vfs_bio.c revision 157319
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 157319 2006-03-31 02:56:30Z jeff $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82	.bop_sync	=	bufsync,
83};
84
85/*
86 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
87 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
88 */
89struct buf *buf;		/* buffer header pool */
90
91static struct proc *bufdaemonproc;
92
93static int inmem(struct vnode *vp, daddr_t blkno);
94static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
95		vm_offset_t to);
96static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
99			       int pageno, vm_page_t m);
100static void vfs_clean_pages(struct buf *bp);
101static void vfs_setdirty(struct buf *bp);
102static void vfs_vmio_release(struct buf *bp);
103static int vfs_bio_clcheck(struct vnode *vp, int size,
104		daddr_t lblkno, daddr_t blkno);
105static int flushbufqueues(int, int);
106static void buf_daemon(void);
107static void bremfreel(struct buf *bp);
108
109int vmiodirenable = TRUE;
110SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
111    "Use the VM system for directory writes");
112int runningbufspace;
113SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
114    "Amount of presently outstanding async buffer io");
115static int bufspace;
116SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
117    "KVA memory used for bufs");
118static int maxbufspace;
119SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
120    "Maximum allowed value of bufspace (including buf_daemon)");
121static int bufmallocspace;
122SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
123    "Amount of malloced memory for buffers");
124static int maxbufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
126    "Maximum amount of malloced memory for buffers");
127static int lobufspace;
128SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
129    "Minimum amount of buffers we want to have");
130int hibufspace;
131SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
132    "Maximum allowed value of bufspace (excluding buf_daemon)");
133static int bufreusecnt;
134SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
135    "Number of times we have reused a buffer");
136static int buffreekvacnt;
137SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
138    "Number of times we have freed the KVA space from some buffer");
139static int bufdefragcnt;
140SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
141    "Number of times we have had to repeat buffer allocation to defragment");
142static int lorunningspace;
143SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
144    "Minimum preferred space used for in-progress I/O");
145static int hirunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
147    "Maximum amount of space to use for in-progress I/O");
148static int dirtybufferflushes;
149SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
150    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
151static int altbufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
153    0, "Number of fsync flushes to limit dirty buffers");
154static int recursiveflushes;
155SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
156    0, "Number of flushes skipped due to being recursive");
157static int numdirtybuffers;
158SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
159    "Number of buffers that are dirty (has unwritten changes) at the moment");
160static int lodirtybuffers;
161SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
162    "How many buffers we want to have free before bufdaemon can sleep");
163static int hidirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
165    "When the number of dirty buffers is considered severe");
166static int dirtybufthresh;
167SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
168    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
169static int numfreebuffers;
170SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
171    "Number of free buffers");
172static int lofreebuffers;
173SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
174   "XXX Unused");
175static int hifreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
177   "XXX Complicatedly unused");
178static int getnewbufcalls;
179SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
180   "Number of calls to getnewbuf");
181static int getnewbufrestarts;
182SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
183    "Number of times getnewbuf has had to restart a buffer aquisition");
184
185/*
186 * Wakeup point for bufdaemon, as well as indicator of whether it is already
187 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
188 * is idling.
189 */
190static int bd_request;
191
192/*
193 * This lock synchronizes access to bd_request.
194 */
195static struct mtx bdlock;
196
197/*
198 * bogus page -- for I/O to/from partially complete buffers
199 * this is a temporary solution to the problem, but it is not
200 * really that bad.  it would be better to split the buffer
201 * for input in the case of buffers partially already in memory,
202 * but the code is intricate enough already.
203 */
204vm_page_t bogus_page;
205
206/*
207 * Synchronization (sleep/wakeup) variable for active buffer space requests.
208 * Set when wait starts, cleared prior to wakeup().
209 * Used in runningbufwakeup() and waitrunningbufspace().
210 */
211static int runningbufreq;
212
213/*
214 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
215 * waitrunningbufspace().
216 */
217static struct mtx rbreqlock;
218
219/*
220 * Synchronization (sleep/wakeup) variable for buffer requests.
221 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
222 * by and/or.
223 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
224 * getnewbuf(), and getblk().
225 */
226static int needsbuffer;
227
228/*
229 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
230 */
231static struct mtx nblock;
232
233/*
234 * Lock that protects against bwait()/bdone()/B_DONE races.
235 */
236
237static struct mtx bdonelock;
238
239/*
240 * Lock that protects against bwait()/bdone()/B_DONE races.
241 */
242static struct mtx bpinlock;
243
244/*
245 * Definitions for the buffer free lists.
246 */
247#define BUFFER_QUEUES	6	/* number of free buffer queues */
248
249#define QUEUE_NONE	0	/* on no queue */
250#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
251#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
252#define QUEUE_DIRTY_GIANT 3	/* B_DELWRI buffers that need giant */
253#define QUEUE_EMPTYKVA	4	/* empty buffer headers w/KVA assignment */
254#define QUEUE_EMPTY	5	/* empty buffer headers */
255
256/* Queues for free buffers with various properties */
257static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
258
259/* Lock for the bufqueues */
260static struct mtx bqlock;
261
262/*
263 * Single global constant for BUF_WMESG, to avoid getting multiple references.
264 * buf_wmesg is referred from macros.
265 */
266const char *buf_wmesg = BUF_WMESG;
267
268#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
269#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
270#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
271#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
272
273#ifdef DIRECTIO
274extern void ffs_rawread_setup(void);
275#endif /* DIRECTIO */
276/*
277 *	numdirtywakeup:
278 *
279 *	If someone is blocked due to there being too many dirty buffers,
280 *	and numdirtybuffers is now reasonable, wake them up.
281 */
282
283static __inline void
284numdirtywakeup(int level)
285{
286
287	if (numdirtybuffers <= level) {
288		mtx_lock(&nblock);
289		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
290			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
291			wakeup(&needsbuffer);
292		}
293		mtx_unlock(&nblock);
294	}
295}
296
297/*
298 *	bufspacewakeup:
299 *
300 *	Called when buffer space is potentially available for recovery.
301 *	getnewbuf() will block on this flag when it is unable to free
302 *	sufficient buffer space.  Buffer space becomes recoverable when
303 *	bp's get placed back in the queues.
304 */
305
306static __inline void
307bufspacewakeup(void)
308{
309
310	/*
311	 * If someone is waiting for BUF space, wake them up.  Even
312	 * though we haven't freed the kva space yet, the waiting
313	 * process will be able to now.
314	 */
315	mtx_lock(&nblock);
316	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
317		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
318		wakeup(&needsbuffer);
319	}
320	mtx_unlock(&nblock);
321}
322
323/*
324 * runningbufwakeup() - in-progress I/O accounting.
325 *
326 */
327void
328runningbufwakeup(struct buf *bp)
329{
330
331	if (bp->b_runningbufspace) {
332		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
333		bp->b_runningbufspace = 0;
334		mtx_lock(&rbreqlock);
335		if (runningbufreq && runningbufspace <= lorunningspace) {
336			runningbufreq = 0;
337			wakeup(&runningbufreq);
338		}
339		mtx_unlock(&rbreqlock);
340	}
341}
342
343/*
344 *	bufcountwakeup:
345 *
346 *	Called when a buffer has been added to one of the free queues to
347 *	account for the buffer and to wakeup anyone waiting for free buffers.
348 *	This typically occurs when large amounts of metadata are being handled
349 *	by the buffer cache ( else buffer space runs out first, usually ).
350 */
351
352static __inline void
353bufcountwakeup(void)
354{
355
356	atomic_add_int(&numfreebuffers, 1);
357	mtx_lock(&nblock);
358	if (needsbuffer) {
359		needsbuffer &= ~VFS_BIO_NEED_ANY;
360		if (numfreebuffers >= hifreebuffers)
361			needsbuffer &= ~VFS_BIO_NEED_FREE;
362		wakeup(&needsbuffer);
363	}
364	mtx_unlock(&nblock);
365}
366
367/*
368 *	waitrunningbufspace()
369 *
370 *	runningbufspace is a measure of the amount of I/O currently
371 *	running.  This routine is used in async-write situations to
372 *	prevent creating huge backups of pending writes to a device.
373 *	Only asynchronous writes are governed by this function.
374 *
375 *	Reads will adjust runningbufspace, but will not block based on it.
376 *	The read load has a side effect of reducing the allowed write load.
377 *
378 *	This does NOT turn an async write into a sync write.  It waits
379 *	for earlier writes to complete and generally returns before the
380 *	caller's write has reached the device.
381 */
382void
383waitrunningbufspace(void)
384{
385
386	mtx_lock(&rbreqlock);
387	while (runningbufspace > hirunningspace) {
388		++runningbufreq;
389		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
390	}
391	mtx_unlock(&rbreqlock);
392}
393
394
395/*
396 *	vfs_buf_test_cache:
397 *
398 *	Called when a buffer is extended.  This function clears the B_CACHE
399 *	bit if the newly extended portion of the buffer does not contain
400 *	valid data.
401 */
402static __inline
403void
404vfs_buf_test_cache(struct buf *bp,
405		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
406		  vm_page_t m)
407{
408
409	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
410	if (bp->b_flags & B_CACHE) {
411		int base = (foff + off) & PAGE_MASK;
412		if (vm_page_is_valid(m, base, size) == 0)
413			bp->b_flags &= ~B_CACHE;
414	}
415}
416
417/* Wake up the buffer deamon if necessary */
418static __inline
419void
420bd_wakeup(int dirtybuflevel)
421{
422
423	mtx_lock(&bdlock);
424	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
425		bd_request = 1;
426		wakeup(&bd_request);
427	}
428	mtx_unlock(&bdlock);
429}
430
431/*
432 * bd_speedup - speedup the buffer cache flushing code
433 */
434
435static __inline
436void
437bd_speedup(void)
438{
439
440	bd_wakeup(1);
441}
442
443/*
444 * Calculating buffer cache scaling values and reserve space for buffer
445 * headers.  This is called during low level kernel initialization and
446 * may be called more then once.  We CANNOT write to the memory area
447 * being reserved at this time.
448 */
449caddr_t
450kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
451{
452
453	/*
454	 * physmem_est is in pages.  Convert it to kilobytes (assumes
455	 * PAGE_SIZE is >= 1K)
456	 */
457	physmem_est = physmem_est * (PAGE_SIZE / 1024);
458
459	/*
460	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
461	 * For the first 64MB of ram nominally allocate sufficient buffers to
462	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
463	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
464	 * the buffer cache we limit the eventual kva reservation to
465	 * maxbcache bytes.
466	 *
467	 * factor represents the 1/4 x ram conversion.
468	 */
469	if (nbuf == 0) {
470		int factor = 4 * BKVASIZE / 1024;
471
472		nbuf = 50;
473		if (physmem_est > 4096)
474			nbuf += min((physmem_est - 4096) / factor,
475			    65536 / factor);
476		if (physmem_est > 65536)
477			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
478
479		if (maxbcache && nbuf > maxbcache / BKVASIZE)
480			nbuf = maxbcache / BKVASIZE;
481	}
482
483#if 0
484	/*
485	 * Do not allow the buffer_map to be more then 1/2 the size of the
486	 * kernel_map.
487	 */
488	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
489	    (BKVASIZE * 2)) {
490		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
491		    (BKVASIZE * 2);
492		printf("Warning: nbufs capped at %d\n", nbuf);
493	}
494#endif
495
496	/*
497	 * swbufs are used as temporary holders for I/O, such as paging I/O.
498	 * We have no less then 16 and no more then 256.
499	 */
500	nswbuf = max(min(nbuf/4, 256), 16);
501#ifdef NSWBUF_MIN
502	if (nswbuf < NSWBUF_MIN)
503		nswbuf = NSWBUF_MIN;
504#endif
505#ifdef DIRECTIO
506	ffs_rawread_setup();
507#endif
508
509	/*
510	 * Reserve space for the buffer cache buffers
511	 */
512	swbuf = (void *)v;
513	v = (caddr_t)(swbuf + nswbuf);
514	buf = (void *)v;
515	v = (caddr_t)(buf + nbuf);
516
517	return(v);
518}
519
520/* Initialize the buffer subsystem.  Called before use of any buffers. */
521void
522bufinit(void)
523{
524	struct buf *bp;
525	int i;
526
527	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
528	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
529	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
530	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
531	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
532	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
533
534	/* next, make a null set of free lists */
535	for (i = 0; i < BUFFER_QUEUES; i++)
536		TAILQ_INIT(&bufqueues[i]);
537
538	/* finally, initialize each buffer header and stick on empty q */
539	for (i = 0; i < nbuf; i++) {
540		bp = &buf[i];
541		bzero(bp, sizeof *bp);
542		bp->b_flags = B_INVAL;	/* we're just an empty header */
543		bp->b_rcred = NOCRED;
544		bp->b_wcred = NOCRED;
545		bp->b_qindex = QUEUE_EMPTY;
546		bp->b_vflags = 0;
547		bp->b_xflags = 0;
548		LIST_INIT(&bp->b_dep);
549		BUF_LOCKINIT(bp);
550		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
551	}
552
553	/*
554	 * maxbufspace is the absolute maximum amount of buffer space we are
555	 * allowed to reserve in KVM and in real terms.  The absolute maximum
556	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
557	 * used by most other processes.  The differential is required to
558	 * ensure that buf_daemon is able to run when other processes might
559	 * be blocked waiting for buffer space.
560	 *
561	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
562	 * this may result in KVM fragmentation which is not handled optimally
563	 * by the system.
564	 */
565	maxbufspace = nbuf * BKVASIZE;
566	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
567	lobufspace = hibufspace - MAXBSIZE;
568
569	lorunningspace = 512 * 1024;
570	hirunningspace = 1024 * 1024;
571
572/*
573 * Limit the amount of malloc memory since it is wired permanently into
574 * the kernel space.  Even though this is accounted for in the buffer
575 * allocation, we don't want the malloced region to grow uncontrolled.
576 * The malloc scheme improves memory utilization significantly on average
577 * (small) directories.
578 */
579	maxbufmallocspace = hibufspace / 20;
580
581/*
582 * Reduce the chance of a deadlock occuring by limiting the number
583 * of delayed-write dirty buffers we allow to stack up.
584 */
585	hidirtybuffers = nbuf / 4 + 20;
586	dirtybufthresh = hidirtybuffers * 9 / 10;
587	numdirtybuffers = 0;
588/*
589 * To support extreme low-memory systems, make sure hidirtybuffers cannot
590 * eat up all available buffer space.  This occurs when our minimum cannot
591 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
592 * BKVASIZE'd (8K) buffers.
593 */
594	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
595		hidirtybuffers >>= 1;
596	}
597	lodirtybuffers = hidirtybuffers / 2;
598
599/*
600 * Try to keep the number of free buffers in the specified range,
601 * and give special processes (e.g. like buf_daemon) access to an
602 * emergency reserve.
603 */
604	lofreebuffers = nbuf / 18 + 5;
605	hifreebuffers = 2 * lofreebuffers;
606	numfreebuffers = nbuf;
607
608/*
609 * Maximum number of async ops initiated per buf_daemon loop.  This is
610 * somewhat of a hack at the moment, we really need to limit ourselves
611 * based on the number of bytes of I/O in-transit that were initiated
612 * from buf_daemon.
613 */
614
615	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
616	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
617}
618
619/*
620 * bfreekva() - free the kva allocation for a buffer.
621 *
622 *	Since this call frees up buffer space, we call bufspacewakeup().
623 */
624static void
625bfreekva(struct buf *bp)
626{
627
628	if (bp->b_kvasize) {
629		atomic_add_int(&buffreekvacnt, 1);
630		atomic_subtract_int(&bufspace, bp->b_kvasize);
631		vm_map_lock(buffer_map);
632		vm_map_delete(buffer_map,
633		    (vm_offset_t) bp->b_kvabase,
634		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
635		);
636		vm_map_unlock(buffer_map);
637		bp->b_kvasize = 0;
638		bufspacewakeup();
639	}
640}
641
642/*
643 *	bremfree:
644 *
645 *	Mark the buffer for removal from the appropriate free list in brelse.
646 *
647 */
648void
649bremfree(struct buf *bp)
650{
651
652	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
653	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
654	KASSERT((bp->b_flags & B_REMFREE) == 0,
655	    ("bremfree: buffer %p already marked for delayed removal.", bp));
656	KASSERT(bp->b_qindex != QUEUE_NONE,
657	    ("bremfree: buffer %p not on a queue.", bp));
658
659	bp->b_flags |= B_REMFREE;
660	/* Fixup numfreebuffers count.  */
661	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
662		atomic_subtract_int(&numfreebuffers, 1);
663}
664
665/*
666 *	bremfreef:
667 *
668 *	Force an immediate removal from a free list.  Used only in nfs when
669 *	it abuses the b_freelist pointer.
670 */
671void
672bremfreef(struct buf *bp)
673{
674	mtx_lock(&bqlock);
675	bremfreel(bp);
676	mtx_unlock(&bqlock);
677}
678
679/*
680 *	bremfreel:
681 *
682 *	Removes a buffer from the free list, must be called with the
683 *	bqlock held.
684 */
685static void
686bremfreel(struct buf *bp)
687{
688	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
689	    bp, bp->b_vp, bp->b_flags);
690	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
691	KASSERT(bp->b_qindex != QUEUE_NONE,
692	    ("bremfreel: buffer %p not on a queue.", bp));
693	mtx_assert(&bqlock, MA_OWNED);
694
695	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
696	bp->b_qindex = QUEUE_NONE;
697	/*
698	 * If this was a delayed bremfree() we only need to remove the buffer
699	 * from the queue and return the stats are already done.
700	 */
701	if (bp->b_flags & B_REMFREE) {
702		bp->b_flags &= ~B_REMFREE;
703		return;
704	}
705	/*
706	 * Fixup numfreebuffers count.  If the buffer is invalid or not
707	 * delayed-write, the buffer was free and we must decrement
708	 * numfreebuffers.
709	 */
710	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
711		atomic_subtract_int(&numfreebuffers, 1);
712}
713
714
715/*
716 * Get a buffer with the specified data.  Look in the cache first.  We
717 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
718 * is set, the buffer is valid and we do not have to do anything ( see
719 * getblk() ).  This is really just a special case of breadn().
720 */
721int
722bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
723    struct buf **bpp)
724{
725
726	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
727}
728
729/*
730 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
731 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
732 * the buffer is valid and we do not have to do anything.
733 */
734void
735breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
736    int cnt, struct ucred * cred)
737{
738	struct buf *rabp;
739	int i;
740
741	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
742		if (inmem(vp, *rablkno))
743			continue;
744		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
745
746		if ((rabp->b_flags & B_CACHE) == 0) {
747			if (curthread != PCPU_GET(idlethread))
748				curthread->td_proc->p_stats->p_ru.ru_inblock++;
749			rabp->b_flags |= B_ASYNC;
750			rabp->b_flags &= ~B_INVAL;
751			rabp->b_ioflags &= ~BIO_ERROR;
752			rabp->b_iocmd = BIO_READ;
753			if (rabp->b_rcred == NOCRED && cred != NOCRED)
754				rabp->b_rcred = crhold(cred);
755			vfs_busy_pages(rabp, 0);
756			BUF_KERNPROC(rabp);
757			rabp->b_iooffset = dbtob(rabp->b_blkno);
758			bstrategy(rabp);
759		} else {
760			brelse(rabp);
761		}
762	}
763}
764
765/*
766 * Operates like bread, but also starts asynchronous I/O on
767 * read-ahead blocks.
768 */
769int
770breadn(struct vnode * vp, daddr_t blkno, int size,
771    daddr_t * rablkno, int *rabsize,
772    int cnt, struct ucred * cred, struct buf **bpp)
773{
774	struct buf *bp;
775	int rv = 0, readwait = 0;
776
777	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
778	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
779
780	/* if not found in cache, do some I/O */
781	if ((bp->b_flags & B_CACHE) == 0) {
782		if (curthread != PCPU_GET(idlethread))
783			curthread->td_proc->p_stats->p_ru.ru_inblock++;
784		bp->b_iocmd = BIO_READ;
785		bp->b_flags &= ~B_INVAL;
786		bp->b_ioflags &= ~BIO_ERROR;
787		if (bp->b_rcred == NOCRED && cred != NOCRED)
788			bp->b_rcred = crhold(cred);
789		vfs_busy_pages(bp, 0);
790		bp->b_iooffset = dbtob(bp->b_blkno);
791		bstrategy(bp);
792		++readwait;
793	}
794
795	breada(vp, rablkno, rabsize, cnt, cred);
796
797	if (readwait) {
798		rv = bufwait(bp);
799	}
800	return (rv);
801}
802
803/*
804 * Write, release buffer on completion.  (Done by iodone
805 * if async).  Do not bother writing anything if the buffer
806 * is invalid.
807 *
808 * Note that we set B_CACHE here, indicating that buffer is
809 * fully valid and thus cacheable.  This is true even of NFS
810 * now so we set it generally.  This could be set either here
811 * or in biodone() since the I/O is synchronous.  We put it
812 * here.
813 */
814int
815bufwrite(struct buf *bp)
816{
817	int oldflags;
818
819	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
820	if (bp->b_flags & B_INVAL) {
821		brelse(bp);
822		return (0);
823	}
824
825	oldflags = bp->b_flags;
826
827	if (BUF_REFCNT(bp) == 0)
828		panic("bufwrite: buffer is not busy???");
829
830	if (bp->b_pin_count > 0)
831		bunpin_wait(bp);
832
833	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
834	    ("FFS background buffer should not get here %p", bp));
835
836	/* Mark the buffer clean */
837	bundirty(bp);
838
839	bp->b_flags &= ~B_DONE;
840	bp->b_ioflags &= ~BIO_ERROR;
841	bp->b_flags |= B_CACHE;
842	bp->b_iocmd = BIO_WRITE;
843
844	bufobj_wref(bp->b_bufobj);
845	vfs_busy_pages(bp, 1);
846
847	/*
848	 * Normal bwrites pipeline writes
849	 */
850	bp->b_runningbufspace = bp->b_bufsize;
851	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
852
853	if (curthread != PCPU_GET(idlethread))
854		curthread->td_proc->p_stats->p_ru.ru_oublock++;
855	if (oldflags & B_ASYNC)
856		BUF_KERNPROC(bp);
857	bp->b_iooffset = dbtob(bp->b_blkno);
858	bstrategy(bp);
859
860	if ((oldflags & B_ASYNC) == 0) {
861		int rtval = bufwait(bp);
862		brelse(bp);
863		return (rtval);
864	} else {
865		/*
866		 * don't allow the async write to saturate the I/O
867		 * system.  We will not deadlock here because
868		 * we are blocking waiting for I/O that is already in-progress
869		 * to complete. We do not block here if it is the update
870		 * or syncer daemon trying to clean up as that can lead
871		 * to deadlock.
872		 */
873		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0)
874			waitrunningbufspace();
875	}
876
877	return (0);
878}
879
880/*
881 * Delayed write. (Buffer is marked dirty).  Do not bother writing
882 * anything if the buffer is marked invalid.
883 *
884 * Note that since the buffer must be completely valid, we can safely
885 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
886 * biodone() in order to prevent getblk from writing the buffer
887 * out synchronously.
888 */
889void
890bdwrite(struct buf *bp)
891{
892	struct thread *td = curthread;
893	struct vnode *vp;
894	struct buf *nbp;
895	struct bufobj *bo;
896
897	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
898	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
899	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
900
901	if (bp->b_flags & B_INVAL) {
902		brelse(bp);
903		return;
904	}
905
906	/*
907	 * If we have too many dirty buffers, don't create any more.
908	 * If we are wildly over our limit, then force a complete
909	 * cleanup. Otherwise, just keep the situation from getting
910	 * out of control. Note that we have to avoid a recursive
911	 * disaster and not try to clean up after our own cleanup!
912	 */
913	vp = bp->b_vp;
914	bo = bp->b_bufobj;
915	if ((td->td_pflags & TDP_COWINPROGRESS) == 0) {
916		BO_LOCK(bo);
917		if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
918			BO_UNLOCK(bo);
919			(void) VOP_FSYNC(vp, MNT_NOWAIT, td);
920			altbufferflushes++;
921		} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
922			/*
923			 * Try to find a buffer to flush.
924			 */
925			TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
926				if ((nbp->b_vflags & BV_BKGRDINPROG) ||
927				    BUF_LOCK(nbp,
928				    LK_EXCLUSIVE | LK_NOWAIT, NULL))
929					continue;
930				if (bp == nbp)
931					panic("bdwrite: found ourselves");
932				BO_UNLOCK(bo);
933				/* Don't countdeps with the bo lock held. */
934				if (buf_countdeps(nbp, 0)) {
935					BO_LOCK(bo);
936					BUF_UNLOCK(nbp);
937					continue;
938				}
939				if (nbp->b_flags & B_CLUSTEROK) {
940					vfs_bio_awrite(nbp);
941				} else {
942					bremfree(nbp);
943					bawrite(nbp);
944				}
945				dirtybufferflushes++;
946				break;
947			}
948			if (nbp == NULL)
949				BO_UNLOCK(bo);
950		} else
951			BO_UNLOCK(bo);
952	} else
953		recursiveflushes++;
954
955	bdirty(bp);
956	/*
957	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
958	 * true even of NFS now.
959	 */
960	bp->b_flags |= B_CACHE;
961
962	/*
963	 * This bmap keeps the system from needing to do the bmap later,
964	 * perhaps when the system is attempting to do a sync.  Since it
965	 * is likely that the indirect block -- or whatever other datastructure
966	 * that the filesystem needs is still in memory now, it is a good
967	 * thing to do this.  Note also, that if the pageout daemon is
968	 * requesting a sync -- there might not be enough memory to do
969	 * the bmap then...  So, this is important to do.
970	 */
971	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
972		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
973	}
974
975	/*
976	 * Set the *dirty* buffer range based upon the VM system dirty pages.
977	 */
978	vfs_setdirty(bp);
979
980	/*
981	 * We need to do this here to satisfy the vnode_pager and the
982	 * pageout daemon, so that it thinks that the pages have been
983	 * "cleaned".  Note that since the pages are in a delayed write
984	 * buffer -- the VFS layer "will" see that the pages get written
985	 * out on the next sync, or perhaps the cluster will be completed.
986	 */
987	vfs_clean_pages(bp);
988	bqrelse(bp);
989
990	/*
991	 * Wakeup the buffer flushing daemon if we have a lot of dirty
992	 * buffers (midpoint between our recovery point and our stall
993	 * point).
994	 */
995	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
996
997	/*
998	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
999	 * due to the softdep code.
1000	 */
1001}
1002
1003/*
1004 *	bdirty:
1005 *
1006 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1007 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1008 *	itself to properly update it in the dirty/clean lists.  We mark it
1009 *	B_DONE to ensure that any asynchronization of the buffer properly
1010 *	clears B_DONE ( else a panic will occur later ).
1011 *
1012 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1013 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1014 *	should only be called if the buffer is known-good.
1015 *
1016 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1017 *	count.
1018 *
1019 *	The buffer must be on QUEUE_NONE.
1020 */
1021void
1022bdirty(struct buf *bp)
1023{
1024
1025	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1026	    bp, bp->b_vp, bp->b_flags);
1027	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1028	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1029	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1030	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1031	bp->b_flags &= ~(B_RELBUF);
1032	bp->b_iocmd = BIO_WRITE;
1033
1034	if ((bp->b_flags & B_DELWRI) == 0) {
1035		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1036		reassignbuf(bp);
1037		atomic_add_int(&numdirtybuffers, 1);
1038		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1039	}
1040}
1041
1042/*
1043 *	bundirty:
1044 *
1045 *	Clear B_DELWRI for buffer.
1046 *
1047 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1048 *	count.
1049 *
1050 *	The buffer must be on QUEUE_NONE.
1051 */
1052
1053void
1054bundirty(struct buf *bp)
1055{
1056
1057	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1058	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1059	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1060	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1061	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1062
1063	if (bp->b_flags & B_DELWRI) {
1064		bp->b_flags &= ~B_DELWRI;
1065		reassignbuf(bp);
1066		atomic_subtract_int(&numdirtybuffers, 1);
1067		numdirtywakeup(lodirtybuffers);
1068	}
1069	/*
1070	 * Since it is now being written, we can clear its deferred write flag.
1071	 */
1072	bp->b_flags &= ~B_DEFERRED;
1073}
1074
1075/*
1076 *	bawrite:
1077 *
1078 *	Asynchronous write.  Start output on a buffer, but do not wait for
1079 *	it to complete.  The buffer is released when the output completes.
1080 *
1081 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1082 *	B_INVAL buffers.  Not us.
1083 */
1084void
1085bawrite(struct buf *bp)
1086{
1087
1088	bp->b_flags |= B_ASYNC;
1089	(void) bwrite(bp);
1090}
1091
1092/*
1093 *	bwillwrite:
1094 *
1095 *	Called prior to the locking of any vnodes when we are expecting to
1096 *	write.  We do not want to starve the buffer cache with too many
1097 *	dirty buffers so we block here.  By blocking prior to the locking
1098 *	of any vnodes we attempt to avoid the situation where a locked vnode
1099 *	prevents the various system daemons from flushing related buffers.
1100 */
1101
1102void
1103bwillwrite(void)
1104{
1105
1106	if (numdirtybuffers >= hidirtybuffers) {
1107		mtx_lock(&nblock);
1108		while (numdirtybuffers >= hidirtybuffers) {
1109			bd_wakeup(1);
1110			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1111			msleep(&needsbuffer, &nblock,
1112			    (PRIBIO + 4), "flswai", 0);
1113		}
1114		mtx_unlock(&nblock);
1115	}
1116}
1117
1118/*
1119 * Return true if we have too many dirty buffers.
1120 */
1121int
1122buf_dirty_count_severe(void)
1123{
1124
1125	return(numdirtybuffers >= hidirtybuffers);
1126}
1127
1128/*
1129 *	brelse:
1130 *
1131 *	Release a busy buffer and, if requested, free its resources.  The
1132 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1133 *	to be accessed later as a cache entity or reused for other purposes.
1134 */
1135void
1136brelse(struct buf *bp)
1137{
1138	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1139	    bp, bp->b_vp, bp->b_flags);
1140	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1141	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1142
1143	if (bp->b_flags & B_MANAGED) {
1144		bqrelse(bp);
1145		return;
1146	}
1147
1148	if (bp->b_iocmd == BIO_WRITE &&
1149	    (bp->b_ioflags & BIO_ERROR) &&
1150	    !(bp->b_flags & B_INVAL)) {
1151		/*
1152		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1153		 * pages from being scrapped.  If B_INVAL is set then
1154		 * this case is not run and the next case is run to
1155		 * destroy the buffer.  B_INVAL can occur if the buffer
1156		 * is outside the range supported by the underlying device.
1157		 */
1158		bp->b_ioflags &= ~BIO_ERROR;
1159		bdirty(bp);
1160	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1161	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1162		/*
1163		 * Either a failed I/O or we were asked to free or not
1164		 * cache the buffer.
1165		 */
1166		bp->b_flags |= B_INVAL;
1167		if (LIST_FIRST(&bp->b_dep) != NULL)
1168			buf_deallocate(bp);
1169		if (bp->b_flags & B_DELWRI) {
1170			atomic_subtract_int(&numdirtybuffers, 1);
1171			numdirtywakeup(lodirtybuffers);
1172		}
1173		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1174		if ((bp->b_flags & B_VMIO) == 0) {
1175			if (bp->b_bufsize)
1176				allocbuf(bp, 0);
1177			if (bp->b_vp)
1178				brelvp(bp);
1179		}
1180	}
1181
1182	/*
1183	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1184	 * is called with B_DELWRI set, the underlying pages may wind up
1185	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1186	 * because pages associated with a B_DELWRI bp are marked clean.
1187	 *
1188	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1189	 * if B_DELWRI is set.
1190	 *
1191	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1192	 * on pages to return pages to the VM page queues.
1193	 */
1194	if (bp->b_flags & B_DELWRI)
1195		bp->b_flags &= ~B_RELBUF;
1196	else if (vm_page_count_severe()) {
1197		/*
1198		 * XXX This lock may not be necessary since BKGRDINPROG
1199		 * cannot be set while we hold the buf lock, it can only be
1200		 * cleared if it is already pending.
1201		 */
1202		if (bp->b_vp) {
1203			BO_LOCK(bp->b_bufobj);
1204			if (!(bp->b_vflags & BV_BKGRDINPROG))
1205				bp->b_flags |= B_RELBUF;
1206			BO_UNLOCK(bp->b_bufobj);
1207		} else
1208			bp->b_flags |= B_RELBUF;
1209	}
1210
1211	/*
1212	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1213	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1214	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1215	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1216	 *
1217	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1218	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1219	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1220	 *
1221	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1222	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1223	 * the commit state and we cannot afford to lose the buffer. If the
1224	 * buffer has a background write in progress, we need to keep it
1225	 * around to prevent it from being reconstituted and starting a second
1226	 * background write.
1227	 */
1228	if ((bp->b_flags & B_VMIO)
1229	    && !(bp->b_vp->v_mount != NULL &&
1230		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1231		 !vn_isdisk(bp->b_vp, NULL) &&
1232		 (bp->b_flags & B_DELWRI))
1233	    ) {
1234
1235		int i, j, resid;
1236		vm_page_t m;
1237		off_t foff;
1238		vm_pindex_t poff;
1239		vm_object_t obj;
1240
1241		obj = bp->b_bufobj->bo_object;
1242
1243		/*
1244		 * Get the base offset and length of the buffer.  Note that
1245		 * in the VMIO case if the buffer block size is not
1246		 * page-aligned then b_data pointer may not be page-aligned.
1247		 * But our b_pages[] array *IS* page aligned.
1248		 *
1249		 * block sizes less then DEV_BSIZE (usually 512) are not
1250		 * supported due to the page granularity bits (m->valid,
1251		 * m->dirty, etc...).
1252		 *
1253		 * See man buf(9) for more information
1254		 */
1255		resid = bp->b_bufsize;
1256		foff = bp->b_offset;
1257		VM_OBJECT_LOCK(obj);
1258		for (i = 0; i < bp->b_npages; i++) {
1259			int had_bogus = 0;
1260
1261			m = bp->b_pages[i];
1262
1263			/*
1264			 * If we hit a bogus page, fixup *all* the bogus pages
1265			 * now.
1266			 */
1267			if (m == bogus_page) {
1268				poff = OFF_TO_IDX(bp->b_offset);
1269				had_bogus = 1;
1270
1271				for (j = i; j < bp->b_npages; j++) {
1272					vm_page_t mtmp;
1273					mtmp = bp->b_pages[j];
1274					if (mtmp == bogus_page) {
1275						mtmp = vm_page_lookup(obj, poff + j);
1276						if (!mtmp) {
1277							panic("brelse: page missing\n");
1278						}
1279						bp->b_pages[j] = mtmp;
1280					}
1281				}
1282
1283				if ((bp->b_flags & B_INVAL) == 0) {
1284					pmap_qenter(
1285					    trunc_page((vm_offset_t)bp->b_data),
1286					    bp->b_pages, bp->b_npages);
1287				}
1288				m = bp->b_pages[i];
1289			}
1290			if ((bp->b_flags & B_NOCACHE) ||
1291			    (bp->b_ioflags & BIO_ERROR)) {
1292				int poffset = foff & PAGE_MASK;
1293				int presid = resid > (PAGE_SIZE - poffset) ?
1294					(PAGE_SIZE - poffset) : resid;
1295
1296				KASSERT(presid >= 0, ("brelse: extra page"));
1297				vm_page_lock_queues();
1298				vm_page_set_invalid(m, poffset, presid);
1299				vm_page_unlock_queues();
1300				if (had_bogus)
1301					printf("avoided corruption bug in bogus_page/brelse code\n");
1302			}
1303			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1304			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1305		}
1306		VM_OBJECT_UNLOCK(obj);
1307		if (bp->b_flags & (B_INVAL | B_RELBUF))
1308			vfs_vmio_release(bp);
1309
1310	} else if (bp->b_flags & B_VMIO) {
1311
1312		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1313			vfs_vmio_release(bp);
1314		}
1315
1316	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1317		if (bp->b_bufsize != 0)
1318			allocbuf(bp, 0);
1319		if (bp->b_vp != NULL)
1320			brelvp(bp);
1321	}
1322
1323	if (BUF_REFCNT(bp) > 1) {
1324		/* do not release to free list */
1325		BUF_UNLOCK(bp);
1326		return;
1327	}
1328
1329	/* enqueue */
1330	mtx_lock(&bqlock);
1331	/* Handle delayed bremfree() processing. */
1332	if (bp->b_flags & B_REMFREE)
1333		bremfreel(bp);
1334	if (bp->b_qindex != QUEUE_NONE)
1335		panic("brelse: free buffer onto another queue???");
1336
1337	/* buffers with no memory */
1338	if (bp->b_bufsize == 0) {
1339		bp->b_flags |= B_INVAL;
1340		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1341		if (bp->b_vflags & BV_BKGRDINPROG)
1342			panic("losing buffer 1");
1343		if (bp->b_kvasize) {
1344			bp->b_qindex = QUEUE_EMPTYKVA;
1345		} else {
1346			bp->b_qindex = QUEUE_EMPTY;
1347		}
1348		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1349	/* buffers with junk contents */
1350	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1351	    (bp->b_ioflags & BIO_ERROR)) {
1352		bp->b_flags |= B_INVAL;
1353		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1354		if (bp->b_vflags & BV_BKGRDINPROG)
1355			panic("losing buffer 2");
1356		bp->b_qindex = QUEUE_CLEAN;
1357		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1358	/* remaining buffers */
1359	} else {
1360		if (bp->b_flags & (B_DELWRI|B_NEEDSGIANT))
1361			bp->b_qindex = QUEUE_DIRTY_GIANT;
1362		if (bp->b_flags & B_DELWRI)
1363			bp->b_qindex = QUEUE_DIRTY;
1364		else
1365			bp->b_qindex = QUEUE_CLEAN;
1366		if (bp->b_flags & B_AGE)
1367			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1368		else
1369			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1370	}
1371	mtx_unlock(&bqlock);
1372
1373	/*
1374	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1375	 * placed the buffer on the correct queue.  We must also disassociate
1376	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1377	 * find it.
1378	 */
1379	if (bp->b_flags & B_INVAL) {
1380		if (bp->b_flags & B_DELWRI)
1381			bundirty(bp);
1382		if (bp->b_vp)
1383			brelvp(bp);
1384	}
1385
1386	/*
1387	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1388	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1389	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1390	 * if B_INVAL is set ).
1391	 */
1392
1393	if (!(bp->b_flags & B_DELWRI))
1394		bufcountwakeup();
1395
1396	/*
1397	 * Something we can maybe free or reuse
1398	 */
1399	if (bp->b_bufsize || bp->b_kvasize)
1400		bufspacewakeup();
1401
1402	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1403	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1404		panic("brelse: not dirty");
1405	/* unlock */
1406	BUF_UNLOCK(bp);
1407}
1408
1409/*
1410 * Release a buffer back to the appropriate queue but do not try to free
1411 * it.  The buffer is expected to be used again soon.
1412 *
1413 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1414 * biodone() to requeue an async I/O on completion.  It is also used when
1415 * known good buffers need to be requeued but we think we may need the data
1416 * again soon.
1417 *
1418 * XXX we should be able to leave the B_RELBUF hint set on completion.
1419 */
1420void
1421bqrelse(struct buf *bp)
1422{
1423	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1424	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1425	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1426
1427	if (BUF_REFCNT(bp) > 1) {
1428		/* do not release to free list */
1429		BUF_UNLOCK(bp);
1430		return;
1431	}
1432
1433	if (bp->b_flags & B_MANAGED) {
1434		if (bp->b_flags & B_REMFREE) {
1435			mtx_lock(&bqlock);
1436			bremfreel(bp);
1437			mtx_unlock(&bqlock);
1438		}
1439		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1440		BUF_UNLOCK(bp);
1441		return;
1442	}
1443
1444	mtx_lock(&bqlock);
1445	/* Handle delayed bremfree() processing. */
1446	if (bp->b_flags & B_REMFREE)
1447		bremfreel(bp);
1448	if (bp->b_qindex != QUEUE_NONE)
1449		panic("bqrelse: free buffer onto another queue???");
1450	/* buffers with stale but valid contents */
1451	if (bp->b_flags & B_DELWRI) {
1452		if (bp->b_flags & B_NEEDSGIANT)
1453			bp->b_qindex = QUEUE_DIRTY_GIANT;
1454		else
1455			bp->b_qindex = QUEUE_DIRTY;
1456		TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1457	} else {
1458		/*
1459		 * XXX This lock may not be necessary since BKGRDINPROG
1460		 * cannot be set while we hold the buf lock, it can only be
1461		 * cleared if it is already pending.
1462		 */
1463		BO_LOCK(bp->b_bufobj);
1464		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1465			BO_UNLOCK(bp->b_bufobj);
1466			bp->b_qindex = QUEUE_CLEAN;
1467			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1468			    b_freelist);
1469		} else {
1470			/*
1471			 * We are too low on memory, we have to try to free
1472			 * the buffer (most importantly: the wired pages
1473			 * making up its backing store) *now*.
1474			 */
1475			BO_UNLOCK(bp->b_bufobj);
1476			mtx_unlock(&bqlock);
1477			brelse(bp);
1478			return;
1479		}
1480	}
1481	mtx_unlock(&bqlock);
1482
1483	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1484		bufcountwakeup();
1485
1486	/*
1487	 * Something we can maybe free or reuse.
1488	 */
1489	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1490		bufspacewakeup();
1491
1492	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1493	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1494		panic("bqrelse: not dirty");
1495	/* unlock */
1496	BUF_UNLOCK(bp);
1497}
1498
1499/* Give pages used by the bp back to the VM system (where possible) */
1500static void
1501vfs_vmio_release(struct buf *bp)
1502{
1503	int i;
1504	vm_page_t m;
1505
1506	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1507	vm_page_lock_queues();
1508	for (i = 0; i < bp->b_npages; i++) {
1509		m = bp->b_pages[i];
1510		bp->b_pages[i] = NULL;
1511		/*
1512		 * In order to keep page LRU ordering consistent, put
1513		 * everything on the inactive queue.
1514		 */
1515		vm_page_unwire(m, 0);
1516		/*
1517		 * We don't mess with busy pages, it is
1518		 * the responsibility of the process that
1519		 * busied the pages to deal with them.
1520		 */
1521		if ((m->flags & PG_BUSY) || (m->busy != 0))
1522			continue;
1523
1524		if (m->wire_count == 0) {
1525			/*
1526			 * Might as well free the page if we can and it has
1527			 * no valid data.  We also free the page if the
1528			 * buffer was used for direct I/O
1529			 */
1530			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1531			    m->hold_count == 0) {
1532				vm_page_free(m);
1533			} else if (bp->b_flags & B_DIRECT) {
1534				vm_page_try_to_free(m);
1535			} else if (vm_page_count_severe()) {
1536				vm_page_try_to_cache(m);
1537			}
1538		}
1539	}
1540	vm_page_unlock_queues();
1541	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1542	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1543
1544	if (bp->b_bufsize) {
1545		bufspacewakeup();
1546		bp->b_bufsize = 0;
1547	}
1548	bp->b_npages = 0;
1549	bp->b_flags &= ~B_VMIO;
1550	if (bp->b_vp)
1551		brelvp(bp);
1552}
1553
1554/*
1555 * Check to see if a block at a particular lbn is available for a clustered
1556 * write.
1557 */
1558static int
1559vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1560{
1561	struct buf *bpa;
1562	int match;
1563
1564	match = 0;
1565
1566	/* If the buf isn't in core skip it */
1567	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1568		return (0);
1569
1570	/* If the buf is busy we don't want to wait for it */
1571	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1572		return (0);
1573
1574	/* Only cluster with valid clusterable delayed write buffers */
1575	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1576	    (B_DELWRI | B_CLUSTEROK))
1577		goto done;
1578
1579	if (bpa->b_bufsize != size)
1580		goto done;
1581
1582	/*
1583	 * Check to see if it is in the expected place on disk and that the
1584	 * block has been mapped.
1585	 */
1586	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1587		match = 1;
1588done:
1589	BUF_UNLOCK(bpa);
1590	return (match);
1591}
1592
1593/*
1594 *	vfs_bio_awrite:
1595 *
1596 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1597 *	This is much better then the old way of writing only one buffer at
1598 *	a time.  Note that we may not be presented with the buffers in the
1599 *	correct order, so we search for the cluster in both directions.
1600 */
1601int
1602vfs_bio_awrite(struct buf *bp)
1603{
1604	int i;
1605	int j;
1606	daddr_t lblkno = bp->b_lblkno;
1607	struct vnode *vp = bp->b_vp;
1608	int ncl;
1609	int nwritten;
1610	int size;
1611	int maxcl;
1612
1613	/*
1614	 * right now we support clustered writing only to regular files.  If
1615	 * we find a clusterable block we could be in the middle of a cluster
1616	 * rather then at the beginning.
1617	 */
1618	if ((vp->v_type == VREG) &&
1619	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1620	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1621
1622		size = vp->v_mount->mnt_stat.f_iosize;
1623		maxcl = MAXPHYS / size;
1624
1625		VI_LOCK(vp);
1626		for (i = 1; i < maxcl; i++)
1627			if (vfs_bio_clcheck(vp, size, lblkno + i,
1628			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1629				break;
1630
1631		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1632			if (vfs_bio_clcheck(vp, size, lblkno - j,
1633			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1634				break;
1635
1636		VI_UNLOCK(vp);
1637		--j;
1638		ncl = i + j;
1639		/*
1640		 * this is a possible cluster write
1641		 */
1642		if (ncl != 1) {
1643			BUF_UNLOCK(bp);
1644			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1645			return nwritten;
1646		}
1647	}
1648	bremfree(bp);
1649	bp->b_flags |= B_ASYNC;
1650	/*
1651	 * default (old) behavior, writing out only one block
1652	 *
1653	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1654	 */
1655	nwritten = bp->b_bufsize;
1656	(void) bwrite(bp);
1657
1658	return nwritten;
1659}
1660
1661/*
1662 *	getnewbuf:
1663 *
1664 *	Find and initialize a new buffer header, freeing up existing buffers
1665 *	in the bufqueues as necessary.  The new buffer is returned locked.
1666 *
1667 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1668 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1669 *
1670 *	We block if:
1671 *		We have insufficient buffer headers
1672 *		We have insufficient buffer space
1673 *		buffer_map is too fragmented ( space reservation fails )
1674 *		If we have to flush dirty buffers ( but we try to avoid this )
1675 *
1676 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1677 *	Instead we ask the buf daemon to do it for us.  We attempt to
1678 *	avoid piecemeal wakeups of the pageout daemon.
1679 */
1680
1681static struct buf *
1682getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1683{
1684	struct buf *bp;
1685	struct buf *nbp;
1686	int defrag = 0;
1687	int nqindex;
1688	static int flushingbufs;
1689
1690	/*
1691	 * We can't afford to block since we might be holding a vnode lock,
1692	 * which may prevent system daemons from running.  We deal with
1693	 * low-memory situations by proactively returning memory and running
1694	 * async I/O rather then sync I/O.
1695	 */
1696
1697	atomic_add_int(&getnewbufcalls, 1);
1698	atomic_subtract_int(&getnewbufrestarts, 1);
1699restart:
1700	atomic_add_int(&getnewbufrestarts, 1);
1701
1702	/*
1703	 * Setup for scan.  If we do not have enough free buffers,
1704	 * we setup a degenerate case that immediately fails.  Note
1705	 * that if we are specially marked process, we are allowed to
1706	 * dip into our reserves.
1707	 *
1708	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1709	 *
1710	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1711	 * However, there are a number of cases (defragging, reusing, ...)
1712	 * where we cannot backup.
1713	 */
1714	mtx_lock(&bqlock);
1715	nqindex = QUEUE_EMPTYKVA;
1716	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1717
1718	if (nbp == NULL) {
1719		/*
1720		 * If no EMPTYKVA buffers and we are either
1721		 * defragging or reusing, locate a CLEAN buffer
1722		 * to free or reuse.  If bufspace useage is low
1723		 * skip this step so we can allocate a new buffer.
1724		 */
1725		if (defrag || bufspace >= lobufspace) {
1726			nqindex = QUEUE_CLEAN;
1727			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1728		}
1729
1730		/*
1731		 * If we could not find or were not allowed to reuse a
1732		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1733		 * buffer.  We can only use an EMPTY buffer if allocating
1734		 * its KVA would not otherwise run us out of buffer space.
1735		 */
1736		if (nbp == NULL && defrag == 0 &&
1737		    bufspace + maxsize < hibufspace) {
1738			nqindex = QUEUE_EMPTY;
1739			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1740		}
1741	}
1742
1743	/*
1744	 * Run scan, possibly freeing data and/or kva mappings on the fly
1745	 * depending.
1746	 */
1747
1748	while ((bp = nbp) != NULL) {
1749		int qindex = nqindex;
1750
1751		/*
1752		 * Calculate next bp ( we can only use it if we do not block
1753		 * or do other fancy things ).
1754		 */
1755		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1756			switch(qindex) {
1757			case QUEUE_EMPTY:
1758				nqindex = QUEUE_EMPTYKVA;
1759				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1760					break;
1761				/* FALLTHROUGH */
1762			case QUEUE_EMPTYKVA:
1763				nqindex = QUEUE_CLEAN;
1764				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1765					break;
1766				/* FALLTHROUGH */
1767			case QUEUE_CLEAN:
1768				/*
1769				 * nbp is NULL.
1770				 */
1771				break;
1772			}
1773		}
1774		/*
1775		 * If we are defragging then we need a buffer with
1776		 * b_kvasize != 0.  XXX this situation should no longer
1777		 * occur, if defrag is non-zero the buffer's b_kvasize
1778		 * should also be non-zero at this point.  XXX
1779		 */
1780		if (defrag && bp->b_kvasize == 0) {
1781			printf("Warning: defrag empty buffer %p\n", bp);
1782			continue;
1783		}
1784
1785		/*
1786		 * Start freeing the bp.  This is somewhat involved.  nbp
1787		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1788		 */
1789		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1790			continue;
1791		if (bp->b_vp) {
1792			BO_LOCK(bp->b_bufobj);
1793			if (bp->b_vflags & BV_BKGRDINPROG) {
1794				BO_UNLOCK(bp->b_bufobj);
1795				BUF_UNLOCK(bp);
1796				continue;
1797			}
1798			BO_UNLOCK(bp->b_bufobj);
1799		}
1800		CTR6(KTR_BUF,
1801		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1802		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1803		    bp->b_kvasize, bp->b_bufsize, qindex);
1804
1805		/*
1806		 * Sanity Checks
1807		 */
1808		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1809
1810		/*
1811		 * Note: we no longer distinguish between VMIO and non-VMIO
1812		 * buffers.
1813		 */
1814
1815		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1816
1817		bremfreel(bp);
1818		mtx_unlock(&bqlock);
1819
1820		if (qindex == QUEUE_CLEAN) {
1821			if (bp->b_flags & B_VMIO) {
1822				bp->b_flags &= ~B_ASYNC;
1823				vfs_vmio_release(bp);
1824			}
1825			if (bp->b_vp)
1826				brelvp(bp);
1827		}
1828
1829		/*
1830		 * NOTE:  nbp is now entirely invalid.  We can only restart
1831		 * the scan from this point on.
1832		 *
1833		 * Get the rest of the buffer freed up.  b_kva* is still
1834		 * valid after this operation.
1835		 */
1836
1837		if (bp->b_rcred != NOCRED) {
1838			crfree(bp->b_rcred);
1839			bp->b_rcred = NOCRED;
1840		}
1841		if (bp->b_wcred != NOCRED) {
1842			crfree(bp->b_wcred);
1843			bp->b_wcred = NOCRED;
1844		}
1845		if (LIST_FIRST(&bp->b_dep) != NULL)
1846			buf_deallocate(bp);
1847		if (bp->b_vflags & BV_BKGRDINPROG)
1848			panic("losing buffer 3");
1849		KASSERT(bp->b_vp == NULL,
1850		    ("bp: %p still has vnode %p.  qindex: %d",
1851		    bp, bp->b_vp, qindex));
1852		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1853		   ("bp: %p still on a buffer list. xflags %X",
1854		    bp, bp->b_xflags));
1855
1856		if (bp->b_bufsize)
1857			allocbuf(bp, 0);
1858
1859		bp->b_flags = 0;
1860		bp->b_ioflags = 0;
1861		bp->b_xflags = 0;
1862		bp->b_vflags = 0;
1863		bp->b_vp = NULL;
1864		bp->b_blkno = bp->b_lblkno = 0;
1865		bp->b_offset = NOOFFSET;
1866		bp->b_iodone = 0;
1867		bp->b_error = 0;
1868		bp->b_resid = 0;
1869		bp->b_bcount = 0;
1870		bp->b_npages = 0;
1871		bp->b_dirtyoff = bp->b_dirtyend = 0;
1872		bp->b_bufobj = NULL;
1873		bp->b_pin_count = 0;
1874		bp->b_fsprivate1 = NULL;
1875		bp->b_fsprivate2 = NULL;
1876		bp->b_fsprivate3 = NULL;
1877
1878		LIST_INIT(&bp->b_dep);
1879
1880		/*
1881		 * If we are defragging then free the buffer.
1882		 */
1883		if (defrag) {
1884			bp->b_flags |= B_INVAL;
1885			bfreekva(bp);
1886			brelse(bp);
1887			defrag = 0;
1888			goto restart;
1889		}
1890
1891		/*
1892		 * If we are overcomitted then recover the buffer and its
1893		 * KVM space.  This occurs in rare situations when multiple
1894		 * processes are blocked in getnewbuf() or allocbuf().
1895		 */
1896		if (bufspace >= hibufspace)
1897			flushingbufs = 1;
1898		if (flushingbufs && bp->b_kvasize != 0) {
1899			bp->b_flags |= B_INVAL;
1900			bfreekva(bp);
1901			brelse(bp);
1902			goto restart;
1903		}
1904		if (bufspace < lobufspace)
1905			flushingbufs = 0;
1906		break;
1907	}
1908
1909	/*
1910	 * If we exhausted our list, sleep as appropriate.  We may have to
1911	 * wakeup various daemons and write out some dirty buffers.
1912	 *
1913	 * Generally we are sleeping due to insufficient buffer space.
1914	 */
1915
1916	if (bp == NULL) {
1917		int flags;
1918		char *waitmsg;
1919
1920		if (defrag) {
1921			flags = VFS_BIO_NEED_BUFSPACE;
1922			waitmsg = "nbufkv";
1923		} else if (bufspace >= hibufspace) {
1924			waitmsg = "nbufbs";
1925			flags = VFS_BIO_NEED_BUFSPACE;
1926		} else {
1927			waitmsg = "newbuf";
1928			flags = VFS_BIO_NEED_ANY;
1929		}
1930		mtx_lock(&nblock);
1931		needsbuffer |= flags;
1932		mtx_unlock(&nblock);
1933		mtx_unlock(&bqlock);
1934
1935		bd_speedup();	/* heeeelp */
1936
1937		mtx_lock(&nblock);
1938		while (needsbuffer & flags) {
1939			if (msleep(&needsbuffer, &nblock,
1940			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1941				mtx_unlock(&nblock);
1942				return (NULL);
1943			}
1944		}
1945		mtx_unlock(&nblock);
1946	} else {
1947		/*
1948		 * We finally have a valid bp.  We aren't quite out of the
1949		 * woods, we still have to reserve kva space.  In order
1950		 * to keep fragmentation sane we only allocate kva in
1951		 * BKVASIZE chunks.
1952		 */
1953		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1954
1955		if (maxsize != bp->b_kvasize) {
1956			vm_offset_t addr = 0;
1957
1958			bfreekva(bp);
1959
1960			vm_map_lock(buffer_map);
1961			if (vm_map_findspace(buffer_map,
1962				vm_map_min(buffer_map), maxsize, &addr)) {
1963				/*
1964				 * Uh oh.  Buffer map is to fragmented.  We
1965				 * must defragment the map.
1966				 */
1967				atomic_add_int(&bufdefragcnt, 1);
1968				vm_map_unlock(buffer_map);
1969				defrag = 1;
1970				bp->b_flags |= B_INVAL;
1971				brelse(bp);
1972				goto restart;
1973			}
1974			if (addr) {
1975				vm_map_insert(buffer_map, NULL, 0,
1976					addr, addr + maxsize,
1977					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1978
1979				bp->b_kvabase = (caddr_t) addr;
1980				bp->b_kvasize = maxsize;
1981				atomic_add_int(&bufspace, bp->b_kvasize);
1982				atomic_add_int(&bufreusecnt, 1);
1983			}
1984			vm_map_unlock(buffer_map);
1985		}
1986		bp->b_saveaddr = bp->b_kvabase;
1987		bp->b_data = bp->b_saveaddr;
1988	}
1989	return(bp);
1990}
1991
1992/*
1993 *	buf_daemon:
1994 *
1995 *	buffer flushing daemon.  Buffers are normally flushed by the
1996 *	update daemon but if it cannot keep up this process starts to
1997 *	take the load in an attempt to prevent getnewbuf() from blocking.
1998 */
1999
2000static struct kproc_desc buf_kp = {
2001	"bufdaemon",
2002	buf_daemon,
2003	&bufdaemonproc
2004};
2005SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2006
2007static void
2008buf_daemon()
2009{
2010
2011	/*
2012	 * This process needs to be suspended prior to shutdown sync.
2013	 */
2014	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2015	    SHUTDOWN_PRI_LAST);
2016
2017	/*
2018	 * This process is allowed to take the buffer cache to the limit
2019	 */
2020	curthread->td_pflags |= TDP_NORUNNINGBUF;
2021	mtx_lock(&bdlock);
2022	for (;;) {
2023		bd_request = 0;
2024		mtx_unlock(&bdlock);
2025
2026		kthread_suspend_check(bufdaemonproc);
2027
2028		/*
2029		 * Do the flush.  Limit the amount of in-transit I/O we
2030		 * allow to build up, otherwise we would completely saturate
2031		 * the I/O system.  Wakeup any waiting processes before we
2032		 * normally would so they can run in parallel with our drain.
2033		 */
2034		while (numdirtybuffers > lodirtybuffers) {
2035			int flushed;
2036
2037			flushed = flushbufqueues(QUEUE_DIRTY, 0);
2038			/* The list empty check here is slightly racy */
2039			if (!TAILQ_EMPTY(&bufqueues[QUEUE_DIRTY_GIANT])) {
2040				mtx_lock(&Giant);
2041				flushed += flushbufqueues(QUEUE_DIRTY_GIANT, 0);
2042				mtx_unlock(&Giant);
2043			}
2044			if (flushed == 0) {
2045				/*
2046				 * Could not find any buffers without rollback
2047				 * dependencies, so just write the first one
2048				 * in the hopes of eventually making progress.
2049				 */
2050				flushbufqueues(QUEUE_DIRTY, 1);
2051				if (!TAILQ_EMPTY(
2052				    &bufqueues[QUEUE_DIRTY_GIANT])) {
2053					mtx_lock(&Giant);
2054					flushbufqueues(QUEUE_DIRTY_GIANT, 1);
2055					mtx_unlock(&Giant);
2056				}
2057				break;
2058			}
2059			uio_yield();
2060		}
2061
2062		/*
2063		 * Only clear bd_request if we have reached our low water
2064		 * mark.  The buf_daemon normally waits 1 second and
2065		 * then incrementally flushes any dirty buffers that have
2066		 * built up, within reason.
2067		 *
2068		 * If we were unable to hit our low water mark and couldn't
2069		 * find any flushable buffers, we sleep half a second.
2070		 * Otherwise we loop immediately.
2071		 */
2072		mtx_lock(&bdlock);
2073		if (numdirtybuffers <= lodirtybuffers) {
2074			/*
2075			 * We reached our low water mark, reset the
2076			 * request and sleep until we are needed again.
2077			 * The sleep is just so the suspend code works.
2078			 */
2079			bd_request = 0;
2080			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2081		} else {
2082			/*
2083			 * We couldn't find any flushable dirty buffers but
2084			 * still have too many dirty buffers, we
2085			 * have to sleep and try again.  (rare)
2086			 */
2087			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2088		}
2089	}
2090}
2091
2092/*
2093 *	flushbufqueues:
2094 *
2095 *	Try to flush a buffer in the dirty queue.  We must be careful to
2096 *	free up B_INVAL buffers instead of write them, which NFS is
2097 *	particularly sensitive to.
2098 */
2099static int flushwithdeps = 0;
2100SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2101    0, "Number of buffers flushed with dependecies that require rollbacks");
2102
2103static int
2104flushbufqueues(int queue, int flushdeps)
2105{
2106	struct thread *td = curthread;
2107	struct buf sentinel;
2108	struct vnode *vp;
2109	struct mount *mp;
2110	struct buf *bp;
2111	int hasdeps;
2112	int flushed;
2113	int target;
2114
2115	target = numdirtybuffers - lodirtybuffers;
2116	if (flushdeps && target > 2)
2117		target /= 2;
2118	flushed = 0;
2119	bp = NULL;
2120	mtx_lock(&bqlock);
2121	TAILQ_INSERT_TAIL(&bufqueues[queue], &sentinel, b_freelist);
2122	while (flushed != target) {
2123		bp = TAILQ_FIRST(&bufqueues[queue]);
2124		if (bp == &sentinel)
2125			break;
2126		TAILQ_REMOVE(&bufqueues[queue], bp, b_freelist);
2127		TAILQ_INSERT_TAIL(&bufqueues[queue], bp, b_freelist);
2128
2129		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2130			continue;
2131		if (bp->b_pin_count > 0) {
2132			BUF_UNLOCK(bp);
2133			continue;
2134		}
2135		BO_LOCK(bp->b_bufobj);
2136		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2137		    (bp->b_flags & B_DELWRI) == 0) {
2138			BO_UNLOCK(bp->b_bufobj);
2139			BUF_UNLOCK(bp);
2140			continue;
2141		}
2142		BO_UNLOCK(bp->b_bufobj);
2143		if (bp->b_flags & B_INVAL) {
2144			bremfreel(bp);
2145			mtx_unlock(&bqlock);
2146			brelse(bp);
2147			flushed++;
2148			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2149			mtx_lock(&bqlock);
2150			continue;
2151		}
2152
2153		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2154			if (flushdeps == 0) {
2155				BUF_UNLOCK(bp);
2156				continue;
2157			}
2158			hasdeps = 1;
2159		} else
2160			hasdeps = 0;
2161		/*
2162		 * We must hold the lock on a vnode before writing
2163		 * one of its buffers. Otherwise we may confuse, or
2164		 * in the case of a snapshot vnode, deadlock the
2165		 * system.
2166		 *
2167		 * The lock order here is the reverse of the normal
2168		 * of vnode followed by buf lock.  This is ok because
2169		 * the NOWAIT will prevent deadlock.
2170		 */
2171		vp = bp->b_vp;
2172		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2173			BUF_UNLOCK(bp);
2174			continue;
2175		}
2176		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2177			mtx_unlock(&bqlock);
2178			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2179			    bp, bp->b_vp, bp->b_flags);
2180			vfs_bio_awrite(bp);
2181			vn_finished_write(mp);
2182			VOP_UNLOCK(vp, 0, td);
2183			flushwithdeps += hasdeps;
2184			flushed++;
2185			waitrunningbufspace();
2186			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2187			mtx_lock(&bqlock);
2188			continue;
2189		}
2190		vn_finished_write(mp);
2191		BUF_UNLOCK(bp);
2192	}
2193	TAILQ_REMOVE(&bufqueues[queue], &sentinel, b_freelist);
2194	mtx_unlock(&bqlock);
2195	return (flushed);
2196}
2197
2198/*
2199 * Check to see if a block is currently memory resident.
2200 */
2201struct buf *
2202incore(struct bufobj *bo, daddr_t blkno)
2203{
2204	struct buf *bp;
2205
2206	BO_LOCK(bo);
2207	bp = gbincore(bo, blkno);
2208	BO_UNLOCK(bo);
2209	return (bp);
2210}
2211
2212/*
2213 * Returns true if no I/O is needed to access the
2214 * associated VM object.  This is like incore except
2215 * it also hunts around in the VM system for the data.
2216 */
2217
2218static int
2219inmem(struct vnode * vp, daddr_t blkno)
2220{
2221	vm_object_t obj;
2222	vm_offset_t toff, tinc, size;
2223	vm_page_t m;
2224	vm_ooffset_t off;
2225
2226	ASSERT_VOP_LOCKED(vp, "inmem");
2227
2228	if (incore(&vp->v_bufobj, blkno))
2229		return 1;
2230	if (vp->v_mount == NULL)
2231		return 0;
2232	obj = vp->v_object;
2233	if (obj == NULL)
2234		return (0);
2235
2236	size = PAGE_SIZE;
2237	if (size > vp->v_mount->mnt_stat.f_iosize)
2238		size = vp->v_mount->mnt_stat.f_iosize;
2239	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2240
2241	VM_OBJECT_LOCK(obj);
2242	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2243		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2244		if (!m)
2245			goto notinmem;
2246		tinc = size;
2247		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2248			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2249		if (vm_page_is_valid(m,
2250		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2251			goto notinmem;
2252	}
2253	VM_OBJECT_UNLOCK(obj);
2254	return 1;
2255
2256notinmem:
2257	VM_OBJECT_UNLOCK(obj);
2258	return (0);
2259}
2260
2261/*
2262 *	vfs_setdirty:
2263 *
2264 *	Sets the dirty range for a buffer based on the status of the dirty
2265 *	bits in the pages comprising the buffer.
2266 *
2267 *	The range is limited to the size of the buffer.
2268 *
2269 *	This routine is primarily used by NFS, but is generalized for the
2270 *	B_VMIO case.
2271 */
2272static void
2273vfs_setdirty(struct buf *bp)
2274{
2275	int i;
2276	vm_object_t object;
2277
2278	/*
2279	 * Degenerate case - empty buffer
2280	 */
2281
2282	if (bp->b_bufsize == 0)
2283		return;
2284
2285	/*
2286	 * We qualify the scan for modified pages on whether the
2287	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2288	 * is not cleared simply by protecting pages off.
2289	 */
2290
2291	if ((bp->b_flags & B_VMIO) == 0)
2292		return;
2293
2294	object = bp->b_pages[0]->object;
2295	VM_OBJECT_LOCK(object);
2296	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2297		printf("Warning: object %p writeable but not mightbedirty\n", object);
2298	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2299		printf("Warning: object %p mightbedirty but not writeable\n", object);
2300
2301	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2302		vm_offset_t boffset;
2303		vm_offset_t eoffset;
2304
2305		vm_page_lock_queues();
2306		/*
2307		 * test the pages to see if they have been modified directly
2308		 * by users through the VM system.
2309		 */
2310		for (i = 0; i < bp->b_npages; i++)
2311			vm_page_test_dirty(bp->b_pages[i]);
2312
2313		/*
2314		 * Calculate the encompassing dirty range, boffset and eoffset,
2315		 * (eoffset - boffset) bytes.
2316		 */
2317
2318		for (i = 0; i < bp->b_npages; i++) {
2319			if (bp->b_pages[i]->dirty)
2320				break;
2321		}
2322		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2323
2324		for (i = bp->b_npages - 1; i >= 0; --i) {
2325			if (bp->b_pages[i]->dirty) {
2326				break;
2327			}
2328		}
2329		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2330
2331		vm_page_unlock_queues();
2332		/*
2333		 * Fit it to the buffer.
2334		 */
2335
2336		if (eoffset > bp->b_bcount)
2337			eoffset = bp->b_bcount;
2338
2339		/*
2340		 * If we have a good dirty range, merge with the existing
2341		 * dirty range.
2342		 */
2343
2344		if (boffset < eoffset) {
2345			if (bp->b_dirtyoff > boffset)
2346				bp->b_dirtyoff = boffset;
2347			if (bp->b_dirtyend < eoffset)
2348				bp->b_dirtyend = eoffset;
2349		}
2350	}
2351	VM_OBJECT_UNLOCK(object);
2352}
2353
2354/*
2355 *	getblk:
2356 *
2357 *	Get a block given a specified block and offset into a file/device.
2358 *	The buffers B_DONE bit will be cleared on return, making it almost
2359 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2360 *	return.  The caller should clear B_INVAL prior to initiating a
2361 *	READ.
2362 *
2363 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2364 *	an existing buffer.
2365 *
2366 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2367 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2368 *	and then cleared based on the backing VM.  If the previous buffer is
2369 *	non-0-sized but invalid, B_CACHE will be cleared.
2370 *
2371 *	If getblk() must create a new buffer, the new buffer is returned with
2372 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2373 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2374 *	backing VM.
2375 *
2376 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2377 *	B_CACHE bit is clear.
2378 *
2379 *	What this means, basically, is that the caller should use B_CACHE to
2380 *	determine whether the buffer is fully valid or not and should clear
2381 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2382 *	the buffer by loading its data area with something, the caller needs
2383 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2384 *	the caller should set B_CACHE ( as an optimization ), else the caller
2385 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2386 *	a write attempt or if it was a successfull read.  If the caller
2387 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2388 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2389 */
2390struct buf *
2391getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2392    int flags)
2393{
2394	struct buf *bp;
2395	struct bufobj *bo;
2396	int error;
2397
2398	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2399	ASSERT_VOP_LOCKED(vp, "getblk");
2400	if (size > MAXBSIZE)
2401		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2402
2403	bo = &vp->v_bufobj;
2404loop:
2405	/*
2406	 * Block if we are low on buffers.   Certain processes are allowed
2407	 * to completely exhaust the buffer cache.
2408         *
2409         * If this check ever becomes a bottleneck it may be better to
2410         * move it into the else, when gbincore() fails.  At the moment
2411         * it isn't a problem.
2412	 *
2413	 * XXX remove if 0 sections (clean this up after its proven)
2414         */
2415	if (numfreebuffers == 0) {
2416		if (curthread == PCPU_GET(idlethread))
2417			return NULL;
2418		mtx_lock(&nblock);
2419		needsbuffer |= VFS_BIO_NEED_ANY;
2420		mtx_unlock(&nblock);
2421	}
2422
2423	VI_LOCK(vp);
2424	bp = gbincore(bo, blkno);
2425	if (bp != NULL) {
2426		int lockflags;
2427		/*
2428		 * Buffer is in-core.  If the buffer is not busy, it must
2429		 * be on a queue.
2430		 */
2431		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2432
2433		if (flags & GB_LOCK_NOWAIT)
2434			lockflags |= LK_NOWAIT;
2435
2436		error = BUF_TIMELOCK(bp, lockflags,
2437		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2438
2439		/*
2440		 * If we slept and got the lock we have to restart in case
2441		 * the buffer changed identities.
2442		 */
2443		if (error == ENOLCK)
2444			goto loop;
2445		/* We timed out or were interrupted. */
2446		else if (error)
2447			return (NULL);
2448
2449		/*
2450		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2451		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2452		 * and for a VMIO buffer B_CACHE is adjusted according to the
2453		 * backing VM cache.
2454		 */
2455		if (bp->b_flags & B_INVAL)
2456			bp->b_flags &= ~B_CACHE;
2457		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2458			bp->b_flags |= B_CACHE;
2459		bremfree(bp);
2460
2461		/*
2462		 * check for size inconsistancies for non-VMIO case.
2463		 */
2464
2465		if (bp->b_bcount != size) {
2466			if ((bp->b_flags & B_VMIO) == 0 ||
2467			    (size > bp->b_kvasize)) {
2468				if (bp->b_flags & B_DELWRI) {
2469					/*
2470					 * If buffer is pinned and caller does
2471					 * not want sleep  waiting for it to be
2472					 * unpinned, bail out
2473					 * */
2474					if (bp->b_pin_count > 0) {
2475						if (flags & GB_LOCK_NOWAIT) {
2476							bqrelse(bp);
2477							return (NULL);
2478						} else {
2479							bunpin_wait(bp);
2480						}
2481					}
2482					bp->b_flags |= B_NOCACHE;
2483					bwrite(bp);
2484				} else {
2485					if (LIST_FIRST(&bp->b_dep) == NULL) {
2486						bp->b_flags |= B_RELBUF;
2487						brelse(bp);
2488					} else {
2489						bp->b_flags |= B_NOCACHE;
2490						bwrite(bp);
2491					}
2492				}
2493				goto loop;
2494			}
2495		}
2496
2497		/*
2498		 * If the size is inconsistant in the VMIO case, we can resize
2499		 * the buffer.  This might lead to B_CACHE getting set or
2500		 * cleared.  If the size has not changed, B_CACHE remains
2501		 * unchanged from its previous state.
2502		 */
2503
2504		if (bp->b_bcount != size)
2505			allocbuf(bp, size);
2506
2507		KASSERT(bp->b_offset != NOOFFSET,
2508		    ("getblk: no buffer offset"));
2509
2510		/*
2511		 * A buffer with B_DELWRI set and B_CACHE clear must
2512		 * be committed before we can return the buffer in
2513		 * order to prevent the caller from issuing a read
2514		 * ( due to B_CACHE not being set ) and overwriting
2515		 * it.
2516		 *
2517		 * Most callers, including NFS and FFS, need this to
2518		 * operate properly either because they assume they
2519		 * can issue a read if B_CACHE is not set, or because
2520		 * ( for example ) an uncached B_DELWRI might loop due
2521		 * to softupdates re-dirtying the buffer.  In the latter
2522		 * case, B_CACHE is set after the first write completes,
2523		 * preventing further loops.
2524		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2525		 * above while extending the buffer, we cannot allow the
2526		 * buffer to remain with B_CACHE set after the write
2527		 * completes or it will represent a corrupt state.  To
2528		 * deal with this we set B_NOCACHE to scrap the buffer
2529		 * after the write.
2530		 *
2531		 * We might be able to do something fancy, like setting
2532		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2533		 * so the below call doesn't set B_CACHE, but that gets real
2534		 * confusing.  This is much easier.
2535		 */
2536
2537		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2538			bp->b_flags |= B_NOCACHE;
2539			bwrite(bp);
2540			goto loop;
2541		}
2542		bp->b_flags &= ~B_DONE;
2543	} else {
2544		int bsize, maxsize, vmio;
2545		off_t offset;
2546
2547		/*
2548		 * Buffer is not in-core, create new buffer.  The buffer
2549		 * returned by getnewbuf() is locked.  Note that the returned
2550		 * buffer is also considered valid (not marked B_INVAL).
2551		 */
2552		VI_UNLOCK(vp);
2553		/*
2554		 * If the user does not want us to create the buffer, bail out
2555		 * here.
2556		 */
2557		if (flags & GB_NOCREAT)
2558			return NULL;
2559		bsize = bo->bo_bsize;
2560		offset = blkno * bsize;
2561		vmio = vp->v_object != NULL;
2562		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2563		maxsize = imax(maxsize, bsize);
2564
2565		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2566		if (bp == NULL) {
2567			if (slpflag || slptimeo)
2568				return NULL;
2569			goto loop;
2570		}
2571
2572		/*
2573		 * This code is used to make sure that a buffer is not
2574		 * created while the getnewbuf routine is blocked.
2575		 * This can be a problem whether the vnode is locked or not.
2576		 * If the buffer is created out from under us, we have to
2577		 * throw away the one we just created.
2578		 *
2579		 * Note: this must occur before we associate the buffer
2580		 * with the vp especially considering limitations in
2581		 * the splay tree implementation when dealing with duplicate
2582		 * lblkno's.
2583		 */
2584		BO_LOCK(bo);
2585		if (gbincore(bo, blkno)) {
2586			BO_UNLOCK(bo);
2587			bp->b_flags |= B_INVAL;
2588			brelse(bp);
2589			goto loop;
2590		}
2591
2592		/*
2593		 * Insert the buffer into the hash, so that it can
2594		 * be found by incore.
2595		 */
2596		bp->b_blkno = bp->b_lblkno = blkno;
2597		bp->b_offset = offset;
2598		bgetvp(vp, bp);
2599		BO_UNLOCK(bo);
2600
2601		/*
2602		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2603		 * buffer size starts out as 0, B_CACHE will be set by
2604		 * allocbuf() for the VMIO case prior to it testing the
2605		 * backing store for validity.
2606		 */
2607
2608		if (vmio) {
2609			bp->b_flags |= B_VMIO;
2610#if defined(VFS_BIO_DEBUG)
2611			if (vn_canvmio(vp) != TRUE)
2612				printf("getblk: VMIO on vnode type %d\n",
2613					vp->v_type);
2614#endif
2615			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2616			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2617			    bp, vp->v_object, bp->b_bufobj->bo_object));
2618		} else {
2619			bp->b_flags &= ~B_VMIO;
2620			KASSERT(bp->b_bufobj->bo_object == NULL,
2621			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2622			    bp, bp->b_bufobj->bo_object));
2623		}
2624
2625		allocbuf(bp, size);
2626		bp->b_flags &= ~B_DONE;
2627	}
2628	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2629	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2630	KASSERT(bp->b_bufobj == bo,
2631	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2632	return (bp);
2633}
2634
2635/*
2636 * Get an empty, disassociated buffer of given size.  The buffer is initially
2637 * set to B_INVAL.
2638 */
2639struct buf *
2640geteblk(int size)
2641{
2642	struct buf *bp;
2643	int maxsize;
2644
2645	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2646	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2647		continue;
2648	allocbuf(bp, size);
2649	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2650	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2651	return (bp);
2652}
2653
2654
2655/*
2656 * This code constitutes the buffer memory from either anonymous system
2657 * memory (in the case of non-VMIO operations) or from an associated
2658 * VM object (in the case of VMIO operations).  This code is able to
2659 * resize a buffer up or down.
2660 *
2661 * Note that this code is tricky, and has many complications to resolve
2662 * deadlock or inconsistant data situations.  Tread lightly!!!
2663 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2664 * the caller.  Calling this code willy nilly can result in the loss of data.
2665 *
2666 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2667 * B_CACHE for the non-VMIO case.
2668 */
2669
2670int
2671allocbuf(struct buf *bp, int size)
2672{
2673	int newbsize, mbsize;
2674	int i;
2675
2676	if (BUF_REFCNT(bp) == 0)
2677		panic("allocbuf: buffer not busy");
2678
2679	if (bp->b_kvasize < size)
2680		panic("allocbuf: buffer too small");
2681
2682	if ((bp->b_flags & B_VMIO) == 0) {
2683		caddr_t origbuf;
2684		int origbufsize;
2685		/*
2686		 * Just get anonymous memory from the kernel.  Don't
2687		 * mess with B_CACHE.
2688		 */
2689		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2690		if (bp->b_flags & B_MALLOC)
2691			newbsize = mbsize;
2692		else
2693			newbsize = round_page(size);
2694
2695		if (newbsize < bp->b_bufsize) {
2696			/*
2697			 * malloced buffers are not shrunk
2698			 */
2699			if (bp->b_flags & B_MALLOC) {
2700				if (newbsize) {
2701					bp->b_bcount = size;
2702				} else {
2703					free(bp->b_data, M_BIOBUF);
2704					if (bp->b_bufsize) {
2705						atomic_subtract_int(
2706						    &bufmallocspace,
2707						    bp->b_bufsize);
2708						bufspacewakeup();
2709						bp->b_bufsize = 0;
2710					}
2711					bp->b_saveaddr = bp->b_kvabase;
2712					bp->b_data = bp->b_saveaddr;
2713					bp->b_bcount = 0;
2714					bp->b_flags &= ~B_MALLOC;
2715				}
2716				return 1;
2717			}
2718			vm_hold_free_pages(
2719			    bp,
2720			    (vm_offset_t) bp->b_data + newbsize,
2721			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2722		} else if (newbsize > bp->b_bufsize) {
2723			/*
2724			 * We only use malloced memory on the first allocation.
2725			 * and revert to page-allocated memory when the buffer
2726			 * grows.
2727			 */
2728			/*
2729			 * There is a potential smp race here that could lead
2730			 * to bufmallocspace slightly passing the max.  It
2731			 * is probably extremely rare and not worth worrying
2732			 * over.
2733			 */
2734			if ( (bufmallocspace < maxbufmallocspace) &&
2735				(bp->b_bufsize == 0) &&
2736				(mbsize <= PAGE_SIZE/2)) {
2737
2738				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2739				bp->b_bufsize = mbsize;
2740				bp->b_bcount = size;
2741				bp->b_flags |= B_MALLOC;
2742				atomic_add_int(&bufmallocspace, mbsize);
2743				return 1;
2744			}
2745			origbuf = NULL;
2746			origbufsize = 0;
2747			/*
2748			 * If the buffer is growing on its other-than-first allocation,
2749			 * then we revert to the page-allocation scheme.
2750			 */
2751			if (bp->b_flags & B_MALLOC) {
2752				origbuf = bp->b_data;
2753				origbufsize = bp->b_bufsize;
2754				bp->b_data = bp->b_kvabase;
2755				if (bp->b_bufsize) {
2756					atomic_subtract_int(&bufmallocspace,
2757					    bp->b_bufsize);
2758					bufspacewakeup();
2759					bp->b_bufsize = 0;
2760				}
2761				bp->b_flags &= ~B_MALLOC;
2762				newbsize = round_page(newbsize);
2763			}
2764			vm_hold_load_pages(
2765			    bp,
2766			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2767			    (vm_offset_t) bp->b_data + newbsize);
2768			if (origbuf) {
2769				bcopy(origbuf, bp->b_data, origbufsize);
2770				free(origbuf, M_BIOBUF);
2771			}
2772		}
2773	} else {
2774		int desiredpages;
2775
2776		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2777		desiredpages = (size == 0) ? 0 :
2778			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2779
2780		if (bp->b_flags & B_MALLOC)
2781			panic("allocbuf: VMIO buffer can't be malloced");
2782		/*
2783		 * Set B_CACHE initially if buffer is 0 length or will become
2784		 * 0-length.
2785		 */
2786		if (size == 0 || bp->b_bufsize == 0)
2787			bp->b_flags |= B_CACHE;
2788
2789		if (newbsize < bp->b_bufsize) {
2790			/*
2791			 * DEV_BSIZE aligned new buffer size is less then the
2792			 * DEV_BSIZE aligned existing buffer size.  Figure out
2793			 * if we have to remove any pages.
2794			 */
2795			if (desiredpages < bp->b_npages) {
2796				vm_page_t m;
2797
2798				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2799				vm_page_lock_queues();
2800				for (i = desiredpages; i < bp->b_npages; i++) {
2801					/*
2802					 * the page is not freed here -- it
2803					 * is the responsibility of
2804					 * vnode_pager_setsize
2805					 */
2806					m = bp->b_pages[i];
2807					KASSERT(m != bogus_page,
2808					    ("allocbuf: bogus page found"));
2809					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2810						vm_page_lock_queues();
2811
2812					bp->b_pages[i] = NULL;
2813					vm_page_unwire(m, 0);
2814				}
2815				vm_page_unlock_queues();
2816				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2817				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2818				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2819				bp->b_npages = desiredpages;
2820			}
2821		} else if (size > bp->b_bcount) {
2822			/*
2823			 * We are growing the buffer, possibly in a
2824			 * byte-granular fashion.
2825			 */
2826			struct vnode *vp;
2827			vm_object_t obj;
2828			vm_offset_t toff;
2829			vm_offset_t tinc;
2830
2831			/*
2832			 * Step 1, bring in the VM pages from the object,
2833			 * allocating them if necessary.  We must clear
2834			 * B_CACHE if these pages are not valid for the
2835			 * range covered by the buffer.
2836			 */
2837
2838			vp = bp->b_vp;
2839			obj = bp->b_bufobj->bo_object;
2840
2841			VM_OBJECT_LOCK(obj);
2842			while (bp->b_npages < desiredpages) {
2843				vm_page_t m;
2844				vm_pindex_t pi;
2845
2846				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2847				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2848					/*
2849					 * note: must allocate system pages
2850					 * since blocking here could intefere
2851					 * with paging I/O, no matter which
2852					 * process we are.
2853					 */
2854					m = vm_page_alloc(obj, pi,
2855					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2856					    VM_ALLOC_WIRED);
2857					if (m == NULL) {
2858						atomic_add_int(&vm_pageout_deficit,
2859						    desiredpages - bp->b_npages);
2860						VM_OBJECT_UNLOCK(obj);
2861						VM_WAIT;
2862						VM_OBJECT_LOCK(obj);
2863					} else {
2864						bp->b_flags &= ~B_CACHE;
2865						bp->b_pages[bp->b_npages] = m;
2866						++bp->b_npages;
2867					}
2868					continue;
2869				}
2870
2871				/*
2872				 * We found a page.  If we have to sleep on it,
2873				 * retry because it might have gotten freed out
2874				 * from under us.
2875				 *
2876				 * We can only test PG_BUSY here.  Blocking on
2877				 * m->busy might lead to a deadlock:
2878				 *
2879				 *  vm_fault->getpages->cluster_read->allocbuf
2880				 *
2881				 */
2882				vm_page_lock_queues();
2883				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2884					continue;
2885
2886				/*
2887				 * We have a good page.  Should we wakeup the
2888				 * page daemon?
2889				 */
2890				if ((curproc != pageproc) &&
2891				    (VM_PAGE_INQUEUE1(m, PQ_CACHE)) &&
2892				    ((cnt.v_free_count + cnt.v_cache_count) <
2893			 		(cnt.v_free_min + cnt.v_cache_min))) {
2894					pagedaemon_wakeup();
2895				}
2896				vm_page_wire(m);
2897				vm_page_unlock_queues();
2898				bp->b_pages[bp->b_npages] = m;
2899				++bp->b_npages;
2900			}
2901
2902			/*
2903			 * Step 2.  We've loaded the pages into the buffer,
2904			 * we have to figure out if we can still have B_CACHE
2905			 * set.  Note that B_CACHE is set according to the
2906			 * byte-granular range ( bcount and size ), new the
2907			 * aligned range ( newbsize ).
2908			 *
2909			 * The VM test is against m->valid, which is DEV_BSIZE
2910			 * aligned.  Needless to say, the validity of the data
2911			 * needs to also be DEV_BSIZE aligned.  Note that this
2912			 * fails with NFS if the server or some other client
2913			 * extends the file's EOF.  If our buffer is resized,
2914			 * B_CACHE may remain set! XXX
2915			 */
2916
2917			toff = bp->b_bcount;
2918			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2919
2920			while ((bp->b_flags & B_CACHE) && toff < size) {
2921				vm_pindex_t pi;
2922
2923				if (tinc > (size - toff))
2924					tinc = size - toff;
2925
2926				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2927				    PAGE_SHIFT;
2928
2929				vfs_buf_test_cache(
2930				    bp,
2931				    bp->b_offset,
2932				    toff,
2933				    tinc,
2934				    bp->b_pages[pi]
2935				);
2936				toff += tinc;
2937				tinc = PAGE_SIZE;
2938			}
2939			VM_OBJECT_UNLOCK(obj);
2940
2941			/*
2942			 * Step 3, fixup the KVM pmap.  Remember that
2943			 * bp->b_data is relative to bp->b_offset, but
2944			 * bp->b_offset may be offset into the first page.
2945			 */
2946
2947			bp->b_data = (caddr_t)
2948			    trunc_page((vm_offset_t)bp->b_data);
2949			pmap_qenter(
2950			    (vm_offset_t)bp->b_data,
2951			    bp->b_pages,
2952			    bp->b_npages
2953			);
2954
2955			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2956			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2957		}
2958	}
2959	if (newbsize < bp->b_bufsize)
2960		bufspacewakeup();
2961	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2962	bp->b_bcount = size;		/* requested buffer size	*/
2963	return 1;
2964}
2965
2966void
2967biodone(struct bio *bp)
2968{
2969	void (*done)(struct bio *);
2970
2971	mtx_lock(&bdonelock);
2972	bp->bio_flags |= BIO_DONE;
2973	done = bp->bio_done;
2974	if (done == NULL)
2975		wakeup(bp);
2976	mtx_unlock(&bdonelock);
2977	if (done != NULL)
2978		done(bp);
2979}
2980
2981/*
2982 * Wait for a BIO to finish.
2983 *
2984 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2985 * case is not yet clear.
2986 */
2987int
2988biowait(struct bio *bp, const char *wchan)
2989{
2990
2991	mtx_lock(&bdonelock);
2992	while ((bp->bio_flags & BIO_DONE) == 0)
2993		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2994	mtx_unlock(&bdonelock);
2995	if (bp->bio_error != 0)
2996		return (bp->bio_error);
2997	if (!(bp->bio_flags & BIO_ERROR))
2998		return (0);
2999	return (EIO);
3000}
3001
3002void
3003biofinish(struct bio *bp, struct devstat *stat, int error)
3004{
3005
3006	if (error) {
3007		bp->bio_error = error;
3008		bp->bio_flags |= BIO_ERROR;
3009	}
3010	if (stat != NULL)
3011		devstat_end_transaction_bio(stat, bp);
3012	biodone(bp);
3013}
3014
3015/*
3016 *	bufwait:
3017 *
3018 *	Wait for buffer I/O completion, returning error status.  The buffer
3019 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3020 *	error and cleared.
3021 */
3022int
3023bufwait(struct buf *bp)
3024{
3025	if (bp->b_iocmd == BIO_READ)
3026		bwait(bp, PRIBIO, "biord");
3027	else
3028		bwait(bp, PRIBIO, "biowr");
3029	if (bp->b_flags & B_EINTR) {
3030		bp->b_flags &= ~B_EINTR;
3031		return (EINTR);
3032	}
3033	if (bp->b_ioflags & BIO_ERROR) {
3034		return (bp->b_error ? bp->b_error : EIO);
3035	} else {
3036		return (0);
3037	}
3038}
3039
3040 /*
3041  * Call back function from struct bio back up to struct buf.
3042  */
3043static void
3044bufdonebio(struct bio *bip)
3045{
3046	struct buf *bp;
3047
3048	bp = bip->bio_caller2;
3049	bp->b_resid = bp->b_bcount - bip->bio_completed;
3050	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3051	bp->b_ioflags = bip->bio_flags;
3052	bp->b_error = bip->bio_error;
3053	if (bp->b_error)
3054		bp->b_ioflags |= BIO_ERROR;
3055	bufdone(bp);
3056	g_destroy_bio(bip);
3057}
3058
3059void
3060dev_strategy(struct cdev *dev, struct buf *bp)
3061{
3062	struct cdevsw *csw;
3063	struct bio *bip;
3064
3065	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3066		panic("b_iocmd botch");
3067	for (;;) {
3068		bip = g_new_bio();
3069		if (bip != NULL)
3070			break;
3071		/* Try again later */
3072		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3073	}
3074	bip->bio_cmd = bp->b_iocmd;
3075	bip->bio_offset = bp->b_iooffset;
3076	bip->bio_length = bp->b_bcount;
3077	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3078	bip->bio_data = bp->b_data;
3079	bip->bio_done = bufdonebio;
3080	bip->bio_caller2 = bp;
3081	bip->bio_dev = dev;
3082	KASSERT(dev->si_refcount > 0,
3083	    ("dev_strategy on un-referenced struct cdev *(%s)",
3084	    devtoname(dev)));
3085	csw = dev_refthread(dev);
3086	if (csw == NULL) {
3087		g_destroy_bio(bip);
3088		bp->b_error = ENXIO;
3089		bp->b_ioflags = BIO_ERROR;
3090		bufdone(bp);
3091		return;
3092	}
3093	(*csw->d_strategy)(bip);
3094	dev_relthread(dev);
3095}
3096
3097/*
3098 *	bufdone:
3099 *
3100 *	Finish I/O on a buffer, optionally calling a completion function.
3101 *	This is usually called from an interrupt so process blocking is
3102 *	not allowed.
3103 *
3104 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3105 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3106 *	assuming B_INVAL is clear.
3107 *
3108 *	For the VMIO case, we set B_CACHE if the op was a read and no
3109 *	read error occured, or if the op was a write.  B_CACHE is never
3110 *	set if the buffer is invalid or otherwise uncacheable.
3111 *
3112 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3113 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3114 *	in the biodone routine.
3115 */
3116void
3117bufdone(struct buf *bp)
3118{
3119	struct bufobj *dropobj;
3120	void    (*biodone)(struct buf *);
3121
3122	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3123	dropobj = NULL;
3124
3125	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3126	    BUF_REFCNT(bp)));
3127	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3128
3129	runningbufwakeup(bp);
3130	if (bp->b_iocmd == BIO_WRITE)
3131		dropobj = bp->b_bufobj;
3132	/* call optional completion function if requested */
3133	if (bp->b_iodone != NULL) {
3134		biodone = bp->b_iodone;
3135		bp->b_iodone = NULL;
3136		(*biodone) (bp);
3137		if (dropobj)
3138			bufobj_wdrop(dropobj);
3139		return;
3140	}
3141
3142	bufdone_finish(bp);
3143
3144	if (dropobj)
3145		bufobj_wdrop(dropobj);
3146}
3147
3148void
3149bufdone_finish(struct buf *bp)
3150{
3151	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3152	    BUF_REFCNT(bp)));
3153
3154	if (LIST_FIRST(&bp->b_dep) != NULL)
3155		buf_complete(bp);
3156
3157	if (bp->b_flags & B_VMIO) {
3158		int i;
3159		vm_ooffset_t foff;
3160		vm_page_t m;
3161		vm_object_t obj;
3162		int iosize;
3163		struct vnode *vp = bp->b_vp;
3164
3165		obj = bp->b_bufobj->bo_object;
3166
3167#if defined(VFS_BIO_DEBUG)
3168		mp_fixme("usecount and vflag accessed without locks.");
3169		if (vp->v_usecount == 0) {
3170			panic("biodone: zero vnode ref count");
3171		}
3172
3173		KASSERT(vp->v_object != NULL,
3174			("biodone: vnode %p has no vm_object", vp));
3175#endif
3176
3177		foff = bp->b_offset;
3178		KASSERT(bp->b_offset != NOOFFSET,
3179		    ("biodone: no buffer offset"));
3180
3181		VM_OBJECT_LOCK(obj);
3182#if defined(VFS_BIO_DEBUG)
3183		if (obj->paging_in_progress < bp->b_npages) {
3184			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3185			    obj->paging_in_progress, bp->b_npages);
3186		}
3187#endif
3188
3189		/*
3190		 * Set B_CACHE if the op was a normal read and no error
3191		 * occured.  B_CACHE is set for writes in the b*write()
3192		 * routines.
3193		 */
3194		iosize = bp->b_bcount - bp->b_resid;
3195		if (bp->b_iocmd == BIO_READ &&
3196		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3197		    !(bp->b_ioflags & BIO_ERROR)) {
3198			bp->b_flags |= B_CACHE;
3199		}
3200		vm_page_lock_queues();
3201		for (i = 0; i < bp->b_npages; i++) {
3202			int bogusflag = 0;
3203			int resid;
3204
3205			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3206			if (resid > iosize)
3207				resid = iosize;
3208
3209			/*
3210			 * cleanup bogus pages, restoring the originals
3211			 */
3212			m = bp->b_pages[i];
3213			if (m == bogus_page) {
3214				bogusflag = 1;
3215				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3216				if (m == NULL)
3217					panic("biodone: page disappeared!");
3218				bp->b_pages[i] = m;
3219				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3220				    bp->b_pages, bp->b_npages);
3221			}
3222#if defined(VFS_BIO_DEBUG)
3223			if (OFF_TO_IDX(foff) != m->pindex) {
3224				printf(
3225"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3226				    (intmax_t)foff, (uintmax_t)m->pindex);
3227			}
3228#endif
3229
3230			/*
3231			 * In the write case, the valid and clean bits are
3232			 * already changed correctly ( see bdwrite() ), so we
3233			 * only need to do this here in the read case.
3234			 */
3235			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3236				vfs_page_set_valid(bp, foff, i, m);
3237			}
3238
3239			/*
3240			 * when debugging new filesystems or buffer I/O methods, this
3241			 * is the most common error that pops up.  if you see this, you
3242			 * have not set the page busy flag correctly!!!
3243			 */
3244			if (m->busy == 0) {
3245				printf("biodone: page busy < 0, "
3246				    "pindex: %d, foff: 0x(%x,%x), "
3247				    "resid: %d, index: %d\n",
3248				    (int) m->pindex, (int)(foff >> 32),
3249						(int) foff & 0xffffffff, resid, i);
3250				if (!vn_isdisk(vp, NULL))
3251					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3252					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3253					    (intmax_t) bp->b_lblkno,
3254					    bp->b_flags, bp->b_npages);
3255				else
3256					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3257					    (intmax_t) bp->b_lblkno,
3258					    bp->b_flags, bp->b_npages);
3259				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3260				    (u_long)m->valid, (u_long)m->dirty,
3261				    m->wire_count);
3262				panic("biodone: page busy < 0\n");
3263			}
3264			vm_page_io_finish(m);
3265			vm_object_pip_subtract(obj, 1);
3266			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3267			iosize -= resid;
3268		}
3269		vm_page_unlock_queues();
3270		vm_object_pip_wakeupn(obj, 0);
3271		VM_OBJECT_UNLOCK(obj);
3272	}
3273
3274	/*
3275	 * For asynchronous completions, release the buffer now. The brelse
3276	 * will do a wakeup there if necessary - so no need to do a wakeup
3277	 * here in the async case. The sync case always needs to do a wakeup.
3278	 */
3279
3280	if (bp->b_flags & B_ASYNC) {
3281		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3282			brelse(bp);
3283		else
3284			bqrelse(bp);
3285	} else
3286		bdone(bp);
3287}
3288
3289/*
3290 * This routine is called in lieu of iodone in the case of
3291 * incomplete I/O.  This keeps the busy status for pages
3292 * consistant.
3293 */
3294void
3295vfs_unbusy_pages(struct buf *bp)
3296{
3297	int i;
3298	vm_object_t obj;
3299	vm_page_t m;
3300
3301	runningbufwakeup(bp);
3302	if (!(bp->b_flags & B_VMIO))
3303		return;
3304
3305	obj = bp->b_bufobj->bo_object;
3306	VM_OBJECT_LOCK(obj);
3307	vm_page_lock_queues();
3308	for (i = 0; i < bp->b_npages; i++) {
3309		m = bp->b_pages[i];
3310		if (m == bogus_page) {
3311			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3312			if (!m)
3313				panic("vfs_unbusy_pages: page missing\n");
3314			bp->b_pages[i] = m;
3315			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3316			    bp->b_pages, bp->b_npages);
3317		}
3318		vm_object_pip_subtract(obj, 1);
3319		vm_page_io_finish(m);
3320	}
3321	vm_page_unlock_queues();
3322	vm_object_pip_wakeupn(obj, 0);
3323	VM_OBJECT_UNLOCK(obj);
3324}
3325
3326/*
3327 * vfs_page_set_valid:
3328 *
3329 *	Set the valid bits in a page based on the supplied offset.   The
3330 *	range is restricted to the buffer's size.
3331 *
3332 *	This routine is typically called after a read completes.
3333 */
3334static void
3335vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3336{
3337	vm_ooffset_t soff, eoff;
3338
3339	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3340	/*
3341	 * Start and end offsets in buffer.  eoff - soff may not cross a
3342	 * page boundry or cross the end of the buffer.  The end of the
3343	 * buffer, in this case, is our file EOF, not the allocation size
3344	 * of the buffer.
3345	 */
3346	soff = off;
3347	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3348	if (eoff > bp->b_offset + bp->b_bcount)
3349		eoff = bp->b_offset + bp->b_bcount;
3350
3351	/*
3352	 * Set valid range.  This is typically the entire buffer and thus the
3353	 * entire page.
3354	 */
3355	if (eoff > soff) {
3356		vm_page_set_validclean(
3357		    m,
3358		   (vm_offset_t) (soff & PAGE_MASK),
3359		   (vm_offset_t) (eoff - soff)
3360		);
3361	}
3362}
3363
3364/*
3365 * This routine is called before a device strategy routine.
3366 * It is used to tell the VM system that paging I/O is in
3367 * progress, and treat the pages associated with the buffer
3368 * almost as being PG_BUSY.  Also the object paging_in_progress
3369 * flag is handled to make sure that the object doesn't become
3370 * inconsistant.
3371 *
3372 * Since I/O has not been initiated yet, certain buffer flags
3373 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3374 * and should be ignored.
3375 */
3376void
3377vfs_busy_pages(struct buf *bp, int clear_modify)
3378{
3379	int i, bogus;
3380	vm_object_t obj;
3381	vm_ooffset_t foff;
3382	vm_page_t m;
3383
3384	if (!(bp->b_flags & B_VMIO))
3385		return;
3386
3387	obj = bp->b_bufobj->bo_object;
3388	foff = bp->b_offset;
3389	KASSERT(bp->b_offset != NOOFFSET,
3390	    ("vfs_busy_pages: no buffer offset"));
3391	vfs_setdirty(bp);
3392	VM_OBJECT_LOCK(obj);
3393retry:
3394	vm_page_lock_queues();
3395	for (i = 0; i < bp->b_npages; i++) {
3396		m = bp->b_pages[i];
3397
3398		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3399			goto retry;
3400	}
3401	bogus = 0;
3402	for (i = 0; i < bp->b_npages; i++) {
3403		m = bp->b_pages[i];
3404
3405		if ((bp->b_flags & B_CLUSTER) == 0) {
3406			vm_object_pip_add(obj, 1);
3407			vm_page_io_start(m);
3408		}
3409		/*
3410		 * When readying a buffer for a read ( i.e
3411		 * clear_modify == 0 ), it is important to do
3412		 * bogus_page replacement for valid pages in
3413		 * partially instantiated buffers.  Partially
3414		 * instantiated buffers can, in turn, occur when
3415		 * reconstituting a buffer from its VM backing store
3416		 * base.  We only have to do this if B_CACHE is
3417		 * clear ( which causes the I/O to occur in the
3418		 * first place ).  The replacement prevents the read
3419		 * I/O from overwriting potentially dirty VM-backed
3420		 * pages.  XXX bogus page replacement is, uh, bogus.
3421		 * It may not work properly with small-block devices.
3422		 * We need to find a better way.
3423		 */
3424		pmap_remove_all(m);
3425		if (clear_modify)
3426			vfs_page_set_valid(bp, foff, i, m);
3427		else if (m->valid == VM_PAGE_BITS_ALL &&
3428		    (bp->b_flags & B_CACHE) == 0) {
3429			bp->b_pages[i] = bogus_page;
3430			bogus++;
3431		}
3432		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3433	}
3434	vm_page_unlock_queues();
3435	VM_OBJECT_UNLOCK(obj);
3436	if (bogus)
3437		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3438		    bp->b_pages, bp->b_npages);
3439}
3440
3441/*
3442 * Tell the VM system that the pages associated with this buffer
3443 * are clean.  This is used for delayed writes where the data is
3444 * going to go to disk eventually without additional VM intevention.
3445 *
3446 * Note that while we only really need to clean through to b_bcount, we
3447 * just go ahead and clean through to b_bufsize.
3448 */
3449static void
3450vfs_clean_pages(struct buf *bp)
3451{
3452	int i;
3453	vm_ooffset_t foff, noff, eoff;
3454	vm_page_t m;
3455
3456	if (!(bp->b_flags & B_VMIO))
3457		return;
3458
3459	foff = bp->b_offset;
3460	KASSERT(bp->b_offset != NOOFFSET,
3461	    ("vfs_clean_pages: no buffer offset"));
3462	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3463	vm_page_lock_queues();
3464	for (i = 0; i < bp->b_npages; i++) {
3465		m = bp->b_pages[i];
3466		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3467		eoff = noff;
3468
3469		if (eoff > bp->b_offset + bp->b_bufsize)
3470			eoff = bp->b_offset + bp->b_bufsize;
3471		vfs_page_set_valid(bp, foff, i, m);
3472		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3473		foff = noff;
3474	}
3475	vm_page_unlock_queues();
3476	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3477}
3478
3479/*
3480 *	vfs_bio_set_validclean:
3481 *
3482 *	Set the range within the buffer to valid and clean.  The range is
3483 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3484 *	itself may be offset from the beginning of the first page.
3485 *
3486 */
3487
3488void
3489vfs_bio_set_validclean(struct buf *bp, int base, int size)
3490{
3491	int i, n;
3492	vm_page_t m;
3493
3494	if (!(bp->b_flags & B_VMIO))
3495		return;
3496	/*
3497	 * Fixup base to be relative to beginning of first page.
3498	 * Set initial n to be the maximum number of bytes in the
3499	 * first page that can be validated.
3500	 */
3501
3502	base += (bp->b_offset & PAGE_MASK);
3503	n = PAGE_SIZE - (base & PAGE_MASK);
3504
3505	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3506	vm_page_lock_queues();
3507	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3508		m = bp->b_pages[i];
3509		if (n > size)
3510			n = size;
3511		vm_page_set_validclean(m, base & PAGE_MASK, n);
3512		base += n;
3513		size -= n;
3514		n = PAGE_SIZE;
3515	}
3516	vm_page_unlock_queues();
3517	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3518}
3519
3520/*
3521 *	vfs_bio_clrbuf:
3522 *
3523 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3524 *	to clear BIO_ERROR and B_INVAL.
3525 *
3526 *	Note that while we only theoretically need to clear through b_bcount,
3527 *	we go ahead and clear through b_bufsize.
3528 */
3529
3530void
3531vfs_bio_clrbuf(struct buf *bp)
3532{
3533	int i, j, mask = 0;
3534	caddr_t sa, ea;
3535
3536	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3537		clrbuf(bp);
3538		return;
3539	}
3540
3541	bp->b_flags &= ~B_INVAL;
3542	bp->b_ioflags &= ~BIO_ERROR;
3543	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3544	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3545	    (bp->b_offset & PAGE_MASK) == 0) {
3546		if (bp->b_pages[0] == bogus_page)
3547			goto unlock;
3548		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3549		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3550		if ((bp->b_pages[0]->valid & mask) == mask)
3551			goto unlock;
3552		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3553		    ((bp->b_pages[0]->valid & mask) == 0)) {
3554			bzero(bp->b_data, bp->b_bufsize);
3555			bp->b_pages[0]->valid |= mask;
3556			goto unlock;
3557		}
3558	}
3559	ea = sa = bp->b_data;
3560	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3561		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3562		ea = (caddr_t)(vm_offset_t)ulmin(
3563		    (u_long)(vm_offset_t)ea,
3564		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3565		if (bp->b_pages[i] == bogus_page)
3566			continue;
3567		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3568		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3569		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3570		if ((bp->b_pages[i]->valid & mask) == mask)
3571			continue;
3572		if ((bp->b_pages[i]->valid & mask) == 0) {
3573			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3574				bzero(sa, ea - sa);
3575		} else {
3576			for (; sa < ea; sa += DEV_BSIZE, j++) {
3577				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3578				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3579					bzero(sa, DEV_BSIZE);
3580			}
3581		}
3582		bp->b_pages[i]->valid |= mask;
3583	}
3584unlock:
3585	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3586	bp->b_resid = 0;
3587}
3588
3589/*
3590 * vm_hold_load_pages and vm_hold_free_pages get pages into
3591 * a buffers address space.  The pages are anonymous and are
3592 * not associated with a file object.
3593 */
3594static void
3595vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3596{
3597	vm_offset_t pg;
3598	vm_page_t p;
3599	int index;
3600
3601	to = round_page(to);
3602	from = round_page(from);
3603	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3604
3605	VM_OBJECT_LOCK(kernel_object);
3606	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3607tryagain:
3608		/*
3609		 * note: must allocate system pages since blocking here
3610		 * could intefere with paging I/O, no matter which
3611		 * process we are.
3612		 */
3613		p = vm_page_alloc(kernel_object,
3614			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3615		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3616		if (!p) {
3617			atomic_add_int(&vm_pageout_deficit,
3618			    (to - pg) >> PAGE_SHIFT);
3619			VM_OBJECT_UNLOCK(kernel_object);
3620			VM_WAIT;
3621			VM_OBJECT_LOCK(kernel_object);
3622			goto tryagain;
3623		}
3624		p->valid = VM_PAGE_BITS_ALL;
3625		pmap_qenter(pg, &p, 1);
3626		bp->b_pages[index] = p;
3627	}
3628	VM_OBJECT_UNLOCK(kernel_object);
3629	bp->b_npages = index;
3630}
3631
3632/* Return pages associated with this buf to the vm system */
3633static void
3634vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3635{
3636	vm_offset_t pg;
3637	vm_page_t p;
3638	int index, newnpages;
3639
3640	from = round_page(from);
3641	to = round_page(to);
3642	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3643
3644	VM_OBJECT_LOCK(kernel_object);
3645	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3646		p = bp->b_pages[index];
3647		if (p && (index < bp->b_npages)) {
3648			if (p->busy) {
3649				printf(
3650			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3651				    (intmax_t)bp->b_blkno,
3652				    (intmax_t)bp->b_lblkno);
3653			}
3654			bp->b_pages[index] = NULL;
3655			pmap_qremove(pg, 1);
3656			vm_page_lock_queues();
3657			vm_page_unwire(p, 0);
3658			vm_page_free(p);
3659			vm_page_unlock_queues();
3660		}
3661	}
3662	VM_OBJECT_UNLOCK(kernel_object);
3663	bp->b_npages = newnpages;
3664}
3665
3666/*
3667 * Map an IO request into kernel virtual address space.
3668 *
3669 * All requests are (re)mapped into kernel VA space.
3670 * Notice that we use b_bufsize for the size of the buffer
3671 * to be mapped.  b_bcount might be modified by the driver.
3672 *
3673 * Note that even if the caller determines that the address space should
3674 * be valid, a race or a smaller-file mapped into a larger space may
3675 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3676 * check the return value.
3677 */
3678int
3679vmapbuf(struct buf *bp)
3680{
3681	caddr_t addr, kva;
3682	vm_prot_t prot;
3683	int pidx, i;
3684	struct vm_page *m;
3685	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3686
3687	if (bp->b_bufsize < 0)
3688		return (-1);
3689	prot = VM_PROT_READ;
3690	if (bp->b_iocmd == BIO_READ)
3691		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3692	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3693	     addr < bp->b_data + bp->b_bufsize;
3694	     addr += PAGE_SIZE, pidx++) {
3695		/*
3696		 * Do the vm_fault if needed; do the copy-on-write thing
3697		 * when reading stuff off device into memory.
3698		 *
3699		 * NOTE! Must use pmap_extract() because addr may be in
3700		 * the userland address space, and kextract is only guarenteed
3701		 * to work for the kernland address space (see: sparc64 port).
3702		 */
3703retry:
3704		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3705		    prot) < 0) {
3706			vm_page_lock_queues();
3707			for (i = 0; i < pidx; ++i) {
3708				vm_page_unhold(bp->b_pages[i]);
3709				bp->b_pages[i] = NULL;
3710			}
3711			vm_page_unlock_queues();
3712			return(-1);
3713		}
3714		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3715		if (m == NULL)
3716			goto retry;
3717		bp->b_pages[pidx] = m;
3718	}
3719	if (pidx > btoc(MAXPHYS))
3720		panic("vmapbuf: mapped more than MAXPHYS");
3721	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3722
3723	kva = bp->b_saveaddr;
3724	bp->b_npages = pidx;
3725	bp->b_saveaddr = bp->b_data;
3726	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3727	return(0);
3728}
3729
3730/*
3731 * Free the io map PTEs associated with this IO operation.
3732 * We also invalidate the TLB entries and restore the original b_addr.
3733 */
3734void
3735vunmapbuf(struct buf *bp)
3736{
3737	int pidx;
3738	int npages;
3739
3740	npages = bp->b_npages;
3741	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3742	vm_page_lock_queues();
3743	for (pidx = 0; pidx < npages; pidx++)
3744		vm_page_unhold(bp->b_pages[pidx]);
3745	vm_page_unlock_queues();
3746
3747	bp->b_data = bp->b_saveaddr;
3748}
3749
3750void
3751bdone(struct buf *bp)
3752{
3753
3754	mtx_lock(&bdonelock);
3755	bp->b_flags |= B_DONE;
3756	wakeup(bp);
3757	mtx_unlock(&bdonelock);
3758}
3759
3760void
3761bwait(struct buf *bp, u_char pri, const char *wchan)
3762{
3763
3764	mtx_lock(&bdonelock);
3765	while ((bp->b_flags & B_DONE) == 0)
3766		msleep(bp, &bdonelock, pri, wchan, 0);
3767	mtx_unlock(&bdonelock);
3768}
3769
3770int
3771bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3772{
3773
3774	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3775}
3776
3777void
3778bufstrategy(struct bufobj *bo, struct buf *bp)
3779{
3780	int i = 0;
3781	struct vnode *vp;
3782
3783	vp = bp->b_vp;
3784	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3785	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3786	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3787	i = VOP_STRATEGY(vp, bp);
3788	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3789}
3790
3791void
3792bufobj_wrefl(struct bufobj *bo)
3793{
3794
3795	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3796	ASSERT_BO_LOCKED(bo);
3797	bo->bo_numoutput++;
3798}
3799
3800void
3801bufobj_wref(struct bufobj *bo)
3802{
3803
3804	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3805	BO_LOCK(bo);
3806	bo->bo_numoutput++;
3807	BO_UNLOCK(bo);
3808}
3809
3810void
3811bufobj_wdrop(struct bufobj *bo)
3812{
3813
3814	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3815	BO_LOCK(bo);
3816	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3817	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3818		bo->bo_flag &= ~BO_WWAIT;
3819		wakeup(&bo->bo_numoutput);
3820	}
3821	BO_UNLOCK(bo);
3822}
3823
3824int
3825bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3826{
3827	int error;
3828
3829	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3830	ASSERT_BO_LOCKED(bo);
3831	error = 0;
3832	while (bo->bo_numoutput) {
3833		bo->bo_flag |= BO_WWAIT;
3834		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3835		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3836		if (error)
3837			break;
3838	}
3839	return (error);
3840}
3841
3842void
3843bpin(struct buf *bp)
3844{
3845	mtx_lock(&bpinlock);
3846	bp->b_pin_count++;
3847	mtx_unlock(&bpinlock);
3848}
3849
3850void
3851bunpin(struct buf *bp)
3852{
3853	mtx_lock(&bpinlock);
3854	if (--bp->b_pin_count == 0)
3855		wakeup(bp);
3856	mtx_unlock(&bpinlock);
3857}
3858
3859void
3860bunpin_wait(struct buf *bp)
3861{
3862	mtx_lock(&bpinlock);
3863	while (bp->b_pin_count > 0)
3864		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3865	mtx_unlock(&bpinlock);
3866}
3867
3868#include "opt_ddb.h"
3869#ifdef DDB
3870#include <ddb/ddb.h>
3871
3872/* DDB command to show buffer data */
3873DB_SHOW_COMMAND(buffer, db_show_buffer)
3874{
3875	/* get args */
3876	struct buf *bp = (struct buf *)addr;
3877
3878	if (!have_addr) {
3879		db_printf("usage: show buffer <addr>\n");
3880		return;
3881	}
3882
3883	db_printf("buf at %p\n", bp);
3884	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3885	db_printf(
3886	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3887	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3888	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3889	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3890	if (bp->b_npages) {
3891		int i;
3892		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3893		for (i = 0; i < bp->b_npages; i++) {
3894			vm_page_t m;
3895			m = bp->b_pages[i];
3896			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3897			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3898			if ((i + 1) < bp->b_npages)
3899				db_printf(",");
3900		}
3901		db_printf("\n");
3902	}
3903	lockmgr_printinfo(&bp->b_lock);
3904}
3905
3906DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3907{
3908	struct buf *bp;
3909	int i;
3910
3911	for (i = 0; i < nbuf; i++) {
3912		bp = &buf[i];
3913		if (lockcount(&bp->b_lock)) {
3914			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3915			db_printf("\n");
3916		}
3917	}
3918}
3919#endif /* DDB */
3920