vfs_bio.c revision 156980
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 156980 2006-03-22 00:42:41Z pjd $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82	.bop_sync	=	bufsync,
83};
84
85/*
86 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
87 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
88 */
89struct buf *buf;		/* buffer header pool */
90
91static struct proc *bufdaemonproc;
92
93static int inmem(struct vnode *vp, daddr_t blkno);
94static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
95		vm_offset_t to);
96static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
99			       int pageno, vm_page_t m);
100static void vfs_clean_pages(struct buf *bp);
101static void vfs_setdirty(struct buf *bp);
102static void vfs_vmio_release(struct buf *bp);
103static int vfs_bio_clcheck(struct vnode *vp, int size,
104		daddr_t lblkno, daddr_t blkno);
105static int flushbufqueues(int flushdeps);
106static void buf_daemon(void);
107static void bremfreel(struct buf *bp);
108
109int vmiodirenable = TRUE;
110SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
111    "Use the VM system for directory writes");
112int runningbufspace;
113SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
114    "Amount of presently outstanding async buffer io");
115static int bufspace;
116SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
117    "KVA memory used for bufs");
118static int maxbufspace;
119SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
120    "Maximum allowed value of bufspace (including buf_daemon)");
121static int bufmallocspace;
122SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
123    "Amount of malloced memory for buffers");
124static int maxbufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
126    "Maximum amount of malloced memory for buffers");
127static int lobufspace;
128SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
129    "Minimum amount of buffers we want to have");
130int hibufspace;
131SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
132    "Maximum allowed value of bufspace (excluding buf_daemon)");
133static int bufreusecnt;
134SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
135    "Number of times we have reused a buffer");
136static int buffreekvacnt;
137SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
138    "Number of times we have freed the KVA space from some buffer");
139static int bufdefragcnt;
140SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
141    "Number of times we have had to repeat buffer allocation to defragment");
142static int lorunningspace;
143SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
144    "Minimum preferred space used for in-progress I/O");
145static int hirunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
147    "Maximum amount of space to use for in-progress I/O");
148static int dirtybufferflushes;
149SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
150    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
151static int altbufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
153    0, "Number of fsync flushes to limit dirty buffers");
154static int recursiveflushes;
155SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
156    0, "Number of flushes skipped due to being recursive");
157static int numdirtybuffers;
158SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
159    "Number of buffers that are dirty (has unwritten changes) at the moment");
160static int lodirtybuffers;
161SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
162    "How many buffers we want to have free before bufdaemon can sleep");
163static int hidirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
165    "When the number of dirty buffers is considered severe");
166static int dirtybufthresh;
167SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
168    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
169static int numfreebuffers;
170SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
171    "Number of free buffers");
172static int lofreebuffers;
173SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
174   "XXX Unused");
175static int hifreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
177   "XXX Complicatedly unused");
178static int getnewbufcalls;
179SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
180   "Number of calls to getnewbuf");
181static int getnewbufrestarts;
182SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
183    "Number of times getnewbuf has had to restart a buffer aquisition");
184
185/*
186 * Wakeup point for bufdaemon, as well as indicator of whether it is already
187 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
188 * is idling.
189 */
190static int bd_request;
191
192/*
193 * This lock synchronizes access to bd_request.
194 */
195static struct mtx bdlock;
196
197/*
198 * bogus page -- for I/O to/from partially complete buffers
199 * this is a temporary solution to the problem, but it is not
200 * really that bad.  it would be better to split the buffer
201 * for input in the case of buffers partially already in memory,
202 * but the code is intricate enough already.
203 */
204vm_page_t bogus_page;
205
206/*
207 * Synchronization (sleep/wakeup) variable for active buffer space requests.
208 * Set when wait starts, cleared prior to wakeup().
209 * Used in runningbufwakeup() and waitrunningbufspace().
210 */
211static int runningbufreq;
212
213/*
214 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
215 * waitrunningbufspace().
216 */
217static struct mtx rbreqlock;
218
219/*
220 * Synchronization (sleep/wakeup) variable for buffer requests.
221 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
222 * by and/or.
223 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
224 * getnewbuf(), and getblk().
225 */
226static int needsbuffer;
227
228/*
229 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
230 */
231static struct mtx nblock;
232
233/*
234 * Lock that protects against bwait()/bdone()/B_DONE races.
235 */
236
237static struct mtx bdonelock;
238
239/*
240 * Lock that protects against bwait()/bdone()/B_DONE races.
241 */
242static struct mtx bpinlock;
243
244/*
245 * Definitions for the buffer free lists.
246 */
247#define BUFFER_QUEUES	5	/* number of free buffer queues */
248
249#define QUEUE_NONE	0	/* on no queue */
250#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
251#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
252#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
253#define QUEUE_EMPTY	4	/* empty buffer headers */
254
255/* Queues for free buffers with various properties */
256static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
257
258/* Lock for the bufqueues */
259static struct mtx bqlock;
260
261/*
262 * Single global constant for BUF_WMESG, to avoid getting multiple references.
263 * buf_wmesg is referred from macros.
264 */
265const char *buf_wmesg = BUF_WMESG;
266
267#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
268#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
269#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
270#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
271
272#ifdef DIRECTIO
273extern void ffs_rawread_setup(void);
274#endif /* DIRECTIO */
275/*
276 *	numdirtywakeup:
277 *
278 *	If someone is blocked due to there being too many dirty buffers,
279 *	and numdirtybuffers is now reasonable, wake them up.
280 */
281
282static __inline void
283numdirtywakeup(int level)
284{
285
286	if (numdirtybuffers <= level) {
287		mtx_lock(&nblock);
288		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
289			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
290			wakeup(&needsbuffer);
291		}
292		mtx_unlock(&nblock);
293	}
294}
295
296/*
297 *	bufspacewakeup:
298 *
299 *	Called when buffer space is potentially available for recovery.
300 *	getnewbuf() will block on this flag when it is unable to free
301 *	sufficient buffer space.  Buffer space becomes recoverable when
302 *	bp's get placed back in the queues.
303 */
304
305static __inline void
306bufspacewakeup(void)
307{
308
309	/*
310	 * If someone is waiting for BUF space, wake them up.  Even
311	 * though we haven't freed the kva space yet, the waiting
312	 * process will be able to now.
313	 */
314	mtx_lock(&nblock);
315	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
316		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
317		wakeup(&needsbuffer);
318	}
319	mtx_unlock(&nblock);
320}
321
322/*
323 * runningbufwakeup() - in-progress I/O accounting.
324 *
325 */
326void
327runningbufwakeup(struct buf *bp)
328{
329
330	if (bp->b_runningbufspace) {
331		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
332		bp->b_runningbufspace = 0;
333		mtx_lock(&rbreqlock);
334		if (runningbufreq && runningbufspace <= lorunningspace) {
335			runningbufreq = 0;
336			wakeup(&runningbufreq);
337		}
338		mtx_unlock(&rbreqlock);
339	}
340}
341
342/*
343 *	bufcountwakeup:
344 *
345 *	Called when a buffer has been added to one of the free queues to
346 *	account for the buffer and to wakeup anyone waiting for free buffers.
347 *	This typically occurs when large amounts of metadata are being handled
348 *	by the buffer cache ( else buffer space runs out first, usually ).
349 */
350
351static __inline void
352bufcountwakeup(void)
353{
354
355	atomic_add_int(&numfreebuffers, 1);
356	mtx_lock(&nblock);
357	if (needsbuffer) {
358		needsbuffer &= ~VFS_BIO_NEED_ANY;
359		if (numfreebuffers >= hifreebuffers)
360			needsbuffer &= ~VFS_BIO_NEED_FREE;
361		wakeup(&needsbuffer);
362	}
363	mtx_unlock(&nblock);
364}
365
366/*
367 *	waitrunningbufspace()
368 *
369 *	runningbufspace is a measure of the amount of I/O currently
370 *	running.  This routine is used in async-write situations to
371 *	prevent creating huge backups of pending writes to a device.
372 *	Only asynchronous writes are governed by this function.
373 *
374 *	Reads will adjust runningbufspace, but will not block based on it.
375 *	The read load has a side effect of reducing the allowed write load.
376 *
377 *	This does NOT turn an async write into a sync write.  It waits
378 *	for earlier writes to complete and generally returns before the
379 *	caller's write has reached the device.
380 */
381void
382waitrunningbufspace(void)
383{
384
385	mtx_lock(&rbreqlock);
386	while (runningbufspace > hirunningspace) {
387		++runningbufreq;
388		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
389	}
390	mtx_unlock(&rbreqlock);
391}
392
393
394/*
395 *	vfs_buf_test_cache:
396 *
397 *	Called when a buffer is extended.  This function clears the B_CACHE
398 *	bit if the newly extended portion of the buffer does not contain
399 *	valid data.
400 */
401static __inline
402void
403vfs_buf_test_cache(struct buf *bp,
404		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
405		  vm_page_t m)
406{
407
408	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
409	if (bp->b_flags & B_CACHE) {
410		int base = (foff + off) & PAGE_MASK;
411		if (vm_page_is_valid(m, base, size) == 0)
412			bp->b_flags &= ~B_CACHE;
413	}
414}
415
416/* Wake up the buffer deamon if necessary */
417static __inline
418void
419bd_wakeup(int dirtybuflevel)
420{
421
422	mtx_lock(&bdlock);
423	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
424		bd_request = 1;
425		wakeup(&bd_request);
426	}
427	mtx_unlock(&bdlock);
428}
429
430/*
431 * bd_speedup - speedup the buffer cache flushing code
432 */
433
434static __inline
435void
436bd_speedup(void)
437{
438
439	bd_wakeup(1);
440}
441
442/*
443 * Calculating buffer cache scaling values and reserve space for buffer
444 * headers.  This is called during low level kernel initialization and
445 * may be called more then once.  We CANNOT write to the memory area
446 * being reserved at this time.
447 */
448caddr_t
449kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
450{
451
452	/*
453	 * physmem_est is in pages.  Convert it to kilobytes (assumes
454	 * PAGE_SIZE is >= 1K)
455	 */
456	physmem_est = physmem_est * (PAGE_SIZE / 1024);
457
458	/*
459	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
460	 * For the first 64MB of ram nominally allocate sufficient buffers to
461	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
462	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
463	 * the buffer cache we limit the eventual kva reservation to
464	 * maxbcache bytes.
465	 *
466	 * factor represents the 1/4 x ram conversion.
467	 */
468	if (nbuf == 0) {
469		int factor = 4 * BKVASIZE / 1024;
470
471		nbuf = 50;
472		if (physmem_est > 4096)
473			nbuf += min((physmem_est - 4096) / factor,
474			    65536 / factor);
475		if (physmem_est > 65536)
476			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
477
478		if (maxbcache && nbuf > maxbcache / BKVASIZE)
479			nbuf = maxbcache / BKVASIZE;
480	}
481
482#if 0
483	/*
484	 * Do not allow the buffer_map to be more then 1/2 the size of the
485	 * kernel_map.
486	 */
487	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
488	    (BKVASIZE * 2)) {
489		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
490		    (BKVASIZE * 2);
491		printf("Warning: nbufs capped at %d\n", nbuf);
492	}
493#endif
494
495	/*
496	 * swbufs are used as temporary holders for I/O, such as paging I/O.
497	 * We have no less then 16 and no more then 256.
498	 */
499	nswbuf = max(min(nbuf/4, 256), 16);
500#ifdef NSWBUF_MIN
501	if (nswbuf < NSWBUF_MIN)
502		nswbuf = NSWBUF_MIN;
503#endif
504#ifdef DIRECTIO
505	ffs_rawread_setup();
506#endif
507
508	/*
509	 * Reserve space for the buffer cache buffers
510	 */
511	swbuf = (void *)v;
512	v = (caddr_t)(swbuf + nswbuf);
513	buf = (void *)v;
514	v = (caddr_t)(buf + nbuf);
515
516	return(v);
517}
518
519/* Initialize the buffer subsystem.  Called before use of any buffers. */
520void
521bufinit(void)
522{
523	struct buf *bp;
524	int i;
525
526	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
527	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
528	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
529	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
530	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
531	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
532
533	/* next, make a null set of free lists */
534	for (i = 0; i < BUFFER_QUEUES; i++)
535		TAILQ_INIT(&bufqueues[i]);
536
537	/* finally, initialize each buffer header and stick on empty q */
538	for (i = 0; i < nbuf; i++) {
539		bp = &buf[i];
540		bzero(bp, sizeof *bp);
541		bp->b_flags = B_INVAL;	/* we're just an empty header */
542		bp->b_rcred = NOCRED;
543		bp->b_wcred = NOCRED;
544		bp->b_qindex = QUEUE_EMPTY;
545		bp->b_vflags = 0;
546		bp->b_xflags = 0;
547		LIST_INIT(&bp->b_dep);
548		BUF_LOCKINIT(bp);
549		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
550	}
551
552	/*
553	 * maxbufspace is the absolute maximum amount of buffer space we are
554	 * allowed to reserve in KVM and in real terms.  The absolute maximum
555	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
556	 * used by most other processes.  The differential is required to
557	 * ensure that buf_daemon is able to run when other processes might
558	 * be blocked waiting for buffer space.
559	 *
560	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
561	 * this may result in KVM fragmentation which is not handled optimally
562	 * by the system.
563	 */
564	maxbufspace = nbuf * BKVASIZE;
565	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
566	lobufspace = hibufspace - MAXBSIZE;
567
568	lorunningspace = 512 * 1024;
569	hirunningspace = 1024 * 1024;
570
571/*
572 * Limit the amount of malloc memory since it is wired permanently into
573 * the kernel space.  Even though this is accounted for in the buffer
574 * allocation, we don't want the malloced region to grow uncontrolled.
575 * The malloc scheme improves memory utilization significantly on average
576 * (small) directories.
577 */
578	maxbufmallocspace = hibufspace / 20;
579
580/*
581 * Reduce the chance of a deadlock occuring by limiting the number
582 * of delayed-write dirty buffers we allow to stack up.
583 */
584	hidirtybuffers = nbuf / 4 + 20;
585	dirtybufthresh = hidirtybuffers * 9 / 10;
586	numdirtybuffers = 0;
587/*
588 * To support extreme low-memory systems, make sure hidirtybuffers cannot
589 * eat up all available buffer space.  This occurs when our minimum cannot
590 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
591 * BKVASIZE'd (8K) buffers.
592 */
593	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
594		hidirtybuffers >>= 1;
595	}
596	lodirtybuffers = hidirtybuffers / 2;
597
598/*
599 * Try to keep the number of free buffers in the specified range,
600 * and give special processes (e.g. like buf_daemon) access to an
601 * emergency reserve.
602 */
603	lofreebuffers = nbuf / 18 + 5;
604	hifreebuffers = 2 * lofreebuffers;
605	numfreebuffers = nbuf;
606
607/*
608 * Maximum number of async ops initiated per buf_daemon loop.  This is
609 * somewhat of a hack at the moment, we really need to limit ourselves
610 * based on the number of bytes of I/O in-transit that were initiated
611 * from buf_daemon.
612 */
613
614	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
615	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
616}
617
618/*
619 * bfreekva() - free the kva allocation for a buffer.
620 *
621 *	Since this call frees up buffer space, we call bufspacewakeup().
622 */
623static void
624bfreekva(struct buf *bp)
625{
626
627	if (bp->b_kvasize) {
628		atomic_add_int(&buffreekvacnt, 1);
629		atomic_subtract_int(&bufspace, bp->b_kvasize);
630		vm_map_lock(buffer_map);
631		vm_map_delete(buffer_map,
632		    (vm_offset_t) bp->b_kvabase,
633		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
634		);
635		vm_map_unlock(buffer_map);
636		bp->b_kvasize = 0;
637		bufspacewakeup();
638	}
639}
640
641/*
642 *	bremfree:
643 *
644 *	Mark the buffer for removal from the appropriate free list in brelse.
645 *
646 */
647void
648bremfree(struct buf *bp)
649{
650
651	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
652	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
653	KASSERT((bp->b_flags & B_REMFREE) == 0,
654	    ("bremfree: buffer %p already marked for delayed removal.", bp));
655	KASSERT(bp->b_qindex != QUEUE_NONE,
656	    ("bremfree: buffer %p not on a queue.", bp));
657
658	bp->b_flags |= B_REMFREE;
659	/* Fixup numfreebuffers count.  */
660	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
661		atomic_subtract_int(&numfreebuffers, 1);
662}
663
664/*
665 *	bremfreef:
666 *
667 *	Force an immediate removal from a free list.  Used only in nfs when
668 *	it abuses the b_freelist pointer.
669 */
670void
671bremfreef(struct buf *bp)
672{
673	mtx_lock(&bqlock);
674	bremfreel(bp);
675	mtx_unlock(&bqlock);
676}
677
678/*
679 *	bremfreel:
680 *
681 *	Removes a buffer from the free list, must be called with the
682 *	bqlock held.
683 */
684static void
685bremfreel(struct buf *bp)
686{
687	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
688	    bp, bp->b_vp, bp->b_flags);
689	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
690	KASSERT(bp->b_qindex != QUEUE_NONE,
691	    ("bremfreel: buffer %p not on a queue.", bp));
692	mtx_assert(&bqlock, MA_OWNED);
693
694	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
695	bp->b_qindex = QUEUE_NONE;
696	/*
697	 * If this was a delayed bremfree() we only need to remove the buffer
698	 * from the queue and return the stats are already done.
699	 */
700	if (bp->b_flags & B_REMFREE) {
701		bp->b_flags &= ~B_REMFREE;
702		return;
703	}
704	/*
705	 * Fixup numfreebuffers count.  If the buffer is invalid or not
706	 * delayed-write, the buffer was free and we must decrement
707	 * numfreebuffers.
708	 */
709	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
710		atomic_subtract_int(&numfreebuffers, 1);
711}
712
713
714/*
715 * Get a buffer with the specified data.  Look in the cache first.  We
716 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
717 * is set, the buffer is valid and we do not have to do anything ( see
718 * getblk() ).  This is really just a special case of breadn().
719 */
720int
721bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
722    struct buf **bpp)
723{
724
725	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
726}
727
728/*
729 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
730 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
731 * the buffer is valid and we do not have to do anything.
732 */
733void
734breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
735    int cnt, struct ucred * cred)
736{
737	struct buf *rabp;
738	int i;
739
740	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
741		if (inmem(vp, *rablkno))
742			continue;
743		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
744
745		if ((rabp->b_flags & B_CACHE) == 0) {
746			if (curthread != PCPU_GET(idlethread))
747				curthread->td_proc->p_stats->p_ru.ru_inblock++;
748			rabp->b_flags |= B_ASYNC;
749			rabp->b_flags &= ~B_INVAL;
750			rabp->b_ioflags &= ~BIO_ERROR;
751			rabp->b_iocmd = BIO_READ;
752			if (rabp->b_rcred == NOCRED && cred != NOCRED)
753				rabp->b_rcred = crhold(cred);
754			vfs_busy_pages(rabp, 0);
755			BUF_KERNPROC(rabp);
756			rabp->b_iooffset = dbtob(rabp->b_blkno);
757			bstrategy(rabp);
758		} else {
759			brelse(rabp);
760		}
761	}
762}
763
764/*
765 * Operates like bread, but also starts asynchronous I/O on
766 * read-ahead blocks.
767 */
768int
769breadn(struct vnode * vp, daddr_t blkno, int size,
770    daddr_t * rablkno, int *rabsize,
771    int cnt, struct ucred * cred, struct buf **bpp)
772{
773	struct buf *bp;
774	int rv = 0, readwait = 0;
775
776	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
777	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
778
779	/* if not found in cache, do some I/O */
780	if ((bp->b_flags & B_CACHE) == 0) {
781		if (curthread != PCPU_GET(idlethread))
782			curthread->td_proc->p_stats->p_ru.ru_inblock++;
783		bp->b_iocmd = BIO_READ;
784		bp->b_flags &= ~B_INVAL;
785		bp->b_ioflags &= ~BIO_ERROR;
786		if (bp->b_rcred == NOCRED && cred != NOCRED)
787			bp->b_rcred = crhold(cred);
788		vfs_busy_pages(bp, 0);
789		bp->b_iooffset = dbtob(bp->b_blkno);
790		bstrategy(bp);
791		++readwait;
792	}
793
794	breada(vp, rablkno, rabsize, cnt, cred);
795
796	if (readwait) {
797		rv = bufwait(bp);
798	}
799	return (rv);
800}
801
802/*
803 * Write, release buffer on completion.  (Done by iodone
804 * if async).  Do not bother writing anything if the buffer
805 * is invalid.
806 *
807 * Note that we set B_CACHE here, indicating that buffer is
808 * fully valid and thus cacheable.  This is true even of NFS
809 * now so we set it generally.  This could be set either here
810 * or in biodone() since the I/O is synchronous.  We put it
811 * here.
812 */
813int
814bufwrite(struct buf *bp)
815{
816	int oldflags;
817
818	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
819	if (bp->b_flags & B_INVAL) {
820		brelse(bp);
821		return (0);
822	}
823
824	oldflags = bp->b_flags;
825
826	if (BUF_REFCNT(bp) == 0)
827		panic("bufwrite: buffer is not busy???");
828
829	if (bp->b_pin_count > 0)
830		bunpin_wait(bp);
831
832	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
833	    ("FFS background buffer should not get here %p", bp));
834
835	/* Mark the buffer clean */
836	bundirty(bp);
837
838	bp->b_flags &= ~B_DONE;
839	bp->b_ioflags &= ~BIO_ERROR;
840	bp->b_flags |= B_CACHE;
841	bp->b_iocmd = BIO_WRITE;
842
843	bufobj_wref(bp->b_bufobj);
844	vfs_busy_pages(bp, 1);
845
846	/*
847	 * Normal bwrites pipeline writes
848	 */
849	bp->b_runningbufspace = bp->b_bufsize;
850	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
851
852	if (curthread != PCPU_GET(idlethread))
853		curthread->td_proc->p_stats->p_ru.ru_oublock++;
854	if (oldflags & B_ASYNC)
855		BUF_KERNPROC(bp);
856	bp->b_iooffset = dbtob(bp->b_blkno);
857	bstrategy(bp);
858
859	if ((oldflags & B_ASYNC) == 0) {
860		int rtval = bufwait(bp);
861		brelse(bp);
862		return (rtval);
863	} else {
864		/*
865		 * don't allow the async write to saturate the I/O
866		 * system.  We will not deadlock here because
867		 * we are blocking waiting for I/O that is already in-progress
868		 * to complete. We do not block here if it is the update
869		 * or syncer daemon trying to clean up as that can lead
870		 * to deadlock.
871		 */
872		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0)
873			waitrunningbufspace();
874	}
875
876	return (0);
877}
878
879/*
880 * Delayed write. (Buffer is marked dirty).  Do not bother writing
881 * anything if the buffer is marked invalid.
882 *
883 * Note that since the buffer must be completely valid, we can safely
884 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
885 * biodone() in order to prevent getblk from writing the buffer
886 * out synchronously.
887 */
888void
889bdwrite(struct buf *bp)
890{
891	struct thread *td = curthread;
892	struct vnode *vp;
893	struct buf *nbp;
894	struct bufobj *bo;
895
896	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
897	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
898	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
899
900	if (bp->b_flags & B_INVAL) {
901		brelse(bp);
902		return;
903	}
904
905	/*
906	 * If we have too many dirty buffers, don't create any more.
907	 * If we are wildly over our limit, then force a complete
908	 * cleanup. Otherwise, just keep the situation from getting
909	 * out of control. Note that we have to avoid a recursive
910	 * disaster and not try to clean up after our own cleanup!
911	 */
912	vp = bp->b_vp;
913	bo = bp->b_bufobj;
914	if ((td->td_pflags & TDP_COWINPROGRESS) == 0) {
915		BO_LOCK(bo);
916		if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
917			BO_UNLOCK(bo);
918			(void) VOP_FSYNC(vp, MNT_NOWAIT, td);
919			altbufferflushes++;
920		} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
921			/*
922			 * Try to find a buffer to flush.
923			 */
924			TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
925				if ((nbp->b_vflags & BV_BKGRDINPROG) ||
926				    BUF_LOCK(nbp,
927				    LK_EXCLUSIVE | LK_NOWAIT, NULL))
928					continue;
929				if (bp == nbp)
930					panic("bdwrite: found ourselves");
931				BO_UNLOCK(bo);
932				/* Don't countdeps with the bo lock held. */
933				if (buf_countdeps(nbp, 0)) {
934					BO_LOCK(bo);
935					BUF_UNLOCK(nbp);
936					continue;
937				}
938				if (nbp->b_flags & B_CLUSTEROK) {
939					vfs_bio_awrite(nbp);
940				} else {
941					bremfree(nbp);
942					bawrite(nbp);
943				}
944				dirtybufferflushes++;
945				break;
946			}
947			if (nbp == NULL)
948				BO_UNLOCK(bo);
949		} else
950			BO_UNLOCK(bo);
951	} else
952		recursiveflushes++;
953
954	bdirty(bp);
955	/*
956	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
957	 * true even of NFS now.
958	 */
959	bp->b_flags |= B_CACHE;
960
961	/*
962	 * This bmap keeps the system from needing to do the bmap later,
963	 * perhaps when the system is attempting to do a sync.  Since it
964	 * is likely that the indirect block -- or whatever other datastructure
965	 * that the filesystem needs is still in memory now, it is a good
966	 * thing to do this.  Note also, that if the pageout daemon is
967	 * requesting a sync -- there might not be enough memory to do
968	 * the bmap then...  So, this is important to do.
969	 */
970	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
971		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
972	}
973
974	/*
975	 * Set the *dirty* buffer range based upon the VM system dirty pages.
976	 */
977	vfs_setdirty(bp);
978
979	/*
980	 * We need to do this here to satisfy the vnode_pager and the
981	 * pageout daemon, so that it thinks that the pages have been
982	 * "cleaned".  Note that since the pages are in a delayed write
983	 * buffer -- the VFS layer "will" see that the pages get written
984	 * out on the next sync, or perhaps the cluster will be completed.
985	 */
986	vfs_clean_pages(bp);
987	bqrelse(bp);
988
989	/*
990	 * Wakeup the buffer flushing daemon if we have a lot of dirty
991	 * buffers (midpoint between our recovery point and our stall
992	 * point).
993	 */
994	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
995
996	/*
997	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
998	 * due to the softdep code.
999	 */
1000}
1001
1002/*
1003 *	bdirty:
1004 *
1005 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1006 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1007 *	itself to properly update it in the dirty/clean lists.  We mark it
1008 *	B_DONE to ensure that any asynchronization of the buffer properly
1009 *	clears B_DONE ( else a panic will occur later ).
1010 *
1011 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1012 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1013 *	should only be called if the buffer is known-good.
1014 *
1015 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1016 *	count.
1017 *
1018 *	The buffer must be on QUEUE_NONE.
1019 */
1020void
1021bdirty(struct buf *bp)
1022{
1023
1024	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1025	    bp, bp->b_vp, bp->b_flags);
1026	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1027	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1028	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1029	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1030	bp->b_flags &= ~(B_RELBUF);
1031	bp->b_iocmd = BIO_WRITE;
1032
1033	if ((bp->b_flags & B_DELWRI) == 0) {
1034		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1035		reassignbuf(bp);
1036		atomic_add_int(&numdirtybuffers, 1);
1037		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1038	}
1039}
1040
1041/*
1042 *	bundirty:
1043 *
1044 *	Clear B_DELWRI for buffer.
1045 *
1046 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1047 *	count.
1048 *
1049 *	The buffer must be on QUEUE_NONE.
1050 */
1051
1052void
1053bundirty(struct buf *bp)
1054{
1055
1056	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1057	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1058	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1059	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1060	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1061
1062	if (bp->b_flags & B_DELWRI) {
1063		bp->b_flags &= ~B_DELWRI;
1064		reassignbuf(bp);
1065		atomic_subtract_int(&numdirtybuffers, 1);
1066		numdirtywakeup(lodirtybuffers);
1067	}
1068	/*
1069	 * Since it is now being written, we can clear its deferred write flag.
1070	 */
1071	bp->b_flags &= ~B_DEFERRED;
1072}
1073
1074/*
1075 *	bawrite:
1076 *
1077 *	Asynchronous write.  Start output on a buffer, but do not wait for
1078 *	it to complete.  The buffer is released when the output completes.
1079 *
1080 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1081 *	B_INVAL buffers.  Not us.
1082 */
1083void
1084bawrite(struct buf *bp)
1085{
1086
1087	bp->b_flags |= B_ASYNC;
1088	(void) bwrite(bp);
1089}
1090
1091/*
1092 *	bwillwrite:
1093 *
1094 *	Called prior to the locking of any vnodes when we are expecting to
1095 *	write.  We do not want to starve the buffer cache with too many
1096 *	dirty buffers so we block here.  By blocking prior to the locking
1097 *	of any vnodes we attempt to avoid the situation where a locked vnode
1098 *	prevents the various system daemons from flushing related buffers.
1099 */
1100
1101void
1102bwillwrite(void)
1103{
1104
1105	if (numdirtybuffers >= hidirtybuffers) {
1106		mtx_lock(&nblock);
1107		while (numdirtybuffers >= hidirtybuffers) {
1108			bd_wakeup(1);
1109			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1110			msleep(&needsbuffer, &nblock,
1111			    (PRIBIO + 4), "flswai", 0);
1112		}
1113		mtx_unlock(&nblock);
1114	}
1115}
1116
1117/*
1118 * Return true if we have too many dirty buffers.
1119 */
1120int
1121buf_dirty_count_severe(void)
1122{
1123
1124	return(numdirtybuffers >= hidirtybuffers);
1125}
1126
1127/*
1128 *	brelse:
1129 *
1130 *	Release a busy buffer and, if requested, free its resources.  The
1131 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1132 *	to be accessed later as a cache entity or reused for other purposes.
1133 */
1134void
1135brelse(struct buf *bp)
1136{
1137	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1138	    bp, bp->b_vp, bp->b_flags);
1139	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1140	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1141
1142	if (bp->b_flags & B_MANAGED) {
1143		bqrelse(bp);
1144		return;
1145	}
1146
1147	if (bp->b_iocmd == BIO_WRITE &&
1148	    (bp->b_ioflags & BIO_ERROR) &&
1149	    !(bp->b_flags & B_INVAL)) {
1150		/*
1151		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1152		 * pages from being scrapped.  If B_INVAL is set then
1153		 * this case is not run and the next case is run to
1154		 * destroy the buffer.  B_INVAL can occur if the buffer
1155		 * is outside the range supported by the underlying device.
1156		 */
1157		bp->b_ioflags &= ~BIO_ERROR;
1158		bdirty(bp);
1159	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1160	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1161		/*
1162		 * Either a failed I/O or we were asked to free or not
1163		 * cache the buffer.
1164		 */
1165		bp->b_flags |= B_INVAL;
1166		if (LIST_FIRST(&bp->b_dep) != NULL)
1167			buf_deallocate(bp);
1168		if (bp->b_flags & B_DELWRI) {
1169			atomic_subtract_int(&numdirtybuffers, 1);
1170			numdirtywakeup(lodirtybuffers);
1171		}
1172		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1173		if ((bp->b_flags & B_VMIO) == 0) {
1174			if (bp->b_bufsize)
1175				allocbuf(bp, 0);
1176			if (bp->b_vp)
1177				brelvp(bp);
1178		}
1179	}
1180
1181	/*
1182	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1183	 * is called with B_DELWRI set, the underlying pages may wind up
1184	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1185	 * because pages associated with a B_DELWRI bp are marked clean.
1186	 *
1187	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1188	 * if B_DELWRI is set.
1189	 *
1190	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1191	 * on pages to return pages to the VM page queues.
1192	 */
1193	if (bp->b_flags & B_DELWRI)
1194		bp->b_flags &= ~B_RELBUF;
1195	else if (vm_page_count_severe()) {
1196		/*
1197		 * XXX This lock may not be necessary since BKGRDINPROG
1198		 * cannot be set while we hold the buf lock, it can only be
1199		 * cleared if it is already pending.
1200		 */
1201		if (bp->b_vp) {
1202			BO_LOCK(bp->b_bufobj);
1203			if (!(bp->b_vflags & BV_BKGRDINPROG))
1204				bp->b_flags |= B_RELBUF;
1205			BO_UNLOCK(bp->b_bufobj);
1206		} else
1207			bp->b_flags |= B_RELBUF;
1208	}
1209
1210	/*
1211	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1212	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1213	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1214	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1215	 *
1216	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1217	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1218	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1219	 *
1220	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1221	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1222	 * the commit state and we cannot afford to lose the buffer. If the
1223	 * buffer has a background write in progress, we need to keep it
1224	 * around to prevent it from being reconstituted and starting a second
1225	 * background write.
1226	 */
1227	if ((bp->b_flags & B_VMIO)
1228	    && !(bp->b_vp->v_mount != NULL &&
1229		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1230		 !vn_isdisk(bp->b_vp, NULL) &&
1231		 (bp->b_flags & B_DELWRI))
1232	    ) {
1233
1234		int i, j, resid;
1235		vm_page_t m;
1236		off_t foff;
1237		vm_pindex_t poff;
1238		vm_object_t obj;
1239
1240		obj = bp->b_bufobj->bo_object;
1241
1242		/*
1243		 * Get the base offset and length of the buffer.  Note that
1244		 * in the VMIO case if the buffer block size is not
1245		 * page-aligned then b_data pointer may not be page-aligned.
1246		 * But our b_pages[] array *IS* page aligned.
1247		 *
1248		 * block sizes less then DEV_BSIZE (usually 512) are not
1249		 * supported due to the page granularity bits (m->valid,
1250		 * m->dirty, etc...).
1251		 *
1252		 * See man buf(9) for more information
1253		 */
1254		resid = bp->b_bufsize;
1255		foff = bp->b_offset;
1256		VM_OBJECT_LOCK(obj);
1257		for (i = 0; i < bp->b_npages; i++) {
1258			int had_bogus = 0;
1259
1260			m = bp->b_pages[i];
1261
1262			/*
1263			 * If we hit a bogus page, fixup *all* the bogus pages
1264			 * now.
1265			 */
1266			if (m == bogus_page) {
1267				poff = OFF_TO_IDX(bp->b_offset);
1268				had_bogus = 1;
1269
1270				for (j = i; j < bp->b_npages; j++) {
1271					vm_page_t mtmp;
1272					mtmp = bp->b_pages[j];
1273					if (mtmp == bogus_page) {
1274						mtmp = vm_page_lookup(obj, poff + j);
1275						if (!mtmp) {
1276							panic("brelse: page missing\n");
1277						}
1278						bp->b_pages[j] = mtmp;
1279					}
1280				}
1281
1282				if ((bp->b_flags & B_INVAL) == 0) {
1283					pmap_qenter(
1284					    trunc_page((vm_offset_t)bp->b_data),
1285					    bp->b_pages, bp->b_npages);
1286				}
1287				m = bp->b_pages[i];
1288			}
1289			if ((bp->b_flags & B_NOCACHE) ||
1290			    (bp->b_ioflags & BIO_ERROR)) {
1291				int poffset = foff & PAGE_MASK;
1292				int presid = resid > (PAGE_SIZE - poffset) ?
1293					(PAGE_SIZE - poffset) : resid;
1294
1295				KASSERT(presid >= 0, ("brelse: extra page"));
1296				vm_page_lock_queues();
1297				vm_page_set_invalid(m, poffset, presid);
1298				vm_page_unlock_queues();
1299				if (had_bogus)
1300					printf("avoided corruption bug in bogus_page/brelse code\n");
1301			}
1302			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1303			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1304		}
1305		VM_OBJECT_UNLOCK(obj);
1306		if (bp->b_flags & (B_INVAL | B_RELBUF))
1307			vfs_vmio_release(bp);
1308
1309	} else if (bp->b_flags & B_VMIO) {
1310
1311		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1312			vfs_vmio_release(bp);
1313		}
1314
1315	} else if ((bp->b_flags & (B_INVAL | B_RELBUF)) != 0) {
1316		if (bp->b_bufsize != 0)
1317			allocbuf(bp, 0);
1318		if (bp->b_vp != NULL)
1319			brelvp(bp);
1320	}
1321
1322	if (BUF_REFCNT(bp) > 1) {
1323		/* do not release to free list */
1324		BUF_UNLOCK(bp);
1325		return;
1326	}
1327
1328	/* enqueue */
1329	mtx_lock(&bqlock);
1330	/* Handle delayed bremfree() processing. */
1331	if (bp->b_flags & B_REMFREE)
1332		bremfreel(bp);
1333	if (bp->b_qindex != QUEUE_NONE)
1334		panic("brelse: free buffer onto another queue???");
1335
1336	/* buffers with no memory */
1337	if (bp->b_bufsize == 0) {
1338		bp->b_flags |= B_INVAL;
1339		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1340		if (bp->b_vflags & BV_BKGRDINPROG)
1341			panic("losing buffer 1");
1342		if (bp->b_kvasize) {
1343			bp->b_qindex = QUEUE_EMPTYKVA;
1344		} else {
1345			bp->b_qindex = QUEUE_EMPTY;
1346		}
1347		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1348	/* buffers with junk contents */
1349	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1350	    (bp->b_ioflags & BIO_ERROR)) {
1351		bp->b_flags |= B_INVAL;
1352		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1353		if (bp->b_vflags & BV_BKGRDINPROG)
1354			panic("losing buffer 2");
1355		bp->b_qindex = QUEUE_CLEAN;
1356		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1357	/* remaining buffers */
1358	} else {
1359		if (bp->b_flags & B_DELWRI)
1360			bp->b_qindex = QUEUE_DIRTY;
1361		else
1362			bp->b_qindex = QUEUE_CLEAN;
1363		if (bp->b_flags & B_AGE)
1364			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1365		else
1366			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1367	}
1368	mtx_unlock(&bqlock);
1369
1370	/*
1371	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1372	 * placed the buffer on the correct queue.  We must also disassociate
1373	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1374	 * find it.
1375	 */
1376	if (bp->b_flags & B_INVAL) {
1377		if (bp->b_flags & B_DELWRI)
1378			bundirty(bp);
1379		if (bp->b_vp)
1380			brelvp(bp);
1381	}
1382
1383	/*
1384	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1385	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1386	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1387	 * if B_INVAL is set ).
1388	 */
1389
1390	if (!(bp->b_flags & B_DELWRI))
1391		bufcountwakeup();
1392
1393	/*
1394	 * Something we can maybe free or reuse
1395	 */
1396	if (bp->b_bufsize || bp->b_kvasize)
1397		bufspacewakeup();
1398
1399	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1400	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1401		panic("brelse: not dirty");
1402	/* unlock */
1403	BUF_UNLOCK(bp);
1404}
1405
1406/*
1407 * Release a buffer back to the appropriate queue but do not try to free
1408 * it.  The buffer is expected to be used again soon.
1409 *
1410 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1411 * biodone() to requeue an async I/O on completion.  It is also used when
1412 * known good buffers need to be requeued but we think we may need the data
1413 * again soon.
1414 *
1415 * XXX we should be able to leave the B_RELBUF hint set on completion.
1416 */
1417void
1418bqrelse(struct buf *bp)
1419{
1420	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1421	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1422	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1423
1424	if (BUF_REFCNT(bp) > 1) {
1425		/* do not release to free list */
1426		BUF_UNLOCK(bp);
1427		return;
1428	}
1429
1430	if (bp->b_flags & B_MANAGED) {
1431		if (bp->b_flags & B_REMFREE) {
1432			mtx_lock(&bqlock);
1433			bremfreel(bp);
1434			mtx_unlock(&bqlock);
1435		}
1436		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1437		BUF_UNLOCK(bp);
1438		return;
1439	}
1440
1441	mtx_lock(&bqlock);
1442	/* Handle delayed bremfree() processing. */
1443	if (bp->b_flags & B_REMFREE)
1444		bremfreel(bp);
1445	if (bp->b_qindex != QUEUE_NONE)
1446		panic("bqrelse: free buffer onto another queue???");
1447	/* buffers with stale but valid contents */
1448	if (bp->b_flags & B_DELWRI) {
1449		bp->b_qindex = QUEUE_DIRTY;
1450		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1451	} else {
1452		/*
1453		 * XXX This lock may not be necessary since BKGRDINPROG
1454		 * cannot be set while we hold the buf lock, it can only be
1455		 * cleared if it is already pending.
1456		 */
1457		BO_LOCK(bp->b_bufobj);
1458		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1459			BO_UNLOCK(bp->b_bufobj);
1460			bp->b_qindex = QUEUE_CLEAN;
1461			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1462			    b_freelist);
1463		} else {
1464			/*
1465			 * We are too low on memory, we have to try to free
1466			 * the buffer (most importantly: the wired pages
1467			 * making up its backing store) *now*.
1468			 */
1469			BO_UNLOCK(bp->b_bufobj);
1470			mtx_unlock(&bqlock);
1471			brelse(bp);
1472			return;
1473		}
1474	}
1475	mtx_unlock(&bqlock);
1476
1477	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1478		bufcountwakeup();
1479
1480	/*
1481	 * Something we can maybe free or reuse.
1482	 */
1483	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1484		bufspacewakeup();
1485
1486	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1487	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1488		panic("bqrelse: not dirty");
1489	/* unlock */
1490	BUF_UNLOCK(bp);
1491}
1492
1493/* Give pages used by the bp back to the VM system (where possible) */
1494static void
1495vfs_vmio_release(struct buf *bp)
1496{
1497	int i;
1498	vm_page_t m;
1499
1500	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1501	vm_page_lock_queues();
1502	for (i = 0; i < bp->b_npages; i++) {
1503		m = bp->b_pages[i];
1504		bp->b_pages[i] = NULL;
1505		/*
1506		 * In order to keep page LRU ordering consistent, put
1507		 * everything on the inactive queue.
1508		 */
1509		vm_page_unwire(m, 0);
1510		/*
1511		 * We don't mess with busy pages, it is
1512		 * the responsibility of the process that
1513		 * busied the pages to deal with them.
1514		 */
1515		if ((m->flags & PG_BUSY) || (m->busy != 0))
1516			continue;
1517
1518		if (m->wire_count == 0) {
1519			/*
1520			 * Might as well free the page if we can and it has
1521			 * no valid data.  We also free the page if the
1522			 * buffer was used for direct I/O
1523			 */
1524			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1525			    m->hold_count == 0) {
1526				vm_page_free(m);
1527			} else if (bp->b_flags & B_DIRECT) {
1528				vm_page_try_to_free(m);
1529			} else if (vm_page_count_severe()) {
1530				vm_page_try_to_cache(m);
1531			}
1532		}
1533	}
1534	vm_page_unlock_queues();
1535	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1536	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1537
1538	if (bp->b_bufsize) {
1539		bufspacewakeup();
1540		bp->b_bufsize = 0;
1541	}
1542	bp->b_npages = 0;
1543	bp->b_flags &= ~B_VMIO;
1544	if (bp->b_vp)
1545		brelvp(bp);
1546}
1547
1548/*
1549 * Check to see if a block at a particular lbn is available for a clustered
1550 * write.
1551 */
1552static int
1553vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1554{
1555	struct buf *bpa;
1556	int match;
1557
1558	match = 0;
1559
1560	/* If the buf isn't in core skip it */
1561	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1562		return (0);
1563
1564	/* If the buf is busy we don't want to wait for it */
1565	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1566		return (0);
1567
1568	/* Only cluster with valid clusterable delayed write buffers */
1569	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1570	    (B_DELWRI | B_CLUSTEROK))
1571		goto done;
1572
1573	if (bpa->b_bufsize != size)
1574		goto done;
1575
1576	/*
1577	 * Check to see if it is in the expected place on disk and that the
1578	 * block has been mapped.
1579	 */
1580	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1581		match = 1;
1582done:
1583	BUF_UNLOCK(bpa);
1584	return (match);
1585}
1586
1587/*
1588 *	vfs_bio_awrite:
1589 *
1590 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1591 *	This is much better then the old way of writing only one buffer at
1592 *	a time.  Note that we may not be presented with the buffers in the
1593 *	correct order, so we search for the cluster in both directions.
1594 */
1595int
1596vfs_bio_awrite(struct buf *bp)
1597{
1598	int i;
1599	int j;
1600	daddr_t lblkno = bp->b_lblkno;
1601	struct vnode *vp = bp->b_vp;
1602	int ncl;
1603	int nwritten;
1604	int size;
1605	int maxcl;
1606
1607	/*
1608	 * right now we support clustered writing only to regular files.  If
1609	 * we find a clusterable block we could be in the middle of a cluster
1610	 * rather then at the beginning.
1611	 */
1612	if ((vp->v_type == VREG) &&
1613	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1614	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1615
1616		size = vp->v_mount->mnt_stat.f_iosize;
1617		maxcl = MAXPHYS / size;
1618
1619		VI_LOCK(vp);
1620		for (i = 1; i < maxcl; i++)
1621			if (vfs_bio_clcheck(vp, size, lblkno + i,
1622			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1623				break;
1624
1625		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1626			if (vfs_bio_clcheck(vp, size, lblkno - j,
1627			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1628				break;
1629
1630		VI_UNLOCK(vp);
1631		--j;
1632		ncl = i + j;
1633		/*
1634		 * this is a possible cluster write
1635		 */
1636		if (ncl != 1) {
1637			BUF_UNLOCK(bp);
1638			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1639			return nwritten;
1640		}
1641	}
1642	bremfree(bp);
1643	bp->b_flags |= B_ASYNC;
1644	/*
1645	 * default (old) behavior, writing out only one block
1646	 *
1647	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1648	 */
1649	nwritten = bp->b_bufsize;
1650	(void) bwrite(bp);
1651
1652	return nwritten;
1653}
1654
1655/*
1656 *	getnewbuf:
1657 *
1658 *	Find and initialize a new buffer header, freeing up existing buffers
1659 *	in the bufqueues as necessary.  The new buffer is returned locked.
1660 *
1661 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1662 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1663 *
1664 *	We block if:
1665 *		We have insufficient buffer headers
1666 *		We have insufficient buffer space
1667 *		buffer_map is too fragmented ( space reservation fails )
1668 *		If we have to flush dirty buffers ( but we try to avoid this )
1669 *
1670 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1671 *	Instead we ask the buf daemon to do it for us.  We attempt to
1672 *	avoid piecemeal wakeups of the pageout daemon.
1673 */
1674
1675static struct buf *
1676getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1677{
1678	struct buf *bp;
1679	struct buf *nbp;
1680	int defrag = 0;
1681	int nqindex;
1682	static int flushingbufs;
1683
1684	/*
1685	 * We can't afford to block since we might be holding a vnode lock,
1686	 * which may prevent system daemons from running.  We deal with
1687	 * low-memory situations by proactively returning memory and running
1688	 * async I/O rather then sync I/O.
1689	 */
1690
1691	atomic_add_int(&getnewbufcalls, 1);
1692	atomic_subtract_int(&getnewbufrestarts, 1);
1693restart:
1694	atomic_add_int(&getnewbufrestarts, 1);
1695
1696	/*
1697	 * Setup for scan.  If we do not have enough free buffers,
1698	 * we setup a degenerate case that immediately fails.  Note
1699	 * that if we are specially marked process, we are allowed to
1700	 * dip into our reserves.
1701	 *
1702	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1703	 *
1704	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1705	 * However, there are a number of cases (defragging, reusing, ...)
1706	 * where we cannot backup.
1707	 */
1708	mtx_lock(&bqlock);
1709	nqindex = QUEUE_EMPTYKVA;
1710	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1711
1712	if (nbp == NULL) {
1713		/*
1714		 * If no EMPTYKVA buffers and we are either
1715		 * defragging or reusing, locate a CLEAN buffer
1716		 * to free or reuse.  If bufspace useage is low
1717		 * skip this step so we can allocate a new buffer.
1718		 */
1719		if (defrag || bufspace >= lobufspace) {
1720			nqindex = QUEUE_CLEAN;
1721			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1722		}
1723
1724		/*
1725		 * If we could not find or were not allowed to reuse a
1726		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1727		 * buffer.  We can only use an EMPTY buffer if allocating
1728		 * its KVA would not otherwise run us out of buffer space.
1729		 */
1730		if (nbp == NULL && defrag == 0 &&
1731		    bufspace + maxsize < hibufspace) {
1732			nqindex = QUEUE_EMPTY;
1733			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1734		}
1735	}
1736
1737	/*
1738	 * Run scan, possibly freeing data and/or kva mappings on the fly
1739	 * depending.
1740	 */
1741
1742	while ((bp = nbp) != NULL) {
1743		int qindex = nqindex;
1744
1745		/*
1746		 * Calculate next bp ( we can only use it if we do not block
1747		 * or do other fancy things ).
1748		 */
1749		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1750			switch(qindex) {
1751			case QUEUE_EMPTY:
1752				nqindex = QUEUE_EMPTYKVA;
1753				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1754					break;
1755				/* FALLTHROUGH */
1756			case QUEUE_EMPTYKVA:
1757				nqindex = QUEUE_CLEAN;
1758				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1759					break;
1760				/* FALLTHROUGH */
1761			case QUEUE_CLEAN:
1762				/*
1763				 * nbp is NULL.
1764				 */
1765				break;
1766			}
1767		}
1768		/*
1769		 * If we are defragging then we need a buffer with
1770		 * b_kvasize != 0.  XXX this situation should no longer
1771		 * occur, if defrag is non-zero the buffer's b_kvasize
1772		 * should also be non-zero at this point.  XXX
1773		 */
1774		if (defrag && bp->b_kvasize == 0) {
1775			printf("Warning: defrag empty buffer %p\n", bp);
1776			continue;
1777		}
1778
1779		/*
1780		 * Start freeing the bp.  This is somewhat involved.  nbp
1781		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1782		 */
1783		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1784			continue;
1785		if (bp->b_vp) {
1786			BO_LOCK(bp->b_bufobj);
1787			if (bp->b_vflags & BV_BKGRDINPROG) {
1788				BO_UNLOCK(bp->b_bufobj);
1789				BUF_UNLOCK(bp);
1790				continue;
1791			}
1792			BO_UNLOCK(bp->b_bufobj);
1793		}
1794		CTR6(KTR_BUF,
1795		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1796		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1797		    bp->b_kvasize, bp->b_bufsize, qindex);
1798
1799		/*
1800		 * Sanity Checks
1801		 */
1802		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1803
1804		/*
1805		 * Note: we no longer distinguish between VMIO and non-VMIO
1806		 * buffers.
1807		 */
1808
1809		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1810
1811		bremfreel(bp);
1812		mtx_unlock(&bqlock);
1813
1814		if (qindex == QUEUE_CLEAN) {
1815			if (bp->b_flags & B_VMIO) {
1816				bp->b_flags &= ~B_ASYNC;
1817				vfs_vmio_release(bp);
1818			}
1819			if (bp->b_vp)
1820				brelvp(bp);
1821		}
1822
1823		/*
1824		 * NOTE:  nbp is now entirely invalid.  We can only restart
1825		 * the scan from this point on.
1826		 *
1827		 * Get the rest of the buffer freed up.  b_kva* is still
1828		 * valid after this operation.
1829		 */
1830
1831		if (bp->b_rcred != NOCRED) {
1832			crfree(bp->b_rcred);
1833			bp->b_rcred = NOCRED;
1834		}
1835		if (bp->b_wcred != NOCRED) {
1836			crfree(bp->b_wcred);
1837			bp->b_wcred = NOCRED;
1838		}
1839		if (LIST_FIRST(&bp->b_dep) != NULL)
1840			buf_deallocate(bp);
1841		if (bp->b_vflags & BV_BKGRDINPROG)
1842			panic("losing buffer 3");
1843		KASSERT(bp->b_vp == NULL,
1844		    ("bp: %p still has vnode %p.  qindex: %d",
1845		    bp, bp->b_vp, qindex));
1846		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1847		   ("bp: %p still on a buffer list. xflags %X",
1848		    bp, bp->b_xflags));
1849
1850		if (bp->b_bufsize)
1851			allocbuf(bp, 0);
1852
1853		bp->b_flags = 0;
1854		bp->b_ioflags = 0;
1855		bp->b_xflags = 0;
1856		bp->b_vflags = 0;
1857		bp->b_vp = NULL;
1858		bp->b_blkno = bp->b_lblkno = 0;
1859		bp->b_offset = NOOFFSET;
1860		bp->b_iodone = 0;
1861		bp->b_error = 0;
1862		bp->b_resid = 0;
1863		bp->b_bcount = 0;
1864		bp->b_npages = 0;
1865		bp->b_dirtyoff = bp->b_dirtyend = 0;
1866		bp->b_bufobj = NULL;
1867		bp->b_pin_count = 0;
1868		bp->b_fsprivate1 = NULL;
1869		bp->b_fsprivate2 = NULL;
1870		bp->b_fsprivate3 = NULL;
1871
1872		LIST_INIT(&bp->b_dep);
1873
1874		/*
1875		 * If we are defragging then free the buffer.
1876		 */
1877		if (defrag) {
1878			bp->b_flags |= B_INVAL;
1879			bfreekva(bp);
1880			brelse(bp);
1881			defrag = 0;
1882			goto restart;
1883		}
1884
1885		/*
1886		 * If we are overcomitted then recover the buffer and its
1887		 * KVM space.  This occurs in rare situations when multiple
1888		 * processes are blocked in getnewbuf() or allocbuf().
1889		 */
1890		if (bufspace >= hibufspace)
1891			flushingbufs = 1;
1892		if (flushingbufs && bp->b_kvasize != 0) {
1893			bp->b_flags |= B_INVAL;
1894			bfreekva(bp);
1895			brelse(bp);
1896			goto restart;
1897		}
1898		if (bufspace < lobufspace)
1899			flushingbufs = 0;
1900		break;
1901	}
1902
1903	/*
1904	 * If we exhausted our list, sleep as appropriate.  We may have to
1905	 * wakeup various daemons and write out some dirty buffers.
1906	 *
1907	 * Generally we are sleeping due to insufficient buffer space.
1908	 */
1909
1910	if (bp == NULL) {
1911		int flags;
1912		char *waitmsg;
1913
1914		if (defrag) {
1915			flags = VFS_BIO_NEED_BUFSPACE;
1916			waitmsg = "nbufkv";
1917		} else if (bufspace >= hibufspace) {
1918			waitmsg = "nbufbs";
1919			flags = VFS_BIO_NEED_BUFSPACE;
1920		} else {
1921			waitmsg = "newbuf";
1922			flags = VFS_BIO_NEED_ANY;
1923		}
1924		mtx_lock(&nblock);
1925		needsbuffer |= flags;
1926		mtx_unlock(&nblock);
1927		mtx_unlock(&bqlock);
1928
1929		bd_speedup();	/* heeeelp */
1930
1931		mtx_lock(&nblock);
1932		while (needsbuffer & flags) {
1933			if (msleep(&needsbuffer, &nblock,
1934			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1935				mtx_unlock(&nblock);
1936				return (NULL);
1937			}
1938		}
1939		mtx_unlock(&nblock);
1940	} else {
1941		/*
1942		 * We finally have a valid bp.  We aren't quite out of the
1943		 * woods, we still have to reserve kva space.  In order
1944		 * to keep fragmentation sane we only allocate kva in
1945		 * BKVASIZE chunks.
1946		 */
1947		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1948
1949		if (maxsize != bp->b_kvasize) {
1950			vm_offset_t addr = 0;
1951
1952			bfreekva(bp);
1953
1954			vm_map_lock(buffer_map);
1955			if (vm_map_findspace(buffer_map,
1956				vm_map_min(buffer_map), maxsize, &addr)) {
1957				/*
1958				 * Uh oh.  Buffer map is to fragmented.  We
1959				 * must defragment the map.
1960				 */
1961				atomic_add_int(&bufdefragcnt, 1);
1962				vm_map_unlock(buffer_map);
1963				defrag = 1;
1964				bp->b_flags |= B_INVAL;
1965				brelse(bp);
1966				goto restart;
1967			}
1968			if (addr) {
1969				vm_map_insert(buffer_map, NULL, 0,
1970					addr, addr + maxsize,
1971					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1972
1973				bp->b_kvabase = (caddr_t) addr;
1974				bp->b_kvasize = maxsize;
1975				atomic_add_int(&bufspace, bp->b_kvasize);
1976				atomic_add_int(&bufreusecnt, 1);
1977			}
1978			vm_map_unlock(buffer_map);
1979		}
1980		bp->b_saveaddr = bp->b_kvabase;
1981		bp->b_data = bp->b_saveaddr;
1982	}
1983	return(bp);
1984}
1985
1986/*
1987 *	buf_daemon:
1988 *
1989 *	buffer flushing daemon.  Buffers are normally flushed by the
1990 *	update daemon but if it cannot keep up this process starts to
1991 *	take the load in an attempt to prevent getnewbuf() from blocking.
1992 */
1993
1994static struct kproc_desc buf_kp = {
1995	"bufdaemon",
1996	buf_daemon,
1997	&bufdaemonproc
1998};
1999SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2000
2001static void
2002buf_daemon()
2003{
2004	mtx_lock(&Giant);
2005
2006	/*
2007	 * This process needs to be suspended prior to shutdown sync.
2008	 */
2009	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2010	    SHUTDOWN_PRI_LAST);
2011
2012	/*
2013	 * This process is allowed to take the buffer cache to the limit
2014	 */
2015	curthread->td_pflags |= TDP_NORUNNINGBUF;
2016	mtx_lock(&bdlock);
2017	for (;;) {
2018		bd_request = 0;
2019		mtx_unlock(&bdlock);
2020
2021		kthread_suspend_check(bufdaemonproc);
2022
2023		/*
2024		 * Do the flush.  Limit the amount of in-transit I/O we
2025		 * allow to build up, otherwise we would completely saturate
2026		 * the I/O system.  Wakeup any waiting processes before we
2027		 * normally would so they can run in parallel with our drain.
2028		 */
2029		while (numdirtybuffers > lodirtybuffers) {
2030			if (flushbufqueues(0) == 0) {
2031				/*
2032				 * Could not find any buffers without rollback
2033				 * dependencies, so just write the first one
2034				 * in the hopes of eventually making progress.
2035				 */
2036				flushbufqueues(1);
2037				break;
2038			}
2039			uio_yield();
2040		}
2041
2042		/*
2043		 * Only clear bd_request if we have reached our low water
2044		 * mark.  The buf_daemon normally waits 1 second and
2045		 * then incrementally flushes any dirty buffers that have
2046		 * built up, within reason.
2047		 *
2048		 * If we were unable to hit our low water mark and couldn't
2049		 * find any flushable buffers, we sleep half a second.
2050		 * Otherwise we loop immediately.
2051		 */
2052		mtx_lock(&bdlock);
2053		if (numdirtybuffers <= lodirtybuffers) {
2054			/*
2055			 * We reached our low water mark, reset the
2056			 * request and sleep until we are needed again.
2057			 * The sleep is just so the suspend code works.
2058			 */
2059			bd_request = 0;
2060			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2061		} else {
2062			/*
2063			 * We couldn't find any flushable dirty buffers but
2064			 * still have too many dirty buffers, we
2065			 * have to sleep and try again.  (rare)
2066			 */
2067			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2068		}
2069	}
2070}
2071
2072/*
2073 *	flushbufqueues:
2074 *
2075 *	Try to flush a buffer in the dirty queue.  We must be careful to
2076 *	free up B_INVAL buffers instead of write them, which NFS is
2077 *	particularly sensitive to.
2078 */
2079static int flushwithdeps = 0;
2080SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2081    0, "Number of buffers flushed with dependecies that require rollbacks");
2082
2083static int
2084flushbufqueues(int flushdeps)
2085{
2086	struct thread *td = curthread;
2087	struct buf sentinel;
2088	struct vnode *vp;
2089	struct mount *mp;
2090	struct buf *bp;
2091	int hasdeps;
2092	int flushed;
2093	int target;
2094
2095	target = numdirtybuffers - lodirtybuffers;
2096	if (flushdeps && target > 2)
2097		target /= 2;
2098	flushed = 0;
2099	bp = NULL;
2100	mtx_lock(&bqlock);
2101	TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], &sentinel, b_freelist);
2102	while (flushed != target) {
2103		bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2104		if (bp == &sentinel)
2105			break;
2106		TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
2107		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
2108
2109		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2110			continue;
2111		if (bp->b_pin_count > 0) {
2112			BUF_UNLOCK(bp);
2113			continue;
2114		}
2115		BO_LOCK(bp->b_bufobj);
2116		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2117		    (bp->b_flags & B_DELWRI) == 0) {
2118			BO_UNLOCK(bp->b_bufobj);
2119			BUF_UNLOCK(bp);
2120			continue;
2121		}
2122		BO_UNLOCK(bp->b_bufobj);
2123		if (bp->b_flags & B_INVAL) {
2124			bremfreel(bp);
2125			mtx_unlock(&bqlock);
2126			brelse(bp);
2127			flushed++;
2128			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2129			mtx_lock(&bqlock);
2130			continue;
2131		}
2132
2133		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2134			if (flushdeps == 0) {
2135				BUF_UNLOCK(bp);
2136				continue;
2137			}
2138			hasdeps = 1;
2139		} else
2140			hasdeps = 0;
2141		/*
2142		 * We must hold the lock on a vnode before writing
2143		 * one of its buffers. Otherwise we may confuse, or
2144		 * in the case of a snapshot vnode, deadlock the
2145		 * system.
2146		 *
2147		 * The lock order here is the reverse of the normal
2148		 * of vnode followed by buf lock.  This is ok because
2149		 * the NOWAIT will prevent deadlock.
2150		 */
2151		vp = bp->b_vp;
2152		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2153			BUF_UNLOCK(bp);
2154			continue;
2155		}
2156		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2157			mtx_unlock(&bqlock);
2158			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2159			    bp, bp->b_vp, bp->b_flags);
2160			vfs_bio_awrite(bp);
2161			vn_finished_write(mp);
2162			VOP_UNLOCK(vp, 0, td);
2163			flushwithdeps += hasdeps;
2164			flushed++;
2165			waitrunningbufspace();
2166			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2167			mtx_lock(&bqlock);
2168			continue;
2169		}
2170		vn_finished_write(mp);
2171		BUF_UNLOCK(bp);
2172	}
2173	TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], &sentinel, b_freelist);
2174	mtx_unlock(&bqlock);
2175	return (flushed);
2176}
2177
2178/*
2179 * Check to see if a block is currently memory resident.
2180 */
2181struct buf *
2182incore(struct bufobj *bo, daddr_t blkno)
2183{
2184	struct buf *bp;
2185
2186	BO_LOCK(bo);
2187	bp = gbincore(bo, blkno);
2188	BO_UNLOCK(bo);
2189	return (bp);
2190}
2191
2192/*
2193 * Returns true if no I/O is needed to access the
2194 * associated VM object.  This is like incore except
2195 * it also hunts around in the VM system for the data.
2196 */
2197
2198static int
2199inmem(struct vnode * vp, daddr_t blkno)
2200{
2201	vm_object_t obj;
2202	vm_offset_t toff, tinc, size;
2203	vm_page_t m;
2204	vm_ooffset_t off;
2205
2206	ASSERT_VOP_LOCKED(vp, "inmem");
2207
2208	if (incore(&vp->v_bufobj, blkno))
2209		return 1;
2210	if (vp->v_mount == NULL)
2211		return 0;
2212	obj = vp->v_object;
2213	if (obj == NULL)
2214		return (0);
2215
2216	size = PAGE_SIZE;
2217	if (size > vp->v_mount->mnt_stat.f_iosize)
2218		size = vp->v_mount->mnt_stat.f_iosize;
2219	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2220
2221	VM_OBJECT_LOCK(obj);
2222	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2223		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2224		if (!m)
2225			goto notinmem;
2226		tinc = size;
2227		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2228			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2229		if (vm_page_is_valid(m,
2230		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2231			goto notinmem;
2232	}
2233	VM_OBJECT_UNLOCK(obj);
2234	return 1;
2235
2236notinmem:
2237	VM_OBJECT_UNLOCK(obj);
2238	return (0);
2239}
2240
2241/*
2242 *	vfs_setdirty:
2243 *
2244 *	Sets the dirty range for a buffer based on the status of the dirty
2245 *	bits in the pages comprising the buffer.
2246 *
2247 *	The range is limited to the size of the buffer.
2248 *
2249 *	This routine is primarily used by NFS, but is generalized for the
2250 *	B_VMIO case.
2251 */
2252static void
2253vfs_setdirty(struct buf *bp)
2254{
2255	int i;
2256	vm_object_t object;
2257
2258	/*
2259	 * Degenerate case - empty buffer
2260	 */
2261
2262	if (bp->b_bufsize == 0)
2263		return;
2264
2265	/*
2266	 * We qualify the scan for modified pages on whether the
2267	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2268	 * is not cleared simply by protecting pages off.
2269	 */
2270
2271	if ((bp->b_flags & B_VMIO) == 0)
2272		return;
2273
2274	object = bp->b_pages[0]->object;
2275	VM_OBJECT_LOCK(object);
2276	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2277		printf("Warning: object %p writeable but not mightbedirty\n", object);
2278	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2279		printf("Warning: object %p mightbedirty but not writeable\n", object);
2280
2281	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2282		vm_offset_t boffset;
2283		vm_offset_t eoffset;
2284
2285		vm_page_lock_queues();
2286		/*
2287		 * test the pages to see if they have been modified directly
2288		 * by users through the VM system.
2289		 */
2290		for (i = 0; i < bp->b_npages; i++)
2291			vm_page_test_dirty(bp->b_pages[i]);
2292
2293		/*
2294		 * Calculate the encompassing dirty range, boffset and eoffset,
2295		 * (eoffset - boffset) bytes.
2296		 */
2297
2298		for (i = 0; i < bp->b_npages; i++) {
2299			if (bp->b_pages[i]->dirty)
2300				break;
2301		}
2302		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2303
2304		for (i = bp->b_npages - 1; i >= 0; --i) {
2305			if (bp->b_pages[i]->dirty) {
2306				break;
2307			}
2308		}
2309		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2310
2311		vm_page_unlock_queues();
2312		/*
2313		 * Fit it to the buffer.
2314		 */
2315
2316		if (eoffset > bp->b_bcount)
2317			eoffset = bp->b_bcount;
2318
2319		/*
2320		 * If we have a good dirty range, merge with the existing
2321		 * dirty range.
2322		 */
2323
2324		if (boffset < eoffset) {
2325			if (bp->b_dirtyoff > boffset)
2326				bp->b_dirtyoff = boffset;
2327			if (bp->b_dirtyend < eoffset)
2328				bp->b_dirtyend = eoffset;
2329		}
2330	}
2331	VM_OBJECT_UNLOCK(object);
2332}
2333
2334/*
2335 *	getblk:
2336 *
2337 *	Get a block given a specified block and offset into a file/device.
2338 *	The buffers B_DONE bit will be cleared on return, making it almost
2339 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2340 *	return.  The caller should clear B_INVAL prior to initiating a
2341 *	READ.
2342 *
2343 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2344 *	an existing buffer.
2345 *
2346 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2347 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2348 *	and then cleared based on the backing VM.  If the previous buffer is
2349 *	non-0-sized but invalid, B_CACHE will be cleared.
2350 *
2351 *	If getblk() must create a new buffer, the new buffer is returned with
2352 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2353 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2354 *	backing VM.
2355 *
2356 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2357 *	B_CACHE bit is clear.
2358 *
2359 *	What this means, basically, is that the caller should use B_CACHE to
2360 *	determine whether the buffer is fully valid or not and should clear
2361 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2362 *	the buffer by loading its data area with something, the caller needs
2363 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2364 *	the caller should set B_CACHE ( as an optimization ), else the caller
2365 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2366 *	a write attempt or if it was a successfull read.  If the caller
2367 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2368 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2369 */
2370struct buf *
2371getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2372    int flags)
2373{
2374	struct buf *bp;
2375	struct bufobj *bo;
2376	int error;
2377
2378	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2379	ASSERT_VOP_LOCKED(vp, "getblk");
2380	if (size > MAXBSIZE)
2381		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2382
2383	bo = &vp->v_bufobj;
2384loop:
2385	/*
2386	 * Block if we are low on buffers.   Certain processes are allowed
2387	 * to completely exhaust the buffer cache.
2388         *
2389         * If this check ever becomes a bottleneck it may be better to
2390         * move it into the else, when gbincore() fails.  At the moment
2391         * it isn't a problem.
2392	 *
2393	 * XXX remove if 0 sections (clean this up after its proven)
2394         */
2395	if (numfreebuffers == 0) {
2396		if (curthread == PCPU_GET(idlethread))
2397			return NULL;
2398		mtx_lock(&nblock);
2399		needsbuffer |= VFS_BIO_NEED_ANY;
2400		mtx_unlock(&nblock);
2401	}
2402
2403	VI_LOCK(vp);
2404	bp = gbincore(bo, blkno);
2405	if (bp != NULL) {
2406		int lockflags;
2407		/*
2408		 * Buffer is in-core.  If the buffer is not busy, it must
2409		 * be on a queue.
2410		 */
2411		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2412
2413		if (flags & GB_LOCK_NOWAIT)
2414			lockflags |= LK_NOWAIT;
2415
2416		error = BUF_TIMELOCK(bp, lockflags,
2417		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2418
2419		/*
2420		 * If we slept and got the lock we have to restart in case
2421		 * the buffer changed identities.
2422		 */
2423		if (error == ENOLCK)
2424			goto loop;
2425		/* We timed out or were interrupted. */
2426		else if (error)
2427			return (NULL);
2428
2429		/*
2430		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2431		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2432		 * and for a VMIO buffer B_CACHE is adjusted according to the
2433		 * backing VM cache.
2434		 */
2435		if (bp->b_flags & B_INVAL)
2436			bp->b_flags &= ~B_CACHE;
2437		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2438			bp->b_flags |= B_CACHE;
2439		bremfree(bp);
2440
2441		/*
2442		 * check for size inconsistancies for non-VMIO case.
2443		 */
2444
2445		if (bp->b_bcount != size) {
2446			if ((bp->b_flags & B_VMIO) == 0 ||
2447			    (size > bp->b_kvasize)) {
2448				if (bp->b_flags & B_DELWRI) {
2449					/*
2450					 * If buffer is pinned and caller does
2451					 * not want sleep  waiting for it to be
2452					 * unpinned, bail out
2453					 * */
2454					if (bp->b_pin_count > 0) {
2455						if (flags & GB_LOCK_NOWAIT) {
2456							bqrelse(bp);
2457							return (NULL);
2458						} else {
2459							bunpin_wait(bp);
2460						}
2461					}
2462					bp->b_flags |= B_NOCACHE;
2463					bwrite(bp);
2464				} else {
2465					if (LIST_FIRST(&bp->b_dep) == NULL) {
2466						bp->b_flags |= B_RELBUF;
2467						brelse(bp);
2468					} else {
2469						bp->b_flags |= B_NOCACHE;
2470						bwrite(bp);
2471					}
2472				}
2473				goto loop;
2474			}
2475		}
2476
2477		/*
2478		 * If the size is inconsistant in the VMIO case, we can resize
2479		 * the buffer.  This might lead to B_CACHE getting set or
2480		 * cleared.  If the size has not changed, B_CACHE remains
2481		 * unchanged from its previous state.
2482		 */
2483
2484		if (bp->b_bcount != size)
2485			allocbuf(bp, size);
2486
2487		KASSERT(bp->b_offset != NOOFFSET,
2488		    ("getblk: no buffer offset"));
2489
2490		/*
2491		 * A buffer with B_DELWRI set and B_CACHE clear must
2492		 * be committed before we can return the buffer in
2493		 * order to prevent the caller from issuing a read
2494		 * ( due to B_CACHE not being set ) and overwriting
2495		 * it.
2496		 *
2497		 * Most callers, including NFS and FFS, need this to
2498		 * operate properly either because they assume they
2499		 * can issue a read if B_CACHE is not set, or because
2500		 * ( for example ) an uncached B_DELWRI might loop due
2501		 * to softupdates re-dirtying the buffer.  In the latter
2502		 * case, B_CACHE is set after the first write completes,
2503		 * preventing further loops.
2504		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2505		 * above while extending the buffer, we cannot allow the
2506		 * buffer to remain with B_CACHE set after the write
2507		 * completes or it will represent a corrupt state.  To
2508		 * deal with this we set B_NOCACHE to scrap the buffer
2509		 * after the write.
2510		 *
2511		 * We might be able to do something fancy, like setting
2512		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2513		 * so the below call doesn't set B_CACHE, but that gets real
2514		 * confusing.  This is much easier.
2515		 */
2516
2517		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2518			bp->b_flags |= B_NOCACHE;
2519			bwrite(bp);
2520			goto loop;
2521		}
2522		bp->b_flags &= ~B_DONE;
2523	} else {
2524		int bsize, maxsize, vmio;
2525		off_t offset;
2526
2527		/*
2528		 * Buffer is not in-core, create new buffer.  The buffer
2529		 * returned by getnewbuf() is locked.  Note that the returned
2530		 * buffer is also considered valid (not marked B_INVAL).
2531		 */
2532		VI_UNLOCK(vp);
2533		/*
2534		 * If the user does not want us to create the buffer, bail out
2535		 * here.
2536		 */
2537		if (flags & GB_NOCREAT)
2538			return NULL;
2539		bsize = bo->bo_bsize;
2540		offset = blkno * bsize;
2541		vmio = vp->v_object != NULL;
2542		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2543		maxsize = imax(maxsize, bsize);
2544
2545		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2546		if (bp == NULL) {
2547			if (slpflag || slptimeo)
2548				return NULL;
2549			goto loop;
2550		}
2551
2552		/*
2553		 * This code is used to make sure that a buffer is not
2554		 * created while the getnewbuf routine is blocked.
2555		 * This can be a problem whether the vnode is locked or not.
2556		 * If the buffer is created out from under us, we have to
2557		 * throw away the one we just created.
2558		 *
2559		 * Note: this must occur before we associate the buffer
2560		 * with the vp especially considering limitations in
2561		 * the splay tree implementation when dealing with duplicate
2562		 * lblkno's.
2563		 */
2564		BO_LOCK(bo);
2565		if (gbincore(bo, blkno)) {
2566			BO_UNLOCK(bo);
2567			bp->b_flags |= B_INVAL;
2568			brelse(bp);
2569			goto loop;
2570		}
2571
2572		/*
2573		 * Insert the buffer into the hash, so that it can
2574		 * be found by incore.
2575		 */
2576		bp->b_blkno = bp->b_lblkno = blkno;
2577		bp->b_offset = offset;
2578
2579		bgetvp(vp, bp);
2580		BO_UNLOCK(bo);
2581
2582		/*
2583		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2584		 * buffer size starts out as 0, B_CACHE will be set by
2585		 * allocbuf() for the VMIO case prior to it testing the
2586		 * backing store for validity.
2587		 */
2588
2589		if (vmio) {
2590			bp->b_flags |= B_VMIO;
2591#if defined(VFS_BIO_DEBUG)
2592			if (vn_canvmio(vp) != TRUE)
2593				printf("getblk: VMIO on vnode type %d\n",
2594					vp->v_type);
2595#endif
2596			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2597			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2598			    bp, vp->v_object, bp->b_bufobj->bo_object));
2599		} else {
2600			bp->b_flags &= ~B_VMIO;
2601			KASSERT(bp->b_bufobj->bo_object == NULL,
2602			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2603			    bp, bp->b_bufobj->bo_object));
2604		}
2605
2606		allocbuf(bp, size);
2607		bp->b_flags &= ~B_DONE;
2608	}
2609	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2610	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2611	KASSERT(bp->b_bufobj == bo,
2612	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2613	return (bp);
2614}
2615
2616/*
2617 * Get an empty, disassociated buffer of given size.  The buffer is initially
2618 * set to B_INVAL.
2619 */
2620struct buf *
2621geteblk(int size)
2622{
2623	struct buf *bp;
2624	int maxsize;
2625
2626	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2627	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2628		continue;
2629	allocbuf(bp, size);
2630	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2631	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2632	return (bp);
2633}
2634
2635
2636/*
2637 * This code constitutes the buffer memory from either anonymous system
2638 * memory (in the case of non-VMIO operations) or from an associated
2639 * VM object (in the case of VMIO operations).  This code is able to
2640 * resize a buffer up or down.
2641 *
2642 * Note that this code is tricky, and has many complications to resolve
2643 * deadlock or inconsistant data situations.  Tread lightly!!!
2644 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2645 * the caller.  Calling this code willy nilly can result in the loss of data.
2646 *
2647 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2648 * B_CACHE for the non-VMIO case.
2649 */
2650
2651int
2652allocbuf(struct buf *bp, int size)
2653{
2654	int newbsize, mbsize;
2655	int i;
2656
2657	if (BUF_REFCNT(bp) == 0)
2658		panic("allocbuf: buffer not busy");
2659
2660	if (bp->b_kvasize < size)
2661		panic("allocbuf: buffer too small");
2662
2663	if ((bp->b_flags & B_VMIO) == 0) {
2664		caddr_t origbuf;
2665		int origbufsize;
2666		/*
2667		 * Just get anonymous memory from the kernel.  Don't
2668		 * mess with B_CACHE.
2669		 */
2670		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2671		if (bp->b_flags & B_MALLOC)
2672			newbsize = mbsize;
2673		else
2674			newbsize = round_page(size);
2675
2676		if (newbsize < bp->b_bufsize) {
2677			/*
2678			 * malloced buffers are not shrunk
2679			 */
2680			if (bp->b_flags & B_MALLOC) {
2681				if (newbsize) {
2682					bp->b_bcount = size;
2683				} else {
2684					free(bp->b_data, M_BIOBUF);
2685					if (bp->b_bufsize) {
2686						atomic_subtract_int(
2687						    &bufmallocspace,
2688						    bp->b_bufsize);
2689						bufspacewakeup();
2690						bp->b_bufsize = 0;
2691					}
2692					bp->b_saveaddr = bp->b_kvabase;
2693					bp->b_data = bp->b_saveaddr;
2694					bp->b_bcount = 0;
2695					bp->b_flags &= ~B_MALLOC;
2696				}
2697				return 1;
2698			}
2699			vm_hold_free_pages(
2700			    bp,
2701			    (vm_offset_t) bp->b_data + newbsize,
2702			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2703		} else if (newbsize > bp->b_bufsize) {
2704			/*
2705			 * We only use malloced memory on the first allocation.
2706			 * and revert to page-allocated memory when the buffer
2707			 * grows.
2708			 */
2709			/*
2710			 * There is a potential smp race here that could lead
2711			 * to bufmallocspace slightly passing the max.  It
2712			 * is probably extremely rare and not worth worrying
2713			 * over.
2714			 */
2715			if ( (bufmallocspace < maxbufmallocspace) &&
2716				(bp->b_bufsize == 0) &&
2717				(mbsize <= PAGE_SIZE/2)) {
2718
2719				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2720				bp->b_bufsize = mbsize;
2721				bp->b_bcount = size;
2722				bp->b_flags |= B_MALLOC;
2723				atomic_add_int(&bufmallocspace, mbsize);
2724				return 1;
2725			}
2726			origbuf = NULL;
2727			origbufsize = 0;
2728			/*
2729			 * If the buffer is growing on its other-than-first allocation,
2730			 * then we revert to the page-allocation scheme.
2731			 */
2732			if (bp->b_flags & B_MALLOC) {
2733				origbuf = bp->b_data;
2734				origbufsize = bp->b_bufsize;
2735				bp->b_data = bp->b_kvabase;
2736				if (bp->b_bufsize) {
2737					atomic_subtract_int(&bufmallocspace,
2738					    bp->b_bufsize);
2739					bufspacewakeup();
2740					bp->b_bufsize = 0;
2741				}
2742				bp->b_flags &= ~B_MALLOC;
2743				newbsize = round_page(newbsize);
2744			}
2745			vm_hold_load_pages(
2746			    bp,
2747			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2748			    (vm_offset_t) bp->b_data + newbsize);
2749			if (origbuf) {
2750				bcopy(origbuf, bp->b_data, origbufsize);
2751				free(origbuf, M_BIOBUF);
2752			}
2753		}
2754	} else {
2755		int desiredpages;
2756
2757		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2758		desiredpages = (size == 0) ? 0 :
2759			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2760
2761		if (bp->b_flags & B_MALLOC)
2762			panic("allocbuf: VMIO buffer can't be malloced");
2763		/*
2764		 * Set B_CACHE initially if buffer is 0 length or will become
2765		 * 0-length.
2766		 */
2767		if (size == 0 || bp->b_bufsize == 0)
2768			bp->b_flags |= B_CACHE;
2769
2770		if (newbsize < bp->b_bufsize) {
2771			/*
2772			 * DEV_BSIZE aligned new buffer size is less then the
2773			 * DEV_BSIZE aligned existing buffer size.  Figure out
2774			 * if we have to remove any pages.
2775			 */
2776			if (desiredpages < bp->b_npages) {
2777				vm_page_t m;
2778
2779				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2780				vm_page_lock_queues();
2781				for (i = desiredpages; i < bp->b_npages; i++) {
2782					/*
2783					 * the page is not freed here -- it
2784					 * is the responsibility of
2785					 * vnode_pager_setsize
2786					 */
2787					m = bp->b_pages[i];
2788					KASSERT(m != bogus_page,
2789					    ("allocbuf: bogus page found"));
2790					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2791						vm_page_lock_queues();
2792
2793					bp->b_pages[i] = NULL;
2794					vm_page_unwire(m, 0);
2795				}
2796				vm_page_unlock_queues();
2797				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2798				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2799				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2800				bp->b_npages = desiredpages;
2801			}
2802		} else if (size > bp->b_bcount) {
2803			/*
2804			 * We are growing the buffer, possibly in a
2805			 * byte-granular fashion.
2806			 */
2807			struct vnode *vp;
2808			vm_object_t obj;
2809			vm_offset_t toff;
2810			vm_offset_t tinc;
2811
2812			/*
2813			 * Step 1, bring in the VM pages from the object,
2814			 * allocating them if necessary.  We must clear
2815			 * B_CACHE if these pages are not valid for the
2816			 * range covered by the buffer.
2817			 */
2818
2819			vp = bp->b_vp;
2820			obj = bp->b_bufobj->bo_object;
2821
2822			VM_OBJECT_LOCK(obj);
2823			while (bp->b_npages < desiredpages) {
2824				vm_page_t m;
2825				vm_pindex_t pi;
2826
2827				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2828				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2829					/*
2830					 * note: must allocate system pages
2831					 * since blocking here could intefere
2832					 * with paging I/O, no matter which
2833					 * process we are.
2834					 */
2835					m = vm_page_alloc(obj, pi,
2836					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2837					    VM_ALLOC_WIRED);
2838					if (m == NULL) {
2839						atomic_add_int(&vm_pageout_deficit,
2840						    desiredpages - bp->b_npages);
2841						VM_OBJECT_UNLOCK(obj);
2842						VM_WAIT;
2843						VM_OBJECT_LOCK(obj);
2844					} else {
2845						bp->b_flags &= ~B_CACHE;
2846						bp->b_pages[bp->b_npages] = m;
2847						++bp->b_npages;
2848					}
2849					continue;
2850				}
2851
2852				/*
2853				 * We found a page.  If we have to sleep on it,
2854				 * retry because it might have gotten freed out
2855				 * from under us.
2856				 *
2857				 * We can only test PG_BUSY here.  Blocking on
2858				 * m->busy might lead to a deadlock:
2859				 *
2860				 *  vm_fault->getpages->cluster_read->allocbuf
2861				 *
2862				 */
2863				vm_page_lock_queues();
2864				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2865					continue;
2866
2867				/*
2868				 * We have a good page.  Should we wakeup the
2869				 * page daemon?
2870				 */
2871				if ((curproc != pageproc) &&
2872				    (VM_PAGE_INQUEUE1(m, PQ_CACHE)) &&
2873				    ((cnt.v_free_count + cnt.v_cache_count) <
2874			 		(cnt.v_free_min + cnt.v_cache_min))) {
2875					pagedaemon_wakeup();
2876				}
2877				vm_page_wire(m);
2878				vm_page_unlock_queues();
2879				bp->b_pages[bp->b_npages] = m;
2880				++bp->b_npages;
2881			}
2882
2883			/*
2884			 * Step 2.  We've loaded the pages into the buffer,
2885			 * we have to figure out if we can still have B_CACHE
2886			 * set.  Note that B_CACHE is set according to the
2887			 * byte-granular range ( bcount and size ), new the
2888			 * aligned range ( newbsize ).
2889			 *
2890			 * The VM test is against m->valid, which is DEV_BSIZE
2891			 * aligned.  Needless to say, the validity of the data
2892			 * needs to also be DEV_BSIZE aligned.  Note that this
2893			 * fails with NFS if the server or some other client
2894			 * extends the file's EOF.  If our buffer is resized,
2895			 * B_CACHE may remain set! XXX
2896			 */
2897
2898			toff = bp->b_bcount;
2899			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2900
2901			while ((bp->b_flags & B_CACHE) && toff < size) {
2902				vm_pindex_t pi;
2903
2904				if (tinc > (size - toff))
2905					tinc = size - toff;
2906
2907				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2908				    PAGE_SHIFT;
2909
2910				vfs_buf_test_cache(
2911				    bp,
2912				    bp->b_offset,
2913				    toff,
2914				    tinc,
2915				    bp->b_pages[pi]
2916				);
2917				toff += tinc;
2918				tinc = PAGE_SIZE;
2919			}
2920			VM_OBJECT_UNLOCK(obj);
2921
2922			/*
2923			 * Step 3, fixup the KVM pmap.  Remember that
2924			 * bp->b_data is relative to bp->b_offset, but
2925			 * bp->b_offset may be offset into the first page.
2926			 */
2927
2928			bp->b_data = (caddr_t)
2929			    trunc_page((vm_offset_t)bp->b_data);
2930			pmap_qenter(
2931			    (vm_offset_t)bp->b_data,
2932			    bp->b_pages,
2933			    bp->b_npages
2934			);
2935
2936			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2937			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2938		}
2939	}
2940	if (newbsize < bp->b_bufsize)
2941		bufspacewakeup();
2942	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2943	bp->b_bcount = size;		/* requested buffer size	*/
2944	return 1;
2945}
2946
2947void
2948biodone(struct bio *bp)
2949{
2950	void (*done)(struct bio *);
2951
2952	mtx_lock(&bdonelock);
2953	bp->bio_flags |= BIO_DONE;
2954	done = bp->bio_done;
2955	if (done == NULL)
2956		wakeup(bp);
2957	mtx_unlock(&bdonelock);
2958	if (done != NULL)
2959		done(bp);
2960}
2961
2962/*
2963 * Wait for a BIO to finish.
2964 *
2965 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2966 * case is not yet clear.
2967 */
2968int
2969biowait(struct bio *bp, const char *wchan)
2970{
2971
2972	mtx_lock(&bdonelock);
2973	while ((bp->bio_flags & BIO_DONE) == 0)
2974		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2975	mtx_unlock(&bdonelock);
2976	if (bp->bio_error != 0)
2977		return (bp->bio_error);
2978	if (!(bp->bio_flags & BIO_ERROR))
2979		return (0);
2980	return (EIO);
2981}
2982
2983void
2984biofinish(struct bio *bp, struct devstat *stat, int error)
2985{
2986
2987	if (error) {
2988		bp->bio_error = error;
2989		bp->bio_flags |= BIO_ERROR;
2990	}
2991	if (stat != NULL)
2992		devstat_end_transaction_bio(stat, bp);
2993	biodone(bp);
2994}
2995
2996/*
2997 *	bufwait:
2998 *
2999 *	Wait for buffer I/O completion, returning error status.  The buffer
3000 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3001 *	error and cleared.
3002 */
3003int
3004bufwait(struct buf *bp)
3005{
3006	if (bp->b_iocmd == BIO_READ)
3007		bwait(bp, PRIBIO, "biord");
3008	else
3009		bwait(bp, PRIBIO, "biowr");
3010	if (bp->b_flags & B_EINTR) {
3011		bp->b_flags &= ~B_EINTR;
3012		return (EINTR);
3013	}
3014	if (bp->b_ioflags & BIO_ERROR) {
3015		return (bp->b_error ? bp->b_error : EIO);
3016	} else {
3017		return (0);
3018	}
3019}
3020
3021 /*
3022  * Call back function from struct bio back up to struct buf.
3023  */
3024static void
3025bufdonebio(struct bio *bip)
3026{
3027	struct buf *bp;
3028
3029	bp = bip->bio_caller2;
3030	bp->b_resid = bp->b_bcount - bip->bio_completed;
3031	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3032	bp->b_ioflags = bip->bio_flags;
3033	bp->b_error = bip->bio_error;
3034	if (bp->b_error)
3035		bp->b_ioflags |= BIO_ERROR;
3036	bufdone(bp);
3037	g_destroy_bio(bip);
3038}
3039
3040void
3041dev_strategy(struct cdev *dev, struct buf *bp)
3042{
3043	struct cdevsw *csw;
3044	struct bio *bip;
3045
3046	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3047		panic("b_iocmd botch");
3048	for (;;) {
3049		bip = g_new_bio();
3050		if (bip != NULL)
3051			break;
3052		/* Try again later */
3053		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3054	}
3055	bip->bio_cmd = bp->b_iocmd;
3056	bip->bio_offset = bp->b_iooffset;
3057	bip->bio_length = bp->b_bcount;
3058	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3059	bip->bio_data = bp->b_data;
3060	bip->bio_done = bufdonebio;
3061	bip->bio_caller2 = bp;
3062	bip->bio_dev = dev;
3063	KASSERT(dev->si_refcount > 0,
3064	    ("dev_strategy on un-referenced struct cdev *(%s)",
3065	    devtoname(dev)));
3066	csw = dev_refthread(dev);
3067	if (csw == NULL) {
3068		g_destroy_bio(bip);
3069		bp->b_error = ENXIO;
3070		bp->b_ioflags = BIO_ERROR;
3071		bufdone(bp);
3072		return;
3073	}
3074	(*csw->d_strategy)(bip);
3075	dev_relthread(dev);
3076}
3077
3078/*
3079 *	bufdone:
3080 *
3081 *	Finish I/O on a buffer, optionally calling a completion function.
3082 *	This is usually called from an interrupt so process blocking is
3083 *	not allowed.
3084 *
3085 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3086 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3087 *	assuming B_INVAL is clear.
3088 *
3089 *	For the VMIO case, we set B_CACHE if the op was a read and no
3090 *	read error occured, or if the op was a write.  B_CACHE is never
3091 *	set if the buffer is invalid or otherwise uncacheable.
3092 *
3093 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3094 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3095 *	in the biodone routine.
3096 */
3097void
3098bufdone(struct buf *bp)
3099{
3100	struct bufobj *dropobj;
3101	void    (*biodone)(struct buf *);
3102
3103	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3104	dropobj = NULL;
3105
3106	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3107	    BUF_REFCNT(bp)));
3108	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3109
3110	runningbufwakeup(bp);
3111	if (bp->b_iocmd == BIO_WRITE)
3112		dropobj = bp->b_bufobj;
3113	/* call optional completion function if requested */
3114	if (bp->b_iodone != NULL) {
3115		biodone = bp->b_iodone;
3116		bp->b_iodone = NULL;
3117		(*biodone) (bp);
3118		if (dropobj)
3119			bufobj_wdrop(dropobj);
3120		return;
3121	}
3122
3123	bufdone_finish(bp);
3124
3125	if (dropobj)
3126		bufobj_wdrop(dropobj);
3127}
3128
3129void
3130bufdone_finish(struct buf *bp)
3131{
3132	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3133	    BUF_REFCNT(bp)));
3134
3135	if (LIST_FIRST(&bp->b_dep) != NULL)
3136		buf_complete(bp);
3137
3138	if (bp->b_flags & B_VMIO) {
3139		int i;
3140		vm_ooffset_t foff;
3141		vm_page_t m;
3142		vm_object_t obj;
3143		int iosize;
3144		struct vnode *vp = bp->b_vp;
3145
3146		obj = bp->b_bufobj->bo_object;
3147
3148#if defined(VFS_BIO_DEBUG)
3149		mp_fixme("usecount and vflag accessed without locks.");
3150		if (vp->v_usecount == 0) {
3151			panic("biodone: zero vnode ref count");
3152		}
3153
3154		KASSERT(vp->v_object != NULL,
3155			("biodone: vnode %p has no vm_object", vp));
3156#endif
3157
3158		foff = bp->b_offset;
3159		KASSERT(bp->b_offset != NOOFFSET,
3160		    ("biodone: no buffer offset"));
3161
3162		VM_OBJECT_LOCK(obj);
3163#if defined(VFS_BIO_DEBUG)
3164		if (obj->paging_in_progress < bp->b_npages) {
3165			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3166			    obj->paging_in_progress, bp->b_npages);
3167		}
3168#endif
3169
3170		/*
3171		 * Set B_CACHE if the op was a normal read and no error
3172		 * occured.  B_CACHE is set for writes in the b*write()
3173		 * routines.
3174		 */
3175		iosize = bp->b_bcount - bp->b_resid;
3176		if (bp->b_iocmd == BIO_READ &&
3177		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3178		    !(bp->b_ioflags & BIO_ERROR)) {
3179			bp->b_flags |= B_CACHE;
3180		}
3181		vm_page_lock_queues();
3182		for (i = 0; i < bp->b_npages; i++) {
3183			int bogusflag = 0;
3184			int resid;
3185
3186			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3187			if (resid > iosize)
3188				resid = iosize;
3189
3190			/*
3191			 * cleanup bogus pages, restoring the originals
3192			 */
3193			m = bp->b_pages[i];
3194			if (m == bogus_page) {
3195				bogusflag = 1;
3196				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3197				if (m == NULL)
3198					panic("biodone: page disappeared!");
3199				bp->b_pages[i] = m;
3200				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3201				    bp->b_pages, bp->b_npages);
3202			}
3203#if defined(VFS_BIO_DEBUG)
3204			if (OFF_TO_IDX(foff) != m->pindex) {
3205				printf(
3206"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3207				    (intmax_t)foff, (uintmax_t)m->pindex);
3208			}
3209#endif
3210
3211			/*
3212			 * In the write case, the valid and clean bits are
3213			 * already changed correctly ( see bdwrite() ), so we
3214			 * only need to do this here in the read case.
3215			 */
3216			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3217				vfs_page_set_valid(bp, foff, i, m);
3218			}
3219
3220			/*
3221			 * when debugging new filesystems or buffer I/O methods, this
3222			 * is the most common error that pops up.  if you see this, you
3223			 * have not set the page busy flag correctly!!!
3224			 */
3225			if (m->busy == 0) {
3226				printf("biodone: page busy < 0, "
3227				    "pindex: %d, foff: 0x(%x,%x), "
3228				    "resid: %d, index: %d\n",
3229				    (int) m->pindex, (int)(foff >> 32),
3230						(int) foff & 0xffffffff, resid, i);
3231				if (!vn_isdisk(vp, NULL))
3232					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3233					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3234					    (intmax_t) bp->b_lblkno,
3235					    bp->b_flags, bp->b_npages);
3236				else
3237					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3238					    (intmax_t) bp->b_lblkno,
3239					    bp->b_flags, bp->b_npages);
3240				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3241				    (u_long)m->valid, (u_long)m->dirty,
3242				    m->wire_count);
3243				panic("biodone: page busy < 0\n");
3244			}
3245			vm_page_io_finish(m);
3246			vm_object_pip_subtract(obj, 1);
3247			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3248			iosize -= resid;
3249		}
3250		vm_page_unlock_queues();
3251		vm_object_pip_wakeupn(obj, 0);
3252		VM_OBJECT_UNLOCK(obj);
3253	}
3254
3255	/*
3256	 * For asynchronous completions, release the buffer now. The brelse
3257	 * will do a wakeup there if necessary - so no need to do a wakeup
3258	 * here in the async case. The sync case always needs to do a wakeup.
3259	 */
3260
3261	if (bp->b_flags & B_ASYNC) {
3262		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3263			brelse(bp);
3264		else
3265			bqrelse(bp);
3266	} else
3267		bdone(bp);
3268}
3269
3270/*
3271 * This routine is called in lieu of iodone in the case of
3272 * incomplete I/O.  This keeps the busy status for pages
3273 * consistant.
3274 */
3275void
3276vfs_unbusy_pages(struct buf *bp)
3277{
3278	int i;
3279	vm_object_t obj;
3280	vm_page_t m;
3281
3282	runningbufwakeup(bp);
3283	if (!(bp->b_flags & B_VMIO))
3284		return;
3285
3286	obj = bp->b_bufobj->bo_object;
3287	VM_OBJECT_LOCK(obj);
3288	vm_page_lock_queues();
3289	for (i = 0; i < bp->b_npages; i++) {
3290		m = bp->b_pages[i];
3291		if (m == bogus_page) {
3292			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3293			if (!m)
3294				panic("vfs_unbusy_pages: page missing\n");
3295			bp->b_pages[i] = m;
3296			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3297			    bp->b_pages, bp->b_npages);
3298		}
3299		vm_object_pip_subtract(obj, 1);
3300		vm_page_io_finish(m);
3301	}
3302	vm_page_unlock_queues();
3303	vm_object_pip_wakeupn(obj, 0);
3304	VM_OBJECT_UNLOCK(obj);
3305}
3306
3307/*
3308 * vfs_page_set_valid:
3309 *
3310 *	Set the valid bits in a page based on the supplied offset.   The
3311 *	range is restricted to the buffer's size.
3312 *
3313 *	This routine is typically called after a read completes.
3314 */
3315static void
3316vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3317{
3318	vm_ooffset_t soff, eoff;
3319
3320	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3321	/*
3322	 * Start and end offsets in buffer.  eoff - soff may not cross a
3323	 * page boundry or cross the end of the buffer.  The end of the
3324	 * buffer, in this case, is our file EOF, not the allocation size
3325	 * of the buffer.
3326	 */
3327	soff = off;
3328	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3329	if (eoff > bp->b_offset + bp->b_bcount)
3330		eoff = bp->b_offset + bp->b_bcount;
3331
3332	/*
3333	 * Set valid range.  This is typically the entire buffer and thus the
3334	 * entire page.
3335	 */
3336	if (eoff > soff) {
3337		vm_page_set_validclean(
3338		    m,
3339		   (vm_offset_t) (soff & PAGE_MASK),
3340		   (vm_offset_t) (eoff - soff)
3341		);
3342	}
3343}
3344
3345/*
3346 * This routine is called before a device strategy routine.
3347 * It is used to tell the VM system that paging I/O is in
3348 * progress, and treat the pages associated with the buffer
3349 * almost as being PG_BUSY.  Also the object paging_in_progress
3350 * flag is handled to make sure that the object doesn't become
3351 * inconsistant.
3352 *
3353 * Since I/O has not been initiated yet, certain buffer flags
3354 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3355 * and should be ignored.
3356 */
3357void
3358vfs_busy_pages(struct buf *bp, int clear_modify)
3359{
3360	int i, bogus;
3361	vm_object_t obj;
3362	vm_ooffset_t foff;
3363	vm_page_t m;
3364
3365	if (!(bp->b_flags & B_VMIO))
3366		return;
3367
3368	obj = bp->b_bufobj->bo_object;
3369	foff = bp->b_offset;
3370	KASSERT(bp->b_offset != NOOFFSET,
3371	    ("vfs_busy_pages: no buffer offset"));
3372	vfs_setdirty(bp);
3373	VM_OBJECT_LOCK(obj);
3374retry:
3375	vm_page_lock_queues();
3376	for (i = 0; i < bp->b_npages; i++) {
3377		m = bp->b_pages[i];
3378
3379		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3380			goto retry;
3381	}
3382	bogus = 0;
3383	for (i = 0; i < bp->b_npages; i++) {
3384		m = bp->b_pages[i];
3385
3386		if ((bp->b_flags & B_CLUSTER) == 0) {
3387			vm_object_pip_add(obj, 1);
3388			vm_page_io_start(m);
3389		}
3390		/*
3391		 * When readying a buffer for a read ( i.e
3392		 * clear_modify == 0 ), it is important to do
3393		 * bogus_page replacement for valid pages in
3394		 * partially instantiated buffers.  Partially
3395		 * instantiated buffers can, in turn, occur when
3396		 * reconstituting a buffer from its VM backing store
3397		 * base.  We only have to do this if B_CACHE is
3398		 * clear ( which causes the I/O to occur in the
3399		 * first place ).  The replacement prevents the read
3400		 * I/O from overwriting potentially dirty VM-backed
3401		 * pages.  XXX bogus page replacement is, uh, bogus.
3402		 * It may not work properly with small-block devices.
3403		 * We need to find a better way.
3404		 */
3405		pmap_remove_all(m);
3406		if (clear_modify)
3407			vfs_page_set_valid(bp, foff, i, m);
3408		else if (m->valid == VM_PAGE_BITS_ALL &&
3409		    (bp->b_flags & B_CACHE) == 0) {
3410			bp->b_pages[i] = bogus_page;
3411			bogus++;
3412		}
3413		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3414	}
3415	vm_page_unlock_queues();
3416	VM_OBJECT_UNLOCK(obj);
3417	if (bogus)
3418		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3419		    bp->b_pages, bp->b_npages);
3420}
3421
3422/*
3423 * Tell the VM system that the pages associated with this buffer
3424 * are clean.  This is used for delayed writes where the data is
3425 * going to go to disk eventually without additional VM intevention.
3426 *
3427 * Note that while we only really need to clean through to b_bcount, we
3428 * just go ahead and clean through to b_bufsize.
3429 */
3430static void
3431vfs_clean_pages(struct buf *bp)
3432{
3433	int i;
3434	vm_ooffset_t foff, noff, eoff;
3435	vm_page_t m;
3436
3437	if (!(bp->b_flags & B_VMIO))
3438		return;
3439
3440	foff = bp->b_offset;
3441	KASSERT(bp->b_offset != NOOFFSET,
3442	    ("vfs_clean_pages: no buffer offset"));
3443	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3444	vm_page_lock_queues();
3445	for (i = 0; i < bp->b_npages; i++) {
3446		m = bp->b_pages[i];
3447		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3448		eoff = noff;
3449
3450		if (eoff > bp->b_offset + bp->b_bufsize)
3451			eoff = bp->b_offset + bp->b_bufsize;
3452		vfs_page_set_valid(bp, foff, i, m);
3453		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3454		foff = noff;
3455	}
3456	vm_page_unlock_queues();
3457	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3458}
3459
3460/*
3461 *	vfs_bio_set_validclean:
3462 *
3463 *	Set the range within the buffer to valid and clean.  The range is
3464 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3465 *	itself may be offset from the beginning of the first page.
3466 *
3467 */
3468
3469void
3470vfs_bio_set_validclean(struct buf *bp, int base, int size)
3471{
3472	int i, n;
3473	vm_page_t m;
3474
3475	if (!(bp->b_flags & B_VMIO))
3476		return;
3477	/*
3478	 * Fixup base to be relative to beginning of first page.
3479	 * Set initial n to be the maximum number of bytes in the
3480	 * first page that can be validated.
3481	 */
3482
3483	base += (bp->b_offset & PAGE_MASK);
3484	n = PAGE_SIZE - (base & PAGE_MASK);
3485
3486	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3487	vm_page_lock_queues();
3488	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3489		m = bp->b_pages[i];
3490		if (n > size)
3491			n = size;
3492		vm_page_set_validclean(m, base & PAGE_MASK, n);
3493		base += n;
3494		size -= n;
3495		n = PAGE_SIZE;
3496	}
3497	vm_page_unlock_queues();
3498	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3499}
3500
3501/*
3502 *	vfs_bio_clrbuf:
3503 *
3504 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3505 *	to clear BIO_ERROR and B_INVAL.
3506 *
3507 *	Note that while we only theoretically need to clear through b_bcount,
3508 *	we go ahead and clear through b_bufsize.
3509 */
3510
3511void
3512vfs_bio_clrbuf(struct buf *bp)
3513{
3514	int i, j, mask = 0;
3515	caddr_t sa, ea;
3516
3517	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3518		clrbuf(bp);
3519		return;
3520	}
3521
3522	bp->b_flags &= ~B_INVAL;
3523	bp->b_ioflags &= ~BIO_ERROR;
3524	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3525	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3526	    (bp->b_offset & PAGE_MASK) == 0) {
3527		if (bp->b_pages[0] == bogus_page)
3528			goto unlock;
3529		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3530		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3531		if ((bp->b_pages[0]->valid & mask) == mask)
3532			goto unlock;
3533		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3534		    ((bp->b_pages[0]->valid & mask) == 0)) {
3535			bzero(bp->b_data, bp->b_bufsize);
3536			bp->b_pages[0]->valid |= mask;
3537			goto unlock;
3538		}
3539	}
3540	ea = sa = bp->b_data;
3541	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3542		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3543		ea = (caddr_t)(vm_offset_t)ulmin(
3544		    (u_long)(vm_offset_t)ea,
3545		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3546		if (bp->b_pages[i] == bogus_page)
3547			continue;
3548		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3549		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3550		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3551		if ((bp->b_pages[i]->valid & mask) == mask)
3552			continue;
3553		if ((bp->b_pages[i]->valid & mask) == 0) {
3554			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3555				bzero(sa, ea - sa);
3556		} else {
3557			for (; sa < ea; sa += DEV_BSIZE, j++) {
3558				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3559				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3560					bzero(sa, DEV_BSIZE);
3561			}
3562		}
3563		bp->b_pages[i]->valid |= mask;
3564	}
3565unlock:
3566	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3567	bp->b_resid = 0;
3568}
3569
3570/*
3571 * vm_hold_load_pages and vm_hold_free_pages get pages into
3572 * a buffers address space.  The pages are anonymous and are
3573 * not associated with a file object.
3574 */
3575static void
3576vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3577{
3578	vm_offset_t pg;
3579	vm_page_t p;
3580	int index;
3581
3582	to = round_page(to);
3583	from = round_page(from);
3584	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3585
3586	VM_OBJECT_LOCK(kernel_object);
3587	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3588tryagain:
3589		/*
3590		 * note: must allocate system pages since blocking here
3591		 * could intefere with paging I/O, no matter which
3592		 * process we are.
3593		 */
3594		p = vm_page_alloc(kernel_object,
3595			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3596		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3597		if (!p) {
3598			atomic_add_int(&vm_pageout_deficit,
3599			    (to - pg) >> PAGE_SHIFT);
3600			VM_OBJECT_UNLOCK(kernel_object);
3601			VM_WAIT;
3602			VM_OBJECT_LOCK(kernel_object);
3603			goto tryagain;
3604		}
3605		p->valid = VM_PAGE_BITS_ALL;
3606		pmap_qenter(pg, &p, 1);
3607		bp->b_pages[index] = p;
3608	}
3609	VM_OBJECT_UNLOCK(kernel_object);
3610	bp->b_npages = index;
3611}
3612
3613/* Return pages associated with this buf to the vm system */
3614static void
3615vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3616{
3617	vm_offset_t pg;
3618	vm_page_t p;
3619	int index, newnpages;
3620
3621	from = round_page(from);
3622	to = round_page(to);
3623	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3624
3625	VM_OBJECT_LOCK(kernel_object);
3626	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3627		p = bp->b_pages[index];
3628		if (p && (index < bp->b_npages)) {
3629			if (p->busy) {
3630				printf(
3631			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3632				    (intmax_t)bp->b_blkno,
3633				    (intmax_t)bp->b_lblkno);
3634			}
3635			bp->b_pages[index] = NULL;
3636			pmap_qremove(pg, 1);
3637			vm_page_lock_queues();
3638			vm_page_unwire(p, 0);
3639			vm_page_free(p);
3640			vm_page_unlock_queues();
3641		}
3642	}
3643	VM_OBJECT_UNLOCK(kernel_object);
3644	bp->b_npages = newnpages;
3645}
3646
3647/*
3648 * Map an IO request into kernel virtual address space.
3649 *
3650 * All requests are (re)mapped into kernel VA space.
3651 * Notice that we use b_bufsize for the size of the buffer
3652 * to be mapped.  b_bcount might be modified by the driver.
3653 *
3654 * Note that even if the caller determines that the address space should
3655 * be valid, a race or a smaller-file mapped into a larger space may
3656 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3657 * check the return value.
3658 */
3659int
3660vmapbuf(struct buf *bp)
3661{
3662	caddr_t addr, kva;
3663	vm_prot_t prot;
3664	int pidx, i;
3665	struct vm_page *m;
3666	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3667
3668	if (bp->b_bufsize < 0)
3669		return (-1);
3670	prot = VM_PROT_READ;
3671	if (bp->b_iocmd == BIO_READ)
3672		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3673	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3674	     addr < bp->b_data + bp->b_bufsize;
3675	     addr += PAGE_SIZE, pidx++) {
3676		/*
3677		 * Do the vm_fault if needed; do the copy-on-write thing
3678		 * when reading stuff off device into memory.
3679		 *
3680		 * NOTE! Must use pmap_extract() because addr may be in
3681		 * the userland address space, and kextract is only guarenteed
3682		 * to work for the kernland address space (see: sparc64 port).
3683		 */
3684retry:
3685		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3686		    prot) < 0) {
3687			vm_page_lock_queues();
3688			for (i = 0; i < pidx; ++i) {
3689				vm_page_unhold(bp->b_pages[i]);
3690				bp->b_pages[i] = NULL;
3691			}
3692			vm_page_unlock_queues();
3693			return(-1);
3694		}
3695		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3696		if (m == NULL)
3697			goto retry;
3698		bp->b_pages[pidx] = m;
3699	}
3700	if (pidx > btoc(MAXPHYS))
3701		panic("vmapbuf: mapped more than MAXPHYS");
3702	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3703
3704	kva = bp->b_saveaddr;
3705	bp->b_npages = pidx;
3706	bp->b_saveaddr = bp->b_data;
3707	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3708	return(0);
3709}
3710
3711/*
3712 * Free the io map PTEs associated with this IO operation.
3713 * We also invalidate the TLB entries and restore the original b_addr.
3714 */
3715void
3716vunmapbuf(struct buf *bp)
3717{
3718	int pidx;
3719	int npages;
3720
3721	npages = bp->b_npages;
3722	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3723	vm_page_lock_queues();
3724	for (pidx = 0; pidx < npages; pidx++)
3725		vm_page_unhold(bp->b_pages[pidx]);
3726	vm_page_unlock_queues();
3727
3728	bp->b_data = bp->b_saveaddr;
3729}
3730
3731void
3732bdone(struct buf *bp)
3733{
3734
3735	mtx_lock(&bdonelock);
3736	bp->b_flags |= B_DONE;
3737	wakeup(bp);
3738	mtx_unlock(&bdonelock);
3739}
3740
3741void
3742bwait(struct buf *bp, u_char pri, const char *wchan)
3743{
3744
3745	mtx_lock(&bdonelock);
3746	while ((bp->b_flags & B_DONE) == 0)
3747		msleep(bp, &bdonelock, pri, wchan, 0);
3748	mtx_unlock(&bdonelock);
3749}
3750
3751int
3752bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3753{
3754
3755	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3756}
3757
3758void
3759bufstrategy(struct bufobj *bo, struct buf *bp)
3760{
3761	int i = 0;
3762	struct vnode *vp;
3763
3764	vp = bp->b_vp;
3765	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3766	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3767	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3768	i = VOP_STRATEGY(vp, bp);
3769	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3770}
3771
3772void
3773bufobj_wrefl(struct bufobj *bo)
3774{
3775
3776	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3777	ASSERT_BO_LOCKED(bo);
3778	bo->bo_numoutput++;
3779}
3780
3781void
3782bufobj_wref(struct bufobj *bo)
3783{
3784
3785	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3786	BO_LOCK(bo);
3787	bo->bo_numoutput++;
3788	BO_UNLOCK(bo);
3789}
3790
3791void
3792bufobj_wdrop(struct bufobj *bo)
3793{
3794
3795	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3796	BO_LOCK(bo);
3797	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3798	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3799		bo->bo_flag &= ~BO_WWAIT;
3800		wakeup(&bo->bo_numoutput);
3801	}
3802	BO_UNLOCK(bo);
3803}
3804
3805int
3806bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3807{
3808	int error;
3809
3810	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3811	ASSERT_BO_LOCKED(bo);
3812	error = 0;
3813	while (bo->bo_numoutput) {
3814		bo->bo_flag |= BO_WWAIT;
3815		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3816		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3817		if (error)
3818			break;
3819	}
3820	return (error);
3821}
3822
3823void
3824bpin(struct buf *bp)
3825{
3826	mtx_lock(&bpinlock);
3827	bp->b_pin_count++;
3828	mtx_unlock(&bpinlock);
3829}
3830
3831void
3832bunpin(struct buf *bp)
3833{
3834	mtx_lock(&bpinlock);
3835	if (--bp->b_pin_count == 0)
3836		wakeup(bp);
3837	mtx_unlock(&bpinlock);
3838}
3839
3840void
3841bunpin_wait(struct buf *bp)
3842{
3843	mtx_lock(&bpinlock);
3844	while (bp->b_pin_count > 0)
3845		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3846	mtx_unlock(&bpinlock);
3847}
3848
3849#include "opt_ddb.h"
3850#ifdef DDB
3851#include <ddb/ddb.h>
3852
3853/* DDB command to show buffer data */
3854DB_SHOW_COMMAND(buffer, db_show_buffer)
3855{
3856	/* get args */
3857	struct buf *bp = (struct buf *)addr;
3858
3859	if (!have_addr) {
3860		db_printf("usage: show buffer <addr>\n");
3861		return;
3862	}
3863
3864	db_printf("buf at %p\n", bp);
3865	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3866	db_printf(
3867	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3868	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3869	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3870	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3871	if (bp->b_npages) {
3872		int i;
3873		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3874		for (i = 0; i < bp->b_npages; i++) {
3875			vm_page_t m;
3876			m = bp->b_pages[i];
3877			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3878			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3879			if ((i + 1) < bp->b_npages)
3880				db_printf(",");
3881		}
3882		db_printf("\n");
3883	}
3884	lockmgr_printinfo(&bp->b_lock);
3885}
3886
3887DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3888{
3889	struct buf *bp;
3890	int i;
3891
3892	for (i = 0; i < nbuf; i++) {
3893		bp = &buf[i];
3894		if (lockcount(&bp->b_lock)) {
3895			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3896			db_printf("\n");
3897		}
3898	}
3899}
3900#endif /* DDB */
3901