vfs_bio.c revision 163750
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 163750 2006-10-29 00:04:39Z alc $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82	.bop_sync	=	bufsync,
83};
84
85/*
86 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
87 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
88 */
89struct buf *buf;		/* buffer header pool */
90
91static struct proc *bufdaemonproc;
92
93static int inmem(struct vnode *vp, daddr_t blkno);
94static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
95		vm_offset_t to);
96static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
99			       int pageno, vm_page_t m);
100static void vfs_clean_pages(struct buf *bp);
101static void vfs_setdirty(struct buf *bp);
102static void vfs_setdirty_locked_object(struct buf *bp);
103static void vfs_vmio_release(struct buf *bp);
104static int vfs_bio_clcheck(struct vnode *vp, int size,
105		daddr_t lblkno, daddr_t blkno);
106static int flushbufqueues(int, int);
107static void buf_daemon(void);
108static void bremfreel(struct buf *bp);
109
110int vmiodirenable = TRUE;
111SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
112    "Use the VM system for directory writes");
113int runningbufspace;
114SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
115    "Amount of presently outstanding async buffer io");
116static int bufspace;
117SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
118    "KVA memory used for bufs");
119static int maxbufspace;
120SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
121    "Maximum allowed value of bufspace (including buf_daemon)");
122static int bufmallocspace;
123SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
124    "Amount of malloced memory for buffers");
125static int maxbufmallocspace;
126SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
127    "Maximum amount of malloced memory for buffers");
128static int lobufspace;
129SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
130    "Minimum amount of buffers we want to have");
131int hibufspace;
132SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
133    "Maximum allowed value of bufspace (excluding buf_daemon)");
134static int bufreusecnt;
135SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
136    "Number of times we have reused a buffer");
137static int buffreekvacnt;
138SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
139    "Number of times we have freed the KVA space from some buffer");
140static int bufdefragcnt;
141SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
142    "Number of times we have had to repeat buffer allocation to defragment");
143static int lorunningspace;
144SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
145    "Minimum preferred space used for in-progress I/O");
146static int hirunningspace;
147SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
148    "Maximum amount of space to use for in-progress I/O");
149static int dirtybufferflushes;
150SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
151    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
152static int altbufferflushes;
153SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
154    0, "Number of fsync flushes to limit dirty buffers");
155static int recursiveflushes;
156SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
157    0, "Number of flushes skipped due to being recursive");
158static int numdirtybuffers;
159SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
160    "Number of buffers that are dirty (has unwritten changes) at the moment");
161static int lodirtybuffers;
162SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
163    "How many buffers we want to have free before bufdaemon can sleep");
164static int hidirtybuffers;
165SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
166    "When the number of dirty buffers is considered severe");
167static int dirtybufthresh;
168SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
169    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
170static int numfreebuffers;
171SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
172    "Number of free buffers");
173static int lofreebuffers;
174SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
175   "XXX Unused");
176static int hifreebuffers;
177SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
178   "XXX Complicatedly unused");
179static int getnewbufcalls;
180SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
181   "Number of calls to getnewbuf");
182static int getnewbufrestarts;
183SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
184    "Number of times getnewbuf has had to restart a buffer aquisition");
185
186/*
187 * Wakeup point for bufdaemon, as well as indicator of whether it is already
188 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
189 * is idling.
190 */
191static int bd_request;
192
193/*
194 * This lock synchronizes access to bd_request.
195 */
196static struct mtx bdlock;
197
198/*
199 * bogus page -- for I/O to/from partially complete buffers
200 * this is a temporary solution to the problem, but it is not
201 * really that bad.  it would be better to split the buffer
202 * for input in the case of buffers partially already in memory,
203 * but the code is intricate enough already.
204 */
205vm_page_t bogus_page;
206
207/*
208 * Synchronization (sleep/wakeup) variable for active buffer space requests.
209 * Set when wait starts, cleared prior to wakeup().
210 * Used in runningbufwakeup() and waitrunningbufspace().
211 */
212static int runningbufreq;
213
214/*
215 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
216 * waitrunningbufspace().
217 */
218static struct mtx rbreqlock;
219
220/*
221 * Synchronization (sleep/wakeup) variable for buffer requests.
222 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
223 * by and/or.
224 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
225 * getnewbuf(), and getblk().
226 */
227static int needsbuffer;
228
229/*
230 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
231 */
232static struct mtx nblock;
233
234/*
235 * Lock that protects against bwait()/bdone()/B_DONE races.
236 */
237
238static struct mtx bdonelock;
239
240/*
241 * Lock that protects against bwait()/bdone()/B_DONE races.
242 */
243static struct mtx bpinlock;
244
245/*
246 * Definitions for the buffer free lists.
247 */
248#define BUFFER_QUEUES	6	/* number of free buffer queues */
249
250#define QUEUE_NONE	0	/* on no queue */
251#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
252#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
253#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
254#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
255#define QUEUE_EMPTY	5	/* empty buffer headers */
256
257/* Queues for free buffers with various properties */
258static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
259
260/* Lock for the bufqueues */
261static struct mtx bqlock;
262
263/*
264 * Single global constant for BUF_WMESG, to avoid getting multiple references.
265 * buf_wmesg is referred from macros.
266 */
267const char *buf_wmesg = BUF_WMESG;
268
269#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
270#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
271#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
272#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
273
274#ifdef DIRECTIO
275extern void ffs_rawread_setup(void);
276#endif /* DIRECTIO */
277/*
278 *	numdirtywakeup:
279 *
280 *	If someone is blocked due to there being too many dirty buffers,
281 *	and numdirtybuffers is now reasonable, wake them up.
282 */
283
284static __inline void
285numdirtywakeup(int level)
286{
287
288	if (numdirtybuffers <= level) {
289		mtx_lock(&nblock);
290		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
291			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
292			wakeup(&needsbuffer);
293		}
294		mtx_unlock(&nblock);
295	}
296}
297
298/*
299 *	bufspacewakeup:
300 *
301 *	Called when buffer space is potentially available for recovery.
302 *	getnewbuf() will block on this flag when it is unable to free
303 *	sufficient buffer space.  Buffer space becomes recoverable when
304 *	bp's get placed back in the queues.
305 */
306
307static __inline void
308bufspacewakeup(void)
309{
310
311	/*
312	 * If someone is waiting for BUF space, wake them up.  Even
313	 * though we haven't freed the kva space yet, the waiting
314	 * process will be able to now.
315	 */
316	mtx_lock(&nblock);
317	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
318		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
319		wakeup(&needsbuffer);
320	}
321	mtx_unlock(&nblock);
322}
323
324/*
325 * runningbufwakeup() - in-progress I/O accounting.
326 *
327 */
328void
329runningbufwakeup(struct buf *bp)
330{
331
332	if (bp->b_runningbufspace) {
333		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
334		bp->b_runningbufspace = 0;
335		mtx_lock(&rbreqlock);
336		if (runningbufreq && runningbufspace <= lorunningspace) {
337			runningbufreq = 0;
338			wakeup(&runningbufreq);
339		}
340		mtx_unlock(&rbreqlock);
341	}
342}
343
344/*
345 *	bufcountwakeup:
346 *
347 *	Called when a buffer has been added to one of the free queues to
348 *	account for the buffer and to wakeup anyone waiting for free buffers.
349 *	This typically occurs when large amounts of metadata are being handled
350 *	by the buffer cache ( else buffer space runs out first, usually ).
351 */
352
353static __inline void
354bufcountwakeup(void)
355{
356
357	atomic_add_int(&numfreebuffers, 1);
358	mtx_lock(&nblock);
359	if (needsbuffer) {
360		needsbuffer &= ~VFS_BIO_NEED_ANY;
361		if (numfreebuffers >= hifreebuffers)
362			needsbuffer &= ~VFS_BIO_NEED_FREE;
363		wakeup(&needsbuffer);
364	}
365	mtx_unlock(&nblock);
366}
367
368/*
369 *	waitrunningbufspace()
370 *
371 *	runningbufspace is a measure of the amount of I/O currently
372 *	running.  This routine is used in async-write situations to
373 *	prevent creating huge backups of pending writes to a device.
374 *	Only asynchronous writes are governed by this function.
375 *
376 *	Reads will adjust runningbufspace, but will not block based on it.
377 *	The read load has a side effect of reducing the allowed write load.
378 *
379 *	This does NOT turn an async write into a sync write.  It waits
380 *	for earlier writes to complete and generally returns before the
381 *	caller's write has reached the device.
382 */
383void
384waitrunningbufspace(void)
385{
386
387	mtx_lock(&rbreqlock);
388	while (runningbufspace > hirunningspace) {
389		++runningbufreq;
390		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
391	}
392	mtx_unlock(&rbreqlock);
393}
394
395
396/*
397 *	vfs_buf_test_cache:
398 *
399 *	Called when a buffer is extended.  This function clears the B_CACHE
400 *	bit if the newly extended portion of the buffer does not contain
401 *	valid data.
402 */
403static __inline
404void
405vfs_buf_test_cache(struct buf *bp,
406		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
407		  vm_page_t m)
408{
409
410	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
411	if (bp->b_flags & B_CACHE) {
412		int base = (foff + off) & PAGE_MASK;
413		if (vm_page_is_valid(m, base, size) == 0)
414			bp->b_flags &= ~B_CACHE;
415	}
416}
417
418/* Wake up the buffer deamon if necessary */
419static __inline
420void
421bd_wakeup(int dirtybuflevel)
422{
423
424	mtx_lock(&bdlock);
425	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
426		bd_request = 1;
427		wakeup(&bd_request);
428	}
429	mtx_unlock(&bdlock);
430}
431
432/*
433 * bd_speedup - speedup the buffer cache flushing code
434 */
435
436static __inline
437void
438bd_speedup(void)
439{
440
441	bd_wakeup(1);
442}
443
444/*
445 * Calculating buffer cache scaling values and reserve space for buffer
446 * headers.  This is called during low level kernel initialization and
447 * may be called more then once.  We CANNOT write to the memory area
448 * being reserved at this time.
449 */
450caddr_t
451kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
452{
453
454	/*
455	 * physmem_est is in pages.  Convert it to kilobytes (assumes
456	 * PAGE_SIZE is >= 1K)
457	 */
458	physmem_est = physmem_est * (PAGE_SIZE / 1024);
459
460	/*
461	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
462	 * For the first 64MB of ram nominally allocate sufficient buffers to
463	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
464	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
465	 * the buffer cache we limit the eventual kva reservation to
466	 * maxbcache bytes.
467	 *
468	 * factor represents the 1/4 x ram conversion.
469	 */
470	if (nbuf == 0) {
471		int factor = 4 * BKVASIZE / 1024;
472
473		nbuf = 50;
474		if (physmem_est > 4096)
475			nbuf += min((physmem_est - 4096) / factor,
476			    65536 / factor);
477		if (physmem_est > 65536)
478			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
479
480		if (maxbcache && nbuf > maxbcache / BKVASIZE)
481			nbuf = maxbcache / BKVASIZE;
482	}
483
484#if 0
485	/*
486	 * Do not allow the buffer_map to be more then 1/2 the size of the
487	 * kernel_map.
488	 */
489	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
490	    (BKVASIZE * 2)) {
491		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
492		    (BKVASIZE * 2);
493		printf("Warning: nbufs capped at %d\n", nbuf);
494	}
495#endif
496
497	/*
498	 * swbufs are used as temporary holders for I/O, such as paging I/O.
499	 * We have no less then 16 and no more then 256.
500	 */
501	nswbuf = max(min(nbuf/4, 256), 16);
502#ifdef NSWBUF_MIN
503	if (nswbuf < NSWBUF_MIN)
504		nswbuf = NSWBUF_MIN;
505#endif
506#ifdef DIRECTIO
507	ffs_rawread_setup();
508#endif
509
510	/*
511	 * Reserve space for the buffer cache buffers
512	 */
513	swbuf = (void *)v;
514	v = (caddr_t)(swbuf + nswbuf);
515	buf = (void *)v;
516	v = (caddr_t)(buf + nbuf);
517
518	return(v);
519}
520
521/* Initialize the buffer subsystem.  Called before use of any buffers. */
522void
523bufinit(void)
524{
525	struct buf *bp;
526	int i;
527
528	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
529	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
530	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
531	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
532	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
533	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
534
535	/* next, make a null set of free lists */
536	for (i = 0; i < BUFFER_QUEUES; i++)
537		TAILQ_INIT(&bufqueues[i]);
538
539	/* finally, initialize each buffer header and stick on empty q */
540	for (i = 0; i < nbuf; i++) {
541		bp = &buf[i];
542		bzero(bp, sizeof *bp);
543		bp->b_flags = B_INVAL;	/* we're just an empty header */
544		bp->b_rcred = NOCRED;
545		bp->b_wcred = NOCRED;
546		bp->b_qindex = QUEUE_EMPTY;
547		bp->b_vflags = 0;
548		bp->b_xflags = 0;
549		LIST_INIT(&bp->b_dep);
550		BUF_LOCKINIT(bp);
551		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
552	}
553
554	/*
555	 * maxbufspace is the absolute maximum amount of buffer space we are
556	 * allowed to reserve in KVM and in real terms.  The absolute maximum
557	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
558	 * used by most other processes.  The differential is required to
559	 * ensure that buf_daemon is able to run when other processes might
560	 * be blocked waiting for buffer space.
561	 *
562	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
563	 * this may result in KVM fragmentation which is not handled optimally
564	 * by the system.
565	 */
566	maxbufspace = nbuf * BKVASIZE;
567	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
568	lobufspace = hibufspace - MAXBSIZE;
569
570	lorunningspace = 512 * 1024;
571	hirunningspace = 1024 * 1024;
572
573/*
574 * Limit the amount of malloc memory since it is wired permanently into
575 * the kernel space.  Even though this is accounted for in the buffer
576 * allocation, we don't want the malloced region to grow uncontrolled.
577 * The malloc scheme improves memory utilization significantly on average
578 * (small) directories.
579 */
580	maxbufmallocspace = hibufspace / 20;
581
582/*
583 * Reduce the chance of a deadlock occuring by limiting the number
584 * of delayed-write dirty buffers we allow to stack up.
585 */
586	hidirtybuffers = nbuf / 4 + 20;
587	dirtybufthresh = hidirtybuffers * 9 / 10;
588	numdirtybuffers = 0;
589/*
590 * To support extreme low-memory systems, make sure hidirtybuffers cannot
591 * eat up all available buffer space.  This occurs when our minimum cannot
592 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
593 * BKVASIZE'd (8K) buffers.
594 */
595	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
596		hidirtybuffers >>= 1;
597	}
598	lodirtybuffers = hidirtybuffers / 2;
599
600/*
601 * Try to keep the number of free buffers in the specified range,
602 * and give special processes (e.g. like buf_daemon) access to an
603 * emergency reserve.
604 */
605	lofreebuffers = nbuf / 18 + 5;
606	hifreebuffers = 2 * lofreebuffers;
607	numfreebuffers = nbuf;
608
609/*
610 * Maximum number of async ops initiated per buf_daemon loop.  This is
611 * somewhat of a hack at the moment, we really need to limit ourselves
612 * based on the number of bytes of I/O in-transit that were initiated
613 * from buf_daemon.
614 */
615
616	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
617	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
618}
619
620/*
621 * bfreekva() - free the kva allocation for a buffer.
622 *
623 *	Since this call frees up buffer space, we call bufspacewakeup().
624 */
625static void
626bfreekva(struct buf *bp)
627{
628
629	if (bp->b_kvasize) {
630		atomic_add_int(&buffreekvacnt, 1);
631		atomic_subtract_int(&bufspace, bp->b_kvasize);
632		vm_map_lock(buffer_map);
633		vm_map_delete(buffer_map,
634		    (vm_offset_t) bp->b_kvabase,
635		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
636		);
637		vm_map_unlock(buffer_map);
638		bp->b_kvasize = 0;
639		bufspacewakeup();
640	}
641}
642
643/*
644 *	bremfree:
645 *
646 *	Mark the buffer for removal from the appropriate free list in brelse.
647 *
648 */
649void
650bremfree(struct buf *bp)
651{
652
653	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
654	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
655	KASSERT((bp->b_flags & B_REMFREE) == 0,
656	    ("bremfree: buffer %p already marked for delayed removal.", bp));
657	KASSERT(bp->b_qindex != QUEUE_NONE,
658	    ("bremfree: buffer %p not on a queue.", bp));
659
660	bp->b_flags |= B_REMFREE;
661	/* Fixup numfreebuffers count.  */
662	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
663		atomic_subtract_int(&numfreebuffers, 1);
664}
665
666/*
667 *	bremfreef:
668 *
669 *	Force an immediate removal from a free list.  Used only in nfs when
670 *	it abuses the b_freelist pointer.
671 */
672void
673bremfreef(struct buf *bp)
674{
675	mtx_lock(&bqlock);
676	bremfreel(bp);
677	mtx_unlock(&bqlock);
678}
679
680/*
681 *	bremfreel:
682 *
683 *	Removes a buffer from the free list, must be called with the
684 *	bqlock held.
685 */
686static void
687bremfreel(struct buf *bp)
688{
689	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
690	    bp, bp->b_vp, bp->b_flags);
691	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
692	KASSERT(bp->b_qindex != QUEUE_NONE,
693	    ("bremfreel: buffer %p not on a queue.", bp));
694	mtx_assert(&bqlock, MA_OWNED);
695
696	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
697	bp->b_qindex = QUEUE_NONE;
698	/*
699	 * If this was a delayed bremfree() we only need to remove the buffer
700	 * from the queue and return the stats are already done.
701	 */
702	if (bp->b_flags & B_REMFREE) {
703		bp->b_flags &= ~B_REMFREE;
704		return;
705	}
706	/*
707	 * Fixup numfreebuffers count.  If the buffer is invalid or not
708	 * delayed-write, the buffer was free and we must decrement
709	 * numfreebuffers.
710	 */
711	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
712		atomic_subtract_int(&numfreebuffers, 1);
713}
714
715
716/*
717 * Get a buffer with the specified data.  Look in the cache first.  We
718 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
719 * is set, the buffer is valid and we do not have to do anything ( see
720 * getblk() ).  This is really just a special case of breadn().
721 */
722int
723bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
724    struct buf **bpp)
725{
726
727	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
728}
729
730/*
731 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
732 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
733 * the buffer is valid and we do not have to do anything.
734 */
735void
736breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
737    int cnt, struct ucred * cred)
738{
739	struct buf *rabp;
740	int i;
741
742	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
743		if (inmem(vp, *rablkno))
744			continue;
745		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
746
747		if ((rabp->b_flags & B_CACHE) == 0) {
748			if (curthread != PCPU_GET(idlethread))
749				curthread->td_proc->p_stats->p_ru.ru_inblock++;
750			rabp->b_flags |= B_ASYNC;
751			rabp->b_flags &= ~B_INVAL;
752			rabp->b_ioflags &= ~BIO_ERROR;
753			rabp->b_iocmd = BIO_READ;
754			if (rabp->b_rcred == NOCRED && cred != NOCRED)
755				rabp->b_rcred = crhold(cred);
756			vfs_busy_pages(rabp, 0);
757			BUF_KERNPROC(rabp);
758			rabp->b_iooffset = dbtob(rabp->b_blkno);
759			bstrategy(rabp);
760		} else {
761			brelse(rabp);
762		}
763	}
764}
765
766/*
767 * Operates like bread, but also starts asynchronous I/O on
768 * read-ahead blocks.
769 */
770int
771breadn(struct vnode * vp, daddr_t blkno, int size,
772    daddr_t * rablkno, int *rabsize,
773    int cnt, struct ucred * cred, struct buf **bpp)
774{
775	struct buf *bp;
776	int rv = 0, readwait = 0;
777
778	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
779	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
780
781	/* if not found in cache, do some I/O */
782	if ((bp->b_flags & B_CACHE) == 0) {
783		if (curthread != PCPU_GET(idlethread))
784			curthread->td_proc->p_stats->p_ru.ru_inblock++;
785		bp->b_iocmd = BIO_READ;
786		bp->b_flags &= ~B_INVAL;
787		bp->b_ioflags &= ~BIO_ERROR;
788		if (bp->b_rcred == NOCRED && cred != NOCRED)
789			bp->b_rcred = crhold(cred);
790		vfs_busy_pages(bp, 0);
791		bp->b_iooffset = dbtob(bp->b_blkno);
792		bstrategy(bp);
793		++readwait;
794	}
795
796	breada(vp, rablkno, rabsize, cnt, cred);
797
798	if (readwait) {
799		rv = bufwait(bp);
800	}
801	return (rv);
802}
803
804/*
805 * Write, release buffer on completion.  (Done by iodone
806 * if async).  Do not bother writing anything if the buffer
807 * is invalid.
808 *
809 * Note that we set B_CACHE here, indicating that buffer is
810 * fully valid and thus cacheable.  This is true even of NFS
811 * now so we set it generally.  This could be set either here
812 * or in biodone() since the I/O is synchronous.  We put it
813 * here.
814 */
815int
816bufwrite(struct buf *bp)
817{
818	int oldflags;
819
820	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
821	if (bp->b_flags & B_INVAL) {
822		brelse(bp);
823		return (0);
824	}
825
826	oldflags = bp->b_flags;
827
828	if (BUF_REFCNT(bp) == 0)
829		panic("bufwrite: buffer is not busy???");
830
831	if (bp->b_pin_count > 0)
832		bunpin_wait(bp);
833
834	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
835	    ("FFS background buffer should not get here %p", bp));
836
837	/* Mark the buffer clean */
838	bundirty(bp);
839
840	bp->b_flags &= ~B_DONE;
841	bp->b_ioflags &= ~BIO_ERROR;
842	bp->b_flags |= B_CACHE;
843	bp->b_iocmd = BIO_WRITE;
844
845	bufobj_wref(bp->b_bufobj);
846	vfs_busy_pages(bp, 1);
847
848	/*
849	 * Normal bwrites pipeline writes
850	 */
851	bp->b_runningbufspace = bp->b_bufsize;
852	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
853
854	if (curthread != PCPU_GET(idlethread))
855		curthread->td_proc->p_stats->p_ru.ru_oublock++;
856	if (oldflags & B_ASYNC)
857		BUF_KERNPROC(bp);
858	bp->b_iooffset = dbtob(bp->b_blkno);
859	bstrategy(bp);
860
861	if ((oldflags & B_ASYNC) == 0) {
862		int rtval = bufwait(bp);
863		brelse(bp);
864		return (rtval);
865	} else {
866		/*
867		 * don't allow the async write to saturate the I/O
868		 * system.  We will not deadlock here because
869		 * we are blocking waiting for I/O that is already in-progress
870		 * to complete. We do not block here if it is the update
871		 * or syncer daemon trying to clean up as that can lead
872		 * to deadlock.
873		 */
874		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0)
875			waitrunningbufspace();
876	}
877
878	return (0);
879}
880
881/*
882 * Delayed write. (Buffer is marked dirty).  Do not bother writing
883 * anything if the buffer is marked invalid.
884 *
885 * Note that since the buffer must be completely valid, we can safely
886 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
887 * biodone() in order to prevent getblk from writing the buffer
888 * out synchronously.
889 */
890void
891bdwrite(struct buf *bp)
892{
893	struct thread *td = curthread;
894	struct vnode *vp;
895	struct buf *nbp;
896	struct bufobj *bo;
897
898	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
899	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
900	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
901
902	if (bp->b_flags & B_INVAL) {
903		brelse(bp);
904		return;
905	}
906
907	/*
908	 * If we have too many dirty buffers, don't create any more.
909	 * If we are wildly over our limit, then force a complete
910	 * cleanup. Otherwise, just keep the situation from getting
911	 * out of control. Note that we have to avoid a recursive
912	 * disaster and not try to clean up after our own cleanup!
913	 */
914	vp = bp->b_vp;
915	bo = bp->b_bufobj;
916	if ((td->td_pflags & TDP_COWINPROGRESS) == 0) {
917		BO_LOCK(bo);
918		if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
919			BO_UNLOCK(bo);
920			(void) VOP_FSYNC(vp, MNT_NOWAIT, td);
921			altbufferflushes++;
922		} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
923			/*
924			 * Try to find a buffer to flush.
925			 */
926			TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
927				if ((nbp->b_vflags & BV_BKGRDINPROG) ||
928				    BUF_LOCK(nbp,
929				    LK_EXCLUSIVE | LK_NOWAIT, NULL))
930					continue;
931				if (bp == nbp)
932					panic("bdwrite: found ourselves");
933				BO_UNLOCK(bo);
934				/* Don't countdeps with the bo lock held. */
935				if (buf_countdeps(nbp, 0)) {
936					BO_LOCK(bo);
937					BUF_UNLOCK(nbp);
938					continue;
939				}
940				if (nbp->b_flags & B_CLUSTEROK) {
941					vfs_bio_awrite(nbp);
942				} else {
943					bremfree(nbp);
944					bawrite(nbp);
945				}
946				dirtybufferflushes++;
947				break;
948			}
949			if (nbp == NULL)
950				BO_UNLOCK(bo);
951		} else
952			BO_UNLOCK(bo);
953	} else
954		recursiveflushes++;
955
956	bdirty(bp);
957	/*
958	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
959	 * true even of NFS now.
960	 */
961	bp->b_flags |= B_CACHE;
962
963	/*
964	 * This bmap keeps the system from needing to do the bmap later,
965	 * perhaps when the system is attempting to do a sync.  Since it
966	 * is likely that the indirect block -- or whatever other datastructure
967	 * that the filesystem needs is still in memory now, it is a good
968	 * thing to do this.  Note also, that if the pageout daemon is
969	 * requesting a sync -- there might not be enough memory to do
970	 * the bmap then...  So, this is important to do.
971	 */
972	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
973		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
974	}
975
976	/*
977	 * Set the *dirty* buffer range based upon the VM system dirty pages.
978	 */
979	vfs_setdirty(bp);
980
981	/*
982	 * We need to do this here to satisfy the vnode_pager and the
983	 * pageout daemon, so that it thinks that the pages have been
984	 * "cleaned".  Note that since the pages are in a delayed write
985	 * buffer -- the VFS layer "will" see that the pages get written
986	 * out on the next sync, or perhaps the cluster will be completed.
987	 */
988	vfs_clean_pages(bp);
989	bqrelse(bp);
990
991	/*
992	 * Wakeup the buffer flushing daemon if we have a lot of dirty
993	 * buffers (midpoint between our recovery point and our stall
994	 * point).
995	 */
996	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
997
998	/*
999	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1000	 * due to the softdep code.
1001	 */
1002}
1003
1004/*
1005 *	bdirty:
1006 *
1007 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1008 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1009 *	itself to properly update it in the dirty/clean lists.  We mark it
1010 *	B_DONE to ensure that any asynchronization of the buffer properly
1011 *	clears B_DONE ( else a panic will occur later ).
1012 *
1013 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1014 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1015 *	should only be called if the buffer is known-good.
1016 *
1017 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1018 *	count.
1019 *
1020 *	The buffer must be on QUEUE_NONE.
1021 */
1022void
1023bdirty(struct buf *bp)
1024{
1025
1026	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1027	    bp, bp->b_vp, bp->b_flags);
1028	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1029	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1030	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1031	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1032	bp->b_flags &= ~(B_RELBUF);
1033	bp->b_iocmd = BIO_WRITE;
1034
1035	if ((bp->b_flags & B_DELWRI) == 0) {
1036		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1037		reassignbuf(bp);
1038		atomic_add_int(&numdirtybuffers, 1);
1039		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1040	}
1041}
1042
1043/*
1044 *	bundirty:
1045 *
1046 *	Clear B_DELWRI for buffer.
1047 *
1048 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1049 *	count.
1050 *
1051 *	The buffer must be on QUEUE_NONE.
1052 */
1053
1054void
1055bundirty(struct buf *bp)
1056{
1057
1058	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1059	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1060	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1061	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1062	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1063
1064	if (bp->b_flags & B_DELWRI) {
1065		bp->b_flags &= ~B_DELWRI;
1066		reassignbuf(bp);
1067		atomic_subtract_int(&numdirtybuffers, 1);
1068		numdirtywakeup(lodirtybuffers);
1069	}
1070	/*
1071	 * Since it is now being written, we can clear its deferred write flag.
1072	 */
1073	bp->b_flags &= ~B_DEFERRED;
1074}
1075
1076/*
1077 *	bawrite:
1078 *
1079 *	Asynchronous write.  Start output on a buffer, but do not wait for
1080 *	it to complete.  The buffer is released when the output completes.
1081 *
1082 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1083 *	B_INVAL buffers.  Not us.
1084 */
1085void
1086bawrite(struct buf *bp)
1087{
1088
1089	bp->b_flags |= B_ASYNC;
1090	(void) bwrite(bp);
1091}
1092
1093/*
1094 *	bwillwrite:
1095 *
1096 *	Called prior to the locking of any vnodes when we are expecting to
1097 *	write.  We do not want to starve the buffer cache with too many
1098 *	dirty buffers so we block here.  By blocking prior to the locking
1099 *	of any vnodes we attempt to avoid the situation where a locked vnode
1100 *	prevents the various system daemons from flushing related buffers.
1101 */
1102
1103void
1104bwillwrite(void)
1105{
1106
1107	if (numdirtybuffers >= hidirtybuffers) {
1108		mtx_lock(&nblock);
1109		while (numdirtybuffers >= hidirtybuffers) {
1110			bd_wakeup(1);
1111			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1112			msleep(&needsbuffer, &nblock,
1113			    (PRIBIO + 4), "flswai", 0);
1114		}
1115		mtx_unlock(&nblock);
1116	}
1117}
1118
1119/*
1120 * Return true if we have too many dirty buffers.
1121 */
1122int
1123buf_dirty_count_severe(void)
1124{
1125
1126	return(numdirtybuffers >= hidirtybuffers);
1127}
1128
1129/*
1130 *	brelse:
1131 *
1132 *	Release a busy buffer and, if requested, free its resources.  The
1133 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1134 *	to be accessed later as a cache entity or reused for other purposes.
1135 */
1136void
1137brelse(struct buf *bp)
1138{
1139	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1140	    bp, bp->b_vp, bp->b_flags);
1141	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1142	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1143
1144	if (bp->b_flags & B_MANAGED) {
1145		bqrelse(bp);
1146		return;
1147	}
1148
1149	if (bp->b_iocmd == BIO_WRITE &&
1150	    (bp->b_ioflags & BIO_ERROR) &&
1151	    !(bp->b_flags & B_INVAL)) {
1152		/*
1153		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1154		 * pages from being scrapped.  If B_INVAL is set then
1155		 * this case is not run and the next case is run to
1156		 * destroy the buffer.  B_INVAL can occur if the buffer
1157		 * is outside the range supported by the underlying device.
1158		 */
1159		bp->b_ioflags &= ~BIO_ERROR;
1160		bdirty(bp);
1161	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1162	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1163		/*
1164		 * Either a failed I/O or we were asked to free or not
1165		 * cache the buffer.
1166		 */
1167		bp->b_flags |= B_INVAL;
1168		if (LIST_FIRST(&bp->b_dep) != NULL)
1169			buf_deallocate(bp);
1170		if (bp->b_flags & B_DELWRI) {
1171			atomic_subtract_int(&numdirtybuffers, 1);
1172			numdirtywakeup(lodirtybuffers);
1173		}
1174		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1175		if ((bp->b_flags & B_VMIO) == 0) {
1176			if (bp->b_bufsize)
1177				allocbuf(bp, 0);
1178			if (bp->b_vp)
1179				brelvp(bp);
1180		}
1181	}
1182
1183	/*
1184	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1185	 * is called with B_DELWRI set, the underlying pages may wind up
1186	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1187	 * because pages associated with a B_DELWRI bp are marked clean.
1188	 *
1189	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1190	 * if B_DELWRI is set.
1191	 *
1192	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1193	 * on pages to return pages to the VM page queues.
1194	 */
1195	if (bp->b_flags & B_DELWRI)
1196		bp->b_flags &= ~B_RELBUF;
1197	else if (vm_page_count_severe()) {
1198		/*
1199		 * XXX This lock may not be necessary since BKGRDINPROG
1200		 * cannot be set while we hold the buf lock, it can only be
1201		 * cleared if it is already pending.
1202		 */
1203		if (bp->b_vp) {
1204			BO_LOCK(bp->b_bufobj);
1205			if (!(bp->b_vflags & BV_BKGRDINPROG))
1206				bp->b_flags |= B_RELBUF;
1207			BO_UNLOCK(bp->b_bufobj);
1208		} else
1209			bp->b_flags |= B_RELBUF;
1210	}
1211
1212	/*
1213	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1214	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1215	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1216	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1217	 *
1218	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1219	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1220	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1221	 *
1222	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1223	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1224	 * the commit state and we cannot afford to lose the buffer. If the
1225	 * buffer has a background write in progress, we need to keep it
1226	 * around to prevent it from being reconstituted and starting a second
1227	 * background write.
1228	 */
1229	if ((bp->b_flags & B_VMIO)
1230	    && !(bp->b_vp->v_mount != NULL &&
1231		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1232		 !vn_isdisk(bp->b_vp, NULL) &&
1233		 (bp->b_flags & B_DELWRI))
1234	    ) {
1235
1236		int i, j, resid;
1237		vm_page_t m;
1238		off_t foff;
1239		vm_pindex_t poff;
1240		vm_object_t obj;
1241
1242		obj = bp->b_bufobj->bo_object;
1243
1244		/*
1245		 * Get the base offset and length of the buffer.  Note that
1246		 * in the VMIO case if the buffer block size is not
1247		 * page-aligned then b_data pointer may not be page-aligned.
1248		 * But our b_pages[] array *IS* page aligned.
1249		 *
1250		 * block sizes less then DEV_BSIZE (usually 512) are not
1251		 * supported due to the page granularity bits (m->valid,
1252		 * m->dirty, etc...).
1253		 *
1254		 * See man buf(9) for more information
1255		 */
1256		resid = bp->b_bufsize;
1257		foff = bp->b_offset;
1258		VM_OBJECT_LOCK(obj);
1259		for (i = 0; i < bp->b_npages; i++) {
1260			int had_bogus = 0;
1261
1262			m = bp->b_pages[i];
1263
1264			/*
1265			 * If we hit a bogus page, fixup *all* the bogus pages
1266			 * now.
1267			 */
1268			if (m == bogus_page) {
1269				poff = OFF_TO_IDX(bp->b_offset);
1270				had_bogus = 1;
1271
1272				for (j = i; j < bp->b_npages; j++) {
1273					vm_page_t mtmp;
1274					mtmp = bp->b_pages[j];
1275					if (mtmp == bogus_page) {
1276						mtmp = vm_page_lookup(obj, poff + j);
1277						if (!mtmp) {
1278							panic("brelse: page missing\n");
1279						}
1280						bp->b_pages[j] = mtmp;
1281					}
1282				}
1283
1284				if ((bp->b_flags & B_INVAL) == 0) {
1285					pmap_qenter(
1286					    trunc_page((vm_offset_t)bp->b_data),
1287					    bp->b_pages, bp->b_npages);
1288				}
1289				m = bp->b_pages[i];
1290			}
1291			if ((bp->b_flags & B_NOCACHE) ||
1292			    (bp->b_ioflags & BIO_ERROR)) {
1293				int poffset = foff & PAGE_MASK;
1294				int presid = resid > (PAGE_SIZE - poffset) ?
1295					(PAGE_SIZE - poffset) : resid;
1296
1297				KASSERT(presid >= 0, ("brelse: extra page"));
1298				vm_page_lock_queues();
1299				vm_page_set_invalid(m, poffset, presid);
1300				vm_page_unlock_queues();
1301				if (had_bogus)
1302					printf("avoided corruption bug in bogus_page/brelse code\n");
1303			}
1304			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1305			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1306		}
1307		VM_OBJECT_UNLOCK(obj);
1308		if (bp->b_flags & (B_INVAL | B_RELBUF))
1309			vfs_vmio_release(bp);
1310
1311	} else if (bp->b_flags & B_VMIO) {
1312
1313		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1314			vfs_vmio_release(bp);
1315		}
1316
1317	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1318		if (bp->b_bufsize != 0)
1319			allocbuf(bp, 0);
1320		if (bp->b_vp != NULL)
1321			brelvp(bp);
1322	}
1323
1324	if (BUF_REFCNT(bp) > 1) {
1325		/* do not release to free list */
1326		BUF_UNLOCK(bp);
1327		return;
1328	}
1329
1330	/* enqueue */
1331	mtx_lock(&bqlock);
1332	/* Handle delayed bremfree() processing. */
1333	if (bp->b_flags & B_REMFREE)
1334		bremfreel(bp);
1335	if (bp->b_qindex != QUEUE_NONE)
1336		panic("brelse: free buffer onto another queue???");
1337
1338	/* buffers with no memory */
1339	if (bp->b_bufsize == 0) {
1340		bp->b_flags |= B_INVAL;
1341		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1342		if (bp->b_vflags & BV_BKGRDINPROG)
1343			panic("losing buffer 1");
1344		if (bp->b_kvasize) {
1345			bp->b_qindex = QUEUE_EMPTYKVA;
1346		} else {
1347			bp->b_qindex = QUEUE_EMPTY;
1348		}
1349		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1350	/* buffers with junk contents */
1351	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1352	    (bp->b_ioflags & BIO_ERROR)) {
1353		bp->b_flags |= B_INVAL;
1354		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1355		if (bp->b_vflags & BV_BKGRDINPROG)
1356			panic("losing buffer 2");
1357		bp->b_qindex = QUEUE_CLEAN;
1358		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1359	/* remaining buffers */
1360	} else {
1361		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1362		    (B_DELWRI|B_NEEDSGIANT))
1363			bp->b_qindex = QUEUE_DIRTY_GIANT;
1364		if (bp->b_flags & B_DELWRI)
1365			bp->b_qindex = QUEUE_DIRTY;
1366		else
1367			bp->b_qindex = QUEUE_CLEAN;
1368		if (bp->b_flags & B_AGE)
1369			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1370		else
1371			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1372	}
1373	mtx_unlock(&bqlock);
1374
1375	/*
1376	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1377	 * placed the buffer on the correct queue.  We must also disassociate
1378	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1379	 * find it.
1380	 */
1381	if (bp->b_flags & B_INVAL) {
1382		if (bp->b_flags & B_DELWRI)
1383			bundirty(bp);
1384		if (bp->b_vp)
1385			brelvp(bp);
1386	}
1387
1388	/*
1389	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1390	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1391	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1392	 * if B_INVAL is set ).
1393	 */
1394
1395	if (!(bp->b_flags & B_DELWRI))
1396		bufcountwakeup();
1397
1398	/*
1399	 * Something we can maybe free or reuse
1400	 */
1401	if (bp->b_bufsize || bp->b_kvasize)
1402		bufspacewakeup();
1403
1404	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1405	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1406		panic("brelse: not dirty");
1407	/* unlock */
1408	BUF_UNLOCK(bp);
1409}
1410
1411/*
1412 * Release a buffer back to the appropriate queue but do not try to free
1413 * it.  The buffer is expected to be used again soon.
1414 *
1415 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1416 * biodone() to requeue an async I/O on completion.  It is also used when
1417 * known good buffers need to be requeued but we think we may need the data
1418 * again soon.
1419 *
1420 * XXX we should be able to leave the B_RELBUF hint set on completion.
1421 */
1422void
1423bqrelse(struct buf *bp)
1424{
1425	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1426	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1427	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1428
1429	if (BUF_REFCNT(bp) > 1) {
1430		/* do not release to free list */
1431		BUF_UNLOCK(bp);
1432		return;
1433	}
1434
1435	if (bp->b_flags & B_MANAGED) {
1436		if (bp->b_flags & B_REMFREE) {
1437			mtx_lock(&bqlock);
1438			bremfreel(bp);
1439			mtx_unlock(&bqlock);
1440		}
1441		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1442		BUF_UNLOCK(bp);
1443		return;
1444	}
1445
1446	mtx_lock(&bqlock);
1447	/* Handle delayed bremfree() processing. */
1448	if (bp->b_flags & B_REMFREE)
1449		bremfreel(bp);
1450	if (bp->b_qindex != QUEUE_NONE)
1451		panic("bqrelse: free buffer onto another queue???");
1452	/* buffers with stale but valid contents */
1453	if (bp->b_flags & B_DELWRI) {
1454		if (bp->b_flags & B_NEEDSGIANT)
1455			bp->b_qindex = QUEUE_DIRTY_GIANT;
1456		else
1457			bp->b_qindex = QUEUE_DIRTY;
1458		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1459	} else {
1460		/*
1461		 * XXX This lock may not be necessary since BKGRDINPROG
1462		 * cannot be set while we hold the buf lock, it can only be
1463		 * cleared if it is already pending.
1464		 */
1465		BO_LOCK(bp->b_bufobj);
1466		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1467			BO_UNLOCK(bp->b_bufobj);
1468			bp->b_qindex = QUEUE_CLEAN;
1469			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1470			    b_freelist);
1471		} else {
1472			/*
1473			 * We are too low on memory, we have to try to free
1474			 * the buffer (most importantly: the wired pages
1475			 * making up its backing store) *now*.
1476			 */
1477			BO_UNLOCK(bp->b_bufobj);
1478			mtx_unlock(&bqlock);
1479			brelse(bp);
1480			return;
1481		}
1482	}
1483	mtx_unlock(&bqlock);
1484
1485	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1486		bufcountwakeup();
1487
1488	/*
1489	 * Something we can maybe free or reuse.
1490	 */
1491	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1492		bufspacewakeup();
1493
1494	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1495	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1496		panic("bqrelse: not dirty");
1497	/* unlock */
1498	BUF_UNLOCK(bp);
1499}
1500
1501/* Give pages used by the bp back to the VM system (where possible) */
1502static void
1503vfs_vmio_release(struct buf *bp)
1504{
1505	int i;
1506	vm_page_t m;
1507
1508	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1509	vm_page_lock_queues();
1510	for (i = 0; i < bp->b_npages; i++) {
1511		m = bp->b_pages[i];
1512		bp->b_pages[i] = NULL;
1513		/*
1514		 * In order to keep page LRU ordering consistent, put
1515		 * everything on the inactive queue.
1516		 */
1517		vm_page_unwire(m, 0);
1518		/*
1519		 * We don't mess with busy pages, it is
1520		 * the responsibility of the process that
1521		 * busied the pages to deal with them.
1522		 */
1523		if ((m->oflags & VPO_BUSY) || (m->busy != 0))
1524			continue;
1525
1526		if (m->wire_count == 0) {
1527			/*
1528			 * Might as well free the page if we can and it has
1529			 * no valid data.  We also free the page if the
1530			 * buffer was used for direct I/O
1531			 */
1532			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1533			    m->hold_count == 0) {
1534				vm_page_free(m);
1535			} else if (bp->b_flags & B_DIRECT) {
1536				vm_page_try_to_free(m);
1537			} else if (vm_page_count_severe()) {
1538				vm_page_try_to_cache(m);
1539			}
1540		}
1541	}
1542	vm_page_unlock_queues();
1543	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1544	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1545
1546	if (bp->b_bufsize) {
1547		bufspacewakeup();
1548		bp->b_bufsize = 0;
1549	}
1550	bp->b_npages = 0;
1551	bp->b_flags &= ~B_VMIO;
1552	if (bp->b_vp)
1553		brelvp(bp);
1554}
1555
1556/*
1557 * Check to see if a block at a particular lbn is available for a clustered
1558 * write.
1559 */
1560static int
1561vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1562{
1563	struct buf *bpa;
1564	int match;
1565
1566	match = 0;
1567
1568	/* If the buf isn't in core skip it */
1569	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1570		return (0);
1571
1572	/* If the buf is busy we don't want to wait for it */
1573	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1574		return (0);
1575
1576	/* Only cluster with valid clusterable delayed write buffers */
1577	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1578	    (B_DELWRI | B_CLUSTEROK))
1579		goto done;
1580
1581	if (bpa->b_bufsize != size)
1582		goto done;
1583
1584	/*
1585	 * Check to see if it is in the expected place on disk and that the
1586	 * block has been mapped.
1587	 */
1588	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1589		match = 1;
1590done:
1591	BUF_UNLOCK(bpa);
1592	return (match);
1593}
1594
1595/*
1596 *	vfs_bio_awrite:
1597 *
1598 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1599 *	This is much better then the old way of writing only one buffer at
1600 *	a time.  Note that we may not be presented with the buffers in the
1601 *	correct order, so we search for the cluster in both directions.
1602 */
1603int
1604vfs_bio_awrite(struct buf *bp)
1605{
1606	int i;
1607	int j;
1608	daddr_t lblkno = bp->b_lblkno;
1609	struct vnode *vp = bp->b_vp;
1610	int ncl;
1611	int nwritten;
1612	int size;
1613	int maxcl;
1614
1615	/*
1616	 * right now we support clustered writing only to regular files.  If
1617	 * we find a clusterable block we could be in the middle of a cluster
1618	 * rather then at the beginning.
1619	 */
1620	if ((vp->v_type == VREG) &&
1621	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1622	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1623
1624		size = vp->v_mount->mnt_stat.f_iosize;
1625		maxcl = MAXPHYS / size;
1626
1627		VI_LOCK(vp);
1628		for (i = 1; i < maxcl; i++)
1629			if (vfs_bio_clcheck(vp, size, lblkno + i,
1630			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1631				break;
1632
1633		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1634			if (vfs_bio_clcheck(vp, size, lblkno - j,
1635			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1636				break;
1637
1638		VI_UNLOCK(vp);
1639		--j;
1640		ncl = i + j;
1641		/*
1642		 * this is a possible cluster write
1643		 */
1644		if (ncl != 1) {
1645			BUF_UNLOCK(bp);
1646			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1647			return nwritten;
1648		}
1649	}
1650	bremfree(bp);
1651	bp->b_flags |= B_ASYNC;
1652	/*
1653	 * default (old) behavior, writing out only one block
1654	 *
1655	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1656	 */
1657	nwritten = bp->b_bufsize;
1658	(void) bwrite(bp);
1659
1660	return nwritten;
1661}
1662
1663/*
1664 *	getnewbuf:
1665 *
1666 *	Find and initialize a new buffer header, freeing up existing buffers
1667 *	in the bufqueues as necessary.  The new buffer is returned locked.
1668 *
1669 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1670 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1671 *
1672 *	We block if:
1673 *		We have insufficient buffer headers
1674 *		We have insufficient buffer space
1675 *		buffer_map is too fragmented ( space reservation fails )
1676 *		If we have to flush dirty buffers ( but we try to avoid this )
1677 *
1678 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1679 *	Instead we ask the buf daemon to do it for us.  We attempt to
1680 *	avoid piecemeal wakeups of the pageout daemon.
1681 */
1682
1683static struct buf *
1684getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1685{
1686	struct buf *bp;
1687	struct buf *nbp;
1688	int defrag = 0;
1689	int nqindex;
1690	static int flushingbufs;
1691
1692	/*
1693	 * We can't afford to block since we might be holding a vnode lock,
1694	 * which may prevent system daemons from running.  We deal with
1695	 * low-memory situations by proactively returning memory and running
1696	 * async I/O rather then sync I/O.
1697	 */
1698
1699	atomic_add_int(&getnewbufcalls, 1);
1700	atomic_subtract_int(&getnewbufrestarts, 1);
1701restart:
1702	atomic_add_int(&getnewbufrestarts, 1);
1703
1704	/*
1705	 * Setup for scan.  If we do not have enough free buffers,
1706	 * we setup a degenerate case that immediately fails.  Note
1707	 * that if we are specially marked process, we are allowed to
1708	 * dip into our reserves.
1709	 *
1710	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1711	 *
1712	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1713	 * However, there are a number of cases (defragging, reusing, ...)
1714	 * where we cannot backup.
1715	 */
1716	mtx_lock(&bqlock);
1717	nqindex = QUEUE_EMPTYKVA;
1718	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1719
1720	if (nbp == NULL) {
1721		/*
1722		 * If no EMPTYKVA buffers and we are either
1723		 * defragging or reusing, locate a CLEAN buffer
1724		 * to free or reuse.  If bufspace useage is low
1725		 * skip this step so we can allocate a new buffer.
1726		 */
1727		if (defrag || bufspace >= lobufspace) {
1728			nqindex = QUEUE_CLEAN;
1729			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1730		}
1731
1732		/*
1733		 * If we could not find or were not allowed to reuse a
1734		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1735		 * buffer.  We can only use an EMPTY buffer if allocating
1736		 * its KVA would not otherwise run us out of buffer space.
1737		 */
1738		if (nbp == NULL && defrag == 0 &&
1739		    bufspace + maxsize < hibufspace) {
1740			nqindex = QUEUE_EMPTY;
1741			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1742		}
1743	}
1744
1745	/*
1746	 * Run scan, possibly freeing data and/or kva mappings on the fly
1747	 * depending.
1748	 */
1749
1750	while ((bp = nbp) != NULL) {
1751		int qindex = nqindex;
1752
1753		/*
1754		 * Calculate next bp ( we can only use it if we do not block
1755		 * or do other fancy things ).
1756		 */
1757		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1758			switch(qindex) {
1759			case QUEUE_EMPTY:
1760				nqindex = QUEUE_EMPTYKVA;
1761				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1762					break;
1763				/* FALLTHROUGH */
1764			case QUEUE_EMPTYKVA:
1765				nqindex = QUEUE_CLEAN;
1766				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1767					break;
1768				/* FALLTHROUGH */
1769			case QUEUE_CLEAN:
1770				/*
1771				 * nbp is NULL.
1772				 */
1773				break;
1774			}
1775		}
1776		/*
1777		 * If we are defragging then we need a buffer with
1778		 * b_kvasize != 0.  XXX this situation should no longer
1779		 * occur, if defrag is non-zero the buffer's b_kvasize
1780		 * should also be non-zero at this point.  XXX
1781		 */
1782		if (defrag && bp->b_kvasize == 0) {
1783			printf("Warning: defrag empty buffer %p\n", bp);
1784			continue;
1785		}
1786
1787		/*
1788		 * Start freeing the bp.  This is somewhat involved.  nbp
1789		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1790		 */
1791		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1792			continue;
1793		if (bp->b_vp) {
1794			BO_LOCK(bp->b_bufobj);
1795			if (bp->b_vflags & BV_BKGRDINPROG) {
1796				BO_UNLOCK(bp->b_bufobj);
1797				BUF_UNLOCK(bp);
1798				continue;
1799			}
1800			BO_UNLOCK(bp->b_bufobj);
1801		}
1802		CTR6(KTR_BUF,
1803		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1804		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1805		    bp->b_kvasize, bp->b_bufsize, qindex);
1806
1807		/*
1808		 * Sanity Checks
1809		 */
1810		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1811
1812		/*
1813		 * Note: we no longer distinguish between VMIO and non-VMIO
1814		 * buffers.
1815		 */
1816
1817		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1818
1819		bremfreel(bp);
1820		mtx_unlock(&bqlock);
1821
1822		if (qindex == QUEUE_CLEAN) {
1823			if (bp->b_flags & B_VMIO) {
1824				bp->b_flags &= ~B_ASYNC;
1825				vfs_vmio_release(bp);
1826			}
1827			if (bp->b_vp)
1828				brelvp(bp);
1829		}
1830
1831		/*
1832		 * NOTE:  nbp is now entirely invalid.  We can only restart
1833		 * the scan from this point on.
1834		 *
1835		 * Get the rest of the buffer freed up.  b_kva* is still
1836		 * valid after this operation.
1837		 */
1838
1839		if (bp->b_rcred != NOCRED) {
1840			crfree(bp->b_rcred);
1841			bp->b_rcred = NOCRED;
1842		}
1843		if (bp->b_wcred != NOCRED) {
1844			crfree(bp->b_wcred);
1845			bp->b_wcred = NOCRED;
1846		}
1847		if (LIST_FIRST(&bp->b_dep) != NULL)
1848			buf_deallocate(bp);
1849		if (bp->b_vflags & BV_BKGRDINPROG)
1850			panic("losing buffer 3");
1851		KASSERT(bp->b_vp == NULL,
1852		    ("bp: %p still has vnode %p.  qindex: %d",
1853		    bp, bp->b_vp, qindex));
1854		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1855		   ("bp: %p still on a buffer list. xflags %X",
1856		    bp, bp->b_xflags));
1857
1858		if (bp->b_bufsize)
1859			allocbuf(bp, 0);
1860
1861		bp->b_flags = 0;
1862		bp->b_ioflags = 0;
1863		bp->b_xflags = 0;
1864		bp->b_vflags = 0;
1865		bp->b_vp = NULL;
1866		bp->b_blkno = bp->b_lblkno = 0;
1867		bp->b_offset = NOOFFSET;
1868		bp->b_iodone = 0;
1869		bp->b_error = 0;
1870		bp->b_resid = 0;
1871		bp->b_bcount = 0;
1872		bp->b_npages = 0;
1873		bp->b_dirtyoff = bp->b_dirtyend = 0;
1874		bp->b_bufobj = NULL;
1875		bp->b_pin_count = 0;
1876		bp->b_fsprivate1 = NULL;
1877		bp->b_fsprivate2 = NULL;
1878		bp->b_fsprivate3 = NULL;
1879
1880		LIST_INIT(&bp->b_dep);
1881
1882		/*
1883		 * If we are defragging then free the buffer.
1884		 */
1885		if (defrag) {
1886			bp->b_flags |= B_INVAL;
1887			bfreekva(bp);
1888			brelse(bp);
1889			defrag = 0;
1890			goto restart;
1891		}
1892
1893		/*
1894		 * Notify any waiters for the buffer lock about
1895		 * identity change by freeing the buffer.
1896		 */
1897		if (qindex == QUEUE_CLEAN && BUF_LOCKWAITERS(bp) > 0) {
1898			bp->b_flags |= B_INVAL;
1899			bfreekva(bp);
1900			brelse(bp);
1901			goto restart;
1902		}
1903
1904		/*
1905		 * If we are overcomitted then recover the buffer and its
1906		 * KVM space.  This occurs in rare situations when multiple
1907		 * processes are blocked in getnewbuf() or allocbuf().
1908		 */
1909		if (bufspace >= hibufspace)
1910			flushingbufs = 1;
1911		if (flushingbufs && bp->b_kvasize != 0) {
1912			bp->b_flags |= B_INVAL;
1913			bfreekva(bp);
1914			brelse(bp);
1915			goto restart;
1916		}
1917		if (bufspace < lobufspace)
1918			flushingbufs = 0;
1919		break;
1920	}
1921
1922	/*
1923	 * If we exhausted our list, sleep as appropriate.  We may have to
1924	 * wakeup various daemons and write out some dirty buffers.
1925	 *
1926	 * Generally we are sleeping due to insufficient buffer space.
1927	 */
1928
1929	if (bp == NULL) {
1930		int flags;
1931		char *waitmsg;
1932
1933		if (defrag) {
1934			flags = VFS_BIO_NEED_BUFSPACE;
1935			waitmsg = "nbufkv";
1936		} else if (bufspace >= hibufspace) {
1937			waitmsg = "nbufbs";
1938			flags = VFS_BIO_NEED_BUFSPACE;
1939		} else {
1940			waitmsg = "newbuf";
1941			flags = VFS_BIO_NEED_ANY;
1942		}
1943		mtx_lock(&nblock);
1944		needsbuffer |= flags;
1945		mtx_unlock(&nblock);
1946		mtx_unlock(&bqlock);
1947
1948		bd_speedup();	/* heeeelp */
1949
1950		mtx_lock(&nblock);
1951		while (needsbuffer & flags) {
1952			if (msleep(&needsbuffer, &nblock,
1953			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1954				mtx_unlock(&nblock);
1955				return (NULL);
1956			}
1957		}
1958		mtx_unlock(&nblock);
1959	} else {
1960		/*
1961		 * We finally have a valid bp.  We aren't quite out of the
1962		 * woods, we still have to reserve kva space.  In order
1963		 * to keep fragmentation sane we only allocate kva in
1964		 * BKVASIZE chunks.
1965		 */
1966		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1967
1968		if (maxsize != bp->b_kvasize) {
1969			vm_offset_t addr = 0;
1970
1971			bfreekva(bp);
1972
1973			vm_map_lock(buffer_map);
1974			if (vm_map_findspace(buffer_map,
1975				vm_map_min(buffer_map), maxsize, &addr)) {
1976				/*
1977				 * Uh oh.  Buffer map is to fragmented.  We
1978				 * must defragment the map.
1979				 */
1980				atomic_add_int(&bufdefragcnt, 1);
1981				vm_map_unlock(buffer_map);
1982				defrag = 1;
1983				bp->b_flags |= B_INVAL;
1984				brelse(bp);
1985				goto restart;
1986			}
1987			if (addr) {
1988				vm_map_insert(buffer_map, NULL, 0,
1989					addr, addr + maxsize,
1990					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1991
1992				bp->b_kvabase = (caddr_t) addr;
1993				bp->b_kvasize = maxsize;
1994				atomic_add_int(&bufspace, bp->b_kvasize);
1995				atomic_add_int(&bufreusecnt, 1);
1996			}
1997			vm_map_unlock(buffer_map);
1998		}
1999		bp->b_saveaddr = bp->b_kvabase;
2000		bp->b_data = bp->b_saveaddr;
2001	}
2002	return(bp);
2003}
2004
2005/*
2006 *	buf_daemon:
2007 *
2008 *	buffer flushing daemon.  Buffers are normally flushed by the
2009 *	update daemon but if it cannot keep up this process starts to
2010 *	take the load in an attempt to prevent getnewbuf() from blocking.
2011 */
2012
2013static struct kproc_desc buf_kp = {
2014	"bufdaemon",
2015	buf_daemon,
2016	&bufdaemonproc
2017};
2018SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2019
2020static void
2021buf_daemon()
2022{
2023
2024	/*
2025	 * This process needs to be suspended prior to shutdown sync.
2026	 */
2027	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2028	    SHUTDOWN_PRI_LAST);
2029
2030	/*
2031	 * This process is allowed to take the buffer cache to the limit
2032	 */
2033	curthread->td_pflags |= TDP_NORUNNINGBUF;
2034	mtx_lock(&bdlock);
2035	for (;;) {
2036		bd_request = 0;
2037		mtx_unlock(&bdlock);
2038
2039		kthread_suspend_check(bufdaemonproc);
2040
2041		/*
2042		 * Do the flush.  Limit the amount of in-transit I/O we
2043		 * allow to build up, otherwise we would completely saturate
2044		 * the I/O system.  Wakeup any waiting processes before we
2045		 * normally would so they can run in parallel with our drain.
2046		 */
2047		while (numdirtybuffers > lodirtybuffers) {
2048			int flushed;
2049
2050			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2051			/* The list empty check here is slightly racy */
2052			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2053				mtx_lock(&Giant);
2054				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2055				mtx_unlock(&Giant);
2056			}
2057			if (flushed == 0) {
2058				/*
2059				 * Could not find any buffers without rollback
2060				 * dependencies, so just write the first one
2061				 * in the hopes of eventually making progress.
2062				 */
2063				flushbufqueues(QUEUE_DIRTY, 1);
2064				if (!TAILQ_EMPTY(
2065				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2066					mtx_lock(&Giant);
2067					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2068					mtx_unlock(&Giant);
2069				}
2070				break;
2071			}
2072			uio_yield();
2073		}
2074
2075		/*
2076		 * Only clear bd_request if we have reached our low water
2077		 * mark.  The buf_daemon normally waits 1 second and
2078		 * then incrementally flushes any dirty buffers that have
2079		 * built up, within reason.
2080		 *
2081		 * If we were unable to hit our low water mark and couldn't
2082		 * find any flushable buffers, we sleep half a second.
2083		 * Otherwise we loop immediately.
2084		 */
2085		mtx_lock(&bdlock);
2086		if (numdirtybuffers <= lodirtybuffers) {
2087			/*
2088			 * We reached our low water mark, reset the
2089			 * request and sleep until we are needed again.
2090			 * The sleep is just so the suspend code works.
2091			 */
2092			bd_request = 0;
2093			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2094		} else {
2095			/*
2096			 * We couldn't find any flushable dirty buffers but
2097			 * still have too many dirty buffers, we
2098			 * have to sleep and try again.  (rare)
2099			 */
2100			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2101		}
2102	}
2103}
2104
2105/*
2106 *	flushbufqueues:
2107 *
2108 *	Try to flush a buffer in the dirty queue.  We must be careful to
2109 *	free up B_INVAL buffers instead of write them, which NFS is
2110 *	particularly sensitive to.
2111 */
2112static int flushwithdeps = 0;
2113SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2114    0, "Number of buffers flushed with dependecies that require rollbacks");
2115
2116static int
2117flushbufqueues(int queue, int flushdeps)
2118{
2119	struct thread *td = curthread;
2120	struct buf sentinel;
2121	struct vnode *vp;
2122	struct mount *mp;
2123	struct buf *bp;
2124	int hasdeps;
2125	int flushed;
2126	int target;
2127
2128	target = numdirtybuffers - lodirtybuffers;
2129	if (flushdeps && target > 2)
2130		target /= 2;
2131	flushed = 0;
2132	bp = NULL;
2133	mtx_lock(&bqlock);
2134	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2135	while (flushed != target) {
2136		bp = TAILQ_FIRST(&bufqueues[queue]);
2137		if (bp == &sentinel)
2138			break;
2139		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2140		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2141
2142		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2143			continue;
2144		if (bp->b_pin_count > 0) {
2145			BUF_UNLOCK(bp);
2146			continue;
2147		}
2148		BO_LOCK(bp->b_bufobj);
2149		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2150		    (bp->b_flags & B_DELWRI) == 0) {
2151			BO_UNLOCK(bp->b_bufobj);
2152			BUF_UNLOCK(bp);
2153			continue;
2154		}
2155		BO_UNLOCK(bp->b_bufobj);
2156		if (bp->b_flags & B_INVAL) {
2157			bremfreel(bp);
2158			mtx_unlock(&bqlock);
2159			brelse(bp);
2160			flushed++;
2161			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2162			mtx_lock(&bqlock);
2163			continue;
2164		}
2165
2166		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2167			if (flushdeps == 0) {
2168				BUF_UNLOCK(bp);
2169				continue;
2170			}
2171			hasdeps = 1;
2172		} else
2173			hasdeps = 0;
2174		/*
2175		 * We must hold the lock on a vnode before writing
2176		 * one of its buffers. Otherwise we may confuse, or
2177		 * in the case of a snapshot vnode, deadlock the
2178		 * system.
2179		 *
2180		 * The lock order here is the reverse of the normal
2181		 * of vnode followed by buf lock.  This is ok because
2182		 * the NOWAIT will prevent deadlock.
2183		 */
2184		vp = bp->b_vp;
2185		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2186			BUF_UNLOCK(bp);
2187			continue;
2188		}
2189		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2190			mtx_unlock(&bqlock);
2191			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2192			    bp, bp->b_vp, bp->b_flags);
2193			vfs_bio_awrite(bp);
2194			vn_finished_write(mp);
2195			VOP_UNLOCK(vp, 0, td);
2196			flushwithdeps += hasdeps;
2197			flushed++;
2198			waitrunningbufspace();
2199			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2200			mtx_lock(&bqlock);
2201			continue;
2202		}
2203		vn_finished_write(mp);
2204		BUF_UNLOCK(bp);
2205	}
2206	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2207	mtx_unlock(&bqlock);
2208	return (flushed);
2209}
2210
2211/*
2212 * Check to see if a block is currently memory resident.
2213 */
2214struct buf *
2215incore(struct bufobj *bo, daddr_t blkno)
2216{
2217	struct buf *bp;
2218
2219	BO_LOCK(bo);
2220	bp = gbincore(bo, blkno);
2221	BO_UNLOCK(bo);
2222	return (bp);
2223}
2224
2225/*
2226 * Returns true if no I/O is needed to access the
2227 * associated VM object.  This is like incore except
2228 * it also hunts around in the VM system for the data.
2229 */
2230
2231static int
2232inmem(struct vnode * vp, daddr_t blkno)
2233{
2234	vm_object_t obj;
2235	vm_offset_t toff, tinc, size;
2236	vm_page_t m;
2237	vm_ooffset_t off;
2238
2239	ASSERT_VOP_LOCKED(vp, "inmem");
2240
2241	if (incore(&vp->v_bufobj, blkno))
2242		return 1;
2243	if (vp->v_mount == NULL)
2244		return 0;
2245	obj = vp->v_object;
2246	if (obj == NULL)
2247		return (0);
2248
2249	size = PAGE_SIZE;
2250	if (size > vp->v_mount->mnt_stat.f_iosize)
2251		size = vp->v_mount->mnt_stat.f_iosize;
2252	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2253
2254	VM_OBJECT_LOCK(obj);
2255	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2256		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2257		if (!m)
2258			goto notinmem;
2259		tinc = size;
2260		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2261			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2262		if (vm_page_is_valid(m,
2263		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2264			goto notinmem;
2265	}
2266	VM_OBJECT_UNLOCK(obj);
2267	return 1;
2268
2269notinmem:
2270	VM_OBJECT_UNLOCK(obj);
2271	return (0);
2272}
2273
2274/*
2275 *	vfs_setdirty:
2276 *
2277 *	Sets the dirty range for a buffer based on the status of the dirty
2278 *	bits in the pages comprising the buffer.
2279 *
2280 *	The range is limited to the size of the buffer.
2281 *
2282 *	This routine is primarily used by NFS, but is generalized for the
2283 *	B_VMIO case.
2284 */
2285static void
2286vfs_setdirty(struct buf *bp)
2287{
2288
2289	/*
2290	 * Degenerate case - empty buffer
2291	 */
2292
2293	if (bp->b_bufsize == 0)
2294		return;
2295
2296	/*
2297	 * We qualify the scan for modified pages on whether the
2298	 * object has been flushed yet.
2299	 */
2300
2301	if ((bp->b_flags & B_VMIO) == 0)
2302		return;
2303
2304	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2305	vfs_setdirty_locked_object(bp);
2306	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2307}
2308
2309static void
2310vfs_setdirty_locked_object(struct buf *bp)
2311{
2312	vm_object_t object;
2313	int i;
2314
2315	object = bp->b_bufobj->bo_object;
2316	VM_OBJECT_LOCK_ASSERT(object, MA_OWNED);
2317	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2318		vm_offset_t boffset;
2319		vm_offset_t eoffset;
2320
2321		vm_page_lock_queues();
2322		/*
2323		 * test the pages to see if they have been modified directly
2324		 * by users through the VM system.
2325		 */
2326		for (i = 0; i < bp->b_npages; i++)
2327			vm_page_test_dirty(bp->b_pages[i]);
2328
2329		/*
2330		 * Calculate the encompassing dirty range, boffset and eoffset,
2331		 * (eoffset - boffset) bytes.
2332		 */
2333
2334		for (i = 0; i < bp->b_npages; i++) {
2335			if (bp->b_pages[i]->dirty)
2336				break;
2337		}
2338		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2339
2340		for (i = bp->b_npages - 1; i >= 0; --i) {
2341			if (bp->b_pages[i]->dirty) {
2342				break;
2343			}
2344		}
2345		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2346
2347		vm_page_unlock_queues();
2348		/*
2349		 * Fit it to the buffer.
2350		 */
2351
2352		if (eoffset > bp->b_bcount)
2353			eoffset = bp->b_bcount;
2354
2355		/*
2356		 * If we have a good dirty range, merge with the existing
2357		 * dirty range.
2358		 */
2359
2360		if (boffset < eoffset) {
2361			if (bp->b_dirtyoff > boffset)
2362				bp->b_dirtyoff = boffset;
2363			if (bp->b_dirtyend < eoffset)
2364				bp->b_dirtyend = eoffset;
2365		}
2366	}
2367}
2368
2369/*
2370 *	getblk:
2371 *
2372 *	Get a block given a specified block and offset into a file/device.
2373 *	The buffers B_DONE bit will be cleared on return, making it almost
2374 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2375 *	return.  The caller should clear B_INVAL prior to initiating a
2376 *	READ.
2377 *
2378 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2379 *	an existing buffer.
2380 *
2381 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2382 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2383 *	and then cleared based on the backing VM.  If the previous buffer is
2384 *	non-0-sized but invalid, B_CACHE will be cleared.
2385 *
2386 *	If getblk() must create a new buffer, the new buffer is returned with
2387 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2388 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2389 *	backing VM.
2390 *
2391 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2392 *	B_CACHE bit is clear.
2393 *
2394 *	What this means, basically, is that the caller should use B_CACHE to
2395 *	determine whether the buffer is fully valid or not and should clear
2396 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2397 *	the buffer by loading its data area with something, the caller needs
2398 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2399 *	the caller should set B_CACHE ( as an optimization ), else the caller
2400 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2401 *	a write attempt or if it was a successfull read.  If the caller
2402 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2403 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2404 */
2405struct buf *
2406getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2407    int flags)
2408{
2409	struct buf *bp;
2410	struct bufobj *bo;
2411	int error;
2412
2413	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2414	ASSERT_VOP_LOCKED(vp, "getblk");
2415	if (size > MAXBSIZE)
2416		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2417
2418	bo = &vp->v_bufobj;
2419loop:
2420	/*
2421	 * Block if we are low on buffers.   Certain processes are allowed
2422	 * to completely exhaust the buffer cache.
2423         *
2424         * If this check ever becomes a bottleneck it may be better to
2425         * move it into the else, when gbincore() fails.  At the moment
2426         * it isn't a problem.
2427	 *
2428	 * XXX remove if 0 sections (clean this up after its proven)
2429         */
2430	if (numfreebuffers == 0) {
2431		if (curthread == PCPU_GET(idlethread))
2432			return NULL;
2433		mtx_lock(&nblock);
2434		needsbuffer |= VFS_BIO_NEED_ANY;
2435		mtx_unlock(&nblock);
2436	}
2437
2438	VI_LOCK(vp);
2439	bp = gbincore(bo, blkno);
2440	if (bp != NULL) {
2441		int lockflags;
2442		/*
2443		 * Buffer is in-core.  If the buffer is not busy, it must
2444		 * be on a queue.
2445		 */
2446		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2447
2448		if (flags & GB_LOCK_NOWAIT)
2449			lockflags |= LK_NOWAIT;
2450
2451		error = BUF_TIMELOCK(bp, lockflags,
2452		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2453
2454		/*
2455		 * If we slept and got the lock we have to restart in case
2456		 * the buffer changed identities.
2457		 */
2458		if (error == ENOLCK)
2459			goto loop;
2460		/* We timed out or were interrupted. */
2461		else if (error)
2462			return (NULL);
2463
2464		/*
2465		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2466		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2467		 * and for a VMIO buffer B_CACHE is adjusted according to the
2468		 * backing VM cache.
2469		 */
2470		if (bp->b_flags & B_INVAL)
2471			bp->b_flags &= ~B_CACHE;
2472		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2473			bp->b_flags |= B_CACHE;
2474		bremfree(bp);
2475
2476		/*
2477		 * check for size inconsistancies for non-VMIO case.
2478		 */
2479
2480		if (bp->b_bcount != size) {
2481			if ((bp->b_flags & B_VMIO) == 0 ||
2482			    (size > bp->b_kvasize)) {
2483				if (bp->b_flags & B_DELWRI) {
2484					/*
2485					 * If buffer is pinned and caller does
2486					 * not want sleep  waiting for it to be
2487					 * unpinned, bail out
2488					 * */
2489					if (bp->b_pin_count > 0) {
2490						if (flags & GB_LOCK_NOWAIT) {
2491							bqrelse(bp);
2492							return (NULL);
2493						} else {
2494							bunpin_wait(bp);
2495						}
2496					}
2497					bp->b_flags |= B_NOCACHE;
2498					bwrite(bp);
2499				} else {
2500					if (LIST_FIRST(&bp->b_dep) == NULL) {
2501						bp->b_flags |= B_RELBUF;
2502						brelse(bp);
2503					} else {
2504						bp->b_flags |= B_NOCACHE;
2505						bwrite(bp);
2506					}
2507				}
2508				goto loop;
2509			}
2510		}
2511
2512		/*
2513		 * If the size is inconsistant in the VMIO case, we can resize
2514		 * the buffer.  This might lead to B_CACHE getting set or
2515		 * cleared.  If the size has not changed, B_CACHE remains
2516		 * unchanged from its previous state.
2517		 */
2518
2519		if (bp->b_bcount != size)
2520			allocbuf(bp, size);
2521
2522		KASSERT(bp->b_offset != NOOFFSET,
2523		    ("getblk: no buffer offset"));
2524
2525		/*
2526		 * A buffer with B_DELWRI set and B_CACHE clear must
2527		 * be committed before we can return the buffer in
2528		 * order to prevent the caller from issuing a read
2529		 * ( due to B_CACHE not being set ) and overwriting
2530		 * it.
2531		 *
2532		 * Most callers, including NFS and FFS, need this to
2533		 * operate properly either because they assume they
2534		 * can issue a read if B_CACHE is not set, or because
2535		 * ( for example ) an uncached B_DELWRI might loop due
2536		 * to softupdates re-dirtying the buffer.  In the latter
2537		 * case, B_CACHE is set after the first write completes,
2538		 * preventing further loops.
2539		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2540		 * above while extending the buffer, we cannot allow the
2541		 * buffer to remain with B_CACHE set after the write
2542		 * completes or it will represent a corrupt state.  To
2543		 * deal with this we set B_NOCACHE to scrap the buffer
2544		 * after the write.
2545		 *
2546		 * We might be able to do something fancy, like setting
2547		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2548		 * so the below call doesn't set B_CACHE, but that gets real
2549		 * confusing.  This is much easier.
2550		 */
2551
2552		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2553			bp->b_flags |= B_NOCACHE;
2554			bwrite(bp);
2555			goto loop;
2556		}
2557		bp->b_flags &= ~B_DONE;
2558	} else {
2559		int bsize, maxsize, vmio;
2560		off_t offset;
2561
2562		/*
2563		 * Buffer is not in-core, create new buffer.  The buffer
2564		 * returned by getnewbuf() is locked.  Note that the returned
2565		 * buffer is also considered valid (not marked B_INVAL).
2566		 */
2567		VI_UNLOCK(vp);
2568		/*
2569		 * If the user does not want us to create the buffer, bail out
2570		 * here.
2571		 */
2572		if (flags & GB_NOCREAT)
2573			return NULL;
2574		bsize = bo->bo_bsize;
2575		offset = blkno * bsize;
2576		vmio = vp->v_object != NULL;
2577		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2578		maxsize = imax(maxsize, bsize);
2579
2580		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2581		if (bp == NULL) {
2582			if (slpflag || slptimeo)
2583				return NULL;
2584			goto loop;
2585		}
2586
2587		/*
2588		 * This code is used to make sure that a buffer is not
2589		 * created while the getnewbuf routine is blocked.
2590		 * This can be a problem whether the vnode is locked or not.
2591		 * If the buffer is created out from under us, we have to
2592		 * throw away the one we just created.
2593		 *
2594		 * Note: this must occur before we associate the buffer
2595		 * with the vp especially considering limitations in
2596		 * the splay tree implementation when dealing with duplicate
2597		 * lblkno's.
2598		 */
2599		BO_LOCK(bo);
2600		if (gbincore(bo, blkno)) {
2601			BO_UNLOCK(bo);
2602			bp->b_flags |= B_INVAL;
2603			brelse(bp);
2604			goto loop;
2605		}
2606
2607		/*
2608		 * Insert the buffer into the hash, so that it can
2609		 * be found by incore.
2610		 */
2611		bp->b_blkno = bp->b_lblkno = blkno;
2612		bp->b_offset = offset;
2613		bgetvp(vp, bp);
2614		BO_UNLOCK(bo);
2615
2616		/*
2617		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2618		 * buffer size starts out as 0, B_CACHE will be set by
2619		 * allocbuf() for the VMIO case prior to it testing the
2620		 * backing store for validity.
2621		 */
2622
2623		if (vmio) {
2624			bp->b_flags |= B_VMIO;
2625#if defined(VFS_BIO_DEBUG)
2626			if (vn_canvmio(vp) != TRUE)
2627				printf("getblk: VMIO on vnode type %d\n",
2628					vp->v_type);
2629#endif
2630			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2631			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2632			    bp, vp->v_object, bp->b_bufobj->bo_object));
2633		} else {
2634			bp->b_flags &= ~B_VMIO;
2635			KASSERT(bp->b_bufobj->bo_object == NULL,
2636			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2637			    bp, bp->b_bufobj->bo_object));
2638		}
2639
2640		allocbuf(bp, size);
2641		bp->b_flags &= ~B_DONE;
2642	}
2643	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2644	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2645	KASSERT(bp->b_bufobj == bo,
2646	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2647	return (bp);
2648}
2649
2650/*
2651 * Get an empty, disassociated buffer of given size.  The buffer is initially
2652 * set to B_INVAL.
2653 */
2654struct buf *
2655geteblk(int size)
2656{
2657	struct buf *bp;
2658	int maxsize;
2659
2660	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2661	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2662		continue;
2663	allocbuf(bp, size);
2664	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2665	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2666	return (bp);
2667}
2668
2669
2670/*
2671 * This code constitutes the buffer memory from either anonymous system
2672 * memory (in the case of non-VMIO operations) or from an associated
2673 * VM object (in the case of VMIO operations).  This code is able to
2674 * resize a buffer up or down.
2675 *
2676 * Note that this code is tricky, and has many complications to resolve
2677 * deadlock or inconsistant data situations.  Tread lightly!!!
2678 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2679 * the caller.  Calling this code willy nilly can result in the loss of data.
2680 *
2681 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2682 * B_CACHE for the non-VMIO case.
2683 */
2684
2685int
2686allocbuf(struct buf *bp, int size)
2687{
2688	int newbsize, mbsize;
2689	int i;
2690
2691	if (BUF_REFCNT(bp) == 0)
2692		panic("allocbuf: buffer not busy");
2693
2694	if (bp->b_kvasize < size)
2695		panic("allocbuf: buffer too small");
2696
2697	if ((bp->b_flags & B_VMIO) == 0) {
2698		caddr_t origbuf;
2699		int origbufsize;
2700		/*
2701		 * Just get anonymous memory from the kernel.  Don't
2702		 * mess with B_CACHE.
2703		 */
2704		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2705		if (bp->b_flags & B_MALLOC)
2706			newbsize = mbsize;
2707		else
2708			newbsize = round_page(size);
2709
2710		if (newbsize < bp->b_bufsize) {
2711			/*
2712			 * malloced buffers are not shrunk
2713			 */
2714			if (bp->b_flags & B_MALLOC) {
2715				if (newbsize) {
2716					bp->b_bcount = size;
2717				} else {
2718					free(bp->b_data, M_BIOBUF);
2719					if (bp->b_bufsize) {
2720						atomic_subtract_int(
2721						    &bufmallocspace,
2722						    bp->b_bufsize);
2723						bufspacewakeup();
2724						bp->b_bufsize = 0;
2725					}
2726					bp->b_saveaddr = bp->b_kvabase;
2727					bp->b_data = bp->b_saveaddr;
2728					bp->b_bcount = 0;
2729					bp->b_flags &= ~B_MALLOC;
2730				}
2731				return 1;
2732			}
2733			vm_hold_free_pages(
2734			    bp,
2735			    (vm_offset_t) bp->b_data + newbsize,
2736			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2737		} else if (newbsize > bp->b_bufsize) {
2738			/*
2739			 * We only use malloced memory on the first allocation.
2740			 * and revert to page-allocated memory when the buffer
2741			 * grows.
2742			 */
2743			/*
2744			 * There is a potential smp race here that could lead
2745			 * to bufmallocspace slightly passing the max.  It
2746			 * is probably extremely rare and not worth worrying
2747			 * over.
2748			 */
2749			if ( (bufmallocspace < maxbufmallocspace) &&
2750				(bp->b_bufsize == 0) &&
2751				(mbsize <= PAGE_SIZE/2)) {
2752
2753				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2754				bp->b_bufsize = mbsize;
2755				bp->b_bcount = size;
2756				bp->b_flags |= B_MALLOC;
2757				atomic_add_int(&bufmallocspace, mbsize);
2758				return 1;
2759			}
2760			origbuf = NULL;
2761			origbufsize = 0;
2762			/*
2763			 * If the buffer is growing on its other-than-first allocation,
2764			 * then we revert to the page-allocation scheme.
2765			 */
2766			if (bp->b_flags & B_MALLOC) {
2767				origbuf = bp->b_data;
2768				origbufsize = bp->b_bufsize;
2769				bp->b_data = bp->b_kvabase;
2770				if (bp->b_bufsize) {
2771					atomic_subtract_int(&bufmallocspace,
2772					    bp->b_bufsize);
2773					bufspacewakeup();
2774					bp->b_bufsize = 0;
2775				}
2776				bp->b_flags &= ~B_MALLOC;
2777				newbsize = round_page(newbsize);
2778			}
2779			vm_hold_load_pages(
2780			    bp,
2781			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2782			    (vm_offset_t) bp->b_data + newbsize);
2783			if (origbuf) {
2784				bcopy(origbuf, bp->b_data, origbufsize);
2785				free(origbuf, M_BIOBUF);
2786			}
2787		}
2788	} else {
2789		int desiredpages;
2790
2791		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2792		desiredpages = (size == 0) ? 0 :
2793			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2794
2795		if (bp->b_flags & B_MALLOC)
2796			panic("allocbuf: VMIO buffer can't be malloced");
2797		/*
2798		 * Set B_CACHE initially if buffer is 0 length or will become
2799		 * 0-length.
2800		 */
2801		if (size == 0 || bp->b_bufsize == 0)
2802			bp->b_flags |= B_CACHE;
2803
2804		if (newbsize < bp->b_bufsize) {
2805			/*
2806			 * DEV_BSIZE aligned new buffer size is less then the
2807			 * DEV_BSIZE aligned existing buffer size.  Figure out
2808			 * if we have to remove any pages.
2809			 */
2810			if (desiredpages < bp->b_npages) {
2811				vm_page_t m;
2812
2813				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2814				vm_page_lock_queues();
2815				for (i = desiredpages; i < bp->b_npages; i++) {
2816					/*
2817					 * the page is not freed here -- it
2818					 * is the responsibility of
2819					 * vnode_pager_setsize
2820					 */
2821					m = bp->b_pages[i];
2822					KASSERT(m != bogus_page,
2823					    ("allocbuf: bogus page found"));
2824					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2825						vm_page_lock_queues();
2826
2827					bp->b_pages[i] = NULL;
2828					vm_page_unwire(m, 0);
2829				}
2830				vm_page_unlock_queues();
2831				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2832				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2833				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2834				bp->b_npages = desiredpages;
2835			}
2836		} else if (size > bp->b_bcount) {
2837			/*
2838			 * We are growing the buffer, possibly in a
2839			 * byte-granular fashion.
2840			 */
2841			struct vnode *vp;
2842			vm_object_t obj;
2843			vm_offset_t toff;
2844			vm_offset_t tinc;
2845
2846			/*
2847			 * Step 1, bring in the VM pages from the object,
2848			 * allocating them if necessary.  We must clear
2849			 * B_CACHE if these pages are not valid for the
2850			 * range covered by the buffer.
2851			 */
2852
2853			vp = bp->b_vp;
2854			obj = bp->b_bufobj->bo_object;
2855
2856			VM_OBJECT_LOCK(obj);
2857			while (bp->b_npages < desiredpages) {
2858				vm_page_t m;
2859				vm_pindex_t pi;
2860
2861				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2862				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2863					/*
2864					 * note: must allocate system pages
2865					 * since blocking here could intefere
2866					 * with paging I/O, no matter which
2867					 * process we are.
2868					 */
2869					m = vm_page_alloc(obj, pi,
2870					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2871					    VM_ALLOC_WIRED);
2872					if (m == NULL) {
2873						atomic_add_int(&vm_pageout_deficit,
2874						    desiredpages - bp->b_npages);
2875						VM_OBJECT_UNLOCK(obj);
2876						VM_WAIT;
2877						VM_OBJECT_LOCK(obj);
2878					} else {
2879						bp->b_flags &= ~B_CACHE;
2880						bp->b_pages[bp->b_npages] = m;
2881						++bp->b_npages;
2882					}
2883					continue;
2884				}
2885
2886				/*
2887				 * We found a page.  If we have to sleep on it,
2888				 * retry because it might have gotten freed out
2889				 * from under us.
2890				 *
2891				 * We can only test VPO_BUSY here.  Blocking on
2892				 * m->busy might lead to a deadlock:
2893				 *
2894				 *  vm_fault->getpages->cluster_read->allocbuf
2895				 *
2896				 */
2897				vm_page_lock_queues();
2898				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2899					continue;
2900
2901				/*
2902				 * We have a good page.  Should we wakeup the
2903				 * page daemon?
2904				 */
2905				if ((curproc != pageproc) &&
2906				    (VM_PAGE_INQUEUE1(m, PQ_CACHE)) &&
2907				    ((cnt.v_free_count + cnt.v_cache_count) <
2908			 		(cnt.v_free_min + cnt.v_cache_min))) {
2909					pagedaemon_wakeup();
2910				}
2911				vm_page_wire(m);
2912				vm_page_unlock_queues();
2913				bp->b_pages[bp->b_npages] = m;
2914				++bp->b_npages;
2915			}
2916
2917			/*
2918			 * Step 2.  We've loaded the pages into the buffer,
2919			 * we have to figure out if we can still have B_CACHE
2920			 * set.  Note that B_CACHE is set according to the
2921			 * byte-granular range ( bcount and size ), new the
2922			 * aligned range ( newbsize ).
2923			 *
2924			 * The VM test is against m->valid, which is DEV_BSIZE
2925			 * aligned.  Needless to say, the validity of the data
2926			 * needs to also be DEV_BSIZE aligned.  Note that this
2927			 * fails with NFS if the server or some other client
2928			 * extends the file's EOF.  If our buffer is resized,
2929			 * B_CACHE may remain set! XXX
2930			 */
2931
2932			toff = bp->b_bcount;
2933			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2934
2935			while ((bp->b_flags & B_CACHE) && toff < size) {
2936				vm_pindex_t pi;
2937
2938				if (tinc > (size - toff))
2939					tinc = size - toff;
2940
2941				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2942				    PAGE_SHIFT;
2943
2944				vfs_buf_test_cache(
2945				    bp,
2946				    bp->b_offset,
2947				    toff,
2948				    tinc,
2949				    bp->b_pages[pi]
2950				);
2951				toff += tinc;
2952				tinc = PAGE_SIZE;
2953			}
2954			VM_OBJECT_UNLOCK(obj);
2955
2956			/*
2957			 * Step 3, fixup the KVM pmap.  Remember that
2958			 * bp->b_data is relative to bp->b_offset, but
2959			 * bp->b_offset may be offset into the first page.
2960			 */
2961
2962			bp->b_data = (caddr_t)
2963			    trunc_page((vm_offset_t)bp->b_data);
2964			pmap_qenter(
2965			    (vm_offset_t)bp->b_data,
2966			    bp->b_pages,
2967			    bp->b_npages
2968			);
2969
2970			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2971			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2972		}
2973	}
2974	if (newbsize < bp->b_bufsize)
2975		bufspacewakeup();
2976	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2977	bp->b_bcount = size;		/* requested buffer size	*/
2978	return 1;
2979}
2980
2981void
2982biodone(struct bio *bp)
2983{
2984	void (*done)(struct bio *);
2985
2986	mtx_lock(&bdonelock);
2987	bp->bio_flags |= BIO_DONE;
2988	done = bp->bio_done;
2989	if (done == NULL)
2990		wakeup(bp);
2991	mtx_unlock(&bdonelock);
2992	if (done != NULL)
2993		done(bp);
2994}
2995
2996/*
2997 * Wait for a BIO to finish.
2998 *
2999 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3000 * case is not yet clear.
3001 */
3002int
3003biowait(struct bio *bp, const char *wchan)
3004{
3005
3006	mtx_lock(&bdonelock);
3007	while ((bp->bio_flags & BIO_DONE) == 0)
3008		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3009	mtx_unlock(&bdonelock);
3010	if (bp->bio_error != 0)
3011		return (bp->bio_error);
3012	if (!(bp->bio_flags & BIO_ERROR))
3013		return (0);
3014	return (EIO);
3015}
3016
3017void
3018biofinish(struct bio *bp, struct devstat *stat, int error)
3019{
3020
3021	if (error) {
3022		bp->bio_error = error;
3023		bp->bio_flags |= BIO_ERROR;
3024	}
3025	if (stat != NULL)
3026		devstat_end_transaction_bio(stat, bp);
3027	biodone(bp);
3028}
3029
3030/*
3031 *	bufwait:
3032 *
3033 *	Wait for buffer I/O completion, returning error status.  The buffer
3034 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3035 *	error and cleared.
3036 */
3037int
3038bufwait(struct buf *bp)
3039{
3040	if (bp->b_iocmd == BIO_READ)
3041		bwait(bp, PRIBIO, "biord");
3042	else
3043		bwait(bp, PRIBIO, "biowr");
3044	if (bp->b_flags & B_EINTR) {
3045		bp->b_flags &= ~B_EINTR;
3046		return (EINTR);
3047	}
3048	if (bp->b_ioflags & BIO_ERROR) {
3049		return (bp->b_error ? bp->b_error : EIO);
3050	} else {
3051		return (0);
3052	}
3053}
3054
3055 /*
3056  * Call back function from struct bio back up to struct buf.
3057  */
3058static void
3059bufdonebio(struct bio *bip)
3060{
3061	struct buf *bp;
3062
3063	bp = bip->bio_caller2;
3064	bp->b_resid = bp->b_bcount - bip->bio_completed;
3065	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3066	bp->b_ioflags = bip->bio_flags;
3067	bp->b_error = bip->bio_error;
3068	if (bp->b_error)
3069		bp->b_ioflags |= BIO_ERROR;
3070	bufdone(bp);
3071	g_destroy_bio(bip);
3072}
3073
3074void
3075dev_strategy(struct cdev *dev, struct buf *bp)
3076{
3077	struct cdevsw *csw;
3078	struct bio *bip;
3079
3080	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3081		panic("b_iocmd botch");
3082	for (;;) {
3083		bip = g_new_bio();
3084		if (bip != NULL)
3085			break;
3086		/* Try again later */
3087		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3088	}
3089	bip->bio_cmd = bp->b_iocmd;
3090	bip->bio_offset = bp->b_iooffset;
3091	bip->bio_length = bp->b_bcount;
3092	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3093	bip->bio_data = bp->b_data;
3094	bip->bio_done = bufdonebio;
3095	bip->bio_caller2 = bp;
3096	bip->bio_dev = dev;
3097	KASSERT(dev->si_refcount > 0,
3098	    ("dev_strategy on un-referenced struct cdev *(%s)",
3099	    devtoname(dev)));
3100	csw = dev_refthread(dev);
3101	if (csw == NULL) {
3102		g_destroy_bio(bip);
3103		bp->b_error = ENXIO;
3104		bp->b_ioflags = BIO_ERROR;
3105		bufdone(bp);
3106		return;
3107	}
3108	(*csw->d_strategy)(bip);
3109	dev_relthread(dev);
3110}
3111
3112/*
3113 *	bufdone:
3114 *
3115 *	Finish I/O on a buffer, optionally calling a completion function.
3116 *	This is usually called from an interrupt so process blocking is
3117 *	not allowed.
3118 *
3119 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3120 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3121 *	assuming B_INVAL is clear.
3122 *
3123 *	For the VMIO case, we set B_CACHE if the op was a read and no
3124 *	read error occured, or if the op was a write.  B_CACHE is never
3125 *	set if the buffer is invalid or otherwise uncacheable.
3126 *
3127 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3128 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3129 *	in the biodone routine.
3130 */
3131void
3132bufdone(struct buf *bp)
3133{
3134	struct bufobj *dropobj;
3135	void    (*biodone)(struct buf *);
3136
3137	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3138	dropobj = NULL;
3139
3140	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3141	    BUF_REFCNT(bp)));
3142	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3143
3144	runningbufwakeup(bp);
3145	if (bp->b_iocmd == BIO_WRITE)
3146		dropobj = bp->b_bufobj;
3147	/* call optional completion function if requested */
3148	if (bp->b_iodone != NULL) {
3149		biodone = bp->b_iodone;
3150		bp->b_iodone = NULL;
3151		(*biodone) (bp);
3152		if (dropobj)
3153			bufobj_wdrop(dropobj);
3154		return;
3155	}
3156
3157	bufdone_finish(bp);
3158
3159	if (dropobj)
3160		bufobj_wdrop(dropobj);
3161}
3162
3163void
3164bufdone_finish(struct buf *bp)
3165{
3166	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3167	    BUF_REFCNT(bp)));
3168
3169	if (LIST_FIRST(&bp->b_dep) != NULL)
3170		buf_complete(bp);
3171
3172	if (bp->b_flags & B_VMIO) {
3173		int i;
3174		vm_ooffset_t foff;
3175		vm_page_t m;
3176		vm_object_t obj;
3177		int iosize;
3178		struct vnode *vp = bp->b_vp;
3179		boolean_t are_queues_locked;
3180
3181		obj = bp->b_bufobj->bo_object;
3182
3183#if defined(VFS_BIO_DEBUG)
3184		mp_fixme("usecount and vflag accessed without locks.");
3185		if (vp->v_usecount == 0) {
3186			panic("biodone: zero vnode ref count");
3187		}
3188
3189		KASSERT(vp->v_object != NULL,
3190			("biodone: vnode %p has no vm_object", vp));
3191#endif
3192
3193		foff = bp->b_offset;
3194		KASSERT(bp->b_offset != NOOFFSET,
3195		    ("biodone: no buffer offset"));
3196
3197		VM_OBJECT_LOCK(obj);
3198#if defined(VFS_BIO_DEBUG)
3199		if (obj->paging_in_progress < bp->b_npages) {
3200			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3201			    obj->paging_in_progress, bp->b_npages);
3202		}
3203#endif
3204
3205		/*
3206		 * Set B_CACHE if the op was a normal read and no error
3207		 * occured.  B_CACHE is set for writes in the b*write()
3208		 * routines.
3209		 */
3210		iosize = bp->b_bcount - bp->b_resid;
3211		if (bp->b_iocmd == BIO_READ &&
3212		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3213		    !(bp->b_ioflags & BIO_ERROR)) {
3214			bp->b_flags |= B_CACHE;
3215		}
3216		if (bp->b_iocmd == BIO_READ) {
3217			vm_page_lock_queues();
3218			are_queues_locked = TRUE;
3219		} else
3220			are_queues_locked = FALSE;
3221		for (i = 0; i < bp->b_npages; i++) {
3222			int bogusflag = 0;
3223			int resid;
3224
3225			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3226			if (resid > iosize)
3227				resid = iosize;
3228
3229			/*
3230			 * cleanup bogus pages, restoring the originals
3231			 */
3232			m = bp->b_pages[i];
3233			if (m == bogus_page) {
3234				bogusflag = 1;
3235				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3236				if (m == NULL)
3237					panic("biodone: page disappeared!");
3238				bp->b_pages[i] = m;
3239				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3240				    bp->b_pages, bp->b_npages);
3241			}
3242#if defined(VFS_BIO_DEBUG)
3243			if (OFF_TO_IDX(foff) != m->pindex) {
3244				printf(
3245"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3246				    (intmax_t)foff, (uintmax_t)m->pindex);
3247			}
3248#endif
3249
3250			/*
3251			 * In the write case, the valid and clean bits are
3252			 * already changed correctly ( see bdwrite() ), so we
3253			 * only need to do this here in the read case.
3254			 */
3255			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3256				vfs_page_set_valid(bp, foff, i, m);
3257			}
3258
3259			/*
3260			 * when debugging new filesystems or buffer I/O methods, this
3261			 * is the most common error that pops up.  if you see this, you
3262			 * have not set the page busy flag correctly!!!
3263			 */
3264			if (m->busy == 0) {
3265				printf("biodone: page busy < 0, "
3266				    "pindex: %d, foff: 0x(%x,%x), "
3267				    "resid: %d, index: %d\n",
3268				    (int) m->pindex, (int)(foff >> 32),
3269						(int) foff & 0xffffffff, resid, i);
3270				if (!vn_isdisk(vp, NULL))
3271					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3272					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3273					    (intmax_t) bp->b_lblkno,
3274					    bp->b_flags, bp->b_npages);
3275				else
3276					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3277					    (intmax_t) bp->b_lblkno,
3278					    bp->b_flags, bp->b_npages);
3279				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3280				    (u_long)m->valid, (u_long)m->dirty,
3281				    m->wire_count);
3282				panic("biodone: page busy < 0\n");
3283			}
3284			vm_page_io_finish(m);
3285			vm_object_pip_subtract(obj, 1);
3286			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3287			iosize -= resid;
3288		}
3289		if (are_queues_locked)
3290			vm_page_unlock_queues();
3291		vm_object_pip_wakeupn(obj, 0);
3292		VM_OBJECT_UNLOCK(obj);
3293	}
3294
3295	/*
3296	 * For asynchronous completions, release the buffer now. The brelse
3297	 * will do a wakeup there if necessary - so no need to do a wakeup
3298	 * here in the async case. The sync case always needs to do a wakeup.
3299	 */
3300
3301	if (bp->b_flags & B_ASYNC) {
3302		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3303			brelse(bp);
3304		else
3305			bqrelse(bp);
3306	} else
3307		bdone(bp);
3308}
3309
3310/*
3311 * This routine is called in lieu of iodone in the case of
3312 * incomplete I/O.  This keeps the busy status for pages
3313 * consistant.
3314 */
3315void
3316vfs_unbusy_pages(struct buf *bp)
3317{
3318	int i;
3319	vm_object_t obj;
3320	vm_page_t m;
3321
3322	runningbufwakeup(bp);
3323	if (!(bp->b_flags & B_VMIO))
3324		return;
3325
3326	obj = bp->b_bufobj->bo_object;
3327	VM_OBJECT_LOCK(obj);
3328	for (i = 0; i < bp->b_npages; i++) {
3329		m = bp->b_pages[i];
3330		if (m == bogus_page) {
3331			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3332			if (!m)
3333				panic("vfs_unbusy_pages: page missing\n");
3334			bp->b_pages[i] = m;
3335			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3336			    bp->b_pages, bp->b_npages);
3337		}
3338		vm_object_pip_subtract(obj, 1);
3339		vm_page_io_finish(m);
3340	}
3341	vm_object_pip_wakeupn(obj, 0);
3342	VM_OBJECT_UNLOCK(obj);
3343}
3344
3345/*
3346 * vfs_page_set_valid:
3347 *
3348 *	Set the valid bits in a page based on the supplied offset.   The
3349 *	range is restricted to the buffer's size.
3350 *
3351 *	This routine is typically called after a read completes.
3352 */
3353static void
3354vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3355{
3356	vm_ooffset_t soff, eoff;
3357
3358	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3359	/*
3360	 * Start and end offsets in buffer.  eoff - soff may not cross a
3361	 * page boundry or cross the end of the buffer.  The end of the
3362	 * buffer, in this case, is our file EOF, not the allocation size
3363	 * of the buffer.
3364	 */
3365	soff = off;
3366	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3367	if (eoff > bp->b_offset + bp->b_bcount)
3368		eoff = bp->b_offset + bp->b_bcount;
3369
3370	/*
3371	 * Set valid range.  This is typically the entire buffer and thus the
3372	 * entire page.
3373	 */
3374	if (eoff > soff) {
3375		vm_page_set_validclean(
3376		    m,
3377		   (vm_offset_t) (soff & PAGE_MASK),
3378		   (vm_offset_t) (eoff - soff)
3379		);
3380	}
3381}
3382
3383/*
3384 * This routine is called before a device strategy routine.
3385 * It is used to tell the VM system that paging I/O is in
3386 * progress, and treat the pages associated with the buffer
3387 * almost as being VPO_BUSY.  Also the object paging_in_progress
3388 * flag is handled to make sure that the object doesn't become
3389 * inconsistant.
3390 *
3391 * Since I/O has not been initiated yet, certain buffer flags
3392 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3393 * and should be ignored.
3394 */
3395void
3396vfs_busy_pages(struct buf *bp, int clear_modify)
3397{
3398	int i, bogus;
3399	vm_object_t obj;
3400	vm_ooffset_t foff;
3401	vm_page_t m;
3402
3403	if (!(bp->b_flags & B_VMIO))
3404		return;
3405
3406	obj = bp->b_bufobj->bo_object;
3407	foff = bp->b_offset;
3408	KASSERT(bp->b_offset != NOOFFSET,
3409	    ("vfs_busy_pages: no buffer offset"));
3410	VM_OBJECT_LOCK(obj);
3411	if (bp->b_bufsize != 0)
3412		vfs_setdirty_locked_object(bp);
3413retry:
3414	for (i = 0; i < bp->b_npages; i++) {
3415		m = bp->b_pages[i];
3416
3417		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3418			goto retry;
3419	}
3420	bogus = 0;
3421	vm_page_lock_queues();
3422	for (i = 0; i < bp->b_npages; i++) {
3423		m = bp->b_pages[i];
3424
3425		if ((bp->b_flags & B_CLUSTER) == 0) {
3426			vm_object_pip_add(obj, 1);
3427			vm_page_io_start(m);
3428		}
3429		/*
3430		 * When readying a buffer for a read ( i.e
3431		 * clear_modify == 0 ), it is important to do
3432		 * bogus_page replacement for valid pages in
3433		 * partially instantiated buffers.  Partially
3434		 * instantiated buffers can, in turn, occur when
3435		 * reconstituting a buffer from its VM backing store
3436		 * base.  We only have to do this if B_CACHE is
3437		 * clear ( which causes the I/O to occur in the
3438		 * first place ).  The replacement prevents the read
3439		 * I/O from overwriting potentially dirty VM-backed
3440		 * pages.  XXX bogus page replacement is, uh, bogus.
3441		 * It may not work properly with small-block devices.
3442		 * We need to find a better way.
3443		 */
3444		pmap_remove_all(m);
3445		if (clear_modify)
3446			vfs_page_set_valid(bp, foff, i, m);
3447		else if (m->valid == VM_PAGE_BITS_ALL &&
3448		    (bp->b_flags & B_CACHE) == 0) {
3449			bp->b_pages[i] = bogus_page;
3450			bogus++;
3451		}
3452		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3453	}
3454	vm_page_unlock_queues();
3455	VM_OBJECT_UNLOCK(obj);
3456	if (bogus)
3457		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3458		    bp->b_pages, bp->b_npages);
3459}
3460
3461/*
3462 * Tell the VM system that the pages associated with this buffer
3463 * are clean.  This is used for delayed writes where the data is
3464 * going to go to disk eventually without additional VM intevention.
3465 *
3466 * Note that while we only really need to clean through to b_bcount, we
3467 * just go ahead and clean through to b_bufsize.
3468 */
3469static void
3470vfs_clean_pages(struct buf *bp)
3471{
3472	int i;
3473	vm_ooffset_t foff, noff, eoff;
3474	vm_page_t m;
3475
3476	if (!(bp->b_flags & B_VMIO))
3477		return;
3478
3479	foff = bp->b_offset;
3480	KASSERT(bp->b_offset != NOOFFSET,
3481	    ("vfs_clean_pages: no buffer offset"));
3482	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3483	vm_page_lock_queues();
3484	for (i = 0; i < bp->b_npages; i++) {
3485		m = bp->b_pages[i];
3486		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3487		eoff = noff;
3488
3489		if (eoff > bp->b_offset + bp->b_bufsize)
3490			eoff = bp->b_offset + bp->b_bufsize;
3491		vfs_page_set_valid(bp, foff, i, m);
3492		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3493		foff = noff;
3494	}
3495	vm_page_unlock_queues();
3496	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3497}
3498
3499/*
3500 *	vfs_bio_set_validclean:
3501 *
3502 *	Set the range within the buffer to valid and clean.  The range is
3503 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3504 *	itself may be offset from the beginning of the first page.
3505 *
3506 */
3507
3508void
3509vfs_bio_set_validclean(struct buf *bp, int base, int size)
3510{
3511	int i, n;
3512	vm_page_t m;
3513
3514	if (!(bp->b_flags & B_VMIO))
3515		return;
3516	/*
3517	 * Fixup base to be relative to beginning of first page.
3518	 * Set initial n to be the maximum number of bytes in the
3519	 * first page that can be validated.
3520	 */
3521
3522	base += (bp->b_offset & PAGE_MASK);
3523	n = PAGE_SIZE - (base & PAGE_MASK);
3524
3525	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3526	vm_page_lock_queues();
3527	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3528		m = bp->b_pages[i];
3529		if (n > size)
3530			n = size;
3531		vm_page_set_validclean(m, base & PAGE_MASK, n);
3532		base += n;
3533		size -= n;
3534		n = PAGE_SIZE;
3535	}
3536	vm_page_unlock_queues();
3537	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3538}
3539
3540/*
3541 *	vfs_bio_clrbuf:
3542 *
3543 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3544 *	to clear BIO_ERROR and B_INVAL.
3545 *
3546 *	Note that while we only theoretically need to clear through b_bcount,
3547 *	we go ahead and clear through b_bufsize.
3548 */
3549
3550void
3551vfs_bio_clrbuf(struct buf *bp)
3552{
3553	int i, j, mask = 0;
3554	caddr_t sa, ea;
3555
3556	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3557		clrbuf(bp);
3558		return;
3559	}
3560
3561	bp->b_flags &= ~B_INVAL;
3562	bp->b_ioflags &= ~BIO_ERROR;
3563	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3564	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3565	    (bp->b_offset & PAGE_MASK) == 0) {
3566		if (bp->b_pages[0] == bogus_page)
3567			goto unlock;
3568		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3569		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3570		if ((bp->b_pages[0]->valid & mask) == mask)
3571			goto unlock;
3572		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3573		    ((bp->b_pages[0]->valid & mask) == 0)) {
3574			bzero(bp->b_data, bp->b_bufsize);
3575			bp->b_pages[0]->valid |= mask;
3576			goto unlock;
3577		}
3578	}
3579	ea = sa = bp->b_data;
3580	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3581		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3582		ea = (caddr_t)(vm_offset_t)ulmin(
3583		    (u_long)(vm_offset_t)ea,
3584		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3585		if (bp->b_pages[i] == bogus_page)
3586			continue;
3587		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3588		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3589		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3590		if ((bp->b_pages[i]->valid & mask) == mask)
3591			continue;
3592		if ((bp->b_pages[i]->valid & mask) == 0) {
3593			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3594				bzero(sa, ea - sa);
3595		} else {
3596			for (; sa < ea; sa += DEV_BSIZE, j++) {
3597				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3598				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3599					bzero(sa, DEV_BSIZE);
3600			}
3601		}
3602		bp->b_pages[i]->valid |= mask;
3603	}
3604unlock:
3605	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3606	bp->b_resid = 0;
3607}
3608
3609/*
3610 * vm_hold_load_pages and vm_hold_free_pages get pages into
3611 * a buffers address space.  The pages are anonymous and are
3612 * not associated with a file object.
3613 */
3614static void
3615vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3616{
3617	vm_offset_t pg;
3618	vm_page_t p;
3619	int index;
3620
3621	to = round_page(to);
3622	from = round_page(from);
3623	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3624
3625	VM_OBJECT_LOCK(kernel_object);
3626	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3627tryagain:
3628		/*
3629		 * note: must allocate system pages since blocking here
3630		 * could intefere with paging I/O, no matter which
3631		 * process we are.
3632		 */
3633		p = vm_page_alloc(kernel_object,
3634			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3635		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3636		if (!p) {
3637			atomic_add_int(&vm_pageout_deficit,
3638			    (to - pg) >> PAGE_SHIFT);
3639			VM_OBJECT_UNLOCK(kernel_object);
3640			VM_WAIT;
3641			VM_OBJECT_LOCK(kernel_object);
3642			goto tryagain;
3643		}
3644		p->valid = VM_PAGE_BITS_ALL;
3645		pmap_qenter(pg, &p, 1);
3646		bp->b_pages[index] = p;
3647	}
3648	VM_OBJECT_UNLOCK(kernel_object);
3649	bp->b_npages = index;
3650}
3651
3652/* Return pages associated with this buf to the vm system */
3653static void
3654vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3655{
3656	vm_offset_t pg;
3657	vm_page_t p;
3658	int index, newnpages;
3659
3660	from = round_page(from);
3661	to = round_page(to);
3662	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3663
3664	VM_OBJECT_LOCK(kernel_object);
3665	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3666		p = bp->b_pages[index];
3667		if (p && (index < bp->b_npages)) {
3668			if (p->busy) {
3669				printf(
3670			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3671				    (intmax_t)bp->b_blkno,
3672				    (intmax_t)bp->b_lblkno);
3673			}
3674			bp->b_pages[index] = NULL;
3675			pmap_qremove(pg, 1);
3676			vm_page_lock_queues();
3677			vm_page_unwire(p, 0);
3678			vm_page_free(p);
3679			vm_page_unlock_queues();
3680		}
3681	}
3682	VM_OBJECT_UNLOCK(kernel_object);
3683	bp->b_npages = newnpages;
3684}
3685
3686/*
3687 * Map an IO request into kernel virtual address space.
3688 *
3689 * All requests are (re)mapped into kernel VA space.
3690 * Notice that we use b_bufsize for the size of the buffer
3691 * to be mapped.  b_bcount might be modified by the driver.
3692 *
3693 * Note that even if the caller determines that the address space should
3694 * be valid, a race or a smaller-file mapped into a larger space may
3695 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3696 * check the return value.
3697 */
3698int
3699vmapbuf(struct buf *bp)
3700{
3701	caddr_t addr, kva;
3702	vm_prot_t prot;
3703	int pidx, i;
3704	struct vm_page *m;
3705	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3706
3707	if (bp->b_bufsize < 0)
3708		return (-1);
3709	prot = VM_PROT_READ;
3710	if (bp->b_iocmd == BIO_READ)
3711		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3712	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3713	     addr < bp->b_data + bp->b_bufsize;
3714	     addr += PAGE_SIZE, pidx++) {
3715		/*
3716		 * Do the vm_fault if needed; do the copy-on-write thing
3717		 * when reading stuff off device into memory.
3718		 *
3719		 * NOTE! Must use pmap_extract() because addr may be in
3720		 * the userland address space, and kextract is only guarenteed
3721		 * to work for the kernland address space (see: sparc64 port).
3722		 */
3723retry:
3724		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3725		    prot) < 0) {
3726			vm_page_lock_queues();
3727			for (i = 0; i < pidx; ++i) {
3728				vm_page_unhold(bp->b_pages[i]);
3729				bp->b_pages[i] = NULL;
3730			}
3731			vm_page_unlock_queues();
3732			return(-1);
3733		}
3734		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3735		if (m == NULL)
3736			goto retry;
3737		bp->b_pages[pidx] = m;
3738	}
3739	if (pidx > btoc(MAXPHYS))
3740		panic("vmapbuf: mapped more than MAXPHYS");
3741	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3742
3743	kva = bp->b_saveaddr;
3744	bp->b_npages = pidx;
3745	bp->b_saveaddr = bp->b_data;
3746	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3747	return(0);
3748}
3749
3750/*
3751 * Free the io map PTEs associated with this IO operation.
3752 * We also invalidate the TLB entries and restore the original b_addr.
3753 */
3754void
3755vunmapbuf(struct buf *bp)
3756{
3757	int pidx;
3758	int npages;
3759
3760	npages = bp->b_npages;
3761	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3762	vm_page_lock_queues();
3763	for (pidx = 0; pidx < npages; pidx++)
3764		vm_page_unhold(bp->b_pages[pidx]);
3765	vm_page_unlock_queues();
3766
3767	bp->b_data = bp->b_saveaddr;
3768}
3769
3770void
3771bdone(struct buf *bp)
3772{
3773
3774	mtx_lock(&bdonelock);
3775	bp->b_flags |= B_DONE;
3776	wakeup(bp);
3777	mtx_unlock(&bdonelock);
3778}
3779
3780void
3781bwait(struct buf *bp, u_char pri, const char *wchan)
3782{
3783
3784	mtx_lock(&bdonelock);
3785	while ((bp->b_flags & B_DONE) == 0)
3786		msleep(bp, &bdonelock, pri, wchan, 0);
3787	mtx_unlock(&bdonelock);
3788}
3789
3790int
3791bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3792{
3793
3794	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3795}
3796
3797void
3798bufstrategy(struct bufobj *bo, struct buf *bp)
3799{
3800	int i = 0;
3801	struct vnode *vp;
3802
3803	vp = bp->b_vp;
3804	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3805	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3806	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3807	i = VOP_STRATEGY(vp, bp);
3808	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3809}
3810
3811void
3812bufobj_wrefl(struct bufobj *bo)
3813{
3814
3815	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3816	ASSERT_BO_LOCKED(bo);
3817	bo->bo_numoutput++;
3818}
3819
3820void
3821bufobj_wref(struct bufobj *bo)
3822{
3823
3824	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3825	BO_LOCK(bo);
3826	bo->bo_numoutput++;
3827	BO_UNLOCK(bo);
3828}
3829
3830void
3831bufobj_wdrop(struct bufobj *bo)
3832{
3833
3834	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3835	BO_LOCK(bo);
3836	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3837	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3838		bo->bo_flag &= ~BO_WWAIT;
3839		wakeup(&bo->bo_numoutput);
3840	}
3841	BO_UNLOCK(bo);
3842}
3843
3844int
3845bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3846{
3847	int error;
3848
3849	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3850	ASSERT_BO_LOCKED(bo);
3851	error = 0;
3852	while (bo->bo_numoutput) {
3853		bo->bo_flag |= BO_WWAIT;
3854		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3855		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3856		if (error)
3857			break;
3858	}
3859	return (error);
3860}
3861
3862void
3863bpin(struct buf *bp)
3864{
3865	mtx_lock(&bpinlock);
3866	bp->b_pin_count++;
3867	mtx_unlock(&bpinlock);
3868}
3869
3870void
3871bunpin(struct buf *bp)
3872{
3873	mtx_lock(&bpinlock);
3874	if (--bp->b_pin_count == 0)
3875		wakeup(bp);
3876	mtx_unlock(&bpinlock);
3877}
3878
3879void
3880bunpin_wait(struct buf *bp)
3881{
3882	mtx_lock(&bpinlock);
3883	while (bp->b_pin_count > 0)
3884		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3885	mtx_unlock(&bpinlock);
3886}
3887
3888#include "opt_ddb.h"
3889#ifdef DDB
3890#include <ddb/ddb.h>
3891
3892/* DDB command to show buffer data */
3893DB_SHOW_COMMAND(buffer, db_show_buffer)
3894{
3895	/* get args */
3896	struct buf *bp = (struct buf *)addr;
3897
3898	if (!have_addr) {
3899		db_printf("usage: show buffer <addr>\n");
3900		return;
3901	}
3902
3903	db_printf("buf at %p\n", bp);
3904	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3905	db_printf(
3906	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3907	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3908	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3909	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3910	if (bp->b_npages) {
3911		int i;
3912		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3913		for (i = 0; i < bp->b_npages; i++) {
3914			vm_page_t m;
3915			m = bp->b_pages[i];
3916			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3917			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3918			if ((i + 1) < bp->b_npages)
3919				db_printf(",");
3920		}
3921		db_printf("\n");
3922	}
3923	lockmgr_printinfo(&bp->b_lock);
3924}
3925
3926DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3927{
3928	struct buf *bp;
3929	int i;
3930
3931	for (i = 0; i < nbuf; i++) {
3932		bp = &buf[i];
3933		if (lockcount(&bp->b_lock)) {
3934			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3935			db_printf("\n");
3936		}
3937	}
3938}
3939#endif /* DDB */
3940