vfs_bio.c revision 165203
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 165203 2006-12-14 11:34:07Z kib $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82	.bop_sync	=	bufsync,
83};
84
85/*
86 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
87 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
88 */
89struct buf *buf;		/* buffer header pool */
90
91static struct proc *bufdaemonproc;
92
93static int inmem(struct vnode *vp, daddr_t blkno);
94static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
95		vm_offset_t to);
96static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
99			       int pageno, vm_page_t m);
100static void vfs_clean_pages(struct buf *bp);
101static void vfs_setdirty(struct buf *bp);
102static void vfs_setdirty_locked_object(struct buf *bp);
103static void vfs_vmio_release(struct buf *bp);
104static int vfs_bio_clcheck(struct vnode *vp, int size,
105		daddr_t lblkno, daddr_t blkno);
106static int flushbufqueues(int, int);
107static void buf_daemon(void);
108static void bremfreel(struct buf *bp);
109
110int vmiodirenable = TRUE;
111SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
112    "Use the VM system for directory writes");
113int runningbufspace;
114SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
115    "Amount of presently outstanding async buffer io");
116static int bufspace;
117SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
118    "KVA memory used for bufs");
119static int maxbufspace;
120SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
121    "Maximum allowed value of bufspace (including buf_daemon)");
122static int bufmallocspace;
123SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
124    "Amount of malloced memory for buffers");
125static int maxbufmallocspace;
126SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
127    "Maximum amount of malloced memory for buffers");
128static int lobufspace;
129SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
130    "Minimum amount of buffers we want to have");
131int hibufspace;
132SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
133    "Maximum allowed value of bufspace (excluding buf_daemon)");
134static int bufreusecnt;
135SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
136    "Number of times we have reused a buffer");
137static int buffreekvacnt;
138SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
139    "Number of times we have freed the KVA space from some buffer");
140static int bufdefragcnt;
141SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
142    "Number of times we have had to repeat buffer allocation to defragment");
143static int lorunningspace;
144SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
145    "Minimum preferred space used for in-progress I/O");
146static int hirunningspace;
147SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
148    "Maximum amount of space to use for in-progress I/O");
149static int dirtybufferflushes;
150SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
151    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
152static int altbufferflushes;
153SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
154    0, "Number of fsync flushes to limit dirty buffers");
155static int recursiveflushes;
156SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
157    0, "Number of flushes skipped due to being recursive");
158static int numdirtybuffers;
159SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
160    "Number of buffers that are dirty (has unwritten changes) at the moment");
161static int lodirtybuffers;
162SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
163    "How many buffers we want to have free before bufdaemon can sleep");
164static int hidirtybuffers;
165SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
166    "When the number of dirty buffers is considered severe");
167static int dirtybufthresh;
168SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
169    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
170static int numfreebuffers;
171SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
172    "Number of free buffers");
173static int lofreebuffers;
174SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
175   "XXX Unused");
176static int hifreebuffers;
177SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
178   "XXX Complicatedly unused");
179static int getnewbufcalls;
180SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
181   "Number of calls to getnewbuf");
182static int getnewbufrestarts;
183SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
184    "Number of times getnewbuf has had to restart a buffer aquisition");
185
186/*
187 * Wakeup point for bufdaemon, as well as indicator of whether it is already
188 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
189 * is idling.
190 */
191static int bd_request;
192
193/*
194 * This lock synchronizes access to bd_request.
195 */
196static struct mtx bdlock;
197
198/*
199 * bogus page -- for I/O to/from partially complete buffers
200 * this is a temporary solution to the problem, but it is not
201 * really that bad.  it would be better to split the buffer
202 * for input in the case of buffers partially already in memory,
203 * but the code is intricate enough already.
204 */
205vm_page_t bogus_page;
206
207/*
208 * Synchronization (sleep/wakeup) variable for active buffer space requests.
209 * Set when wait starts, cleared prior to wakeup().
210 * Used in runningbufwakeup() and waitrunningbufspace().
211 */
212static int runningbufreq;
213
214/*
215 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
216 * waitrunningbufspace().
217 */
218static struct mtx rbreqlock;
219
220/*
221 * Synchronization (sleep/wakeup) variable for buffer requests.
222 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
223 * by and/or.
224 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
225 * getnewbuf(), and getblk().
226 */
227static int needsbuffer;
228
229/*
230 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
231 */
232static struct mtx nblock;
233
234/*
235 * Lock that protects against bwait()/bdone()/B_DONE races.
236 */
237
238static struct mtx bdonelock;
239
240/*
241 * Lock that protects against bwait()/bdone()/B_DONE races.
242 */
243static struct mtx bpinlock;
244
245/*
246 * Definitions for the buffer free lists.
247 */
248#define BUFFER_QUEUES	6	/* number of free buffer queues */
249
250#define QUEUE_NONE	0	/* on no queue */
251#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
252#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
253#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
254#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
255#define QUEUE_EMPTY	5	/* empty buffer headers */
256
257/* Queues for free buffers with various properties */
258static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
259
260/* Lock for the bufqueues */
261static struct mtx bqlock;
262
263/*
264 * Single global constant for BUF_WMESG, to avoid getting multiple references.
265 * buf_wmesg is referred from macros.
266 */
267const char *buf_wmesg = BUF_WMESG;
268
269#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
270#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
271#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
272#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
273
274#ifdef DIRECTIO
275extern void ffs_rawread_setup(void);
276#endif /* DIRECTIO */
277/*
278 *	numdirtywakeup:
279 *
280 *	If someone is blocked due to there being too many dirty buffers,
281 *	and numdirtybuffers is now reasonable, wake them up.
282 */
283
284static __inline void
285numdirtywakeup(int level)
286{
287
288	if (numdirtybuffers <= level) {
289		mtx_lock(&nblock);
290		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
291			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
292			wakeup(&needsbuffer);
293		}
294		mtx_unlock(&nblock);
295	}
296}
297
298/*
299 *	bufspacewakeup:
300 *
301 *	Called when buffer space is potentially available for recovery.
302 *	getnewbuf() will block on this flag when it is unable to free
303 *	sufficient buffer space.  Buffer space becomes recoverable when
304 *	bp's get placed back in the queues.
305 */
306
307static __inline void
308bufspacewakeup(void)
309{
310
311	/*
312	 * If someone is waiting for BUF space, wake them up.  Even
313	 * though we haven't freed the kva space yet, the waiting
314	 * process will be able to now.
315	 */
316	mtx_lock(&nblock);
317	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
318		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
319		wakeup(&needsbuffer);
320	}
321	mtx_unlock(&nblock);
322}
323
324/*
325 * runningbufwakeup() - in-progress I/O accounting.
326 *
327 */
328void
329runningbufwakeup(struct buf *bp)
330{
331
332	if (bp->b_runningbufspace) {
333		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
334		bp->b_runningbufspace = 0;
335		mtx_lock(&rbreqlock);
336		if (runningbufreq && runningbufspace <= lorunningspace) {
337			runningbufreq = 0;
338			wakeup(&runningbufreq);
339		}
340		mtx_unlock(&rbreqlock);
341	}
342}
343
344/*
345 *	bufcountwakeup:
346 *
347 *	Called when a buffer has been added to one of the free queues to
348 *	account for the buffer and to wakeup anyone waiting for free buffers.
349 *	This typically occurs when large amounts of metadata are being handled
350 *	by the buffer cache ( else buffer space runs out first, usually ).
351 */
352
353static __inline void
354bufcountwakeup(void)
355{
356
357	atomic_add_int(&numfreebuffers, 1);
358	mtx_lock(&nblock);
359	if (needsbuffer) {
360		needsbuffer &= ~VFS_BIO_NEED_ANY;
361		if (numfreebuffers >= hifreebuffers)
362			needsbuffer &= ~VFS_BIO_NEED_FREE;
363		wakeup(&needsbuffer);
364	}
365	mtx_unlock(&nblock);
366}
367
368/*
369 *	waitrunningbufspace()
370 *
371 *	runningbufspace is a measure of the amount of I/O currently
372 *	running.  This routine is used in async-write situations to
373 *	prevent creating huge backups of pending writes to a device.
374 *	Only asynchronous writes are governed by this function.
375 *
376 *	Reads will adjust runningbufspace, but will not block based on it.
377 *	The read load has a side effect of reducing the allowed write load.
378 *
379 *	This does NOT turn an async write into a sync write.  It waits
380 *	for earlier writes to complete and generally returns before the
381 *	caller's write has reached the device.
382 */
383void
384waitrunningbufspace(void)
385{
386
387	mtx_lock(&rbreqlock);
388	while (runningbufspace > hirunningspace) {
389		++runningbufreq;
390		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
391	}
392	mtx_unlock(&rbreqlock);
393}
394
395
396/*
397 *	vfs_buf_test_cache:
398 *
399 *	Called when a buffer is extended.  This function clears the B_CACHE
400 *	bit if the newly extended portion of the buffer does not contain
401 *	valid data.
402 */
403static __inline
404void
405vfs_buf_test_cache(struct buf *bp,
406		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
407		  vm_page_t m)
408{
409
410	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
411	if (bp->b_flags & B_CACHE) {
412		int base = (foff + off) & PAGE_MASK;
413		if (vm_page_is_valid(m, base, size) == 0)
414			bp->b_flags &= ~B_CACHE;
415	}
416}
417
418/* Wake up the buffer deamon if necessary */
419static __inline
420void
421bd_wakeup(int dirtybuflevel)
422{
423
424	mtx_lock(&bdlock);
425	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
426		bd_request = 1;
427		wakeup(&bd_request);
428	}
429	mtx_unlock(&bdlock);
430}
431
432/*
433 * bd_speedup - speedup the buffer cache flushing code
434 */
435
436static __inline
437void
438bd_speedup(void)
439{
440
441	bd_wakeup(1);
442}
443
444/*
445 * Calculating buffer cache scaling values and reserve space for buffer
446 * headers.  This is called during low level kernel initialization and
447 * may be called more then once.  We CANNOT write to the memory area
448 * being reserved at this time.
449 */
450caddr_t
451kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
452{
453
454	/*
455	 * physmem_est is in pages.  Convert it to kilobytes (assumes
456	 * PAGE_SIZE is >= 1K)
457	 */
458	physmem_est = physmem_est * (PAGE_SIZE / 1024);
459
460	/*
461	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
462	 * For the first 64MB of ram nominally allocate sufficient buffers to
463	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
464	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
465	 * the buffer cache we limit the eventual kva reservation to
466	 * maxbcache bytes.
467	 *
468	 * factor represents the 1/4 x ram conversion.
469	 */
470	if (nbuf == 0) {
471		int factor = 4 * BKVASIZE / 1024;
472
473		nbuf = 50;
474		if (physmem_est > 4096)
475			nbuf += min((physmem_est - 4096) / factor,
476			    65536 / factor);
477		if (physmem_est > 65536)
478			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
479
480		if (maxbcache && nbuf > maxbcache / BKVASIZE)
481			nbuf = maxbcache / BKVASIZE;
482	}
483
484#if 0
485	/*
486	 * Do not allow the buffer_map to be more then 1/2 the size of the
487	 * kernel_map.
488	 */
489	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
490	    (BKVASIZE * 2)) {
491		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
492		    (BKVASIZE * 2);
493		printf("Warning: nbufs capped at %d\n", nbuf);
494	}
495#endif
496
497	/*
498	 * swbufs are used as temporary holders for I/O, such as paging I/O.
499	 * We have no less then 16 and no more then 256.
500	 */
501	nswbuf = max(min(nbuf/4, 256), 16);
502#ifdef NSWBUF_MIN
503	if (nswbuf < NSWBUF_MIN)
504		nswbuf = NSWBUF_MIN;
505#endif
506#ifdef DIRECTIO
507	ffs_rawread_setup();
508#endif
509
510	/*
511	 * Reserve space for the buffer cache buffers
512	 */
513	swbuf = (void *)v;
514	v = (caddr_t)(swbuf + nswbuf);
515	buf = (void *)v;
516	v = (caddr_t)(buf + nbuf);
517
518	return(v);
519}
520
521/* Initialize the buffer subsystem.  Called before use of any buffers. */
522void
523bufinit(void)
524{
525	struct buf *bp;
526	int i;
527
528	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
529	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
530	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
531	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
532	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
533	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
534
535	/* next, make a null set of free lists */
536	for (i = 0; i < BUFFER_QUEUES; i++)
537		TAILQ_INIT(&bufqueues[i]);
538
539	/* finally, initialize each buffer header and stick on empty q */
540	for (i = 0; i < nbuf; i++) {
541		bp = &buf[i];
542		bzero(bp, sizeof *bp);
543		bp->b_flags = B_INVAL;	/* we're just an empty header */
544		bp->b_rcred = NOCRED;
545		bp->b_wcred = NOCRED;
546		bp->b_qindex = QUEUE_EMPTY;
547		bp->b_vflags = 0;
548		bp->b_xflags = 0;
549		LIST_INIT(&bp->b_dep);
550		BUF_LOCKINIT(bp);
551		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
552	}
553
554	/*
555	 * maxbufspace is the absolute maximum amount of buffer space we are
556	 * allowed to reserve in KVM and in real terms.  The absolute maximum
557	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
558	 * used by most other processes.  The differential is required to
559	 * ensure that buf_daemon is able to run when other processes might
560	 * be blocked waiting for buffer space.
561	 *
562	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
563	 * this may result in KVM fragmentation which is not handled optimally
564	 * by the system.
565	 */
566	maxbufspace = nbuf * BKVASIZE;
567	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
568	lobufspace = hibufspace - MAXBSIZE;
569
570	lorunningspace = 512 * 1024;
571	hirunningspace = 1024 * 1024;
572
573/*
574 * Limit the amount of malloc memory since it is wired permanently into
575 * the kernel space.  Even though this is accounted for in the buffer
576 * allocation, we don't want the malloced region to grow uncontrolled.
577 * The malloc scheme improves memory utilization significantly on average
578 * (small) directories.
579 */
580	maxbufmallocspace = hibufspace / 20;
581
582/*
583 * Reduce the chance of a deadlock occuring by limiting the number
584 * of delayed-write dirty buffers we allow to stack up.
585 */
586	hidirtybuffers = nbuf / 4 + 20;
587	dirtybufthresh = hidirtybuffers * 9 / 10;
588	numdirtybuffers = 0;
589/*
590 * To support extreme low-memory systems, make sure hidirtybuffers cannot
591 * eat up all available buffer space.  This occurs when our minimum cannot
592 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
593 * BKVASIZE'd (8K) buffers.
594 */
595	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
596		hidirtybuffers >>= 1;
597	}
598	lodirtybuffers = hidirtybuffers / 2;
599
600/*
601 * Try to keep the number of free buffers in the specified range,
602 * and give special processes (e.g. like buf_daemon) access to an
603 * emergency reserve.
604 */
605	lofreebuffers = nbuf / 18 + 5;
606	hifreebuffers = 2 * lofreebuffers;
607	numfreebuffers = nbuf;
608
609/*
610 * Maximum number of async ops initiated per buf_daemon loop.  This is
611 * somewhat of a hack at the moment, we really need to limit ourselves
612 * based on the number of bytes of I/O in-transit that were initiated
613 * from buf_daemon.
614 */
615
616	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
617	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
618}
619
620/*
621 * bfreekva() - free the kva allocation for a buffer.
622 *
623 *	Since this call frees up buffer space, we call bufspacewakeup().
624 */
625static void
626bfreekva(struct buf *bp)
627{
628
629	if (bp->b_kvasize) {
630		atomic_add_int(&buffreekvacnt, 1);
631		atomic_subtract_int(&bufspace, bp->b_kvasize);
632		vm_map_lock(buffer_map);
633		vm_map_delete(buffer_map,
634		    (vm_offset_t) bp->b_kvabase,
635		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
636		);
637		vm_map_unlock(buffer_map);
638		bp->b_kvasize = 0;
639		bufspacewakeup();
640	}
641}
642
643/*
644 *	bremfree:
645 *
646 *	Mark the buffer for removal from the appropriate free list in brelse.
647 *
648 */
649void
650bremfree(struct buf *bp)
651{
652
653	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
654	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
655	KASSERT((bp->b_flags & B_REMFREE) == 0,
656	    ("bremfree: buffer %p already marked for delayed removal.", bp));
657	KASSERT(bp->b_qindex != QUEUE_NONE,
658	    ("bremfree: buffer %p not on a queue.", bp));
659
660	bp->b_flags |= B_REMFREE;
661	/* Fixup numfreebuffers count.  */
662	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
663		atomic_subtract_int(&numfreebuffers, 1);
664}
665
666/*
667 *	bremfreef:
668 *
669 *	Force an immediate removal from a free list.  Used only in nfs when
670 *	it abuses the b_freelist pointer.
671 */
672void
673bremfreef(struct buf *bp)
674{
675	mtx_lock(&bqlock);
676	bremfreel(bp);
677	mtx_unlock(&bqlock);
678}
679
680/*
681 *	bremfreel:
682 *
683 *	Removes a buffer from the free list, must be called with the
684 *	bqlock held.
685 */
686static void
687bremfreel(struct buf *bp)
688{
689	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
690	    bp, bp->b_vp, bp->b_flags);
691	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
692	KASSERT(bp->b_qindex != QUEUE_NONE,
693	    ("bremfreel: buffer %p not on a queue.", bp));
694	mtx_assert(&bqlock, MA_OWNED);
695
696	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
697	bp->b_qindex = QUEUE_NONE;
698	/*
699	 * If this was a delayed bremfree() we only need to remove the buffer
700	 * from the queue and return the stats are already done.
701	 */
702	if (bp->b_flags & B_REMFREE) {
703		bp->b_flags &= ~B_REMFREE;
704		return;
705	}
706	/*
707	 * Fixup numfreebuffers count.  If the buffer is invalid or not
708	 * delayed-write, the buffer was free and we must decrement
709	 * numfreebuffers.
710	 */
711	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
712		atomic_subtract_int(&numfreebuffers, 1);
713}
714
715
716/*
717 * Get a buffer with the specified data.  Look in the cache first.  We
718 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
719 * is set, the buffer is valid and we do not have to do anything ( see
720 * getblk() ).  This is really just a special case of breadn().
721 */
722int
723bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
724    struct buf **bpp)
725{
726
727	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
728}
729
730/*
731 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
732 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
733 * the buffer is valid and we do not have to do anything.
734 */
735void
736breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
737    int cnt, struct ucred * cred)
738{
739	struct buf *rabp;
740	int i;
741
742	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
743		if (inmem(vp, *rablkno))
744			continue;
745		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
746
747		if ((rabp->b_flags & B_CACHE) == 0) {
748			if (curthread != PCPU_GET(idlethread))
749				curthread->td_proc->p_stats->p_ru.ru_inblock++;
750			rabp->b_flags |= B_ASYNC;
751			rabp->b_flags &= ~B_INVAL;
752			rabp->b_ioflags &= ~BIO_ERROR;
753			rabp->b_iocmd = BIO_READ;
754			if (rabp->b_rcred == NOCRED && cred != NOCRED)
755				rabp->b_rcred = crhold(cred);
756			vfs_busy_pages(rabp, 0);
757			BUF_KERNPROC(rabp);
758			rabp->b_iooffset = dbtob(rabp->b_blkno);
759			bstrategy(rabp);
760		} else {
761			brelse(rabp);
762		}
763	}
764}
765
766/*
767 * Operates like bread, but also starts asynchronous I/O on
768 * read-ahead blocks.
769 */
770int
771breadn(struct vnode * vp, daddr_t blkno, int size,
772    daddr_t * rablkno, int *rabsize,
773    int cnt, struct ucred * cred, struct buf **bpp)
774{
775	struct buf *bp;
776	int rv = 0, readwait = 0;
777
778	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
779	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
780
781	/* if not found in cache, do some I/O */
782	if ((bp->b_flags & B_CACHE) == 0) {
783		if (curthread != PCPU_GET(idlethread))
784			curthread->td_proc->p_stats->p_ru.ru_inblock++;
785		bp->b_iocmd = BIO_READ;
786		bp->b_flags &= ~B_INVAL;
787		bp->b_ioflags &= ~BIO_ERROR;
788		if (bp->b_rcred == NOCRED && cred != NOCRED)
789			bp->b_rcred = crhold(cred);
790		vfs_busy_pages(bp, 0);
791		bp->b_iooffset = dbtob(bp->b_blkno);
792		bstrategy(bp);
793		++readwait;
794	}
795
796	breada(vp, rablkno, rabsize, cnt, cred);
797
798	if (readwait) {
799		rv = bufwait(bp);
800	}
801	return (rv);
802}
803
804/*
805 * Write, release buffer on completion.  (Done by iodone
806 * if async).  Do not bother writing anything if the buffer
807 * is invalid.
808 *
809 * Note that we set B_CACHE here, indicating that buffer is
810 * fully valid and thus cacheable.  This is true even of NFS
811 * now so we set it generally.  This could be set either here
812 * or in biodone() since the I/O is synchronous.  We put it
813 * here.
814 */
815int
816bufwrite(struct buf *bp)
817{
818	int oldflags;
819
820	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
821	if (bp->b_flags & B_INVAL) {
822		brelse(bp);
823		return (0);
824	}
825
826	oldflags = bp->b_flags;
827
828	if (BUF_REFCNT(bp) == 0)
829		panic("bufwrite: buffer is not busy???");
830
831	if (bp->b_pin_count > 0)
832		bunpin_wait(bp);
833
834	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
835	    ("FFS background buffer should not get here %p", bp));
836
837	/* Mark the buffer clean */
838	bundirty(bp);
839
840	bp->b_flags &= ~B_DONE;
841	bp->b_ioflags &= ~BIO_ERROR;
842	bp->b_flags |= B_CACHE;
843	bp->b_iocmd = BIO_WRITE;
844
845	bufobj_wref(bp->b_bufobj);
846	vfs_busy_pages(bp, 1);
847
848	/*
849	 * Normal bwrites pipeline writes
850	 */
851	bp->b_runningbufspace = bp->b_bufsize;
852	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
853
854	if (curthread != PCPU_GET(idlethread))
855		curthread->td_proc->p_stats->p_ru.ru_oublock++;
856	if (oldflags & B_ASYNC)
857		BUF_KERNPROC(bp);
858	bp->b_iooffset = dbtob(bp->b_blkno);
859	bstrategy(bp);
860
861	if ((oldflags & B_ASYNC) == 0) {
862		int rtval = bufwait(bp);
863		brelse(bp);
864		return (rtval);
865	} else {
866		/*
867		 * don't allow the async write to saturate the I/O
868		 * system.  We will not deadlock here because
869		 * we are blocking waiting for I/O that is already in-progress
870		 * to complete. We do not block here if it is the update
871		 * or syncer daemon trying to clean up as that can lead
872		 * to deadlock.
873		 */
874		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0 &&
875		    (bp->b_vp->v_vflag & VV_MD) == 0)
876			waitrunningbufspace();
877	}
878
879	return (0);
880}
881
882/*
883 * Delayed write. (Buffer is marked dirty).  Do not bother writing
884 * anything if the buffer is marked invalid.
885 *
886 * Note that since the buffer must be completely valid, we can safely
887 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
888 * biodone() in order to prevent getblk from writing the buffer
889 * out synchronously.
890 */
891void
892bdwrite(struct buf *bp)
893{
894	struct thread *td = curthread;
895	struct vnode *vp;
896	struct buf *nbp;
897	struct bufobj *bo;
898
899	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
900	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
901	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
902
903	if (bp->b_flags & B_INVAL) {
904		brelse(bp);
905		return;
906	}
907
908	/*
909	 * If we have too many dirty buffers, don't create any more.
910	 * If we are wildly over our limit, then force a complete
911	 * cleanup. Otherwise, just keep the situation from getting
912	 * out of control. Note that we have to avoid a recursive
913	 * disaster and not try to clean up after our own cleanup!
914	 */
915	vp = bp->b_vp;
916	bo = bp->b_bufobj;
917	if ((td->td_pflags & TDP_COWINPROGRESS) == 0) {
918		BO_LOCK(bo);
919		if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
920			BO_UNLOCK(bo);
921			(void) VOP_FSYNC(vp, MNT_NOWAIT, td);
922			altbufferflushes++;
923		} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
924			/*
925			 * Try to find a buffer to flush.
926			 */
927			TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
928				if ((nbp->b_vflags & BV_BKGRDINPROG) ||
929				    BUF_LOCK(nbp,
930				    LK_EXCLUSIVE | LK_NOWAIT, NULL))
931					continue;
932				if (bp == nbp)
933					panic("bdwrite: found ourselves");
934				BO_UNLOCK(bo);
935				/* Don't countdeps with the bo lock held. */
936				if (buf_countdeps(nbp, 0)) {
937					BO_LOCK(bo);
938					BUF_UNLOCK(nbp);
939					continue;
940				}
941				if (nbp->b_flags & B_CLUSTEROK) {
942					vfs_bio_awrite(nbp);
943				} else {
944					bremfree(nbp);
945					bawrite(nbp);
946				}
947				dirtybufferflushes++;
948				break;
949			}
950			if (nbp == NULL)
951				BO_UNLOCK(bo);
952		} else
953			BO_UNLOCK(bo);
954	} else
955		recursiveflushes++;
956
957	bdirty(bp);
958	/*
959	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
960	 * true even of NFS now.
961	 */
962	bp->b_flags |= B_CACHE;
963
964	/*
965	 * This bmap keeps the system from needing to do the bmap later,
966	 * perhaps when the system is attempting to do a sync.  Since it
967	 * is likely that the indirect block -- or whatever other datastructure
968	 * that the filesystem needs is still in memory now, it is a good
969	 * thing to do this.  Note also, that if the pageout daemon is
970	 * requesting a sync -- there might not be enough memory to do
971	 * the bmap then...  So, this is important to do.
972	 */
973	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
974		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
975	}
976
977	/*
978	 * Set the *dirty* buffer range based upon the VM system dirty pages.
979	 */
980	vfs_setdirty(bp);
981
982	/*
983	 * We need to do this here to satisfy the vnode_pager and the
984	 * pageout daemon, so that it thinks that the pages have been
985	 * "cleaned".  Note that since the pages are in a delayed write
986	 * buffer -- the VFS layer "will" see that the pages get written
987	 * out on the next sync, or perhaps the cluster will be completed.
988	 */
989	vfs_clean_pages(bp);
990	bqrelse(bp);
991
992	/*
993	 * Wakeup the buffer flushing daemon if we have a lot of dirty
994	 * buffers (midpoint between our recovery point and our stall
995	 * point).
996	 */
997	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
998
999	/*
1000	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1001	 * due to the softdep code.
1002	 */
1003}
1004
1005/*
1006 *	bdirty:
1007 *
1008 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1009 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1010 *	itself to properly update it in the dirty/clean lists.  We mark it
1011 *	B_DONE to ensure that any asynchronization of the buffer properly
1012 *	clears B_DONE ( else a panic will occur later ).
1013 *
1014 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1015 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1016 *	should only be called if the buffer is known-good.
1017 *
1018 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1019 *	count.
1020 *
1021 *	The buffer must be on QUEUE_NONE.
1022 */
1023void
1024bdirty(struct buf *bp)
1025{
1026
1027	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1028	    bp, bp->b_vp, bp->b_flags);
1029	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1030	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1031	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1032	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1033	bp->b_flags &= ~(B_RELBUF);
1034	bp->b_iocmd = BIO_WRITE;
1035
1036	if ((bp->b_flags & B_DELWRI) == 0) {
1037		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1038		reassignbuf(bp);
1039		atomic_add_int(&numdirtybuffers, 1);
1040		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1041	}
1042}
1043
1044/*
1045 *	bundirty:
1046 *
1047 *	Clear B_DELWRI for buffer.
1048 *
1049 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1050 *	count.
1051 *
1052 *	The buffer must be on QUEUE_NONE.
1053 */
1054
1055void
1056bundirty(struct buf *bp)
1057{
1058
1059	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1060	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1061	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1062	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1063	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1064
1065	if (bp->b_flags & B_DELWRI) {
1066		bp->b_flags &= ~B_DELWRI;
1067		reassignbuf(bp);
1068		atomic_subtract_int(&numdirtybuffers, 1);
1069		numdirtywakeup(lodirtybuffers);
1070	}
1071	/*
1072	 * Since it is now being written, we can clear its deferred write flag.
1073	 */
1074	bp->b_flags &= ~B_DEFERRED;
1075}
1076
1077/*
1078 *	bawrite:
1079 *
1080 *	Asynchronous write.  Start output on a buffer, but do not wait for
1081 *	it to complete.  The buffer is released when the output completes.
1082 *
1083 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1084 *	B_INVAL buffers.  Not us.
1085 */
1086void
1087bawrite(struct buf *bp)
1088{
1089
1090	bp->b_flags |= B_ASYNC;
1091	(void) bwrite(bp);
1092}
1093
1094/*
1095 *	bwillwrite:
1096 *
1097 *	Called prior to the locking of any vnodes when we are expecting to
1098 *	write.  We do not want to starve the buffer cache with too many
1099 *	dirty buffers so we block here.  By blocking prior to the locking
1100 *	of any vnodes we attempt to avoid the situation where a locked vnode
1101 *	prevents the various system daemons from flushing related buffers.
1102 */
1103
1104void
1105bwillwrite(void)
1106{
1107
1108	if (numdirtybuffers >= hidirtybuffers) {
1109		mtx_lock(&nblock);
1110		while (numdirtybuffers >= hidirtybuffers) {
1111			bd_wakeup(1);
1112			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1113			msleep(&needsbuffer, &nblock,
1114			    (PRIBIO + 4), "flswai", 0);
1115		}
1116		mtx_unlock(&nblock);
1117	}
1118}
1119
1120/*
1121 * Return true if we have too many dirty buffers.
1122 */
1123int
1124buf_dirty_count_severe(void)
1125{
1126
1127	return(numdirtybuffers >= hidirtybuffers);
1128}
1129
1130/*
1131 *	brelse:
1132 *
1133 *	Release a busy buffer and, if requested, free its resources.  The
1134 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1135 *	to be accessed later as a cache entity or reused for other purposes.
1136 */
1137void
1138brelse(struct buf *bp)
1139{
1140	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1141	    bp, bp->b_vp, bp->b_flags);
1142	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1143	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1144
1145	if (bp->b_flags & B_MANAGED) {
1146		bqrelse(bp);
1147		return;
1148	}
1149
1150	if (bp->b_iocmd == BIO_WRITE &&
1151	    (bp->b_ioflags & BIO_ERROR) &&
1152	    !(bp->b_flags & B_INVAL)) {
1153		/*
1154		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1155		 * pages from being scrapped.  If B_INVAL is set then
1156		 * this case is not run and the next case is run to
1157		 * destroy the buffer.  B_INVAL can occur if the buffer
1158		 * is outside the range supported by the underlying device.
1159		 */
1160		bp->b_ioflags &= ~BIO_ERROR;
1161		bdirty(bp);
1162	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1163	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1164		/*
1165		 * Either a failed I/O or we were asked to free or not
1166		 * cache the buffer.
1167		 */
1168		bp->b_flags |= B_INVAL;
1169		if (LIST_FIRST(&bp->b_dep) != NULL)
1170			buf_deallocate(bp);
1171		if (bp->b_flags & B_DELWRI) {
1172			atomic_subtract_int(&numdirtybuffers, 1);
1173			numdirtywakeup(lodirtybuffers);
1174		}
1175		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1176		if ((bp->b_flags & B_VMIO) == 0) {
1177			if (bp->b_bufsize)
1178				allocbuf(bp, 0);
1179			if (bp->b_vp)
1180				brelvp(bp);
1181		}
1182	}
1183
1184	/*
1185	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1186	 * is called with B_DELWRI set, the underlying pages may wind up
1187	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1188	 * because pages associated with a B_DELWRI bp are marked clean.
1189	 *
1190	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1191	 * if B_DELWRI is set.
1192	 *
1193	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1194	 * on pages to return pages to the VM page queues.
1195	 */
1196	if (bp->b_flags & B_DELWRI)
1197		bp->b_flags &= ~B_RELBUF;
1198	else if (vm_page_count_severe()) {
1199		/*
1200		 * XXX This lock may not be necessary since BKGRDINPROG
1201		 * cannot be set while we hold the buf lock, it can only be
1202		 * cleared if it is already pending.
1203		 */
1204		if (bp->b_vp) {
1205			BO_LOCK(bp->b_bufobj);
1206			if (!(bp->b_vflags & BV_BKGRDINPROG))
1207				bp->b_flags |= B_RELBUF;
1208			BO_UNLOCK(bp->b_bufobj);
1209		} else
1210			bp->b_flags |= B_RELBUF;
1211	}
1212
1213	/*
1214	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1215	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1216	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1217	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1218	 *
1219	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1220	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1221	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1222	 *
1223	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1224	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1225	 * the commit state and we cannot afford to lose the buffer. If the
1226	 * buffer has a background write in progress, we need to keep it
1227	 * around to prevent it from being reconstituted and starting a second
1228	 * background write.
1229	 */
1230	if ((bp->b_flags & B_VMIO)
1231	    && !(bp->b_vp->v_mount != NULL &&
1232		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1233		 !vn_isdisk(bp->b_vp, NULL) &&
1234		 (bp->b_flags & B_DELWRI))
1235	    ) {
1236
1237		int i, j, resid;
1238		vm_page_t m;
1239		off_t foff;
1240		vm_pindex_t poff;
1241		vm_object_t obj;
1242
1243		obj = bp->b_bufobj->bo_object;
1244
1245		/*
1246		 * Get the base offset and length of the buffer.  Note that
1247		 * in the VMIO case if the buffer block size is not
1248		 * page-aligned then b_data pointer may not be page-aligned.
1249		 * But our b_pages[] array *IS* page aligned.
1250		 *
1251		 * block sizes less then DEV_BSIZE (usually 512) are not
1252		 * supported due to the page granularity bits (m->valid,
1253		 * m->dirty, etc...).
1254		 *
1255		 * See man buf(9) for more information
1256		 */
1257		resid = bp->b_bufsize;
1258		foff = bp->b_offset;
1259		VM_OBJECT_LOCK(obj);
1260		for (i = 0; i < bp->b_npages; i++) {
1261			int had_bogus = 0;
1262
1263			m = bp->b_pages[i];
1264
1265			/*
1266			 * If we hit a bogus page, fixup *all* the bogus pages
1267			 * now.
1268			 */
1269			if (m == bogus_page) {
1270				poff = OFF_TO_IDX(bp->b_offset);
1271				had_bogus = 1;
1272
1273				for (j = i; j < bp->b_npages; j++) {
1274					vm_page_t mtmp;
1275					mtmp = bp->b_pages[j];
1276					if (mtmp == bogus_page) {
1277						mtmp = vm_page_lookup(obj, poff + j);
1278						if (!mtmp) {
1279							panic("brelse: page missing\n");
1280						}
1281						bp->b_pages[j] = mtmp;
1282					}
1283				}
1284
1285				if ((bp->b_flags & B_INVAL) == 0) {
1286					pmap_qenter(
1287					    trunc_page((vm_offset_t)bp->b_data),
1288					    bp->b_pages, bp->b_npages);
1289				}
1290				m = bp->b_pages[i];
1291			}
1292			if ((bp->b_flags & B_NOCACHE) ||
1293			    (bp->b_ioflags & BIO_ERROR)) {
1294				int poffset = foff & PAGE_MASK;
1295				int presid = resid > (PAGE_SIZE - poffset) ?
1296					(PAGE_SIZE - poffset) : resid;
1297
1298				KASSERT(presid >= 0, ("brelse: extra page"));
1299				vm_page_lock_queues();
1300				vm_page_set_invalid(m, poffset, presid);
1301				vm_page_unlock_queues();
1302				if (had_bogus)
1303					printf("avoided corruption bug in bogus_page/brelse code\n");
1304			}
1305			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1306			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1307		}
1308		VM_OBJECT_UNLOCK(obj);
1309		if (bp->b_flags & (B_INVAL | B_RELBUF))
1310			vfs_vmio_release(bp);
1311
1312	} else if (bp->b_flags & B_VMIO) {
1313
1314		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1315			vfs_vmio_release(bp);
1316		}
1317
1318	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1319		if (bp->b_bufsize != 0)
1320			allocbuf(bp, 0);
1321		if (bp->b_vp != NULL)
1322			brelvp(bp);
1323	}
1324
1325	if (BUF_REFCNT(bp) > 1) {
1326		/* do not release to free list */
1327		BUF_UNLOCK(bp);
1328		return;
1329	}
1330
1331	/* enqueue */
1332	mtx_lock(&bqlock);
1333	/* Handle delayed bremfree() processing. */
1334	if (bp->b_flags & B_REMFREE)
1335		bremfreel(bp);
1336	if (bp->b_qindex != QUEUE_NONE)
1337		panic("brelse: free buffer onto another queue???");
1338
1339	/* buffers with no memory */
1340	if (bp->b_bufsize == 0) {
1341		bp->b_flags |= B_INVAL;
1342		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1343		if (bp->b_vflags & BV_BKGRDINPROG)
1344			panic("losing buffer 1");
1345		if (bp->b_kvasize) {
1346			bp->b_qindex = QUEUE_EMPTYKVA;
1347		} else {
1348			bp->b_qindex = QUEUE_EMPTY;
1349		}
1350		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1351	/* buffers with junk contents */
1352	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1353	    (bp->b_ioflags & BIO_ERROR)) {
1354		bp->b_flags |= B_INVAL;
1355		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1356		if (bp->b_vflags & BV_BKGRDINPROG)
1357			panic("losing buffer 2");
1358		bp->b_qindex = QUEUE_CLEAN;
1359		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1360	/* remaining buffers */
1361	} else {
1362		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1363		    (B_DELWRI|B_NEEDSGIANT))
1364			bp->b_qindex = QUEUE_DIRTY_GIANT;
1365		if (bp->b_flags & B_DELWRI)
1366			bp->b_qindex = QUEUE_DIRTY;
1367		else
1368			bp->b_qindex = QUEUE_CLEAN;
1369		if (bp->b_flags & B_AGE)
1370			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1371		else
1372			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1373	}
1374	mtx_unlock(&bqlock);
1375
1376	/*
1377	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1378	 * placed the buffer on the correct queue.  We must also disassociate
1379	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1380	 * find it.
1381	 */
1382	if (bp->b_flags & B_INVAL) {
1383		if (bp->b_flags & B_DELWRI)
1384			bundirty(bp);
1385		if (bp->b_vp)
1386			brelvp(bp);
1387	}
1388
1389	/*
1390	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1391	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1392	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1393	 * if B_INVAL is set ).
1394	 */
1395
1396	if (!(bp->b_flags & B_DELWRI))
1397		bufcountwakeup();
1398
1399	/*
1400	 * Something we can maybe free or reuse
1401	 */
1402	if (bp->b_bufsize || bp->b_kvasize)
1403		bufspacewakeup();
1404
1405	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1406	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1407		panic("brelse: not dirty");
1408	/* unlock */
1409	BUF_UNLOCK(bp);
1410}
1411
1412/*
1413 * Release a buffer back to the appropriate queue but do not try to free
1414 * it.  The buffer is expected to be used again soon.
1415 *
1416 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1417 * biodone() to requeue an async I/O on completion.  It is also used when
1418 * known good buffers need to be requeued but we think we may need the data
1419 * again soon.
1420 *
1421 * XXX we should be able to leave the B_RELBUF hint set on completion.
1422 */
1423void
1424bqrelse(struct buf *bp)
1425{
1426	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1427	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1428	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1429
1430	if (BUF_REFCNT(bp) > 1) {
1431		/* do not release to free list */
1432		BUF_UNLOCK(bp);
1433		return;
1434	}
1435
1436	if (bp->b_flags & B_MANAGED) {
1437		if (bp->b_flags & B_REMFREE) {
1438			mtx_lock(&bqlock);
1439			bremfreel(bp);
1440			mtx_unlock(&bqlock);
1441		}
1442		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1443		BUF_UNLOCK(bp);
1444		return;
1445	}
1446
1447	mtx_lock(&bqlock);
1448	/* Handle delayed bremfree() processing. */
1449	if (bp->b_flags & B_REMFREE)
1450		bremfreel(bp);
1451	if (bp->b_qindex != QUEUE_NONE)
1452		panic("bqrelse: free buffer onto another queue???");
1453	/* buffers with stale but valid contents */
1454	if (bp->b_flags & B_DELWRI) {
1455		if (bp->b_flags & B_NEEDSGIANT)
1456			bp->b_qindex = QUEUE_DIRTY_GIANT;
1457		else
1458			bp->b_qindex = QUEUE_DIRTY;
1459		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1460	} else {
1461		/*
1462		 * XXX This lock may not be necessary since BKGRDINPROG
1463		 * cannot be set while we hold the buf lock, it can only be
1464		 * cleared if it is already pending.
1465		 */
1466		BO_LOCK(bp->b_bufobj);
1467		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1468			BO_UNLOCK(bp->b_bufobj);
1469			bp->b_qindex = QUEUE_CLEAN;
1470			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1471			    b_freelist);
1472		} else {
1473			/*
1474			 * We are too low on memory, we have to try to free
1475			 * the buffer (most importantly: the wired pages
1476			 * making up its backing store) *now*.
1477			 */
1478			BO_UNLOCK(bp->b_bufobj);
1479			mtx_unlock(&bqlock);
1480			brelse(bp);
1481			return;
1482		}
1483	}
1484	mtx_unlock(&bqlock);
1485
1486	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1487		bufcountwakeup();
1488
1489	/*
1490	 * Something we can maybe free or reuse.
1491	 */
1492	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1493		bufspacewakeup();
1494
1495	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1496	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1497		panic("bqrelse: not dirty");
1498	/* unlock */
1499	BUF_UNLOCK(bp);
1500}
1501
1502/* Give pages used by the bp back to the VM system (where possible) */
1503static void
1504vfs_vmio_release(struct buf *bp)
1505{
1506	int i;
1507	vm_page_t m;
1508
1509	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1510	vm_page_lock_queues();
1511	for (i = 0; i < bp->b_npages; i++) {
1512		m = bp->b_pages[i];
1513		bp->b_pages[i] = NULL;
1514		/*
1515		 * In order to keep page LRU ordering consistent, put
1516		 * everything on the inactive queue.
1517		 */
1518		vm_page_unwire(m, 0);
1519		/*
1520		 * We don't mess with busy pages, it is
1521		 * the responsibility of the process that
1522		 * busied the pages to deal with them.
1523		 */
1524		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1525			continue;
1526
1527		if (m->wire_count == 0) {
1528			/*
1529			 * Might as well free the page if we can and it has
1530			 * no valid data.  We also free the page if the
1531			 * buffer was used for direct I/O
1532			 */
1533			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1534			    m->hold_count == 0) {
1535				vm_page_free(m);
1536			} else if (bp->b_flags & B_DIRECT) {
1537				vm_page_try_to_free(m);
1538			} else if (vm_page_count_severe()) {
1539				vm_page_try_to_cache(m);
1540			}
1541		}
1542	}
1543	vm_page_unlock_queues();
1544	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1545	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1546
1547	if (bp->b_bufsize) {
1548		bufspacewakeup();
1549		bp->b_bufsize = 0;
1550	}
1551	bp->b_npages = 0;
1552	bp->b_flags &= ~B_VMIO;
1553	if (bp->b_vp)
1554		brelvp(bp);
1555}
1556
1557/*
1558 * Check to see if a block at a particular lbn is available for a clustered
1559 * write.
1560 */
1561static int
1562vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1563{
1564	struct buf *bpa;
1565	int match;
1566
1567	match = 0;
1568
1569	/* If the buf isn't in core skip it */
1570	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1571		return (0);
1572
1573	/* If the buf is busy we don't want to wait for it */
1574	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1575		return (0);
1576
1577	/* Only cluster with valid clusterable delayed write buffers */
1578	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1579	    (B_DELWRI | B_CLUSTEROK))
1580		goto done;
1581
1582	if (bpa->b_bufsize != size)
1583		goto done;
1584
1585	/*
1586	 * Check to see if it is in the expected place on disk and that the
1587	 * block has been mapped.
1588	 */
1589	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1590		match = 1;
1591done:
1592	BUF_UNLOCK(bpa);
1593	return (match);
1594}
1595
1596/*
1597 *	vfs_bio_awrite:
1598 *
1599 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1600 *	This is much better then the old way of writing only one buffer at
1601 *	a time.  Note that we may not be presented with the buffers in the
1602 *	correct order, so we search for the cluster in both directions.
1603 */
1604int
1605vfs_bio_awrite(struct buf *bp)
1606{
1607	int i;
1608	int j;
1609	daddr_t lblkno = bp->b_lblkno;
1610	struct vnode *vp = bp->b_vp;
1611	int ncl;
1612	int nwritten;
1613	int size;
1614	int maxcl;
1615
1616	/*
1617	 * right now we support clustered writing only to regular files.  If
1618	 * we find a clusterable block we could be in the middle of a cluster
1619	 * rather then at the beginning.
1620	 */
1621	if ((vp->v_type == VREG) &&
1622	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1623	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1624
1625		size = vp->v_mount->mnt_stat.f_iosize;
1626		maxcl = MAXPHYS / size;
1627
1628		VI_LOCK(vp);
1629		for (i = 1; i < maxcl; i++)
1630			if (vfs_bio_clcheck(vp, size, lblkno + i,
1631			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1632				break;
1633
1634		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1635			if (vfs_bio_clcheck(vp, size, lblkno - j,
1636			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1637				break;
1638
1639		VI_UNLOCK(vp);
1640		--j;
1641		ncl = i + j;
1642		/*
1643		 * this is a possible cluster write
1644		 */
1645		if (ncl != 1) {
1646			BUF_UNLOCK(bp);
1647			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1648			return nwritten;
1649		}
1650	}
1651	bremfree(bp);
1652	bp->b_flags |= B_ASYNC;
1653	/*
1654	 * default (old) behavior, writing out only one block
1655	 *
1656	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1657	 */
1658	nwritten = bp->b_bufsize;
1659	(void) bwrite(bp);
1660
1661	return nwritten;
1662}
1663
1664/*
1665 *	getnewbuf:
1666 *
1667 *	Find and initialize a new buffer header, freeing up existing buffers
1668 *	in the bufqueues as necessary.  The new buffer is returned locked.
1669 *
1670 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1671 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1672 *
1673 *	We block if:
1674 *		We have insufficient buffer headers
1675 *		We have insufficient buffer space
1676 *		buffer_map is too fragmented ( space reservation fails )
1677 *		If we have to flush dirty buffers ( but we try to avoid this )
1678 *
1679 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1680 *	Instead we ask the buf daemon to do it for us.  We attempt to
1681 *	avoid piecemeal wakeups of the pageout daemon.
1682 */
1683
1684static struct buf *
1685getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1686{
1687	struct buf *bp;
1688	struct buf *nbp;
1689	int defrag = 0;
1690	int nqindex;
1691	static int flushingbufs;
1692
1693	/*
1694	 * We can't afford to block since we might be holding a vnode lock,
1695	 * which may prevent system daemons from running.  We deal with
1696	 * low-memory situations by proactively returning memory and running
1697	 * async I/O rather then sync I/O.
1698	 */
1699
1700	atomic_add_int(&getnewbufcalls, 1);
1701	atomic_subtract_int(&getnewbufrestarts, 1);
1702restart:
1703	atomic_add_int(&getnewbufrestarts, 1);
1704
1705	/*
1706	 * Setup for scan.  If we do not have enough free buffers,
1707	 * we setup a degenerate case that immediately fails.  Note
1708	 * that if we are specially marked process, we are allowed to
1709	 * dip into our reserves.
1710	 *
1711	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1712	 *
1713	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1714	 * However, there are a number of cases (defragging, reusing, ...)
1715	 * where we cannot backup.
1716	 */
1717	mtx_lock(&bqlock);
1718	nqindex = QUEUE_EMPTYKVA;
1719	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1720
1721	if (nbp == NULL) {
1722		/*
1723		 * If no EMPTYKVA buffers and we are either
1724		 * defragging or reusing, locate a CLEAN buffer
1725		 * to free or reuse.  If bufspace useage is low
1726		 * skip this step so we can allocate a new buffer.
1727		 */
1728		if (defrag || bufspace >= lobufspace) {
1729			nqindex = QUEUE_CLEAN;
1730			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1731		}
1732
1733		/*
1734		 * If we could not find or were not allowed to reuse a
1735		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1736		 * buffer.  We can only use an EMPTY buffer if allocating
1737		 * its KVA would not otherwise run us out of buffer space.
1738		 */
1739		if (nbp == NULL && defrag == 0 &&
1740		    bufspace + maxsize < hibufspace) {
1741			nqindex = QUEUE_EMPTY;
1742			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1743		}
1744	}
1745
1746	/*
1747	 * Run scan, possibly freeing data and/or kva mappings on the fly
1748	 * depending.
1749	 */
1750
1751	while ((bp = nbp) != NULL) {
1752		int qindex = nqindex;
1753
1754		/*
1755		 * Calculate next bp ( we can only use it if we do not block
1756		 * or do other fancy things ).
1757		 */
1758		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1759			switch(qindex) {
1760			case QUEUE_EMPTY:
1761				nqindex = QUEUE_EMPTYKVA;
1762				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1763					break;
1764				/* FALLTHROUGH */
1765			case QUEUE_EMPTYKVA:
1766				nqindex = QUEUE_CLEAN;
1767				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1768					break;
1769				/* FALLTHROUGH */
1770			case QUEUE_CLEAN:
1771				/*
1772				 * nbp is NULL.
1773				 */
1774				break;
1775			}
1776		}
1777		/*
1778		 * If we are defragging then we need a buffer with
1779		 * b_kvasize != 0.  XXX this situation should no longer
1780		 * occur, if defrag is non-zero the buffer's b_kvasize
1781		 * should also be non-zero at this point.  XXX
1782		 */
1783		if (defrag && bp->b_kvasize == 0) {
1784			printf("Warning: defrag empty buffer %p\n", bp);
1785			continue;
1786		}
1787
1788		/*
1789		 * Start freeing the bp.  This is somewhat involved.  nbp
1790		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1791		 */
1792		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1793			continue;
1794		if (bp->b_vp) {
1795			BO_LOCK(bp->b_bufobj);
1796			if (bp->b_vflags & BV_BKGRDINPROG) {
1797				BO_UNLOCK(bp->b_bufobj);
1798				BUF_UNLOCK(bp);
1799				continue;
1800			}
1801			BO_UNLOCK(bp->b_bufobj);
1802		}
1803		CTR6(KTR_BUF,
1804		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1805		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1806		    bp->b_kvasize, bp->b_bufsize, qindex);
1807
1808		/*
1809		 * Sanity Checks
1810		 */
1811		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1812
1813		/*
1814		 * Note: we no longer distinguish between VMIO and non-VMIO
1815		 * buffers.
1816		 */
1817
1818		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1819
1820		bremfreel(bp);
1821		mtx_unlock(&bqlock);
1822
1823		if (qindex == QUEUE_CLEAN) {
1824			if (bp->b_flags & B_VMIO) {
1825				bp->b_flags &= ~B_ASYNC;
1826				vfs_vmio_release(bp);
1827			}
1828			if (bp->b_vp)
1829				brelvp(bp);
1830		}
1831
1832		/*
1833		 * NOTE:  nbp is now entirely invalid.  We can only restart
1834		 * the scan from this point on.
1835		 *
1836		 * Get the rest of the buffer freed up.  b_kva* is still
1837		 * valid after this operation.
1838		 */
1839
1840		if (bp->b_rcred != NOCRED) {
1841			crfree(bp->b_rcred);
1842			bp->b_rcred = NOCRED;
1843		}
1844		if (bp->b_wcred != NOCRED) {
1845			crfree(bp->b_wcred);
1846			bp->b_wcred = NOCRED;
1847		}
1848		if (LIST_FIRST(&bp->b_dep) != NULL)
1849			buf_deallocate(bp);
1850		if (bp->b_vflags & BV_BKGRDINPROG)
1851			panic("losing buffer 3");
1852		KASSERT(bp->b_vp == NULL,
1853		    ("bp: %p still has vnode %p.  qindex: %d",
1854		    bp, bp->b_vp, qindex));
1855		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1856		   ("bp: %p still on a buffer list. xflags %X",
1857		    bp, bp->b_xflags));
1858
1859		if (bp->b_bufsize)
1860			allocbuf(bp, 0);
1861
1862		bp->b_flags = 0;
1863		bp->b_ioflags = 0;
1864		bp->b_xflags = 0;
1865		bp->b_vflags = 0;
1866		bp->b_vp = NULL;
1867		bp->b_blkno = bp->b_lblkno = 0;
1868		bp->b_offset = NOOFFSET;
1869		bp->b_iodone = 0;
1870		bp->b_error = 0;
1871		bp->b_resid = 0;
1872		bp->b_bcount = 0;
1873		bp->b_npages = 0;
1874		bp->b_dirtyoff = bp->b_dirtyend = 0;
1875		bp->b_bufobj = NULL;
1876		bp->b_pin_count = 0;
1877		bp->b_fsprivate1 = NULL;
1878		bp->b_fsprivate2 = NULL;
1879		bp->b_fsprivate3 = NULL;
1880
1881		LIST_INIT(&bp->b_dep);
1882
1883		/*
1884		 * If we are defragging then free the buffer.
1885		 */
1886		if (defrag) {
1887			bp->b_flags |= B_INVAL;
1888			bfreekva(bp);
1889			brelse(bp);
1890			defrag = 0;
1891			goto restart;
1892		}
1893
1894		/*
1895		 * Notify any waiters for the buffer lock about
1896		 * identity change by freeing the buffer.
1897		 */
1898		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp) > 0) {
1899			bp->b_flags |= B_INVAL;
1900			bfreekva(bp);
1901			brelse(bp);
1902			goto restart;
1903		}
1904
1905		/*
1906		 * If we are overcomitted then recover the buffer and its
1907		 * KVM space.  This occurs in rare situations when multiple
1908		 * processes are blocked in getnewbuf() or allocbuf().
1909		 */
1910		if (bufspace >= hibufspace)
1911			flushingbufs = 1;
1912		if (flushingbufs && bp->b_kvasize != 0) {
1913			bp->b_flags |= B_INVAL;
1914			bfreekva(bp);
1915			brelse(bp);
1916			goto restart;
1917		}
1918		if (bufspace < lobufspace)
1919			flushingbufs = 0;
1920		break;
1921	}
1922
1923	/*
1924	 * If we exhausted our list, sleep as appropriate.  We may have to
1925	 * wakeup various daemons and write out some dirty buffers.
1926	 *
1927	 * Generally we are sleeping due to insufficient buffer space.
1928	 */
1929
1930	if (bp == NULL) {
1931		int flags;
1932		char *waitmsg;
1933
1934		if (defrag) {
1935			flags = VFS_BIO_NEED_BUFSPACE;
1936			waitmsg = "nbufkv";
1937		} else if (bufspace >= hibufspace) {
1938			waitmsg = "nbufbs";
1939			flags = VFS_BIO_NEED_BUFSPACE;
1940		} else {
1941			waitmsg = "newbuf";
1942			flags = VFS_BIO_NEED_ANY;
1943		}
1944		mtx_lock(&nblock);
1945		needsbuffer |= flags;
1946		mtx_unlock(&nblock);
1947		mtx_unlock(&bqlock);
1948
1949		bd_speedup();	/* heeeelp */
1950
1951		mtx_lock(&nblock);
1952		while (needsbuffer & flags) {
1953			if (msleep(&needsbuffer, &nblock,
1954			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1955				mtx_unlock(&nblock);
1956				return (NULL);
1957			}
1958		}
1959		mtx_unlock(&nblock);
1960	} else {
1961		/*
1962		 * We finally have a valid bp.  We aren't quite out of the
1963		 * woods, we still have to reserve kva space.  In order
1964		 * to keep fragmentation sane we only allocate kva in
1965		 * BKVASIZE chunks.
1966		 */
1967		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1968
1969		if (maxsize != bp->b_kvasize) {
1970			vm_offset_t addr = 0;
1971
1972			bfreekva(bp);
1973
1974			vm_map_lock(buffer_map);
1975			if (vm_map_findspace(buffer_map,
1976				vm_map_min(buffer_map), maxsize, &addr)) {
1977				/*
1978				 * Uh oh.  Buffer map is to fragmented.  We
1979				 * must defragment the map.
1980				 */
1981				atomic_add_int(&bufdefragcnt, 1);
1982				vm_map_unlock(buffer_map);
1983				defrag = 1;
1984				bp->b_flags |= B_INVAL;
1985				brelse(bp);
1986				goto restart;
1987			}
1988			if (addr) {
1989				vm_map_insert(buffer_map, NULL, 0,
1990					addr, addr + maxsize,
1991					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1992
1993				bp->b_kvabase = (caddr_t) addr;
1994				bp->b_kvasize = maxsize;
1995				atomic_add_int(&bufspace, bp->b_kvasize);
1996				atomic_add_int(&bufreusecnt, 1);
1997			}
1998			vm_map_unlock(buffer_map);
1999		}
2000		bp->b_saveaddr = bp->b_kvabase;
2001		bp->b_data = bp->b_saveaddr;
2002	}
2003	return(bp);
2004}
2005
2006/*
2007 *	buf_daemon:
2008 *
2009 *	buffer flushing daemon.  Buffers are normally flushed by the
2010 *	update daemon but if it cannot keep up this process starts to
2011 *	take the load in an attempt to prevent getnewbuf() from blocking.
2012 */
2013
2014static struct kproc_desc buf_kp = {
2015	"bufdaemon",
2016	buf_daemon,
2017	&bufdaemonproc
2018};
2019SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2020
2021static void
2022buf_daemon()
2023{
2024
2025	/*
2026	 * This process needs to be suspended prior to shutdown sync.
2027	 */
2028	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2029	    SHUTDOWN_PRI_LAST);
2030
2031	/*
2032	 * This process is allowed to take the buffer cache to the limit
2033	 */
2034	curthread->td_pflags |= TDP_NORUNNINGBUF;
2035	mtx_lock(&bdlock);
2036	for (;;) {
2037		bd_request = 0;
2038		mtx_unlock(&bdlock);
2039
2040		kthread_suspend_check(bufdaemonproc);
2041
2042		/*
2043		 * Do the flush.  Limit the amount of in-transit I/O we
2044		 * allow to build up, otherwise we would completely saturate
2045		 * the I/O system.  Wakeup any waiting processes before we
2046		 * normally would so they can run in parallel with our drain.
2047		 */
2048		while (numdirtybuffers > lodirtybuffers) {
2049			int flushed;
2050
2051			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2052			/* The list empty check here is slightly racy */
2053			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2054				mtx_lock(&Giant);
2055				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2056				mtx_unlock(&Giant);
2057			}
2058			if (flushed == 0) {
2059				/*
2060				 * Could not find any buffers without rollback
2061				 * dependencies, so just write the first one
2062				 * in the hopes of eventually making progress.
2063				 */
2064				flushbufqueues(QUEUE_DIRTY, 1);
2065				if (!TAILQ_EMPTY(
2066				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2067					mtx_lock(&Giant);
2068					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2069					mtx_unlock(&Giant);
2070				}
2071				break;
2072			}
2073			uio_yield();
2074		}
2075
2076		/*
2077		 * Only clear bd_request if we have reached our low water
2078		 * mark.  The buf_daemon normally waits 1 second and
2079		 * then incrementally flushes any dirty buffers that have
2080		 * built up, within reason.
2081		 *
2082		 * If we were unable to hit our low water mark and couldn't
2083		 * find any flushable buffers, we sleep half a second.
2084		 * Otherwise we loop immediately.
2085		 */
2086		mtx_lock(&bdlock);
2087		if (numdirtybuffers <= lodirtybuffers) {
2088			/*
2089			 * We reached our low water mark, reset the
2090			 * request and sleep until we are needed again.
2091			 * The sleep is just so the suspend code works.
2092			 */
2093			bd_request = 0;
2094			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2095		} else {
2096			/*
2097			 * We couldn't find any flushable dirty buffers but
2098			 * still have too many dirty buffers, we
2099			 * have to sleep and try again.  (rare)
2100			 */
2101			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2102		}
2103	}
2104}
2105
2106/*
2107 *	flushbufqueues:
2108 *
2109 *	Try to flush a buffer in the dirty queue.  We must be careful to
2110 *	free up B_INVAL buffers instead of write them, which NFS is
2111 *	particularly sensitive to.
2112 */
2113static int flushwithdeps = 0;
2114SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2115    0, "Number of buffers flushed with dependecies that require rollbacks");
2116
2117static int
2118flushbufqueues(int queue, int flushdeps)
2119{
2120	struct thread *td = curthread;
2121	struct buf sentinel;
2122	struct vnode *vp;
2123	struct mount *mp;
2124	struct buf *bp;
2125	int hasdeps;
2126	int flushed;
2127	int target;
2128
2129	target = numdirtybuffers - lodirtybuffers;
2130	if (flushdeps && target > 2)
2131		target /= 2;
2132	flushed = 0;
2133	bp = NULL;
2134	mtx_lock(&bqlock);
2135	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2136	while (flushed != target) {
2137		bp = TAILQ_FIRST(&bufqueues[queue]);
2138		if (bp == &sentinel)
2139			break;
2140		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2141		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2142
2143		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2144			continue;
2145		if (bp->b_pin_count > 0) {
2146			BUF_UNLOCK(bp);
2147			continue;
2148		}
2149		BO_LOCK(bp->b_bufobj);
2150		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2151		    (bp->b_flags & B_DELWRI) == 0) {
2152			BO_UNLOCK(bp->b_bufobj);
2153			BUF_UNLOCK(bp);
2154			continue;
2155		}
2156		BO_UNLOCK(bp->b_bufobj);
2157		if (bp->b_flags & B_INVAL) {
2158			bremfreel(bp);
2159			mtx_unlock(&bqlock);
2160			brelse(bp);
2161			flushed++;
2162			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2163			mtx_lock(&bqlock);
2164			continue;
2165		}
2166
2167		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2168			if (flushdeps == 0) {
2169				BUF_UNLOCK(bp);
2170				continue;
2171			}
2172			hasdeps = 1;
2173		} else
2174			hasdeps = 0;
2175		/*
2176		 * We must hold the lock on a vnode before writing
2177		 * one of its buffers. Otherwise we may confuse, or
2178		 * in the case of a snapshot vnode, deadlock the
2179		 * system.
2180		 *
2181		 * The lock order here is the reverse of the normal
2182		 * of vnode followed by buf lock.  This is ok because
2183		 * the NOWAIT will prevent deadlock.
2184		 */
2185		vp = bp->b_vp;
2186		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2187			BUF_UNLOCK(bp);
2188			continue;
2189		}
2190		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2191			mtx_unlock(&bqlock);
2192			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2193			    bp, bp->b_vp, bp->b_flags);
2194			vfs_bio_awrite(bp);
2195			vn_finished_write(mp);
2196			VOP_UNLOCK(vp, 0, td);
2197			flushwithdeps += hasdeps;
2198			flushed++;
2199			waitrunningbufspace();
2200			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2201			mtx_lock(&bqlock);
2202			continue;
2203		}
2204		vn_finished_write(mp);
2205		BUF_UNLOCK(bp);
2206	}
2207	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2208	mtx_unlock(&bqlock);
2209	return (flushed);
2210}
2211
2212/*
2213 * Check to see if a block is currently memory resident.
2214 */
2215struct buf *
2216incore(struct bufobj *bo, daddr_t blkno)
2217{
2218	struct buf *bp;
2219
2220	BO_LOCK(bo);
2221	bp = gbincore(bo, blkno);
2222	BO_UNLOCK(bo);
2223	return (bp);
2224}
2225
2226/*
2227 * Returns true if no I/O is needed to access the
2228 * associated VM object.  This is like incore except
2229 * it also hunts around in the VM system for the data.
2230 */
2231
2232static int
2233inmem(struct vnode * vp, daddr_t blkno)
2234{
2235	vm_object_t obj;
2236	vm_offset_t toff, tinc, size;
2237	vm_page_t m;
2238	vm_ooffset_t off;
2239
2240	ASSERT_VOP_LOCKED(vp, "inmem");
2241
2242	if (incore(&vp->v_bufobj, blkno))
2243		return 1;
2244	if (vp->v_mount == NULL)
2245		return 0;
2246	obj = vp->v_object;
2247	if (obj == NULL)
2248		return (0);
2249
2250	size = PAGE_SIZE;
2251	if (size > vp->v_mount->mnt_stat.f_iosize)
2252		size = vp->v_mount->mnt_stat.f_iosize;
2253	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2254
2255	VM_OBJECT_LOCK(obj);
2256	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2257		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2258		if (!m)
2259			goto notinmem;
2260		tinc = size;
2261		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2262			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2263		if (vm_page_is_valid(m,
2264		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2265			goto notinmem;
2266	}
2267	VM_OBJECT_UNLOCK(obj);
2268	return 1;
2269
2270notinmem:
2271	VM_OBJECT_UNLOCK(obj);
2272	return (0);
2273}
2274
2275/*
2276 *	vfs_setdirty:
2277 *
2278 *	Sets the dirty range for a buffer based on the status of the dirty
2279 *	bits in the pages comprising the buffer.
2280 *
2281 *	The range is limited to the size of the buffer.
2282 *
2283 *	This routine is primarily used by NFS, but is generalized for the
2284 *	B_VMIO case.
2285 */
2286static void
2287vfs_setdirty(struct buf *bp)
2288{
2289
2290	/*
2291	 * Degenerate case - empty buffer
2292	 */
2293
2294	if (bp->b_bufsize == 0)
2295		return;
2296
2297	/*
2298	 * We qualify the scan for modified pages on whether the
2299	 * object has been flushed yet.
2300	 */
2301
2302	if ((bp->b_flags & B_VMIO) == 0)
2303		return;
2304
2305	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2306	vfs_setdirty_locked_object(bp);
2307	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2308}
2309
2310static void
2311vfs_setdirty_locked_object(struct buf *bp)
2312{
2313	vm_object_t object;
2314	int i;
2315
2316	object = bp->b_bufobj->bo_object;
2317	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2318	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2319		vm_offset_t boffset;
2320		vm_offset_t eoffset;
2321
2322		vm_page_lock_queues();
2323		/*
2324		 * test the pages to see if they have been modified directly
2325		 * by users through the VM system.
2326		 */
2327		for (i = 0; i < bp->b_npages; i++)
2328			vm_page_test_dirty(bp->b_pages[i]);
2329
2330		/*
2331		 * Calculate the encompassing dirty range, boffset and eoffset,
2332		 * (eoffset - boffset) bytes.
2333		 */
2334
2335		for (i = 0; i < bp->b_npages; i++) {
2336			if (bp->b_pages[i]->dirty)
2337				break;
2338		}
2339		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2340
2341		for (i = bp->b_npages - 1; i >= 0; --i) {
2342			if (bp->b_pages[i]->dirty) {
2343				break;
2344			}
2345		}
2346		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2347
2348		vm_page_unlock_queues();
2349		/*
2350		 * Fit it to the buffer.
2351		 */
2352
2353		if (eoffset > bp->b_bcount)
2354			eoffset = bp->b_bcount;
2355
2356		/*
2357		 * If we have a good dirty range, merge with the existing
2358		 * dirty range.
2359		 */
2360
2361		if (boffset < eoffset) {
2362			if (bp->b_dirtyoff > boffset)
2363				bp->b_dirtyoff = boffset;
2364			if (bp->b_dirtyend < eoffset)
2365				bp->b_dirtyend = eoffset;
2366		}
2367	}
2368}
2369
2370/*
2371 *	getblk:
2372 *
2373 *	Get a block given a specified block and offset into a file/device.
2374 *	The buffers B_DONE bit will be cleared on return, making it almost
2375 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2376 *	return.  The caller should clear B_INVAL prior to initiating a
2377 *	READ.
2378 *
2379 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2380 *	an existing buffer.
2381 *
2382 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2383 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2384 *	and then cleared based on the backing VM.  If the previous buffer is
2385 *	non-0-sized but invalid, B_CACHE will be cleared.
2386 *
2387 *	If getblk() must create a new buffer, the new buffer is returned with
2388 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2389 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2390 *	backing VM.
2391 *
2392 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2393 *	B_CACHE bit is clear.
2394 *
2395 *	What this means, basically, is that the caller should use B_CACHE to
2396 *	determine whether the buffer is fully valid or not and should clear
2397 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2398 *	the buffer by loading its data area with something, the caller needs
2399 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2400 *	the caller should set B_CACHE ( as an optimization ), else the caller
2401 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2402 *	a write attempt or if it was a successfull read.  If the caller
2403 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2404 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2405 */
2406struct buf *
2407getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2408    int flags)
2409{
2410	struct buf *bp;
2411	struct bufobj *bo;
2412	int error;
2413
2414	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2415	ASSERT_VOP_LOCKED(vp, "getblk");
2416	if (size > MAXBSIZE)
2417		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2418
2419	bo = &vp->v_bufobj;
2420loop:
2421	/*
2422	 * Block if we are low on buffers.   Certain processes are allowed
2423	 * to completely exhaust the buffer cache.
2424         *
2425         * If this check ever becomes a bottleneck it may be better to
2426         * move it into the else, when gbincore() fails.  At the moment
2427         * it isn't a problem.
2428	 *
2429	 * XXX remove if 0 sections (clean this up after its proven)
2430         */
2431	if (numfreebuffers == 0) {
2432		if (curthread == PCPU_GET(idlethread))
2433			return NULL;
2434		mtx_lock(&nblock);
2435		needsbuffer |= VFS_BIO_NEED_ANY;
2436		mtx_unlock(&nblock);
2437	}
2438
2439	VI_LOCK(vp);
2440	bp = gbincore(bo, blkno);
2441	if (bp != NULL) {
2442		int lockflags;
2443		/*
2444		 * Buffer is in-core.  If the buffer is not busy, it must
2445		 * be on a queue.
2446		 */
2447		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2448
2449		if (flags & GB_LOCK_NOWAIT)
2450			lockflags |= LK_NOWAIT;
2451
2452		error = BUF_TIMELOCK(bp, lockflags,
2453		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2454
2455		/*
2456		 * If we slept and got the lock we have to restart in case
2457		 * the buffer changed identities.
2458		 */
2459		if (error == ENOLCK)
2460			goto loop;
2461		/* We timed out or were interrupted. */
2462		else if (error)
2463			return (NULL);
2464
2465		/*
2466		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2467		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2468		 * and for a VMIO buffer B_CACHE is adjusted according to the
2469		 * backing VM cache.
2470		 */
2471		if (bp->b_flags & B_INVAL)
2472			bp->b_flags &= ~B_CACHE;
2473		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2474			bp->b_flags |= B_CACHE;
2475		bremfree(bp);
2476
2477		/*
2478		 * check for size inconsistancies for non-VMIO case.
2479		 */
2480
2481		if (bp->b_bcount != size) {
2482			if ((bp->b_flags & B_VMIO) == 0 ||
2483			    (size > bp->b_kvasize)) {
2484				if (bp->b_flags & B_DELWRI) {
2485					/*
2486					 * If buffer is pinned and caller does
2487					 * not want sleep  waiting for it to be
2488					 * unpinned, bail out
2489					 * */
2490					if (bp->b_pin_count > 0) {
2491						if (flags & GB_LOCK_NOWAIT) {
2492							bqrelse(bp);
2493							return (NULL);
2494						} else {
2495							bunpin_wait(bp);
2496						}
2497					}
2498					bp->b_flags |= B_NOCACHE;
2499					bwrite(bp);
2500				} else {
2501					if (LIST_FIRST(&bp->b_dep) == NULL) {
2502						bp->b_flags |= B_RELBUF;
2503						brelse(bp);
2504					} else {
2505						bp->b_flags |= B_NOCACHE;
2506						bwrite(bp);
2507					}
2508				}
2509				goto loop;
2510			}
2511		}
2512
2513		/*
2514		 * If the size is inconsistant in the VMIO case, we can resize
2515		 * the buffer.  This might lead to B_CACHE getting set or
2516		 * cleared.  If the size has not changed, B_CACHE remains
2517		 * unchanged from its previous state.
2518		 */
2519
2520		if (bp->b_bcount != size)
2521			allocbuf(bp, size);
2522
2523		KASSERT(bp->b_offset != NOOFFSET,
2524		    ("getblk: no buffer offset"));
2525
2526		/*
2527		 * A buffer with B_DELWRI set and B_CACHE clear must
2528		 * be committed before we can return the buffer in
2529		 * order to prevent the caller from issuing a read
2530		 * ( due to B_CACHE not being set ) and overwriting
2531		 * it.
2532		 *
2533		 * Most callers, including NFS and FFS, need this to
2534		 * operate properly either because they assume they
2535		 * can issue a read if B_CACHE is not set, or because
2536		 * ( for example ) an uncached B_DELWRI might loop due
2537		 * to softupdates re-dirtying the buffer.  In the latter
2538		 * case, B_CACHE is set after the first write completes,
2539		 * preventing further loops.
2540		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2541		 * above while extending the buffer, we cannot allow the
2542		 * buffer to remain with B_CACHE set after the write
2543		 * completes or it will represent a corrupt state.  To
2544		 * deal with this we set B_NOCACHE to scrap the buffer
2545		 * after the write.
2546		 *
2547		 * We might be able to do something fancy, like setting
2548		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2549		 * so the below call doesn't set B_CACHE, but that gets real
2550		 * confusing.  This is much easier.
2551		 */
2552
2553		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2554			bp->b_flags |= B_NOCACHE;
2555			bwrite(bp);
2556			goto loop;
2557		}
2558		bp->b_flags &= ~B_DONE;
2559	} else {
2560		int bsize, maxsize, vmio;
2561		off_t offset;
2562
2563		/*
2564		 * Buffer is not in-core, create new buffer.  The buffer
2565		 * returned by getnewbuf() is locked.  Note that the returned
2566		 * buffer is also considered valid (not marked B_INVAL).
2567		 */
2568		VI_UNLOCK(vp);
2569		/*
2570		 * If the user does not want us to create the buffer, bail out
2571		 * here.
2572		 */
2573		if (flags & GB_NOCREAT)
2574			return NULL;
2575		bsize = bo->bo_bsize;
2576		offset = blkno * bsize;
2577		vmio = vp->v_object != NULL;
2578		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2579		maxsize = imax(maxsize, bsize);
2580
2581		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2582		if (bp == NULL) {
2583			if (slpflag || slptimeo)
2584				return NULL;
2585			goto loop;
2586		}
2587
2588		/*
2589		 * This code is used to make sure that a buffer is not
2590		 * created while the getnewbuf routine is blocked.
2591		 * This can be a problem whether the vnode is locked or not.
2592		 * If the buffer is created out from under us, we have to
2593		 * throw away the one we just created.
2594		 *
2595		 * Note: this must occur before we associate the buffer
2596		 * with the vp especially considering limitations in
2597		 * the splay tree implementation when dealing with duplicate
2598		 * lblkno's.
2599		 */
2600		BO_LOCK(bo);
2601		if (gbincore(bo, blkno)) {
2602			BO_UNLOCK(bo);
2603			bp->b_flags |= B_INVAL;
2604			brelse(bp);
2605			goto loop;
2606		}
2607
2608		/*
2609		 * Insert the buffer into the hash, so that it can
2610		 * be found by incore.
2611		 */
2612		bp->b_blkno = bp->b_lblkno = blkno;
2613		bp->b_offset = offset;
2614		bgetvp(vp, bp);
2615		BO_UNLOCK(bo);
2616
2617		/*
2618		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2619		 * buffer size starts out as 0, B_CACHE will be set by
2620		 * allocbuf() for the VMIO case prior to it testing the
2621		 * backing store for validity.
2622		 */
2623
2624		if (vmio) {
2625			bp->b_flags |= B_VMIO;
2626#if defined(VFS_BIO_DEBUG)
2627			if (vn_canvmio(vp) != TRUE)
2628				printf("getblk: VMIO on vnode type %d\n",
2629					vp->v_type);
2630#endif
2631			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2632			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2633			    bp, vp->v_object, bp->b_bufobj->bo_object));
2634		} else {
2635			bp->b_flags &= ~B_VMIO;
2636			KASSERT(bp->b_bufobj->bo_object == NULL,
2637			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2638			    bp, bp->b_bufobj->bo_object));
2639		}
2640
2641		allocbuf(bp, size);
2642		bp->b_flags &= ~B_DONE;
2643	}
2644	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2645	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2646	KASSERT(bp->b_bufobj == bo,
2647	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2648	return (bp);
2649}
2650
2651/*
2652 * Get an empty, disassociated buffer of given size.  The buffer is initially
2653 * set to B_INVAL.
2654 */
2655struct buf *
2656geteblk(int size)
2657{
2658	struct buf *bp;
2659	int maxsize;
2660
2661	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2662	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2663		continue;
2664	allocbuf(bp, size);
2665	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2666	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2667	return (bp);
2668}
2669
2670
2671/*
2672 * This code constitutes the buffer memory from either anonymous system
2673 * memory (in the case of non-VMIO operations) or from an associated
2674 * VM object (in the case of VMIO operations).  This code is able to
2675 * resize a buffer up or down.
2676 *
2677 * Note that this code is tricky, and has many complications to resolve
2678 * deadlock or inconsistant data situations.  Tread lightly!!!
2679 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2680 * the caller.  Calling this code willy nilly can result in the loss of data.
2681 *
2682 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2683 * B_CACHE for the non-VMIO case.
2684 */
2685
2686int
2687allocbuf(struct buf *bp, int size)
2688{
2689	int newbsize, mbsize;
2690	int i;
2691
2692	if (BUF_REFCNT(bp) == 0)
2693		panic("allocbuf: buffer not busy");
2694
2695	if (bp->b_kvasize < size)
2696		panic("allocbuf: buffer too small");
2697
2698	if ((bp->b_flags & B_VMIO) == 0) {
2699		caddr_t origbuf;
2700		int origbufsize;
2701		/*
2702		 * Just get anonymous memory from the kernel.  Don't
2703		 * mess with B_CACHE.
2704		 */
2705		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2706		if (bp->b_flags & B_MALLOC)
2707			newbsize = mbsize;
2708		else
2709			newbsize = round_page(size);
2710
2711		if (newbsize < bp->b_bufsize) {
2712			/*
2713			 * malloced buffers are not shrunk
2714			 */
2715			if (bp->b_flags & B_MALLOC) {
2716				if (newbsize) {
2717					bp->b_bcount = size;
2718				} else {
2719					free(bp->b_data, M_BIOBUF);
2720					if (bp->b_bufsize) {
2721						atomic_subtract_int(
2722						    &bufmallocspace,
2723						    bp->b_bufsize);
2724						bufspacewakeup();
2725						bp->b_bufsize = 0;
2726					}
2727					bp->b_saveaddr = bp->b_kvabase;
2728					bp->b_data = bp->b_saveaddr;
2729					bp->b_bcount = 0;
2730					bp->b_flags &= ~B_MALLOC;
2731				}
2732				return 1;
2733			}
2734			vm_hold_free_pages(
2735			    bp,
2736			    (vm_offset_t) bp->b_data + newbsize,
2737			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2738		} else if (newbsize > bp->b_bufsize) {
2739			/*
2740			 * We only use malloced memory on the first allocation.
2741			 * and revert to page-allocated memory when the buffer
2742			 * grows.
2743			 */
2744			/*
2745			 * There is a potential smp race here that could lead
2746			 * to bufmallocspace slightly passing the max.  It
2747			 * is probably extremely rare and not worth worrying
2748			 * over.
2749			 */
2750			if ( (bufmallocspace < maxbufmallocspace) &&
2751				(bp->b_bufsize == 0) &&
2752				(mbsize <= PAGE_SIZE/2)) {
2753
2754				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2755				bp->b_bufsize = mbsize;
2756				bp->b_bcount = size;
2757				bp->b_flags |= B_MALLOC;
2758				atomic_add_int(&bufmallocspace, mbsize);
2759				return 1;
2760			}
2761			origbuf = NULL;
2762			origbufsize = 0;
2763			/*
2764			 * If the buffer is growing on its other-than-first allocation,
2765			 * then we revert to the page-allocation scheme.
2766			 */
2767			if (bp->b_flags & B_MALLOC) {
2768				origbuf = bp->b_data;
2769				origbufsize = bp->b_bufsize;
2770				bp->b_data = bp->b_kvabase;
2771				if (bp->b_bufsize) {
2772					atomic_subtract_int(&bufmallocspace,
2773					    bp->b_bufsize);
2774					bufspacewakeup();
2775					bp->b_bufsize = 0;
2776				}
2777				bp->b_flags &= ~B_MALLOC;
2778				newbsize = round_page(newbsize);
2779			}
2780			vm_hold_load_pages(
2781			    bp,
2782			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2783			    (vm_offset_t) bp->b_data + newbsize);
2784			if (origbuf) {
2785				bcopy(origbuf, bp->b_data, origbufsize);
2786				free(origbuf, M_BIOBUF);
2787			}
2788		}
2789	} else {
2790		int desiredpages;
2791
2792		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2793		desiredpages = (size == 0) ? 0 :
2794			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2795
2796		if (bp->b_flags & B_MALLOC)
2797			panic("allocbuf: VMIO buffer can't be malloced");
2798		/*
2799		 * Set B_CACHE initially if buffer is 0 length or will become
2800		 * 0-length.
2801		 */
2802		if (size == 0 || bp->b_bufsize == 0)
2803			bp->b_flags |= B_CACHE;
2804
2805		if (newbsize < bp->b_bufsize) {
2806			/*
2807			 * DEV_BSIZE aligned new buffer size is less then the
2808			 * DEV_BSIZE aligned existing buffer size.  Figure out
2809			 * if we have to remove any pages.
2810			 */
2811			if (desiredpages < bp->b_npages) {
2812				vm_page_t m;
2813
2814				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2815				vm_page_lock_queues();
2816				for (i = desiredpages; i < bp->b_npages; i++) {
2817					/*
2818					 * the page is not freed here -- it
2819					 * is the responsibility of
2820					 * vnode_pager_setsize
2821					 */
2822					m = bp->b_pages[i];
2823					KASSERT(m != bogus_page,
2824					    ("allocbuf: bogus page found"));
2825					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2826						vm_page_lock_queues();
2827
2828					bp->b_pages[i] = NULL;
2829					vm_page_unwire(m, 0);
2830				}
2831				vm_page_unlock_queues();
2832				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2833				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2834				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2835				bp->b_npages = desiredpages;
2836			}
2837		} else if (size > bp->b_bcount) {
2838			/*
2839			 * We are growing the buffer, possibly in a
2840			 * byte-granular fashion.
2841			 */
2842			struct vnode *vp;
2843			vm_object_t obj;
2844			vm_offset_t toff;
2845			vm_offset_t tinc;
2846
2847			/*
2848			 * Step 1, bring in the VM pages from the object,
2849			 * allocating them if necessary.  We must clear
2850			 * B_CACHE if these pages are not valid for the
2851			 * range covered by the buffer.
2852			 */
2853
2854			vp = bp->b_vp;
2855			obj = bp->b_bufobj->bo_object;
2856
2857			VM_OBJECT_LOCK(obj);
2858			while (bp->b_npages < desiredpages) {
2859				vm_page_t m;
2860				vm_pindex_t pi;
2861
2862				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2863				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2864					/*
2865					 * note: must allocate system pages
2866					 * since blocking here could intefere
2867					 * with paging I/O, no matter which
2868					 * process we are.
2869					 */
2870					m = vm_page_alloc(obj, pi,
2871					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2872					    VM_ALLOC_WIRED);
2873					if (m == NULL) {
2874						atomic_add_int(&vm_pageout_deficit,
2875						    desiredpages - bp->b_npages);
2876						VM_OBJECT_UNLOCK(obj);
2877						VM_WAIT;
2878						VM_OBJECT_LOCK(obj);
2879					} else {
2880						bp->b_flags &= ~B_CACHE;
2881						bp->b_pages[bp->b_npages] = m;
2882						++bp->b_npages;
2883					}
2884					continue;
2885				}
2886
2887				/*
2888				 * We found a page.  If we have to sleep on it,
2889				 * retry because it might have gotten freed out
2890				 * from under us.
2891				 *
2892				 * We can only test VPO_BUSY here.  Blocking on
2893				 * m->busy might lead to a deadlock:
2894				 *
2895				 *  vm_fault->getpages->cluster_read->allocbuf
2896				 *
2897				 */
2898				vm_page_lock_queues();
2899				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2900					continue;
2901
2902				/*
2903				 * We have a good page.  Should we wakeup the
2904				 * page daemon?
2905				 */
2906				if ((curproc != pageproc) &&
2907				    (VM_PAGE_INQUEUE1(m, PQ_CACHE)) &&
2908				    ((cnt.v_free_count + cnt.v_cache_count) <
2909			 		(cnt.v_free_min + cnt.v_cache_min))) {
2910					pagedaemon_wakeup();
2911				}
2912				vm_page_wire(m);
2913				vm_page_unlock_queues();
2914				bp->b_pages[bp->b_npages] = m;
2915				++bp->b_npages;
2916			}
2917
2918			/*
2919			 * Step 2.  We've loaded the pages into the buffer,
2920			 * we have to figure out if we can still have B_CACHE
2921			 * set.  Note that B_CACHE is set according to the
2922			 * byte-granular range ( bcount and size ), new the
2923			 * aligned range ( newbsize ).
2924			 *
2925			 * The VM test is against m->valid, which is DEV_BSIZE
2926			 * aligned.  Needless to say, the validity of the data
2927			 * needs to also be DEV_BSIZE aligned.  Note that this
2928			 * fails with NFS if the server or some other client
2929			 * extends the file's EOF.  If our buffer is resized,
2930			 * B_CACHE may remain set! XXX
2931			 */
2932
2933			toff = bp->b_bcount;
2934			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2935
2936			while ((bp->b_flags & B_CACHE) && toff < size) {
2937				vm_pindex_t pi;
2938
2939				if (tinc > (size - toff))
2940					tinc = size - toff;
2941
2942				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2943				    PAGE_SHIFT;
2944
2945				vfs_buf_test_cache(
2946				    bp,
2947				    bp->b_offset,
2948				    toff,
2949				    tinc,
2950				    bp->b_pages[pi]
2951				);
2952				toff += tinc;
2953				tinc = PAGE_SIZE;
2954			}
2955			VM_OBJECT_UNLOCK(obj);
2956
2957			/*
2958			 * Step 3, fixup the KVM pmap.  Remember that
2959			 * bp->b_data is relative to bp->b_offset, but
2960			 * bp->b_offset may be offset into the first page.
2961			 */
2962
2963			bp->b_data = (caddr_t)
2964			    trunc_page((vm_offset_t)bp->b_data);
2965			pmap_qenter(
2966			    (vm_offset_t)bp->b_data,
2967			    bp->b_pages,
2968			    bp->b_npages
2969			);
2970
2971			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2972			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2973		}
2974	}
2975	if (newbsize < bp->b_bufsize)
2976		bufspacewakeup();
2977	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2978	bp->b_bcount = size;		/* requested buffer size	*/
2979	return 1;
2980}
2981
2982void
2983biodone(struct bio *bp)
2984{
2985	void (*done)(struct bio *);
2986
2987	mtx_lock(&bdonelock);
2988	bp->bio_flags |= BIO_DONE;
2989	done = bp->bio_done;
2990	if (done == NULL)
2991		wakeup(bp);
2992	mtx_unlock(&bdonelock);
2993	if (done != NULL)
2994		done(bp);
2995}
2996
2997/*
2998 * Wait for a BIO to finish.
2999 *
3000 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3001 * case is not yet clear.
3002 */
3003int
3004biowait(struct bio *bp, const char *wchan)
3005{
3006
3007	mtx_lock(&bdonelock);
3008	while ((bp->bio_flags & BIO_DONE) == 0)
3009		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3010	mtx_unlock(&bdonelock);
3011	if (bp->bio_error != 0)
3012		return (bp->bio_error);
3013	if (!(bp->bio_flags & BIO_ERROR))
3014		return (0);
3015	return (EIO);
3016}
3017
3018void
3019biofinish(struct bio *bp, struct devstat *stat, int error)
3020{
3021
3022	if (error) {
3023		bp->bio_error = error;
3024		bp->bio_flags |= BIO_ERROR;
3025	}
3026	if (stat != NULL)
3027		devstat_end_transaction_bio(stat, bp);
3028	biodone(bp);
3029}
3030
3031/*
3032 *	bufwait:
3033 *
3034 *	Wait for buffer I/O completion, returning error status.  The buffer
3035 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3036 *	error and cleared.
3037 */
3038int
3039bufwait(struct buf *bp)
3040{
3041	if (bp->b_iocmd == BIO_READ)
3042		bwait(bp, PRIBIO, "biord");
3043	else
3044		bwait(bp, PRIBIO, "biowr");
3045	if (bp->b_flags & B_EINTR) {
3046		bp->b_flags &= ~B_EINTR;
3047		return (EINTR);
3048	}
3049	if (bp->b_ioflags & BIO_ERROR) {
3050		return (bp->b_error ? bp->b_error : EIO);
3051	} else {
3052		return (0);
3053	}
3054}
3055
3056 /*
3057  * Call back function from struct bio back up to struct buf.
3058  */
3059static void
3060bufdonebio(struct bio *bip)
3061{
3062	struct buf *bp;
3063
3064	bp = bip->bio_caller2;
3065	bp->b_resid = bp->b_bcount - bip->bio_completed;
3066	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3067	bp->b_ioflags = bip->bio_flags;
3068	bp->b_error = bip->bio_error;
3069	if (bp->b_error)
3070		bp->b_ioflags |= BIO_ERROR;
3071	bufdone(bp);
3072	g_destroy_bio(bip);
3073}
3074
3075void
3076dev_strategy(struct cdev *dev, struct buf *bp)
3077{
3078	struct cdevsw *csw;
3079	struct bio *bip;
3080
3081	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3082		panic("b_iocmd botch");
3083	for (;;) {
3084		bip = g_new_bio();
3085		if (bip != NULL)
3086			break;
3087		/* Try again later */
3088		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3089	}
3090	bip->bio_cmd = bp->b_iocmd;
3091	bip->bio_offset = bp->b_iooffset;
3092	bip->bio_length = bp->b_bcount;
3093	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3094	bip->bio_data = bp->b_data;
3095	bip->bio_done = bufdonebio;
3096	bip->bio_caller2 = bp;
3097	bip->bio_dev = dev;
3098	KASSERT(dev->si_refcount > 0,
3099	    ("dev_strategy on un-referenced struct cdev *(%s)",
3100	    devtoname(dev)));
3101	csw = dev_refthread(dev);
3102	if (csw == NULL) {
3103		g_destroy_bio(bip);
3104		bp->b_error = ENXIO;
3105		bp->b_ioflags = BIO_ERROR;
3106		bufdone(bp);
3107		return;
3108	}
3109	(*csw->d_strategy)(bip);
3110	dev_relthread(dev);
3111}
3112
3113/*
3114 *	bufdone:
3115 *
3116 *	Finish I/O on a buffer, optionally calling a completion function.
3117 *	This is usually called from an interrupt so process blocking is
3118 *	not allowed.
3119 *
3120 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3121 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3122 *	assuming B_INVAL is clear.
3123 *
3124 *	For the VMIO case, we set B_CACHE if the op was a read and no
3125 *	read error occured, or if the op was a write.  B_CACHE is never
3126 *	set if the buffer is invalid or otherwise uncacheable.
3127 *
3128 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3129 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3130 *	in the biodone routine.
3131 */
3132void
3133bufdone(struct buf *bp)
3134{
3135	struct bufobj *dropobj;
3136	void    (*biodone)(struct buf *);
3137
3138	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3139	dropobj = NULL;
3140
3141	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3142	    BUF_REFCNT(bp)));
3143	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3144
3145	runningbufwakeup(bp);
3146	if (bp->b_iocmd == BIO_WRITE)
3147		dropobj = bp->b_bufobj;
3148	/* call optional completion function if requested */
3149	if (bp->b_iodone != NULL) {
3150		biodone = bp->b_iodone;
3151		bp->b_iodone = NULL;
3152		(*biodone) (bp);
3153		if (dropobj)
3154			bufobj_wdrop(dropobj);
3155		return;
3156	}
3157
3158	bufdone_finish(bp);
3159
3160	if (dropobj)
3161		bufobj_wdrop(dropobj);
3162}
3163
3164void
3165bufdone_finish(struct buf *bp)
3166{
3167	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3168	    BUF_REFCNT(bp)));
3169
3170	if (LIST_FIRST(&bp->b_dep) != NULL)
3171		buf_complete(bp);
3172
3173	if (bp->b_flags & B_VMIO) {
3174		int i;
3175		vm_ooffset_t foff;
3176		vm_page_t m;
3177		vm_object_t obj;
3178		int iosize;
3179		struct vnode *vp = bp->b_vp;
3180		boolean_t are_queues_locked;
3181
3182		obj = bp->b_bufobj->bo_object;
3183
3184#if defined(VFS_BIO_DEBUG)
3185		mp_fixme("usecount and vflag accessed without locks.");
3186		if (vp->v_usecount == 0) {
3187			panic("biodone: zero vnode ref count");
3188		}
3189
3190		KASSERT(vp->v_object != NULL,
3191			("biodone: vnode %p has no vm_object", vp));
3192#endif
3193
3194		foff = bp->b_offset;
3195		KASSERT(bp->b_offset != NOOFFSET,
3196		    ("biodone: no buffer offset"));
3197
3198		VM_OBJECT_LOCK(obj);
3199#if defined(VFS_BIO_DEBUG)
3200		if (obj->paging_in_progress < bp->b_npages) {
3201			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3202			    obj->paging_in_progress, bp->b_npages);
3203		}
3204#endif
3205
3206		/*
3207		 * Set B_CACHE if the op was a normal read and no error
3208		 * occured.  B_CACHE is set for writes in the b*write()
3209		 * routines.
3210		 */
3211		iosize = bp->b_bcount - bp->b_resid;
3212		if (bp->b_iocmd == BIO_READ &&
3213		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3214		    !(bp->b_ioflags & BIO_ERROR)) {
3215			bp->b_flags |= B_CACHE;
3216		}
3217		if (bp->b_iocmd == BIO_READ) {
3218			vm_page_lock_queues();
3219			are_queues_locked = TRUE;
3220		} else
3221			are_queues_locked = FALSE;
3222		for (i = 0; i < bp->b_npages; i++) {
3223			int bogusflag = 0;
3224			int resid;
3225
3226			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3227			if (resid > iosize)
3228				resid = iosize;
3229
3230			/*
3231			 * cleanup bogus pages, restoring the originals
3232			 */
3233			m = bp->b_pages[i];
3234			if (m == bogus_page) {
3235				bogusflag = 1;
3236				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3237				if (m == NULL)
3238					panic("biodone: page disappeared!");
3239				bp->b_pages[i] = m;
3240				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3241				    bp->b_pages, bp->b_npages);
3242			}
3243#if defined(VFS_BIO_DEBUG)
3244			if (OFF_TO_IDX(foff) != m->pindex) {
3245				printf(
3246"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3247				    (intmax_t)foff, (uintmax_t)m->pindex);
3248			}
3249#endif
3250
3251			/*
3252			 * In the write case, the valid and clean bits are
3253			 * already changed correctly ( see bdwrite() ), so we
3254			 * only need to do this here in the read case.
3255			 */
3256			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3257				vfs_page_set_valid(bp, foff, i, m);
3258			}
3259
3260			/*
3261			 * when debugging new filesystems or buffer I/O methods, this
3262			 * is the most common error that pops up.  if you see this, you
3263			 * have not set the page busy flag correctly!!!
3264			 */
3265			if (m->busy == 0) {
3266				printf("biodone: page busy < 0, "
3267				    "pindex: %d, foff: 0x(%x,%x), "
3268				    "resid: %d, index: %d\n",
3269				    (int) m->pindex, (int)(foff >> 32),
3270						(int) foff & 0xffffffff, resid, i);
3271				if (!vn_isdisk(vp, NULL))
3272					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3273					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3274					    (intmax_t) bp->b_lblkno,
3275					    bp->b_flags, bp->b_npages);
3276				else
3277					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3278					    (intmax_t) bp->b_lblkno,
3279					    bp->b_flags, bp->b_npages);
3280				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3281				    (u_long)m->valid, (u_long)m->dirty,
3282				    m->wire_count);
3283				panic("biodone: page busy < 0\n");
3284			}
3285			vm_page_io_finish(m);
3286			vm_object_pip_subtract(obj, 1);
3287			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3288			iosize -= resid;
3289		}
3290		if (are_queues_locked)
3291			vm_page_unlock_queues();
3292		vm_object_pip_wakeupn(obj, 0);
3293		VM_OBJECT_UNLOCK(obj);
3294	}
3295
3296	/*
3297	 * For asynchronous completions, release the buffer now. The brelse
3298	 * will do a wakeup there if necessary - so no need to do a wakeup
3299	 * here in the async case. The sync case always needs to do a wakeup.
3300	 */
3301
3302	if (bp->b_flags & B_ASYNC) {
3303		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3304			brelse(bp);
3305		else
3306			bqrelse(bp);
3307	} else
3308		bdone(bp);
3309}
3310
3311/*
3312 * This routine is called in lieu of iodone in the case of
3313 * incomplete I/O.  This keeps the busy status for pages
3314 * consistant.
3315 */
3316void
3317vfs_unbusy_pages(struct buf *bp)
3318{
3319	int i;
3320	vm_object_t obj;
3321	vm_page_t m;
3322
3323	runningbufwakeup(bp);
3324	if (!(bp->b_flags & B_VMIO))
3325		return;
3326
3327	obj = bp->b_bufobj->bo_object;
3328	VM_OBJECT_LOCK(obj);
3329	for (i = 0; i < bp->b_npages; i++) {
3330		m = bp->b_pages[i];
3331		if (m == bogus_page) {
3332			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3333			if (!m)
3334				panic("vfs_unbusy_pages: page missing\n");
3335			bp->b_pages[i] = m;
3336			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3337			    bp->b_pages, bp->b_npages);
3338		}
3339		vm_object_pip_subtract(obj, 1);
3340		vm_page_io_finish(m);
3341	}
3342	vm_object_pip_wakeupn(obj, 0);
3343	VM_OBJECT_UNLOCK(obj);
3344}
3345
3346/*
3347 * vfs_page_set_valid:
3348 *
3349 *	Set the valid bits in a page based on the supplied offset.   The
3350 *	range is restricted to the buffer's size.
3351 *
3352 *	This routine is typically called after a read completes.
3353 */
3354static void
3355vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3356{
3357	vm_ooffset_t soff, eoff;
3358
3359	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3360	/*
3361	 * Start and end offsets in buffer.  eoff - soff may not cross a
3362	 * page boundry or cross the end of the buffer.  The end of the
3363	 * buffer, in this case, is our file EOF, not the allocation size
3364	 * of the buffer.
3365	 */
3366	soff = off;
3367	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3368	if (eoff > bp->b_offset + bp->b_bcount)
3369		eoff = bp->b_offset + bp->b_bcount;
3370
3371	/*
3372	 * Set valid range.  This is typically the entire buffer and thus the
3373	 * entire page.
3374	 */
3375	if (eoff > soff) {
3376		vm_page_set_validclean(
3377		    m,
3378		   (vm_offset_t) (soff & PAGE_MASK),
3379		   (vm_offset_t) (eoff - soff)
3380		);
3381	}
3382}
3383
3384/*
3385 * This routine is called before a device strategy routine.
3386 * It is used to tell the VM system that paging I/O is in
3387 * progress, and treat the pages associated with the buffer
3388 * almost as being VPO_BUSY.  Also the object paging_in_progress
3389 * flag is handled to make sure that the object doesn't become
3390 * inconsistant.
3391 *
3392 * Since I/O has not been initiated yet, certain buffer flags
3393 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3394 * and should be ignored.
3395 */
3396void
3397vfs_busy_pages(struct buf *bp, int clear_modify)
3398{
3399	int i, bogus;
3400	vm_object_t obj;
3401	vm_ooffset_t foff;
3402	vm_page_t m;
3403
3404	if (!(bp->b_flags & B_VMIO))
3405		return;
3406
3407	obj = bp->b_bufobj->bo_object;
3408	foff = bp->b_offset;
3409	KASSERT(bp->b_offset != NOOFFSET,
3410	    ("vfs_busy_pages: no buffer offset"));
3411	VM_OBJECT_LOCK(obj);
3412	if (bp->b_bufsize != 0)
3413		vfs_setdirty_locked_object(bp);
3414retry:
3415	for (i = 0; i < bp->b_npages; i++) {
3416		m = bp->b_pages[i];
3417
3418		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3419			goto retry;
3420	}
3421	bogus = 0;
3422	vm_page_lock_queues();
3423	for (i = 0; i < bp->b_npages; i++) {
3424		m = bp->b_pages[i];
3425
3426		if ((bp->b_flags & B_CLUSTER) == 0) {
3427			vm_object_pip_add(obj, 1);
3428			vm_page_io_start(m);
3429		}
3430		/*
3431		 * When readying a buffer for a read ( i.e
3432		 * clear_modify == 0 ), it is important to do
3433		 * bogus_page replacement for valid pages in
3434		 * partially instantiated buffers.  Partially
3435		 * instantiated buffers can, in turn, occur when
3436		 * reconstituting a buffer from its VM backing store
3437		 * base.  We only have to do this if B_CACHE is
3438		 * clear ( which causes the I/O to occur in the
3439		 * first place ).  The replacement prevents the read
3440		 * I/O from overwriting potentially dirty VM-backed
3441		 * pages.  XXX bogus page replacement is, uh, bogus.
3442		 * It may not work properly with small-block devices.
3443		 * We need to find a better way.
3444		 */
3445		pmap_remove_all(m);
3446		if (clear_modify)
3447			vfs_page_set_valid(bp, foff, i, m);
3448		else if (m->valid == VM_PAGE_BITS_ALL &&
3449		    (bp->b_flags & B_CACHE) == 0) {
3450			bp->b_pages[i] = bogus_page;
3451			bogus++;
3452		}
3453		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3454	}
3455	vm_page_unlock_queues();
3456	VM_OBJECT_UNLOCK(obj);
3457	if (bogus)
3458		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3459		    bp->b_pages, bp->b_npages);
3460}
3461
3462/*
3463 * Tell the VM system that the pages associated with this buffer
3464 * are clean.  This is used for delayed writes where the data is
3465 * going to go to disk eventually without additional VM intevention.
3466 *
3467 * Note that while we only really need to clean through to b_bcount, we
3468 * just go ahead and clean through to b_bufsize.
3469 */
3470static void
3471vfs_clean_pages(struct buf *bp)
3472{
3473	int i;
3474	vm_ooffset_t foff, noff, eoff;
3475	vm_page_t m;
3476
3477	if (!(bp->b_flags & B_VMIO))
3478		return;
3479
3480	foff = bp->b_offset;
3481	KASSERT(bp->b_offset != NOOFFSET,
3482	    ("vfs_clean_pages: no buffer offset"));
3483	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3484	vm_page_lock_queues();
3485	for (i = 0; i < bp->b_npages; i++) {
3486		m = bp->b_pages[i];
3487		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3488		eoff = noff;
3489
3490		if (eoff > bp->b_offset + bp->b_bufsize)
3491			eoff = bp->b_offset + bp->b_bufsize;
3492		vfs_page_set_valid(bp, foff, i, m);
3493		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3494		foff = noff;
3495	}
3496	vm_page_unlock_queues();
3497	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3498}
3499
3500/*
3501 *	vfs_bio_set_validclean:
3502 *
3503 *	Set the range within the buffer to valid and clean.  The range is
3504 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3505 *	itself may be offset from the beginning of the first page.
3506 *
3507 */
3508
3509void
3510vfs_bio_set_validclean(struct buf *bp, int base, int size)
3511{
3512	int i, n;
3513	vm_page_t m;
3514
3515	if (!(bp->b_flags & B_VMIO))
3516		return;
3517	/*
3518	 * Fixup base to be relative to beginning of first page.
3519	 * Set initial n to be the maximum number of bytes in the
3520	 * first page that can be validated.
3521	 */
3522
3523	base += (bp->b_offset & PAGE_MASK);
3524	n = PAGE_SIZE - (base & PAGE_MASK);
3525
3526	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3527	vm_page_lock_queues();
3528	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3529		m = bp->b_pages[i];
3530		if (n > size)
3531			n = size;
3532		vm_page_set_validclean(m, base & PAGE_MASK, n);
3533		base += n;
3534		size -= n;
3535		n = PAGE_SIZE;
3536	}
3537	vm_page_unlock_queues();
3538	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3539}
3540
3541/*
3542 *	vfs_bio_clrbuf:
3543 *
3544 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3545 *	to clear BIO_ERROR and B_INVAL.
3546 *
3547 *	Note that while we only theoretically need to clear through b_bcount,
3548 *	we go ahead and clear through b_bufsize.
3549 */
3550
3551void
3552vfs_bio_clrbuf(struct buf *bp)
3553{
3554	int i, j, mask = 0;
3555	caddr_t sa, ea;
3556
3557	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3558		clrbuf(bp);
3559		return;
3560	}
3561
3562	bp->b_flags &= ~B_INVAL;
3563	bp->b_ioflags &= ~BIO_ERROR;
3564	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3565	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3566	    (bp->b_offset & PAGE_MASK) == 0) {
3567		if (bp->b_pages[0] == bogus_page)
3568			goto unlock;
3569		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3570		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3571		if ((bp->b_pages[0]->valid & mask) == mask)
3572			goto unlock;
3573		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3574		    ((bp->b_pages[0]->valid & mask) == 0)) {
3575			bzero(bp->b_data, bp->b_bufsize);
3576			bp->b_pages[0]->valid |= mask;
3577			goto unlock;
3578		}
3579	}
3580	ea = sa = bp->b_data;
3581	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3582		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3583		ea = (caddr_t)(vm_offset_t)ulmin(
3584		    (u_long)(vm_offset_t)ea,
3585		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3586		if (bp->b_pages[i] == bogus_page)
3587			continue;
3588		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3589		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3590		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3591		if ((bp->b_pages[i]->valid & mask) == mask)
3592			continue;
3593		if ((bp->b_pages[i]->valid & mask) == 0) {
3594			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3595				bzero(sa, ea - sa);
3596		} else {
3597			for (; sa < ea; sa += DEV_BSIZE, j++) {
3598				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3599				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3600					bzero(sa, DEV_BSIZE);
3601			}
3602		}
3603		bp->b_pages[i]->valid |= mask;
3604	}
3605unlock:
3606	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3607	bp->b_resid = 0;
3608}
3609
3610/*
3611 * vm_hold_load_pages and vm_hold_free_pages get pages into
3612 * a buffers address space.  The pages are anonymous and are
3613 * not associated with a file object.
3614 */
3615static void
3616vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3617{
3618	vm_offset_t pg;
3619	vm_page_t p;
3620	int index;
3621
3622	to = round_page(to);
3623	from = round_page(from);
3624	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3625
3626	VM_OBJECT_LOCK(kernel_object);
3627	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3628tryagain:
3629		/*
3630		 * note: must allocate system pages since blocking here
3631		 * could intefere with paging I/O, no matter which
3632		 * process we are.
3633		 */
3634		p = vm_page_alloc(kernel_object,
3635			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3636		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3637		if (!p) {
3638			atomic_add_int(&vm_pageout_deficit,
3639			    (to - pg) >> PAGE_SHIFT);
3640			VM_OBJECT_UNLOCK(kernel_object);
3641			VM_WAIT;
3642			VM_OBJECT_LOCK(kernel_object);
3643			goto tryagain;
3644		}
3645		p->valid = VM_PAGE_BITS_ALL;
3646		pmap_qenter(pg, &p, 1);
3647		bp->b_pages[index] = p;
3648	}
3649	VM_OBJECT_UNLOCK(kernel_object);
3650	bp->b_npages = index;
3651}
3652
3653/* Return pages associated with this buf to the vm system */
3654static void
3655vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3656{
3657	vm_offset_t pg;
3658	vm_page_t p;
3659	int index, newnpages;
3660
3661	from = round_page(from);
3662	to = round_page(to);
3663	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3664
3665	VM_OBJECT_LOCK(kernel_object);
3666	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3667		p = bp->b_pages[index];
3668		if (p && (index < bp->b_npages)) {
3669			if (p->busy) {
3670				printf(
3671			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3672				    (intmax_t)bp->b_blkno,
3673				    (intmax_t)bp->b_lblkno);
3674			}
3675			bp->b_pages[index] = NULL;
3676			pmap_qremove(pg, 1);
3677			vm_page_lock_queues();
3678			vm_page_unwire(p, 0);
3679			vm_page_free(p);
3680			vm_page_unlock_queues();
3681		}
3682	}
3683	VM_OBJECT_UNLOCK(kernel_object);
3684	bp->b_npages = newnpages;
3685}
3686
3687/*
3688 * Map an IO request into kernel virtual address space.
3689 *
3690 * All requests are (re)mapped into kernel VA space.
3691 * Notice that we use b_bufsize for the size of the buffer
3692 * to be mapped.  b_bcount might be modified by the driver.
3693 *
3694 * Note that even if the caller determines that the address space should
3695 * be valid, a race or a smaller-file mapped into a larger space may
3696 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3697 * check the return value.
3698 */
3699int
3700vmapbuf(struct buf *bp)
3701{
3702	caddr_t addr, kva;
3703	vm_prot_t prot;
3704	int pidx, i;
3705	struct vm_page *m;
3706	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3707
3708	if (bp->b_bufsize < 0)
3709		return (-1);
3710	prot = VM_PROT_READ;
3711	if (bp->b_iocmd == BIO_READ)
3712		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3713	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3714	     addr < bp->b_data + bp->b_bufsize;
3715	     addr += PAGE_SIZE, pidx++) {
3716		/*
3717		 * Do the vm_fault if needed; do the copy-on-write thing
3718		 * when reading stuff off device into memory.
3719		 *
3720		 * NOTE! Must use pmap_extract() because addr may be in
3721		 * the userland address space, and kextract is only guarenteed
3722		 * to work for the kernland address space (see: sparc64 port).
3723		 */
3724retry:
3725		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3726		    prot) < 0) {
3727			vm_page_lock_queues();
3728			for (i = 0; i < pidx; ++i) {
3729				vm_page_unhold(bp->b_pages[i]);
3730				bp->b_pages[i] = NULL;
3731			}
3732			vm_page_unlock_queues();
3733			return(-1);
3734		}
3735		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3736		if (m == NULL)
3737			goto retry;
3738		bp->b_pages[pidx] = m;
3739	}
3740	if (pidx > btoc(MAXPHYS))
3741		panic("vmapbuf: mapped more than MAXPHYS");
3742	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3743
3744	kva = bp->b_saveaddr;
3745	bp->b_npages = pidx;
3746	bp->b_saveaddr = bp->b_data;
3747	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3748	return(0);
3749}
3750
3751/*
3752 * Free the io map PTEs associated with this IO operation.
3753 * We also invalidate the TLB entries and restore the original b_addr.
3754 */
3755void
3756vunmapbuf(struct buf *bp)
3757{
3758	int pidx;
3759	int npages;
3760
3761	npages = bp->b_npages;
3762	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3763	vm_page_lock_queues();
3764	for (pidx = 0; pidx < npages; pidx++)
3765		vm_page_unhold(bp->b_pages[pidx]);
3766	vm_page_unlock_queues();
3767
3768	bp->b_data = bp->b_saveaddr;
3769}
3770
3771void
3772bdone(struct buf *bp)
3773{
3774
3775	mtx_lock(&bdonelock);
3776	bp->b_flags |= B_DONE;
3777	wakeup(bp);
3778	mtx_unlock(&bdonelock);
3779}
3780
3781void
3782bwait(struct buf *bp, u_char pri, const char *wchan)
3783{
3784
3785	mtx_lock(&bdonelock);
3786	while ((bp->b_flags & B_DONE) == 0)
3787		msleep(bp, &bdonelock, pri, wchan, 0);
3788	mtx_unlock(&bdonelock);
3789}
3790
3791int
3792bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3793{
3794
3795	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3796}
3797
3798void
3799bufstrategy(struct bufobj *bo, struct buf *bp)
3800{
3801	int i = 0;
3802	struct vnode *vp;
3803
3804	vp = bp->b_vp;
3805	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3806	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3807	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3808	i = VOP_STRATEGY(vp, bp);
3809	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3810}
3811
3812void
3813bufobj_wrefl(struct bufobj *bo)
3814{
3815
3816	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3817	ASSERT_BO_LOCKED(bo);
3818	bo->bo_numoutput++;
3819}
3820
3821void
3822bufobj_wref(struct bufobj *bo)
3823{
3824
3825	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3826	BO_LOCK(bo);
3827	bo->bo_numoutput++;
3828	BO_UNLOCK(bo);
3829}
3830
3831void
3832bufobj_wdrop(struct bufobj *bo)
3833{
3834
3835	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3836	BO_LOCK(bo);
3837	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3838	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3839		bo->bo_flag &= ~BO_WWAIT;
3840		wakeup(&bo->bo_numoutput);
3841	}
3842	BO_UNLOCK(bo);
3843}
3844
3845int
3846bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3847{
3848	int error;
3849
3850	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3851	ASSERT_BO_LOCKED(bo);
3852	error = 0;
3853	while (bo->bo_numoutput) {
3854		bo->bo_flag |= BO_WWAIT;
3855		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3856		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3857		if (error)
3858			break;
3859	}
3860	return (error);
3861}
3862
3863void
3864bpin(struct buf *bp)
3865{
3866	mtx_lock(&bpinlock);
3867	bp->b_pin_count++;
3868	mtx_unlock(&bpinlock);
3869}
3870
3871void
3872bunpin(struct buf *bp)
3873{
3874	mtx_lock(&bpinlock);
3875	if (--bp->b_pin_count == 0)
3876		wakeup(bp);
3877	mtx_unlock(&bpinlock);
3878}
3879
3880void
3881bunpin_wait(struct buf *bp)
3882{
3883	mtx_lock(&bpinlock);
3884	while (bp->b_pin_count > 0)
3885		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3886	mtx_unlock(&bpinlock);
3887}
3888
3889#include "opt_ddb.h"
3890#ifdef DDB
3891#include <ddb/ddb.h>
3892
3893/* DDB command to show buffer data */
3894DB_SHOW_COMMAND(buffer, db_show_buffer)
3895{
3896	/* get args */
3897	struct buf *bp = (struct buf *)addr;
3898
3899	if (!have_addr) {
3900		db_printf("usage: show buffer <addr>\n");
3901		return;
3902	}
3903
3904	db_printf("buf at %p\n", bp);
3905	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3906	db_printf(
3907	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3908	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3909	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3910	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3911	if (bp->b_npages) {
3912		int i;
3913		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3914		for (i = 0; i < bp->b_npages; i++) {
3915			vm_page_t m;
3916			m = bp->b_pages[i];
3917			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3918			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3919			if ((i + 1) < bp->b_npages)
3920				db_printf(",");
3921		}
3922		db_printf("\n");
3923	}
3924	lockmgr_printinfo(&bp->b_lock);
3925}
3926
3927DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3928{
3929	struct buf *bp;
3930	int i;
3931
3932	for (i = 0; i < nbuf; i++) {
3933		bp = &buf[i];
3934		if (lockcount(&bp->b_lock)) {
3935			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3936			db_printf("\n");
3937		}
3938	}
3939}
3940#endif /* DDB */
3941