to);
97static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
98		vm_offset_t to);
99static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
100			       int pageno, vm_page_t m);
101static void vfs_clean_pages(struct buf *bp);
102static void vfs_setdirty(struct buf *bp);
103static void vfs_setdirty_locked_object(struct buf *bp);
104static void vfs_vmio_release(struct buf *bp);
105static int vfs_bio_clcheck(struct vnode *vp, int size,
106		daddr_t lblkno, daddr_t blkno);
107static int flushbufqueues(int, int);
108static void buf_daemon(void);
109static void bremfreel(struct buf *bp);
110
111int vmiodirenable = TRUE;
112SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
113    "Use the VM system for directory writes");
114int runningbufspace;
115SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
116    "Amount of presently outstanding async buffer io");
117static int bufspace;
118SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
119    "KVA memory used for bufs");
120static int maxbufspace;
121SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
122    "Maximum allowed value of bufspace (including buf_daemon)");
123static int bufmallocspace;
124SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
125    "Amount of malloced memory for buffers");
126static int maxbufmallocspace;
127SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
128    "Maximum amount of malloced memory for buffers");
129static int lobufspace;
130SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
131    "Minimum amount of buffers we want to have");
132int hibufspace;
133SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
134    "Maximum allowed value of bufspace (excluding buf_daemon)");
135static int bufreusecnt;
136SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
137    "Number of times we have reused a buffer");
138static int buffreekvacnt;
139SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
140    "Number of times we have freed the KVA space from some buffer");
141static int bufdefragcnt;
142SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
143    "Number of times we have had to repeat buffer allocation to defragment");
144static int lorunningspace;
145SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
146    "Minimum preferred space used for in-progress I/O");
147static int hirunningspace;
148SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
149    "Maximum amount of space to use for in-progress I/O");
150int dirtybufferflushes;
151SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
152    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
153int bdwriteskip;
154SYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
155    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
156int altbufferflushes;
157SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
158    0, "Number of fsync flushes to limit dirty buffers");
159static int recursiveflushes;
160SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
161    0, "Number of flushes skipped due to being recursive");
162static int numdirtybuffers;
163SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
164    "Number of buffers that are dirty (has unwritten changes) at the moment");
165static int lodirtybuffers;
166SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
167    "How many buffers we want to have free before bufdaemon can sleep");
168static int hidirtybuffers;
169SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
170    "When the number of dirty buffers is considered severe");
171int dirtybufthresh;
172SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
173    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
174static int numfreebuffers;
175SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
176    "Number of free buffers");
177static int lofreebuffers;
178SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
179   "XXX Unused");
180static int hifreebuffers;
181SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
182   "XXX Complicatedly unused");
183static int getnewbufcalls;
184SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
185   "Number of calls to getnewbuf");
186static int getnewbufrestarts;
187SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
188    "Number of times getnewbuf has had to restart a buffer aquisition");
189
190/*
191 * Wakeup point for bufdaemon, as well as indicator of whether it is already
192 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
193 * is idling.
194 */
195static int bd_request;
196
197/*
198 * This lock synchronizes access to bd_request.
199 */
200static struct mtx bdlock;
201
202/*
203 * bogus page -- for I/O to/from partially complete buffers
204 * this is a temporary solution to the problem, but it is not
205 * really that bad.  it would be better to split the buffer
206 * for input in the case of buffers partially already in memory,
207 * but the code is intricate enough already.
208 */
209vm_page_t bogus_page;
210
211/*
212 * Synchronization (sleep/wakeup) variable for active buffer space requests.
213 * Set when wait starts, cleared prior to wakeup().
214 * Used in runningbufwakeup() and waitrunningbufspace().
215 */
216static int runningbufreq;
217
218/*
219 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
220 * waitrunningbufspace().
221 */
222static struct mtx rbreqlock;
223
224/*
225 * Synchronization (sleep/wakeup) variable for buffer requests.
226 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
227 * by and/or.
228 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
229 * getnewbuf(), and getblk().
230 */
231static int needsbuffer;
232
233/*
234 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
235 */
236static struct mtx nblock;
237
238/*
239 * Lock that protects against bwait()/bdone()/B_DONE races.
240 */
241
242static struct mtx bdonelock;
243
244/*
245 * Lock that protects against bwait()/bdone()/B_DONE races.
246 */
247static struct mtx bpinlock;
248
249/*
250 * Definitions for the buffer free lists.
251 */
252#define BUFFER_QUEUES	6	/* number of free buffer queues */
253
254#define QUEUE_NONE	0	/* on no queue */
255#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
256#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
257#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
258#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
259#define QUEUE_EMPTY	5	/* empty buffer headers */
260
261/* Queues for free buffers with various properties */
262static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
263
264/* Lock for the bufqueues */
265static struct mtx bqlock;
266
267/*
268 * Single global constant for BUF_WMESG, to avoid getting multiple references.
269 * buf_wmesg is referred from macros.
270 */
271const char *buf_wmesg = BUF_WMESG;
272
273#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
274#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
275#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
276#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
277
278#ifdef DIRECTIO
279extern void ffs_rawread_setup(void);
280#endif /* DIRECTIO */
281/*
282 *	numdirtywakeup:
283 *
284 *	If someone is blocked due to there being too many dirty buffers,
285 *	and numdirtybuffers is now reasonable, wake them up.
286 */
287
288static __inline void
289numdirtywakeup(int level)
290{
291
292	if (numdirtybuffers <= level) {
293		mtx_lock(&nblock);
294		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
295			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
296			wakeup(&needsbuffer);
297		}
298		mtx_unlock(&nblock);
299	}
300}
301
302/*
303 *	bufspacewakeup:
304 *
305 *	Called when buffer space is potentially available for recovery.
306 *	getnewbuf() will block on this flag when it is unable to free
307 *	sufficient buffer space.  Buffer space becomes recoverable when
308 *	bp's get placed back in the queues.
309 */
310
311static __inline void
312bufspacewakeup(void)
313{
314
315	/*
316	 * If someone is waiting for BUF space, wake them up.  Even
317	 * though we haven't freed the kva space yet, the waiting
318	 * process will be able to now.
319	 */
320	mtx_lock(&nblock);
321	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
322		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
323		wakeup(&needsbuffer);
324	}
325	mtx_unlock(&nblock);
326}
327
328/*
329 * runningbufwakeup() - in-progress I/O accounting.
330 *
331 */
332void
333runningbufwakeup(struct buf *bp)
334{
335
336	if (bp->b_runningbufspace) {
337		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
338		bp->b_runningbufspace = 0;
339		mtx_lock(&rbreqlock);
340		if (runningbufreq && runningbufspace <= lorunningspace) {
341			runningbufreq = 0;
342			wakeup(&runningbufreq);
343		}
344		mtx_unlock(&rbreqlock);
345	}
346}
347
348/*
349 *	bufcountwakeup:
350 *
351 *	Called when a buffer has been added to one of the free queues to
352 *	account for the buffer and to wakeup anyone waiting for free buffers.
353 *	This typically occurs when large amounts of metadata are being handled
354 *	by the buffer cache ( else buffer space runs out first, usually ).
355 */
356
357static __inline void
358bufcountwakeup(void)
359{
360
361	atomic_add_int(&numfreebuffers, 1);
362	mtx_lock(&nblock);
363	if (needsbuffer) {
364		needsbuffer &= ~VFS_BIO_NEED_ANY;
365		if (numfreebuffers >= hifreebuffers)
366			needsbuffer &= ~VFS_BIO_NEED_FREE;
367		wakeup(&needsbuffer);
368	}
369	mtx_unlock(&nblock);
370}
371
372/*
373 *	waitrunningbufspace()
374 *
375 *	runningbufspace is a measure of the amount of I/O currently
376 *	running.  This routine is used in async-write situations to
377 *	prevent creating huge backups of pending writes to a device.
378 *	Only asynchronous writes are governed by this function.
379 *
380 *	Reads will adjust runningbufspace, but will not block based on it.
381 *	The read load has a side effect of reducing the allowed write load.
382 *
383 *	This does NOT turn an async write into a sync write.  It waits
384 *	for earlier writes to complete and generally returns before the
385 *	caller's write has reached the device.
386 */
387void
388waitrunningbufspace(void)
389{
390
391	mtx_lock(&rbreqlock);
392	while (runningbufspace > hirunningspace) {
393		++runningbufreq;
394		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
395	}
396	mtx_unlock(&rbreqlock);
397}
398
399
400/*
401 *	vfs_buf_test_cache:
402 *
403 *	Called when a buffer is extended.  This function clears the B_CACHE
404 *	bit if the newly extended portion of the buffer does not contain
405 *	valid data.
406 */
407static __inline
408void
409vfs_buf_test_cache(struct buf *bp,
410		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
411		  vm_page_t m)
412{
413
414	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
415	if (bp->b_flags & B_CACHE) {
416		int base = (foff + off) & PAGE_MASK;
417		if (vm_page_is_valid(m, base, size) == 0)
418			bp->b_flags &= ~B_CACHE;
419	}
420}
421
422/* Wake up the buffer daemon if necessary */
423static __inline
424void
425bd_wakeup(int dirtybuflevel)
426{
427
428	mtx_lock(&bdlock);
429	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
430		bd_request = 1;
431		wakeup(&bd_request);
432	}
433	mtx_unlock(&bdlock);
434}
435
436/*
437 * bd_speedup - speedup the buffer cache flushing code
438 */
439
440static __inline
441void
442bd_speedup(void)
443{
444
445	bd_wakeup(1);
446}
447
448/*
449 * Calculating buffer cache scaling values and reserve space for buffer
450 * headers.  This is called during low level kernel initialization and
451 * may be called more then once.  We CANNOT write to the memory area
452 * being reserved at this time.
453 */
454caddr_t
455kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
456{
457
458	/*
459	 * physmem_est is in pages.  Convert it to kilobytes (assumes
460	 * PAGE_SIZE is >= 1K)
461	 */
462	physmem_est = physmem_est * (PAGE_SIZE / 1024);
463
464	/*
465	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
466	 * For the first 64MB of ram nominally allocate sufficient buffers to
467	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
468	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
469	 * the buffer cache we limit the eventual kva reservation to
470	 * maxbcache bytes.
471	 *
472	 * factor represents the 1/4 x ram conversion.
473	 */
474	if (nbuf == 0) {
475		int factor = 4 * BKVASIZE / 1024;
476
477		nbuf = 50;
478		if (physmem_est > 4096)
479			nbuf += min((physmem_est - 4096) / factor,
480			    65536 / factor);
481		if (physmem_est > 65536)
482			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
483
484		if (maxbcache && nbuf > maxbcache / BKVASIZE)
485			nbuf = maxbcache / BKVASIZE;
486	}
487
488#if 0
489	/*
490	 * Do not allow the buffer_map to be more then 1/2 the size of the
491	 * kernel_map.
492	 */
493	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
494	    (BKVASIZE * 2)) {
495		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
496		    (BKVASIZE * 2);
497		printf("Warning: nbufs capped at %d\n", nbuf);
498	}
499#endif
500
501	/*
502	 * swbufs are used as temporary holders for I/O, such as paging I/O.
503	 * We have no less then 16 and no more then 256.
504	 */
505	nswbuf = max(min(nbuf/4, 256), 16);
506#ifdef NSWBUF_MIN
507	if (nswbuf < NSWBUF_MIN)
508		nswbuf = NSWBUF_MIN;
509#endif
510#ifdef DIRECTIO
511	ffs_rawread_setup();
512#endif
513
514	/*
515	 * Reserve space for the buffer cache buffers
516	 */
517	swbuf = (void *)v;
518	v = (caddr_t)(swbuf + nswbuf);
519	buf = (void *)v;
520	v = (caddr_t)(buf + nbuf);
521
522	return(v);
523}
524
525/* Initialize the buffer subsystem.  Called before use of any buffers. */
526void
527bufinit(void)
528{
529	struct buf *bp;
530	int i;
531
532	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
533	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
534	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
535	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
536	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
537	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
538
539	/* next, make a null set of free lists */
540	for (i = 0; i < BUFFER_QUEUES; i++)
541		TAILQ_INIT(&bufqueues[i]);
542
543	/* finally, initialize each buffer header and stick on empty q */
544	for (i = 0; i < nbuf; i++) {
545		bp = &buf[i];
546		bzero(bp, sizeof *bp);
547		bp->b_flags = B_INVAL;	/* we're just an empty header */
548		bp->b_rcred = NOCRED;
549		bp->b_wcred = NOCRED;
550		bp->b_qindex = QUEUE_EMPTY;
551		bp->b_vflags = 0;
552		bp->b_xflags = 0;
553		LIST_INIT(&bp->b_dep);
554		BUF_LOCKINIT(bp);
555		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
556	}
557
558	/*
559	 * maxbufspace is the absolute maximum amount of buffer space we are
560	 * allowed to reserve in KVM and in real terms.  The absolute maximum
561	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
562	 * used by most other processes.  The differential is required to
563	 * ensure that buf_daemon is able to run when other processes might
564	 * be blocked waiting for buffer space.
565	 *
566	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
567	 * this may result in KVM fragmentation which is not handled optimally
568	 * by the system.
569	 */
570	maxbufspace = nbuf * BKVASIZE;
571	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
572	lobufspace = hibufspace - MAXBSIZE;
573
574	lorunningspace = 512 * 1024;
575	hirunningspace = 1024 * 1024;
576
577/*
578 * Limit the amount of malloc memory since it is wired permanently into
579 * the kernel space.  Even though this is accounted for in the buffer
580 * allocation, we don't want the malloced region to grow uncontrolled.
581 * The malloc scheme improves memory utilization significantly on average
582 * (small) directories.
583 */
584	maxbufmallocspace = hibufspace / 20;
585
586/*
587 * Reduce the chance of a deadlock occuring by limiting the number
588 * of delayed-write dirty buffers we allow to stack up.
589 */
590	hidirtybuffers = nbuf / 4 + 20;
591	dirtybufthresh = hidirtybuffers * 9 / 10;
592	numdirtybuffers = 0;
593/*
594 * To support extreme low-memory systems, make sure hidirtybuffers cannot
595 * eat up all available buffer space.  This occurs when our minimum cannot
596 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
597 * BKVASIZE'd (8K) buffers.
598 */
599	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
600		hidirtybuffers >>= 1;
601	}
602	lodirtybuffers = hidirtybuffers / 2;
603
604/*
605 * Try to keep the number of free buffers in the specified range,
606 * and give special processes (e.g. like buf_daemon) access to an
607 * emergency reserve.
608 */
609	lofreebuffers = nbuf / 18 + 5;
610	hifreebuffers = 2 * lofreebuffers;
611	numfreebuffers = nbuf;
612
613/*
614 * Maximum number of async ops initiated per buf_daemon loop.  This is
615 * somewhat of a hack at the moment, we really need to limit ourselves
616 * based on the number of bytes of I/O in-transit that were initiated
617 * from buf_daemon.
618 */
619
620	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
621	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
622}
623
624/*
625 * bfreekva() - free the kva allocation for a buffer.
626 *
627 *	Since this call frees up buffer space, we call bufspacewakeup().
628 */
629static void
630bfreekva(struct buf *bp)
631{
632
633	if (bp->b_kvasize) {
634		atomic_add_int(&buffreekvacnt, 1);
635		atomic_subtract_int(&bufspace, bp->b_kvasize);
636		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
637		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
638		bp->b_kvasize = 0;
639		bufspacewakeup();
640	}
641}
642
643/*
644 *	bremfree:
645 *
646 *	Mark the buffer for removal from the appropriate free list in brelse.
647 *
648 */
649void
650bremfree(struct buf *bp)
651{
652
653	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
654	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
655	KASSERT((bp->b_flags & B_REMFREE) == 0,
656	    ("bremfree: buffer %p already marked for delayed removal.", bp));
657	KASSERT(bp->b_qindex != QUEUE_NONE,
658	    ("bremfree: buffer %p not on a queue.", bp));
659
660	bp->b_flags |= B_REMFREE;
661	/* Fixup numfreebuffers count.  */
662	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
663		atomic_subtract_int(&numfreebuffers, 1);
664}
665
666/*
667 *	bremfreef:
668 *
669 *	Force an immediate removal from a free list.  Used only in nfs when
670 *	it abuses the b_freelist pointer.
671 */
672void
673bremfreef(struct buf *bp)
674{
675	mtx_lock(&bqlock);
676	bremfreel(bp);
677	mtx_unlock(&bqlock);
678}
679
680/*
681 *	bremfreel:
682 *
683 *	Removes a buffer from the free list, must be called with the
684 *	bqlock held.
685 */
686static void
687bremfreel(struct buf *bp)
688{
689	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
690	    bp, bp->b_vp, bp->b_flags);
691	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
692	KASSERT(bp->b_qindex != QUEUE_NONE,
693	    ("bremfreel: buffer %p not on a queue.", bp));
694	mtx_assert(&bqlock, MA_OWNED);
695
696	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
697	bp->b_qindex = QUEUE_NONE;
698	/*
699	 * If this was a delayed bremfree() we only need to remove the buffer
700	 * from the queue and return the stats are already done.
701	 */
702	if (bp->b_flags & B_REMFREE) {
703		bp->b_flags &= ~B_REMFREE;
704		return;
705	}
706	/*
707	 * Fixup numfreebuffers count.  If the buffer is invalid or not
708	 * delayed-write, the buffer was free and we must decrement
709	 * numfreebuffers.
710	 */
711	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
712		atomic_subtract_int(&numfreebuffers, 1);
713}
714
715
716/*
717 * Get a buffer with the specified data.  Look in the cache first.  We
718 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
719 * is set, the buffer is valid and we do not have to do anything ( see
720 * getblk() ).  This is really just a special case of breadn().
721 */
722int
723bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
724    struct buf **bpp)
725{
726
727	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
728}
729
730/*
731 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
732 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
733 * the buffer is valid and we do not have to do anything.
734 */
735void
736breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
737    int cnt, struct ucred * cred)
738{
739	struct buf *rabp;
740	int i;
741
742	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
743		if (inmem(vp, *rablkno))
744			continue;
745		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
746
747		if ((rabp->b_flags & B_CACHE) == 0) {
748			if (!TD_IS_IDLETHREAD(curthread))
749				curthread->td_ru.ru_inblock++;
750			rabp->b_flags |= B_ASYNC;
751			rabp->b_flags &= ~B_INVAL;
752			rabp->b_ioflags &= ~BIO_ERROR;
753			rabp->b_iocmd = BIO_READ;
754			if (rabp->b_rcred == NOCRED && cred != NOCRED)
755				rabp->b_rcred = crhold(cred);
756			vfs_busy_pages(rabp, 0);
757			BUF_KERNPROC(rabp);
758			rabp->b_iooffset = dbtob(rabp->b_blkno);
759			bstrategy(rabp);
760		} else {
761			brelse(rabp);
762		}
763	}
764}
765
766/*
767 * Operates like bread, but also starts asynchronous I/O on
768 * read-ahead blocks.
769 */
770int
771breadn(struct vnode * vp, daddr_t blkno, int size,
772    daddr_t * rablkno, int *rabsize,
773    int cnt, struct ucred * cred, struct buf **bpp)
774{
775	struct buf *bp;
776	int rv = 0, readwait = 0;
777
778	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
779	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
780
781	/* if not found in cache, do some I/O */
782	if ((bp->b_flags & B_CACHE) == 0) {
783		if (!TD_IS_IDLETHREAD(curthread))
784			curthread->td_ru.ru_inblock++;
785		bp->b_iocmd = BIO_READ;
786		bp->b_flags &= ~B_INVAL;
787		bp->b_ioflags &= ~BIO_ERROR;
788		if (bp->b_rcred == NOCRED && cred != NOCRED)
789			bp->b_rcred = crhold(cred);
790		vfs_busy_pages(bp, 0);
791		bp->b_iooffset = dbtob(bp->b_blkno);
792		bstrategy(bp);
793		++readwait;
794	}
795
796	breada(vp, rablkno, rabsize, cnt, cred);
797
798	if (readwait) {
799		rv = bufwait(bp);
800	}
801	return (rv);
802}
803
804/*
805 * Write, release buffer on completion.  (Done by iodone
806 * if async).  Do not bother writing anything if the buffer
807 * is invalid.
808 *
809 * Note that we set B_CACHE here, indicating that buffer is
810 * fully valid and thus cacheable.  This is true even of NFS
811 * now so we set it generally.  This could be set either here
812 * or in biodone() since the I/O is synchronous.  We put it
813 * here.
814 */
815int
816bufwrite(struct buf *bp)
817{
818	int oldflags;
819	struct vnode *vp;
820	int vp_md;
821
822	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
823	if (bp->b_flags & B_INVAL) {
824		brelse(bp);
825		return (0);
826	}
827
828	oldflags = bp->b_flags;
829
830	if (BUF_REFCNT(bp) == 0)
831		panic("bufwrite: buffer is not busy???");
832
833	if (bp->b_pin_count > 0)
834		bunpin_wait(bp);
835
836	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
837	    ("FFS background buffer should not get here %p", bp));
838
839	vp = bp->b_vp;
840	if (vp)
841		vp_md = vp->v_vflag & VV_MD;
842	else
843		vp_md = 0;
844
845	/* Mark the buffer clean */
846	bundirty(bp);
847
848	bp->b_flags &= ~B_DONE;
849	bp->b_ioflags &= ~BIO_ERROR;
850	bp->b_flags |= B_CACHE;
851	bp->b_iocmd = BIO_WRITE;
852
853	bufobj_wref(bp->b_bufobj);
854	vfs_busy_pages(bp, 1);
855
856	/*
857	 * Normal bwrites pipeline writes
858	 */
859	bp->b_runningbufspace = bp->b_bufsize;
860	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
861
862	if (!TD_IS_IDLETHREAD(curthread))
863		curthread->td_ru.ru_oublock++;
864	if (oldflags & B_ASYNC)
865		BUF_KERNPROC(bp);
866	bp->b_iooffset = dbtob(bp->b_blkno);
867	bstrategy(bp);
868
869	if ((oldflags & B_ASYNC) == 0) {
870		int rtval = bufwait(bp);
871		brelse(bp);
872		return (rtval);
873	} else {
874		/*
875		 * don't allow the async write to saturate the I/O
876		 * system.  We will not deadlock here because
877		 * we are blocking waiting for I/O that is already in-progress
878		 * to complete. We do not block here if it is the update
879		 * or syncer daemon trying to clean up as that can lead
880		 * to deadlock.
881		 */
882		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
883			waitrunningbufspace();
884	}
885
886	return (0);
887}
888
889void
890bufbdflush(struct bufobj *bo, struct buf *bp)
891{
892	struct buf *nbp;
893
894	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
895		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
896		altbufferflushes++;
897	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
898		BO_LOCK(bo);
899		/*
900		 * Try to find a buffer to flush.
901		 */
902		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
903			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
904			    BUF_LOCK(nbp,
905				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
906				continue;
907			if (bp == nbp)
908				panic("bdwrite: found ourselves");
909			BO_UNLOCK(bo);
910			/* Don't countdeps with the bo lock held. */
911			if (buf_countdeps(nbp, 0)) {
912				BO_LOCK(bo);
913				BUF_UNLOCK(nbp);
914				continue;
915			}
916			if (nbp->b_flags & B_CLUSTEROK) {
917				vfs_bio_awrite(nbp);
918			} else {
919				bremfree(nbp);
920				bawrite(nbp);
921			}
922			dirtybufferflushes++;
923			break;
924		}
925		if (nbp == NULL)
926			BO_UNLOCK(bo);
927	}
928}
929
930/*
931 * Delayed write. (Buffer is marked dirty).  Do not bother writing
932 * anything if the buffer is marked invalid.
933 *
934 * Note that since the buffer must be completely valid, we can safely
935 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
936 * biodone() in order to prevent getblk from writing the buffer
937 * out synchronously.
938 */
939void
940bdwrite(struct buf *bp)
941{
942	struct thread *td = curthread;
943	struct vnode *vp;
944	struct bufobj *bo;
945
946	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
947	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
948	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
949
950	if (bp->b_flags & B_INVAL) {
951		brelse(bp);
952		return;
953	}
954
955	/*
956	 * If we have too many dirty buffers, don't create any more.
957	 * If we are wildly over our limit, then force a complete
958	 * cleanup. Otherwise, just keep the situation from getting
959	 * out of control. Note that we have to avoid a recursive
960	 * disaster and not try to clean up after our own cleanup!
961	 */
962	vp = bp->b_vp;
963	bo = bp->b_bufobj;
964	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
965		td->td_pflags |= TDP_INBDFLUSH;
966		BO_BDFLUSH(bo, bp);
967		td->td_pflags &= ~TDP_INBDFLUSH;
968	} else
969		recursiveflushes++;
970
971	bdirty(bp);
972	/*
973	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
974	 * true even of NFS now.
975	 */
976	bp->b_flags |= B_CACHE;
977
978	/*
979	 * This bmap keeps the system from needing to do the bmap later,
980	 * perhaps when the system is attempting to do a sync.  Since it
981	 * is likely that the indirect block -- or whatever other datastructure
982	 * that the filesystem needs is still in memory now, it is a good
983	 * thing to do this.  Note also, that if the pageout daemon is
984	 * requesting a sync -- there might not be enough memory to do
985	 * the bmap then...  So, this is important to do.
986	 */
987	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
988		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
989	}
990
991	/*
992	 * Set the *dirty* buffer range based upon the VM system dirty pages.
993	 */
994	vfs_setdirty(bp);
995
996	/*
997	 * We need to do this here to satisfy the vnode_pager and the
998	 * pageout daemon, so that it thinks that the pages have been
999	 * "cleaned".  Note that since the pages are in a delayed write
1000	 * buffer -- the VFS layer "will" see that the pages get written
1001	 * out on the next sync, or perhaps the cluster will be completed.
1002	 */
1003	vfs_clean_pages(bp);
1004	bqrelse(bp);
1005
1006	/*
1007	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1008	 * buffers (midpoint between our recovery point and our stall
1009	 * point).
1010	 */
1011	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1012
1013	/*
1014	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1015	 * due to the softdep code.
1016	 */
1017}
1018
1019/*
1020 *	bdirty:
1021 *
1022 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1023 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1024 *	itself to properly update it in the dirty/clean lists.  We mark it
1025 *	B_DONE to ensure that any asynchronization of the buffer properly
1026 *	clears B_DONE ( else a panic will occur later ).
1027 *
1028 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1029 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1030 *	should only be called if the buffer is known-good.
1031 *
1032 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1033 *	count.
1034 *
1035 *	The buffer must be on QUEUE_NONE.
1036 */
1037void
1038bdirty(struct buf *bp)
1039{
1040
1041	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1042	    bp, bp->b_vp, bp->b_flags);
1043	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1044	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1045	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1046	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1047	bp->b_flags &= ~(B_RELBUF);
1048	bp->b_iocmd = BIO_WRITE;
1049
1050	if ((bp->b_flags & B_DELWRI) == 0) {
1051		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1052		reassignbuf(bp);
1053		atomic_add_int(&numdirtybuffers, 1);
1054		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1055	}
1056}
1057
1058/*
1059 *	bundirty:
1060 *
1061 *	Clear B_DELWRI for buffer.
1062 *
1063 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1064 *	count.
1065 *
1066 *	The buffer must be on QUEUE_NONE.
1067 */
1068
1069void
1070bundirty(struct buf *bp)
1071{
1072
1073	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1074	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1075	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1076	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1077	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1078
1079	if (bp->b_flags & B_DELWRI) {
1080		bp->b_flags &= ~B_DELWRI;
1081		reassignbuf(bp);
1082		atomic_subtract_int(&numdirtybuffers, 1);
1083		numdirtywakeup(lodirtybuffers);
1084	}
1085	/*
1086	 * Since it is now being written, we can clear its deferred write flag.
1087	 */
1088	bp->b_flags &= ~B_DEFERRED;
1089}
1090
1091/*
1092 *	bawrite:
1093 *
1094 *	Asynchronous write.  Start output on a buffer, but do not wait for
1095 *	it to complete.  The buffer is released when the output completes.
1096 *
1097 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1098 *	B_INVAL buffers.  Not us.
1099 */
1100void
1101bawrite(struct buf *bp)
1102{
1103
1104	bp->b_flags |= B_ASYNC;
1105	(void) bwrite(bp);
1106}
1107
1108/*
1109 *	bwillwrite:
1110 *
1111 *	Called prior to the locking of any vnodes when we are expecting to
1112 *	write.  We do not want to starve the buffer cache with too many
1113 *	dirty buffers so we block here.  By blocking prior to the locking
1114 *	of any vnodes we attempt to avoid the situation where a locked vnode
1115 *	prevents the various system daemons from flushing related buffers.
1116 */
1117
1118void
1119bwillwrite(void)
1120{
1121
1122	if (numdirtybuffers >= hidirtybuffers) {
1123		mtx_lock(&nblock);
1124		while (numdirtybuffers >= hidirtybuffers) {
1125			bd_wakeup(1);
1126			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1127			msleep(&needsbuffer, &nblock,
1128			    (PRIBIO + 4), "flswai", 0);
1129		}
1130		mtx_unlock(&nblock);
1131	}
1132}
1133
1134/*
1135 * Return true if we have too many dirty buffers.
1136 */
1137int
1138buf_dirty_count_severe(void)
1139{
1140
1141	return(numdirtybuffers >= hidirtybuffers);
1142}
1143
1144/*
1145 *	brelse:
1146 *
1147 *	Release a busy buffer and, if requested, free its resources.  The
1148 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1149 *	to be accessed later as a cache entity or reused for other purposes.
1150 */
1151void
1152brelse(struct buf *bp)
1153{
1154	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1155	    bp, bp->b_vp, bp->b_flags);
1156	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1157	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1158
1159	if (bp->b_flags & B_MANAGED) {
1160		bqrelse(bp);
1161		return;
1162	}
1163
1164	if (bp->b_iocmd == BIO_WRITE &&
1165	    (bp->b_ioflags & BIO_ERROR) &&
1166	    !(bp->b_flags & B_INVAL)) {
1167		/*
1168		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1169		 * pages from being scrapped.  If B_INVAL is set then
1170		 * this case is not run and the next case is run to
1171		 * destroy the buffer.  B_INVAL can occur if the buffer
1172		 * is outside the range supported by the underlying device.
1173		 */
1174		bp->b_ioflags &= ~BIO_ERROR;
1175		bdirty(bp);
1176	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1177	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1178		/*
1179		 * Either a failed I/O or we were asked to free or not
1180		 * cache the buffer.
1181		 */
1182		bp->b_flags |= B_INVAL;
1183		if (!LIST_EMPTY(&bp->b_dep))
1184			buf_deallocate(bp);
1185		if (bp->b_flags & B_DELWRI) {
1186			atomic_subtract_int(&numdirtybuffers, 1);
1187			numdirtywakeup(lodirtybuffers);
1188		}
1189		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1190		if ((bp->b_flags & B_VMIO) == 0) {
1191			if (bp->b_bufsize)
1192				allocbuf(bp, 0);
1193			if (bp->b_vp)
1194				brelvp(bp);
1195		}
1196	}
1197
1198	/*
1199	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1200	 * is called with B_DELWRI set, the underlying pages may wind up
1201	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1202	 * because pages associated with a B_DELWRI bp are marked clean.
1203	 *
1204	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1205	 * if B_DELWRI is set.
1206	 *
1207	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1208	 * on pages to return pages to the VM page queues.
1209	 */
1210	if (bp->b_flags & B_DELWRI)
1211		bp->b_flags &= ~B_RELBUF;
1212	else if (vm_page_count_severe()) {
1213		/*
1214		 * XXX This lock may not be necessary since BKGRDINPROG
1215		 * cannot be set while we hold the buf lock, it can only be
1216		 * cleared if it is already pending.
1217		 */
1218		if (bp->b_vp) {
1219			BO_LOCK(bp->b_bufobj);
1220			if (!(bp->b_vflags & BV_BKGRDINPROG))
1221				bp->b_flags |= B_RELBUF;
1222			BO_UNLOCK(bp->b_bufobj);
1223		} else
1224			bp->b_flags |= B_RELBUF;
1225	}
1226
1227	/*
1228	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1229	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1230	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1231	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1232	 *
1233	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1234	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1235	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1236	 *
1237	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1238	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1239	 * the commit state and we cannot afford to lose the buffer. If the
1240	 * buffer has a background write in progress, we need to keep it
1241	 * around to prevent it from being reconstituted and starting a second
1242	 * background write.
1243	 */
1244	if ((bp->b_flags & B_VMIO)
1245	    && !(bp->b_vp->v_mount != NULL &&
1246		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1247		 !vn_isdisk(bp->b_vp, NULL) &&
1248		 (bp->b_flags & B_DELWRI))
1249	    ) {
1250
1251		int i, j, resid;
1252		vm_page_t m;
1253		off_t foff;
1254		vm_pindex_t poff;
1255		vm_object_t obj;
1256
1257		obj = bp->b_bufobj->bo_object;
1258
1259		/*
1260		 * Get the base offset and length of the buffer.  Note that
1261		 * in the VMIO case if the buffer block size is not
1262		 * page-aligned then b_data pointer may not be page-aligned.
1263		 * But our b_pages[] array *IS* page aligned.
1264		 *
1265		 * block sizes less then DEV_BSIZE (usually 512) are not
1266		 * supported due to the page granularity bits (m->valid,
1267		 * m->dirty, etc...).
1268		 *
1269		 * See man buf(9) for more information
1270		 */
1271		resid = bp->b_bufsize;
1272		foff = bp->b_offset;
1273		VM_OBJECT_LOCK(obj);
1274		for (i = 0; i < bp->b_npages; i++) {
1275			int had_bogus = 0;
1276
1277			m = bp->b_pages[i];
1278
1279			/*
1280			 * If we hit a bogus page, fixup *all* the bogus pages
1281			 * now.
1282			 */
1283			if (m == bogus_page) {
1284				poff = OFF_TO_IDX(bp->b_offset);
1285				had_bogus = 1;
1286
1287				for (j = i; j < bp->b_npages; j++) {
1288					vm_page_t mtmp;
1289					mtmp = bp->b_pages[j];
1290					if (mtmp == bogus_page) {
1291						mtmp = vm_page_lookup(obj, poff + j);
1292						if (!mtmp) {
1293							panic("brelse: page missing\n");
1294						}
1295						bp->b_pages[j] = mtmp;
1296					}
1297				}
1298
1299				if ((bp->b_flags & B_INVAL) == 0) {
1300					pmap_qenter(
1301					    trunc_page((vm_offset_t)bp->b_data),
1302					    bp->b_pages, bp->b_npages);
1303				}
1304				m = bp->b_pages[i];
1305			}
1306			if ((bp->b_flags & B_NOCACHE) ||
1307			    (bp->b_ioflags & BIO_ERROR)) {
1308				int poffset = foff & PAGE_MASK;
1309				int presid = resid > (PAGE_SIZE - poffset) ?
1310					(PAGE_SIZE - poffset) : resid;
1311
1312				KASSERT(presid >= 0, ("brelse: extra page"));
1313				vm_page_lock_queues();
1314				vm_page_set_invalid(m, poffset, presid);
1315				vm_page_unlock_queues();
1316				if (had_bogus)
1317					printf("avoided corruption bug in bogus_page/brelse code\n");
1318			}
1319			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1320			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1321		}
1322		VM_OBJECT_UNLOCK(obj);
1323		if (bp->b_flags & (B_INVAL | B_RELBUF))
1324			vfs_vmio_release(bp);
1325
1326	} else if (bp->b_flags & B_VMIO) {
1327
1328		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1329			vfs_vmio_release(bp);
1330		}
1331
1332	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1333		if (bp->b_bufsize != 0)
1334			allocbuf(bp, 0);
1335		if (bp->b_vp != NULL)
1336			brelvp(bp);
1337	}
1338
1339	if (BUF_REFCNT(bp) > 1) {
1340		/* do not release to free list */
1341		BUF_UNLOCK(bp);
1342		return;
1343	}
1344
1345	/* enqueue */
1346	mtx_lock(&bqlock);
1347	/* Handle delayed bremfree() processing. */
1348	if (bp->b_flags & B_REMFREE)
1349		bremfreel(bp);
1350	if (bp->b_qindex != QUEUE_NONE)
1351		panic("brelse: free buffer onto another queue???");
1352
1353	/* buffers with no memory */
1354	if (bp->b_bufsize == 0) {
1355		bp->b_flags |= B_INVAL;
1356		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1357		if (bp->b_vflags & BV_BKGRDINPROG)
1358			panic("losing buffer 1");
1359		if (bp->b_kvasize) {
1360			bp->b_qindex = QUEUE_EMPTYKVA;
1361		} else {
1362			bp->b_qindex = QUEUE_EMPTY;
1363		}
1364		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1365	/* buffers with junk contents */
1366	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1367	    (bp->b_ioflags & BIO_ERROR)) {
1368		bp->b_flags |= B_INVAL;
1369		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1370		if (bp->b_vflags & BV_BKGRDINPROG)
1371			panic("losing buffer 2");
1372		bp->b_qindex = QUEUE_CLEAN;
1373		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1374	/* remaining buffers */
1375	} else {
1376		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1377		    (B_DELWRI|B_NEEDSGIANT))
1378			bp->b_qindex = QUEUE_DIRTY_GIANT;
1379		if (bp->b_flags & B_DELWRI)
1380			bp->b_qindex = QUEUE_DIRTY;
1381		else
1382			bp->b_qindex = QUEUE_CLEAN;
1383		if (bp->b_flags & B_AGE)
1384			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1385		else
1386			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1387	}
1388	mtx_unlock(&bqlock);
1389
1390	/*
1391	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1392	 * placed the buffer on the correct queue.  We must also disassociate
1393	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1394	 * find it.
1395	 */
1396	if (bp->b_flags & B_INVAL) {
1397		if (bp->b_flags & B_DELWRI)
1398			bundirty(bp);
1399		if (bp->b_vp)
1400			brelvp(bp);
1401	}
1402
1403	/*
1404	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1405	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1406	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1407	 * if B_INVAL is set ).
1408	 */
1409
1410	if (!(bp->b_flags & B_DELWRI))
1411		bufcountwakeup();
1412
1413	/*
1414	 * Something we can maybe free or reuse
1415	 */
1416	if (bp->b_bufsize || bp->b_kvasize)
1417		bufspacewakeup();
1418
1419	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1420	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1421		panic("brelse: not dirty");
1422	/* unlock */
1423	BUF_UNLOCK(bp);
1424}
1425
1426/*
1427 * Release a buffer back to the appropriate queue but do not try to free
1428 * it.  The buffer is expected to be used again soon.
1429 *
1430 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1431 * biodone() to requeue an async I/O on completion.  It is also used when
1432 * known good buffers need to be requeued but we think we may need the data
1433 * again soon.
1434 *
1435 * XXX we should be able to leave the B_RELBUF hint set on completion.
1436 */
1437void
1438bqrelse(struct buf *bp)
1439{
1440	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1441	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1442	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1443
1444	if (BUF_REFCNT(bp) > 1) {
1445		/* do not release to free list */
1446		BUF_UNLOCK(bp);
1447		return;
1448	}
1449
1450	if (bp->b_flags & B_MANAGED) {
1451		if (bp->b_flags & B_REMFREE) {
1452			mtx_lock(&bqlock);
1453			bremfreel(bp);
1454			mtx_unlock(&bqlock);
1455		}
1456		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1457		BUF_UNLOCK(bp);
1458		return;
1459	}
1460
1461	mtx_lock(&bqlock);
1462	/* Handle delayed bremfree() processing. */
1463	if (bp->b_flags & B_REMFREE)
1464		bremfreel(bp);
1465	if (bp->b_qindex != QUEUE_NONE)
1466		panic("bqrelse: free buffer onto another queue???");
1467	/* buffers with stale but valid contents */
1468	if (bp->b_flags & B_DELWRI) {
1469		if (bp->b_flags & B_NEEDSGIANT)
1470			bp->b_qindex = QUEUE_DIRTY_GIANT;
1471		else
1472			bp->b_qindex = QUEUE_DIRTY;
1473		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1474	} else {
1475		/*
1476		 * XXX This lock may not be necessary since BKGRDINPROG
1477		 * cannot be set while we hold the buf lock, it can only be
1478		 * cleared if it is already pending.
1479		 */
1480		BO_LOCK(bp->b_bufobj);
1481		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1482			BO_UNLOCK(bp->b_bufobj);
1483			bp->b_qindex = QUEUE_CLEAN;
1484			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1485			    b_freelist);
1486		} else {
1487			/*
1488			 * We are too low on memory, we have to try to free
1489			 * the buffer (most importantly: the wired pages
1490			 * making up its backing store) *now*.
1491			 */
1492			BO_UNLOCK(bp->b_bufobj);
1493			mtx_unlock(&bqlock);
1494			brelse(bp);
1495			return;
1496		}
1497	}
1498	mtx_unlock(&bqlock);
1499
1500	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1501		bufcountwakeup();
1502
1503	/*
1504	 * Something we can maybe free or reuse.
1505	 */
1506	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1507		bufspacewakeup();
1508
1509	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1510	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1511		panic("bqrelse: not dirty");
1512	/* unlock */
1513	BUF_UNLOCK(bp);
1514}
1515
1516/* Give pages used by the bp back to the VM system (where possible) */
1517static void
1518vfs_vmio_release(struct buf *bp)
1519{
1520	int i;
1521	vm_page_t m;
1522
1523	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1524	vm_page_lock_queues();
1525	for (i = 0; i < bp->b_npages; i++) {
1526		m = bp->b_pages[i];
1527		bp->b_pages[i] = NULL;
1528		/*
1529		 * In order to keep page LRU ordering consistent, put
1530		 * everything on the inactive queue.
1531		 */
1532		vm_page_unwire(m, 0);
1533		/*
1534		 * We don't mess with busy pages, it is
1535		 * the responsibility of the process that
1536		 * busied the pages to deal with them.
1537		 */
1538		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1539			continue;
1540
1541		if (m->wire_count == 0) {
1542			/*
1543			 * Might as well free the page if we can and it has
1544			 * no valid data.  We also free the page if the
1545			 * buffer was used for direct I/O
1546			 */
1547			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1548			    m->hold_count == 0) {
1549				vm_page_free(m);
1550			} else if (bp->b_flags & B_DIRECT) {
1551				vm_page_try_to_free(m);
1552			} else if (vm_page_count_severe()) {
1553				vm_page_try_to_cache(m);
1554			}
1555		}
1556	}
1557	vm_page_unlock_queues();
1558	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1559	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1560
1561	if (bp->b_bufsize) {
1562		bufspacewakeup();
1563		bp->b_bufsize = 0;
1564	}
1565	bp->b_npages = 0;
1566	bp->b_flags &= ~B_VMIO;
1567	if (bp->b_vp)
1568		brelvp(bp);
1569}
1570
1571/*
1572 * Check to see if a block at a particular lbn is available for a clustered
1573 * write.
1574 */
1575static int
1576vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1577{
1578	struct buf *bpa;
1579	int match;
1580
1581	match = 0;
1582
1583	/* If the buf isn't in core skip it */
1584	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1585		return (0);
1586
1587	/* If the buf is busy we don't want to wait for it */
1588	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1589		return (0);
1590
1591	/* Only cluster with valid clusterable delayed write buffers */
1592	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1593	    (B_DELWRI | B_CLUSTEROK))
1594		goto done;
1595
1596	if (bpa->b_bufsize != size)
1597		goto done;
1598
1599	/*
1600	 * Check to see if it is in the expected place on disk and that the
1601	 * block has been mapped.
1602	 */
1603	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1604		match = 1;
1605done:
1606	BUF_UNLOCK(bpa);
1607	return (match);
1608}
1609
1610/*
1611 *	vfs_bio_awrite:
1612 *
1613 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1614 *	This is much better then the old way of writing only one buffer at
1615 *	a time.  Note that we may not be presented with the buffers in the
1616 *	correct order, so we search for the cluster in both directions.
1617 */
1618int
1619vfs_bio_awrite(struct buf *bp)
1620{
1621	int i;
1622	int j;
1623	daddr_t lblkno = bp->b_lblkno;
1624	struct vnode *vp = bp->b_vp;
1625	int ncl;
1626	int nwritten;
1627	int size;
1628	int maxcl;
1629
1630	/*
1631	 * right now we support clustered writing only to regular files.  If
1632	 * we find a clusterable block we could be in the middle of a cluster
1633	 * rather then at the beginning.
1634	 */
1635	if ((vp->v_type == VREG) &&
1636	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1637	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1638
1639		size = vp->v_mount->mnt_stat.f_iosize;
1640		maxcl = MAXPHYS / size;
1641
1642		VI_LOCK(vp);
1643		for (i = 1; i < maxcl; i++)
1644			if (vfs_bio_clcheck(vp, size, lblkno + i,
1645			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1646				break;
1647
1648		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1649			if (vfs_bio_clcheck(vp, size, lblkno - j,
1650			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1651				break;
1652
1653		VI_UNLOCK(vp);
1654		--j;
1655		ncl = i + j;
1656		/*
1657		 * this is a possible cluster write
1658		 */
1659		if (ncl != 1) {
1660			BUF_UNLOCK(bp);
1661			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1662			return nwritten;
1663		}
1664	}
1665	bremfree(bp);
1666	bp->b_flags |= B_ASYNC;
1667	/*
1668	 * default (old) behavior, writing out only one block
1669	 *
1670	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1671	 */
1672	nwritten = bp->b_bufsize;
1673	(void) bwrite(bp);
1674
1675	return nwritten;
1676}
1677
1678/*
1679 *	getnewbuf:
1680 *
1681 *	Find and initialize a new buffer header, freeing up existing buffers
1682 *	in the bufqueues as necessary.  The new buffer is returned locked.
1683 *
1684 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1685 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1686 *
1687 *	We block if:
1688 *		We have insufficient buffer headers
1689 *		We have insufficient buffer space
1690 *		buffer_map is too fragmented ( space reservation fails )
1691 *		If we have to flush dirty buffers ( but we try to avoid this )
1692 *
1693 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1694 *	Instead we ask the buf daemon to do it for us.  We attempt to
1695 *	avoid piecemeal wakeups of the pageout daemon.
1696 */
1697
1698static struct buf *
1699getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1700{
1701	struct buf *bp;
1702	struct buf *nbp;
1703	int defrag = 0;
1704	int nqindex;
1705	static int flushingbufs;
1706
1707	/*
1708	 * We can't afford to block since we might be holding a vnode lock,
1709	 * which may prevent system daemons from running.  We deal with
1710	 * low-memory situations by proactively returning memory and running
1711	 * async I/O rather then sync I/O.
1712	 */
1713
1714	atomic_add_int(&getnewbufcalls, 1);
1715	atomic_subtract_int(&getnewbufrestarts, 1);
1716restart:
1717	atomic_add_int(&getnewbufrestarts, 1);
1718
1719	/*
1720	 * Setup for scan.  If we do not have enough free buffers,
1721	 * we setup a degenerate case that immediately fails.  Note
1722	 * that if we are specially marked process, we are allowed to
1723	 * dip into our reserves.
1724	 *
1725	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1726	 *
1727	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1728	 * However, there are a number of cases (defragging, reusing, ...)
1729	 * where we cannot backup.
1730	 */
1731	mtx_lock(&bqlock);
1732	nqindex = QUEUE_EMPTYKVA;
1733	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1734
1735	if (nbp == NULL) {
1736		/*
1737		 * If no EMPTYKVA buffers and we are either
1738		 * defragging or reusing, locate a CLEAN buffer
1739		 * to free or reuse.  If bufspace useage is low
1740		 * skip this step so we can allocate a new buffer.
1741		 */
1742		if (defrag || bufspace >= lobufspace) {
1743			nqindex = QUEUE_CLEAN;
1744			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1745		}
1746
1747		/*
1748		 * If we could not find or were not allowed to reuse a
1749		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1750		 * buffer.  We can only use an EMPTY buffer if allocating
1751		 * its KVA would not otherwise run us out of buffer space.
1752		 */
1753		if (nbp == NULL && defrag == 0 &&
1754		    bufspace + maxsize < hibufspace) {
1755			nqindex = QUEUE_EMPTY;
1756			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1757		}
1758	}
1759
1760	/*
1761	 * Run scan, possibly freeing data and/or kva mappings on the fly
1762	 * depending.
1763	 */
1764
1765	while ((bp = nbp) != NULL) {
1766		int qindex = nqindex;
1767
1768		/*
1769		 * Calculate next bp ( we can only use it if we do not block
1770		 * or do other fancy things ).
1771		 */
1772		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1773			switch(qindex) {
1774			case QUEUE_EMPTY:
1775				nqindex = QUEUE_EMPTYKVA;
1776				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1777					break;
1778				/* FALLTHROUGH */
1779			case QUEUE_EMPTYKVA:
1780				nqindex = QUEUE_CLEAN;
1781				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1782					break;
1783				/* FALLTHROUGH */
1784			case QUEUE_CLEAN:
1785				/*
1786				 * nbp is NULL.
1787				 */
1788				break;
1789			}
1790		}
1791		/*
1792		 * If we are defragging then we need a buffer with
1793		 * b_kvasize != 0.  XXX this situation should no longer
1794		 * occur, if defrag is non-zero the buffer's b_kvasize
1795		 * should also be non-zero at this point.  XXX
1796		 */
1797		if (defrag && bp->b_kvasize == 0) {
1798			printf("Warning: defrag empty buffer %p\n", bp);
1799			continue;
1800		}
1801
1802		/*
1803		 * Start freeing the bp.  This is somewhat involved.  nbp
1804		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1805		 */
1806		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1807			continue;
1808		if (bp->b_vp) {
1809			BO_LOCK(bp->b_bufobj);
1810			if (bp->b_vflags & BV_BKGRDINPROG) {
1811				BO_UNLOCK(bp->b_bufobj);
1812				BUF_UNLOCK(bp);
1813				continue;
1814			}
1815			BO_UNLOCK(bp->b_bufobj);
1816		}
1817		CTR6(KTR_BUF,
1818		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1819		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1820		    bp->b_kvasize, bp->b_bufsize, qindex);
1821
1822		/*
1823		 * Sanity Checks
1824		 */
1825		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1826
1827		/*
1828		 * Note: we no longer distinguish between VMIO and non-VMIO
1829		 * buffers.
1830		 */
1831
1832		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1833
1834		bremfreel(bp);
1835		mtx_unlock(&bqlock);
1836
1837		if (qindex == QUEUE_CLEAN) {
1838			if (bp->b_flags & B_VMIO) {
1839				bp->b_flags &= ~B_ASYNC;
1840				vfs_vmio_release(bp);
1841			}
1842			if (bp->b_vp)
1843				brelvp(bp);
1844		}
1845
1846		/*
1847		 * NOTE:  nbp is now entirely invalid.  We can only restart
1848		 * the scan from this point on.
1849		 *
1850		 * Get the rest of the buffer freed up.  b_kva* is still
1851		 * valid after this operation.
1852		 */
1853
1854		if (bp->b_rcred != NOCRED) {
1855			crfree(bp->b_rcred);
1856			bp->b_rcred = NOCRED;
1857		}
1858		if (bp->b_wcred != NOCRED) {
1859			crfree(bp->b_wcred);
1860			bp->b_wcred = NOCRED;
1861		}
1862		if (!LIST_EMPTY(&bp->b_dep))
1863			buf_deallocate(bp);
1864		if (bp->b_vflags & BV_BKGRDINPROG)
1865			panic("losing buffer 3");
1866		KASSERT(bp->b_vp == NULL,
1867		    ("bp: %p still has vnode %p.  qindex: %d",
1868		    bp, bp->b_vp, qindex));
1869		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1870		   ("bp: %p still on a buffer list. xflags %X",
1871		    bp, bp->b_xflags));
1872
1873		if (bp->b_bufsize)
1874			allocbuf(bp, 0);
1875
1876		bp->b_flags = 0;
1877		bp->b_ioflags = 0;
1878		bp->b_xflags = 0;
1879		bp->b_vflags = 0;
1880		bp->b_vp = NULL;
1881		bp->b_blkno = bp->b_lblkno = 0;
1882		bp->b_offset = NOOFFSET;
1883		bp->b_iodone = 0;
1884		bp->b_error = 0;
1885		bp->b_resid = 0;
1886		bp->b_bcount = 0;
1887		bp->b_npages = 0;
1888		bp->b_dirtyoff = bp->b_dirtyend = 0;
1889		bp->b_bufobj = NULL;
1890		bp->b_pin_count = 0;
1891		bp->b_fsprivate1 = NULL;
1892		bp->b_fsprivate2 = NULL;
1893		bp->b_fsprivate3 = NULL;
1894
1895		LIST_INIT(&bp->b_dep);
1896
1897		/*
1898		 * If we are defragging then free the buffer.
1899		 */
1900		if (defrag) {
1901			bp->b_flags |= B_INVAL;
1902			bfreekva(bp);
1903			brelse(bp);
1904			defrag = 0;
1905			goto restart;
1906		}
1907
1908		/*
1909		 * Notify any waiters for the buffer lock about
1910		 * identity change by freeing the buffer.
1911		 */
1912		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp) > 0) {
1913			bp->b_flags |= B_INVAL;
1914			bfreekva(bp);
1915			brelse(bp);
1916			goto restart;
1917		}
1918
1919		/*
1920		 * If we are overcomitted then recover the buffer and its
1921		 * KVM space.  This occurs in rare situations when multiple
1922		 * processes are blocked in getnewbuf() or allocbuf().
1923		 */
1924		if (bufspace >= hibufspace)
1925			flushingbufs = 1;
1926		if (flushingbufs && bp->b_kvasize != 0) {
1927			bp->b_flags |= B_INVAL;
1928			bfreekva(bp);
1929			brelse(bp);
1930			goto restart;
1931		}
1932		if (bufspace < lobufspace)
1933			flushingbufs = 0;
1934		break;
1935	}
1936
1937	/*
1938	 * If we exhausted our list, sleep as appropriate.  We may have to
1939	 * wakeup various daemons and write out some dirty buffers.
1940	 *
1941	 * Generally we are sleeping due to insufficient buffer space.
1942	 */
1943
1944	if (bp == NULL) {
1945		int flags;
1946		char *waitmsg;
1947
1948		if (defrag) {
1949			flags = VFS_BIO_NEED_BUFSPACE;
1950			waitmsg = "nbufkv";
1951		} else if (bufspace >= hibufspace) {
1952			waitmsg = "nbufbs";
1953			flags = VFS_BIO_NEED_BUFSPACE;
1954		} else {
1955			waitmsg = "newbuf";
1956			flags = VFS_BIO_NEED_ANY;
1957		}
1958		mtx_lock(&nblock);
1959		needsbuffer |= flags;
1960		mtx_unlock(&nblock);
1961		mtx_unlock(&bqlock);
1962
1963		bd_speedup();	/* heeeelp */
1964
1965		mtx_lock(&nblock);
1966		while (needsbuffer & flags) {
1967			if (msleep(&needsbuffer, &nblock,
1968			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1969				mtx_unlock(&nblock);
1970				return (NULL);
1971			}
1972		}
1973		mtx_unlock(&nblock);
1974	} else {
1975		/*
1976		 * We finally have a valid bp.  We aren't quite out of the
1977		 * woods, we still have to reserve kva space.  In order
1978		 * to keep fragmentation sane we only allocate kva in
1979		 * BKVASIZE chunks.
1980		 */
1981		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1982
1983		if (maxsize != bp->b_kvasize) {
1984			vm_offset_t addr = 0;
1985
1986			bfreekva(bp);
1987
1988			vm_map_lock(buffer_map);
1989			if (vm_map_findspace(buffer_map,
1990				vm_map_min(buffer_map), maxsize, &addr)) {
1991				/*
1992				 * Uh oh.  Buffer map is to fragmented.  We
1993				 * must defragment the map.
1994				 */
1995				atomic_add_int(&bufdefragcnt, 1);
1996				vm_map_unlock(buffer_map);
1997				defrag = 1;
1998				bp->b_flags |= B_INVAL;
1999				brelse(bp);
2000				goto restart;
2001			}
2002			if (addr) {
2003				vm_map_insert(buffer_map, NULL, 0,
2004					addr, addr + maxsize,
2005					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2006
2007				bp->b_kvabase = (caddr_t) addr;
2008				bp->b_kvasize = maxsize;
2009				atomic_add_int(&bufspace, bp->b_kvasize);
2010				atomic_add_int(&bufreusecnt, 1);
2011			}
2012			vm_map_unlock(buffer_map);
2013		}
2014		bp->b_saveaddr = bp->b_kvabase;
2015		bp->b_data = bp->b_saveaddr;
2016	}
2017	return(bp);
2018}
2019
2020/*
2021 *	buf_daemon:
2022 *
2023 *	buffer flushing daemon.  Buffers are normally flushed by the
2024 *	update daemon but if it cannot keep up this process starts to
2025 *	take the load in an attempt to prevent getnewbuf() from blocking.
2026 */
2027
2028static struct kproc_desc buf_kp = {
2029	"bufdaemon",
2030	buf_daemon,
2031	&bufdaemonproc
2032};
2033SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2034
2035static void
2036buf_daemon()
2037{
2038
2039	/*
2040	 * This process needs to be suspended prior to shutdown sync.
2041	 */
2042	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2043	    SHUTDOWN_PRI_LAST);
2044
2045	/*
2046	 * This process is allowed to take the buffer cache to the limit
2047	 */
2048	curthread->td_pflags |= TDP_NORUNNINGBUF;
2049	mtx_lock(&bdlock);
2050	for (;;) {
2051		bd_request = 0;
2052		mtx_unlock(&bdlock);
2053
2054		kthread_suspend_check(bufdaemonproc);
2055
2056		/*
2057		 * Do the flush.  Limit the amount of in-transit I/O we
2058		 * allow to build up, otherwise we would completely saturate
2059		 * the I/O system.  Wakeup any waiting processes before we
2060		 * normally would so they can run in parallel with our drain.
2061		 */
2062		while (numdirtybuffers > lodirtybuffers) {
2063			int flushed;
2064
2065			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2066			/* The list empty check here is slightly racy */
2067			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2068				mtx_lock(&Giant);
2069				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2070				mtx_unlock(&Giant);
2071			}
2072			if (flushed == 0) {
2073				/*
2074				 * Could not find any buffers without rollback
2075				 * dependencies, so just write the first one
2076				 * in the hopes of eventually making progress.
2077				 */
2078				flushbufqueues(QUEUE_DIRTY, 1);
2079				if (!TAILQ_EMPTY(
2080				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2081					mtx_lock(&Giant);
2082					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2083					mtx_unlock(&Giant);
2084				}
2085				break;
2086			}
2087			uio_yield();
2088		}
2089
2090		/*
2091		 * Only clear bd_request if we have reached our low water
2092		 * mark.  The buf_daemon normally waits 1 second and
2093		 * then incrementally flushes any dirty buffers that have
2094		 * built up, within reason.
2095		 *
2096		 * If we were unable to hit our low water mark and couldn't
2097		 * find any flushable buffers, we sleep half a second.
2098		 * Otherwise we loop immediately.
2099		 */
2100		mtx_lock(&bdlock);
2101		if (numdirtybuffers <= lodirtybuffers) {
2102			/*
2103			 * We reached our low water mark, reset the
2104			 * request and sleep until we are needed again.
2105			 * The sleep is just so the suspend code works.
2106			 */
2107			bd_request = 0;
2108			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2109		} else {
2110			/*
2111			 * We couldn't find any flushable dirty buffers but
2112			 * still have too many dirty buffers, we
2113			 * have to sleep and try again.  (rare)
2114			 */
2115			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2116		}
2117	}
2118}
2119
2120/*
2121 *	flushbufqueues:
2122 *
2123 *	Try to flush a buffer in the dirty queue.  We must be careful to
2124 *	free up B_INVAL buffers instead of write them, which NFS is
2125 *	particularly sensitive to.
2126 */
2127static int flushwithdeps = 0;
2128SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2129    0, "Number of buffers flushed with dependecies that require rollbacks");
2130
2131static int
2132flushbufqueues(int queue, int flushdeps)
2133{
2134	struct thread *td = curthread;
2135	struct buf sentinel;
2136	struct vnode *vp;
2137	struct mount *mp;
2138	struct buf *bp;
2139	int hasdeps;
2140	int flushed;
2141	int target;
2142
2143	target = numdirtybuffers - lodirtybuffers;
2144	if (flushdeps && target > 2)
2145		target /= 2;
2146	flushed = 0;
2147	bp = NULL;
2148	mtx_lock(&bqlock);
2149	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2150	while (flushed != target) {
2151		bp = TAILQ_FIRST(&bufqueues[queue]);
2152		if (bp == &sentinel)
2153			break;
2154		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2155		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2156
2157		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2158			continue;
2159		if (bp->b_pin_count > 0) {
2160			BUF_UNLOCK(bp);
2161			continue;
2162		}
2163		BO_LOCK(bp->b_bufobj);
2164		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2165		    (bp->b_flags & B_DELWRI) == 0) {
2166			BO_UNLOCK(bp->b_bufobj);
2167			BUF_UNLOCK(bp);
2168			continue;
2169		}
2170		BO_UNLOCK(bp->b_bufobj);
2171		if (bp->b_flags & B_INVAL) {
2172			bremfreel(bp);
2173			mtx_unlock(&bqlock);
2174			brelse(bp);
2175			flushed++;
2176			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2177			mtx_lock(&bqlock);
2178			continue;
2179		}
2180
2181		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2182			if (flushdeps == 0) {
2183				BUF_UNLOCK(bp);
2184				continue;
2185			}
2186			hasdeps = 1;
2187		} else
2188			hasdeps = 0;
2189		/*
2190		 * We must hold the lock on a vnode before writing
2191		 * one of its buffers. Otherwise we may confuse, or
2192		 * in the case of a snapshot vnode, deadlock the
2193		 * system.
2194		 *
2195		 * The lock order here is the reverse of the normal
2196		 * of vnode followed by buf lock.  This is ok because
2197		 * the NOWAIT will prevent deadlock.
2198		 */
2199		vp = bp->b_vp;
2200		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2201			BUF_UNLOCK(bp);
2202			continue;
2203		}
2204		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2205			mtx_unlock(&bqlock);
2206			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2207			    bp, bp->b_vp, bp->b_flags);
2208			vfs_bio_awrite(bp);
2209			vn_finished_write(mp);
2210			VOP_UNLOCK(vp, 0, td);
2211			flushwithdeps += hasdeps;
2212			flushed++;
2213			waitrunningbufspace();
2214			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2215			mtx_lock(&bqlock);
2216			continue;
2217		}
2218		vn_finished_write(mp);
2219		BUF_UNLOCK(bp);
2220	}
2221	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2222	mtx_unlock(&bqlock);
2223	return (flushed);
2224}
2225
2226/*
2227 * Check to see if a block is currently memory resident.
2228 */
2229struct buf *
2230incore(struct bufobj *bo, daddr_t blkno)
2231{
2232	struct buf *bp;
2233
2234	BO_LOCK(bo);
2235	bp = gbincore(bo, blkno);
2236	BO_UNLOCK(bo);
2237	return (bp);
2238}
2239
2240/*
2241 * Returns true if no I/O is needed to access the
2242 * associated VM object.  This is like incore except
2243 * it also hunts around in the VM system for the data.
2244 */
2245
2246static int
2247inmem(struct vnode * vp, daddr_t blkno)
2248{
2249	vm_object_t obj;
2250	vm_offset_t toff, tinc, size;
2251	vm_page_t m;
2252	vm_ooffset_t off;
2253
2254	ASSERT_VOP_LOCKED(vp, "inmem");
2255
2256	if (incore(&vp->v_bufobj, blkno))
2257		return 1;
2258	if (vp->v_mount == NULL)
2259		return 0;
2260	obj = vp->v_object;
2261	if (obj == NULL)
2262		return (0);
2263
2264	size = PAGE_SIZE;
2265	if (size > vp->v_mount->mnt_stat.f_iosize)
2266		size = vp->v_mount->mnt_stat.f_iosize;
2267	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2268
2269	VM_OBJECT_LOCK(obj);
2270	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2271		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2272		if (!m)
2273			goto notinmem;
2274		tinc = size;
2275		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2276			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2277		if (vm_page_is_valid(m,
2278		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2279			goto notinmem;
2280	}
2281	VM_OBJECT_UNLOCK(obj);
2282	return 1;
2283
2284notinmem:
2285	VM_OBJECT_UNLOCK(obj);
2286	return (0);
2287}
2288
2289/*
2290 *	vfs_setdirty:
2291 *
2292 *	Sets the dirty range for a buffer based on the status of the dirty
2293 *	bits in the pages comprising the buffer.
2294 *
2295 *	The range is limited to the size of the buffer.
2296 *
2297 *	This routine is primarily used by NFS, but is generalized for the
2298 *	B_VMIO case.
2299 */
2300static void
2301vfs_setdirty(struct buf *bp)
2302{
2303
2304	/*
2305	 * Degenerate case - empty buffer
2306	 */
2307
2308	if (bp->b_bufsize == 0)
2309		return;
2310
2311	/*
2312	 * We qualify the scan for modified pages on whether the
2313	 * object has been flushed yet.
2314	 */
2315
2316	if ((bp->b_flags & B_VMIO) == 0)
2317		return;
2318
2319	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2320	vfs_setdirty_locked_object(bp);
2321	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2322}
2323
2324static void
2325vfs_setdirty_locked_object(struct buf *bp)
2326{
2327	vm_object_t object;
2328	int i;
2329
2330	object = bp->b_bufobj->bo_object;
2331	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2332	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2333		vm_offset_t boffset;
2334		vm_offset_t eoffset;
2335
2336		vm_page_lock_queues();
2337		/*
2338		 * test the pages to see if they have been modified directly
2339		 * by users through the VM system.
2340		 */
2341		for (i = 0; i < bp->b_npages; i++)
2342			vm_page_test_dirty(bp->b_pages[i]);
2343
2344		/*
2345		 * Calculate the encompassing dirty range, boffset and eoffset,
2346		 * (eoffset - boffset) bytes.
2347		 */
2348
2349		for (i = 0; i < bp->b_npages; i++) {
2350			if (bp->b_pages[i]->dirty)
2351				break;
2352		}
2353		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2354
2355		for (i = bp->b_npages - 1; i >= 0; --i) {
2356			if (bp->b_pages[i]->dirty) {
2357				break;
2358			}
2359		}
2360		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2361
2362		vm_page_unlock_queues();
2363		/*
2364		 * Fit it to the buffer.
2365		 */
2366
2367		if (eoffset > bp->b_bcount)
2368			eoffset = bp->b_bcount;
2369
2370		/*
2371		 * If we have a good dirty range, merge with the existing
2372		 * dirty range.
2373		 */
2374
2375		if (boffset < eoffset) {
2376			if (bp->b_dirtyoff > boffset)
2377				bp->b_dirtyoff = boffset;
2378			if (bp->b_dirtyend < eoffset)
2379				bp->b_dirtyend = eoffset;
2380		}
2381	}
2382}
2383
2384/*
2385 *	getblk:
2386 *
2387 *	Get a block given a specified block and offset into a file/device.
2388 *	The buffers B_DONE bit will be cleared on return, making it almost
2389 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2390 *	return.  The caller should clear B_INVAL prior to initiating a
2391 *	READ.
2392 *
2393 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2394 *	an existing buffer.
2395 *
2396 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2397 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2398 *	and then cleared based on the backing VM.  If the previous buffer is
2399 *	non-0-sized but invalid, B_CACHE will be cleared.
2400 *
2401 *	If getblk() must create a new buffer, the new buffer is returned with
2402 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2403 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2404 *	backing VM.
2405 *
2406 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2407 *	B_CACHE bit is clear.
2408 *
2409 *	What this means, basically, is that the caller should use B_CACHE to
2410 *	determine whether the buffer is fully valid or not and should clear
2411 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2412 *	the buffer by loading its data area with something, the caller needs
2413 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2414 *	the caller should set B_CACHE ( as an optimization ), else the caller
2415 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2416 *	a write attempt or if it was a successfull read.  If the caller
2417 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2418 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2419 */
2420struct buf *
2421getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2422    int flags)
2423{
2424	struct buf *bp;
2425	struct bufobj *bo;
2426	int error;
2427
2428	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2429	ASSERT_VOP_LOCKED(vp, "getblk");
2430	if (size > MAXBSIZE)
2431		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2432
2433	bo = &vp->v_bufobj;
2434loop:
2435	/*
2436	 * Block if we are low on buffers.   Certain processes are allowed
2437	 * to completely exhaust the buffer cache.
2438         *
2439         * If this check ever becomes a bottleneck it may be better to
2440         * move it into the else, when gbincore() fails.  At the moment
2441         * it isn't a problem.
2442	 *
2443	 * XXX remove if 0 sections (clean this up after its proven)
2444         */
2445	if (numfreebuffers == 0) {
2446		if (TD_IS_IDLETHREAD(curthread))
2447			return NULL;
2448		mtx_lock(&nblock);
2449		needsbuffer |= VFS_BIO_NEED_ANY;
2450		mtx_unlock(&nblock);
2451	}
2452
2453	VI_LOCK(vp);
2454	bp = gbincore(bo, blkno);
2455	if (bp != NULL) {
2456		int lockflags;
2457		/*
2458		 * Buffer is in-core.  If the buffer is not busy, it must
2459		 * be on a queue.
2460		 */
2461		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2462
2463		if (flags & GB_LOCK_NOWAIT)
2464			lockflags |= LK_NOWAIT;
2465
2466		error = BUF_TIMELOCK(bp, lockflags,
2467		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2468
2469		/*
2470		 * If we slept and got the lock we have to restart in case
2471		 * the buffer changed identities.
2472		 */
2473		if (error == ENOLCK)
2474			goto loop;
2475		/* We timed out or were interrupted. */
2476		else if (error)
2477			return (NULL);
2478
2479		/*
2480		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2481		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2482		 * and for a VMIO buffer B_CACHE is adjusted according to the
2483		 * backing VM cache.
2484		 */
2485		if (bp->b_flags & B_INVAL)
2486			bp->b_flags &= ~B_CACHE;
2487		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2488			bp->b_flags |= B_CACHE;
2489		bremfree(bp);
2490
2491		/*
2492		 * check for size inconsistancies for non-VMIO case.
2493		 */
2494
2495		if (bp->b_bcount != size) {
2496			if ((bp->b_flags & B_VMIO) == 0 ||
2497			    (size > bp->b_kvasize)) {
2498				if (bp->b_flags & B_DELWRI) {
2499					/*
2500					 * If buffer is pinned and caller does
2501					 * not want sleep  waiting for it to be
2502					 * unpinned, bail out
2503					 * */
2504					if (bp->b_pin_count > 0) {
2505						if (flags & GB_LOCK_NOWAIT) {
2506							bqrelse(bp);
2507							return (NULL);
2508						} else {
2509							bunpin_wait(bp);
2510						}
2511					}
2512					bp->b_flags |= B_NOCACHE;
2513					bwrite(bp);
2514				} else {
2515					if (LIST_EMPTY(&bp->b_dep)) {
2516						bp->b_flags |= B_RELBUF;
2517						brelse(bp);
2518					} else {
2519						bp->b_flags |= B_NOCACHE;
2520						bwrite(bp);
2521					}
2522				}
2523				goto loop;
2524			}
2525		}
2526
2527		/*
2528		 * If the size is inconsistant in the VMIO case, we can resize
2529		 * the buffer.  This might lead to B_CACHE getting set or
2530		 * cleared.  If the size has not changed, B_CACHE remains
2531		 * unchanged from its previous state.
2532		 */
2533
2534		if (bp->b_bcount != size)
2535			allocbuf(bp, size);
2536
2537		KASSERT(bp->b_offset != NOOFFSET,
2538		    ("getblk: no buffer offset"));
2539
2540		/*
2541		 * A buffer with B_DELWRI set and B_CACHE clear must
2542		 * be committed before we can return the buffer in
2543		 * order to prevent the caller from issuing a read
2544		 * ( due to B_CACHE not being set ) and overwriting
2545		 * it.
2546		 *
2547		 * Most callers, including NFS and FFS, need this to
2548		 * operate properly either because they assume they
2549		 * can issue a read if B_CACHE is not set, or because
2550		 * ( for example ) an uncached B_DELWRI might loop due
2551		 * to softupdates re-dirtying the buffer.  In the latter
2552		 * case, B_CACHE is set after the first write completes,
2553		 * preventing further loops.
2554		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2555		 * above while extending the buffer, we cannot allow the
2556		 * buffer to remain with B_CACHE set after the write
2557		 * completes or it will represent a corrupt state.  To
2558		 * deal with this we set B_NOCACHE to scrap the buffer
2559		 * after the write.
2560		 *
2561		 * We might be able to do something fancy, like setting
2562		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2563		 * so the below call doesn't set B_CACHE, but that gets real
2564		 * confusing.  This is much easier.
2565		 */
2566
2567		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2568			bp->b_flags |= B_NOCACHE;
2569			bwrite(bp);
2570			goto loop;
2571		}
2572		bp->b_flags &= ~B_DONE;
2573	} else {
2574		int bsize, maxsize, vmio;
2575		off_t offset;
2576
2577		/*
2578		 * Buffer is not in-core, create new buffer.  The buffer
2579		 * returned by getnewbuf() is locked.  Note that the returned
2580		 * buffer is also considered valid (not marked B_INVAL).
2581		 */
2582		VI_UNLOCK(vp);
2583		/*
2584		 * If the user does not want us to create the buffer, bail out
2585		 * here.
2586		 */
2587		if (flags & GB_NOCREAT)
2588			return NULL;
2589		bsize = bo->bo_bsize;
2590		offset = blkno * bsize;
2591		vmio = vp->v_object != NULL;
2592		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2593		maxsize = imax(maxsize, bsize);
2594
2595		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2596		if (bp == NULL) {
2597			if (slpflag || slptimeo)
2598				return NULL;
2599			goto loop;
2600		}
2601
2602		/*
2603		 * This code is used to make sure that a buffer is not
2604		 * created while the getnewbuf routine is blocked.
2605		 * This can be a problem whether the vnode is locked or not.
2606		 * If the buffer is created out from under us, we have to
2607		 * throw away the one we just created.
2608		 *
2609		 * Note: this must occur before we associate the buffer
2610		 * with the vp especially considering limitations in
2611		 * the splay tree implementation when dealing with duplicate
2612		 * lblkno's.
2613		 */
2614		BO_LOCK(bo);
2615		if (gbincore(bo, blkno)) {
2616			BO_UNLOCK(bo);
2617			bp->b_flags |= B_INVAL;
2618			brelse(bp);
2619			goto loop;
2620		}
2621
2622		/*
2623		 * Insert the buffer into the hash, so that it can
2624		 * be found by incore.
2625		 */
2626		bp->b_blkno = bp->b_lblkno = blkno;
2627		bp->b_offset = offset;
2628		bgetvp(vp, bp);
2629		BO_UNLOCK(bo);
2630
2631		/*
2632		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2633		 * buffer size starts out as 0, B_CACHE will be set by
2634		 * allocbuf() for the VMIO case prior to it testing the
2635		 * backing store for validity.
2636		 */
2637
2638		if (vmio) {
2639			bp->b_flags |= B_VMIO;
2640#if defined(VFS_BIO_DEBUG)
2641			if (vn_canvmio(vp) != TRUE)
2642				printf("getblk: VMIO on vnode type %d\n",
2643					vp->v_type);
2644#endif
2645			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2646			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2647			    bp, vp->v_object, bp->b_bufobj->bo_object));
2648		} else {
2649			bp->b_flags &= ~B_VMIO;
2650			KASSERT(bp->b_bufobj->bo_object == NULL,
2651			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2652			    bp, bp->b_bufobj->bo_object));
2653		}
2654
2655		allocbuf(bp, size);
2656		bp->b_flags &= ~B_DONE;
2657	}
2658	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2659	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2660	KASSERT(bp->b_bufobj == bo,
2661	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2662	return (bp);
2663}
2664
2665/*
2666 * Get an empty, disassociated buffer of given size.  The buffer is initially
2667 * set to B_INVAL.
2668 */
2669struct buf *
2670geteblk(int size)
2671{
2672	struct buf *bp;
2673	int maxsize;
2674
2675	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2676	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2677		continue;
2678	allocbuf(bp, size);
2679	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2680	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2681	return (bp);
2682}
2683
2684
2685/*
2686 * This code constitutes the buffer memory from either anonymous system
2687 * memory (in the case of non-VMIO operations) or from an associated
2688 * VM object (in the case of VMIO operations).  This code is able to
2689 * resize a buffer up or down.
2690 *
2691 * Note that this code is tricky, and has many complications to resolve
2692 * deadlock or inconsistant data situations.  Tread lightly!!!
2693 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2694 * the caller.  Calling this code willy nilly can result in the loss of data.
2695 *
2696 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2697 * B_CACHE for the non-VMIO case.
2698 */
2699
2700int
2701allocbuf(struct buf *bp, int size)
2702{
2703	int newbsize, mbsize;
2704	int i;
2705
2706	if (BUF_REFCNT(bp) == 0)
2707		panic("allocbuf: buffer not busy");
2708
2709	if (bp->b_kvasize < size)
2710		panic("allocbuf: buffer too small");
2711
2712	if ((bp->b_flags & B_VMIO) == 0) {
2713		caddr_t origbuf;
2714		int origbufsize;
2715		/*
2716		 * Just get anonymous memory from the kernel.  Don't
2717		 * mess with B_CACHE.
2718		 */
2719		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2720		if (bp->b_flags & B_MALLOC)
2721			newbsize = mbsize;
2722		else
2723			newbsize = round_page(size);
2724
2725		if (newbsize < bp->b_bufsize) {
2726			/*
2727			 * malloced buffers are not shrunk
2728			 */
2729			if (bp->b_flags & B_MALLOC) {
2730				if (newbsize) {
2731					bp->b_bcount = size;
2732				} else {
2733					free(bp->b_data, M_BIOBUF);
2734					if (bp->b_bufsize) {
2735						atomic_subtract_int(
2736						    &bufmallocspace,
2737						    bp->b_bufsize);
2738						bufspacewakeup();
2739						bp->b_bufsize = 0;
2740					}
2741					bp->b_saveaddr = bp->b_kvabase;
2742					bp->b_data = bp->b_saveaddr;
2743					bp->b_bcount = 0;
2744					bp->b_flags &= ~B_MALLOC;
2745				}
2746				return 1;
2747			}
2748			vm_hold_free_pages(
2749			    bp,
2750			    (vm_offset_t) bp->b_data + newbsize,
2751			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2752		} else if (newbsize > bp->b_bufsize) {
2753			/*
2754			 * We only use malloced memory on the first allocation.
2755			 * and revert to page-allocated memory when the buffer
2756			 * grows.
2757			 */
2758			/*
2759			 * There is a potential smp race here that could lead
2760			 * to bufmallocspace slightly passing the max.  It
2761			 * is probably extremely rare and not worth worrying
2762			 * over.
2763			 */
2764			if ( (bufmallocspace < maxbufmallocspace) &&
2765				(bp->b_bufsize == 0) &&
2766				(mbsize <= PAGE_SIZE/2)) {
2767
2768				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2769				bp->b_bufsize = mbsize;
2770				bp->b_bcount = size;
2771				bp->b_flags |= B_MALLOC;
2772				atomic_add_int(&bufmallocspace, mbsize);
2773				return 1;
2774			}
2775			origbuf = NULL;
2776			origbufsize = 0;
2777			/*
2778			 * If the buffer is growing on its other-than-first allocation,
2779			 * then we revert to the page-allocation scheme.
2780			 */
2781			if (bp->b_flags & B_MALLOC) {
2782				origbuf = bp->b_data;
2783				origbufsize = bp->b_bufsize;
2784				bp->b_data = bp->b_kvabase;
2785				if (bp->b_bufsize) {
2786					atomic_subtract_int(&bufmallocspace,
2787					    bp->b_bufsize);
2788					bufspacewakeup();
2789					bp->b_bufsize = 0;
2790				}
2791				bp->b_flags &= ~B_MALLOC;
2792				newbsize = round_page(newbsize);
2793			}
2794			vm_hold_load_pages(
2795			    bp,
2796			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2797			    (vm_offset_t) bp->b_data + newbsize);
2798			if (origbuf) {
2799				bcopy(origbuf, bp->b_data, origbufsize);
2800				free(origbuf, M_BIOBUF);
2801			}
2802		}
2803	} else {
2804		int desiredpages;
2805
2806		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2807		desiredpages = (size == 0) ? 0 :
2808			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2809
2810		if (bp->b_flags & B_MALLOC)
2811			panic("allocbuf: VMIO buffer can't be malloced");
2812		/*
2813		 * Set B_CACHE initially if buffer is 0 length or will become
2814		 * 0-length.
2815		 */
2816		if (size == 0 || bp->b_bufsize == 0)
2817			bp->b_flags |= B_CACHE;
2818
2819		if (newbsize < bp->b_bufsize) {
2820			/*
2821			 * DEV_BSIZE aligned new buffer size is less then the
2822			 * DEV_BSIZE aligned existing buffer size.  Figure out
2823			 * if we have to remove any pages.
2824			 */
2825			if (desiredpages < bp->b_npages) {
2826				vm_page_t m;
2827
2828				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2829				vm_page_lock_queues();
2830				for (i = desiredpages; i < bp->b_npages; i++) {
2831					/*
2832					 * the page is not freed here -- it
2833					 * is the responsibility of
2834					 * vnode_pager_setsize
2835					 */
2836					m = bp->b_pages[i];
2837					KASSERT(m != bogus_page,
2838					    ("allocbuf: bogus page found"));
2839					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2840						vm_page_lock_queues();
2841
2842					bp->b_pages[i] = NULL;
2843					vm_page_unwire(m, 0);
2844				}
2845				vm_page_unlock_queues();
2846				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2847				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2848				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2849				bp->b_npages = desiredpages;
2850			}
2851		} else if (size > bp->b_bcount) {
2852			/*
2853			 * We are growing the buffer, possibly in a
2854			 * byte-granular fashion.
2855			 */
2856			struct vnode *vp;
2857			vm_object_t obj;
2858			vm_offset_t toff;
2859			vm_offset_t tinc;
2860
2861			/*
2862			 * Step 1, bring in the VM pages from the object,
2863			 * allocating them if necessary.  We must clear
2864			 * B_CACHE if these pages are not valid for the
2865			 * range covered by the buffer.
2866			 */
2867
2868			vp = bp->b_vp;
2869			obj = bp->b_bufobj->bo_object;
2870
2871			VM_OBJECT_LOCK(obj);
2872			while (bp->b_npages < desiredpages) {
2873				vm_page_t m;
2874				vm_pindex_t pi;
2875
2876				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2877				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2878					/*
2879					 * note: must allocate system pages
2880					 * since blocking here could intefere
2881					 * with paging I/O, no matter which
2882					 * process we are.
2883					 */
2884					m = vm_page_alloc(obj, pi,
2885					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2886					    VM_ALLOC_WIRED);
2887					if (m == NULL) {
2888						atomic_add_int(&vm_pageout_deficit,
2889						    desiredpages - bp->b_npages);
2890						VM_OBJECT_UNLOCK(obj);
2891						VM_WAIT;
2892						VM_OBJECT_LOCK(obj);
2893					} else {
2894						bp->b_flags &= ~B_CACHE;
2895						bp->b_pages[bp->b_npages] = m;
2896						++bp->b_npages;
2897					}
2898					continue;
2899				}
2900
2901				/*
2902				 * We found a page.  If we have to sleep on it,
2903				 * retry because it might have gotten freed out
2904				 * from under us.
2905				 *
2906				 * We can only test VPO_BUSY here.  Blocking on
2907				 * m->busy might lead to a deadlock:
2908				 *
2909				 *  vm_fault->getpages->cluster_read->allocbuf
2910				 *
2911				 */
2912				vm_page_lock_queues();
2913				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2914					continue;
2915
2916				/*
2917				 * We have a good page.  Should we wakeup the
2918				 * page daemon?
2919				 */
2920				if ((curproc != pageproc) &&
2921				    (VM_PAGE_INQUEUE1(m, PQ_CACHE)) &&
2922				    ((cnt.v_free_count + cnt.v_cache_count) <
2923			 		(cnt.v_free_min + cnt.v_cache_min))) {
2924					pagedaemon_wakeup();
2925				}
2926				vm_page_wire(m);
2927				vm_page_unlock_queues();
2928				bp->b_pages[bp->b_npages] = m;
2929				++bp->b_npages;
2930			}
2931
2932			/*
2933			 * Step 2.  We've loaded the pages into the buffer,
2934			 * we have to figure out if we can still have B_CACHE
2935			 * set.  Note that B_CACHE is set according to the
2936			 * byte-granular range ( bcount and size ), new the
2937			 * aligned range ( newbsize ).
2938			 *
2939			 * The VM test is against m->valid, which is DEV_BSIZE
2940			 * aligned.  Needless to say, the validity of the data
2941			 * needs to also be DEV_BSIZE aligned.  Note that this
2942			 * fails with NFS if the server or some other client
2943			 * extends the file's EOF.  If our buffer is resized,
2944			 * B_CACHE may remain set! XXX
2945			 */
2946
2947			toff = bp->b_bcount;
2948			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2949
2950			while ((bp->b_flags & B_CACHE) && toff < size) {
2951				vm_pindex_t pi;
2952
2953				if (tinc > (size - toff))
2954					tinc = size - toff;
2955
2956				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2957				    PAGE_SHIFT;
2958
2959				vfs_buf_test_cache(
2960				    bp,
2961				    bp->b_offset,
2962				    toff,
2963				    tinc,
2964				    bp->b_pages[pi]
2965				);
2966				toff += tinc;
2967				tinc = PAGE_SIZE;
2968			}
2969			VM_OBJECT_UNLOCK(obj);
2970
2971			/*
2972			 * Step 3, fixup the KVM pmap.  Remember that
2973			 * bp->b_data is relative to bp->b_offset, but
2974			 * bp->b_offset may be offset into the first page.
2975			 */
2976
2977			bp->b_data = (caddr_t)
2978			    trunc_page((vm_offset_t)bp->b_data);
2979			pmap_qenter(
2980			    (vm_offset_t)bp->b_data,
2981			    bp->b_pages,
2982			    bp->b_npages
2983			);
2984
2985			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2986			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2987		}
2988	}
2989	if (newbsize < bp->b_bufsize)
2990		bufspacewakeup();
2991	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2992	bp->b_bcount = size;		/* requested buffer size	*/
2993	return 1;
2994}
2995
2996void
2997biodone(struct bio *bp)
2998{
2999	void (*done)(struct bio *);
3000
3001	mtx_lock(&bdonelock);
3002	bp->bio_flags |= BIO_DONE;
3003	done = bp->bio_done;
3004	if (done == NULL)
3005		wakeup(bp);
3006	mtx_unlock(&bdonelock);
3007	if (done != NULL)
3008		done(bp);
3009}
3010
3011/*
3012 * Wait for a BIO to finish.
3013 *
3014 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3015 * case is not yet clear.
3016 */
3017int
3018biowait(struct bio *bp, const char *wchan)
3019{
3020
3021	mtx_lock(&bdonelock);
3022	while ((bp->bio_flags & BIO_DONE) == 0)
3023		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3024	mtx_unlock(&bdonelock);
3025	if (bp->bio_error != 0)
3026		return (bp->bio_error);
3027	if (!(bp->bio_flags & BIO_ERROR))
3028		return (0);
3029	return (EIO);
3030}
3031
3032void
3033biofinish(struct bio *bp, struct devstat *stat, int error)
3034{
3035
3036	if (error) {
3037		bp->bio_error = error;
3038		bp->bio_flags |= BIO_ERROR;
3039	}
3040	if (stat != NULL)
3041		devstat_end_transaction_bio(stat, bp);
3042	biodone(bp);
3043}
3044
3045/*
3046 *	bufwait:
3047 *
3048 *	Wait for buffer I/O completion, returning error status.  The buffer
3049 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3050 *	error and cleared.
3051 */
3052int
3053bufwait(struct buf *bp)
3054{
3055	if (bp->b_iocmd == BIO_READ)
3056		bwait(bp, PRIBIO, "biord");
3057	else
3058		bwait(bp, PRIBIO, "biowr");
3059	if (bp->b_flags & B_EINTR) {
3060		bp->b_flags &= ~B_EINTR;
3061		return (EINTR);
3062	}
3063	if (bp->b_ioflags & BIO_ERROR) {
3064		return (bp->b_error ? bp->b_error : EIO);
3065	} else {
3066		return (0);
3067	}
3068}
3069
3070 /*
3071  * Call back function from struct bio back up to struct buf.
3072  */
3073static void
3074bufdonebio(struct bio *bip)
3075{
3076	struct buf *bp;
3077
3078	bp = bip->bio_caller2;
3079	bp->b_resid = bp->b_bcount - bip->bio_completed;
3080	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3081	bp->b_ioflags = bip->bio_flags;
3082	bp->b_error = bip->bio_error;
3083	if (bp->b_error)
3084		bp->b_ioflags |= BIO_ERROR;
3085	bufdone(bp);
3086	g_destroy_bio(bip);
3087}
3088
3089void
3090dev_strategy(struct cdev *dev, struct buf *bp)
3091{
3092	struct cdevsw *csw;
3093	struct bio *bip;
3094
3095	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3096		panic("b_iocmd botch");
3097	for (;;) {
3098		bip = g_new_bio();
3099		if (bip != NULL)
3100			break;
3101		/* Try again later */
3102		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3103	}
3104	bip->bio_cmd = bp->b_iocmd;
3105	bip->bio_offset = bp->b_iooffset;
3106	bip->bio_length = bp->b_bcount;
3107	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3108	bip->bio_data = bp->b_data;
3109	bip->bio_done = bufdonebio;
3110	bip->bio_caller2 = bp;
3111	bip->bio_dev = dev;
3112	KASSERT(dev->si_refcount > 0,
3113	    ("dev_strategy on un-referenced struct cdev *(%s)",
3114	    devtoname(dev)));
3115	csw = dev_refthread(dev);
3116	if (csw == NULL) {
3117		g_destroy_bio(bip);
3118		bp->b_error = ENXIO;
3119		bp->b_ioflags = BIO_ERROR;
3120		bufdone(bp);
3121		return;
3122	}
3123	(*csw->d_strategy)(bip);
3124	dev_relthread(dev);
3125}
3126
3127/*
3128 *	bufdone:
3129 *
3130 *	Finish I/O on a buffer, optionally calling a completion function.
3131 *	This is usually called from an interrupt so process blocking is
3132 *	not allowed.
3133 *
3134 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3135 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3136 *	assuming B_INVAL is clear.
3137 *
3138 *	For the VMIO case, we set B_CACHE if the op was a read and no
3139 *	read error occured, or if the op was a write.  B_CACHE is never
3140 *	set if the buffer is invalid or otherwise uncacheable.
3141 *
3142 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3143 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3144 *	in the biodone routine.
3145 */
3146void
3147bufdone(struct buf *bp)
3148{
3149	struct bufobj *dropobj;
3150	void    (*biodone)(struct buf *);
3151
3152	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3153	dropobj = NULL;
3154
3155	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3156	    BUF_REFCNT(bp)));
3157	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3158
3159	runningbufwakeup(bp);
3160	if (bp->b_iocmd == BIO_WRITE)
3161		dropobj = bp->b_bufobj;
3162	/* call optional completion function if requested */
3163	if (bp->b_iodone != NULL) {
3164		biodone = bp->b_iodone;
3165		bp->b_iodone = NULL;
3166		(*biodone) (bp);
3167		if (dropobj)
3168			bufobj_wdrop(dropobj);
3169		return;
3170	}
3171
3172	bufdone_finish(bp);
3173
3174	if (dropobj)
3175		bufobj_wdrop(dropobj);
3176}
3177
3178void
3179bufdone_finish(struct buf *bp)
3180{
3181	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3182	    BUF_REFCNT(bp)));
3183
3184	if (!LIST_EMPTY(&bp->b_dep))
3185		buf_complete(bp);
3186
3187	if (bp->b_flags & B_VMIO) {
3188		int i;
3189		vm_ooffset_t foff;
3190		vm_page_t m;
3191		vm_object_t obj;
3192		int iosize;
3193		struct vnode *vp = bp->b_vp;
3194		boolean_t are_queues_locked;
3195
3196		obj = bp->b_bufobj->bo_object;
3197
3198#if defined(VFS_BIO_DEBUG)
3199		mp_fixme("usecount and vflag accessed without locks.");
3200		if (vp->v_usecount == 0) {
3201			panic("biodone: zero vnode ref count");
3202		}
3203
3204		KASSERT(vp->v_object != NULL,
3205			("biodone: vnode %p has no vm_object", vp));
3206#endif
3207
3208		foff = bp->b_offset;
3209		KASSERT(bp->b_offset != NOOFFSET,
3210		    ("biodone: no buffer offset"));
3211
3212		VM_OBJECT_LOCK(obj);
3213#if defined(VFS_BIO_DEBUG)
3214		if (obj->paging_in_progress < bp->b_npages) {
3215			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3216			    obj->paging_in_progress, bp->b_npages);
3217		}
3218#endif
3219
3220		/*
3221		 * Set B_CACHE if the op was a normal read and no error
3222		 * occured.  B_CACHE is set for writes in the b*write()
3223		 * routines.
3224		 */
3225		iosize = bp->b_bcount - bp->b_resid;
3226		if (bp->b_iocmd == BIO_READ &&
3227		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3228		    !(bp->b_ioflags & BIO_ERROR)) {
3229			bp->b_flags |= B_CACHE;
3230		}
3231		if (bp->b_iocmd == BIO_READ) {
3232			vm_page_lock_queues();
3233			are_queues_locked = TRUE;
3234		} else
3235			are_queues_locked = FALSE;
3236		for (i = 0; i < bp->b_npages; i++) {
3237			int bogusflag = 0;
3238			int resid;
3239
3240			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3241			if (resid > iosize)
3242				resid = iosize;
3243
3244			/*
3245			 * cleanup bogus pages, restoring the originals
3246			 */
3247			m = bp->b_pages[i];
3248			if (m == bogus_page) {
3249				bogusflag = 1;
3250				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3251				if (m == NULL)
3252					panic("biodone: page disappeared!");
3253				bp->b_pages[i] = m;
3254				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3255				    bp->b_pages, bp->b_npages);
3256			}
3257#if defined(VFS_BIO_DEBUG)
3258			if (OFF_TO_IDX(foff) != m->pindex) {
3259				printf(
3260"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3261				    (intmax_t)foff, (uintmax_t)m->pindex);
3262			}
3263#endif
3264
3265			/*
3266			 * In the write case, the valid and clean bits are
3267			 * already changed correctly ( see bdwrite() ), so we
3268			 * only need to do this here in the read case.
3269			 */
3270			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3271				vfs_page_set_valid(bp, foff, i, m);
3272			}
3273
3274			/*
3275			 * when debugging new filesystems or buffer I/O methods, this
3276			 * is the most common error that pops up.  if you see this, you
3277			 * have not set the page busy flag correctly!!!
3278			 */
3279			if (m->busy == 0) {
3280				printf("biodone: page busy < 0, "
3281				    "pindex: %d, foff: 0x(%x,%x), "
3282				    "resid: %d, index: %d\n",
3283				    (int) m->pindex, (int)(foff >> 32),
3284						(int) foff & 0xffffffff, resid, i);
3285				if (!vn_isdisk(vp, NULL))
3286					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3287					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3288					    (intmax_t) bp->b_lblkno,
3289					    bp->b_flags, bp->b_npages);
3290				else
3291					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3292					    (intmax_t) bp->b_lblkno,
3293					    bp->b_flags, bp->b_npages);
3294				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3295				    (u_long)m->valid, (u_long)m->dirty,
3296				    m->wire_count);
3297				panic("biodone: page busy < 0\n");
3298			}
3299			vm_page_io_finish(m);
3300			vm_object_pip_subtract(obj, 1);
3301			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3302			iosize -= resid;
3303		}
3304		if (are_queues_locked)
3305			vm_page_unlock_queues();
3306		vm_object_pip_wakeupn(obj, 0);
3307		VM_OBJECT_UNLOCK(obj);
3308	}
3309
3310	/*
3311	 * For asynchronous completions, release the buffer now. The brelse
3312	 * will do a wakeup there if necessary - so no need to do a wakeup
3313	 * here in the async case. The sync case always needs to do a wakeup.
3314	 */
3315
3316	if (bp->b_flags & B_ASYNC) {
3317		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3318			brelse(bp);
3319		else
3320			bqrelse(bp);
3321	} else
3322		bdone(bp);
3323}
3324
3325/*
3326 * This routine is called in lieu of iodone in the case of
3327 * incomplete I/O.  This keeps the busy status for pages
3328 * consistant.
3329 */
3330void
3331vfs_unbusy_pages(struct buf *bp)
3332{
3333	int i;
3334	vm_object_t obj;
3335	vm_page_t m;
3336
3337	runningbufwakeup(bp);
3338	if (!(bp->b_flags & B_VMIO))
3339		return;
3340
3341	obj = bp->b_bufobj->bo_object;
3342	VM_OBJECT_LOCK(obj);
3343	for (i = 0; i < bp->b_npages; i++) {
3344		m = bp->b_pages[i];
3345		if (m == bogus_page) {
3346			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3347			if (!m)
3348				panic("vfs_unbusy_pages: page missing\n");
3349			bp->b_pages[i] = m;
3350			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3351			    bp->b_pages, bp->b_npages);
3352		}
3353		vm_object_pip_subtract(obj, 1);
3354		vm_page_io_finish(m);
3355	}
3356	vm_object_pip_wakeupn(obj, 0);
3357	VM_OBJECT_UNLOCK(obj);
3358}
3359
3360/*
3361 * vfs_page_set_valid:
3362 *
3363 *	Set the valid bits in a page based on the supplied offset.   The
3364 *	range is restricted to the buffer's size.
3365 *
3366 *	This routine is typically called after a read completes.
3367 */
3368static void
3369vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3370{
3371	vm_ooffset_t soff, eoff;
3372
3373	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3374	/*
3375	 * Start and end offsets in buffer.  eoff - soff may not cross a
3376	 * page boundry or cross the end of the buffer.  The end of the
3377	 * buffer, in this case, is our file EOF, not the allocation size
3378	 * of the buffer.
3379	 */
3380	soff = off;
3381	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3382	if (eoff > bp->b_offset + bp->b_bcount)
3383		eoff = bp->b_offset + bp->b_bcount;
3384
3385	/*
3386	 * Set valid range.  This is typically the entire buffer and thus the
3387	 * entire page.
3388	 */
3389	if (eoff > soff) {
3390		vm_page_set_validclean(
3391		    m,
3392		   (vm_offset_t) (soff & PAGE_MASK),
3393		   (vm_offset_t) (eoff - soff)
3394		);
3395	}
3396}
3397
3398/*
3399 * This routine is called before a device strategy routine.
3400 * It is used to tell the VM system that paging I/O is in
3401 * progress, and treat the pages associated with the buffer
3402 * almost as being VPO_BUSY.  Also the object paging_in_progress
3403 * flag is handled to make sure that the object doesn't become
3404 * inconsistant.
3405 *
3406 * Since I/O has not been initiated yet, certain buffer flags
3407 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3408 * and should be ignored.
3409 */
3410void
3411vfs_busy_pages(struct buf *bp, int clear_modify)
3412{
3413	int i, bogus;
3414	vm_object_t obj;
3415	vm_ooffset_t foff;
3416	vm_page_t m;
3417
3418	if (!(bp->b_flags & B_VMIO))
3419		return;
3420
3421	obj = bp->b_bufobj->bo_object;
3422	foff = bp->b_offset;
3423	KASSERT(bp->b_offset != NOOFFSET,
3424	    ("vfs_busy_pages: no buffer offset"));
3425	VM_OBJECT_LOCK(obj);
3426	if (bp->b_bufsize != 0)
3427		vfs_setdirty_locked_object(bp);
3428retry:
3429	for (i = 0; i < bp->b_npages; i++) {
3430		m = bp->b_pages[i];
3431
3432		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3433			goto retry;
3434	}
3435	bogus = 0;
3436	vm_page_lock_queues();
3437	for (i = 0; i < bp->b_npages; i++) {
3438		m = bp->b_pages[i];
3439
3440		if ((bp->b_flags & B_CLUSTER) == 0) {
3441			vm_object_pip_add(obj, 1);
3442			vm_page_io_start(m);
3443		}
3444		/*
3445		 * When readying a buffer for a read ( i.e
3446		 * clear_modify == 0 ), it is important to do
3447		 * bogus_page replacement for valid pages in
3448		 * partially instantiated buffers.  Partially
3449		 * instantiated buffers can, in turn, occur when
3450		 * reconstituting a buffer from its VM backing store
3451		 * base.  We only have to do this if B_CACHE is
3452		 * clear ( which causes the I/O to occur in the
3453		 * first place ).  The replacement prevents the read
3454		 * I/O from overwriting potentially dirty VM-backed
3455		 * pages.  XXX bogus page replacement is, uh, bogus.
3456		 * It may not work properly with small-block devices.
3457		 * We need to find a better way.
3458		 */
3459		pmap_remove_all(m);
3460		if (clear_modify)
3461			vfs_page_set_valid(bp, foff, i, m);
3462		else if (m->valid == VM_PAGE_BITS_ALL &&
3463		    (bp->b_flags & B_CACHE) == 0) {
3464			bp->b_pages[i] = bogus_page;
3465			bogus++;
3466		}
3467		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3468	}
3469	vm_page_unlock_queues();
3470	VM_OBJECT_UNLOCK(obj);
3471	if (bogus)
3472		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3473		    bp->b_pages, bp->b_npages);
3474}
3475
3476/*
3477 * Tell the VM system that the pages associated with this buffer
3478 * are clean.  This is used for delayed writes where the data is
3479 * going to go to disk eventually without additional VM intevention.
3480 *
3481 * Note that while we only really need to clean through to b_bcount, we
3482 * just go ahead and clean through to b_bufsize.
3483 */
3484static void
3485vfs_clean_pages(struct buf *bp)
3486{
3487	int i;
3488	vm_ooffset_t foff, noff, eoff;
3489	vm_page_t m;
3490
3491	if (!(bp->b_flags & B_VMIO))
3492		return;
3493
3494	foff = bp->b_offset;
3495	KASSERT(bp->b_offset != NOOFFSET,
3496	    ("vfs_clean_pages: no buffer offset"));
3497	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3498	vm_page_lock_queues();
3499	for (i = 0; i < bp->b_npages; i++) {
3500		m = bp->b_pages[i];
3501		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3502		eoff = noff;
3503
3504		if (eoff > bp->b_offset + bp->b_bufsize)
3505			eoff = bp->b_offset + bp->b_bufsize;
3506		vfs_page_set_valid(bp, foff, i, m);
3507		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3508		foff = noff;
3509	}
3510	vm_page_unlock_queues();
3511	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3512}
3513
3514/*
3515 *	vfs_bio_set_validclean:
3516 *
3517 *	Set the range within the buffer to valid and clean.  The range is
3518 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3519 *	itself may be offset from the beginning of the first page.
3520 *
3521 */
3522
3523void
3524vfs_bio_set_validclean(struct buf *bp, int base, int size)
3525{
3526	int i, n;
3527	vm_page_t m;
3528
3529	if (!(bp->b_flags & B_VMIO))
3530		return;
3531	/*
3532	 * Fixup base to be relative to beginning of first page.
3533	 * Set initial n to be the maximum number of bytes in the
3534	 * first page that can be validated.
3535	 */
3536
3537	base += (bp->b_offset & PAGE_MASK);
3538	n = PAGE_SIZE - (base & PAGE_MASK);
3539
3540	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3541	vm_page_lock_queues();
3542	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3543		m = bp->b_pages[i];
3544		if (n > size)
3545			n = size;
3546		vm_page_set_validclean(m, base & PAGE_MASK, n);
3547		base += n;
3548		size -= n;
3549		n = PAGE_SIZE;
3550	}
3551	vm_page_unlock_queues();
3552	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3553}
3554
3555/*
3556 *	vfs_bio_clrbuf:
3557 *
3558 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3559 *	to clear BIO_ERROR and B_INVAL.
3560 *
3561 *	Note that while we only theoretically need to clear through b_bcount,
3562 *	we go ahead and clear through b_bufsize.
3563 */
3564
3565void
3566vfs_bio_clrbuf(struct buf *bp)
3567{
3568	int i, j, mask = 0;
3569	caddr_t sa, ea;
3570
3571	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3572		clrbuf(bp);
3573		return;
3574	}
3575
3576	bp->b_flags &= ~B_INVAL;
3577	bp->b_ioflags &= ~BIO_ERROR;
3578	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3579	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3580	    (bp->b_offset & PAGE_MASK) == 0) {
3581		if (bp->b_pages[0] == bogus_page)
3582			goto unlock;
3583		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3584		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3585		if ((bp->b_pages[0]->valid & mask) == mask)
3586			goto unlock;
3587		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3588		    ((bp->b_pages[0]->valid & mask) == 0)) {
3589			bzero(bp->b_data, bp->b_bufsize);
3590			bp->b_pages[0]->valid |= mask;
3591			goto unlock;
3592		}
3593	}
3594	ea = sa = bp->b_data;
3595	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3596		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3597		ea = (caddr_t)(vm_offset_t)ulmin(
3598		    (u_long)(vm_offset_t)ea,
3599		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3600		if (bp->b_pages[i] == bogus_page)
3601			continue;
3602		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3603		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3604		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3605		if ((bp->b_pages[i]->valid & mask) == mask)
3606			continue;
3607		if ((bp->b_pages[i]->valid & mask) == 0) {
3608			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3609				bzero(sa, ea - sa);
3610		} else {
3611			for (; sa < ea; sa += DEV_BSIZE, j++) {
3612				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3613				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3614					bzero(sa, DEV_BSIZE);
3615			}
3616		}
3617		bp->b_pages[i]->valid |= mask;
3618	}
3619unlock:
3620	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3621	bp->b_resid = 0;
3622}
3623
3624/*
3625 * vm_hold_load_pages and vm_hold_free_pages get pages into
3626 * a buffers address space.  The pages are anonymous and are
3627 * not associated with a file object.
3628 */
3629static void
3630vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3631{
3632	vm_offset_t pg;
3633	vm_page_t p;
3634	int index;
3635
3636	to = round_page(to);
3637	from = round_page(from);
3638	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3639
3640	VM_OBJECT_LOCK(kernel_object);
3641	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3642tryagain:
3643		/*
3644		 * note: must allocate system pages since blocking here
3645		 * could intefere with paging I/O, no matter which
3646		 * process we are.
3647		 */
3648		p = vm_page_alloc(kernel_object,
3649			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3650		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3651		if (!p) {
3652			atomic_add_int(&vm_pageout_deficit,
3653			    (to - pg) >> PAGE_SHIFT);
3654			VM_OBJECT_UNLOCK(kernel_object);
3655			VM_WAIT;
3656			VM_OBJECT_LOCK(kernel_object);
3657			goto tryagain;
3658		}
3659		p->valid = VM_PAGE_BITS_ALL;
3660		pmap_qenter(pg, &p, 1);
3661		bp->b_pages[index] = p;
3662	}
3663	VM_OBJECT_UNLOCK(kernel_object);
3664	bp->b_npages = index;
3665}
3666
3667/* Return pages associated with this buf to the vm system */
3668static void
3669vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3670{
3671	vm_offset_t pg;
3672	vm_page_t p;
3673	int index, newnpages;
3674
3675	from = round_page(from);
3676	to = round_page(to);
3677	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3678
3679	VM_OBJECT_LOCK(kernel_object);
3680	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3681		p = bp->b_pages[index];
3682		if (p && (index < bp->b_npages)) {
3683			if (p->busy) {
3684				printf(
3685			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3686				    (intmax_t)bp->b_blkno,
3687				    (intmax_t)bp->b_lblkno);
3688			}
3689			bp->b_pages[index] = NULL;
3690			pmap_qremove(pg, 1);
3691			vm_page_lock_queues();
3692			vm_page_unwire(p, 0);
3693			vm_page_free(p);
3694			vm_page_unlock_queues();
3695		}
3696	}
3697	VM_OBJECT_UNLOCK(kernel_object);
3698	bp->b_npages = newnpages;
3699}
3700
3701/*
3702 * Map an IO request into kernel virtual address space.
3703 *
3704 * All requests are (re)mapped into kernel VA space.
3705 * Notice that we use b_bufsize for the size of the buffer
3706 * to be mapped.  b_bcount might be modified by the driver.
3707 *
3708 * Note that even if the caller determines that the address space should
3709 * be valid, a race or a smaller-file mapped into a larger space may
3710 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3711 * check the return value.
3712 */
3713int
3714vmapbuf(struct buf *bp)
3715{
3716	caddr_t addr, kva;
3717	vm_prot_t prot;
3718	int pidx, i;
3719	struct vm_page *m;
3720	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3721
3722	if (bp->b_bufsize < 0)
3723		return (-1);
3724	prot = VM_PROT_READ;
3725	if (bp->b_iocmd == BIO_READ)
3726		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3727	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3728	     addr < bp->b_data + bp->b_bufsize;
3729	     addr += PAGE_SIZE, pidx++) {
3730		/*
3731		 * Do the vm_fault if needed; do the copy-on-write thing
3732		 * when reading stuff off device into memory.
3733		 *
3734		 * NOTE! Must use pmap_extract() because addr may be in
3735		 * the userland address space, and kextract is only guarenteed
3736		 * to work for the kernland address space (see: sparc64 port).
3737		 */
3738retry:
3739		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3740		    prot) < 0) {
3741			vm_page_lock_queues();
3742			for (i = 0; i < pidx; ++i) {
3743				vm_page_unhold(bp->b_pages[i]);
3744				bp->b_pages[i] = NULL;
3745			}
3746			vm_page_unlock_queues();
3747			return(-1);
3748		}
3749		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3750		if (m == NULL)
3751			goto retry;
3752		bp->b_pages[pidx] = m;
3753	}
3754	if (pidx > btoc(MAXPHYS))
3755		panic("vmapbuf: mapped more than MAXPHYS");
3756	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3757
3758	kva = bp->b_saveaddr;
3759	bp->b_npages = pidx;
3760	bp->b_saveaddr = bp->b_data;
3761	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3762	return(0);
3763}
3764
3765/*
3766 * Free the io map PTEs associated with this IO operation.
3767 * We also invalidate the TLB entries and restore the original b_addr.
3768 */
3769void
3770vunmapbuf(struct buf *bp)
3771{
3772	int pidx;
3773	int npages;
3774
3775	npages = bp->b_npages;
3776	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3777	vm_page_lock_queues();
3778	for (pidx = 0; pidx < npages; pidx++)
3779		vm_page_unhold(bp->b_pages[pidx]);
3780	vm_page_unlock_queues();
3781
3782	bp->b_data = bp->b_saveaddr;
3783}
3784
3785void
3786bdone(struct buf *bp)
3787{
3788
3789	mtx_lock(&bdonelock);
3790	bp->b_flags |= B_DONE;
3791	wakeup(bp);
3792	mtx_unlock(&bdonelock);
3793}
3794
3795void
3796bwait(struct buf *bp, u_char pri, const char *wchan)
3797{
3798
3799	mtx_lock(&bdonelock);
3800	while ((bp->b_flags & B_DONE) == 0)
3801		msleep(bp, &bdonelock, pri, wchan, 0);
3802	mtx_unlock(&bdonelock);
3803}
3804
3805int
3806bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3807{
3808
3809	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3810}
3811
3812void
3813bufstrategy(struct bufobj *bo, struct buf *bp)
3814{
3815	int i = 0;
3816	struct vnode *vp;
3817
3818	vp = bp->b_vp;
3819	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3820	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3821	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3822	i = VOP_STRATEGY(vp, bp);
3823	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3824}
3825
3826void
3827bufobj_wrefl(struct bufobj *bo)
3828{
3829
3830	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3831	ASSERT_BO_LOCKED(bo);
3832	bo->bo_numoutput++;
3833}
3834
3835void
3836bufobj_wref(struct bufobj *bo)
3837{
3838
3839	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3840	BO_LOCK(bo);
3841	bo->bo_numoutput++;
3842	BO_UNLOCK(bo);
3843}
3844
3845void
3846bufobj_wdrop(struct bufobj *bo)
3847{
3848
3849	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3850	BO_LOCK(bo);
3851	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3852	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3853		bo->bo_flag &= ~BO_WWAIT;
3854		wakeup(&bo->bo_numoutput);
3855	}
3856	BO_UNLOCK(bo);
3857}
3858
3859int
3860bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3861{
3862	int error;
3863
3864	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3865	ASSERT_BO_LOCKED(bo);
3866	error = 0;
3867	while (bo->bo_numoutput) {
3868		bo->bo_flag |= BO_WWAIT;
3869		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3870		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3871		if (error)
3872			break;
3873	}
3874	return (error);
3875}
3876
3877void
3878bpin(struct buf *bp)
3879{
3880	mtx_lock(&bpinlock);
3881	bp->b_pin_count++;
3882	mtx_unlock(&bpinlock);
3883}
3884
3885void
3886bunpin(struct buf *bp)
3887{
3888	mtx_lock(&bpinlock);
3889	if (--bp->b_pin_count == 0)
3890		wakeup(bp);
3891	mtx_unlock(&bpinlock);
3892}
3893
3894void
3895bunpin_wait(struct buf *bp)
3896{
3897	mtx_lock(&bpinlock);
3898	while (bp->b_pin_count > 0)
3899		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3900	mtx_unlock(&bpinlock);
3901}
3902
3903#include "opt_ddb.h"
3904#ifdef DDB
3905#include <ddb/ddb.h>
3906
3907/* DDB command to show buffer data */
3908DB_SHOW_COMMAND(buffer, db_show_buffer)
3909{
3910	/* get args */
3911	struct buf *bp = (struct buf *)addr;
3912
3913	if (!have_addr) {
3914		db_printf("usage: show buffer <addr>\n");
3915		return;
3916	}
3917
3918	db_printf("buf at %p\n", bp);
3919	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3920	db_printf(
3921	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3922	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3923	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3924	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3925	if (bp->b_npages) {
3926		int i;
3927		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3928		for (i = 0; i < bp->b_npages; i++) {
3929			vm_page_t m;
3930			m = bp->b_pages[i];
3931			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3932			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3933			if ((i + 1) < bp->b_npages)
3934				db_printf(",");
3935		}
3936		db_printf("\n");
3937	}
3938	lockmgr_printinfo(&bp->b_lock);
3939}
3940
3941DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3942{
3943	struct buf *bp;
3944	int i;
3945
3946	for (i = 0; i < nbuf; i++) {
3947		bp = &buf[i];
3948		if (lockcount(&bp->b_lock)) {
3949			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3950			db_printf("\n");
3951		}
3952	}
3953}
3954#endif /* DDB */
3955