vfs_bio.c revision 161125
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 161125 2006-08-09 17:43:27Z alc $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82	.bop_sync	=	bufsync,
83};
84
85/*
86 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
87 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
88 */
89struct buf *buf;		/* buffer header pool */
90
91static struct proc *bufdaemonproc;
92
93static int inmem(struct vnode *vp, daddr_t blkno);
94static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
95		vm_offset_t to);
96static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
99			       int pageno, vm_page_t m);
100static void vfs_clean_pages(struct buf *bp);
101static void vfs_setdirty(struct buf *bp);
102static void vfs_vmio_release(struct buf *bp);
103static int vfs_bio_clcheck(struct vnode *vp, int size,
104		daddr_t lblkno, daddr_t blkno);
105static int flushbufqueues(int, int);
106static void buf_daemon(void);
107static void bremfreel(struct buf *bp);
108
109int vmiodirenable = TRUE;
110SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
111    "Use the VM system for directory writes");
112int runningbufspace;
113SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
114    "Amount of presently outstanding async buffer io");
115static int bufspace;
116SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
117    "KVA memory used for bufs");
118static int maxbufspace;
119SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
120    "Maximum allowed value of bufspace (including buf_daemon)");
121static int bufmallocspace;
122SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
123    "Amount of malloced memory for buffers");
124static int maxbufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
126    "Maximum amount of malloced memory for buffers");
127static int lobufspace;
128SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
129    "Minimum amount of buffers we want to have");
130int hibufspace;
131SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
132    "Maximum allowed value of bufspace (excluding buf_daemon)");
133static int bufreusecnt;
134SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
135    "Number of times we have reused a buffer");
136static int buffreekvacnt;
137SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
138    "Number of times we have freed the KVA space from some buffer");
139static int bufdefragcnt;
140SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
141    "Number of times we have had to repeat buffer allocation to defragment");
142static int lorunningspace;
143SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
144    "Minimum preferred space used for in-progress I/O");
145static int hirunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
147    "Maximum amount of space to use for in-progress I/O");
148static int dirtybufferflushes;
149SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
150    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
151static int altbufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
153    0, "Number of fsync flushes to limit dirty buffers");
154static int recursiveflushes;
155SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
156    0, "Number of flushes skipped due to being recursive");
157static int numdirtybuffers;
158SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
159    "Number of buffers that are dirty (has unwritten changes) at the moment");
160static int lodirtybuffers;
161SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
162    "How many buffers we want to have free before bufdaemon can sleep");
163static int hidirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
165    "When the number of dirty buffers is considered severe");
166static int dirtybufthresh;
167SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
168    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
169static int numfreebuffers;
170SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
171    "Number of free buffers");
172static int lofreebuffers;
173SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
174   "XXX Unused");
175static int hifreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
177   "XXX Complicatedly unused");
178static int getnewbufcalls;
179SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
180   "Number of calls to getnewbuf");
181static int getnewbufrestarts;
182SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
183    "Number of times getnewbuf has had to restart a buffer aquisition");
184
185/*
186 * Wakeup point for bufdaemon, as well as indicator of whether it is already
187 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
188 * is idling.
189 */
190static int bd_request;
191
192/*
193 * This lock synchronizes access to bd_request.
194 */
195static struct mtx bdlock;
196
197/*
198 * bogus page -- for I/O to/from partially complete buffers
199 * this is a temporary solution to the problem, but it is not
200 * really that bad.  it would be better to split the buffer
201 * for input in the case of buffers partially already in memory,
202 * but the code is intricate enough already.
203 */
204vm_page_t bogus_page;
205
206/*
207 * Synchronization (sleep/wakeup) variable for active buffer space requests.
208 * Set when wait starts, cleared prior to wakeup().
209 * Used in runningbufwakeup() and waitrunningbufspace().
210 */
211static int runningbufreq;
212
213/*
214 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
215 * waitrunningbufspace().
216 */
217static struct mtx rbreqlock;
218
219/*
220 * Synchronization (sleep/wakeup) variable for buffer requests.
221 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
222 * by and/or.
223 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
224 * getnewbuf(), and getblk().
225 */
226static int needsbuffer;
227
228/*
229 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
230 */
231static struct mtx nblock;
232
233/*
234 * Lock that protects against bwait()/bdone()/B_DONE races.
235 */
236
237static struct mtx bdonelock;
238
239/*
240 * Lock that protects against bwait()/bdone()/B_DONE races.
241 */
242static struct mtx bpinlock;
243
244/*
245 * Definitions for the buffer free lists.
246 */
247#define BUFFER_QUEUES	6	/* number of free buffer queues */
248
249#define QUEUE_NONE	0	/* on no queue */
250#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
251#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
252#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
253#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
254#define QUEUE_EMPTY	5	/* empty buffer headers */
255
256/* Queues for free buffers with various properties */
257static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
258
259/* Lock for the bufqueues */
260static struct mtx bqlock;
261
262/*
263 * Single global constant for BUF_WMESG, to avoid getting multiple references.
264 * buf_wmesg is referred from macros.
265 */
266const char *buf_wmesg = BUF_WMESG;
267
268#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
269#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
270#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
271#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
272
273#ifdef DIRECTIO
274extern void ffs_rawread_setup(void);
275#endif /* DIRECTIO */
276/*
277 *	numdirtywakeup:
278 *
279 *	If someone is blocked due to there being too many dirty buffers,
280 *	and numdirtybuffers is now reasonable, wake them up.
281 */
282
283static __inline void
284numdirtywakeup(int level)
285{
286
287	if (numdirtybuffers <= level) {
288		mtx_lock(&nblock);
289		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
290			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
291			wakeup(&needsbuffer);
292		}
293		mtx_unlock(&nblock);
294	}
295}
296
297/*
298 *	bufspacewakeup:
299 *
300 *	Called when buffer space is potentially available for recovery.
301 *	getnewbuf() will block on this flag when it is unable to free
302 *	sufficient buffer space.  Buffer space becomes recoverable when
303 *	bp's get placed back in the queues.
304 */
305
306static __inline void
307bufspacewakeup(void)
308{
309
310	/*
311	 * If someone is waiting for BUF space, wake them up.  Even
312	 * though we haven't freed the kva space yet, the waiting
313	 * process will be able to now.
314	 */
315	mtx_lock(&nblock);
316	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
317		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
318		wakeup(&needsbuffer);
319	}
320	mtx_unlock(&nblock);
321}
322
323/*
324 * runningbufwakeup() - in-progress I/O accounting.
325 *
326 */
327void
328runningbufwakeup(struct buf *bp)
329{
330
331	if (bp->b_runningbufspace) {
332		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
333		bp->b_runningbufspace = 0;
334		mtx_lock(&rbreqlock);
335		if (runningbufreq && runningbufspace <= lorunningspace) {
336			runningbufreq = 0;
337			wakeup(&runningbufreq);
338		}
339		mtx_unlock(&rbreqlock);
340	}
341}
342
343/*
344 *	bufcountwakeup:
345 *
346 *	Called when a buffer has been added to one of the free queues to
347 *	account for the buffer and to wakeup anyone waiting for free buffers.
348 *	This typically occurs when large amounts of metadata are being handled
349 *	by the buffer cache ( else buffer space runs out first, usually ).
350 */
351
352static __inline void
353bufcountwakeup(void)
354{
355
356	atomic_add_int(&numfreebuffers, 1);
357	mtx_lock(&nblock);
358	if (needsbuffer) {
359		needsbuffer &= ~VFS_BIO_NEED_ANY;
360		if (numfreebuffers >= hifreebuffers)
361			needsbuffer &= ~VFS_BIO_NEED_FREE;
362		wakeup(&needsbuffer);
363	}
364	mtx_unlock(&nblock);
365}
366
367/*
368 *	waitrunningbufspace()
369 *
370 *	runningbufspace is a measure of the amount of I/O currently
371 *	running.  This routine is used in async-write situations to
372 *	prevent creating huge backups of pending writes to a device.
373 *	Only asynchronous writes are governed by this function.
374 *
375 *	Reads will adjust runningbufspace, but will not block based on it.
376 *	The read load has a side effect of reducing the allowed write load.
377 *
378 *	This does NOT turn an async write into a sync write.  It waits
379 *	for earlier writes to complete and generally returns before the
380 *	caller's write has reached the device.
381 */
382void
383waitrunningbufspace(void)
384{
385
386	mtx_lock(&rbreqlock);
387	while (runningbufspace > hirunningspace) {
388		++runningbufreq;
389		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
390	}
391	mtx_unlock(&rbreqlock);
392}
393
394
395/*
396 *	vfs_buf_test_cache:
397 *
398 *	Called when a buffer is extended.  This function clears the B_CACHE
399 *	bit if the newly extended portion of the buffer does not contain
400 *	valid data.
401 */
402static __inline
403void
404vfs_buf_test_cache(struct buf *bp,
405		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
406		  vm_page_t m)
407{
408
409	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
410	if (bp->b_flags & B_CACHE) {
411		int base = (foff + off) & PAGE_MASK;
412		if (vm_page_is_valid(m, base, size) == 0)
413			bp->b_flags &= ~B_CACHE;
414	}
415}
416
417/* Wake up the buffer deamon if necessary */
418static __inline
419void
420bd_wakeup(int dirtybuflevel)
421{
422
423	mtx_lock(&bdlock);
424	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
425		bd_request = 1;
426		wakeup(&bd_request);
427	}
428	mtx_unlock(&bdlock);
429}
430
431/*
432 * bd_speedup - speedup the buffer cache flushing code
433 */
434
435static __inline
436void
437bd_speedup(void)
438{
439
440	bd_wakeup(1);
441}
442
443/*
444 * Calculating buffer cache scaling values and reserve space for buffer
445 * headers.  This is called during low level kernel initialization and
446 * may be called more then once.  We CANNOT write to the memory area
447 * being reserved at this time.
448 */
449caddr_t
450kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
451{
452
453	/*
454	 * physmem_est is in pages.  Convert it to kilobytes (assumes
455	 * PAGE_SIZE is >= 1K)
456	 */
457	physmem_est = physmem_est * (PAGE_SIZE / 1024);
458
459	/*
460	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
461	 * For the first 64MB of ram nominally allocate sufficient buffers to
462	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
463	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
464	 * the buffer cache we limit the eventual kva reservation to
465	 * maxbcache bytes.
466	 *
467	 * factor represents the 1/4 x ram conversion.
468	 */
469	if (nbuf == 0) {
470		int factor = 4 * BKVASIZE / 1024;
471
472		nbuf = 50;
473		if (physmem_est > 4096)
474			nbuf += min((physmem_est - 4096) / factor,
475			    65536 / factor);
476		if (physmem_est > 65536)
477			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
478
479		if (maxbcache && nbuf > maxbcache / BKVASIZE)
480			nbuf = maxbcache / BKVASIZE;
481	}
482
483#if 0
484	/*
485	 * Do not allow the buffer_map to be more then 1/2 the size of the
486	 * kernel_map.
487	 */
488	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
489	    (BKVASIZE * 2)) {
490		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
491		    (BKVASIZE * 2);
492		printf("Warning: nbufs capped at %d\n", nbuf);
493	}
494#endif
495
496	/*
497	 * swbufs are used as temporary holders for I/O, such as paging I/O.
498	 * We have no less then 16 and no more then 256.
499	 */
500	nswbuf = max(min(nbuf/4, 256), 16);
501#ifdef NSWBUF_MIN
502	if (nswbuf < NSWBUF_MIN)
503		nswbuf = NSWBUF_MIN;
504#endif
505#ifdef DIRECTIO
506	ffs_rawread_setup();
507#endif
508
509	/*
510	 * Reserve space for the buffer cache buffers
511	 */
512	swbuf = (void *)v;
513	v = (caddr_t)(swbuf + nswbuf);
514	buf = (void *)v;
515	v = (caddr_t)(buf + nbuf);
516
517	return(v);
518}
519
520/* Initialize the buffer subsystem.  Called before use of any buffers. */
521void
522bufinit(void)
523{
524	struct buf *bp;
525	int i;
526
527	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
528	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
529	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
530	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
531	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
532	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
533
534	/* next, make a null set of free lists */
535	for (i = 0; i < BUFFER_QUEUES; i++)
536		TAILQ_INIT(&bufqueues[i]);
537
538	/* finally, initialize each buffer header and stick on empty q */
539	for (i = 0; i < nbuf; i++) {
540		bp = &buf[i];
541		bzero(bp, sizeof *bp);
542		bp->b_flags = B_INVAL;	/* we're just an empty header */
543		bp->b_rcred = NOCRED;
544		bp->b_wcred = NOCRED;
545		bp->b_qindex = QUEUE_EMPTY;
546		bp->b_vflags = 0;
547		bp->b_xflags = 0;
548		LIST_INIT(&bp->b_dep);
549		BUF_LOCKINIT(bp);
550		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
551	}
552
553	/*
554	 * maxbufspace is the absolute maximum amount of buffer space we are
555	 * allowed to reserve in KVM and in real terms.  The absolute maximum
556	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
557	 * used by most other processes.  The differential is required to
558	 * ensure that buf_daemon is able to run when other processes might
559	 * be blocked waiting for buffer space.
560	 *
561	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
562	 * this may result in KVM fragmentation which is not handled optimally
563	 * by the system.
564	 */
565	maxbufspace = nbuf * BKVASIZE;
566	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
567	lobufspace = hibufspace - MAXBSIZE;
568
569	lorunningspace = 512 * 1024;
570	hirunningspace = 1024 * 1024;
571
572/*
573 * Limit the amount of malloc memory since it is wired permanently into
574 * the kernel space.  Even though this is accounted for in the buffer
575 * allocation, we don't want the malloced region to grow uncontrolled.
576 * The malloc scheme improves memory utilization significantly on average
577 * (small) directories.
578 */
579	maxbufmallocspace = hibufspace / 20;
580
581/*
582 * Reduce the chance of a deadlock occuring by limiting the number
583 * of delayed-write dirty buffers we allow to stack up.
584 */
585	hidirtybuffers = nbuf / 4 + 20;
586	dirtybufthresh = hidirtybuffers * 9 / 10;
587	numdirtybuffers = 0;
588/*
589 * To support extreme low-memory systems, make sure hidirtybuffers cannot
590 * eat up all available buffer space.  This occurs when our minimum cannot
591 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
592 * BKVASIZE'd (8K) buffers.
593 */
594	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
595		hidirtybuffers >>= 1;
596	}
597	lodirtybuffers = hidirtybuffers / 2;
598
599/*
600 * Try to keep the number of free buffers in the specified range,
601 * and give special processes (e.g. like buf_daemon) access to an
602 * emergency reserve.
603 */
604	lofreebuffers = nbuf / 18 + 5;
605	hifreebuffers = 2 * lofreebuffers;
606	numfreebuffers = nbuf;
607
608/*
609 * Maximum number of async ops initiated per buf_daemon loop.  This is
610 * somewhat of a hack at the moment, we really need to limit ourselves
611 * based on the number of bytes of I/O in-transit that were initiated
612 * from buf_daemon.
613 */
614
615	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
616	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
617}
618
619/*
620 * bfreekva() - free the kva allocation for a buffer.
621 *
622 *	Since this call frees up buffer space, we call bufspacewakeup().
623 */
624static void
625bfreekva(struct buf *bp)
626{
627
628	if (bp->b_kvasize) {
629		atomic_add_int(&buffreekvacnt, 1);
630		atomic_subtract_int(&bufspace, bp->b_kvasize);
631		vm_map_lock(buffer_map);
632		vm_map_delete(buffer_map,
633		    (vm_offset_t) bp->b_kvabase,
634		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
635		);
636		vm_map_unlock(buffer_map);
637		bp->b_kvasize = 0;
638		bufspacewakeup();
639	}
640}
641
642/*
643 *	bremfree:
644 *
645 *	Mark the buffer for removal from the appropriate free list in brelse.
646 *
647 */
648void
649bremfree(struct buf *bp)
650{
651
652	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
653	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
654	KASSERT((bp->b_flags & B_REMFREE) == 0,
655	    ("bremfree: buffer %p already marked for delayed removal.", bp));
656	KASSERT(bp->b_qindex != QUEUE_NONE,
657	    ("bremfree: buffer %p not on a queue.", bp));
658
659	bp->b_flags |= B_REMFREE;
660	/* Fixup numfreebuffers count.  */
661	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
662		atomic_subtract_int(&numfreebuffers, 1);
663}
664
665/*
666 *	bremfreef:
667 *
668 *	Force an immediate removal from a free list.  Used only in nfs when
669 *	it abuses the b_freelist pointer.
670 */
671void
672bremfreef(struct buf *bp)
673{
674	mtx_lock(&bqlock);
675	bremfreel(bp);
676	mtx_unlock(&bqlock);
677}
678
679/*
680 *	bremfreel:
681 *
682 *	Removes a buffer from the free list, must be called with the
683 *	bqlock held.
684 */
685static void
686bremfreel(struct buf *bp)
687{
688	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
689	    bp, bp->b_vp, bp->b_flags);
690	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
691	KASSERT(bp->b_qindex != QUEUE_NONE,
692	    ("bremfreel: buffer %p not on a queue.", bp));
693	mtx_assert(&bqlock, MA_OWNED);
694
695	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
696	bp->b_qindex = QUEUE_NONE;
697	/*
698	 * If this was a delayed bremfree() we only need to remove the buffer
699	 * from the queue and return the stats are already done.
700	 */
701	if (bp->b_flags & B_REMFREE) {
702		bp->b_flags &= ~B_REMFREE;
703		return;
704	}
705	/*
706	 * Fixup numfreebuffers count.  If the buffer is invalid or not
707	 * delayed-write, the buffer was free and we must decrement
708	 * numfreebuffers.
709	 */
710	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
711		atomic_subtract_int(&numfreebuffers, 1);
712}
713
714
715/*
716 * Get a buffer with the specified data.  Look in the cache first.  We
717 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
718 * is set, the buffer is valid and we do not have to do anything ( see
719 * getblk() ).  This is really just a special case of breadn().
720 */
721int
722bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
723    struct buf **bpp)
724{
725
726	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
727}
728
729/*
730 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
731 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
732 * the buffer is valid and we do not have to do anything.
733 */
734void
735breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
736    int cnt, struct ucred * cred)
737{
738	struct buf *rabp;
739	int i;
740
741	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
742		if (inmem(vp, *rablkno))
743			continue;
744		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
745
746		if ((rabp->b_flags & B_CACHE) == 0) {
747			if (curthread != PCPU_GET(idlethread))
748				curthread->td_proc->p_stats->p_ru.ru_inblock++;
749			rabp->b_flags |= B_ASYNC;
750			rabp->b_flags &= ~B_INVAL;
751			rabp->b_ioflags &= ~BIO_ERROR;
752			rabp->b_iocmd = BIO_READ;
753			if (rabp->b_rcred == NOCRED && cred != NOCRED)
754				rabp->b_rcred = crhold(cred);
755			vfs_busy_pages(rabp, 0);
756			BUF_KERNPROC(rabp);
757			rabp->b_iooffset = dbtob(rabp->b_blkno);
758			bstrategy(rabp);
759		} else {
760			brelse(rabp);
761		}
762	}
763}
764
765/*
766 * Operates like bread, but also starts asynchronous I/O on
767 * read-ahead blocks.
768 */
769int
770breadn(struct vnode * vp, daddr_t blkno, int size,
771    daddr_t * rablkno, int *rabsize,
772    int cnt, struct ucred * cred, struct buf **bpp)
773{
774	struct buf *bp;
775	int rv = 0, readwait = 0;
776
777	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
778	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
779
780	/* if not found in cache, do some I/O */
781	if ((bp->b_flags & B_CACHE) == 0) {
782		if (curthread != PCPU_GET(idlethread))
783			curthread->td_proc->p_stats->p_ru.ru_inblock++;
784		bp->b_iocmd = BIO_READ;
785		bp->b_flags &= ~B_INVAL;
786		bp->b_ioflags &= ~BIO_ERROR;
787		if (bp->b_rcred == NOCRED && cred != NOCRED)
788			bp->b_rcred = crhold(cred);
789		vfs_busy_pages(bp, 0);
790		bp->b_iooffset = dbtob(bp->b_blkno);
791		bstrategy(bp);
792		++readwait;
793	}
794
795	breada(vp, rablkno, rabsize, cnt, cred);
796
797	if (readwait) {
798		rv = bufwait(bp);
799	}
800	return (rv);
801}
802
803/*
804 * Write, release buffer on completion.  (Done by iodone
805 * if async).  Do not bother writing anything if the buffer
806 * is invalid.
807 *
808 * Note that we set B_CACHE here, indicating that buffer is
809 * fully valid and thus cacheable.  This is true even of NFS
810 * now so we set it generally.  This could be set either here
811 * or in biodone() since the I/O is synchronous.  We put it
812 * here.
813 */
814int
815bufwrite(struct buf *bp)
816{
817	int oldflags;
818
819	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
820	if (bp->b_flags & B_INVAL) {
821		brelse(bp);
822		return (0);
823	}
824
825	oldflags = bp->b_flags;
826
827	if (BUF_REFCNT(bp) == 0)
828		panic("bufwrite: buffer is not busy???");
829
830	if (bp->b_pin_count > 0)
831		bunpin_wait(bp);
832
833	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
834	    ("FFS background buffer should not get here %p", bp));
835
836	/* Mark the buffer clean */
837	bundirty(bp);
838
839	bp->b_flags &= ~B_DONE;
840	bp->b_ioflags &= ~BIO_ERROR;
841	bp->b_flags |= B_CACHE;
842	bp->b_iocmd = BIO_WRITE;
843
844	bufobj_wref(bp->b_bufobj);
845	vfs_busy_pages(bp, 1);
846
847	/*
848	 * Normal bwrites pipeline writes
849	 */
850	bp->b_runningbufspace = bp->b_bufsize;
851	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
852
853	if (curthread != PCPU_GET(idlethread))
854		curthread->td_proc->p_stats->p_ru.ru_oublock++;
855	if (oldflags & B_ASYNC)
856		BUF_KERNPROC(bp);
857	bp->b_iooffset = dbtob(bp->b_blkno);
858	bstrategy(bp);
859
860	if ((oldflags & B_ASYNC) == 0) {
861		int rtval = bufwait(bp);
862		brelse(bp);
863		return (rtval);
864	} else {
865		/*
866		 * don't allow the async write to saturate the I/O
867		 * system.  We will not deadlock here because
868		 * we are blocking waiting for I/O that is already in-progress
869		 * to complete. We do not block here if it is the update
870		 * or syncer daemon trying to clean up as that can lead
871		 * to deadlock.
872		 */
873		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0)
874			waitrunningbufspace();
875	}
876
877	return (0);
878}
879
880/*
881 * Delayed write. (Buffer is marked dirty).  Do not bother writing
882 * anything if the buffer is marked invalid.
883 *
884 * Note that since the buffer must be completely valid, we can safely
885 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
886 * biodone() in order to prevent getblk from writing the buffer
887 * out synchronously.
888 */
889void
890bdwrite(struct buf *bp)
891{
892	struct thread *td = curthread;
893	struct vnode *vp;
894	struct buf *nbp;
895	struct bufobj *bo;
896
897	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
898	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
899	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
900
901	if (bp->b_flags & B_INVAL) {
902		brelse(bp);
903		return;
904	}
905
906	/*
907	 * If we have too many dirty buffers, don't create any more.
908	 * If we are wildly over our limit, then force a complete
909	 * cleanup. Otherwise, just keep the situation from getting
910	 * out of control. Note that we have to avoid a recursive
911	 * disaster and not try to clean up after our own cleanup!
912	 */
913	vp = bp->b_vp;
914	bo = bp->b_bufobj;
915	if ((td->td_pflags & TDP_COWINPROGRESS) == 0) {
916		BO_LOCK(bo);
917		if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
918			BO_UNLOCK(bo);
919			(void) VOP_FSYNC(vp, MNT_NOWAIT, td);
920			altbufferflushes++;
921		} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
922			/*
923			 * Try to find a buffer to flush.
924			 */
925			TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
926				if ((nbp->b_vflags & BV_BKGRDINPROG) ||
927				    BUF_LOCK(nbp,
928				    LK_EXCLUSIVE | LK_NOWAIT, NULL))
929					continue;
930				if (bp == nbp)
931					panic("bdwrite: found ourselves");
932				BO_UNLOCK(bo);
933				/* Don't countdeps with the bo lock held. */
934				if (buf_countdeps(nbp, 0)) {
935					BO_LOCK(bo);
936					BUF_UNLOCK(nbp);
937					continue;
938				}
939				if (nbp->b_flags & B_CLUSTEROK) {
940					vfs_bio_awrite(nbp);
941				} else {
942					bremfree(nbp);
943					bawrite(nbp);
944				}
945				dirtybufferflushes++;
946				break;
947			}
948			if (nbp == NULL)
949				BO_UNLOCK(bo);
950		} else
951			BO_UNLOCK(bo);
952	} else
953		recursiveflushes++;
954
955	bdirty(bp);
956	/*
957	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
958	 * true even of NFS now.
959	 */
960	bp->b_flags |= B_CACHE;
961
962	/*
963	 * This bmap keeps the system from needing to do the bmap later,
964	 * perhaps when the system is attempting to do a sync.  Since it
965	 * is likely that the indirect block -- or whatever other datastructure
966	 * that the filesystem needs is still in memory now, it is a good
967	 * thing to do this.  Note also, that if the pageout daemon is
968	 * requesting a sync -- there might not be enough memory to do
969	 * the bmap then...  So, this is important to do.
970	 */
971	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
972		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
973	}
974
975	/*
976	 * Set the *dirty* buffer range based upon the VM system dirty pages.
977	 */
978	vfs_setdirty(bp);
979
980	/*
981	 * We need to do this here to satisfy the vnode_pager and the
982	 * pageout daemon, so that it thinks that the pages have been
983	 * "cleaned".  Note that since the pages are in a delayed write
984	 * buffer -- the VFS layer "will" see that the pages get written
985	 * out on the next sync, or perhaps the cluster will be completed.
986	 */
987	vfs_clean_pages(bp);
988	bqrelse(bp);
989
990	/*
991	 * Wakeup the buffer flushing daemon if we have a lot of dirty
992	 * buffers (midpoint between our recovery point and our stall
993	 * point).
994	 */
995	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
996
997	/*
998	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
999	 * due to the softdep code.
1000	 */
1001}
1002
1003/*
1004 *	bdirty:
1005 *
1006 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1007 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1008 *	itself to properly update it in the dirty/clean lists.  We mark it
1009 *	B_DONE to ensure that any asynchronization of the buffer properly
1010 *	clears B_DONE ( else a panic will occur later ).
1011 *
1012 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1013 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1014 *	should only be called if the buffer is known-good.
1015 *
1016 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1017 *	count.
1018 *
1019 *	The buffer must be on QUEUE_NONE.
1020 */
1021void
1022bdirty(struct buf *bp)
1023{
1024
1025	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1026	    bp, bp->b_vp, bp->b_flags);
1027	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1028	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1029	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1030	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1031	bp->b_flags &= ~(B_RELBUF);
1032	bp->b_iocmd = BIO_WRITE;
1033
1034	if ((bp->b_flags & B_DELWRI) == 0) {
1035		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1036		reassignbuf(bp);
1037		atomic_add_int(&numdirtybuffers, 1);
1038		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1039	}
1040}
1041
1042/*
1043 *	bundirty:
1044 *
1045 *	Clear B_DELWRI for buffer.
1046 *
1047 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1048 *	count.
1049 *
1050 *	The buffer must be on QUEUE_NONE.
1051 */
1052
1053void
1054bundirty(struct buf *bp)
1055{
1056
1057	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1058	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1059	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1060	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1061	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1062
1063	if (bp->b_flags & B_DELWRI) {
1064		bp->b_flags &= ~B_DELWRI;
1065		reassignbuf(bp);
1066		atomic_subtract_int(&numdirtybuffers, 1);
1067		numdirtywakeup(lodirtybuffers);
1068	}
1069	/*
1070	 * Since it is now being written, we can clear its deferred write flag.
1071	 */
1072	bp->b_flags &= ~B_DEFERRED;
1073}
1074
1075/*
1076 *	bawrite:
1077 *
1078 *	Asynchronous write.  Start output on a buffer, but do not wait for
1079 *	it to complete.  The buffer is released when the output completes.
1080 *
1081 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1082 *	B_INVAL buffers.  Not us.
1083 */
1084void
1085bawrite(struct buf *bp)
1086{
1087
1088	bp->b_flags |= B_ASYNC;
1089	(void) bwrite(bp);
1090}
1091
1092/*
1093 *	bwillwrite:
1094 *
1095 *	Called prior to the locking of any vnodes when we are expecting to
1096 *	write.  We do not want to starve the buffer cache with too many
1097 *	dirty buffers so we block here.  By blocking prior to the locking
1098 *	of any vnodes we attempt to avoid the situation where a locked vnode
1099 *	prevents the various system daemons from flushing related buffers.
1100 */
1101
1102void
1103bwillwrite(void)
1104{
1105
1106	if (numdirtybuffers >= hidirtybuffers) {
1107		mtx_lock(&nblock);
1108		while (numdirtybuffers >= hidirtybuffers) {
1109			bd_wakeup(1);
1110			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1111			msleep(&needsbuffer, &nblock,
1112			    (PRIBIO + 4), "flswai", 0);
1113		}
1114		mtx_unlock(&nblock);
1115	}
1116}
1117
1118/*
1119 * Return true if we have too many dirty buffers.
1120 */
1121int
1122buf_dirty_count_severe(void)
1123{
1124
1125	return(numdirtybuffers >= hidirtybuffers);
1126}
1127
1128/*
1129 *	brelse:
1130 *
1131 *	Release a busy buffer and, if requested, free its resources.  The
1132 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1133 *	to be accessed later as a cache entity or reused for other purposes.
1134 */
1135void
1136brelse(struct buf *bp)
1137{
1138	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1139	    bp, bp->b_vp, bp->b_flags);
1140	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1141	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1142
1143	if (bp->b_flags & B_MANAGED) {
1144		bqrelse(bp);
1145		return;
1146	}
1147
1148	if (bp->b_iocmd == BIO_WRITE &&
1149	    (bp->b_ioflags & BIO_ERROR) &&
1150	    !(bp->b_flags & B_INVAL)) {
1151		/*
1152		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1153		 * pages from being scrapped.  If B_INVAL is set then
1154		 * this case is not run and the next case is run to
1155		 * destroy the buffer.  B_INVAL can occur if the buffer
1156		 * is outside the range supported by the underlying device.
1157		 */
1158		bp->b_ioflags &= ~BIO_ERROR;
1159		bdirty(bp);
1160	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1161	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1162		/*
1163		 * Either a failed I/O or we were asked to free or not
1164		 * cache the buffer.
1165		 */
1166		bp->b_flags |= B_INVAL;
1167		if (LIST_FIRST(&bp->b_dep) != NULL)
1168			buf_deallocate(bp);
1169		if (bp->b_flags & B_DELWRI) {
1170			atomic_subtract_int(&numdirtybuffers, 1);
1171			numdirtywakeup(lodirtybuffers);
1172		}
1173		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1174		if ((bp->b_flags & B_VMIO) == 0) {
1175			if (bp->b_bufsize)
1176				allocbuf(bp, 0);
1177			if (bp->b_vp)
1178				brelvp(bp);
1179		}
1180	}
1181
1182	/*
1183	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1184	 * is called with B_DELWRI set, the underlying pages may wind up
1185	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1186	 * because pages associated with a B_DELWRI bp are marked clean.
1187	 *
1188	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1189	 * if B_DELWRI is set.
1190	 *
1191	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1192	 * on pages to return pages to the VM page queues.
1193	 */
1194	if (bp->b_flags & B_DELWRI)
1195		bp->b_flags &= ~B_RELBUF;
1196	else if (vm_page_count_severe()) {
1197		/*
1198		 * XXX This lock may not be necessary since BKGRDINPROG
1199		 * cannot be set while we hold the buf lock, it can only be
1200		 * cleared if it is already pending.
1201		 */
1202		if (bp->b_vp) {
1203			BO_LOCK(bp->b_bufobj);
1204			if (!(bp->b_vflags & BV_BKGRDINPROG))
1205				bp->b_flags |= B_RELBUF;
1206			BO_UNLOCK(bp->b_bufobj);
1207		} else
1208			bp->b_flags |= B_RELBUF;
1209	}
1210
1211	/*
1212	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1213	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1214	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1215	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1216	 *
1217	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1218	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1219	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1220	 *
1221	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1222	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1223	 * the commit state and we cannot afford to lose the buffer. If the
1224	 * buffer has a background write in progress, we need to keep it
1225	 * around to prevent it from being reconstituted and starting a second
1226	 * background write.
1227	 */
1228	if ((bp->b_flags & B_VMIO)
1229	    && !(bp->b_vp->v_mount != NULL &&
1230		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1231		 !vn_isdisk(bp->b_vp, NULL) &&
1232		 (bp->b_flags & B_DELWRI))
1233	    ) {
1234
1235		int i, j, resid;
1236		vm_page_t m;
1237		off_t foff;
1238		vm_pindex_t poff;
1239		vm_object_t obj;
1240
1241		obj = bp->b_bufobj->bo_object;
1242
1243		/*
1244		 * Get the base offset and length of the buffer.  Note that
1245		 * in the VMIO case if the buffer block size is not
1246		 * page-aligned then b_data pointer may not be page-aligned.
1247		 * But our b_pages[] array *IS* page aligned.
1248		 *
1249		 * block sizes less then DEV_BSIZE (usually 512) are not
1250		 * supported due to the page granularity bits (m->valid,
1251		 * m->dirty, etc...).
1252		 *
1253		 * See man buf(9) for more information
1254		 */
1255		resid = bp->b_bufsize;
1256		foff = bp->b_offset;
1257		VM_OBJECT_LOCK(obj);
1258		for (i = 0; i < bp->b_npages; i++) {
1259			int had_bogus = 0;
1260
1261			m = bp->b_pages[i];
1262
1263			/*
1264			 * If we hit a bogus page, fixup *all* the bogus pages
1265			 * now.
1266			 */
1267			if (m == bogus_page) {
1268				poff = OFF_TO_IDX(bp->b_offset);
1269				had_bogus = 1;
1270
1271				for (j = i; j < bp->b_npages; j++) {
1272					vm_page_t mtmp;
1273					mtmp = bp->b_pages[j];
1274					if (mtmp == bogus_page) {
1275						mtmp = vm_page_lookup(obj, poff + j);
1276						if (!mtmp) {
1277							panic("brelse: page missing\n");
1278						}
1279						bp->b_pages[j] = mtmp;
1280					}
1281				}
1282
1283				if ((bp->b_flags & B_INVAL) == 0) {
1284					pmap_qenter(
1285					    trunc_page((vm_offset_t)bp->b_data),
1286					    bp->b_pages, bp->b_npages);
1287				}
1288				m = bp->b_pages[i];
1289			}
1290			if ((bp->b_flags & B_NOCACHE) ||
1291			    (bp->b_ioflags & BIO_ERROR)) {
1292				int poffset = foff & PAGE_MASK;
1293				int presid = resid > (PAGE_SIZE - poffset) ?
1294					(PAGE_SIZE - poffset) : resid;
1295
1296				KASSERT(presid >= 0, ("brelse: extra page"));
1297				vm_page_lock_queues();
1298				vm_page_set_invalid(m, poffset, presid);
1299				vm_page_unlock_queues();
1300				if (had_bogus)
1301					printf("avoided corruption bug in bogus_page/brelse code\n");
1302			}
1303			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1304			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1305		}
1306		VM_OBJECT_UNLOCK(obj);
1307		if (bp->b_flags & (B_INVAL | B_RELBUF))
1308			vfs_vmio_release(bp);
1309
1310	} else if (bp->b_flags & B_VMIO) {
1311
1312		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1313			vfs_vmio_release(bp);
1314		}
1315
1316	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1317		if (bp->b_bufsize != 0)
1318			allocbuf(bp, 0);
1319		if (bp->b_vp != NULL)
1320			brelvp(bp);
1321	}
1322
1323	if (BUF_REFCNT(bp) > 1) {
1324		/* do not release to free list */
1325		BUF_UNLOCK(bp);
1326		return;
1327	}
1328
1329	/* enqueue */
1330	mtx_lock(&bqlock);
1331	/* Handle delayed bremfree() processing. */
1332	if (bp->b_flags & B_REMFREE)
1333		bremfreel(bp);
1334	if (bp->b_qindex != QUEUE_NONE)
1335		panic("brelse: free buffer onto another queue???");
1336
1337	/* buffers with no memory */
1338	if (bp->b_bufsize == 0) {
1339		bp->b_flags |= B_INVAL;
1340		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1341		if (bp->b_vflags & BV_BKGRDINPROG)
1342			panic("losing buffer 1");
1343		if (bp->b_kvasize) {
1344			bp->b_qindex = QUEUE_EMPTYKVA;
1345		} else {
1346			bp->b_qindex = QUEUE_EMPTY;
1347		}
1348		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1349	/* buffers with junk contents */
1350	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1351	    (bp->b_ioflags & BIO_ERROR)) {
1352		bp->b_flags |= B_INVAL;
1353		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1354		if (bp->b_vflags & BV_BKGRDINPROG)
1355			panic("losing buffer 2");
1356		bp->b_qindex = QUEUE_CLEAN;
1357		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1358	/* remaining buffers */
1359	} else {
1360		if ((bp->b_flags & (B_DELWRI|B_NEEDSGIANT)) ==
1361		    (B_DELWRI|B_NEEDSGIANT))
1362			bp->b_qindex = QUEUE_DIRTY_GIANT;
1363		if (bp->b_flags & B_DELWRI)
1364			bp->b_qindex = QUEUE_DIRTY;
1365		else
1366			bp->b_qindex = QUEUE_CLEAN;
1367		if (bp->b_flags & B_AGE)
1368			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1369		else
1370			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1371	}
1372	mtx_unlock(&bqlock);
1373
1374	/*
1375	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1376	 * placed the buffer on the correct queue.  We must also disassociate
1377	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1378	 * find it.
1379	 */
1380	if (bp->b_flags & B_INVAL) {
1381		if (bp->b_flags & B_DELWRI)
1382			bundirty(bp);
1383		if (bp->b_vp)
1384			brelvp(bp);
1385	}
1386
1387	/*
1388	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1389	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1390	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1391	 * if B_INVAL is set ).
1392	 */
1393
1394	if (!(bp->b_flags & B_DELWRI))
1395		bufcountwakeup();
1396
1397	/*
1398	 * Something we can maybe free or reuse
1399	 */
1400	if (bp->b_bufsize || bp->b_kvasize)
1401		bufspacewakeup();
1402
1403	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1404	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1405		panic("brelse: not dirty");
1406	/* unlock */
1407	BUF_UNLOCK(bp);
1408}
1409
1410/*
1411 * Release a buffer back to the appropriate queue but do not try to free
1412 * it.  The buffer is expected to be used again soon.
1413 *
1414 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1415 * biodone() to requeue an async I/O on completion.  It is also used when
1416 * known good buffers need to be requeued but we think we may need the data
1417 * again soon.
1418 *
1419 * XXX we should be able to leave the B_RELBUF hint set on completion.
1420 */
1421void
1422bqrelse(struct buf *bp)
1423{
1424	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1425	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1426	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1427
1428	if (BUF_REFCNT(bp) > 1) {
1429		/* do not release to free list */
1430		BUF_UNLOCK(bp);
1431		return;
1432	}
1433
1434	if (bp->b_flags & B_MANAGED) {
1435		if (bp->b_flags & B_REMFREE) {
1436			mtx_lock(&bqlock);
1437			bremfreel(bp);
1438			mtx_unlock(&bqlock);
1439		}
1440		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1441		BUF_UNLOCK(bp);
1442		return;
1443	}
1444
1445	mtx_lock(&bqlock);
1446	/* Handle delayed bremfree() processing. */
1447	if (bp->b_flags & B_REMFREE)
1448		bremfreel(bp);
1449	if (bp->b_qindex != QUEUE_NONE)
1450		panic("bqrelse: free buffer onto another queue???");
1451	/* buffers with stale but valid contents */
1452	if (bp->b_flags & B_DELWRI) {
1453		if (bp->b_flags & B_NEEDSGIANT)
1454			bp->b_qindex = QUEUE_DIRTY_GIANT;
1455		else
1456			bp->b_qindex = QUEUE_DIRTY;
1457		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1458	} else {
1459		/*
1460		 * XXX This lock may not be necessary since BKGRDINPROG
1461		 * cannot be set while we hold the buf lock, it can only be
1462		 * cleared if it is already pending.
1463		 */
1464		BO_LOCK(bp->b_bufobj);
1465		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1466			BO_UNLOCK(bp->b_bufobj);
1467			bp->b_qindex = QUEUE_CLEAN;
1468			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1469			    b_freelist);
1470		} else {
1471			/*
1472			 * We are too low on memory, we have to try to free
1473			 * the buffer (most importantly: the wired pages
1474			 * making up its backing store) *now*.
1475			 */
1476			BO_UNLOCK(bp->b_bufobj);
1477			mtx_unlock(&bqlock);
1478			brelse(bp);
1479			return;
1480		}
1481	}
1482	mtx_unlock(&bqlock);
1483
1484	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1485		bufcountwakeup();
1486
1487	/*
1488	 * Something we can maybe free or reuse.
1489	 */
1490	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1491		bufspacewakeup();
1492
1493	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1494	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1495		panic("bqrelse: not dirty");
1496	/* unlock */
1497	BUF_UNLOCK(bp);
1498}
1499
1500/* Give pages used by the bp back to the VM system (where possible) */
1501static void
1502vfs_vmio_release(struct buf *bp)
1503{
1504	int i;
1505	vm_page_t m;
1506
1507	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1508	vm_page_lock_queues();
1509	for (i = 0; i < bp->b_npages; i++) {
1510		m = bp->b_pages[i];
1511		bp->b_pages[i] = NULL;
1512		/*
1513		 * In order to keep page LRU ordering consistent, put
1514		 * everything on the inactive queue.
1515		 */
1516		vm_page_unwire(m, 0);
1517		/*
1518		 * We don't mess with busy pages, it is
1519		 * the responsibility of the process that
1520		 * busied the pages to deal with them.
1521		 */
1522		if ((m->flags & PG_BUSY) || (m->busy != 0))
1523			continue;
1524
1525		if (m->wire_count == 0) {
1526			/*
1527			 * Might as well free the page if we can and it has
1528			 * no valid data.  We also free the page if the
1529			 * buffer was used for direct I/O
1530			 */
1531			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1532			    m->hold_count == 0) {
1533				vm_page_free(m);
1534			} else if (bp->b_flags & B_DIRECT) {
1535				vm_page_try_to_free(m);
1536			} else if (vm_page_count_severe()) {
1537				vm_page_try_to_cache(m);
1538			}
1539		}
1540	}
1541	vm_page_unlock_queues();
1542	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1543	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1544
1545	if (bp->b_bufsize) {
1546		bufspacewakeup();
1547		bp->b_bufsize = 0;
1548	}
1549	bp->b_npages = 0;
1550	bp->b_flags &= ~B_VMIO;
1551	if (bp->b_vp)
1552		brelvp(bp);
1553}
1554
1555/*
1556 * Check to see if a block at a particular lbn is available for a clustered
1557 * write.
1558 */
1559static int
1560vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1561{
1562	struct buf *bpa;
1563	int match;
1564
1565	match = 0;
1566
1567	/* If the buf isn't in core skip it */
1568	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1569		return (0);
1570
1571	/* If the buf is busy we don't want to wait for it */
1572	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1573		return (0);
1574
1575	/* Only cluster with valid clusterable delayed write buffers */
1576	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1577	    (B_DELWRI | B_CLUSTEROK))
1578		goto done;
1579
1580	if (bpa->b_bufsize != size)
1581		goto done;
1582
1583	/*
1584	 * Check to see if it is in the expected place on disk and that the
1585	 * block has been mapped.
1586	 */
1587	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1588		match = 1;
1589done:
1590	BUF_UNLOCK(bpa);
1591	return (match);
1592}
1593
1594/*
1595 *	vfs_bio_awrite:
1596 *
1597 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1598 *	This is much better then the old way of writing only one buffer at
1599 *	a time.  Note that we may not be presented with the buffers in the
1600 *	correct order, so we search for the cluster in both directions.
1601 */
1602int
1603vfs_bio_awrite(struct buf *bp)
1604{
1605	int i;
1606	int j;
1607	daddr_t lblkno = bp->b_lblkno;
1608	struct vnode *vp = bp->b_vp;
1609	int ncl;
1610	int nwritten;
1611	int size;
1612	int maxcl;
1613
1614	/*
1615	 * right now we support clustered writing only to regular files.  If
1616	 * we find a clusterable block we could be in the middle of a cluster
1617	 * rather then at the beginning.
1618	 */
1619	if ((vp->v_type == VREG) &&
1620	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1621	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1622
1623		size = vp->v_mount->mnt_stat.f_iosize;
1624		maxcl = MAXPHYS / size;
1625
1626		VI_LOCK(vp);
1627		for (i = 1; i < maxcl; i++)
1628			if (vfs_bio_clcheck(vp, size, lblkno + i,
1629			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1630				break;
1631
1632		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1633			if (vfs_bio_clcheck(vp, size, lblkno - j,
1634			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1635				break;
1636
1637		VI_UNLOCK(vp);
1638		--j;
1639		ncl = i + j;
1640		/*
1641		 * this is a possible cluster write
1642		 */
1643		if (ncl != 1) {
1644			BUF_UNLOCK(bp);
1645			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1646			return nwritten;
1647		}
1648	}
1649	bremfree(bp);
1650	bp->b_flags |= B_ASYNC;
1651	/*
1652	 * default (old) behavior, writing out only one block
1653	 *
1654	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1655	 */
1656	nwritten = bp->b_bufsize;
1657	(void) bwrite(bp);
1658
1659	return nwritten;
1660}
1661
1662/*
1663 *	getnewbuf:
1664 *
1665 *	Find and initialize a new buffer header, freeing up existing buffers
1666 *	in the bufqueues as necessary.  The new buffer is returned locked.
1667 *
1668 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1669 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1670 *
1671 *	We block if:
1672 *		We have insufficient buffer headers
1673 *		We have insufficient buffer space
1674 *		buffer_map is too fragmented ( space reservation fails )
1675 *		If we have to flush dirty buffers ( but we try to avoid this )
1676 *
1677 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1678 *	Instead we ask the buf daemon to do it for us.  We attempt to
1679 *	avoid piecemeal wakeups of the pageout daemon.
1680 */
1681
1682static struct buf *
1683getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1684{
1685	struct buf *bp;
1686	struct buf *nbp;
1687	int defrag = 0;
1688	int nqindex;
1689	static int flushingbufs;
1690
1691	/*
1692	 * We can't afford to block since we might be holding a vnode lock,
1693	 * which may prevent system daemons from running.  We deal with
1694	 * low-memory situations by proactively returning memory and running
1695	 * async I/O rather then sync I/O.
1696	 */
1697
1698	atomic_add_int(&getnewbufcalls, 1);
1699	atomic_subtract_int(&getnewbufrestarts, 1);
1700restart:
1701	atomic_add_int(&getnewbufrestarts, 1);
1702
1703	/*
1704	 * Setup for scan.  If we do not have enough free buffers,
1705	 * we setup a degenerate case that immediately fails.  Note
1706	 * that if we are specially marked process, we are allowed to
1707	 * dip into our reserves.
1708	 *
1709	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1710	 *
1711	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1712	 * However, there are a number of cases (defragging, reusing, ...)
1713	 * where we cannot backup.
1714	 */
1715	mtx_lock(&bqlock);
1716	nqindex = QUEUE_EMPTYKVA;
1717	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1718
1719	if (nbp == NULL) {
1720		/*
1721		 * If no EMPTYKVA buffers and we are either
1722		 * defragging or reusing, locate a CLEAN buffer
1723		 * to free or reuse.  If bufspace useage is low
1724		 * skip this step so we can allocate a new buffer.
1725		 */
1726		if (defrag || bufspace >= lobufspace) {
1727			nqindex = QUEUE_CLEAN;
1728			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1729		}
1730
1731		/*
1732		 * If we could not find or were not allowed to reuse a
1733		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1734		 * buffer.  We can only use an EMPTY buffer if allocating
1735		 * its KVA would not otherwise run us out of buffer space.
1736		 */
1737		if (nbp == NULL && defrag == 0 &&
1738		    bufspace + maxsize < hibufspace) {
1739			nqindex = QUEUE_EMPTY;
1740			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1741		}
1742	}
1743
1744	/*
1745	 * Run scan, possibly freeing data and/or kva mappings on the fly
1746	 * depending.
1747	 */
1748
1749	while ((bp = nbp) != NULL) {
1750		int qindex = nqindex;
1751
1752		/*
1753		 * Calculate next bp ( we can only use it if we do not block
1754		 * or do other fancy things ).
1755		 */
1756		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1757			switch(qindex) {
1758			case QUEUE_EMPTY:
1759				nqindex = QUEUE_EMPTYKVA;
1760				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1761					break;
1762				/* FALLTHROUGH */
1763			case QUEUE_EMPTYKVA:
1764				nqindex = QUEUE_CLEAN;
1765				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1766					break;
1767				/* FALLTHROUGH */
1768			case QUEUE_CLEAN:
1769				/*
1770				 * nbp is NULL.
1771				 */
1772				break;
1773			}
1774		}
1775		/*
1776		 * If we are defragging then we need a buffer with
1777		 * b_kvasize != 0.  XXX this situation should no longer
1778		 * occur, if defrag is non-zero the buffer's b_kvasize
1779		 * should also be non-zero at this point.  XXX
1780		 */
1781		if (defrag && bp->b_kvasize == 0) {
1782			printf("Warning: defrag empty buffer %p\n", bp);
1783			continue;
1784		}
1785
1786		/*
1787		 * Start freeing the bp.  This is somewhat involved.  nbp
1788		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1789		 */
1790		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1791			continue;
1792		if (bp->b_vp) {
1793			BO_LOCK(bp->b_bufobj);
1794			if (bp->b_vflags & BV_BKGRDINPROG) {
1795				BO_UNLOCK(bp->b_bufobj);
1796				BUF_UNLOCK(bp);
1797				continue;
1798			}
1799			BO_UNLOCK(bp->b_bufobj);
1800		}
1801		CTR6(KTR_BUF,
1802		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1803		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1804		    bp->b_kvasize, bp->b_bufsize, qindex);
1805
1806		/*
1807		 * Sanity Checks
1808		 */
1809		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1810
1811		/*
1812		 * Note: we no longer distinguish between VMIO and non-VMIO
1813		 * buffers.
1814		 */
1815
1816		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1817
1818		bremfreel(bp);
1819		mtx_unlock(&bqlock);
1820
1821		if (qindex == QUEUE_CLEAN) {
1822			if (bp->b_flags & B_VMIO) {
1823				bp->b_flags &= ~B_ASYNC;
1824				vfs_vmio_release(bp);
1825			}
1826			if (bp->b_vp)
1827				brelvp(bp);
1828		}
1829
1830		/*
1831		 * NOTE:  nbp is now entirely invalid.  We can only restart
1832		 * the scan from this point on.
1833		 *
1834		 * Get the rest of the buffer freed up.  b_kva* is still
1835		 * valid after this operation.
1836		 */
1837
1838		if (bp->b_rcred != NOCRED) {
1839			crfree(bp->b_rcred);
1840			bp->b_rcred = NOCRED;
1841		}
1842		if (bp->b_wcred != NOCRED) {
1843			crfree(bp->b_wcred);
1844			bp->b_wcred = NOCRED;
1845		}
1846		if (LIST_FIRST(&bp->b_dep) != NULL)
1847			buf_deallocate(bp);
1848		if (bp->b_vflags & BV_BKGRDINPROG)
1849			panic("losing buffer 3");
1850		KASSERT(bp->b_vp == NULL,
1851		    ("bp: %p still has vnode %p.  qindex: %d",
1852		    bp, bp->b_vp, qindex));
1853		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1854		   ("bp: %p still on a buffer list. xflags %X",
1855		    bp, bp->b_xflags));
1856
1857		if (bp->b_bufsize)
1858			allocbuf(bp, 0);
1859
1860		bp->b_flags = 0;
1861		bp->b_ioflags = 0;
1862		bp->b_xflags = 0;
1863		bp->b_vflags = 0;
1864		bp->b_vp = NULL;
1865		bp->b_blkno = bp->b_lblkno = 0;
1866		bp->b_offset = NOOFFSET;
1867		bp->b_iodone = 0;
1868		bp->b_error = 0;
1869		bp->b_resid = 0;
1870		bp->b_bcount = 0;
1871		bp->b_npages = 0;
1872		bp->b_dirtyoff = bp->b_dirtyend = 0;
1873		bp->b_bufobj = NULL;
1874		bp->b_pin_count = 0;
1875		bp->b_fsprivate1 = NULL;
1876		bp->b_fsprivate2 = NULL;
1877		bp->b_fsprivate3 = NULL;
1878
1879		LIST_INIT(&bp->b_dep);
1880
1881		/*
1882		 * If we are defragging then free the buffer.
1883		 */
1884		if (defrag) {
1885			bp->b_flags |= B_INVAL;
1886			bfreekva(bp);
1887			brelse(bp);
1888			defrag = 0;
1889			goto restart;
1890		}
1891
1892		/*
1893		 * If we are overcomitted then recover the buffer and its
1894		 * KVM space.  This occurs in rare situations when multiple
1895		 * processes are blocked in getnewbuf() or allocbuf().
1896		 */
1897		if (bufspace >= hibufspace)
1898			flushingbufs = 1;
1899		if (flushingbufs && bp->b_kvasize != 0) {
1900			bp->b_flags |= B_INVAL;
1901			bfreekva(bp);
1902			brelse(bp);
1903			goto restart;
1904		}
1905		if (bufspace < lobufspace)
1906			flushingbufs = 0;
1907		break;
1908	}
1909
1910	/*
1911	 * If we exhausted our list, sleep as appropriate.  We may have to
1912	 * wakeup various daemons and write out some dirty buffers.
1913	 *
1914	 * Generally we are sleeping due to insufficient buffer space.
1915	 */
1916
1917	if (bp == NULL) {
1918		int flags;
1919		char *waitmsg;
1920
1921		if (defrag) {
1922			flags = VFS_BIO_NEED_BUFSPACE;
1923			waitmsg = "nbufkv";
1924		} else if (bufspace >= hibufspace) {
1925			waitmsg = "nbufbs";
1926			flags = VFS_BIO_NEED_BUFSPACE;
1927		} else {
1928			waitmsg = "newbuf";
1929			flags = VFS_BIO_NEED_ANY;
1930		}
1931		mtx_lock(&nblock);
1932		needsbuffer |= flags;
1933		mtx_unlock(&nblock);
1934		mtx_unlock(&bqlock);
1935
1936		bd_speedup();	/* heeeelp */
1937
1938		mtx_lock(&nblock);
1939		while (needsbuffer & flags) {
1940			if (msleep(&needsbuffer, &nblock,
1941			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1942				mtx_unlock(&nblock);
1943				return (NULL);
1944			}
1945		}
1946		mtx_unlock(&nblock);
1947	} else {
1948		/*
1949		 * We finally have a valid bp.  We aren't quite out of the
1950		 * woods, we still have to reserve kva space.  In order
1951		 * to keep fragmentation sane we only allocate kva in
1952		 * BKVASIZE chunks.
1953		 */
1954		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1955
1956		if (maxsize != bp->b_kvasize) {
1957			vm_offset_t addr = 0;
1958
1959			bfreekva(bp);
1960
1961			vm_map_lock(buffer_map);
1962			if (vm_map_findspace(buffer_map,
1963				vm_map_min(buffer_map), maxsize, &addr)) {
1964				/*
1965				 * Uh oh.  Buffer map is to fragmented.  We
1966				 * must defragment the map.
1967				 */
1968				atomic_add_int(&bufdefragcnt, 1);
1969				vm_map_unlock(buffer_map);
1970				defrag = 1;
1971				bp->b_flags |= B_INVAL;
1972				brelse(bp);
1973				goto restart;
1974			}
1975			if (addr) {
1976				vm_map_insert(buffer_map, NULL, 0,
1977					addr, addr + maxsize,
1978					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1979
1980				bp->b_kvabase = (caddr_t) addr;
1981				bp->b_kvasize = maxsize;
1982				atomic_add_int(&bufspace, bp->b_kvasize);
1983				atomic_add_int(&bufreusecnt, 1);
1984			}
1985			vm_map_unlock(buffer_map);
1986		}
1987		bp->b_saveaddr = bp->b_kvabase;
1988		bp->b_data = bp->b_saveaddr;
1989	}
1990	return(bp);
1991}
1992
1993/*
1994 *	buf_daemon:
1995 *
1996 *	buffer flushing daemon.  Buffers are normally flushed by the
1997 *	update daemon but if it cannot keep up this process starts to
1998 *	take the load in an attempt to prevent getnewbuf() from blocking.
1999 */
2000
2001static struct kproc_desc buf_kp = {
2002	"bufdaemon",
2003	buf_daemon,
2004	&bufdaemonproc
2005};
2006SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2007
2008static void
2009buf_daemon()
2010{
2011
2012	/*
2013	 * This process needs to be suspended prior to shutdown sync.
2014	 */
2015	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2016	    SHUTDOWN_PRI_LAST);
2017
2018	/*
2019	 * This process is allowed to take the buffer cache to the limit
2020	 */
2021	curthread->td_pflags |= TDP_NORUNNINGBUF;
2022	mtx_lock(&bdlock);
2023	for (;;) {
2024		bd_request = 0;
2025		mtx_unlock(&bdlock);
2026
2027		kthread_suspend_check(bufdaemonproc);
2028
2029		/*
2030		 * Do the flush.  Limit the amount of in-transit I/O we
2031		 * allow to build up, otherwise we would completely saturate
2032		 * the I/O system.  Wakeup any waiting processes before we
2033		 * normally would so they can run in parallel with our drain.
2034		 */
2035		while (numdirtybuffers > lodirtybuffers) {
2036			int flushed;
2037
2038			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2039			/* The list empty check here is slightly racy */
2040			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2041				mtx_lock(&Giant);
2042				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2043				mtx_unlock(&Giant);
2044			}
2045			if (flushed == 0) {
2046				/*
2047				 * Could not find any buffers without rollback
2048				 * dependencies, so just write the first one
2049				 * in the hopes of eventually making progress.
2050				 */
2051				flushbufqueues(QUEUE_DIRTY, 1);
2052				if (!TAILQ_EMPTY(
2053				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2054					mtx_lock(&Giant);
2055					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2056					mtx_unlock(&Giant);
2057				}
2058				break;
2059			}
2060			uio_yield();
2061		}
2062
2063		/*
2064		 * Only clear bd_request if we have reached our low water
2065		 * mark.  The buf_daemon normally waits 1 second and
2066		 * then incrementally flushes any dirty buffers that have
2067		 * built up, within reason.
2068		 *
2069		 * If we were unable to hit our low water mark and couldn't
2070		 * find any flushable buffers, we sleep half a second.
2071		 * Otherwise we loop immediately.
2072		 */
2073		mtx_lock(&bdlock);
2074		if (numdirtybuffers <= lodirtybuffers) {
2075			/*
2076			 * We reached our low water mark, reset the
2077			 * request and sleep until we are needed again.
2078			 * The sleep is just so the suspend code works.
2079			 */
2080			bd_request = 0;
2081			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2082		} else {
2083			/*
2084			 * We couldn't find any flushable dirty buffers but
2085			 * still have too many dirty buffers, we
2086			 * have to sleep and try again.  (rare)
2087			 */
2088			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2089		}
2090	}
2091}
2092
2093/*
2094 *	flushbufqueues:
2095 *
2096 *	Try to flush a buffer in the dirty queue.  We must be careful to
2097 *	free up B_INVAL buffers instead of write them, which NFS is
2098 *	particularly sensitive to.
2099 */
2100static int flushwithdeps = 0;
2101SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2102    0, "Number of buffers flushed with dependecies that require rollbacks");
2103
2104static int
2105flushbufqueues(int queue, int flushdeps)
2106{
2107	struct thread *td = curthread;
2108	struct buf sentinel;
2109	struct vnode *vp;
2110	struct mount *mp;
2111	struct buf *bp;
2112	int hasdeps;
2113	int flushed;
2114	int target;
2115
2116	target = numdirtybuffers - lodirtybuffers;
2117	if (flushdeps && target > 2)
2118		target /= 2;
2119	flushed = 0;
2120	bp = NULL;
2121	mtx_lock(&bqlock);
2122	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2123	while (flushed != target) {
2124		bp = TAILQ_FIRST(&bufqueues[queue]);
2125		if (bp == &sentinel)
2126			break;
2127		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2128		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2129
2130		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2131			continue;
2132		if (bp->b_pin_count > 0) {
2133			BUF_UNLOCK(bp);
2134			continue;
2135		}
2136		BO_LOCK(bp->b_bufobj);
2137		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2138		    (bp->b_flags & B_DELWRI) == 0) {
2139			BO_UNLOCK(bp->b_bufobj);
2140			BUF_UNLOCK(bp);
2141			continue;
2142		}
2143		BO_UNLOCK(bp->b_bufobj);
2144		if (bp->b_flags & B_INVAL) {
2145			bremfreel(bp);
2146			mtx_unlock(&bqlock);
2147			brelse(bp);
2148			flushed++;
2149			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2150			mtx_lock(&bqlock);
2151			continue;
2152		}
2153
2154		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2155			if (flushdeps == 0) {
2156				BUF_UNLOCK(bp);
2157				continue;
2158			}
2159			hasdeps = 1;
2160		} else
2161			hasdeps = 0;
2162		/*
2163		 * We must hold the lock on a vnode before writing
2164		 * one of its buffers. Otherwise we may confuse, or
2165		 * in the case of a snapshot vnode, deadlock the
2166		 * system.
2167		 *
2168		 * The lock order here is the reverse of the normal
2169		 * of vnode followed by buf lock.  This is ok because
2170		 * the NOWAIT will prevent deadlock.
2171		 */
2172		vp = bp->b_vp;
2173		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2174			BUF_UNLOCK(bp);
2175			continue;
2176		}
2177		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2178			mtx_unlock(&bqlock);
2179			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2180			    bp, bp->b_vp, bp->b_flags);
2181			vfs_bio_awrite(bp);
2182			vn_finished_write(mp);
2183			VOP_UNLOCK(vp, 0, td);
2184			flushwithdeps += hasdeps;
2185			flushed++;
2186			waitrunningbufspace();
2187			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2188			mtx_lock(&bqlock);
2189			continue;
2190		}
2191		vn_finished_write(mp);
2192		BUF_UNLOCK(bp);
2193	}
2194	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2195	mtx_unlock(&bqlock);
2196	return (flushed);
2197}
2198
2199/*
2200 * Check to see if a block is currently memory resident.
2201 */
2202struct buf *
2203incore(struct bufobj *bo, daddr_t blkno)
2204{
2205	struct buf *bp;
2206
2207	BO_LOCK(bo);
2208	bp = gbincore(bo, blkno);
2209	BO_UNLOCK(bo);
2210	return (bp);
2211}
2212
2213/*
2214 * Returns true if no I/O is needed to access the
2215 * associated VM object.  This is like incore except
2216 * it also hunts around in the VM system for the data.
2217 */
2218
2219static int
2220inmem(struct vnode * vp, daddr_t blkno)
2221{
2222	vm_object_t obj;
2223	vm_offset_t toff, tinc, size;
2224	vm_page_t m;
2225	vm_ooffset_t off;
2226
2227	ASSERT_VOP_LOCKED(vp, "inmem");
2228
2229	if (incore(&vp->v_bufobj, blkno))
2230		return 1;
2231	if (vp->v_mount == NULL)
2232		return 0;
2233	obj = vp->v_object;
2234	if (obj == NULL)
2235		return (0);
2236
2237	size = PAGE_SIZE;
2238	if (size > vp->v_mount->mnt_stat.f_iosize)
2239		size = vp->v_mount->mnt_stat.f_iosize;
2240	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2241
2242	VM_OBJECT_LOCK(obj);
2243	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2244		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2245		if (!m)
2246			goto notinmem;
2247		tinc = size;
2248		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2249			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2250		if (vm_page_is_valid(m,
2251		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2252			goto notinmem;
2253	}
2254	VM_OBJECT_UNLOCK(obj);
2255	return 1;
2256
2257notinmem:
2258	VM_OBJECT_UNLOCK(obj);
2259	return (0);
2260}
2261
2262/*
2263 *	vfs_setdirty:
2264 *
2265 *	Sets the dirty range for a buffer based on the status of the dirty
2266 *	bits in the pages comprising the buffer.
2267 *
2268 *	The range is limited to the size of the buffer.
2269 *
2270 *	This routine is primarily used by NFS, but is generalized for the
2271 *	B_VMIO case.
2272 */
2273static void
2274vfs_setdirty(struct buf *bp)
2275{
2276	int i;
2277	vm_object_t object;
2278
2279	/*
2280	 * Degenerate case - empty buffer
2281	 */
2282
2283	if (bp->b_bufsize == 0)
2284		return;
2285
2286	/*
2287	 * We qualify the scan for modified pages on whether the
2288	 * object has been flushed yet.
2289	 */
2290
2291	if ((bp->b_flags & B_VMIO) == 0)
2292		return;
2293
2294	object = bp->b_pages[0]->object;
2295	VM_OBJECT_LOCK(object);
2296	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2297		vm_offset_t boffset;
2298		vm_offset_t eoffset;
2299
2300		vm_page_lock_queues();
2301		/*
2302		 * test the pages to see if they have been modified directly
2303		 * by users through the VM system.
2304		 */
2305		for (i = 0; i < bp->b_npages; i++)
2306			vm_page_test_dirty(bp->b_pages[i]);
2307
2308		/*
2309		 * Calculate the encompassing dirty range, boffset and eoffset,
2310		 * (eoffset - boffset) bytes.
2311		 */
2312
2313		for (i = 0; i < bp->b_npages; i++) {
2314			if (bp->b_pages[i]->dirty)
2315				break;
2316		}
2317		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2318
2319		for (i = bp->b_npages - 1; i >= 0; --i) {
2320			if (bp->b_pages[i]->dirty) {
2321				break;
2322			}
2323		}
2324		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2325
2326		vm_page_unlock_queues();
2327		/*
2328		 * Fit it to the buffer.
2329		 */
2330
2331		if (eoffset > bp->b_bcount)
2332			eoffset = bp->b_bcount;
2333
2334		/*
2335		 * If we have a good dirty range, merge with the existing
2336		 * dirty range.
2337		 */
2338
2339		if (boffset < eoffset) {
2340			if (bp->b_dirtyoff > boffset)
2341				bp->b_dirtyoff = boffset;
2342			if (bp->b_dirtyend < eoffset)
2343				bp->b_dirtyend = eoffset;
2344		}
2345	}
2346	VM_OBJECT_UNLOCK(object);
2347}
2348
2349/*
2350 *	getblk:
2351 *
2352 *	Get a block given a specified block and offset into a file/device.
2353 *	The buffers B_DONE bit will be cleared on return, making it almost
2354 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2355 *	return.  The caller should clear B_INVAL prior to initiating a
2356 *	READ.
2357 *
2358 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2359 *	an existing buffer.
2360 *
2361 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2362 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2363 *	and then cleared based on the backing VM.  If the previous buffer is
2364 *	non-0-sized but invalid, B_CACHE will be cleared.
2365 *
2366 *	If getblk() must create a new buffer, the new buffer is returned with
2367 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2368 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2369 *	backing VM.
2370 *
2371 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2372 *	B_CACHE bit is clear.
2373 *
2374 *	What this means, basically, is that the caller should use B_CACHE to
2375 *	determine whether the buffer is fully valid or not and should clear
2376 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2377 *	the buffer by loading its data area with something, the caller needs
2378 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2379 *	the caller should set B_CACHE ( as an optimization ), else the caller
2380 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2381 *	a write attempt or if it was a successfull read.  If the caller
2382 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2383 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2384 */
2385struct buf *
2386getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2387    int flags)
2388{
2389	struct buf *bp;
2390	struct bufobj *bo;
2391	int error;
2392
2393	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2394	ASSERT_VOP_LOCKED(vp, "getblk");
2395	if (size > MAXBSIZE)
2396		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2397
2398	bo = &vp->v_bufobj;
2399loop:
2400	/*
2401	 * Block if we are low on buffers.   Certain processes are allowed
2402	 * to completely exhaust the buffer cache.
2403         *
2404         * If this check ever becomes a bottleneck it may be better to
2405         * move it into the else, when gbincore() fails.  At the moment
2406         * it isn't a problem.
2407	 *
2408	 * XXX remove if 0 sections (clean this up after its proven)
2409         */
2410	if (numfreebuffers == 0) {
2411		if (curthread == PCPU_GET(idlethread))
2412			return NULL;
2413		mtx_lock(&nblock);
2414		needsbuffer |= VFS_BIO_NEED_ANY;
2415		mtx_unlock(&nblock);
2416	}
2417
2418	VI_LOCK(vp);
2419	bp = gbincore(bo, blkno);
2420	if (bp != NULL) {
2421		int lockflags;
2422		/*
2423		 * Buffer is in-core.  If the buffer is not busy, it must
2424		 * be on a queue.
2425		 */
2426		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2427
2428		if (flags & GB_LOCK_NOWAIT)
2429			lockflags |= LK_NOWAIT;
2430
2431		error = BUF_TIMELOCK(bp, lockflags,
2432		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2433
2434		/*
2435		 * If we slept and got the lock we have to restart in case
2436		 * the buffer changed identities.
2437		 */
2438		if (error == ENOLCK)
2439			goto loop;
2440		/* We timed out or were interrupted. */
2441		else if (error)
2442			return (NULL);
2443
2444		/*
2445		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2446		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2447		 * and for a VMIO buffer B_CACHE is adjusted according to the
2448		 * backing VM cache.
2449		 */
2450		if (bp->b_flags & B_INVAL)
2451			bp->b_flags &= ~B_CACHE;
2452		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2453			bp->b_flags |= B_CACHE;
2454		bremfree(bp);
2455
2456		/*
2457		 * check for size inconsistancies for non-VMIO case.
2458		 */
2459
2460		if (bp->b_bcount != size) {
2461			if ((bp->b_flags & B_VMIO) == 0 ||
2462			    (size > bp->b_kvasize)) {
2463				if (bp->b_flags & B_DELWRI) {
2464					/*
2465					 * If buffer is pinned and caller does
2466					 * not want sleep  waiting for it to be
2467					 * unpinned, bail out
2468					 * */
2469					if (bp->b_pin_count > 0) {
2470						if (flags & GB_LOCK_NOWAIT) {
2471							bqrelse(bp);
2472							return (NULL);
2473						} else {
2474							bunpin_wait(bp);
2475						}
2476					}
2477					bp->b_flags |= B_NOCACHE;
2478					bwrite(bp);
2479				} else {
2480					if (LIST_FIRST(&bp->b_dep) == NULL) {
2481						bp->b_flags |= B_RELBUF;
2482						brelse(bp);
2483					} else {
2484						bp->b_flags |= B_NOCACHE;
2485						bwrite(bp);
2486					}
2487				}
2488				goto loop;
2489			}
2490		}
2491
2492		/*
2493		 * If the size is inconsistant in the VMIO case, we can resize
2494		 * the buffer.  This might lead to B_CACHE getting set or
2495		 * cleared.  If the size has not changed, B_CACHE remains
2496		 * unchanged from its previous state.
2497		 */
2498
2499		if (bp->b_bcount != size)
2500			allocbuf(bp, size);
2501
2502		KASSERT(bp->b_offset != NOOFFSET,
2503		    ("getblk: no buffer offset"));
2504
2505		/*
2506		 * A buffer with B_DELWRI set and B_CACHE clear must
2507		 * be committed before we can return the buffer in
2508		 * order to prevent the caller from issuing a read
2509		 * ( due to B_CACHE not being set ) and overwriting
2510		 * it.
2511		 *
2512		 * Most callers, including NFS and FFS, need this to
2513		 * operate properly either because they assume they
2514		 * can issue a read if B_CACHE is not set, or because
2515		 * ( for example ) an uncached B_DELWRI might loop due
2516		 * to softupdates re-dirtying the buffer.  In the latter
2517		 * case, B_CACHE is set after the first write completes,
2518		 * preventing further loops.
2519		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2520		 * above while extending the buffer, we cannot allow the
2521		 * buffer to remain with B_CACHE set after the write
2522		 * completes or it will represent a corrupt state.  To
2523		 * deal with this we set B_NOCACHE to scrap the buffer
2524		 * after the write.
2525		 *
2526		 * We might be able to do something fancy, like setting
2527		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2528		 * so the below call doesn't set B_CACHE, but that gets real
2529		 * confusing.  This is much easier.
2530		 */
2531
2532		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2533			bp->b_flags |= B_NOCACHE;
2534			bwrite(bp);
2535			goto loop;
2536		}
2537		bp->b_flags &= ~B_DONE;
2538	} else {
2539		int bsize, maxsize, vmio;
2540		off_t offset;
2541
2542		/*
2543		 * Buffer is not in-core, create new buffer.  The buffer
2544		 * returned by getnewbuf() is locked.  Note that the returned
2545		 * buffer is also considered valid (not marked B_INVAL).
2546		 */
2547		VI_UNLOCK(vp);
2548		/*
2549		 * If the user does not want us to create the buffer, bail out
2550		 * here.
2551		 */
2552		if (flags & GB_NOCREAT)
2553			return NULL;
2554		bsize = bo->bo_bsize;
2555		offset = blkno * bsize;
2556		vmio = vp->v_object != NULL;
2557		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2558		maxsize = imax(maxsize, bsize);
2559
2560		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2561		if (bp == NULL) {
2562			if (slpflag || slptimeo)
2563				return NULL;
2564			goto loop;
2565		}
2566
2567		/*
2568		 * This code is used to make sure that a buffer is not
2569		 * created while the getnewbuf routine is blocked.
2570		 * This can be a problem whether the vnode is locked or not.
2571		 * If the buffer is created out from under us, we have to
2572		 * throw away the one we just created.
2573		 *
2574		 * Note: this must occur before we associate the buffer
2575		 * with the vp especially considering limitations in
2576		 * the splay tree implementation when dealing with duplicate
2577		 * lblkno's.
2578		 */
2579		BO_LOCK(bo);
2580		if (gbincore(bo, blkno)) {
2581			BO_UNLOCK(bo);
2582			bp->b_flags |= B_INVAL;
2583			brelse(bp);
2584			goto loop;
2585		}
2586
2587		/*
2588		 * Insert the buffer into the hash, so that it can
2589		 * be found by incore.
2590		 */
2591		bp->b_blkno = bp->b_lblkno = blkno;
2592		bp->b_offset = offset;
2593		bgetvp(vp, bp);
2594		BO_UNLOCK(bo);
2595
2596		/*
2597		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2598		 * buffer size starts out as 0, B_CACHE will be set by
2599		 * allocbuf() for the VMIO case prior to it testing the
2600		 * backing store for validity.
2601		 */
2602
2603		if (vmio) {
2604			bp->b_flags |= B_VMIO;
2605#if defined(VFS_BIO_DEBUG)
2606			if (vn_canvmio(vp) != TRUE)
2607				printf("getblk: VMIO on vnode type %d\n",
2608					vp->v_type);
2609#endif
2610			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2611			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2612			    bp, vp->v_object, bp->b_bufobj->bo_object));
2613		} else {
2614			bp->b_flags &= ~B_VMIO;
2615			KASSERT(bp->b_bufobj->bo_object == NULL,
2616			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2617			    bp, bp->b_bufobj->bo_object));
2618		}
2619
2620		allocbuf(bp, size);
2621		bp->b_flags &= ~B_DONE;
2622	}
2623	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2624	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2625	KASSERT(bp->b_bufobj == bo,
2626	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2627	return (bp);
2628}
2629
2630/*
2631 * Get an empty, disassociated buffer of given size.  The buffer is initially
2632 * set to B_INVAL.
2633 */
2634struct buf *
2635geteblk(int size)
2636{
2637	struct buf *bp;
2638	int maxsize;
2639
2640	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2641	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2642		continue;
2643	allocbuf(bp, size);
2644	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2645	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2646	return (bp);
2647}
2648
2649
2650/*
2651 * This code constitutes the buffer memory from either anonymous system
2652 * memory (in the case of non-VMIO operations) or from an associated
2653 * VM object (in the case of VMIO operations).  This code is able to
2654 * resize a buffer up or down.
2655 *
2656 * Note that this code is tricky, and has many complications to resolve
2657 * deadlock or inconsistant data situations.  Tread lightly!!!
2658 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2659 * the caller.  Calling this code willy nilly can result in the loss of data.
2660 *
2661 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2662 * B_CACHE for the non-VMIO case.
2663 */
2664
2665int
2666allocbuf(struct buf *bp, int size)
2667{
2668	int newbsize, mbsize;
2669	int i;
2670
2671	if (BUF_REFCNT(bp) == 0)
2672		panic("allocbuf: buffer not busy");
2673
2674	if (bp->b_kvasize < size)
2675		panic("allocbuf: buffer too small");
2676
2677	if ((bp->b_flags & B_VMIO) == 0) {
2678		caddr_t origbuf;
2679		int origbufsize;
2680		/*
2681		 * Just get anonymous memory from the kernel.  Don't
2682		 * mess with B_CACHE.
2683		 */
2684		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2685		if (bp->b_flags & B_MALLOC)
2686			newbsize = mbsize;
2687		else
2688			newbsize = round_page(size);
2689
2690		if (newbsize < bp->b_bufsize) {
2691			/*
2692			 * malloced buffers are not shrunk
2693			 */
2694			if (bp->b_flags & B_MALLOC) {
2695				if (newbsize) {
2696					bp->b_bcount = size;
2697				} else {
2698					free(bp->b_data, M_BIOBUF);
2699					if (bp->b_bufsize) {
2700						atomic_subtract_int(
2701						    &bufmallocspace,
2702						    bp->b_bufsize);
2703						bufspacewakeup();
2704						bp->b_bufsize = 0;
2705					}
2706					bp->b_saveaddr = bp->b_kvabase;
2707					bp->b_data = bp->b_saveaddr;
2708					bp->b_bcount = 0;
2709					bp->b_flags &= ~B_MALLOC;
2710				}
2711				return 1;
2712			}
2713			vm_hold_free_pages(
2714			    bp,
2715			    (vm_offset_t) bp->b_data + newbsize,
2716			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2717		} else if (newbsize > bp->b_bufsize) {
2718			/*
2719			 * We only use malloced memory on the first allocation.
2720			 * and revert to page-allocated memory when the buffer
2721			 * grows.
2722			 */
2723			/*
2724			 * There is a potential smp race here that could lead
2725			 * to bufmallocspace slightly passing the max.  It
2726			 * is probably extremely rare and not worth worrying
2727			 * over.
2728			 */
2729			if ( (bufmallocspace < maxbufmallocspace) &&
2730				(bp->b_bufsize == 0) &&
2731				(mbsize <= PAGE_SIZE/2)) {
2732
2733				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2734				bp->b_bufsize = mbsize;
2735				bp->b_bcount = size;
2736				bp->b_flags |= B_MALLOC;
2737				atomic_add_int(&bufmallocspace, mbsize);
2738				return 1;
2739			}
2740			origbuf = NULL;
2741			origbufsize = 0;
2742			/*
2743			 * If the buffer is growing on its other-than-first allocation,
2744			 * then we revert to the page-allocation scheme.
2745			 */
2746			if (bp->b_flags & B_MALLOC) {
2747				origbuf = bp->b_data;
2748				origbufsize = bp->b_bufsize;
2749				bp->b_data = bp->b_kvabase;
2750				if (bp->b_bufsize) {
2751					atomic_subtract_int(&bufmallocspace,
2752					    bp->b_bufsize);
2753					bufspacewakeup();
2754					bp->b_bufsize = 0;
2755				}
2756				bp->b_flags &= ~B_MALLOC;
2757				newbsize = round_page(newbsize);
2758			}
2759			vm_hold_load_pages(
2760			    bp,
2761			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2762			    (vm_offset_t) bp->b_data + newbsize);
2763			if (origbuf) {
2764				bcopy(origbuf, bp->b_data, origbufsize);
2765				free(origbuf, M_BIOBUF);
2766			}
2767		}
2768	} else {
2769		int desiredpages;
2770
2771		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2772		desiredpages = (size == 0) ? 0 :
2773			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2774
2775		if (bp->b_flags & B_MALLOC)
2776			panic("allocbuf: VMIO buffer can't be malloced");
2777		/*
2778		 * Set B_CACHE initially if buffer is 0 length or will become
2779		 * 0-length.
2780		 */
2781		if (size == 0 || bp->b_bufsize == 0)
2782			bp->b_flags |= B_CACHE;
2783
2784		if (newbsize < bp->b_bufsize) {
2785			/*
2786			 * DEV_BSIZE aligned new buffer size is less then the
2787			 * DEV_BSIZE aligned existing buffer size.  Figure out
2788			 * if we have to remove any pages.
2789			 */
2790			if (desiredpages < bp->b_npages) {
2791				vm_page_t m;
2792
2793				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2794				vm_page_lock_queues();
2795				for (i = desiredpages; i < bp->b_npages; i++) {
2796					/*
2797					 * the page is not freed here -- it
2798					 * is the responsibility of
2799					 * vnode_pager_setsize
2800					 */
2801					m = bp->b_pages[i];
2802					KASSERT(m != bogus_page,
2803					    ("allocbuf: bogus page found"));
2804					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2805						vm_page_lock_queues();
2806
2807					bp->b_pages[i] = NULL;
2808					vm_page_unwire(m, 0);
2809				}
2810				vm_page_unlock_queues();
2811				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2812				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2813				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2814				bp->b_npages = desiredpages;
2815			}
2816		} else if (size > bp->b_bcount) {
2817			/*
2818			 * We are growing the buffer, possibly in a
2819			 * byte-granular fashion.
2820			 */
2821			struct vnode *vp;
2822			vm_object_t obj;
2823			vm_offset_t toff;
2824			vm_offset_t tinc;
2825
2826			/*
2827			 * Step 1, bring in the VM pages from the object,
2828			 * allocating them if necessary.  We must clear
2829			 * B_CACHE if these pages are not valid for the
2830			 * range covered by the buffer.
2831			 */
2832
2833			vp = bp->b_vp;
2834			obj = bp->b_bufobj->bo_object;
2835
2836			VM_OBJECT_LOCK(obj);
2837			while (bp->b_npages < desiredpages) {
2838				vm_page_t m;
2839				vm_pindex_t pi;
2840
2841				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2842				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2843					/*
2844					 * note: must allocate system pages
2845					 * since blocking here could intefere
2846					 * with paging I/O, no matter which
2847					 * process we are.
2848					 */
2849					m = vm_page_alloc(obj, pi,
2850					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2851					    VM_ALLOC_WIRED);
2852					if (m == NULL) {
2853						atomic_add_int(&vm_pageout_deficit,
2854						    desiredpages - bp->b_npages);
2855						VM_OBJECT_UNLOCK(obj);
2856						VM_WAIT;
2857						VM_OBJECT_LOCK(obj);
2858					} else {
2859						bp->b_flags &= ~B_CACHE;
2860						bp->b_pages[bp->b_npages] = m;
2861						++bp->b_npages;
2862					}
2863					continue;
2864				}
2865
2866				/*
2867				 * We found a page.  If we have to sleep on it,
2868				 * retry because it might have gotten freed out
2869				 * from under us.
2870				 *
2871				 * We can only test PG_BUSY here.  Blocking on
2872				 * m->busy might lead to a deadlock:
2873				 *
2874				 *  vm_fault->getpages->cluster_read->allocbuf
2875				 *
2876				 */
2877				vm_page_lock_queues();
2878				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2879					continue;
2880
2881				/*
2882				 * We have a good page.  Should we wakeup the
2883				 * page daemon?
2884				 */
2885				if ((curproc != pageproc) &&
2886				    (VM_PAGE_INQUEUE1(m, PQ_CACHE)) &&
2887				    ((cnt.v_free_count + cnt.v_cache_count) <
2888			 		(cnt.v_free_min + cnt.v_cache_min))) {
2889					pagedaemon_wakeup();
2890				}
2891				vm_page_wire(m);
2892				vm_page_unlock_queues();
2893				bp->b_pages[bp->b_npages] = m;
2894				++bp->b_npages;
2895			}
2896
2897			/*
2898			 * Step 2.  We've loaded the pages into the buffer,
2899			 * we have to figure out if we can still have B_CACHE
2900			 * set.  Note that B_CACHE is set according to the
2901			 * byte-granular range ( bcount and size ), new the
2902			 * aligned range ( newbsize ).
2903			 *
2904			 * The VM test is against m->valid, which is DEV_BSIZE
2905			 * aligned.  Needless to say, the validity of the data
2906			 * needs to also be DEV_BSIZE aligned.  Note that this
2907			 * fails with NFS if the server or some other client
2908			 * extends the file's EOF.  If our buffer is resized,
2909			 * B_CACHE may remain set! XXX
2910			 */
2911
2912			toff = bp->b_bcount;
2913			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2914
2915			while ((bp->b_flags & B_CACHE) && toff < size) {
2916				vm_pindex_t pi;
2917
2918				if (tinc > (size - toff))
2919					tinc = size - toff;
2920
2921				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2922				    PAGE_SHIFT;
2923
2924				vfs_buf_test_cache(
2925				    bp,
2926				    bp->b_offset,
2927				    toff,
2928				    tinc,
2929				    bp->b_pages[pi]
2930				);
2931				toff += tinc;
2932				tinc = PAGE_SIZE;
2933			}
2934			VM_OBJECT_UNLOCK(obj);
2935
2936			/*
2937			 * Step 3, fixup the KVM pmap.  Remember that
2938			 * bp->b_data is relative to bp->b_offset, but
2939			 * bp->b_offset may be offset into the first page.
2940			 */
2941
2942			bp->b_data = (caddr_t)
2943			    trunc_page((vm_offset_t)bp->b_data);
2944			pmap_qenter(
2945			    (vm_offset_t)bp->b_data,
2946			    bp->b_pages,
2947			    bp->b_npages
2948			);
2949
2950			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2951			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2952		}
2953	}
2954	if (newbsize < bp->b_bufsize)
2955		bufspacewakeup();
2956	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2957	bp->b_bcount = size;		/* requested buffer size	*/
2958	return 1;
2959}
2960
2961void
2962biodone(struct bio *bp)
2963{
2964	void (*done)(struct bio *);
2965
2966	mtx_lock(&bdonelock);
2967	bp->bio_flags |= BIO_DONE;
2968	done = bp->bio_done;
2969	if (done == NULL)
2970		wakeup(bp);
2971	mtx_unlock(&bdonelock);
2972	if (done != NULL)
2973		done(bp);
2974}
2975
2976/*
2977 * Wait for a BIO to finish.
2978 *
2979 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2980 * case is not yet clear.
2981 */
2982int
2983biowait(struct bio *bp, const char *wchan)
2984{
2985
2986	mtx_lock(&bdonelock);
2987	while ((bp->bio_flags & BIO_DONE) == 0)
2988		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2989	mtx_unlock(&bdonelock);
2990	if (bp->bio_error != 0)
2991		return (bp->bio_error);
2992	if (!(bp->bio_flags & BIO_ERROR))
2993		return (0);
2994	return (EIO);
2995}
2996
2997void
2998biofinish(struct bio *bp, struct devstat *stat, int error)
2999{
3000
3001	if (error) {
3002		bp->bio_error = error;
3003		bp->bio_flags |= BIO_ERROR;
3004	}
3005	if (stat != NULL)
3006		devstat_end_transaction_bio(stat, bp);
3007	biodone(bp);
3008}
3009
3010/*
3011 *	bufwait:
3012 *
3013 *	Wait for buffer I/O completion, returning error status.  The buffer
3014 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3015 *	error and cleared.
3016 */
3017int
3018bufwait(struct buf *bp)
3019{
3020	if (bp->b_iocmd == BIO_READ)
3021		bwait(bp, PRIBIO, "biord");
3022	else
3023		bwait(bp, PRIBIO, "biowr");
3024	if (bp->b_flags & B_EINTR) {
3025		bp->b_flags &= ~B_EINTR;
3026		return (EINTR);
3027	}
3028	if (bp->b_ioflags & BIO_ERROR) {
3029		return (bp->b_error ? bp->b_error : EIO);
3030	} else {
3031		return (0);
3032	}
3033}
3034
3035 /*
3036  * Call back function from struct bio back up to struct buf.
3037  */
3038static void
3039bufdonebio(struct bio *bip)
3040{
3041	struct buf *bp;
3042
3043	bp = bip->bio_caller2;
3044	bp->b_resid = bp->b_bcount - bip->bio_completed;
3045	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3046	bp->b_ioflags = bip->bio_flags;
3047	bp->b_error = bip->bio_error;
3048	if (bp->b_error)
3049		bp->b_ioflags |= BIO_ERROR;
3050	bufdone(bp);
3051	g_destroy_bio(bip);
3052}
3053
3054void
3055dev_strategy(struct cdev *dev, struct buf *bp)
3056{
3057	struct cdevsw *csw;
3058	struct bio *bip;
3059
3060	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3061		panic("b_iocmd botch");
3062	for (;;) {
3063		bip = g_new_bio();
3064		if (bip != NULL)
3065			break;
3066		/* Try again later */
3067		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3068	}
3069	bip->bio_cmd = bp->b_iocmd;
3070	bip->bio_offset = bp->b_iooffset;
3071	bip->bio_length = bp->b_bcount;
3072	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3073	bip->bio_data = bp->b_data;
3074	bip->bio_done = bufdonebio;
3075	bip->bio_caller2 = bp;
3076	bip->bio_dev = dev;
3077	KASSERT(dev->si_refcount > 0,
3078	    ("dev_strategy on un-referenced struct cdev *(%s)",
3079	    devtoname(dev)));
3080	csw = dev_refthread(dev);
3081	if (csw == NULL) {
3082		g_destroy_bio(bip);
3083		bp->b_error = ENXIO;
3084		bp->b_ioflags = BIO_ERROR;
3085		bufdone(bp);
3086		return;
3087	}
3088	(*csw->d_strategy)(bip);
3089	dev_relthread(dev);
3090}
3091
3092/*
3093 *	bufdone:
3094 *
3095 *	Finish I/O on a buffer, optionally calling a completion function.
3096 *	This is usually called from an interrupt so process blocking is
3097 *	not allowed.
3098 *
3099 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3100 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3101 *	assuming B_INVAL is clear.
3102 *
3103 *	For the VMIO case, we set B_CACHE if the op was a read and no
3104 *	read error occured, or if the op was a write.  B_CACHE is never
3105 *	set if the buffer is invalid or otherwise uncacheable.
3106 *
3107 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3108 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3109 *	in the biodone routine.
3110 */
3111void
3112bufdone(struct buf *bp)
3113{
3114	struct bufobj *dropobj;
3115	void    (*biodone)(struct buf *);
3116
3117	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3118	dropobj = NULL;
3119
3120	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3121	    BUF_REFCNT(bp)));
3122	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3123
3124	runningbufwakeup(bp);
3125	if (bp->b_iocmd == BIO_WRITE)
3126		dropobj = bp->b_bufobj;
3127	/* call optional completion function if requested */
3128	if (bp->b_iodone != NULL) {
3129		biodone = bp->b_iodone;
3130		bp->b_iodone = NULL;
3131		(*biodone) (bp);
3132		if (dropobj)
3133			bufobj_wdrop(dropobj);
3134		return;
3135	}
3136
3137	bufdone_finish(bp);
3138
3139	if (dropobj)
3140		bufobj_wdrop(dropobj);
3141}
3142
3143void
3144bufdone_finish(struct buf *bp)
3145{
3146	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3147	    BUF_REFCNT(bp)));
3148
3149	if (LIST_FIRST(&bp->b_dep) != NULL)
3150		buf_complete(bp);
3151
3152	if (bp->b_flags & B_VMIO) {
3153		int i;
3154		vm_ooffset_t foff;
3155		vm_page_t m;
3156		vm_object_t obj;
3157		int iosize;
3158		struct vnode *vp = bp->b_vp;
3159
3160		obj = bp->b_bufobj->bo_object;
3161
3162#if defined(VFS_BIO_DEBUG)
3163		mp_fixme("usecount and vflag accessed without locks.");
3164		if (vp->v_usecount == 0) {
3165			panic("biodone: zero vnode ref count");
3166		}
3167
3168		KASSERT(vp->v_object != NULL,
3169			("biodone: vnode %p has no vm_object", vp));
3170#endif
3171
3172		foff = bp->b_offset;
3173		KASSERT(bp->b_offset != NOOFFSET,
3174		    ("biodone: no buffer offset"));
3175
3176		VM_OBJECT_LOCK(obj);
3177#if defined(VFS_BIO_DEBUG)
3178		if (obj->paging_in_progress < bp->b_npages) {
3179			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3180			    obj->paging_in_progress, bp->b_npages);
3181		}
3182#endif
3183
3184		/*
3185		 * Set B_CACHE if the op was a normal read and no error
3186		 * occured.  B_CACHE is set for writes in the b*write()
3187		 * routines.
3188		 */
3189		iosize = bp->b_bcount - bp->b_resid;
3190		if (bp->b_iocmd == BIO_READ &&
3191		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3192		    !(bp->b_ioflags & BIO_ERROR)) {
3193			bp->b_flags |= B_CACHE;
3194		}
3195		vm_page_lock_queues();
3196		for (i = 0; i < bp->b_npages; i++) {
3197			int bogusflag = 0;
3198			int resid;
3199
3200			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3201			if (resid > iosize)
3202				resid = iosize;
3203
3204			/*
3205			 * cleanup bogus pages, restoring the originals
3206			 */
3207			m = bp->b_pages[i];
3208			if (m == bogus_page) {
3209				bogusflag = 1;
3210				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3211				if (m == NULL)
3212					panic("biodone: page disappeared!");
3213				bp->b_pages[i] = m;
3214				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3215				    bp->b_pages, bp->b_npages);
3216			}
3217#if defined(VFS_BIO_DEBUG)
3218			if (OFF_TO_IDX(foff) != m->pindex) {
3219				printf(
3220"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3221				    (intmax_t)foff, (uintmax_t)m->pindex);
3222			}
3223#endif
3224
3225			/*
3226			 * In the write case, the valid and clean bits are
3227			 * already changed correctly ( see bdwrite() ), so we
3228			 * only need to do this here in the read case.
3229			 */
3230			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3231				vfs_page_set_valid(bp, foff, i, m);
3232			}
3233
3234			/*
3235			 * when debugging new filesystems or buffer I/O methods, this
3236			 * is the most common error that pops up.  if you see this, you
3237			 * have not set the page busy flag correctly!!!
3238			 */
3239			if (m->busy == 0) {
3240				printf("biodone: page busy < 0, "
3241				    "pindex: %d, foff: 0x(%x,%x), "
3242				    "resid: %d, index: %d\n",
3243				    (int) m->pindex, (int)(foff >> 32),
3244						(int) foff & 0xffffffff, resid, i);
3245				if (!vn_isdisk(vp, NULL))
3246					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3247					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3248					    (intmax_t) bp->b_lblkno,
3249					    bp->b_flags, bp->b_npages);
3250				else
3251					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3252					    (intmax_t) bp->b_lblkno,
3253					    bp->b_flags, bp->b_npages);
3254				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3255				    (u_long)m->valid, (u_long)m->dirty,
3256				    m->wire_count);
3257				panic("biodone: page busy < 0\n");
3258			}
3259			vm_page_io_finish(m);
3260			vm_object_pip_subtract(obj, 1);
3261			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3262			iosize -= resid;
3263		}
3264		vm_page_unlock_queues();
3265		vm_object_pip_wakeupn(obj, 0);
3266		VM_OBJECT_UNLOCK(obj);
3267	}
3268
3269	/*
3270	 * For asynchronous completions, release the buffer now. The brelse
3271	 * will do a wakeup there if necessary - so no need to do a wakeup
3272	 * here in the async case. The sync case always needs to do a wakeup.
3273	 */
3274
3275	if (bp->b_flags & B_ASYNC) {
3276		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3277			brelse(bp);
3278		else
3279			bqrelse(bp);
3280	} else
3281		bdone(bp);
3282}
3283
3284/*
3285 * This routine is called in lieu of iodone in the case of
3286 * incomplete I/O.  This keeps the busy status for pages
3287 * consistant.
3288 */
3289void
3290vfs_unbusy_pages(struct buf *bp)
3291{
3292	int i;
3293	vm_object_t obj;
3294	vm_page_t m;
3295
3296	runningbufwakeup(bp);
3297	if (!(bp->b_flags & B_VMIO))
3298		return;
3299
3300	obj = bp->b_bufobj->bo_object;
3301	VM_OBJECT_LOCK(obj);
3302	for (i = 0; i < bp->b_npages; i++) {
3303		m = bp->b_pages[i];
3304		if (m == bogus_page) {
3305			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3306			if (!m)
3307				panic("vfs_unbusy_pages: page missing\n");
3308			bp->b_pages[i] = m;
3309			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3310			    bp->b_pages, bp->b_npages);
3311		}
3312		vm_object_pip_subtract(obj, 1);
3313		vm_page_io_finish(m);
3314	}
3315	vm_object_pip_wakeupn(obj, 0);
3316	VM_OBJECT_UNLOCK(obj);
3317}
3318
3319/*
3320 * vfs_page_set_valid:
3321 *
3322 *	Set the valid bits in a page based on the supplied offset.   The
3323 *	range is restricted to the buffer's size.
3324 *
3325 *	This routine is typically called after a read completes.
3326 */
3327static void
3328vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3329{
3330	vm_ooffset_t soff, eoff;
3331
3332	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3333	/*
3334	 * Start and end offsets in buffer.  eoff - soff may not cross a
3335	 * page boundry or cross the end of the buffer.  The end of the
3336	 * buffer, in this case, is our file EOF, not the allocation size
3337	 * of the buffer.
3338	 */
3339	soff = off;
3340	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3341	if (eoff > bp->b_offset + bp->b_bcount)
3342		eoff = bp->b_offset + bp->b_bcount;
3343
3344	/*
3345	 * Set valid range.  This is typically the entire buffer and thus the
3346	 * entire page.
3347	 */
3348	if (eoff > soff) {
3349		vm_page_set_validclean(
3350		    m,
3351		   (vm_offset_t) (soff & PAGE_MASK),
3352		   (vm_offset_t) (eoff - soff)
3353		);
3354	}
3355}
3356
3357/*
3358 * This routine is called before a device strategy routine.
3359 * It is used to tell the VM system that paging I/O is in
3360 * progress, and treat the pages associated with the buffer
3361 * almost as being PG_BUSY.  Also the object paging_in_progress
3362 * flag is handled to make sure that the object doesn't become
3363 * inconsistant.
3364 *
3365 * Since I/O has not been initiated yet, certain buffer flags
3366 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3367 * and should be ignored.
3368 */
3369void
3370vfs_busy_pages(struct buf *bp, int clear_modify)
3371{
3372	int i, bogus;
3373	vm_object_t obj;
3374	vm_ooffset_t foff;
3375	vm_page_t m;
3376
3377	if (!(bp->b_flags & B_VMIO))
3378		return;
3379
3380	obj = bp->b_bufobj->bo_object;
3381	foff = bp->b_offset;
3382	KASSERT(bp->b_offset != NOOFFSET,
3383	    ("vfs_busy_pages: no buffer offset"));
3384	vfs_setdirty(bp);
3385	VM_OBJECT_LOCK(obj);
3386retry:
3387	for (i = 0; i < bp->b_npages; i++) {
3388		m = bp->b_pages[i];
3389
3390		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3391			goto retry;
3392	}
3393	bogus = 0;
3394	vm_page_lock_queues();
3395	for (i = 0; i < bp->b_npages; i++) {
3396		m = bp->b_pages[i];
3397
3398		if ((bp->b_flags & B_CLUSTER) == 0) {
3399			vm_object_pip_add(obj, 1);
3400			vm_page_io_start(m);
3401		}
3402		/*
3403		 * When readying a buffer for a read ( i.e
3404		 * clear_modify == 0 ), it is important to do
3405		 * bogus_page replacement for valid pages in
3406		 * partially instantiated buffers.  Partially
3407		 * instantiated buffers can, in turn, occur when
3408		 * reconstituting a buffer from its VM backing store
3409		 * base.  We only have to do this if B_CACHE is
3410		 * clear ( which causes the I/O to occur in the
3411		 * first place ).  The replacement prevents the read
3412		 * I/O from overwriting potentially dirty VM-backed
3413		 * pages.  XXX bogus page replacement is, uh, bogus.
3414		 * It may not work properly with small-block devices.
3415		 * We need to find a better way.
3416		 */
3417		pmap_remove_all(m);
3418		if (clear_modify)
3419			vfs_page_set_valid(bp, foff, i, m);
3420		else if (m->valid == VM_PAGE_BITS_ALL &&
3421		    (bp->b_flags & B_CACHE) == 0) {
3422			bp->b_pages[i] = bogus_page;
3423			bogus++;
3424		}
3425		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3426	}
3427	vm_page_unlock_queues();
3428	VM_OBJECT_UNLOCK(obj);
3429	if (bogus)
3430		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3431		    bp->b_pages, bp->b_npages);
3432}
3433
3434/*
3435 * Tell the VM system that the pages associated with this buffer
3436 * are clean.  This is used for delayed writes where the data is
3437 * going to go to disk eventually without additional VM intevention.
3438 *
3439 * Note that while we only really need to clean through to b_bcount, we
3440 * just go ahead and clean through to b_bufsize.
3441 */
3442static void
3443vfs_clean_pages(struct buf *bp)
3444{
3445	int i;
3446	vm_ooffset_t foff, noff, eoff;
3447	vm_page_t m;
3448
3449	if (!(bp->b_flags & B_VMIO))
3450		return;
3451
3452	foff = bp->b_offset;
3453	KASSERT(bp->b_offset != NOOFFSET,
3454	    ("vfs_clean_pages: no buffer offset"));
3455	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3456	vm_page_lock_queues();
3457	for (i = 0; i < bp->b_npages; i++) {
3458		m = bp->b_pages[i];
3459		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3460		eoff = noff;
3461
3462		if (eoff > bp->b_offset + bp->b_bufsize)
3463			eoff = bp->b_offset + bp->b_bufsize;
3464		vfs_page_set_valid(bp, foff, i, m);
3465		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3466		foff = noff;
3467	}
3468	vm_page_unlock_queues();
3469	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3470}
3471
3472/*
3473 *	vfs_bio_set_validclean:
3474 *
3475 *	Set the range within the buffer to valid and clean.  The range is
3476 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3477 *	itself may be offset from the beginning of the first page.
3478 *
3479 */
3480
3481void
3482vfs_bio_set_validclean(struct buf *bp, int base, int size)
3483{
3484	int i, n;
3485	vm_page_t m;
3486
3487	if (!(bp->b_flags & B_VMIO))
3488		return;
3489	/*
3490	 * Fixup base to be relative to beginning of first page.
3491	 * Set initial n to be the maximum number of bytes in the
3492	 * first page that can be validated.
3493	 */
3494
3495	base += (bp->b_offset & PAGE_MASK);
3496	n = PAGE_SIZE - (base & PAGE_MASK);
3497
3498	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3499	vm_page_lock_queues();
3500	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3501		m = bp->b_pages[i];
3502		if (n > size)
3503			n = size;
3504		vm_page_set_validclean(m, base & PAGE_MASK, n);
3505		base += n;
3506		size -= n;
3507		n = PAGE_SIZE;
3508	}
3509	vm_page_unlock_queues();
3510	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3511}
3512
3513/*
3514 *	vfs_bio_clrbuf:
3515 *
3516 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3517 *	to clear BIO_ERROR and B_INVAL.
3518 *
3519 *	Note that while we only theoretically need to clear through b_bcount,
3520 *	we go ahead and clear through b_bufsize.
3521 */
3522
3523void
3524vfs_bio_clrbuf(struct buf *bp)
3525{
3526	int i, j, mask = 0;
3527	caddr_t sa, ea;
3528
3529	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3530		clrbuf(bp);
3531		return;
3532	}
3533
3534	bp->b_flags &= ~B_INVAL;
3535	bp->b_ioflags &= ~BIO_ERROR;
3536	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3537	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3538	    (bp->b_offset & PAGE_MASK) == 0) {
3539		if (bp->b_pages[0] == bogus_page)
3540			goto unlock;
3541		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3542		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3543		if ((bp->b_pages[0]->valid & mask) == mask)
3544			goto unlock;
3545		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3546		    ((bp->b_pages[0]->valid & mask) == 0)) {
3547			bzero(bp->b_data, bp->b_bufsize);
3548			bp->b_pages[0]->valid |= mask;
3549			goto unlock;
3550		}
3551	}
3552	ea = sa = bp->b_data;
3553	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3554		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3555		ea = (caddr_t)(vm_offset_t)ulmin(
3556		    (u_long)(vm_offset_t)ea,
3557		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3558		if (bp->b_pages[i] == bogus_page)
3559			continue;
3560		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3561		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3562		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3563		if ((bp->b_pages[i]->valid & mask) == mask)
3564			continue;
3565		if ((bp->b_pages[i]->valid & mask) == 0) {
3566			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3567				bzero(sa, ea - sa);
3568		} else {
3569			for (; sa < ea; sa += DEV_BSIZE, j++) {
3570				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3571				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3572					bzero(sa, DEV_BSIZE);
3573			}
3574		}
3575		bp->b_pages[i]->valid |= mask;
3576	}
3577unlock:
3578	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3579	bp->b_resid = 0;
3580}
3581
3582/*
3583 * vm_hold_load_pages and vm_hold_free_pages get pages into
3584 * a buffers address space.  The pages are anonymous and are
3585 * not associated with a file object.
3586 */
3587static void
3588vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3589{
3590	vm_offset_t pg;
3591	vm_page_t p;
3592	int index;
3593
3594	to = round_page(to);
3595	from = round_page(from);
3596	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3597
3598	VM_OBJECT_LOCK(kernel_object);
3599	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3600tryagain:
3601		/*
3602		 * note: must allocate system pages since blocking here
3603		 * could intefere with paging I/O, no matter which
3604		 * process we are.
3605		 */
3606		p = vm_page_alloc(kernel_object,
3607			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3608		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3609		if (!p) {
3610			atomic_add_int(&vm_pageout_deficit,
3611			    (to - pg) >> PAGE_SHIFT);
3612			VM_OBJECT_UNLOCK(kernel_object);
3613			VM_WAIT;
3614			VM_OBJECT_LOCK(kernel_object);
3615			goto tryagain;
3616		}
3617		p->valid = VM_PAGE_BITS_ALL;
3618		pmap_qenter(pg, &p, 1);
3619		bp->b_pages[index] = p;
3620	}
3621	VM_OBJECT_UNLOCK(kernel_object);
3622	bp->b_npages = index;
3623}
3624
3625/* Return pages associated with this buf to the vm system */
3626static void
3627vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3628{
3629	vm_offset_t pg;
3630	vm_page_t p;
3631	int index, newnpages;
3632
3633	from = round_page(from);
3634	to = round_page(to);
3635	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3636
3637	VM_OBJECT_LOCK(kernel_object);
3638	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3639		p = bp->b_pages[index];
3640		if (p && (index < bp->b_npages)) {
3641			if (p->busy) {
3642				printf(
3643			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3644				    (intmax_t)bp->b_blkno,
3645				    (intmax_t)bp->b_lblkno);
3646			}
3647			bp->b_pages[index] = NULL;
3648			pmap_qremove(pg, 1);
3649			vm_page_lock_queues();
3650			vm_page_unwire(p, 0);
3651			vm_page_free(p);
3652			vm_page_unlock_queues();
3653		}
3654	}
3655	VM_OBJECT_UNLOCK(kernel_object);
3656	bp->b_npages = newnpages;
3657}
3658
3659/*
3660 * Map an IO request into kernel virtual address space.
3661 *
3662 * All requests are (re)mapped into kernel VA space.
3663 * Notice that we use b_bufsize for the size of the buffer
3664 * to be mapped.  b_bcount might be modified by the driver.
3665 *
3666 * Note that even if the caller determines that the address space should
3667 * be valid, a race or a smaller-file mapped into a larger space may
3668 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3669 * check the return value.
3670 */
3671int
3672vmapbuf(struct buf *bp)
3673{
3674	caddr_t addr, kva;
3675	vm_prot_t prot;
3676	int pidx, i;
3677	struct vm_page *m;
3678	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3679
3680	if (bp->b_bufsize < 0)
3681		return (-1);
3682	prot = VM_PROT_READ;
3683	if (bp->b_iocmd == BIO_READ)
3684		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3685	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3686	     addr < bp->b_data + bp->b_bufsize;
3687	     addr += PAGE_SIZE, pidx++) {
3688		/*
3689		 * Do the vm_fault if needed; do the copy-on-write thing
3690		 * when reading stuff off device into memory.
3691		 *
3692		 * NOTE! Must use pmap_extract() because addr may be in
3693		 * the userland address space, and kextract is only guarenteed
3694		 * to work for the kernland address space (see: sparc64 port).
3695		 */
3696retry:
3697		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3698		    prot) < 0) {
3699			vm_page_lock_queues();
3700			for (i = 0; i < pidx; ++i) {
3701				vm_page_unhold(bp->b_pages[i]);
3702				bp->b_pages[i] = NULL;
3703			}
3704			vm_page_unlock_queues();
3705			return(-1);
3706		}
3707		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3708		if (m == NULL)
3709			goto retry;
3710		bp->b_pages[pidx] = m;
3711	}
3712	if (pidx > btoc(MAXPHYS))
3713		panic("vmapbuf: mapped more than MAXPHYS");
3714	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3715
3716	kva = bp->b_saveaddr;
3717	bp->b_npages = pidx;
3718	bp->b_saveaddr = bp->b_data;
3719	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3720	return(0);
3721}
3722
3723/*
3724 * Free the io map PTEs associated with this IO operation.
3725 * We also invalidate the TLB entries and restore the original b_addr.
3726 */
3727void
3728vunmapbuf(struct buf *bp)
3729{
3730	int pidx;
3731	int npages;
3732
3733	npages = bp->b_npages;
3734	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3735	vm_page_lock_queues();
3736	for (pidx = 0; pidx < npages; pidx++)
3737		vm_page_unhold(bp->b_pages[pidx]);
3738	vm_page_unlock_queues();
3739
3740	bp->b_data = bp->b_saveaddr;
3741}
3742
3743void
3744bdone(struct buf *bp)
3745{
3746
3747	mtx_lock(&bdonelock);
3748	bp->b_flags |= B_DONE;
3749	wakeup(bp);
3750	mtx_unlock(&bdonelock);
3751}
3752
3753void
3754bwait(struct buf *bp, u_char pri, const char *wchan)
3755{
3756
3757	mtx_lock(&bdonelock);
3758	while ((bp->b_flags & B_DONE) == 0)
3759		msleep(bp, &bdonelock, pri, wchan, 0);
3760	mtx_unlock(&bdonelock);
3761}
3762
3763int
3764bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3765{
3766
3767	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3768}
3769
3770void
3771bufstrategy(struct bufobj *bo, struct buf *bp)
3772{
3773	int i = 0;
3774	struct vnode *vp;
3775
3776	vp = bp->b_vp;
3777	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3778	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3779	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3780	i = VOP_STRATEGY(vp, bp);
3781	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3782}
3783
3784void
3785bufobj_wrefl(struct bufobj *bo)
3786{
3787
3788	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3789	ASSERT_BO_LOCKED(bo);
3790	bo->bo_numoutput++;
3791}
3792
3793void
3794bufobj_wref(struct bufobj *bo)
3795{
3796
3797	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3798	BO_LOCK(bo);
3799	bo->bo_numoutput++;
3800	BO_UNLOCK(bo);
3801}
3802
3803void
3804bufobj_wdrop(struct bufobj *bo)
3805{
3806
3807	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3808	BO_LOCK(bo);
3809	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3810	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3811		bo->bo_flag &= ~BO_WWAIT;
3812		wakeup(&bo->bo_numoutput);
3813	}
3814	BO_UNLOCK(bo);
3815}
3816
3817int
3818bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3819{
3820	int error;
3821
3822	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3823	ASSERT_BO_LOCKED(bo);
3824	error = 0;
3825	while (bo->bo_numoutput) {
3826		bo->bo_flag |= BO_WWAIT;
3827		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3828		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3829		if (error)
3830			break;
3831	}
3832	return (error);
3833}
3834
3835void
3836bpin(struct buf *bp)
3837{
3838	mtx_lock(&bpinlock);
3839	bp->b_pin_count++;
3840	mtx_unlock(&bpinlock);
3841}
3842
3843void
3844bunpin(struct buf *bp)
3845{
3846	mtx_lock(&bpinlock);
3847	if (--bp->b_pin_count == 0)
3848		wakeup(bp);
3849	mtx_unlock(&bpinlock);
3850}
3851
3852void
3853bunpin_wait(struct buf *bp)
3854{
3855	mtx_lock(&bpinlock);
3856	while (bp->b_pin_count > 0)
3857		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3858	mtx_unlock(&bpinlock);
3859}
3860
3861#include "opt_ddb.h"
3862#ifdef DDB
3863#include <ddb/ddb.h>
3864
3865/* DDB command to show buffer data */
3866DB_SHOW_COMMAND(buffer, db_show_buffer)
3867{
3868	/* get args */
3869	struct buf *bp = (struct buf *)addr;
3870
3871	if (!have_addr) {
3872		db_printf("usage: show buffer <addr>\n");
3873		return;
3874	}
3875
3876	db_printf("buf at %p\n", bp);
3877	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3878	db_printf(
3879	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3880	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3881	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3882	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3883	if (bp->b_npages) {
3884		int i;
3885		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3886		for (i = 0; i < bp->b_npages; i++) {
3887			vm_page_t m;
3888			m = bp->b_pages[i];
3889			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3890			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3891			if ((i + 1) < bp->b_npages)
3892				db_printf(",");
3893		}
3894		db_printf("\n");
3895	}
3896	lockmgr_printinfo(&bp->b_lock);
3897}
3898
3899DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3900{
3901	struct buf *bp;
3902	int i;
3903
3904	for (i = 0; i < nbuf; i++) {
3905		bp = &buf[i];
3906		if (lockcount(&bp->b_lock)) {
3907			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3908			db_printf("\n");
3909		}
3910	}
3911}
3912#endif /* DDB */
3913