vfs_bio.c revision 169667
1139825Simp/*-
299654Sbenno * Copyright (c) 2004 Poul-Henning Kamp
399654Sbenno * Copyright (c) 1994,1997 John S. Dyson
499654Sbenno * All rights reserved.
599654Sbenno *
699654Sbenno * Redistribution and use in source and binary forms, with or without
799654Sbenno * modification, are permitted provided that the following conditions
899654Sbenno * are met:
999654Sbenno * 1. Redistributions of source code must retain the above copyright
1099654Sbenno *    notice, this list of conditions and the following disclaimer.
1199654Sbenno * 2. Redistributions in binary form must reproduce the above copyright
1299654Sbenno *    notice, this list of conditions and the following disclaimer in the
1399654Sbenno *    documentation and/or other materials provided with the distribution.
1499654Sbenno *
1599654Sbenno * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1699654Sbenno * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1799654Sbenno * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1899654Sbenno * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
1999654Sbenno * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2099654Sbenno * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2199654Sbenno * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2299654Sbenno * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2399654Sbenno * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2499654Sbenno * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2599654Sbenno * SUCH DAMAGE.
2699654Sbenno */
2799654Sbenno
2899654Sbenno/*
2999654Sbenno * this file contains a new buffer I/O scheme implementing a coherent
3099654Sbenno * VM object and buffer cache scheme.  Pains have been taken to make
3199654Sbenno * sure that the performance degradation associated with schemes such
3299654Sbenno * as this is not realized.
33171805Smarcel *
3499654Sbenno * Author:  John S. Dyson
3599654Sbenno * Significant help during the development and debugging phases
3699654Sbenno * had been provided by David Greenman, also of the FreeBSD core team.
3799654Sbenno *
3899654Sbenno * see man buf(9) for more info.
3999654Sbenno */
4099654Sbenno
4199654Sbenno#include <sys/cdefs.h>
4299654Sbenno__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 169667 2007-05-18 07:10:50Z jeff $");
4399654Sbenno
4499654Sbenno#include <sys/param.h>
4599654Sbenno#include <sys/systm.h>
4699654Sbenno#include <sys/bio.h>
4799654Sbenno#include <sys/conf.h>
4899654Sbenno#include <sys/buf.h>
4999654Sbenno#include <sys/devicestat.h>
50171805Smarcel#include <sys/eventhandler.h>
51171805Smarcel#include <sys/lock.h>
5299654Sbenno#include <sys/malloc.h>
5399654Sbenno#include <sys/mount.h>
5499654Sbenno#include <sys/mutex.h>
5599654Sbenno#include <sys/kernel.h>
56171805Smarcel#include <sys/kthread.h>
57171805Smarcel#include <sys/proc.h>
58171805Smarcel#include <sys/resourcevar.h>
59171805Smarcel#include <sys/sysctl.h>
60171805Smarcel#include <sys/vmmeter.h>
6199654Sbenno#include <sys/vnode.h>
62171805Smarcel#include <geom/geom.h>
63171805Smarcel#include <vm/vm.h>
6499654Sbenno#include <vm/vm_param.h>
65171805Smarcel#include <vm/vm_kern.h>
66171805Smarcel#include <vm/vm_pageout.h>
67124469Sgrehan#include <vm/vm_page.h>
68171805Smarcel#include <vm/vm_object.h>
69176208Smarcel#include <vm/vm_extern.h>
70171805Smarcel#include <vm/vm_map.h>
71176208Smarcel#include "opt_directio.h"
72171805Smarcel#include "opt_swap.h"
7399654Sbenno
74176208Smarcelstatic MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
75176208Smarcel
76176208Smarcelstruct	bio_ops bioops;		/* I/O operation notification */
77171805Smarcel
78176208Smarcelstruct	buf_ops buf_ops_bio = {
79124469Sgrehan	.bop_name	=	"buf_ops_bio",
8099654Sbenno	.bop_write	=	bufwrite,
81124469Sgrehan	.bop_strategy	=	bufstrategy,
82124469Sgrehan	.bop_sync	=	bufsync,
83124469Sgrehan	.bop_bdflush	=	bufbdflush,
84124469Sgrehan};
85178628Smarcel
86124469Sgrehan/*
87103603Sgrehan * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
88124469Sgrehan * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
89171805Smarcel */
90103603Sgrehanstruct buf *buf;		/* buffer header pool */
91171805Smarcel
92171805Smarcelstatic struct proc *bufdaemonproc;
93171805Smarcel
94124469Sgrehanstatic int inmem(struct vnode *vp, daddr_t blkno);
95171805Smarcelstatic void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
96171805Smarcel		vm_offset_t to);
97171805Smarcelstatic void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
98171805Smarcel		vm_offset_t to);
99171805Smarcelstatic void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
100171805Smarcel			       int pageno, vm_page_t m);
101171805Smarcelstatic void vfs_clean_pages(struct buf *bp);
102171805Smarcelstatic void vfs_setdirty(struct buf *bp);
103124469Sgrehanstatic void vfs_setdirty_locked_object(struct buf *bp);
104124469Sgrehanstatic void vfs_vmio_release(struct buf *bp);
10599654Sbennostatic int vfs_bio_clcheck(struct vnode *vp, int size,
10699654Sbenno		daddr_t lblkno, daddr_t blkno);
10799654Sbennostatic int flushbufqueues(int, int);
10899654Sbennostatic void buf_daemon(void);
10999654Sbennostatic void bremfreel(struct buf *bp);
11099654Sbenno
11199654Sbennoint vmiodirenable = TRUE;
11299654SbennoSYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
11399654Sbenno    "Use the VM system for directory writes");
11499654Sbennoint runningbufspace;
11599654SbennoSYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
11699654Sbenno    "Amount of presently outstanding async buffer io");
11799654Sbennostatic int bufspace;
11899654SbennoSYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
119124469Sgrehan    "KVA memory used for bufs");
120110167Sbennostatic int maxbufspace;
121124469SgrehanSYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
122110167Sbenno    "Maximum allowed value of bufspace (including buf_daemon)");
12399654Sbennostatic int bufmallocspace;
124111156SgrehanSYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
125193909Sgrehan    "Amount of malloced memory for buffers");
126111156Sgrehanstatic int maxbufmallocspace;
127193909SgrehanSYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
128111156Sgrehan    "Maximum amount of malloced memory for buffers");
129193909Sgrehanstatic int lobufspace;
130193909SgrehanSYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
131111156Sgrehan    "Minimum amount of buffers we want to have");
132124469Sgrehanint hibufspace;
133124469SgrehanSYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
134124469Sgrehan    "Maximum allowed value of bufspace (excluding buf_daemon)");
135124469Sgrehanstatic int bufreusecnt;
13699654SbennoSYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
137178628Smarcel    "Number of times we have reused a buffer");
138178628Smarcelstatic int buffreekvacnt;
139178628SmarcelSYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
140176208Smarcel    "Number of times we have freed the KVA space from some buffer");
141176208Smarcelstatic int bufdefragcnt;
142176208SmarcelSYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
143176208Smarcel    "Number of times we have had to repeat buffer allocation to defragment");
144176208Smarcelstatic int lorunningspace;
145176208SmarcelSYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
146176208Smarcel    "Minimum preferred space used for in-progress I/O");
147176208Smarcelstatic int hirunningspace;
148176208SmarcelSYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
14999654Sbenno    "Maximum amount of space to use for in-progress I/O");
150176208Smarcelint dirtybufferflushes;
151176208SmarcelSYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
152176208Smarcel    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
153176208Smarcelint bdwriteskip;
154176208SmarcelSYSCTL_INT(_vfs, OID_AUTO, bdwriteskip, CTLFLAG_RW, &bdwriteskip,
155176208Smarcel    0, "Number of buffers supplied to bdwrite with snapshot deadlock risk");
156176208Smarcelint altbufferflushes;
15799654SbennoSYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
15899654Sbenno    0, "Number of fsync flushes to limit dirty buffers");
15999654Sbennostatic int recursiveflushes;
16099654SbennoSYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
16199654Sbenno    0, "Number of flushes skipped due to being recursive");
16299654Sbennostatic int numdirtybuffers;
16399654SbennoSYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
16499654Sbenno    "Number of buffers that are dirty (has unwritten changes) at the moment");
16599654Sbennostatic int lodirtybuffers;
16699654SbennoSYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
16799654Sbenno    "How many buffers we want to have free before bufdaemon can sleep");
168103603Sgrehanstatic int hidirtybuffers;
169176208SmarcelSYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
170176208Smarcel    "When the number of dirty buffers is considered severe");
17199654Sbennoint dirtybufthresh;
17299654SbennoSYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
173183028Smarcel    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
174183028Smarcelstatic int numfreebuffers;
175183028SmarcelSYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
176176208Smarcel    "Number of free buffers");
17799654Sbennostatic int lofreebuffers;
17899654SbennoSYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
17999654Sbenno   "XXX Unused");
18099654Sbennostatic int hifreebuffers;
18199654SbennoSYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
182171805Smarcel   "XXX Complicatedly unused");
18399654Sbennostatic int getnewbufcalls;
18499654SbennoSYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
185171805Smarcel   "Number of calls to getnewbuf");
186176918Smarcelstatic int getnewbufrestarts;
187176918SmarcelSYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
188176918Smarcel    "Number of times getnewbuf has had to restart a buffer aquisition");
189176918Smarcel
190176918Smarcel/*
191176918Smarcel * Wakeup point for bufdaemon, as well as indicator of whether it is already
192176918Smarcel * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
193176918Smarcel * is idling.
194176918Smarcel */
195176918Smarcelstatic int bd_request;
196176918Smarcel
197176918Smarcel/*
198176918Smarcel * This lock synchronizes access to bd_request.
199176918Smarcel */
200176918Smarcelstatic struct mtx bdlock;
201176918Smarcel
202176918Smarcel/*
203176918Smarcel * bogus page -- for I/O to/from partially complete buffers
204176918Smarcel * this is a temporary solution to the problem, but it is not
205176918Smarcel * really that bad.  it would be better to split the buffer
206171805Smarcel * for input in the case of buffers partially already in memory,
20799654Sbenno * but the code is intricate enough already.
208171805Smarcel */
209183028Smarcelvm_page_t bogus_page;
21099654Sbenno
211192532Sraj/*
212192532Sraj * Synchronization (sleep/wakeup) variable for active buffer space requests.
213183028Smarcel * Set when wait starts, cleared prior to wakeup().
214183028Smarcel * Used in runningbufwakeup() and waitrunningbufspace().
215178628Smarcel */
216171805Smarcelstatic int runningbufreq;
217183028Smarcel
218171805Smarcel/*
219171805Smarcel * This lock protects the runningbufreq and synchronizes runningbufwakeup and
220171805Smarcel * waitrunningbufspace().
221171805Smarcel */
222124469Sgrehanstatic struct mtx rbreqlock;
22399654Sbenno
22499654Sbenno/*
225171805Smarcel * Synchronization (sleep/wakeup) variable for buffer requests.
226171805Smarcel * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
22799654Sbenno * by and/or.
228171805Smarcel * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
229171805Smarcel * getnewbuf(), and getblk().
23099654Sbenno */
23199654Sbennostatic int needsbuffer;
232176208Smarcel
233176208Smarcel/*
234176208Smarcel * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
235176208Smarcel */
236176208Smarcelstatic struct mtx nblock;
237176208Smarcel
238176208Smarcel/*
239176208Smarcel * Lock that protects against bwait()/bdone()/B_DONE races.
240176208Smarcel */
241176208Smarcel
242176208Smarcelstatic struct mtx bdonelock;
24399654Sbenno
24499654Sbenno/*
245171805Smarcel * Lock that protects against bwait()/bdone()/B_DONE races.
246171805Smarcel */
24799654Sbennostatic struct mtx bpinlock;
248171805Smarcel
24999654Sbenno/*
250171805Smarcel * Definitions for the buffer free lists.
251176208Smarcel */
25299654Sbenno#define BUFFER_QUEUES	6	/* number of free buffer queues */
25399654Sbenno
254171805Smarcel#define QUEUE_NONE	0	/* on no queue */
255176208Smarcel#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
256176208Smarcel#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
257176208Smarcel#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
258176208Smarcel#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
259176208Smarcel#define QUEUE_EMPTY	5	/* empty buffer headers */
260176208Smarcel
261176208Smarcel/* Queues for free buffers with various properties */
262176208Smarcelstatic TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
263176208Smarcel
264176208Smarcel/* Lock for the bufqueues */
265171805Smarcelstatic struct mtx bqlock;
26699654Sbenno
267171805Smarcel/*
268171805Smarcel * Single global constant for BUF_WMESG, to avoid getting multiple references.
26999654Sbenno * buf_wmesg is referred from macros.
270171805Smarcel */
271176208Smarcelconst char *buf_wmesg = BUF_WMESG;
272176208Smarcel
273176208Smarcel#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
274176208Smarcel#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
275176208Smarcel#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
276176208Smarcel#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
277176208Smarcel
278176208Smarcel#ifdef DIRECTIO
279176208Smarcelextern void ffs_rawread_setup(void);
280176208Smarcel#endif /* DIRECTIO */
28199654Sbenno/*
28299654Sbenno *	numdirtywakeup:
283171805Smarcel *
284171805Smarcel *	If someone is blocked due to there being too many dirty buffers,
28599654Sbenno *	and numdirtybuffers is now reasonable, wake them up.
286171805Smarcel */
287171805Smarcel
28899654Sbennostatic __inline void
289171805Smarcelnumdirtywakeup(int level)
290176208Smarcel{
291176208Smarcel
292176208Smarcel	if (numdirtybuffers <= level) {
293176208Smarcel		mtx_lock(&nblock);
294176208Smarcel		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
295176208Smarcel			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
296176208Smarcel			wakeup(&needsbuffer);
297176208Smarcel		}
298176208Smarcel		mtx_unlock(&nblock);
29999654Sbenno	}
300}
301
302/*
303 *	bufspacewakeup:
304 *
305 *	Called when buffer space is potentially available for recovery.
306 *	getnewbuf() will block on this flag when it is unable to free
307 *	sufficient buffer space.  Buffer space becomes recoverable when
308 *	bp's get placed back in the queues.
309 */
310
311static __inline void
312bufspacewakeup(void)
313{
314
315	/*
316	 * If someone is waiting for BUF space, wake them up.  Even
317	 * though we haven't freed the kva space yet, the waiting
318	 * process will be able to now.
319	 */
320	mtx_lock(&nblock);
321	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
322		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
323		wakeup(&needsbuffer);
324	}
325	mtx_unlock(&nblock);
326}
327
328/*
329 * runningbufwakeup() - in-progress I/O accounting.
330 *
331 */
332void
333runningbufwakeup(struct buf *bp)
334{
335
336	if (bp->b_runningbufspace) {
337		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
338		bp->b_runningbufspace = 0;
339		mtx_lock(&rbreqlock);
340		if (runningbufreq && runningbufspace <= lorunningspace) {
341			runningbufreq = 0;
342			wakeup(&runningbufreq);
343		}
344		mtx_unlock(&rbreqlock);
345	}
346}
347
348/*
349 *	bufcountwakeup:
350 *
351 *	Called when a buffer has been added to one of the free queues to
352 *	account for the buffer and to wakeup anyone waiting for free buffers.
353 *	This typically occurs when large amounts of metadata are being handled
354 *	by the buffer cache ( else buffer space runs out first, usually ).
355 */
356
357static __inline void
358bufcountwakeup(void)
359{
360
361	atomic_add_int(&numfreebuffers, 1);
362	mtx_lock(&nblock);
363	if (needsbuffer) {
364		needsbuffer &= ~VFS_BIO_NEED_ANY;
365		if (numfreebuffers >= hifreebuffers)
366			needsbuffer &= ~VFS_BIO_NEED_FREE;
367		wakeup(&needsbuffer);
368	}
369	mtx_unlock(&nblock);
370}
371
372/*
373 *	waitrunningbufspace()
374 *
375 *	runningbufspace is a measure of the amount of I/O currently
376 *	running.  This routine is used in async-write situations to
377 *	prevent creating huge backups of pending writes to a device.
378 *	Only asynchronous writes are governed by this function.
379 *
380 *	Reads will adjust runningbufspace, but will not block based on it.
381 *	The read load has a side effect of reducing the allowed write load.
382 *
383 *	This does NOT turn an async write into a sync write.  It waits
384 *	for earlier writes to complete and generally returns before the
385 *	caller's write has reached the device.
386 */
387void
388waitrunningbufspace(void)
389{
390
391	mtx_lock(&rbreqlock);
392	while (runningbufspace > hirunningspace) {
393		++runningbufreq;
394		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
395	}
396	mtx_unlock(&rbreqlock);
397}
398
399
400/*
401 *	vfs_buf_test_cache:
402 *
403 *	Called when a buffer is extended.  This function clears the B_CACHE
404 *	bit if the newly extended portion of the buffer does not contain
405 *	valid data.
406 */
407static __inline
408void
409vfs_buf_test_cache(struct buf *bp,
410		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
411		  vm_page_t m)
412{
413
414	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
415	if (bp->b_flags & B_CACHE) {
416		int base = (foff + off) & PAGE_MASK;
417		if (vm_page_is_valid(m, base, size) == 0)
418			bp->b_flags &= ~B_CACHE;
419	}
420}
421
422/* Wake up the buffer daemon if necessary */
423static __inline
424void
425bd_wakeup(int dirtybuflevel)
426{
427
428	mtx_lock(&bdlock);
429	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
430		bd_request = 1;
431		wakeup(&bd_request);
432	}
433	mtx_unlock(&bdlock);
434}
435
436/*
437 * bd_speedup - speedup the buffer cache flushing code
438 */
439
440static __inline
441void
442bd_speedup(void)
443{
444
445	bd_wakeup(1);
446}
447
448/*
449 * Calculating buffer cache scaling values and reserve space for buffer
450 * headers.  This is called during low level kernel initialization and
451 * may be called more then once.  We CANNOT write to the memory area
452 * being reserved at this time.
453 */
454caddr_t
455kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
456{
457
458	/*
459	 * physmem_est is in pages.  Convert it to kilobytes (assumes
460	 * PAGE_SIZE is >= 1K)
461	 */
462	physmem_est = physmem_est * (PAGE_SIZE / 1024);
463
464	/*
465	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
466	 * For the first 64MB of ram nominally allocate sufficient buffers to
467	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
468	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
469	 * the buffer cache we limit the eventual kva reservation to
470	 * maxbcache bytes.
471	 *
472	 * factor represents the 1/4 x ram conversion.
473	 */
474	if (nbuf == 0) {
475		int factor = 4 * BKVASIZE / 1024;
476
477		nbuf = 50;
478		if (physmem_est > 4096)
479			nbuf += min((physmem_est - 4096) / factor,
480			    65536 / factor);
481		if (physmem_est > 65536)
482			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
483
484		if (maxbcache && nbuf > maxbcache / BKVASIZE)
485			nbuf = maxbcache / BKVASIZE;
486	}
487
488#if 0
489	/*
490	 * Do not allow the buffer_map to be more then 1/2 the size of the
491	 * kernel_map.
492	 */
493	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
494	    (BKVASIZE * 2)) {
495		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
496		    (BKVASIZE * 2);
497		printf("Warning: nbufs capped at %d\n", nbuf);
498	}
499#endif
500
501	/*
502	 * swbufs are used as temporary holders for I/O, such as paging I/O.
503	 * We have no less then 16 and no more then 256.
504	 */
505	nswbuf = max(min(nbuf/4, 256), 16);
506#ifdef NSWBUF_MIN
507	if (nswbuf < NSWBUF_MIN)
508		nswbuf = NSWBUF_MIN;
509#endif
510#ifdef DIRECTIO
511	ffs_rawread_setup();
512#endif
513
514	/*
515	 * Reserve space for the buffer cache buffers
516	 */
517	swbuf = (void *)v;
518	v = (caddr_t)(swbuf + nswbuf);
519	buf = (void *)v;
520	v = (caddr_t)(buf + nbuf);
521
522	return(v);
523}
524
525/* Initialize the buffer subsystem.  Called before use of any buffers. */
526void
527bufinit(void)
528{
529	struct buf *bp;
530	int i;
531
532	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
533	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
534	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
535	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
536	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
537	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
538
539	/* next, make a null set of free lists */
540	for (i = 0; i < BUFFER_QUEUES; i++)
541		TAILQ_INIT(&bufqueues[i]);
542
543	/* finally, initialize each buffer header and stick on empty q */
544	for (i = 0; i < nbuf; i++) {
545		bp = &buf[i];
546		bzero(bp, sizeof *bp);
547		bp->b_flags = B_INVAL;	/* we're just an empty header */
548		bp->b_rcred = NOCRED;
549		bp->b_wcred = NOCRED;
550		bp->b_qindex = QUEUE_EMPTY;
551		bp->b_vflags = 0;
552		bp->b_xflags = 0;
553		LIST_INIT(&bp->b_dep);
554		BUF_LOCKINIT(bp);
555		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
556	}
557
558	/*
559	 * maxbufspace is the absolute maximum amount of buffer space we are
560	 * allowed to reserve in KVM and in real terms.  The absolute maximum
561	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
562	 * used by most other processes.  The differential is required to
563	 * ensure that buf_daemon is able to run when other processes might
564	 * be blocked waiting for buffer space.
565	 *
566	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
567	 * this may result in KVM fragmentation which is not handled optimally
568	 * by the system.
569	 */
570	maxbufspace = nbuf * BKVASIZE;
571	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
572	lobufspace = hibufspace - MAXBSIZE;
573
574	lorunningspace = 512 * 1024;
575	hirunningspace = 1024 * 1024;
576
577/*
578 * Limit the amount of malloc memory since it is wired permanently into
579 * the kernel space.  Even though this is accounted for in the buffer
580 * allocation, we don't want the malloced region to grow uncontrolled.
581 * The malloc scheme improves memory utilization significantly on average
582 * (small) directories.
583 */
584	maxbufmallocspace = hibufspace / 20;
585
586/*
587 * Reduce the chance of a deadlock occuring by limiting the number
588 * of delayed-write dirty buffers we allow to stack up.
589 */
590	hidirtybuffers = nbuf / 4 + 20;
591	dirtybufthresh = hidirtybuffers * 9 / 10;
592	numdirtybuffers = 0;
593/*
594 * To support extreme low-memory systems, make sure hidirtybuffers cannot
595 * eat up all available buffer space.  This occurs when our minimum cannot
596 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
597 * BKVASIZE'd (8K) buffers.
598 */
599	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
600		hidirtybuffers >>= 1;
601	}
602	lodirtybuffers = hidirtybuffers / 2;
603
604/*
605 * Try to keep the number of free buffers in the specified range,
606 * and give special processes (e.g. like buf_daemon) access to an
607 * emergency reserve.
608 */
609	lofreebuffers = nbuf / 18 + 5;
610	hifreebuffers = 2 * lofreebuffers;
611	numfreebuffers = nbuf;
612
613/*
614 * Maximum number of async ops initiated per buf_daemon loop.  This is
615 * somewhat of a hack at the moment, we really need to limit ourselves
616 * based on the number of bytes of I/O in-transit that were initiated
617 * from buf_daemon.
618 */
619
620	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
621	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
622}
623
624/*
625 * bfreekva() - free the kva allocation for a buffer.
626 *
627 *	Since this call frees up buffer space, we call bufspacewakeup().
628 */
629static void
630bfreekva(struct buf *bp)
631{
632
633	if (bp->b_kvasize) {
634		atomic_add_int(&buffreekvacnt, 1);
635		atomic_subtract_int(&bufspace, bp->b_kvasize);
636		vm_map_remove(buffer_map, (vm_offset_t) bp->b_kvabase,
637		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize);
638		bp->b_kvasize = 0;
639		bufspacewakeup();
640	}
641}
642
643/*
644 *	bremfree:
645 *
646 *	Mark the buffer for removal from the appropriate free list in brelse.
647 *
648 */
649void
650bremfree(struct buf *bp)
651{
652
653	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
654	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
655	KASSERT((bp->b_flags & B_REMFREE) == 0,
656	    ("bremfree: buffer %p already marked for delayed removal.", bp));
657	KASSERT(bp->b_qindex != QUEUE_NONE,
658	    ("bremfree: buffer %p not on a queue.", bp));
659
660	bp->b_flags |= B_REMFREE;
661	/* Fixup numfreebuffers count.  */
662	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
663		atomic_subtract_int(&numfreebuffers, 1);
664}
665
666/*
667 *	bremfreef:
668 *
669 *	Force an immediate removal from a free list.  Used only in nfs when
670 *	it abuses the b_freelist pointer.
671 */
672void
673bremfreef(struct buf *bp)
674{
675	mtx_lock(&bqlock);
676	bremfreel(bp);
677	mtx_unlock(&bqlock);
678}
679
680/*
681 *	bremfreel:
682 *
683 *	Removes a buffer from the free list, must be called with the
684 *	bqlock held.
685 */
686static void
687bremfreel(struct buf *bp)
688{
689	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
690	    bp, bp->b_vp, bp->b_flags);
691	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
692	KASSERT(bp->b_qindex != QUEUE_NONE,
693	    ("bremfreel: buffer %p not on a queue.", bp));
694	mtx_assert(&bqlock, MA_OWNED);
695
696	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
697	bp->b_qindex = QUEUE_NONE;
698	/*
699	 * If this was a delayed bremfree() we only need to remove the buffer
700	 * from the queue and return the stats are already done.
701	 */
702	if (bp->b_flags & B_REMFREE) {
703		bp->b_flags &= ~B_REMFREE;
704		return;
705	}
706	/*
707	 * Fixup numfreebuffers count.  If the buffer is invalid or not
708	 * delayed-write, the buffer was free and we must decrement
709	 * numfreebuffers.
710	 */
711	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
712		atomic_subtract_int(&numfreebuffers, 1);
713}
714
715
716/*
717 * Get a buffer with the specified data.  Look in the cache first.  We
718 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
719 * is set, the buffer is valid and we do not have to do anything ( see
720 * getblk() ).  This is really just a special case of breadn().
721 */
722int
723bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
724    struct buf **bpp)
725{
726
727	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
728}
729
730/*
731 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
732 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
733 * the buffer is valid and we do not have to do anything.
734 */
735void
736breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
737    int cnt, struct ucred * cred)
738{
739	struct buf *rabp;
740	int i;
741
742	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
743		if (inmem(vp, *rablkno))
744			continue;
745		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
746
747		if ((rabp->b_flags & B_CACHE) == 0) {
748			if (!TD_IS_IDLETHREAD(curthread))
749				curthread->td_proc->p_stats->p_ru.ru_inblock++;
750			rabp->b_flags |= B_ASYNC;
751			rabp->b_flags &= ~B_INVAL;
752			rabp->b_ioflags &= ~BIO_ERROR;
753			rabp->b_iocmd = BIO_READ;
754			if (rabp->b_rcred == NOCRED && cred != NOCRED)
755				rabp->b_rcred = crhold(cred);
756			vfs_busy_pages(rabp, 0);
757			BUF_KERNPROC(rabp);
758			rabp->b_iooffset = dbtob(rabp->b_blkno);
759			bstrategy(rabp);
760		} else {
761			brelse(rabp);
762		}
763	}
764}
765
766/*
767 * Operates like bread, but also starts asynchronous I/O on
768 * read-ahead blocks.
769 */
770int
771breadn(struct vnode * vp, daddr_t blkno, int size,
772    daddr_t * rablkno, int *rabsize,
773    int cnt, struct ucred * cred, struct buf **bpp)
774{
775	struct buf *bp;
776	int rv = 0, readwait = 0;
777
778	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
779	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
780
781	/* if not found in cache, do some I/O */
782	if ((bp->b_flags & B_CACHE) == 0) {
783		if (!TD_IS_IDLETHREAD(curthread))
784			curthread->td_proc->p_stats->p_ru.ru_inblock++;
785		bp->b_iocmd = BIO_READ;
786		bp->b_flags &= ~B_INVAL;
787		bp->b_ioflags &= ~BIO_ERROR;
788		if (bp->b_rcred == NOCRED && cred != NOCRED)
789			bp->b_rcred = crhold(cred);
790		vfs_busy_pages(bp, 0);
791		bp->b_iooffset = dbtob(bp->b_blkno);
792		bstrategy(bp);
793		++readwait;
794	}
795
796	breada(vp, rablkno, rabsize, cnt, cred);
797
798	if (readwait) {
799		rv = bufwait(bp);
800	}
801	return (rv);
802}
803
804/*
805 * Write, release buffer on completion.  (Done by iodone
806 * if async).  Do not bother writing anything if the buffer
807 * is invalid.
808 *
809 * Note that we set B_CACHE here, indicating that buffer is
810 * fully valid and thus cacheable.  This is true even of NFS
811 * now so we set it generally.  This could be set either here
812 * or in biodone() since the I/O is synchronous.  We put it
813 * here.
814 */
815int
816bufwrite(struct buf *bp)
817{
818	int oldflags;
819	struct vnode *vp;
820	int vp_md;
821
822	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
823	if (bp->b_flags & B_INVAL) {
824		brelse(bp);
825		return (0);
826	}
827
828	oldflags = bp->b_flags;
829
830	if (BUF_REFCNT(bp) == 0)
831		panic("bufwrite: buffer is not busy???");
832
833	if (bp->b_pin_count > 0)
834		bunpin_wait(bp);
835
836	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
837	    ("FFS background buffer should not get here %p", bp));
838
839	vp = bp->b_vp;
840	if (vp)
841		vp_md = vp->v_vflag & VV_MD;
842	else
843		vp_md = 0;
844
845	/* Mark the buffer clean */
846	bundirty(bp);
847
848	bp->b_flags &= ~B_DONE;
849	bp->b_ioflags &= ~BIO_ERROR;
850	bp->b_flags |= B_CACHE;
851	bp->b_iocmd = BIO_WRITE;
852
853	bufobj_wref(bp->b_bufobj);
854	vfs_busy_pages(bp, 1);
855
856	/*
857	 * Normal bwrites pipeline writes
858	 */
859	bp->b_runningbufspace = bp->b_bufsize;
860	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
861
862	if (!TD_IS_IDLETHREAD(curthread))
863		curthread->td_proc->p_stats->p_ru.ru_oublock++;
864	if (oldflags & B_ASYNC)
865		BUF_KERNPROC(bp);
866	bp->b_iooffset = dbtob(bp->b_blkno);
867	bstrategy(bp);
868
869	if ((oldflags & B_ASYNC) == 0) {
870		int rtval = bufwait(bp);
871		brelse(bp);
872		return (rtval);
873	} else {
874		/*
875		 * don't allow the async write to saturate the I/O
876		 * system.  We will not deadlock here because
877		 * we are blocking waiting for I/O that is already in-progress
878		 * to complete. We do not block here if it is the update
879		 * or syncer daemon trying to clean up as that can lead
880		 * to deadlock.
881		 */
882		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 && !vp_md)
883			waitrunningbufspace();
884	}
885
886	return (0);
887}
888
889void
890bufbdflush(struct bufobj *bo, struct buf *bp)
891{
892	struct buf *nbp;
893
894	if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
895		(void) VOP_FSYNC(bp->b_vp, MNT_NOWAIT, curthread);
896		altbufferflushes++;
897	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
898		BO_LOCK(bo);
899		/*
900		 * Try to find a buffer to flush.
901		 */
902		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
903			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
904			    BUF_LOCK(nbp,
905				     LK_EXCLUSIVE | LK_NOWAIT, NULL))
906				continue;
907			if (bp == nbp)
908				panic("bdwrite: found ourselves");
909			BO_UNLOCK(bo);
910			/* Don't countdeps with the bo lock held. */
911			if (buf_countdeps(nbp, 0)) {
912				BO_LOCK(bo);
913				BUF_UNLOCK(nbp);
914				continue;
915			}
916			if (nbp->b_flags & B_CLUSTEROK) {
917				vfs_bio_awrite(nbp);
918			} else {
919				bremfree(nbp);
920				bawrite(nbp);
921			}
922			dirtybufferflushes++;
923			break;
924		}
925		if (nbp == NULL)
926			BO_UNLOCK(bo);
927	}
928}
929
930/*
931 * Delayed write. (Buffer is marked dirty).  Do not bother writing
932 * anything if the buffer is marked invalid.
933 *
934 * Note that since the buffer must be completely valid, we can safely
935 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
936 * biodone() in order to prevent getblk from writing the buffer
937 * out synchronously.
938 */
939void
940bdwrite(struct buf *bp)
941{
942	struct thread *td = curthread;
943	struct vnode *vp;
944	struct bufobj *bo;
945
946	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
947	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
948	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
949
950	if (bp->b_flags & B_INVAL) {
951		brelse(bp);
952		return;
953	}
954
955	/*
956	 * If we have too many dirty buffers, don't create any more.
957	 * If we are wildly over our limit, then force a complete
958	 * cleanup. Otherwise, just keep the situation from getting
959	 * out of control. Note that we have to avoid a recursive
960	 * disaster and not try to clean up after our own cleanup!
961	 */
962	vp = bp->b_vp;
963	bo = bp->b_bufobj;
964	if ((td->td_pflags & (TDP_COWINPROGRESS|TDP_INBDFLUSH)) == 0) {
965		td->td_pflags |= TDP_INBDFLUSH;
966		BO_BDFLUSH(bo, bp);
967		td->td_pflags &= ~TDP_INBDFLUSH;
968	} else
969		recursiveflushes++;
970
971	bdirty(bp);
972	/*
973	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
974	 * true even of NFS now.
975	 */
976	bp->b_flags |= B_CACHE;
977
978	/*
979	 * This bmap keeps the system from needing to do the bmap later,
980	 * perhaps when the system is attempting to do a sync.  Since it
981	 * is likely that the indirect block -- or whatever other datastructure
982	 * that the filesystem needs is still in memory now, it is a good
983	 * thing to do this.  Note also, that if the pageout daemon is
984	 * requesting a sync -- there might not be enough memory to do
985	 * the bmap then...  So, this is important to do.
986	 */
987	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
988		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
989	}
990
991	/*
992	 * Set the *dirty* buffer range based upon the VM system dirty pages.
993	 */
994	vfs_setdirty(bp);
995
996	/*
997	 * We need to do this here to satisfy the vnode_pager and the
998	 * pageout daemon, so that it thinks that the pages have been
999	 * "cleaned".  Note that since the pages are in a delayed write
1000	 * buffer -- the VFS layer "will" see that the pages get written
1001	 * out on the next sync, or perhaps the cluster will be completed.
1002	 */
1003	vfs_clean_pages(bp);
1004	bqrelse(bp);
1005
1006	/*
1007	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1008	 * buffers (midpoint between our recovery point and our stall
1009	 * point).
1010	 */
1011	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1012
1013	/*
1014	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1015	 * due to the softdep code.
1016	 */
1017}
1018
1019/*
1020 *	bdirty:
1021 *
1022 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1023 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1024 *	itself to properly update it in the dirty/clean lists.  We mark it
1025 *	B_DONE to ensure that any asynchronization of the buffer properly
1026 *	clears B_DONE ( else a panic will occur later ).
1027 *
1028 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1029 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1030 *	should only be called if the buffer is known-good.
1031 *
1032 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1033 *	count.
1034 *
1035 *	The buffer must be on QUEUE_NONE.
1036 */
1037void
1038bdirty(struct buf *bp)
1039{
1040
1041	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1042	    bp, bp->b_vp, bp->b_flags);
1043	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1044	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1045	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1046	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1047	bp->b_flags &= ~(B_RELBUF);
1048	bp->b_iocmd = BIO_WRITE;
1049
1050	if ((bp->b_flags & B_DELWRI) == 0) {
1051		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1052		reassignbuf(bp);
1053		atomic_add_int(&numdirtybuffers, 1);
1054		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1055	}
1056}
1057
1058/*
1059 *	bundirty:
1060 *
1061 *	Clear B_DELWRI for buffer.
1062 *
1063 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1064 *	count.
1065 *
1066 *	The buffer must be on QUEUE_NONE.
1067 */
1068
1069void
1070bundirty(struct buf *bp)
1071{
1072
1073	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1074	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1075	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1076	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1077	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1078
1079	if (bp->b_flags & B_DELWRI) {
1080		bp->b_flags &= ~B_DELWRI;
1081		reassignbuf(bp);
1082		atomic_subtract_int(&numdirtybuffers, 1);
1083		numdirtywakeup(lodirtybuffers);
1084	}
1085	/*
1086	 * Since it is now being written, we can clear its deferred write flag.
1087	 */
1088	bp->b_flags &= ~B_DEFERRED;
1089}
1090
1091/*
1092 *	bawrite:
1093 *
1094 *	Asynchronous write.  Start output on a buffer, but do not wait for
1095 *	it to complete.  The buffer is released when the output completes.
1096 *
1097 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1098 *	B_INVAL buffers.  Not us.
1099 */
1100void
1101bawrite(struct buf *bp)
1102{
1103
1104	bp->b_flags |= B_ASYNC;
1105	(void) bwrite(bp);
1106}
1107
1108/*
1109 *	bwillwrite:
1110 *
1111 *	Called prior to the locking of any vnodes when we are expecting to
1112 *	write.  We do not want to starve the buffer cache with too many
1113 *	dirty buffers so we block here.  By blocking prior to the locking
1114 *	of any vnodes we attempt to avoid the situation where a locked vnode
1115 *	prevents the various system daemons from flushing related buffers.
1116 */
1117
1118void
1119bwillwrite(void)
1120{
1121
1122	if (numdirtybuffers >= hidirtybuffers) {
1123		mtx_lock(&nblock);
1124		while (numdirtybuffers >= hidirtybuffers) {
1125			bd_wakeup(1);
1126			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1127			msleep(&needsbuffer, &nblock,
1128			    (PRIBIO + 4), "flswai", 0);
1129		}
1130		mtx_unlock(&nblock);
1131	}
1132}
1133
1134/*
1135 * Return true if we have too many dirty buffers.
1136 */
1137int
1138buf_dirty_count_severe(void)
1139{
1140
1141	return(numdirtybuffers >= hidirtybuffers);
1142}
1143
1144/*
1145 *	brelse:
1146 *
1147 *	Release a busy buffer and, if requested, free its resources.  The
1148 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1149 *	to be accessed later as a cache entity or reused for other purposes.
1150 */
1151void
1152brelse(struct buf *bp)
1153{
1154	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1155	    bp, bp->b_vp, bp->b_flags);
1156	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1157	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1158
1159	if (bp->b_flags & B_MANAGED) {
1160		bqrelse(bp);
1161		return;
1162	}
1163
1164	if (bp->b_iocmd == BIO_WRITE &&
1165	    (bp->b_ioflags & BIO_ERROR) &&
1166	    !(bp->b_flags & B_INVAL)) {
1167		/*
1168		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1169		 * pages from being scrapped.  If B_INVAL is set then
1170		 * this case is not run and the next case is run to
1171		 * destroy the buffer.  B_INVAL can occur if the buffer
1172		 * is outside the range supported by the underlying device.
1173		 */
1174		bp->b_ioflags &= ~BIO_ERROR;
1175		bdirty(bp);
1176	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1177	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1178		/*
1179		 * Either a failed I/O or we were asked to free or not
1180		 * cache the buffer.
1181		 */
1182		bp->b_flags |= B_INVAL;
1183		if (!LIST_EMPTY(&bp->b_dep))
1184			buf_deallocate(bp);
1185		if (bp->b_flags & B_DELWRI) {
1186			atomic_subtract_int(&numdirtybuffers, 1);
1187			numdirtywakeup(lodirtybuffers);
1188		}
1189		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1190		if ((bp->b_flags & B_VMIO) == 0) {
1191			if (bp->b_bufsize)
1192				allocbuf(bp, 0);
1193			if (bp->b_vp)
1194				brelvp(bp);
1195		}
1196	}
1197
1198	/*
1199	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1200	 * is called with B_DELWRI set, the underlying pages may wind up
1201	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1202	 * because pages associated with a B_DELWRI bp are marked clean.
1203	 *
1204	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1205	 * if B_DELWRI is set.
1206	 *
1207	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1208	 * on pages to return pages to the VM page queues.
1209	 */
1210	if (bp->b_flags & B_DELWRI)
1211		bp->b_flags &= ~B_RELBUF;
1212	else if (vm_page_count_severe()) {
1213		/*
1214		 * XXX This lock may not be necessary since BKGRDINPROG
1215		 * cannot be set while we hold the buf lock, it can only be
1216		 * cleared if it is already pending.
1217		 */
1218		if (bp->b_vp) {
1219			BO_LOCK(bp->b_bufobj);
1220			if (!(bp->b_vflags & BV_BKGRDINPROG))
1221				bp->b_flags |= B_RELBUF;
1222			BO_UNLOCK(bp->b_bufobj);
1223		} else
1224			bp->b_flags |= B_RELBUF;
1225	}
1226
1227	/*
1228	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1229	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1230	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1231	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1232	 *
1233	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1234	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1235	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1236	 *
1237	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1238	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1239	 * the commit state and we cannot afford to lose the buffer. If the
1240	 * buffer has a background write in progress, we need to keep it
1241	 * around to prevent it from being reconstituted and starting a second
1242	 * background write.
1243	 */
1244	if ((bp->b_flags & B_VMIO)
1245	    && !(bp->b_vp->v_mount != NULL &&
1246		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1247		 !vn_isdisk(bp->b_vp, NULL) &&
1248		 (bp->b_flags & B_DELWRI))
1249	    ) {
1250
1251		int i, j, resid;
1252		vm_page_t m;
1253		off_t foff;
1254		vm_pindex_t poff;
1255		vm_object_t obj;
1256
1257		obj = bp->b_bufobj->bo_object;
1258
1259		/*
1260		 * Get the base offset and length of the buffer.  Note that
1261		 * in the VMIO case if the buffer block size is not
1262		 * page-aligned then b_data pointer may not be page-aligned.
1263		 * But our b_pages[] array *IS* page aligned.
1264		 *
1265		 * block sizes less then DEV_BSIZE (usually 512) are not
1266		 * supported due to the page granularity bits (m->valid,
1267		 * m->dirty, etc...).
1268		 *
1269		 * See man buf(9) for more information
1270		 */
1271		resid = bp->b_bufsize;
1272		foff = bp->b_offset;
1273		VM_OBJECT_LOCK(obj);
1274		for (i = 0; i < bp->b_npages; i++) {
1275			int had_bogus = 0;
1276
1277			m = bp->b_pages[i];
1278
1279			/*
1280			 * If we hit a bogus page, fixup *all* the bogus pages
1281			 * now.
1282			 */
1283			if (m == bogus_page) {
1284				poff = OFF_TO_IDX(bp->b_offset);
1285				had_bogus = 1;
1286
1287				for (j = i; j < bp->b_npages; j++) {
1288					vm_page_t mtmp;
1289					mtmp = bp->b_pages[j];
1290					if (mtmp == bogus_page) {
1291						mtmp = vm_page_lookup(obj, poff + j);
1292						if (!mtmp) {
1293							panic("brelse: page missing\n");
1294						}
1295						bp->b_pages[j] = mtmp;
1296					}
1297				}
1298
1299				if ((bp->b_flags & B_INVAL) == 0) {
1300					pmap_qenter(
1301					    trunc_page((vm_offset_t)bp->b_data),
1302					    bp->b_pages, bp->b_npages);
1303				}
1304				m = bp->b_pages[i];
1305			}
1306			if ((bp->b_flags & B_NOCACHE) ||
1307			    (bp->b_ioflags & BIO_ERROR)) {
1308				int poffset = foff & PAGE_MASK;
1309				int presid = resid > (PAGE_SIZE - poffset) ?
1310					(PAGE_SIZE - poffset) : resid;
1311
1312				KASSERT(presid >= 0, ("brelse: extra page"));
1313				vm_page_lock_queues();
1314				vm_page_set_invalid(m, poffset, presid);
1315				vm_page_unlock_queues();
1316				if (had_bogus)
1317					printf("avoided corruption bug in bogus_page/brelse code\n");
1318			}
1319			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1320			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1321		}
1322		VM_OBJECT_UNLOCK(obj);
1323		if (bp->b_flags & (B_INVAL | B_RELBUF))
1324			vfs_vmio_release(bp);
1325
1326	} else if (bp->b_flags & B_VMIO) {
1327
1328		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1329			vfs_vmio_release(bp);
1330		}
1331
1332	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1333		if (bp->b_bufsize != 0)
1334			allocbuf(bp, 0);
1335		if (bp->b_vp != NULL)
1336			brelvp(bp);
1337	}
1338
1339	if (BUF_REFCNT(bp) > 1) {
1340		/* do not release to free list */
1341		BUF_UNLOCK(bp);
1342		return;
1343	}
1344
1345	/* enqueue */
1346	mtx_lock(&bqlock);
1347	/* Handle delayed bremfree() processing. */
1348	if (bp->b_flags & B_REMFREE)
1349		bremfreel(bp);
1350	if (bp->b_qindex != QUEUE_NONE)
1351		panic("brelse: free buffer onto another queue???");
1352
1353	/* buffers with no memory */
1354	if (bp->b_bufsize == 0) {
1355		bp->b_flags |= B_INVAL;
1356		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1357		if (bp->b_vflags & BV_BKGRDINPROG)
1358			panic("losing buffer 1");
1359		if (bp->b_kvasize) {
1360			bp->b_qindex = QUEUE_EMPTYKVA;
1361		} else {
1362			bp->b_qindex = QUEUE_EMPTY;
1363		}
1364		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1365	/* buffers with junk contents */
1366	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1367	    (bp->b_ioflags & BIO_ERROR)) {
1368		bp->b_flags |= B_INVAL;
1369		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1370		if (bp->b_vflags & BV_BKGRDINPROG)
1371			panic("losing buffer 2");
1372		bp->b_qindex = QUEUE_CLEAN;
1373		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1374	/* remaining buffers */
1375	} else {
1376		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1377		    (B_DELWRI|B_NEEDSGIANT))
1378			bp->b_qindex = QUEUE_DIRTY_GIANT;
1379		if (bp->b_flags & B_DELWRI)
1380			bp->b_qindex = QUEUE_DIRTY;
1381		else
1382			bp->b_qindex = QUEUE_CLEAN;
1383		if (bp->b_flags & B_AGE)
1384			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1385		else
1386			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1387	}
1388	mtx_unlock(&bqlock);
1389
1390	/*
1391	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1392	 * placed the buffer on the correct queue.  We must also disassociate
1393	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1394	 * find it.
1395	 */
1396	if (bp->b_flags & B_INVAL) {
1397		if (bp->b_flags & B_DELWRI)
1398			bundirty(bp);
1399		if (bp->b_vp)
1400			brelvp(bp);
1401	}
1402
1403	/*
1404	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1405	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1406	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1407	 * if B_INVAL is set ).
1408	 */
1409
1410	if (!(bp->b_flags & B_DELWRI))
1411		bufcountwakeup();
1412
1413	/*
1414	 * Something we can maybe free or reuse
1415	 */
1416	if (bp->b_bufsize || bp->b_kvasize)
1417		bufspacewakeup();
1418
1419	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1420	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1421		panic("brelse: not dirty");
1422	/* unlock */
1423	BUF_UNLOCK(bp);
1424}
1425
1426/*
1427 * Release a buffer back to the appropriate queue but do not try to free
1428 * it.  The buffer is expected to be used again soon.
1429 *
1430 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1431 * biodone() to requeue an async I/O on completion.  It is also used when
1432 * known good buffers need to be requeued but we think we may need the data
1433 * again soon.
1434 *
1435 * XXX we should be able to leave the B_RELBUF hint set on completion.
1436 */
1437void
1438bqrelse(struct buf *bp)
1439{
1440	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1441	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1442	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1443
1444	if (BUF_REFCNT(bp) > 1) {
1445		/* do not release to free list */
1446		BUF_UNLOCK(bp);
1447		return;
1448	}
1449
1450	if (bp->b_flags & B_MANAGED) {
1451		if (bp->b_flags & B_REMFREE) {
1452			mtx_lock(&bqlock);
1453			bremfreel(bp);
1454			mtx_unlock(&bqlock);
1455		}
1456		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1457		BUF_UNLOCK(bp);
1458		return;
1459	}
1460
1461	mtx_lock(&bqlock);
1462	/* Handle delayed bremfree() processing. */
1463	if (bp->b_flags & B_REMFREE)
1464		bremfreel(bp);
1465	if (bp->b_qindex != QUEUE_NONE)
1466		panic("bqrelse: free buffer onto another queue???");
1467	/* buffers with stale but valid contents */
1468	if (bp->b_flags & B_DELWRI) {
1469		if (bp->b_flags & B_NEEDSGIANT)
1470			bp->b_qindex = QUEUE_DIRTY_GIANT;
1471		else
1472			bp->b_qindex = QUEUE_DIRTY;
1473		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1474	} else {
1475		/*
1476		 * XXX This lock may not be necessary since BKGRDINPROG
1477		 * cannot be set while we hold the buf lock, it can only be
1478		 * cleared if it is already pending.
1479		 */
1480		BO_LOCK(bp->b_bufobj);
1481		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1482			BO_UNLOCK(bp->b_bufobj);
1483			bp->b_qindex = QUEUE_CLEAN;
1484			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1485			    b_freelist);
1486		} else {
1487			/*
1488			 * We are too low on memory, we have to try to free
1489			 * the buffer (most importantly: the wired pages
1490			 * making up its backing store) *now*.
1491			 */
1492			BO_UNLOCK(bp->b_bufobj);
1493			mtx_unlock(&bqlock);
1494			brelse(bp);
1495			return;
1496		}
1497	}
1498	mtx_unlock(&bqlock);
1499
1500	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1501		bufcountwakeup();
1502
1503	/*
1504	 * Something we can maybe free or reuse.
1505	 */
1506	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1507		bufspacewakeup();
1508
1509	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1510	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1511		panic("bqrelse: not dirty");
1512	/* unlock */
1513	BUF_UNLOCK(bp);
1514}
1515
1516/* Give pages used by the bp back to the VM system (where possible) */
1517static void
1518vfs_vmio_release(struct buf *bp)
1519{
1520	int i;
1521	vm_page_t m;
1522
1523	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1524	vm_page_lock_queues();
1525	for (i = 0; i < bp->b_npages; i++) {
1526		m = bp->b_pages[i];
1527		bp->b_pages[i] = NULL;
1528		/*
1529		 * In order to keep page LRU ordering consistent, put
1530		 * everything on the inactive queue.
1531		 */
1532		vm_page_unwire(m, 0);
1533		/*
1534		 * We don't mess with busy pages, it is
1535		 * the responsibility of the process that
1536		 * busied the pages to deal with them.
1537		 */
1538		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1539			continue;
1540
1541		if (m->wire_count == 0) {
1542			/*
1543			 * Might as well free the page if we can and it has
1544			 * no valid data.  We also free the page if the
1545			 * buffer was used for direct I/O
1546			 */
1547			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1548			    m->hold_count == 0) {
1549				vm_page_free(m);
1550			} else if (bp->b_flags & B_DIRECT) {
1551				vm_page_try_to_free(m);
1552			} else if (vm_page_count_severe()) {
1553				vm_page_try_to_cache(m);
1554			}
1555		}
1556	}
1557	vm_page_unlock_queues();
1558	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1559	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1560
1561	if (bp->b_bufsize) {
1562		bufspacewakeup();
1563		bp->b_bufsize = 0;
1564	}
1565	bp->b_npages = 0;
1566	bp->b_flags &= ~B_VMIO;
1567	if (bp->b_vp)
1568		brelvp(bp);
1569}
1570
1571/*
1572 * Check to see if a block at a particular lbn is available for a clustered
1573 * write.
1574 */
1575static int
1576vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1577{
1578	struct buf *bpa;
1579	int match;
1580
1581	match = 0;
1582
1583	/* If the buf isn't in core skip it */
1584	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1585		return (0);
1586
1587	/* If the buf is busy we don't want to wait for it */
1588	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1589		return (0);
1590
1591	/* Only cluster with valid clusterable delayed write buffers */
1592	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1593	    (B_DELWRI | B_CLUSTEROK))
1594		goto done;
1595
1596	if (bpa->b_bufsize != size)
1597		goto done;
1598
1599	/*
1600	 * Check to see if it is in the expected place on disk and that the
1601	 * block has been mapped.
1602	 */
1603	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1604		match = 1;
1605done:
1606	BUF_UNLOCK(bpa);
1607	return (match);
1608}
1609
1610/*
1611 *	vfs_bio_awrite:
1612 *
1613 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1614 *	This is much better then the old way of writing only one buffer at
1615 *	a time.  Note that we may not be presented with the buffers in the
1616 *	correct order, so we search for the cluster in both directions.
1617 */
1618int
1619vfs_bio_awrite(struct buf *bp)
1620{
1621	int i;
1622	int j;
1623	daddr_t lblkno = bp->b_lblkno;
1624	struct vnode *vp = bp->b_vp;
1625	int ncl;
1626	int nwritten;
1627	int size;
1628	int maxcl;
1629
1630	/*
1631	 * right now we support clustered writing only to regular files.  If
1632	 * we find a clusterable block we could be in the middle of a cluster
1633	 * rather then at the beginning.
1634	 */
1635	if ((vp->v_type == VREG) &&
1636	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1637	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1638
1639		size = vp->v_mount->mnt_stat.f_iosize;
1640		maxcl = MAXPHYS / size;
1641
1642		VI_LOCK(vp);
1643		for (i = 1; i < maxcl; i++)
1644			if (vfs_bio_clcheck(vp, size, lblkno + i,
1645			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1646				break;
1647
1648		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1649			if (vfs_bio_clcheck(vp, size, lblkno - j,
1650			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1651				break;
1652
1653		VI_UNLOCK(vp);
1654		--j;
1655		ncl = i + j;
1656		/*
1657		 * this is a possible cluster write
1658		 */
1659		if (ncl != 1) {
1660			BUF_UNLOCK(bp);
1661			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1662			return nwritten;
1663		}
1664	}
1665	bremfree(bp);
1666	bp->b_flags |= B_ASYNC;
1667	/*
1668	 * default (old) behavior, writing out only one block
1669	 *
1670	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1671	 */
1672	nwritten = bp->b_bufsize;
1673	(void) bwrite(bp);
1674
1675	return nwritten;
1676}
1677
1678/*
1679 *	getnewbuf:
1680 *
1681 *	Find and initialize a new buffer header, freeing up existing buffers
1682 *	in the bufqueues as necessary.  The new buffer is returned locked.
1683 *
1684 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1685 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1686 *
1687 *	We block if:
1688 *		We have insufficient buffer headers
1689 *		We have insufficient buffer space
1690 *		buffer_map is too fragmented ( space reservation fails )
1691 *		If we have to flush dirty buffers ( but we try to avoid this )
1692 *
1693 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1694 *	Instead we ask the buf daemon to do it for us.  We attempt to
1695 *	avoid piecemeal wakeups of the pageout daemon.
1696 */
1697
1698static struct buf *
1699getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1700{
1701	struct buf *bp;
1702	struct buf *nbp;
1703	int defrag = 0;
1704	int nqindex;
1705	static int flushingbufs;
1706
1707	/*
1708	 * We can't afford to block since we might be holding a vnode lock,
1709	 * which may prevent system daemons from running.  We deal with
1710	 * low-memory situations by proactively returning memory and running
1711	 * async I/O rather then sync I/O.
1712	 */
1713
1714	atomic_add_int(&getnewbufcalls, 1);
1715	atomic_subtract_int(&getnewbufrestarts, 1);
1716restart:
1717	atomic_add_int(&getnewbufrestarts, 1);
1718
1719	/*
1720	 * Setup for scan.  If we do not have enough free buffers,
1721	 * we setup a degenerate case that immediately fails.  Note
1722	 * that if we are specially marked process, we are allowed to
1723	 * dip into our reserves.
1724	 *
1725	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1726	 *
1727	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1728	 * However, there are a number of cases (defragging, reusing, ...)
1729	 * where we cannot backup.
1730	 */
1731	mtx_lock(&bqlock);
1732	nqindex = QUEUE_EMPTYKVA;
1733	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1734
1735	if (nbp == NULL) {
1736		/*
1737		 * If no EMPTYKVA buffers and we are either
1738		 * defragging or reusing, locate a CLEAN buffer
1739		 * to free or reuse.  If bufspace useage is low
1740		 * skip this step so we can allocate a new buffer.
1741		 */
1742		if (defrag || bufspace >= lobufspace) {
1743			nqindex = QUEUE_CLEAN;
1744			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1745		}
1746
1747		/*
1748		 * If we could not find or were not allowed to reuse a
1749		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1750		 * buffer.  We can only use an EMPTY buffer if allocating
1751		 * its KVA would not otherwise run us out of buffer space.
1752		 */
1753		if (nbp == NULL && defrag == 0 &&
1754		    bufspace + maxsize < hibufspace) {
1755			nqindex = QUEUE_EMPTY;
1756			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1757		}
1758	}
1759
1760	/*
1761	 * Run scan, possibly freeing data and/or kva mappings on the fly
1762	 * depending.
1763	 */
1764
1765	while ((bp = nbp) != NULL) {
1766		int qindex = nqindex;
1767
1768		/*
1769		 * Calculate next bp ( we can only use it if we do not block
1770		 * or do other fancy things ).
1771		 */
1772		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1773			switch(qindex) {
1774			case QUEUE_EMPTY:
1775				nqindex = QUEUE_EMPTYKVA;
1776				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1777					break;
1778				/* FALLTHROUGH */
1779			case QUEUE_EMPTYKVA:
1780				nqindex = QUEUE_CLEAN;
1781				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1782					break;
1783				/* FALLTHROUGH */
1784			case QUEUE_CLEAN:
1785				/*
1786				 * nbp is NULL.
1787				 */
1788				break;
1789			}
1790		}
1791		/*
1792		 * If we are defragging then we need a buffer with
1793		 * b_kvasize != 0.  XXX this situation should no longer
1794		 * occur, if defrag is non-zero the buffer's b_kvasize
1795		 * should also be non-zero at this point.  XXX
1796		 */
1797		if (defrag && bp->b_kvasize == 0) {
1798			printf("Warning: defrag empty buffer %p\n", bp);
1799			continue;
1800		}
1801
1802		/*
1803		 * Start freeing the bp.  This is somewhat involved.  nbp
1804		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1805		 */
1806		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1807			continue;
1808		if (bp->b_vp) {
1809			BO_LOCK(bp->b_bufobj);
1810			if (bp->b_vflags & BV_BKGRDINPROG) {
1811				BO_UNLOCK(bp->b_bufobj);
1812				BUF_UNLOCK(bp);
1813				continue;
1814			}
1815			BO_UNLOCK(bp->b_bufobj);
1816		}
1817		CTR6(KTR_BUF,
1818		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1819		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1820		    bp->b_kvasize, bp->b_bufsize, qindex);
1821
1822		/*
1823		 * Sanity Checks
1824		 */
1825		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1826
1827		/*
1828		 * Note: we no longer distinguish between VMIO and non-VMIO
1829		 * buffers.
1830		 */
1831
1832		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1833
1834		bremfreel(bp);
1835		mtx_unlock(&bqlock);
1836
1837		if (qindex == QUEUE_CLEAN) {
1838			if (bp->b_flags & B_VMIO) {
1839				bp->b_flags &= ~B_ASYNC;
1840				vfs_vmio_release(bp);
1841			}
1842			if (bp->b_vp)
1843				brelvp(bp);
1844		}
1845
1846		/*
1847		 * NOTE:  nbp is now entirely invalid.  We can only restart
1848		 * the scan from this point on.
1849		 *
1850		 * Get the rest of the buffer freed up.  b_kva* is still
1851		 * valid after this operation.
1852		 */
1853
1854		if (bp->b_rcred != NOCRED) {
1855			crfree(bp->b_rcred);
1856			bp->b_rcred = NOCRED;
1857		}
1858		if (bp->b_wcred != NOCRED) {
1859			crfree(bp->b_wcred);
1860			bp->b_wcred = NOCRED;
1861		}
1862		if (!LIST_EMPTY(&bp->b_dep))
1863			buf_deallocate(bp);
1864		if (bp->b_vflags & BV_BKGRDINPROG)
1865			panic("losing buffer 3");
1866		KASSERT(bp->b_vp == NULL,
1867		    ("bp: %p still has vnode %p.  qindex: %d",
1868		    bp, bp->b_vp, qindex));
1869		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1870		   ("bp: %p still on a buffer list. xflags %X",
1871		    bp, bp->b_xflags));
1872
1873		if (bp->b_bufsize)
1874			allocbuf(bp, 0);
1875
1876		bp->b_flags = 0;
1877		bp->b_ioflags = 0;
1878		bp->b_xflags = 0;
1879		bp->b_vflags = 0;
1880		bp->b_vp = NULL;
1881		bp->b_blkno = bp->b_lblkno = 0;
1882		bp->b_offset = NOOFFSET;
1883		bp->b_iodone = 0;
1884		bp->b_error = 0;
1885		bp->b_resid = 0;
1886		bp->b_bcount = 0;
1887		bp->b_npages = 0;
1888		bp->b_dirtyoff = bp->b_dirtyend = 0;
1889		bp->b_bufobj = NULL;
1890		bp->b_pin_count = 0;
1891		bp->b_fsprivate1 = NULL;
1892		bp->b_fsprivate2 = NULL;
1893		bp->b_fsprivate3 = NULL;
1894
1895		LIST_INIT(&bp->b_dep);
1896
1897		/*
1898		 * If we are defragging then free the buffer.
1899		 */
1900		if (defrag) {
1901			bp->b_flags |= B_INVAL;
1902			bfreekva(bp);
1903			brelse(bp);
1904			defrag = 0;
1905			goto restart;
1906		}
1907
1908		/*
1909		 * Notify any waiters for the buffer lock about
1910		 * identity change by freeing the buffer.
1911		 */
1912		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp) > 0) {
1913			bp->b_flags |= B_INVAL;
1914			bfreekva(bp);
1915			brelse(bp);
1916			goto restart;
1917		}
1918
1919		/*
1920		 * If we are overcomitted then recover the buffer and its
1921		 * KVM space.  This occurs in rare situations when multiple
1922		 * processes are blocked in getnewbuf() or allocbuf().
1923		 */
1924		if (bufspace >= hibufspace)
1925			flushingbufs = 1;
1926		if (flushingbufs && bp->b_kvasize != 0) {
1927			bp->b_flags |= B_INVAL;
1928			bfreekva(bp);
1929			brelse(bp);
1930			goto restart;
1931		}
1932		if (bufspace < lobufspace)
1933			flushingbufs = 0;
1934		break;
1935	}
1936
1937	/*
1938	 * If we exhausted our list, sleep as appropriate.  We may have to
1939	 * wakeup various daemons and write out some dirty buffers.
1940	 *
1941	 * Generally we are sleeping due to insufficient buffer space.
1942	 */
1943
1944	if (bp == NULL) {
1945		int flags;
1946		char *waitmsg;
1947
1948		if (defrag) {
1949			flags = VFS_BIO_NEED_BUFSPACE;
1950			waitmsg = "nbufkv";
1951		} else if (bufspace >= hibufspace) {
1952			waitmsg = "nbufbs";
1953			flags = VFS_BIO_NEED_BUFSPACE;
1954		} else {
1955			waitmsg = "newbuf";
1956			flags = VFS_BIO_NEED_ANY;
1957		}
1958		mtx_lock(&nblock);
1959		needsbuffer |= flags;
1960		mtx_unlock(&nblock);
1961		mtx_unlock(&bqlock);
1962
1963		bd_speedup();	/* heeeelp */
1964
1965		mtx_lock(&nblock);
1966		while (needsbuffer & flags) {
1967			if (msleep(&needsbuffer, &nblock,
1968			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1969				mtx_unlock(&nblock);
1970				return (NULL);
1971			}
1972		}
1973		mtx_unlock(&nblock);
1974	} else {
1975		/*
1976		 * We finally have a valid bp.  We aren't quite out of the
1977		 * woods, we still have to reserve kva space.  In order
1978		 * to keep fragmentation sane we only allocate kva in
1979		 * BKVASIZE chunks.
1980		 */
1981		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1982
1983		if (maxsize != bp->b_kvasize) {
1984			vm_offset_t addr = 0;
1985
1986			bfreekva(bp);
1987
1988			vm_map_lock(buffer_map);
1989			if (vm_map_findspace(buffer_map,
1990				vm_map_min(buffer_map), maxsize, &addr)) {
1991				/*
1992				 * Uh oh.  Buffer map is to fragmented.  We
1993				 * must defragment the map.
1994				 */
1995				atomic_add_int(&bufdefragcnt, 1);
1996				vm_map_unlock(buffer_map);
1997				defrag = 1;
1998				bp->b_flags |= B_INVAL;
1999				brelse(bp);
2000				goto restart;
2001			}
2002			if (addr) {
2003				vm_map_insert(buffer_map, NULL, 0,
2004					addr, addr + maxsize,
2005					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2006
2007				bp->b_kvabase = (caddr_t) addr;
2008				bp->b_kvasize = maxsize;
2009				atomic_add_int(&bufspace, bp->b_kvasize);
2010				atomic_add_int(&bufreusecnt, 1);
2011			}
2012			vm_map_unlock(buffer_map);
2013		}
2014		bp->b_saveaddr = bp->b_kvabase;
2015		bp->b_data = bp->b_saveaddr;
2016	}
2017	return(bp);
2018}
2019
2020/*
2021 *	buf_daemon:
2022 *
2023 *	buffer flushing daemon.  Buffers are normally flushed by the
2024 *	update daemon but if it cannot keep up this process starts to
2025 *	take the load in an attempt to prevent getnewbuf() from blocking.
2026 */
2027
2028static struct kproc_desc buf_kp = {
2029	"bufdaemon",
2030	buf_daemon,
2031	&bufdaemonproc
2032};
2033SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2034
2035static void
2036buf_daemon()
2037{
2038
2039	/*
2040	 * This process needs to be suspended prior to shutdown sync.
2041	 */
2042	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2043	    SHUTDOWN_PRI_LAST);
2044
2045	/*
2046	 * This process is allowed to take the buffer cache to the limit
2047	 */
2048	curthread->td_pflags |= TDP_NORUNNINGBUF;
2049	mtx_lock(&bdlock);
2050	for (;;) {
2051		bd_request = 0;
2052		mtx_unlock(&bdlock);
2053
2054		kthread_suspend_check(bufdaemonproc);
2055
2056		/*
2057		 * Do the flush.  Limit the amount of in-transit I/O we
2058		 * allow to build up, otherwise we would completely saturate
2059		 * the I/O system.  Wakeup any waiting processes before we
2060		 * normally would so they can run in parallel with our drain.
2061		 */
2062		while (numdirtybuffers > lodirtybuffers) {
2063			int flushed;
2064
2065			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2066			/* The list empty check here is slightly racy */
2067			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2068				mtx_lock(&Giant);
2069				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2070				mtx_unlock(&Giant);
2071			}
2072			if (flushed == 0) {
2073				/*
2074				 * Could not find any buffers without rollback
2075				 * dependencies, so just write the first one
2076				 * in the hopes of eventually making progress.
2077				 */
2078				flushbufqueues(QUEUE_DIRTY, 1);
2079				if (!TAILQ_EMPTY(
2080				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2081					mtx_lock(&Giant);
2082					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2083					mtx_unlock(&Giant);
2084				}
2085				break;
2086			}
2087			uio_yield();
2088		}
2089
2090		/*
2091		 * Only clear bd_request if we have reached our low water
2092		 * mark.  The buf_daemon normally waits 1 second and
2093		 * then incrementally flushes any dirty buffers that have
2094		 * built up, within reason.
2095		 *
2096		 * If we were unable to hit our low water mark and couldn't
2097		 * find any flushable buffers, we sleep half a second.
2098		 * Otherwise we loop immediately.
2099		 */
2100		mtx_lock(&bdlock);
2101		if (numdirtybuffers <= lodirtybuffers) {
2102			/*
2103			 * We reached our low water mark, reset the
2104			 * request and sleep until we are needed again.
2105			 * The sleep is just so the suspend code works.
2106			 */
2107			bd_request = 0;
2108			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2109		} else {
2110			/*
2111			 * We couldn't find any flushable dirty buffers but
2112			 * still have too many dirty buffers, we
2113			 * have to sleep and try again.  (rare)
2114			 */
2115			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2116		}
2117	}
2118}
2119
2120/*
2121 *	flushbufqueues:
2122 *
2123 *	Try to flush a buffer in the dirty queue.  We must be careful to
2124 *	free up B_INVAL buffers instead of write them, which NFS is
2125 *	particularly sensitive to.
2126 */
2127static int flushwithdeps = 0;
2128SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2129    0, "Number of buffers flushed with dependecies that require rollbacks");
2130
2131static int
2132flushbufqueues(int queue, int flushdeps)
2133{
2134	struct thread *td = curthread;
2135	struct buf sentinel;
2136	struct vnode *vp;
2137	struct mount *mp;
2138	struct buf *bp;
2139	int hasdeps;
2140	int flushed;
2141	int target;
2142
2143	target = numdirtybuffers - lodirtybuffers;
2144	if (flushdeps && target > 2)
2145		target /= 2;
2146	flushed = 0;
2147	bp = NULL;
2148	mtx_lock(&bqlock);
2149	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2150	while (flushed != target) {
2151		bp = TAILQ_FIRST(&bufqueues[queue]);
2152		if (bp == &sentinel)
2153			break;
2154		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2155		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2156
2157		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2158			continue;
2159		if (bp->b_pin_count > 0) {
2160			BUF_UNLOCK(bp);
2161			continue;
2162		}
2163		BO_LOCK(bp->b_bufobj);
2164		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2165		    (bp->b_flags & B_DELWRI) == 0) {
2166			BO_UNLOCK(bp->b_bufobj);
2167			BUF_UNLOCK(bp);
2168			continue;
2169		}
2170		BO_UNLOCK(bp->b_bufobj);
2171		if (bp->b_flags & B_INVAL) {
2172			bremfreel(bp);
2173			mtx_unlock(&bqlock);
2174			brelse(bp);
2175			flushed++;
2176			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2177			mtx_lock(&bqlock);
2178			continue;
2179		}
2180
2181		if (!LIST_EMPTY(&bp->b_dep) && buf_countdeps(bp, 0)) {
2182			if (flushdeps == 0) {
2183				BUF_UNLOCK(bp);
2184				continue;
2185			}
2186			hasdeps = 1;
2187		} else
2188			hasdeps = 0;
2189		/*
2190		 * We must hold the lock on a vnode before writing
2191		 * one of its buffers. Otherwise we may confuse, or
2192		 * in the case of a snapshot vnode, deadlock the
2193		 * system.
2194		 *
2195		 * The lock order here is the reverse of the normal
2196		 * of vnode followed by buf lock.  This is ok because
2197		 * the NOWAIT will prevent deadlock.
2198		 */
2199		vp = bp->b_vp;
2200		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2201			BUF_UNLOCK(bp);
2202			continue;
2203		}
2204		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2205			mtx_unlock(&bqlock);
2206			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2207			    bp, bp->b_vp, bp->b_flags);
2208			vfs_bio_awrite(bp);
2209			vn_finished_write(mp);
2210			VOP_UNLOCK(vp, 0, td);
2211			flushwithdeps += hasdeps;
2212			flushed++;
2213			waitrunningbufspace();
2214			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2215			mtx_lock(&bqlock);
2216			continue;
2217		}
2218		vn_finished_write(mp);
2219		BUF_UNLOCK(bp);
2220	}
2221	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2222	mtx_unlock(&bqlock);
2223	return (flushed);
2224}
2225
2226/*
2227 * Check to see if a block is currently memory resident.
2228 */
2229struct buf *
2230incore(struct bufobj *bo, daddr_t blkno)
2231{
2232	struct buf *bp;
2233
2234	BO_LOCK(bo);
2235	bp = gbincore(bo, blkno);
2236	BO_UNLOCK(bo);
2237	return (bp);
2238}
2239
2240/*
2241 * Returns true if no I/O is needed to access the
2242 * associated VM object.  This is like incore except
2243 * it also hunts around in the VM system for the data.
2244 */
2245
2246static int
2247inmem(struct vnode * vp, daddr_t blkno)
2248{
2249	vm_object_t obj;
2250	vm_offset_t toff, tinc, size;
2251	vm_page_t m;
2252	vm_ooffset_t off;
2253
2254	ASSERT_VOP_LOCKED(vp, "inmem");
2255
2256	if (incore(&vp->v_bufobj, blkno))
2257		return 1;
2258	if (vp->v_mount == NULL)
2259		return 0;
2260	obj = vp->v_object;
2261	if (obj == NULL)
2262		return (0);
2263
2264	size = PAGE_SIZE;
2265	if (size > vp->v_mount->mnt_stat.f_iosize)
2266		size = vp->v_mount->mnt_stat.f_iosize;
2267	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2268
2269	VM_OBJECT_LOCK(obj);
2270	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2271		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2272		if (!m)
2273			goto notinmem;
2274		tinc = size;
2275		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2276			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2277		if (vm_page_is_valid(m,
2278		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2279			goto notinmem;
2280	}
2281	VM_OBJECT_UNLOCK(obj);
2282	return 1;
2283
2284notinmem:
2285	VM_OBJECT_UNLOCK(obj);
2286	return (0);
2287}
2288
2289/*
2290 *	vfs_setdirty:
2291 *
2292 *	Sets the dirty range for a buffer based on the status of the dirty
2293 *	bits in the pages comprising the buffer.
2294 *
2295 *	The range is limited to the size of the buffer.
2296 *
2297 *	This routine is primarily used by NFS, but is generalized for the
2298 *	B_VMIO case.
2299 */
2300static void
2301vfs_setdirty(struct buf *bp)
2302{
2303
2304	/*
2305	 * Degenerate case - empty buffer
2306	 */
2307
2308	if (bp->b_bufsize == 0)
2309		return;
2310
2311	/*
2312	 * We qualify the scan for modified pages on whether the
2313	 * object has been flushed yet.
2314	 */
2315
2316	if ((bp->b_flags & B_VMIO) == 0)
2317		return;
2318
2319	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2320	vfs_setdirty_locked_object(bp);
2321	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2322}
2323
2324static void
2325vfs_setdirty_locked_object(struct buf *bp)
2326{
2327	vm_object_t object;
2328	int i;
2329
2330	object = bp->b_bufobj->bo_object;
2331	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2332	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2333		vm_offset_t boffset;
2334		vm_offset_t eoffset;
2335
2336		vm_page_lock_queues();
2337		/*
2338		 * test the pages to see if they have been modified directly
2339		 * by users through the VM system.
2340		 */
2341		for (i = 0; i < bp->b_npages; i++)
2342			vm_page_test_dirty(bp->b_pages[i]);
2343
2344		/*
2345		 * Calculate the encompassing dirty range, boffset and eoffset,
2346		 * (eoffset - boffset) bytes.
2347		 */
2348
2349		for (i = 0; i < bp->b_npages; i++) {
2350			if (bp->b_pages[i]->dirty)
2351				break;
2352		}
2353		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2354
2355		for (i = bp->b_npages - 1; i >= 0; --i) {
2356			if (bp->b_pages[i]->dirty) {
2357				break;
2358			}
2359		}
2360		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2361
2362		vm_page_unlock_queues();
2363		/*
2364		 * Fit it to the buffer.
2365		 */
2366
2367		if (eoffset > bp->b_bcount)
2368			eoffset = bp->b_bcount;
2369
2370		/*
2371		 * If we have a good dirty range, merge with the existing
2372		 * dirty range.
2373		 */
2374
2375		if (boffset < eoffset) {
2376			if (bp->b_dirtyoff > boffset)
2377				bp->b_dirtyoff = boffset;
2378			if (bp->b_dirtyend < eoffset)
2379				bp->b_dirtyend = eoffset;
2380		}
2381	}
2382}
2383
2384/*
2385 *	getblk:
2386 *
2387 *	Get a block given a specified block and offset into a file/device.
2388 *	The buffers B_DONE bit will be cleared on return, making it almost
2389 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2390 *	return.  The caller should clear B_INVAL prior to initiating a
2391 *	READ.
2392 *
2393 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2394 *	an existing buffer.
2395 *
2396 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2397 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2398 *	and then cleared based on the backing VM.  If the previous buffer is
2399 *	non-0-sized but invalid, B_CACHE will be cleared.
2400 *
2401 *	If getblk() must create a new buffer, the new buffer is returned with
2402 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2403 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2404 *	backing VM.
2405 *
2406 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2407 *	B_CACHE bit is clear.
2408 *
2409 *	What this means, basically, is that the caller should use B_CACHE to
2410 *	determine whether the buffer is fully valid or not and should clear
2411 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2412 *	the buffer by loading its data area with something, the caller needs
2413 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2414 *	the caller should set B_CACHE ( as an optimization ), else the caller
2415 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2416 *	a write attempt or if it was a successfull read.  If the caller
2417 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2418 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2419 */
2420struct buf *
2421getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2422    int flags)
2423{
2424	struct buf *bp;
2425	struct bufobj *bo;
2426	int error;
2427
2428	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2429	ASSERT_VOP_LOCKED(vp, "getblk");
2430	if (size > MAXBSIZE)
2431		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2432
2433	bo = &vp->v_bufobj;
2434loop:
2435	/*
2436	 * Block if we are low on buffers.   Certain processes are allowed
2437	 * to completely exhaust the buffer cache.
2438         *
2439         * If this check ever becomes a bottleneck it may be better to
2440         * move it into the else, when gbincore() fails.  At the moment
2441         * it isn't a problem.
2442	 *
2443	 * XXX remove if 0 sections (clean this up after its proven)
2444         */
2445	if (numfreebuffers == 0) {
2446		if (TD_IS_IDLETHREAD(curthread))
2447			return NULL;
2448		mtx_lock(&nblock);
2449		needsbuffer |= VFS_BIO_NEED_ANY;
2450		mtx_unlock(&nblock);
2451	}
2452
2453	VI_LOCK(vp);
2454	bp = gbincore(bo, blkno);
2455	if (bp != NULL) {
2456		int lockflags;
2457		/*
2458		 * Buffer is in-core.  If the buffer is not busy, it must
2459		 * be on a queue.
2460		 */
2461		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2462
2463		if (flags & GB_LOCK_NOWAIT)
2464			lockflags |= LK_NOWAIT;
2465
2466		error = BUF_TIMELOCK(bp, lockflags,
2467		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2468
2469		/*
2470		 * If we slept and got the lock we have to restart in case
2471		 * the buffer changed identities.
2472		 */
2473		if (error == ENOLCK)
2474			goto loop;
2475		/* We timed out or were interrupted. */
2476		else if (error)
2477			return (NULL);
2478
2479		/*
2480		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2481		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2482		 * and for a VMIO buffer B_CACHE is adjusted according to the
2483		 * backing VM cache.
2484		 */
2485		if (bp->b_flags & B_INVAL)
2486			bp->b_flags &= ~B_CACHE;
2487		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2488			bp->b_flags |= B_CACHE;
2489		bremfree(bp);
2490
2491		/*
2492		 * check for size inconsistancies for non-VMIO case.
2493		 */
2494
2495		if (bp->b_bcount != size) {
2496			if ((bp->b_flags & B_VMIO) == 0 ||
2497			    (size > bp->b_kvasize)) {
2498				if (bp->b_flags & B_DELWRI) {
2499					/*
2500					 * If buffer is pinned and caller does
2501					 * not want sleep  waiting for it to be
2502					 * unpinned, bail out
2503					 * */
2504					if (bp->b_pin_count > 0) {
2505						if (flags & GB_LOCK_NOWAIT) {
2506							bqrelse(bp);
2507							return (NULL);
2508						} else {
2509							bunpin_wait(bp);
2510						}
2511					}
2512					bp->b_flags |= B_NOCACHE;
2513					bwrite(bp);
2514				} else {
2515					if (LIST_EMPTY(&bp->b_dep)) {
2516						bp->b_flags |= B_RELBUF;
2517						brelse(bp);
2518					} else {
2519						bp->b_flags |= B_NOCACHE;
2520						bwrite(bp);
2521					}
2522				}
2523				goto loop;
2524			}
2525		}
2526
2527		/*
2528		 * If the size is inconsistant in the VMIO case, we can resize
2529		 * the buffer.  This might lead to B_CACHE getting set or
2530		 * cleared.  If the size has not changed, B_CACHE remains
2531		 * unchanged from its previous state.
2532		 */
2533
2534		if (bp->b_bcount != size)
2535			allocbuf(bp, size);
2536
2537		KASSERT(bp->b_offset != NOOFFSET,
2538		    ("getblk: no buffer offset"));
2539
2540		/*
2541		 * A buffer with B_DELWRI set and B_CACHE clear must
2542		 * be committed before we can return the buffer in
2543		 * order to prevent the caller from issuing a read
2544		 * ( due to B_CACHE not being set ) and overwriting
2545		 * it.
2546		 *
2547		 * Most callers, including NFS and FFS, need this to
2548		 * operate properly either because they assume they
2549		 * can issue a read if B_CACHE is not set, or because
2550		 * ( for example ) an uncached B_DELWRI might loop due
2551		 * to softupdates re-dirtying the buffer.  In the latter
2552		 * case, B_CACHE is set after the first write completes,
2553		 * preventing further loops.
2554		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2555		 * above while extending the buffer, we cannot allow the
2556		 * buffer to remain with B_CACHE set after the write
2557		 * completes or it will represent a corrupt state.  To
2558		 * deal with this we set B_NOCACHE to scrap the buffer
2559		 * after the write.
2560		 *
2561		 * We might be able to do something fancy, like setting
2562		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2563		 * so the below call doesn't set B_CACHE, but that gets real
2564		 * confusing.  This is much easier.
2565		 */
2566
2567		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2568			bp->b_flags |= B_NOCACHE;
2569			bwrite(bp);
2570			goto loop;
2571		}
2572		bp->b_flags &= ~B_DONE;
2573	} else {
2574		int bsize, maxsize, vmio;
2575		off_t offset;
2576
2577		/*
2578		 * Buffer is not in-core, create new buffer.  The buffer
2579		 * returned by getnewbuf() is locked.  Note that the returned
2580		 * buffer is also considered valid (not marked B_INVAL).
2581		 */
2582		VI_UNLOCK(vp);
2583		/*
2584		 * If the user does not want us to create the buffer, bail out
2585		 * here.
2586		 */
2587		if (flags & GB_NOCREAT)
2588			return NULL;
2589		bsize = bo->bo_bsize;
2590		offset = blkno * bsize;
2591		vmio = vp->v_object != NULL;
2592		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2593		maxsize = imax(maxsize, bsize);
2594
2595		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2596		if (bp == NULL) {
2597			if (slpflag || slptimeo)
2598				return NULL;
2599			goto loop;
2600		}
2601
2602		/*
2603		 * This code is used to make sure that a buffer is not
2604		 * created while the getnewbuf routine is blocked.
2605		 * This can be a problem whether the vnode is locked or not.
2606		 * If the buffer is created out from under us, we have to
2607		 * throw away the one we just created.
2608		 *
2609		 * Note: this must occur before we associate the buffer
2610		 * with the vp especially considering limitations in
2611		 * the splay tree implementation when dealing with duplicate
2612		 * lblkno's.
2613		 */
2614		BO_LOCK(bo);
2615		if (gbincore(bo, blkno)) {
2616			BO_UNLOCK(bo);
2617			bp->b_flags |= B_INVAL;
2618			brelse(bp);
2619			goto loop;
2620		}
2621
2622		/*
2623		 * Insert the buffer into the hash, so that it can
2624		 * be found by incore.
2625		 */
2626		bp->b_blkno = bp->b_lblkno = blkno;
2627		bp->b_offset = offset;
2628		bgetvp(vp, bp);
2629		BO_UNLOCK(bo);
2630
2631		/*
2632		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2633		 * buffer size starts out as 0, B_CACHE will be set by
2634		 * allocbuf() for the VMIO case prior to it testing the
2635		 * backing store for validity.
2636		 */
2637
2638		if (vmio) {
2639			bp->b_flags |= B_VMIO;
2640#if defined(VFS_BIO_DEBUG)
2641			if (vn_canvmio(vp) != TRUE)
2642				printf("getblk: VMIO on vnode type %d\n",
2643					vp->v_type);
2644#endif
2645			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2646			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2647			    bp, vp->v_object, bp->b_bufobj->bo_object));
2648		} else {
2649			bp->b_flags &= ~B_VMIO;
2650			KASSERT(bp->b_bufobj->bo_object == NULL,
2651			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2652			    bp, bp->b_bufobj->bo_object));
2653		}
2654
2655		allocbuf(bp, size);
2656		bp->b_flags &= ~B_DONE;
2657	}
2658	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2659	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2660	KASSERT(bp->b_bufobj == bo,
2661	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2662	return (bp);
2663}
2664
2665/*
2666 * Get an empty, disassociated buffer of given size.  The buffer is initially
2667 * set to B_INVAL.
2668 */
2669struct buf *
2670geteblk(int size)
2671{
2672	struct buf *bp;
2673	int maxsize;
2674
2675	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2676	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2677		continue;
2678	allocbuf(bp, size);
2679	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2680	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2681	return (bp);
2682}
2683
2684
2685/*
2686 * This code constitutes the buffer memory from either anonymous system
2687 * memory (in the case of non-VMIO operations) or from an associated
2688 * VM object (in the case of VMIO operations).  This code is able to
2689 * resize a buffer up or down.
2690 *
2691 * Note that this code is tricky, and has many complications to resolve
2692 * deadlock or inconsistant data situations.  Tread lightly!!!
2693 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2694 * the caller.  Calling this code willy nilly can result in the loss of data.
2695 *
2696 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2697 * B_CACHE for the non-VMIO case.
2698 */
2699
2700int
2701allocbuf(struct buf *bp, int size)
2702{
2703	int newbsize, mbsize;
2704	int i;
2705
2706	if (BUF_REFCNT(bp) == 0)
2707		panic("allocbuf: buffer not busy");
2708
2709	if (bp->b_kvasize < size)
2710		panic("allocbuf: buffer too small");
2711
2712	if ((bp->b_flags & B_VMIO) == 0) {
2713		caddr_t origbuf;
2714		int origbufsize;
2715		/*
2716		 * Just get anonymous memory from the kernel.  Don't
2717		 * mess with B_CACHE.
2718		 */
2719		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2720		if (bp->b_flags & B_MALLOC)
2721			newbsize = mbsize;
2722		else
2723			newbsize = round_page(size);
2724
2725		if (newbsize < bp->b_bufsize) {
2726			/*
2727			 * malloced buffers are not shrunk
2728			 */
2729			if (bp->b_flags & B_MALLOC) {
2730				if (newbsize) {
2731					bp->b_bcount = size;
2732				} else {
2733					free(bp->b_data, M_BIOBUF);
2734					if (bp->b_bufsize) {
2735						atomic_subtract_int(
2736						    &bufmallocspace,
2737						    bp->b_bufsize);
2738						bufspacewakeup();
2739						bp->b_bufsize = 0;
2740					}
2741					bp->b_saveaddr = bp->b_kvabase;
2742					bp->b_data = bp->b_saveaddr;
2743					bp->b_bcount = 0;
2744					bp->b_flags &= ~B_MALLOC;
2745				}
2746				return 1;
2747			}
2748			vm_hold_free_pages(
2749			    bp,
2750			    (vm_offset_t) bp->b_data + newbsize,
2751			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2752		} else if (newbsize > bp->b_bufsize) {
2753			/*
2754			 * We only use malloced memory on the first allocation.
2755			 * and revert to page-allocated memory when the buffer
2756			 * grows.
2757			 */
2758			/*
2759			 * There is a potential smp race here that could lead
2760			 * to bufmallocspace slightly passing the max.  It
2761			 * is probably extremely rare and not worth worrying
2762			 * over.
2763			 */
2764			if ( (bufmallocspace < maxbufmallocspace) &&
2765				(bp->b_bufsize == 0) &&
2766				(mbsize <= PAGE_SIZE/2)) {
2767
2768				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2769				bp->b_bufsize = mbsize;
2770				bp->b_bcount = size;
2771				bp->b_flags |= B_MALLOC;
2772				atomic_add_int(&bufmallocspace, mbsize);
2773				return 1;
2774			}
2775			origbuf = NULL;
2776			origbufsize = 0;
2777			/*
2778			 * If the buffer is growing on its other-than-first allocation,
2779			 * then we revert to the page-allocation scheme.
2780			 */
2781			if (bp->b_flags & B_MALLOC) {
2782				origbuf = bp->b_data;
2783				origbufsize = bp->b_bufsize;
2784				bp->b_data = bp->b_kvabase;
2785				if (bp->b_bufsize) {
2786					atomic_subtract_int(&bufmallocspace,
2787					    bp->b_bufsize);
2788					bufspacewakeup();
2789					bp->b_bufsize = 0;
2790				}
2791				bp->b_flags &= ~B_MALLOC;
2792				newbsize = round_page(newbsize);
2793			}
2794			vm_hold_load_pages(
2795			    bp,
2796			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2797			    (vm_offset_t) bp->b_data + newbsize);
2798			if (origbuf) {
2799				bcopy(origbuf, bp->b_data, origbufsize);
2800				free(origbuf, M_BIOBUF);
2801			}
2802		}
2803	} else {
2804		int desiredpages;
2805
2806		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2807		desiredpages = (size == 0) ? 0 :
2808			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2809
2810		if (bp->b_flags & B_MALLOC)
2811			panic("allocbuf: VMIO buffer can't be malloced");
2812		/*
2813		 * Set B_CACHE initially if buffer is 0 length or will become
2814		 * 0-length.
2815		 */
2816		if (size == 0 || bp->b_bufsize == 0)
2817			bp->b_flags |= B_CACHE;
2818
2819		if (newbsize < bp->b_bufsize) {
2820			/*
2821			 * DEV_BSIZE aligned new buffer size is less then the
2822			 * DEV_BSIZE aligned existing buffer size.  Figure out
2823			 * if we have to remove any pages.
2824			 */
2825			if (desiredpages < bp->b_npages) {
2826				vm_page_t m;
2827
2828				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2829				vm_page_lock_queues();
2830				for (i = desiredpages; i < bp->b_npages; i++) {
2831					/*
2832					 * the page is not freed here -- it
2833					 * is the responsibility of
2834					 * vnode_pager_setsize
2835					 */
2836					m = bp->b_pages[i];
2837					KASSERT(m != bogus_page,
2838					    ("allocbuf: bogus page found"));
2839					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2840						vm_page_lock_queues();
2841
2842					bp->b_pages[i] = NULL;
2843					vm_page_unwire(m, 0);
2844				}
2845				vm_page_unlock_queues();
2846				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2847				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2848				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2849				bp->b_npages = desiredpages;
2850			}
2851		} else if (size > bp->b_bcount) {
2852			/*
2853			 * We are growing the buffer, possibly in a
2854			 * byte-granular fashion.
2855			 */
2856			struct vnode *vp;
2857			vm_object_t obj;
2858			vm_offset_t toff;
2859			vm_offset_t tinc;
2860
2861			/*
2862			 * Step 1, bring in the VM pages from the object,
2863			 * allocating them if necessary.  We must clear
2864			 * B_CACHE if these pages are not valid for the
2865			 * range covered by the buffer.
2866			 */
2867
2868			vp = bp->b_vp;
2869			obj = bp->b_bufobj->bo_object;
2870
2871			VM_OBJECT_LOCK(obj);
2872			while (bp->b_npages < desiredpages) {
2873				vm_page_t m;
2874				vm_pindex_t pi;
2875
2876				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2877				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2878					/*
2879					 * note: must allocate system pages
2880					 * since blocking here could intefere
2881					 * with paging I/O, no matter which
2882					 * process we are.
2883					 */
2884					m = vm_page_alloc(obj, pi,
2885					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2886					    VM_ALLOC_WIRED);
2887					if (m == NULL) {
2888						atomic_add_int(&vm_pageout_deficit,
2889						    desiredpages - bp->b_npages);
2890						VM_OBJECT_UNLOCK(obj);
2891						VM_WAIT;
2892						VM_OBJECT_LOCK(obj);
2893					} else {
2894						bp->b_flags &= ~B_CACHE;
2895						bp->b_pages[bp->b_npages] = m;
2896						++bp->b_npages;
2897					}
2898					continue;
2899				}
2900
2901				/*
2902				 * We found a page.  If we have to sleep on it,
2903				 * retry because it might have gotten freed out
2904				 * from under us.
2905				 *
2906				 * We can only test VPO_BUSY here.  Blocking on
2907				 * m->busy might lead to a deadlock:
2908				 *
2909				 *  vm_fault->getpages->cluster_read->allocbuf
2910				 *
2911				 */
2912				vm_page_lock_queues();
2913				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2914					continue;
2915
2916				/*
2917				 * We have a good page.  Should we wakeup the
2918				 * page daemon?
2919				 */
2920				if ((curproc != pageproc) &&
2921				    (VM_PAGE_INQUEUE1(m, PQ_CACHE)) &&
2922				    ((VMCNT_GET(free_count) +
2923				    VMCNT_GET(cache_count)) <
2924				    (VMCNT_GET(free_min) +
2925				    VMCNT_GET(cache_min)))) {
2926					pagedaemon_wakeup();
2927				}
2928				vm_page_wire(m);
2929				vm_page_unlock_queues();
2930				bp->b_pages[bp->b_npages] = m;
2931				++bp->b_npages;
2932			}
2933
2934			/*
2935			 * Step 2.  We've loaded the pages into the buffer,
2936			 * we have to figure out if we can still have B_CACHE
2937			 * set.  Note that B_CACHE is set according to the
2938			 * byte-granular range ( bcount and size ), new the
2939			 * aligned range ( newbsize ).
2940			 *
2941			 * The VM test is against m->valid, which is DEV_BSIZE
2942			 * aligned.  Needless to say, the validity of the data
2943			 * needs to also be DEV_BSIZE aligned.  Note that this
2944			 * fails with NFS if the server or some other client
2945			 * extends the file's EOF.  If our buffer is resized,
2946			 * B_CACHE may remain set! XXX
2947			 */
2948
2949			toff = bp->b_bcount;
2950			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2951
2952			while ((bp->b_flags & B_CACHE) && toff < size) {
2953				vm_pindex_t pi;
2954
2955				if (tinc > (size - toff))
2956					tinc = size - toff;
2957
2958				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2959				    PAGE_SHIFT;
2960
2961				vfs_buf_test_cache(
2962				    bp,
2963				    bp->b_offset,
2964				    toff,
2965				    tinc,
2966				    bp->b_pages[pi]
2967				);
2968				toff += tinc;
2969				tinc = PAGE_SIZE;
2970			}
2971			VM_OBJECT_UNLOCK(obj);
2972
2973			/*
2974			 * Step 3, fixup the KVM pmap.  Remember that
2975			 * bp->b_data is relative to bp->b_offset, but
2976			 * bp->b_offset may be offset into the first page.
2977			 */
2978
2979			bp->b_data = (caddr_t)
2980			    trunc_page((vm_offset_t)bp->b_data);
2981			pmap_qenter(
2982			    (vm_offset_t)bp->b_data,
2983			    bp->b_pages,
2984			    bp->b_npages
2985			);
2986
2987			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2988			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2989		}
2990	}
2991	if (newbsize < bp->b_bufsize)
2992		bufspacewakeup();
2993	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2994	bp->b_bcount = size;		/* requested buffer size	*/
2995	return 1;
2996}
2997
2998void
2999biodone(struct bio *bp)
3000{
3001	void (*done)(struct bio *);
3002
3003	mtx_lock(&bdonelock);
3004	bp->bio_flags |= BIO_DONE;
3005	done = bp->bio_done;
3006	if (done == NULL)
3007		wakeup(bp);
3008	mtx_unlock(&bdonelock);
3009	if (done != NULL)
3010		done(bp);
3011}
3012
3013/*
3014 * Wait for a BIO to finish.
3015 *
3016 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3017 * case is not yet clear.
3018 */
3019int
3020biowait(struct bio *bp, const char *wchan)
3021{
3022
3023	mtx_lock(&bdonelock);
3024	while ((bp->bio_flags & BIO_DONE) == 0)
3025		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3026	mtx_unlock(&bdonelock);
3027	if (bp->bio_error != 0)
3028		return (bp->bio_error);
3029	if (!(bp->bio_flags & BIO_ERROR))
3030		return (0);
3031	return (EIO);
3032}
3033
3034void
3035biofinish(struct bio *bp, struct devstat *stat, int error)
3036{
3037
3038	if (error) {
3039		bp->bio_error = error;
3040		bp->bio_flags |= BIO_ERROR;
3041	}
3042	if (stat != NULL)
3043		devstat_end_transaction_bio(stat, bp);
3044	biodone(bp);
3045}
3046
3047/*
3048 *	bufwait:
3049 *
3050 *	Wait for buffer I/O completion, returning error status.  The buffer
3051 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3052 *	error and cleared.
3053 */
3054int
3055bufwait(struct buf *bp)
3056{
3057	if (bp->b_iocmd == BIO_READ)
3058		bwait(bp, PRIBIO, "biord");
3059	else
3060		bwait(bp, PRIBIO, "biowr");
3061	if (bp->b_flags & B_EINTR) {
3062		bp->b_flags &= ~B_EINTR;
3063		return (EINTR);
3064	}
3065	if (bp->b_ioflags & BIO_ERROR) {
3066		return (bp->b_error ? bp->b_error : EIO);
3067	} else {
3068		return (0);
3069	}
3070}
3071
3072 /*
3073  * Call back function from struct bio back up to struct buf.
3074  */
3075static void
3076bufdonebio(struct bio *bip)
3077{
3078	struct buf *bp;
3079
3080	bp = bip->bio_caller2;
3081	bp->b_resid = bp->b_bcount - bip->bio_completed;
3082	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3083	bp->b_ioflags = bip->bio_flags;
3084	bp->b_error = bip->bio_error;
3085	if (bp->b_error)
3086		bp->b_ioflags |= BIO_ERROR;
3087	bufdone(bp);
3088	g_destroy_bio(bip);
3089}
3090
3091void
3092dev_strategy(struct cdev *dev, struct buf *bp)
3093{
3094	struct cdevsw *csw;
3095	struct bio *bip;
3096
3097	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3098		panic("b_iocmd botch");
3099	for (;;) {
3100		bip = g_new_bio();
3101		if (bip != NULL)
3102			break;
3103		/* Try again later */
3104		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3105	}
3106	bip->bio_cmd = bp->b_iocmd;
3107	bip->bio_offset = bp->b_iooffset;
3108	bip->bio_length = bp->b_bcount;
3109	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3110	bip->bio_data = bp->b_data;
3111	bip->bio_done = bufdonebio;
3112	bip->bio_caller2 = bp;
3113	bip->bio_dev = dev;
3114	KASSERT(dev->si_refcount > 0,
3115	    ("dev_strategy on un-referenced struct cdev *(%s)",
3116	    devtoname(dev)));
3117	csw = dev_refthread(dev);
3118	if (csw == NULL) {
3119		g_destroy_bio(bip);
3120		bp->b_error = ENXIO;
3121		bp->b_ioflags = BIO_ERROR;
3122		bufdone(bp);
3123		return;
3124	}
3125	(*csw->d_strategy)(bip);
3126	dev_relthread(dev);
3127}
3128
3129/*
3130 *	bufdone:
3131 *
3132 *	Finish I/O on a buffer, optionally calling a completion function.
3133 *	This is usually called from an interrupt so process blocking is
3134 *	not allowed.
3135 *
3136 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3137 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3138 *	assuming B_INVAL is clear.
3139 *
3140 *	For the VMIO case, we set B_CACHE if the op was a read and no
3141 *	read error occured, or if the op was a write.  B_CACHE is never
3142 *	set if the buffer is invalid or otherwise uncacheable.
3143 *
3144 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3145 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3146 *	in the biodone routine.
3147 */
3148void
3149bufdone(struct buf *bp)
3150{
3151	struct bufobj *dropobj;
3152	void    (*biodone)(struct buf *);
3153
3154	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3155	dropobj = NULL;
3156
3157	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3158	    BUF_REFCNT(bp)));
3159	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3160
3161	runningbufwakeup(bp);
3162	if (bp->b_iocmd == BIO_WRITE)
3163		dropobj = bp->b_bufobj;
3164	/* call optional completion function if requested */
3165	if (bp->b_iodone != NULL) {
3166		biodone = bp->b_iodone;
3167		bp->b_iodone = NULL;
3168		(*biodone) (bp);
3169		if (dropobj)
3170			bufobj_wdrop(dropobj);
3171		return;
3172	}
3173
3174	bufdone_finish(bp);
3175
3176	if (dropobj)
3177		bufobj_wdrop(dropobj);
3178}
3179
3180void
3181bufdone_finish(struct buf *bp)
3182{
3183	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3184	    BUF_REFCNT(bp)));
3185
3186	if (!LIST_EMPTY(&bp->b_dep))
3187		buf_complete(bp);
3188
3189	if (bp->b_flags & B_VMIO) {
3190		int i;
3191		vm_ooffset_t foff;
3192		vm_page_t m;
3193		vm_object_t obj;
3194		int iosize;
3195		struct vnode *vp = bp->b_vp;
3196		boolean_t are_queues_locked;
3197
3198		obj = bp->b_bufobj->bo_object;
3199
3200#if defined(VFS_BIO_DEBUG)
3201		mp_fixme("usecount and vflag accessed without locks.");
3202		if (vp->v_usecount == 0) {
3203			panic("biodone: zero vnode ref count");
3204		}
3205
3206		KASSERT(vp->v_object != NULL,
3207			("biodone: vnode %p has no vm_object", vp));
3208#endif
3209
3210		foff = bp->b_offset;
3211		KASSERT(bp->b_offset != NOOFFSET,
3212		    ("biodone: no buffer offset"));
3213
3214		VM_OBJECT_LOCK(obj);
3215#if defined(VFS_BIO_DEBUG)
3216		if (obj->paging_in_progress < bp->b_npages) {
3217			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3218			    obj->paging_in_progress, bp->b_npages);
3219		}
3220#endif
3221
3222		/*
3223		 * Set B_CACHE if the op was a normal read and no error
3224		 * occured.  B_CACHE is set for writes in the b*write()
3225		 * routines.
3226		 */
3227		iosize = bp->b_bcount - bp->b_resid;
3228		if (bp->b_iocmd == BIO_READ &&
3229		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3230		    !(bp->b_ioflags & BIO_ERROR)) {
3231			bp->b_flags |= B_CACHE;
3232		}
3233		if (bp->b_iocmd == BIO_READ) {
3234			vm_page_lock_queues();
3235			are_queues_locked = TRUE;
3236		} else
3237			are_queues_locked = FALSE;
3238		for (i = 0; i < bp->b_npages; i++) {
3239			int bogusflag = 0;
3240			int resid;
3241
3242			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3243			if (resid > iosize)
3244				resid = iosize;
3245
3246			/*
3247			 * cleanup bogus pages, restoring the originals
3248			 */
3249			m = bp->b_pages[i];
3250			if (m == bogus_page) {
3251				bogusflag = 1;
3252				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3253				if (m == NULL)
3254					panic("biodone: page disappeared!");
3255				bp->b_pages[i] = m;
3256				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3257				    bp->b_pages, bp->b_npages);
3258			}
3259#if defined(VFS_BIO_DEBUG)
3260			if (OFF_TO_IDX(foff) != m->pindex) {
3261				printf(
3262"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3263				    (intmax_t)foff, (uintmax_t)m->pindex);
3264			}
3265#endif
3266
3267			/*
3268			 * In the write case, the valid and clean bits are
3269			 * already changed correctly ( see bdwrite() ), so we
3270			 * only need to do this here in the read case.
3271			 */
3272			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3273				vfs_page_set_valid(bp, foff, i, m);
3274			}
3275
3276			/*
3277			 * when debugging new filesystems or buffer I/O methods, this
3278			 * is the most common error that pops up.  if you see this, you
3279			 * have not set the page busy flag correctly!!!
3280			 */
3281			if (m->busy == 0) {
3282				printf("biodone: page busy < 0, "
3283				    "pindex: %d, foff: 0x(%x,%x), "
3284				    "resid: %d, index: %d\n",
3285				    (int) m->pindex, (int)(foff >> 32),
3286						(int) foff & 0xffffffff, resid, i);
3287				if (!vn_isdisk(vp, NULL))
3288					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3289					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3290					    (intmax_t) bp->b_lblkno,
3291					    bp->b_flags, bp->b_npages);
3292				else
3293					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3294					    (intmax_t) bp->b_lblkno,
3295					    bp->b_flags, bp->b_npages);
3296				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3297				    (u_long)m->valid, (u_long)m->dirty,
3298				    m->wire_count);
3299				panic("biodone: page busy < 0\n");
3300			}
3301			vm_page_io_finish(m);
3302			vm_object_pip_subtract(obj, 1);
3303			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3304			iosize -= resid;
3305		}
3306		if (are_queues_locked)
3307			vm_page_unlock_queues();
3308		vm_object_pip_wakeupn(obj, 0);
3309		VM_OBJECT_UNLOCK(obj);
3310	}
3311
3312	/*
3313	 * For asynchronous completions, release the buffer now. The brelse
3314	 * will do a wakeup there if necessary - so no need to do a wakeup
3315	 * here in the async case. The sync case always needs to do a wakeup.
3316	 */
3317
3318	if (bp->b_flags & B_ASYNC) {
3319		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3320			brelse(bp);
3321		else
3322			bqrelse(bp);
3323	} else
3324		bdone(bp);
3325}
3326
3327/*
3328 * This routine is called in lieu of iodone in the case of
3329 * incomplete I/O.  This keeps the busy status for pages
3330 * consistant.
3331 */
3332void
3333vfs_unbusy_pages(struct buf *bp)
3334{
3335	int i;
3336	vm_object_t obj;
3337	vm_page_t m;
3338
3339	runningbufwakeup(bp);
3340	if (!(bp->b_flags & B_VMIO))
3341		return;
3342
3343	obj = bp->b_bufobj->bo_object;
3344	VM_OBJECT_LOCK(obj);
3345	for (i = 0; i < bp->b_npages; i++) {
3346		m = bp->b_pages[i];
3347		if (m == bogus_page) {
3348			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3349			if (!m)
3350				panic("vfs_unbusy_pages: page missing\n");
3351			bp->b_pages[i] = m;
3352			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3353			    bp->b_pages, bp->b_npages);
3354		}
3355		vm_object_pip_subtract(obj, 1);
3356		vm_page_io_finish(m);
3357	}
3358	vm_object_pip_wakeupn(obj, 0);
3359	VM_OBJECT_UNLOCK(obj);
3360}
3361
3362/*
3363 * vfs_page_set_valid:
3364 *
3365 *	Set the valid bits in a page based on the supplied offset.   The
3366 *	range is restricted to the buffer's size.
3367 *
3368 *	This routine is typically called after a read completes.
3369 */
3370static void
3371vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3372{
3373	vm_ooffset_t soff, eoff;
3374
3375	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3376	/*
3377	 * Start and end offsets in buffer.  eoff - soff may not cross a
3378	 * page boundry or cross the end of the buffer.  The end of the
3379	 * buffer, in this case, is our file EOF, not the allocation size
3380	 * of the buffer.
3381	 */
3382	soff = off;
3383	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3384	if (eoff > bp->b_offset + bp->b_bcount)
3385		eoff = bp->b_offset + bp->b_bcount;
3386
3387	/*
3388	 * Set valid range.  This is typically the entire buffer and thus the
3389	 * entire page.
3390	 */
3391	if (eoff > soff) {
3392		vm_page_set_validclean(
3393		    m,
3394		   (vm_offset_t) (soff & PAGE_MASK),
3395		   (vm_offset_t) (eoff - soff)
3396		);
3397	}
3398}
3399
3400/*
3401 * This routine is called before a device strategy routine.
3402 * It is used to tell the VM system that paging I/O is in
3403 * progress, and treat the pages associated with the buffer
3404 * almost as being VPO_BUSY.  Also the object paging_in_progress
3405 * flag is handled to make sure that the object doesn't become
3406 * inconsistant.
3407 *
3408 * Since I/O has not been initiated yet, certain buffer flags
3409 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3410 * and should be ignored.
3411 */
3412void
3413vfs_busy_pages(struct buf *bp, int clear_modify)
3414{
3415	int i, bogus;
3416	vm_object_t obj;
3417	vm_ooffset_t foff;
3418	vm_page_t m;
3419
3420	if (!(bp->b_flags & B_VMIO))
3421		return;
3422
3423	obj = bp->b_bufobj->bo_object;
3424	foff = bp->b_offset;
3425	KASSERT(bp->b_offset != NOOFFSET,
3426	    ("vfs_busy_pages: no buffer offset"));
3427	VM_OBJECT_LOCK(obj);
3428	if (bp->b_bufsize != 0)
3429		vfs_setdirty_locked_object(bp);
3430retry:
3431	for (i = 0; i < bp->b_npages; i++) {
3432		m = bp->b_pages[i];
3433
3434		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3435			goto retry;
3436	}
3437	bogus = 0;
3438	vm_page_lock_queues();
3439	for (i = 0; i < bp->b_npages; i++) {
3440		m = bp->b_pages[i];
3441
3442		if ((bp->b_flags & B_CLUSTER) == 0) {
3443			vm_object_pip_add(obj, 1);
3444			vm_page_io_start(m);
3445		}
3446		/*
3447		 * When readying a buffer for a read ( i.e
3448		 * clear_modify == 0 ), it is important to do
3449		 * bogus_page replacement for valid pages in
3450		 * partially instantiated buffers.  Partially
3451		 * instantiated buffers can, in turn, occur when
3452		 * reconstituting a buffer from its VM backing store
3453		 * base.  We only have to do this if B_CACHE is
3454		 * clear ( which causes the I/O to occur in the
3455		 * first place ).  The replacement prevents the read
3456		 * I/O from overwriting potentially dirty VM-backed
3457		 * pages.  XXX bogus page replacement is, uh, bogus.
3458		 * It may not work properly with small-block devices.
3459		 * We need to find a better way.
3460		 */
3461		pmap_remove_all(m);
3462		if (clear_modify)
3463			vfs_page_set_valid(bp, foff, i, m);
3464		else if (m->valid == VM_PAGE_BITS_ALL &&
3465		    (bp->b_flags & B_CACHE) == 0) {
3466			bp->b_pages[i] = bogus_page;
3467			bogus++;
3468		}
3469		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3470	}
3471	vm_page_unlock_queues();
3472	VM_OBJECT_UNLOCK(obj);
3473	if (bogus)
3474		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3475		    bp->b_pages, bp->b_npages);
3476}
3477
3478/*
3479 * Tell the VM system that the pages associated with this buffer
3480 * are clean.  This is used for delayed writes where the data is
3481 * going to go to disk eventually without additional VM intevention.
3482 *
3483 * Note that while we only really need to clean through to b_bcount, we
3484 * just go ahead and clean through to b_bufsize.
3485 */
3486static void
3487vfs_clean_pages(struct buf *bp)
3488{
3489	int i;
3490	vm_ooffset_t foff, noff, eoff;
3491	vm_page_t m;
3492
3493	if (!(bp->b_flags & B_VMIO))
3494		return;
3495
3496	foff = bp->b_offset;
3497	KASSERT(bp->b_offset != NOOFFSET,
3498	    ("vfs_clean_pages: no buffer offset"));
3499	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3500	vm_page_lock_queues();
3501	for (i = 0; i < bp->b_npages; i++) {
3502		m = bp->b_pages[i];
3503		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3504		eoff = noff;
3505
3506		if (eoff > bp->b_offset + bp->b_bufsize)
3507			eoff = bp->b_offset + bp->b_bufsize;
3508		vfs_page_set_valid(bp, foff, i, m);
3509		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3510		foff = noff;
3511	}
3512	vm_page_unlock_queues();
3513	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3514}
3515
3516/*
3517 *	vfs_bio_set_validclean:
3518 *
3519 *	Set the range within the buffer to valid and clean.  The range is
3520 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3521 *	itself may be offset from the beginning of the first page.
3522 *
3523 */
3524
3525void
3526vfs_bio_set_validclean(struct buf *bp, int base, int size)
3527{
3528	int i, n;
3529	vm_page_t m;
3530
3531	if (!(bp->b_flags & B_VMIO))
3532		return;
3533	/*
3534	 * Fixup base to be relative to beginning of first page.
3535	 * Set initial n to be the maximum number of bytes in the
3536	 * first page that can be validated.
3537	 */
3538
3539	base += (bp->b_offset & PAGE_MASK);
3540	n = PAGE_SIZE - (base & PAGE_MASK);
3541
3542	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3543	vm_page_lock_queues();
3544	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3545		m = bp->b_pages[i];
3546		if (n > size)
3547			n = size;
3548		vm_page_set_validclean(m, base & PAGE_MASK, n);
3549		base += n;
3550		size -= n;
3551		n = PAGE_SIZE;
3552	}
3553	vm_page_unlock_queues();
3554	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3555}
3556
3557/*
3558 *	vfs_bio_clrbuf:
3559 *
3560 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3561 *	to clear BIO_ERROR and B_INVAL.
3562 *
3563 *	Note that while we only theoretically need to clear through b_bcount,
3564 *	we go ahead and clear through b_bufsize.
3565 */
3566
3567void
3568vfs_bio_clrbuf(struct buf *bp)
3569{
3570	int i, j, mask = 0;
3571	caddr_t sa, ea;
3572
3573	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3574		clrbuf(bp);
3575		return;
3576	}
3577
3578	bp->b_flags &= ~B_INVAL;
3579	bp->b_ioflags &= ~BIO_ERROR;
3580	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3581	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3582	    (bp->b_offset & PAGE_MASK) == 0) {
3583		if (bp->b_pages[0] == bogus_page)
3584			goto unlock;
3585		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3586		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3587		if ((bp->b_pages[0]->valid & mask) == mask)
3588			goto unlock;
3589		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3590		    ((bp->b_pages[0]->valid & mask) == 0)) {
3591			bzero(bp->b_data, bp->b_bufsize);
3592			bp->b_pages[0]->valid |= mask;
3593			goto unlock;
3594		}
3595	}
3596	ea = sa = bp->b_data;
3597	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3598		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3599		ea = (caddr_t)(vm_offset_t)ulmin(
3600		    (u_long)(vm_offset_t)ea,
3601		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3602		if (bp->b_pages[i] == bogus_page)
3603			continue;
3604		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3605		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3606		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3607		if ((bp->b_pages[i]->valid & mask) == mask)
3608			continue;
3609		if ((bp->b_pages[i]->valid & mask) == 0) {
3610			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3611				bzero(sa, ea - sa);
3612		} else {
3613			for (; sa < ea; sa += DEV_BSIZE, j++) {
3614				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3615				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3616					bzero(sa, DEV_BSIZE);
3617			}
3618		}
3619		bp->b_pages[i]->valid |= mask;
3620	}
3621unlock:
3622	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3623	bp->b_resid = 0;
3624}
3625
3626/*
3627 * vm_hold_load_pages and vm_hold_free_pages get pages into
3628 * a buffers address space.  The pages are anonymous and are
3629 * not associated with a file object.
3630 */
3631static void
3632vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3633{
3634	vm_offset_t pg;
3635	vm_page_t p;
3636	int index;
3637
3638	to = round_page(to);
3639	from = round_page(from);
3640	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3641
3642	VM_OBJECT_LOCK(kernel_object);
3643	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3644tryagain:
3645		/*
3646		 * note: must allocate system pages since blocking here
3647		 * could intefere with paging I/O, no matter which
3648		 * process we are.
3649		 */
3650		p = vm_page_alloc(kernel_object,
3651			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3652		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3653		if (!p) {
3654			atomic_add_int(&vm_pageout_deficit,
3655			    (to - pg) >> PAGE_SHIFT);
3656			VM_OBJECT_UNLOCK(kernel_object);
3657			VM_WAIT;
3658			VM_OBJECT_LOCK(kernel_object);
3659			goto tryagain;
3660		}
3661		p->valid = VM_PAGE_BITS_ALL;
3662		pmap_qenter(pg, &p, 1);
3663		bp->b_pages[index] = p;
3664	}
3665	VM_OBJECT_UNLOCK(kernel_object);
3666	bp->b_npages = index;
3667}
3668
3669/* Return pages associated with this buf to the vm system */
3670static void
3671vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3672{
3673	vm_offset_t pg;
3674	vm_page_t p;
3675	int index, newnpages;
3676
3677	from = round_page(from);
3678	to = round_page(to);
3679	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3680
3681	VM_OBJECT_LOCK(kernel_object);
3682	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3683		p = bp->b_pages[index];
3684		if (p && (index < bp->b_npages)) {
3685			if (p->busy) {
3686				printf(
3687			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3688				    (intmax_t)bp->b_blkno,
3689				    (intmax_t)bp->b_lblkno);
3690			}
3691			bp->b_pages[index] = NULL;
3692			pmap_qremove(pg, 1);
3693			vm_page_lock_queues();
3694			vm_page_unwire(p, 0);
3695			vm_page_free(p);
3696			vm_page_unlock_queues();
3697		}
3698	}
3699	VM_OBJECT_UNLOCK(kernel_object);
3700	bp->b_npages = newnpages;
3701}
3702
3703/*
3704 * Map an IO request into kernel virtual address space.
3705 *
3706 * All requests are (re)mapped into kernel VA space.
3707 * Notice that we use b_bufsize for the size of the buffer
3708 * to be mapped.  b_bcount might be modified by the driver.
3709 *
3710 * Note that even if the caller determines that the address space should
3711 * be valid, a race or a smaller-file mapped into a larger space may
3712 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3713 * check the return value.
3714 */
3715int
3716vmapbuf(struct buf *bp)
3717{
3718	caddr_t addr, kva;
3719	vm_prot_t prot;
3720	int pidx, i;
3721	struct vm_page *m;
3722	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3723
3724	if (bp->b_bufsize < 0)
3725		return (-1);
3726	prot = VM_PROT_READ;
3727	if (bp->b_iocmd == BIO_READ)
3728		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3729	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3730	     addr < bp->b_data + bp->b_bufsize;
3731	     addr += PAGE_SIZE, pidx++) {
3732		/*
3733		 * Do the vm_fault if needed; do the copy-on-write thing
3734		 * when reading stuff off device into memory.
3735		 *
3736		 * NOTE! Must use pmap_extract() because addr may be in
3737		 * the userland address space, and kextract is only guarenteed
3738		 * to work for the kernland address space (see: sparc64 port).
3739		 */
3740retry:
3741		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3742		    prot) < 0) {
3743			vm_page_lock_queues();
3744			for (i = 0; i < pidx; ++i) {
3745				vm_page_unhold(bp->b_pages[i]);
3746				bp->b_pages[i] = NULL;
3747			}
3748			vm_page_unlock_queues();
3749			return(-1);
3750		}
3751		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3752		if (m == NULL)
3753			goto retry;
3754		bp->b_pages[pidx] = m;
3755	}
3756	if (pidx > btoc(MAXPHYS))
3757		panic("vmapbuf: mapped more than MAXPHYS");
3758	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3759
3760	kva = bp->b_saveaddr;
3761	bp->b_npages = pidx;
3762	bp->b_saveaddr = bp->b_data;
3763	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3764	return(0);
3765}
3766
3767/*
3768 * Free the io map PTEs associated with this IO operation.
3769 * We also invalidate the TLB entries and restore the original b_addr.
3770 */
3771void
3772vunmapbuf(struct buf *bp)
3773{
3774	int pidx;
3775	int npages;
3776
3777	npages = bp->b_npages;
3778	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3779	vm_page_lock_queues();
3780	for (pidx = 0; pidx < npages; pidx++)
3781		vm_page_unhold(bp->b_pages[pidx]);
3782	vm_page_unlock_queues();
3783
3784	bp->b_data = bp->b_saveaddr;
3785}
3786
3787void
3788bdone(struct buf *bp)
3789{
3790
3791	mtx_lock(&bdonelock);
3792	bp->b_flags |= B_DONE;
3793	wakeup(bp);
3794	mtx_unlock(&bdonelock);
3795}
3796
3797void
3798bwait(struct buf *bp, u_char pri, const char *wchan)
3799{
3800
3801	mtx_lock(&bdonelock);
3802	while ((bp->b_flags & B_DONE) == 0)
3803		msleep(bp, &bdonelock, pri, wchan, 0);
3804	mtx_unlock(&bdonelock);
3805}
3806
3807int
3808bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3809{
3810
3811	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3812}
3813
3814void
3815bufstrategy(struct bufobj *bo, struct buf *bp)
3816{
3817	int i = 0;
3818	struct vnode *vp;
3819
3820	vp = bp->b_vp;
3821	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3822	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3823	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3824	i = VOP_STRATEGY(vp, bp);
3825	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3826}
3827
3828void
3829bufobj_wrefl(struct bufobj *bo)
3830{
3831
3832	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3833	ASSERT_BO_LOCKED(bo);
3834	bo->bo_numoutput++;
3835}
3836
3837void
3838bufobj_wref(struct bufobj *bo)
3839{
3840
3841	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3842	BO_LOCK(bo);
3843	bo->bo_numoutput++;
3844	BO_UNLOCK(bo);
3845}
3846
3847void
3848bufobj_wdrop(struct bufobj *bo)
3849{
3850
3851	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3852	BO_LOCK(bo);
3853	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3854	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3855		bo->bo_flag &= ~BO_WWAIT;
3856		wakeup(&bo->bo_numoutput);
3857	}
3858	BO_UNLOCK(bo);
3859}
3860
3861int
3862bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3863{
3864	int error;
3865
3866	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3867	ASSERT_BO_LOCKED(bo);
3868	error = 0;
3869	while (bo->bo_numoutput) {
3870		bo->bo_flag |= BO_WWAIT;
3871		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3872		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3873		if (error)
3874			break;
3875	}
3876	return (error);
3877}
3878
3879void
3880bpin(struct buf *bp)
3881{
3882	mtx_lock(&bpinlock);
3883	bp->b_pin_count++;
3884	mtx_unlock(&bpinlock);
3885}
3886
3887void
3888bunpin(struct buf *bp)
3889{
3890	mtx_lock(&bpinlock);
3891	if (--bp->b_pin_count == 0)
3892		wakeup(bp);
3893	mtx_unlock(&bpinlock);
3894}
3895
3896void
3897bunpin_wait(struct buf *bp)
3898{
3899	mtx_lock(&bpinlock);
3900	while (bp->b_pin_count > 0)
3901		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3902	mtx_unlock(&bpinlock);
3903}
3904
3905#include "opt_ddb.h"
3906#ifdef DDB
3907#include <ddb/ddb.h>
3908
3909/* DDB command to show buffer data */
3910DB_SHOW_COMMAND(buffer, db_show_buffer)
3911{
3912	/* get args */
3913	struct buf *bp = (struct buf *)addr;
3914
3915	if (!have_addr) {
3916		db_printf("usage: show buffer <addr>\n");
3917		return;
3918	}
3919
3920	db_printf("buf at %p\n", bp);
3921	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3922	db_printf(
3923	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3924	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3925	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3926	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3927	if (bp->b_npages) {
3928		int i;
3929		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3930		for (i = 0; i < bp->b_npages; i++) {
3931			vm_page_t m;
3932			m = bp->b_pages[i];
3933			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3934			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3935			if ((i + 1) < bp->b_npages)
3936				db_printf(",");
3937		}
3938		db_printf("\n");
3939	}
3940	lockmgr_printinfo(&bp->b_lock);
3941}
3942
3943DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3944{
3945	struct buf *bp;
3946	int i;
3947
3948	for (i = 0; i < nbuf; i++) {
3949		bp = &buf[i];
3950		if (lockcount(&bp->b_lock)) {
3951			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3952			db_printf("\n");
3953		}
3954	}
3955}
3956#endif /* DDB */
3957