vfs_bio.c revision 15583
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.88 1996/03/09 06:46:51 dyson Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#include "opt_bounce.h"
36
37#define VMIO
38#include <sys/param.h>
39#include <sys/systm.h>
40#include <sys/sysproto.h>
41#include <sys/kernel.h>
42#include <sys/sysctl.h>
43#include <sys/proc.h>
44#include <sys/vnode.h>
45#include <sys/vmmeter.h>
46#include <vm/vm.h>
47#include <vm/vm_param.h>
48#include <vm/vm_prot.h>
49#include <vm/vm_kern.h>
50#include <vm/vm_pageout.h>
51#include <vm/vm_page.h>
52#include <vm/vm_object.h>
53#include <vm/vm_extern.h>
54#include <sys/buf.h>
55#include <sys/mount.h>
56#include <sys/malloc.h>
57#include <sys/resourcevar.h>
58#include <sys/proc.h>
59
60#include <miscfs/specfs/specdev.h>
61
62static void vfs_update __P((void));
63static struct	proc *updateproc;
64static struct kproc_desc up_kp = {
65	"update",
66	vfs_update,
67	&updateproc
68};
69SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
70
71struct buf *buf;		/* buffer header pool */
72struct swqueue bswlist;
73
74int count_lock_queue __P((void));
75static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
78		vm_offset_t to);
79static void vfs_clean_pages(struct buf * bp);
80static void vfs_setdirty(struct buf *bp);
81static void vfs_vmio_release(struct buf *bp);
82
83int needsbuffer;
84
85/*
86 * Internal update daemon, process 3
87 *	The variable vfs_update_wakeup allows for internal syncs.
88 */
89int vfs_update_wakeup;
90
91
92/*
93 * buffers base kva
94 */
95caddr_t buffers_kva;
96
97/*
98 * bogus page -- for I/O to/from partially complete buffers
99 * this is a temporary solution to the problem, but it is not
100 * really that bad.  it would be better to split the buffer
101 * for input in the case of buffers partially already in memory,
102 * but the code is intricate enough already.
103 */
104vm_page_t bogus_page;
105static vm_offset_t bogus_offset;
106
107static int bufspace, maxbufspace, vmiospace, maxvmiobufspace,
108	bufmallocspace, maxbufmallocspace;
109
110static struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
111static struct bqueues bufqueues[BUFFER_QUEUES];
112
113extern int vm_swap_size;
114
115#define BUF_MAXUSE 8
116
117/*
118 * Initialize buffer headers and related structures.
119 */
120void
121bufinit()
122{
123	struct buf *bp;
124	int i;
125
126	TAILQ_INIT(&bswlist);
127	LIST_INIT(&invalhash);
128
129	/* first, make a null hash table */
130	for (i = 0; i < BUFHSZ; i++)
131		LIST_INIT(&bufhashtbl[i]);
132
133	/* next, make a null set of free lists */
134	for (i = 0; i < BUFFER_QUEUES; i++)
135		TAILQ_INIT(&bufqueues[i]);
136
137	buffers_kva = (caddr_t) kmem_alloc_pageable(buffer_map, MAXBSIZE * nbuf);
138	/* finally, initialize each buffer header and stick on empty q */
139	for (i = 0; i < nbuf; i++) {
140		bp = &buf[i];
141		bzero(bp, sizeof *bp);
142		bp->b_flags = B_INVAL;	/* we're just an empty header */
143		bp->b_dev = NODEV;
144		bp->b_rcred = NOCRED;
145		bp->b_wcred = NOCRED;
146		bp->b_qindex = QUEUE_EMPTY;
147		bp->b_vnbufs.le_next = NOLIST;
148		bp->b_data = buffers_kva + i * MAXBSIZE;
149		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
150		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
151	}
152/*
153 * maxbufspace is currently calculated to support all filesystem blocks
154 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
155 * cache is still the same as it would be for 8K filesystems.  This
156 * keeps the size of the buffer cache "in check" for big block filesystems.
157 */
158	maxbufspace = 2 * (nbuf + 8) * PAGE_SIZE;
159/*
160 * reserve 1/3 of the buffers for metadata (VDIR) which might not be VMIO'ed
161 */
162	maxvmiobufspace = 2 * maxbufspace / 3;
163/*
164 * Limit the amount of malloc memory since it is wired permanently into
165 * the kernel space.  Even though this is accounted for in the buffer
166 * allocation, we don't want the malloced region to grow uncontrolled.
167 * The malloc scheme improves memory utilization significantly on average
168 * (small) directories.
169 */
170	maxbufmallocspace = maxbufspace / 20;
171
172	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
173	bogus_page = vm_page_alloc(kernel_object,
174			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
175			VM_ALLOC_NORMAL);
176
177}
178
179/*
180 * remove the buffer from the appropriate free list
181 */
182void
183bremfree(struct buf * bp)
184{
185	int s = splbio();
186
187	if (bp->b_qindex != QUEUE_NONE) {
188		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
189		bp->b_qindex = QUEUE_NONE;
190	} else {
191		panic("bremfree: removing a buffer when not on a queue");
192	}
193	splx(s);
194}
195
196/*
197 * Get a buffer with the specified data.  Look in the cache first.
198 */
199int
200bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
201    struct buf ** bpp)
202{
203	struct buf *bp;
204
205	bp = getblk(vp, blkno, size, 0, 0);
206	*bpp = bp;
207
208	/* if not found in cache, do some I/O */
209	if ((bp->b_flags & B_CACHE) == 0) {
210		if (curproc != NULL)
211			curproc->p_stats->p_ru.ru_inblock++;
212		bp->b_flags |= B_READ;
213		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
214		if (bp->b_rcred == NOCRED) {
215			if (cred != NOCRED)
216				crhold(cred);
217			bp->b_rcred = cred;
218		}
219		vfs_busy_pages(bp, 0);
220		VOP_STRATEGY(bp);
221		return (biowait(bp));
222	}
223	return (0);
224}
225
226/*
227 * Operates like bread, but also starts asynchronous I/O on
228 * read-ahead blocks.
229 */
230int
231breadn(struct vnode * vp, daddr_t blkno, int size,
232    daddr_t * rablkno, int *rabsize,
233    int cnt, struct ucred * cred, struct buf ** bpp)
234{
235	struct buf *bp, *rabp;
236	int i;
237	int rv = 0, readwait = 0;
238
239	*bpp = bp = getblk(vp, blkno, size, 0, 0);
240
241	/* if not found in cache, do some I/O */
242	if ((bp->b_flags & B_CACHE) == 0) {
243		if (curproc != NULL)
244			curproc->p_stats->p_ru.ru_inblock++;
245		bp->b_flags |= B_READ;
246		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
247		if (bp->b_rcred == NOCRED) {
248			if (cred != NOCRED)
249				crhold(cred);
250			bp->b_rcred = cred;
251		}
252		vfs_busy_pages(bp, 0);
253		VOP_STRATEGY(bp);
254		++readwait;
255	}
256	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
257		if (inmem(vp, *rablkno))
258			continue;
259		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
260
261		if ((rabp->b_flags & B_CACHE) == 0) {
262			if (curproc != NULL)
263				curproc->p_stats->p_ru.ru_inblock++;
264			rabp->b_flags |= B_READ | B_ASYNC;
265			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
266			if (rabp->b_rcred == NOCRED) {
267				if (cred != NOCRED)
268					crhold(cred);
269				rabp->b_rcred = cred;
270			}
271			vfs_busy_pages(rabp, 0);
272			VOP_STRATEGY(rabp);
273		} else {
274			brelse(rabp);
275		}
276	}
277
278	if (readwait) {
279		rv = biowait(bp);
280	}
281	return (rv);
282}
283
284/*
285 * Write, release buffer on completion.  (Done by iodone
286 * if async.)
287 */
288int
289bwrite(struct buf * bp)
290{
291	int oldflags = bp->b_flags;
292
293	if (bp->b_flags & B_INVAL) {
294		brelse(bp);
295		return (0);
296	}
297	if (!(bp->b_flags & B_BUSY))
298		panic("bwrite: buffer is not busy???");
299
300	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
301	bp->b_flags |= B_WRITEINPROG;
302
303	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
304		reassignbuf(bp, bp->b_vp);
305	}
306
307	bp->b_vp->v_numoutput++;
308	vfs_busy_pages(bp, 1);
309	if (curproc != NULL)
310		curproc->p_stats->p_ru.ru_oublock++;
311	VOP_STRATEGY(bp);
312
313	if ((oldflags & B_ASYNC) == 0) {
314		int rtval = biowait(bp);
315
316		if (oldflags & B_DELWRI) {
317			reassignbuf(bp, bp->b_vp);
318		}
319		brelse(bp);
320		return (rtval);
321	}
322	return (0);
323}
324
325int
326vn_bwrite(ap)
327	struct vop_bwrite_args *ap;
328{
329	return (bwrite(ap->a_bp));
330}
331
332/*
333 * Delayed write. (Buffer is marked dirty).
334 */
335void
336bdwrite(struct buf * bp)
337{
338
339	if ((bp->b_flags & B_BUSY) == 0) {
340		panic("bdwrite: buffer is not busy");
341	}
342	if (bp->b_flags & B_INVAL) {
343		brelse(bp);
344		return;
345	}
346	if (bp->b_flags & B_TAPE) {
347		bawrite(bp);
348		return;
349	}
350	bp->b_flags &= ~(B_READ|B_RELBUF);
351	if ((bp->b_flags & B_DELWRI) == 0) {
352		bp->b_flags |= B_DONE | B_DELWRI;
353		reassignbuf(bp, bp->b_vp);
354	}
355
356	/*
357	 * This bmap keeps the system from needing to do the bmap later,
358	 * perhaps when the system is attempting to do a sync.  Since it
359	 * is likely that the indirect block -- or whatever other datastructure
360	 * that the filesystem needs is still in memory now, it is a good
361	 * thing to do this.  Note also, that if the pageout daemon is
362	 * requesting a sync -- there might not be enough memory to do
363	 * the bmap then...  So, this is important to do.
364	 */
365	if( bp->b_lblkno == bp->b_blkno) {
366		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
367	}
368
369	/*
370	 * Set the *dirty* buffer range based upon the VM system dirty pages.
371	 */
372	vfs_setdirty(bp);
373
374	/*
375	 * We need to do this here to satisfy the vnode_pager and the
376	 * pageout daemon, so that it thinks that the pages have been
377	 * "cleaned".  Note that since the pages are in a delayed write
378	 * buffer -- the VFS layer "will" see that the pages get written
379	 * out on the next sync, or perhaps the cluster will be completed.
380	 */
381	vfs_clean_pages(bp);
382	bqrelse(bp);
383	return;
384}
385
386/*
387 * Asynchronous write.
388 * Start output on a buffer, but do not wait for it to complete.
389 * The buffer is released when the output completes.
390 */
391void
392bawrite(struct buf * bp)
393{
394	bp->b_flags |= B_ASYNC;
395	(void) VOP_BWRITE(bp);
396}
397
398/*
399 * Release a buffer.
400 */
401void
402brelse(struct buf * bp)
403{
404	int s;
405
406	if (bp->b_flags & B_CLUSTER) {
407		relpbuf(bp);
408		return;
409	}
410	/* anyone need a "free" block? */
411	s = splbio();
412
413	/* anyone need this block? */
414	if (bp->b_flags & B_WANTED) {
415		bp->b_flags &= ~(B_WANTED | B_AGE);
416		wakeup(bp);
417	}
418
419	if (bp->b_flags & B_LOCKED)
420		bp->b_flags &= ~B_ERROR;
421
422	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
423	    (bp->b_bufsize <= 0)) {
424		bp->b_flags |= B_INVAL;
425		bp->b_flags &= ~(B_DELWRI | B_CACHE);
426		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp) {
427			if (bp->b_bufsize)
428				allocbuf(bp, 0);
429			brelvp(bp);
430		}
431	}
432
433	/*
434	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
435	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
436	 * but the VM object is kept around.  The B_NOCACHE flag is used to
437	 * invalidate the pages in the VM object.
438	 */
439	if (bp->b_flags & B_VMIO) {
440		vm_ooffset_t foff;
441		vm_object_t obj;
442		int i, resid;
443		vm_page_t m;
444		struct vnode *vp;
445		int iototal = bp->b_bufsize;
446
447		vp = bp->b_vp;
448		if (!vp)
449			panic("brelse: missing vp");
450
451		if (bp->b_npages) {
452			vm_pindex_t poff;
453			obj = (vm_object_t) vp->v_object;
454			if (vp->v_type == VBLK)
455				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
456			else
457				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
458			poff = OFF_TO_IDX(foff);
459			for (i = 0; i < bp->b_npages; i++) {
460				m = bp->b_pages[i];
461				if (m == bogus_page) {
462					m = vm_page_lookup(obj, poff + i);
463					if (!m) {
464						panic("brelse: page missing\n");
465					}
466					bp->b_pages[i] = m;
467					pmap_qenter(trunc_page(bp->b_data),
468						bp->b_pages, bp->b_npages);
469				}
470				resid = IDX_TO_OFF(m->pindex+1) - foff;
471				if (resid > iototal)
472					resid = iototal;
473				if (resid > 0) {
474					/*
475					 * Don't invalidate the page if the local machine has already
476					 * modified it.  This is the lesser of two evils, and should
477					 * be fixed.
478					 */
479					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
480						vm_page_test_dirty(m);
481						if (m->dirty == 0) {
482							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
483							if (m->valid == 0)
484								vm_page_protect(m, VM_PROT_NONE);
485						}
486					}
487					if (resid >= PAGE_SIZE) {
488						if ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL) {
489							bp->b_flags |= B_INVAL;
490						}
491					} else {
492						if (!vm_page_is_valid(m,
493							(((vm_offset_t) bp->b_data) & PAGE_MASK), resid)) {
494							bp->b_flags |= B_INVAL;
495						}
496					}
497				}
498				foff += resid;
499				iototal -= resid;
500			}
501		}
502		if (bp->b_flags & (B_INVAL | B_RELBUF))
503			vfs_vmio_release(bp);
504	}
505	if (bp->b_qindex != QUEUE_NONE)
506		panic("brelse: free buffer onto another queue???");
507
508	/* enqueue */
509	/* buffers with no memory */
510	if (bp->b_bufsize == 0) {
511		bp->b_qindex = QUEUE_EMPTY;
512		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
513		LIST_REMOVE(bp, b_hash);
514		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
515		bp->b_dev = NODEV;
516		if (needsbuffer) {
517			wakeup(&needsbuffer);
518			needsbuffer=0;
519		}
520		/* buffers with junk contents */
521	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
522		bp->b_qindex = QUEUE_AGE;
523		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
524		LIST_REMOVE(bp, b_hash);
525		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
526		bp->b_dev = NODEV;
527		if (needsbuffer) {
528			wakeup(&needsbuffer);
529			needsbuffer=0;
530		}
531		/* buffers that are locked */
532	} else if (bp->b_flags & B_LOCKED) {
533		bp->b_qindex = QUEUE_LOCKED;
534		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
535		/* buffers with stale but valid contents */
536	} else if (bp->b_flags & B_AGE) {
537		bp->b_qindex = QUEUE_AGE;
538		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
539		if (needsbuffer) {
540			wakeup(&needsbuffer);
541			needsbuffer=0;
542		}
543		/* buffers with valid and quite potentially reuseable contents */
544	} else {
545		bp->b_qindex = QUEUE_LRU;
546		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
547		if (needsbuffer) {
548			wakeup(&needsbuffer);
549			needsbuffer=0;
550		}
551	}
552
553	/* unlock */
554	bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
555	splx(s);
556}
557
558/*
559 * Release a buffer.
560 */
561void
562bqrelse(struct buf * bp)
563{
564	int s;
565
566	s = splbio();
567
568
569	/* anyone need this block? */
570	if (bp->b_flags & B_WANTED) {
571		bp->b_flags &= ~(B_WANTED | B_AGE);
572		wakeup(bp);
573	}
574
575	if (bp->b_qindex != QUEUE_NONE)
576		panic("bqrelse: free buffer onto another queue???");
577
578	if (bp->b_flags & B_LOCKED) {
579		bp->b_flags &= ~B_ERROR;
580		bp->b_qindex = QUEUE_LOCKED;
581		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
582		/* buffers with stale but valid contents */
583	} else {
584		bp->b_qindex = QUEUE_LRU;
585		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
586		if (needsbuffer) {
587			wakeup(&needsbuffer);
588			needsbuffer=0;
589		}
590	}
591
592	/* unlock */
593	bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
594	splx(s);
595}
596
597static void
598vfs_vmio_release(bp)
599	struct buf *bp;
600{
601	int i;
602	vm_page_t m;
603
604	for (i = 0; i < bp->b_npages; i++) {
605		m = bp->b_pages[i];
606		bp->b_pages[i] = NULL;
607		if (m->flags & PG_WANTED) {
608			m->flags &= ~PG_WANTED;
609			wakeup(m);
610		}
611		vm_page_unwire(m);
612		if (m->wire_count == 0) {
613			if (m->valid) {
614				if(m->dirty == 0)
615					vm_page_test_dirty(m);
616				/*
617				 * this keeps pressure off of the process memory
618				 */
619				if ((vm_swap_size == 0) ||
620					(cnt.v_free_count < cnt.v_free_min)) {
621					if (m->dirty == 0)
622						vm_page_cache(m);
623					else
624						vm_page_deactivate(m);
625				}
626			} else if ((m->hold_count == 0) &&
627				((m->flags & PG_BUSY) == 0) &&
628				(m->busy == 0)) {
629				vm_page_protect(m, VM_PROT_NONE);
630				vm_page_free(m);
631			}
632		}
633	}
634	bufspace -= bp->b_bufsize;
635	vmiospace -= bp->b_bufsize;
636	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
637	bp->b_npages = 0;
638	bp->b_bufsize = 0;
639	bp->b_flags &= ~B_VMIO;
640	if (bp->b_vp)
641		brelvp(bp);
642}
643
644/*
645 * Check to see if a block is currently memory resident.
646 */
647__inline struct buf *
648gbincore(struct vnode * vp, daddr_t blkno)
649{
650	struct buf *bp;
651	struct bufhashhdr *bh;
652
653	bh = BUFHASH(vp, blkno);
654	bp = bh->lh_first;
655
656	/* Search hash chain */
657	while (bp != NULL) {
658		/* hit */
659		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
660		    (bp->b_flags & B_INVAL) == 0) {
661			break;
662		}
663		bp = bp->b_hash.le_next;
664	}
665	return (bp);
666}
667
668/*
669 * this routine implements clustered async writes for
670 * clearing out B_DELWRI buffers...  This is much better
671 * than the old way of writing only one buffer at a time.
672 */
673int
674vfs_bio_awrite(struct buf * bp)
675{
676	int i;
677	daddr_t lblkno = bp->b_lblkno;
678	struct vnode *vp = bp->b_vp;
679	int s;
680	int ncl;
681	struct buf *bpa;
682	int nwritten;
683
684	s = splbio();
685	/*
686	 * right now we support clustered writing only to regular files
687	 */
688	if ((vp->v_type == VREG) &&
689	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
690	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
691		int size;
692		int maxcl;
693
694		size = vp->v_mount->mnt_stat.f_iosize;
695		maxcl = MAXPHYS / size;
696
697		for (i = 1; i < maxcl; i++) {
698			if ((bpa = gbincore(vp, lblkno + i)) &&
699			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
700			    (B_DELWRI | B_CLUSTEROK)) &&
701			    (bpa->b_bufsize == size)) {
702				if ((bpa->b_blkno == bpa->b_lblkno) ||
703				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
704					break;
705			} else {
706				break;
707			}
708		}
709		ncl = i;
710		/*
711		 * this is a possible cluster write
712		 */
713		if (ncl != 1) {
714			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
715			splx(s);
716			return nwritten;
717		}
718	}
719	bremfree(bp);
720	splx(s);
721	/*
722	 * default (old) behavior, writing out only one block
723	 */
724	bp->b_flags |= B_BUSY | B_ASYNC;
725	nwritten = bp->b_bufsize;
726	(void) VOP_BWRITE(bp);
727	return nwritten;
728}
729
730
731/*
732 * Find a buffer header which is available for use.
733 */
734static struct buf *
735getnewbuf(int slpflag, int slptimeo, int doingvmio)
736{
737	struct buf *bp;
738	int nbyteswritten = 0;
739
740start:
741	if (bufspace >= maxbufspace)
742		goto trytofreespace;
743
744	/* can we constitute a new buffer? */
745	if ((bp = bufqueues[QUEUE_EMPTY].tqh_first)) {
746		if (bp->b_qindex != QUEUE_EMPTY)
747			panic("getnewbuf: inconsistent EMPTY queue, qindex=%d",
748			    bp->b_qindex);
749		bp->b_flags |= B_BUSY;
750		bremfree(bp);
751		goto fillbuf;
752	}
753trytofreespace:
754	/*
755	 * We keep the file I/O from hogging metadata I/O
756	 * This is desirable because file data is cached in the
757	 * VM/Buffer cache even if a buffer is freed.
758	 */
759	if ((bp = bufqueues[QUEUE_AGE].tqh_first)) {
760		if (bp->b_qindex != QUEUE_AGE)
761			panic("getnewbuf: inconsistent AGE queue, qindex=%d",
762			    bp->b_qindex);
763	} else if ((bp = bufqueues[QUEUE_LRU].tqh_first)) {
764		if (bp->b_qindex != QUEUE_LRU)
765			panic("getnewbuf: inconsistent LRU queue, qindex=%d",
766			    bp->b_qindex);
767	}
768	if (!bp) {
769		/* wait for a free buffer of any kind */
770		needsbuffer = 1;
771		tsleep(&needsbuffer,
772			(PRIBIO + 1) | slpflag, "newbuf", slptimeo);
773		return (0);
774	}
775
776	/*
777	 * We are fairly aggressive about freeing VMIO buffers, but since
778	 * the buffering is intact without buffer headers, there is not
779	 * much loss.  We gain by maintaining non-VMIOed metadata in buffers.
780	 */
781	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
782		if ((bp->b_flags & B_VMIO) == 0 ||
783			(vmiospace < maxvmiobufspace)) {
784			--bp->b_usecount;
785			TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
786			if (bufqueues[QUEUE_LRU].tqh_first != NULL) {
787				TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
788				goto start;
789			}
790			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
791		}
792	}
793
794	/* if we are a delayed write, convert to an async write */
795	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
796		nbyteswritten += vfs_bio_awrite(bp);
797		if (!slpflag && !slptimeo) {
798			return (0);
799		}
800		goto start;
801	}
802
803	if (bp->b_flags & B_WANTED) {
804		bp->b_flags &= ~B_WANTED;
805		wakeup(bp);
806	}
807	bremfree(bp);
808	bp->b_flags |= B_BUSY;
809
810	if (bp->b_flags & B_VMIO)
811		vfs_vmio_release(bp);
812
813	if (bp->b_vp)
814		brelvp(bp);
815
816fillbuf:
817	/* we are not free, nor do we contain interesting data */
818	if (bp->b_rcred != NOCRED) {
819		crfree(bp->b_rcred);
820		bp->b_rcred = NOCRED;
821	}
822	if (bp->b_wcred != NOCRED) {
823		crfree(bp->b_wcred);
824		bp->b_wcred = NOCRED;
825	}
826
827	LIST_REMOVE(bp, b_hash);
828	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
829	if (bp->b_bufsize) {
830		allocbuf(bp, 0);
831	}
832	bp->b_flags = B_BUSY;
833	bp->b_dev = NODEV;
834	bp->b_vp = NULL;
835	bp->b_blkno = bp->b_lblkno = 0;
836	bp->b_iodone = 0;
837	bp->b_error = 0;
838	bp->b_resid = 0;
839	bp->b_bcount = 0;
840	bp->b_npages = 0;
841	bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
842	bp->b_dirtyoff = bp->b_dirtyend = 0;
843	bp->b_validoff = bp->b_validend = 0;
844	bp->b_usecount = 2;
845	if (bufspace >= maxbufspace + nbyteswritten) {
846		bp->b_flags |= B_INVAL;
847		brelse(bp);
848		goto trytofreespace;
849	}
850	return (bp);
851}
852
853/*
854 * Check to see if a block is currently memory resident.
855 */
856struct buf *
857incore(struct vnode * vp, daddr_t blkno)
858{
859	struct buf *bp;
860
861	int s = splbio();
862	bp = gbincore(vp, blkno);
863	splx(s);
864	return (bp);
865}
866
867/*
868 * Returns true if no I/O is needed to access the
869 * associated VM object.  This is like incore except
870 * it also hunts around in the VM system for the data.
871 */
872
873int
874inmem(struct vnode * vp, daddr_t blkno)
875{
876	vm_object_t obj;
877	vm_offset_t toff, tinc;
878	vm_page_t m;
879	vm_ooffset_t off;
880
881	if (incore(vp, blkno))
882		return 1;
883	if (vp->v_mount == NULL)
884		return 0;
885	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
886		return 0;
887
888	obj = vp->v_object;
889	tinc = PAGE_SIZE;
890	if (tinc > vp->v_mount->mnt_stat.f_iosize)
891		tinc = vp->v_mount->mnt_stat.f_iosize;
892	off = blkno * vp->v_mount->mnt_stat.f_iosize;
893
894	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
895
896		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
897		if (!m)
898			return 0;
899		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
900			return 0;
901	}
902	return 1;
903}
904
905/*
906 * now we set the dirty range for the buffer --
907 * for NFS -- if the file is mapped and pages have
908 * been written to, let it know.  We want the
909 * entire range of the buffer to be marked dirty if
910 * any of the pages have been written to for consistancy
911 * with the b_validoff, b_validend set in the nfs write
912 * code, and used by the nfs read code.
913 */
914static void
915vfs_setdirty(struct buf *bp) {
916	int i;
917	vm_object_t object;
918	vm_offset_t boffset, offset;
919	/*
920	 * We qualify the scan for modified pages on whether the
921	 * object has been flushed yet.  The OBJ_WRITEABLE flag
922	 * is not cleared simply by protecting pages off.
923	 */
924	if ((bp->b_flags & B_VMIO) &&
925		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
926		/*
927		 * test the pages to see if they have been modified directly
928		 * by users through the VM system.
929		 */
930		for (i = 0; i < bp->b_npages; i++)
931			vm_page_test_dirty(bp->b_pages[i]);
932
933		/*
934		 * scan forwards for the first page modified
935		 */
936		for (i = 0; i < bp->b_npages; i++) {
937			if (bp->b_pages[i]->dirty) {
938				break;
939			}
940		}
941		boffset = (i << PAGE_SHIFT);
942		if (boffset < bp->b_dirtyoff) {
943			bp->b_dirtyoff = boffset;
944		}
945
946		/*
947		 * scan backwards for the last page modified
948		 */
949		for (i = bp->b_npages - 1; i >= 0; --i) {
950			if (bp->b_pages[i]->dirty) {
951				break;
952			}
953		}
954		boffset = (i + 1);
955		offset = boffset + bp->b_pages[0]->pindex;
956		if (offset >= object->size)
957			boffset = object->size - bp->b_pages[0]->pindex;
958		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
959			bp->b_dirtyend = (boffset << PAGE_SHIFT);
960	}
961}
962
963/*
964 * Get a block given a specified block and offset into a file/device.
965 */
966struct buf *
967getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
968{
969	struct buf *bp;
970	int s;
971	struct bufhashhdr *bh;
972
973	s = splbio();
974loop:
975	if ((bp = gbincore(vp, blkno))) {
976		if (bp->b_flags & B_BUSY) {
977			bp->b_flags |= B_WANTED;
978			if (bp->b_usecount < BUF_MAXUSE)
979				++bp->b_usecount;
980			if (!tsleep(bp,
981				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
982				goto loop;
983
984			splx(s);
985			return (struct buf *) NULL;
986		}
987		bp->b_flags |= B_BUSY | B_CACHE;
988		bremfree(bp);
989
990		/*
991		 * check for size inconsistancies (note that they shouldn't happen
992		 * but do when filesystems don't handle the size changes correctly.)
993		 * We are conservative on metadata and don't just extend the buffer
994		 * but write and re-constitute it.
995		 */
996
997		if (bp->b_bcount != size) {
998			if (bp->b_flags & B_VMIO) {
999				allocbuf(bp, size);
1000			} else {
1001				bp->b_flags |= B_NOCACHE;
1002				VOP_BWRITE(bp);
1003				goto loop;
1004			}
1005		}
1006
1007		if (bp->b_usecount < BUF_MAXUSE)
1008			++bp->b_usecount;
1009		splx(s);
1010		return (bp);
1011	} else {
1012		vm_object_t obj;
1013		int doingvmio;
1014
1015		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
1016			doingvmio = 1;
1017		} else {
1018			doingvmio = 0;
1019		}
1020		if ((bp = getnewbuf(slpflag, slptimeo, doingvmio)) == 0) {
1021			if (slpflag || slptimeo) {
1022				splx(s);
1023				return NULL;
1024			}
1025			goto loop;
1026		}
1027
1028		/*
1029		 * This code is used to make sure that a buffer is not
1030		 * created while the getnewbuf routine is blocked.
1031		 * Normally the vnode is locked so this isn't a problem.
1032		 * VBLK type I/O requests, however, don't lock the vnode.
1033		 */
1034		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
1035			bp->b_flags |= B_INVAL;
1036			brelse(bp);
1037			goto loop;
1038		}
1039
1040		/*
1041		 * Insert the buffer into the hash, so that it can
1042		 * be found by incore.
1043		 */
1044		bp->b_blkno = bp->b_lblkno = blkno;
1045		bgetvp(vp, bp);
1046		LIST_REMOVE(bp, b_hash);
1047		bh = BUFHASH(vp, blkno);
1048		LIST_INSERT_HEAD(bh, bp, b_hash);
1049
1050		if (doingvmio) {
1051			bp->b_flags |= (B_VMIO | B_CACHE);
1052#if defined(VFS_BIO_DEBUG)
1053			if (vp->v_type != VREG && vp->v_type != VBLK)
1054				printf("getblk: vmioing file type %d???\n", vp->v_type);
1055#endif
1056		} else {
1057			bp->b_flags &= ~B_VMIO;
1058		}
1059		splx(s);
1060
1061		allocbuf(bp, size);
1062		return (bp);
1063	}
1064}
1065
1066/*
1067 * Get an empty, disassociated buffer of given size.
1068 */
1069struct buf *
1070geteblk(int size)
1071{
1072	struct buf *bp;
1073	int s;
1074
1075	s = splbio();
1076	while ((bp = getnewbuf(0, 0, 0)) == 0);
1077	splx(s);
1078	allocbuf(bp, size);
1079	bp->b_flags |= B_INVAL;
1080	return (bp);
1081}
1082
1083
1084/*
1085 * This code constitutes the buffer memory from either anonymous system
1086 * memory (in the case of non-VMIO operations) or from an associated
1087 * VM object (in the case of VMIO operations).
1088 *
1089 * Note that this code is tricky, and has many complications to resolve
1090 * deadlock or inconsistant data situations.  Tread lightly!!!
1091 *
1092 * Modify the length of a buffer's underlying buffer storage without
1093 * destroying information (unless, of course the buffer is shrinking).
1094 */
1095int
1096allocbuf(struct buf * bp, int size)
1097{
1098
1099	int s;
1100	int newbsize, mbsize;
1101	int i;
1102
1103	if (!(bp->b_flags & B_BUSY))
1104		panic("allocbuf: buffer not busy");
1105
1106	if ((bp->b_flags & B_VMIO) == 0) {
1107		caddr_t origbuf;
1108		int origbufsize;
1109		/*
1110		 * Just get anonymous memory from the kernel
1111		 */
1112		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1113		if (bp->b_flags & B_MALLOC)
1114			newbsize = mbsize;
1115		else
1116			newbsize = round_page(size);
1117
1118		if (newbsize < bp->b_bufsize) {
1119			/*
1120			 * malloced buffers are not shrunk
1121			 */
1122			if (bp->b_flags & B_MALLOC) {
1123				if (newbsize) {
1124					bp->b_bcount = size;
1125				} else {
1126					free(bp->b_data, M_TEMP);
1127					bufspace -= bp->b_bufsize;
1128					bufmallocspace -= bp->b_bufsize;
1129					bp->b_data = (caddr_t) buffers_kva + (bp - buf) * MAXBSIZE;
1130					bp->b_bufsize = 0;
1131					bp->b_bcount = 0;
1132					bp->b_flags &= ~B_MALLOC;
1133				}
1134				return 1;
1135			}
1136			vm_hold_free_pages(
1137			    bp,
1138			    (vm_offset_t) bp->b_data + newbsize,
1139			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1140		} else if (newbsize > bp->b_bufsize) {
1141			/*
1142			 * We only use malloced memory on the first allocation.
1143			 * and revert to page-allocated memory when the buffer grows.
1144			 */
1145			if ( (bufmallocspace < maxbufmallocspace) &&
1146				(bp->b_bufsize == 0) &&
1147				(mbsize <= PAGE_SIZE/2)) {
1148
1149				bp->b_data = malloc(mbsize, M_TEMP, M_WAITOK);
1150				bp->b_bufsize = mbsize;
1151				bp->b_bcount = size;
1152				bp->b_flags |= B_MALLOC;
1153				bufspace += mbsize;
1154				bufmallocspace += mbsize;
1155				return 1;
1156			}
1157			origbuf = NULL;
1158			origbufsize = 0;
1159			/*
1160			 * If the buffer is growing on it's other-than-first allocation,
1161			 * then we revert to the page-allocation scheme.
1162			 */
1163			if (bp->b_flags & B_MALLOC) {
1164				origbuf = bp->b_data;
1165				origbufsize = bp->b_bufsize;
1166				bp->b_data = (caddr_t) buffers_kva + (bp - buf) * MAXBSIZE;
1167				bufspace -= bp->b_bufsize;
1168				bufmallocspace -= bp->b_bufsize;
1169				bp->b_bufsize = 0;
1170				bp->b_flags &= ~B_MALLOC;
1171				newbsize = round_page(newbsize);
1172			}
1173			vm_hold_load_pages(
1174			    bp,
1175			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1176			    (vm_offset_t) bp->b_data + newbsize);
1177			if (origbuf) {
1178				bcopy(origbuf, bp->b_data, origbufsize);
1179				free(origbuf, M_TEMP);
1180			}
1181		}
1182	} else {
1183		vm_page_t m;
1184		int desiredpages;
1185
1186		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1187		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1188
1189		if (bp->b_flags & B_MALLOC)
1190			panic("allocbuf: VMIO buffer can't be malloced");
1191
1192		if (newbsize < bp->b_bufsize) {
1193			if (desiredpages < bp->b_npages) {
1194				for (i = desiredpages; i < bp->b_npages; i++) {
1195					/*
1196					 * the page is not freed here -- it
1197					 * is the responsibility of vnode_pager_setsize
1198					 */
1199					m = bp->b_pages[i];
1200					s = splhigh();
1201					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1202						m->flags |= PG_WANTED;
1203						tsleep(m, PVM, "biodep", 0);
1204					}
1205					splx(s);
1206
1207					bp->b_pages[i] = NULL;
1208					vm_page_unwire(m);
1209				}
1210				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1211				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1212				bp->b_npages = desiredpages;
1213			}
1214		} else if (newbsize > bp->b_bufsize) {
1215			vm_object_t obj;
1216			vm_offset_t tinc, toff;
1217			vm_ooffset_t off;
1218			vm_pindex_t objoff;
1219			int pageindex, curbpnpages;
1220			struct vnode *vp;
1221			int bsize;
1222
1223			vp = bp->b_vp;
1224
1225			if (vp->v_type == VBLK)
1226				bsize = DEV_BSIZE;
1227			else
1228				bsize = vp->v_mount->mnt_stat.f_iosize;
1229
1230			if (bp->b_npages < desiredpages) {
1231				obj = vp->v_object;
1232				tinc = PAGE_SIZE;
1233				if (tinc > bsize)
1234					tinc = bsize;
1235				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1236		doretry:
1237				curbpnpages = bp->b_npages;
1238				bp->b_flags |= B_CACHE;
1239				for (toff = 0; toff < newbsize; toff += tinc) {
1240					int bytesinpage;
1241
1242					pageindex = toff >> PAGE_SHIFT;
1243					objoff = OFF_TO_IDX(off + toff);
1244					if (pageindex < curbpnpages) {
1245
1246						m = bp->b_pages[pageindex];
1247#ifdef VFS_BIO_DIAG
1248						if (m->pindex != objoff)
1249							panic("allocbuf: page changed offset??!!!?");
1250#endif
1251						bytesinpage = tinc;
1252						if (tinc > (newbsize - toff))
1253							bytesinpage = newbsize - toff;
1254						if ((bp->b_flags & B_CACHE) &&
1255							!vm_page_is_valid(m,
1256							(vm_offset_t) ((toff + off) & PAGE_MASK),
1257							bytesinpage)) {
1258							bp->b_flags &= ~B_CACHE;
1259						}
1260						continue;
1261					}
1262					m = vm_page_lookup(obj, objoff);
1263					if (!m) {
1264						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1265						if (!m) {
1266							VM_WAIT;
1267							goto doretry;
1268						}
1269						/*
1270						 * Normally it is unwise to clear PG_BUSY without
1271						 * PAGE_WAKEUP -- but it is okay here, as there is
1272						 * no chance for blocking between here and vm_page_alloc
1273						 */
1274						m->flags &= ~PG_BUSY;
1275						vm_page_wire(m);
1276						bp->b_flags &= ~B_CACHE;
1277					} else if (m->flags & PG_BUSY) {
1278
1279						s = splhigh();
1280						m->flags |= PG_WANTED;
1281						tsleep(m, PVM, "pgtblk", 0);
1282						splx(s);
1283
1284						goto doretry;
1285					} else {
1286						if ((curproc != pageproc) &&
1287							(m->queue == PQ_CACHE) &&
1288						    ((cnt.v_free_count + cnt.v_cache_count) <
1289								(cnt.v_free_min + cnt.v_cache_min))) {
1290							pagedaemon_wakeup();
1291						}
1292						bytesinpage = tinc;
1293						if (tinc > (newbsize - toff))
1294							bytesinpage = newbsize - toff;
1295						if ((bp->b_flags & B_CACHE) &&
1296							!vm_page_is_valid(m,
1297							(vm_offset_t) ((toff + off) & PAGE_MASK),
1298							bytesinpage)) {
1299							bp->b_flags &= ~B_CACHE;
1300						}
1301						vm_page_wire(m);
1302					}
1303					bp->b_pages[pageindex] = m;
1304					curbpnpages = pageindex + 1;
1305				}
1306				bp->b_data = (caddr_t) trunc_page(bp->b_data);
1307				bp->b_npages = curbpnpages;
1308				pmap_qenter((vm_offset_t) bp->b_data,
1309					bp->b_pages, bp->b_npages);
1310				((vm_offset_t) bp->b_data) |= off & PAGE_MASK;
1311			}
1312		}
1313	}
1314	if (bp->b_flags & B_VMIO)
1315		vmiospace += bp->b_bufsize;
1316	bufspace += (newbsize - bp->b_bufsize);
1317	bp->b_bufsize = newbsize;
1318	bp->b_bcount = size;
1319	return 1;
1320}
1321
1322/*
1323 * Wait for buffer I/O completion, returning error status.
1324 */
1325int
1326biowait(register struct buf * bp)
1327{
1328	int s;
1329
1330	s = splbio();
1331	while ((bp->b_flags & B_DONE) == 0)
1332		tsleep(bp, PRIBIO, "biowait", 0);
1333	splx(s);
1334	if (bp->b_flags & B_EINTR) {
1335		bp->b_flags &= ~B_EINTR;
1336		return (EINTR);
1337	}
1338	if (bp->b_flags & B_ERROR) {
1339		return (bp->b_error ? bp->b_error : EIO);
1340	} else {
1341		return (0);
1342	}
1343}
1344
1345/*
1346 * Finish I/O on a buffer, calling an optional function.
1347 * This is usually called from interrupt level, so process blocking
1348 * is not *a good idea*.
1349 */
1350void
1351biodone(register struct buf * bp)
1352{
1353	int s;
1354
1355	s = splbio();
1356	if (!(bp->b_flags & B_BUSY))
1357		panic("biodone: buffer not busy");
1358
1359	if (bp->b_flags & B_DONE) {
1360		splx(s);
1361		printf("biodone: buffer already done\n");
1362		return;
1363	}
1364	bp->b_flags |= B_DONE;
1365
1366	if ((bp->b_flags & B_READ) == 0) {
1367		vwakeup(bp);
1368	}
1369#ifdef BOUNCE_BUFFERS
1370	if (bp->b_flags & B_BOUNCE)
1371		vm_bounce_free(bp);
1372#endif
1373
1374	/* call optional completion function if requested */
1375	if (bp->b_flags & B_CALL) {
1376		bp->b_flags &= ~B_CALL;
1377		(*bp->b_iodone) (bp);
1378		splx(s);
1379		return;
1380	}
1381	if (bp->b_flags & B_VMIO) {
1382		int i, resid;
1383		vm_ooffset_t foff;
1384		vm_page_t m;
1385		vm_object_t obj;
1386		int iosize;
1387		struct vnode *vp = bp->b_vp;
1388
1389		if (vp->v_type == VBLK)
1390			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1391		else
1392			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1393		obj = vp->v_object;
1394		if (!obj) {
1395			panic("biodone: no object");
1396		}
1397#if defined(VFS_BIO_DEBUG)
1398		if (obj->paging_in_progress < bp->b_npages) {
1399			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1400			    obj->paging_in_progress, bp->b_npages);
1401		}
1402#endif
1403		iosize = bp->b_bufsize;
1404		for (i = 0; i < bp->b_npages; i++) {
1405			int bogusflag = 0;
1406			m = bp->b_pages[i];
1407			if (m == bogus_page) {
1408				bogusflag = 1;
1409				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1410				if (!m) {
1411#if defined(VFS_BIO_DEBUG)
1412					printf("biodone: page disappeared\n");
1413#endif
1414					--obj->paging_in_progress;
1415					continue;
1416				}
1417				bp->b_pages[i] = m;
1418				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1419			}
1420#if defined(VFS_BIO_DEBUG)
1421			if (OFF_TO_IDX(foff) != m->pindex) {
1422				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1423			}
1424#endif
1425			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1426			if (resid > iosize)
1427				resid = iosize;
1428			/*
1429			 * In the write case, the valid and clean bits are
1430			 * already changed correctly, so we only need to do this
1431			 * here in the read case.
1432			 */
1433			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1434				vm_page_set_validclean(m,
1435					(vm_offset_t) (foff & PAGE_MASK), resid);
1436			}
1437
1438			/*
1439			 * when debugging new filesystems or buffer I/O methods, this
1440			 * is the most common error that pops up.  if you see this, you
1441			 * have not set the page busy flag correctly!!!
1442			 */
1443			if (m->busy == 0) {
1444				printf("biodone: page busy < 0, "
1445				    "pindex: %d, foff: 0x(%x,%x), "
1446				    "resid: %d, index: %d\n",
1447				    (int) m->pindex, (int)(foff >> 32),
1448						(int) foff & 0xffffffff, resid, i);
1449				if (vp->v_type != VBLK)
1450					printf(" iosize: %ld, lblkno: %d, flags: 0x%lx, npages: %d\n",
1451					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1452					    (int) bp->b_lblkno,
1453					    bp->b_flags, bp->b_npages);
1454				else
1455					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1456					    (int) bp->b_lblkno,
1457					    bp->b_flags, bp->b_npages);
1458				printf(" valid: 0x%x, dirty: 0x%x, wired: %d\n",
1459				    m->valid, m->dirty, m->wire_count);
1460				panic("biodone: page busy < 0\n");
1461			}
1462			--m->busy;
1463			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1464				m->flags &= ~PG_WANTED;
1465				wakeup(m);
1466			}
1467			--obj->paging_in_progress;
1468			foff += resid;
1469			iosize -= resid;
1470		}
1471		if (obj && obj->paging_in_progress == 0 &&
1472		    (obj->flags & OBJ_PIPWNT)) {
1473			obj->flags &= ~OBJ_PIPWNT;
1474			wakeup(obj);
1475		}
1476	}
1477	/*
1478	 * For asynchronous completions, release the buffer now. The brelse
1479	 * checks for B_WANTED and will do the wakeup there if necessary - so
1480	 * no need to do a wakeup here in the async case.
1481	 */
1482
1483	if (bp->b_flags & B_ASYNC) {
1484		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR | B_RELBUF)) != 0)
1485			brelse(bp);
1486		else
1487			bqrelse(bp);
1488	} else {
1489		wakeup(bp);
1490	}
1491	splx(s);
1492}
1493
1494int
1495count_lock_queue()
1496{
1497	int count;
1498	struct buf *bp;
1499
1500	count = 0;
1501	for (bp = bufqueues[QUEUE_LOCKED].tqh_first;
1502	    bp != NULL;
1503	    bp = bp->b_freelist.tqe_next)
1504		count++;
1505	return (count);
1506}
1507
1508int vfs_update_interval = 30;
1509
1510static void
1511vfs_update()
1512{
1513	(void) spl0();		/* XXX redundant?  wrong place? */
1514	while (1) {
1515		tsleep(&vfs_update_wakeup, PUSER, "update",
1516		    hz * vfs_update_interval);
1517		vfs_update_wakeup = 0;
1518		sync(curproc, NULL, NULL);
1519	}
1520}
1521
1522static int
1523sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1524{
1525	int error = sysctl_handle_int(oidp,
1526		oidp->oid_arg1, oidp->oid_arg2, req);
1527	if (!error)
1528		wakeup(&vfs_update_wakeup);
1529	return error;
1530}
1531
1532SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1533	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1534
1535
1536/*
1537 * This routine is called in lieu of iodone in the case of
1538 * incomplete I/O.  This keeps the busy status for pages
1539 * consistant.
1540 */
1541void
1542vfs_unbusy_pages(struct buf * bp)
1543{
1544	int i;
1545
1546	if (bp->b_flags & B_VMIO) {
1547		struct vnode *vp = bp->b_vp;
1548		vm_object_t obj = vp->v_object;
1549		vm_ooffset_t foff;
1550
1551		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1552
1553		for (i = 0; i < bp->b_npages; i++) {
1554			vm_page_t m = bp->b_pages[i];
1555
1556			if (m == bogus_page) {
1557				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1558				if (!m) {
1559					panic("vfs_unbusy_pages: page missing\n");
1560				}
1561				bp->b_pages[i] = m;
1562				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1563			}
1564			--obj->paging_in_progress;
1565			--m->busy;
1566			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1567				m->flags &= ~PG_WANTED;
1568				wakeup(m);
1569			}
1570		}
1571		if (obj->paging_in_progress == 0 &&
1572		    (obj->flags & OBJ_PIPWNT)) {
1573			obj->flags &= ~OBJ_PIPWNT;
1574			wakeup(obj);
1575		}
1576	}
1577}
1578
1579/*
1580 * This routine is called before a device strategy routine.
1581 * It is used to tell the VM system that paging I/O is in
1582 * progress, and treat the pages associated with the buffer
1583 * almost as being PG_BUSY.  Also the object paging_in_progress
1584 * flag is handled to make sure that the object doesn't become
1585 * inconsistant.
1586 */
1587void
1588vfs_busy_pages(struct buf * bp, int clear_modify)
1589{
1590	int i;
1591
1592	if (bp->b_flags & B_VMIO) {
1593		vm_object_t obj = bp->b_vp->v_object;
1594		vm_ooffset_t foff;
1595		int iocount = bp->b_bufsize;
1596
1597		if (bp->b_vp->v_type == VBLK)
1598			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1599		else
1600			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1601		vfs_setdirty(bp);
1602		for (i = 0; i < bp->b_npages; i++) {
1603			vm_page_t m = bp->b_pages[i];
1604			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1605
1606			if (resid > iocount)
1607				resid = iocount;
1608			if ((bp->b_flags & B_CLUSTER) == 0) {
1609				obj->paging_in_progress++;
1610				m->busy++;
1611			}
1612			if (clear_modify) {
1613				vm_page_protect(m, VM_PROT_READ);
1614				vm_page_set_validclean(m,
1615					(vm_offset_t) (foff & PAGE_MASK), resid);
1616			} else if (bp->b_bcount >= PAGE_SIZE) {
1617				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1618					bp->b_pages[i] = bogus_page;
1619					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1620				}
1621			}
1622			foff += resid;
1623			iocount -= resid;
1624		}
1625	}
1626}
1627
1628/*
1629 * Tell the VM system that the pages associated with this buffer
1630 * are clean.  This is used for delayed writes where the data is
1631 * going to go to disk eventually without additional VM intevention.
1632 */
1633void
1634vfs_clean_pages(struct buf * bp)
1635{
1636	int i;
1637
1638	if (bp->b_flags & B_VMIO) {
1639		vm_ooffset_t foff;
1640		int iocount = bp->b_bufsize;
1641
1642		if (bp->b_vp->v_type == VBLK)
1643			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1644		else
1645			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1646
1647		for (i = 0; i < bp->b_npages; i++) {
1648			vm_page_t m = bp->b_pages[i];
1649			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1650
1651			if (resid > iocount)
1652				resid = iocount;
1653			if (resid > 0) {
1654				vm_page_set_validclean(m,
1655					((vm_offset_t) foff & PAGE_MASK), resid);
1656			}
1657			foff += resid;
1658			iocount -= resid;
1659		}
1660	}
1661}
1662
1663void
1664vfs_bio_clrbuf(struct buf *bp) {
1665	int i;
1666	int remapbuffer = 0;
1667	if( bp->b_flags & B_VMIO) {
1668		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1669			int mask;
1670			mask = 0;
1671			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
1672				mask |= (1 << (i/DEV_BSIZE));
1673			if( bp->b_pages[0]->valid != mask) {
1674				bzero(bp->b_data, bp->b_bufsize);
1675			}
1676			bp->b_pages[0]->valid = mask;
1677			bp->b_resid = 0;
1678			return;
1679		}
1680		for(i=0;i<bp->b_npages;i++) {
1681			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1682				continue;
1683			if( bp->b_pages[i]->valid == 0) {
1684				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
1685					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
1686				}
1687			} else {
1688				int j;
1689				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1690					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1691						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
1692				}
1693			}
1694			bp->b_pages[i]->valid = VM_PAGE_BITS_ALL;
1695		}
1696		bp->b_resid = 0;
1697	} else {
1698		clrbuf(bp);
1699	}
1700	if (remapbuffer)
1701			pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1702}
1703
1704/*
1705 * vm_hold_load_pages and vm_hold_unload pages get pages into
1706 * a buffers address space.  The pages are anonymous and are
1707 * not associated with a file object.
1708 */
1709void
1710vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1711{
1712	vm_offset_t pg;
1713	vm_page_t p;
1714	int index;
1715
1716	to = round_page(to);
1717	from = round_page(from);
1718	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1719
1720	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1721
1722tryagain:
1723
1724		p = vm_page_alloc(kernel_object, ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
1725		    VM_ALLOC_NORMAL);
1726		if (!p) {
1727			VM_WAIT;
1728			goto tryagain;
1729		}
1730		vm_page_wire(p);
1731		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1732		bp->b_pages[index] = p;
1733		PAGE_WAKEUP(p);
1734	}
1735	bp->b_npages = to >> PAGE_SHIFT;
1736}
1737
1738void
1739vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
1740{
1741	vm_offset_t pg;
1742	vm_page_t p;
1743	int index;
1744
1745	from = round_page(from);
1746	to = round_page(to);
1747	index = (from - trunc_page(bp->b_data)) >> PAGE_SHIFT;
1748
1749	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
1750		p = bp->b_pages[index];
1751		if (p && (index < bp->b_npages)) {
1752			if (p->busy) {
1753				printf("vm_hold_free_pages: blkno: %d, lblkno: %d\n",
1754					bp->b_blkno, bp->b_lblkno);
1755			}
1756			bp->b_pages[index] = NULL;
1757			pmap_kremove(pg);
1758			vm_page_unwire(p);
1759			vm_page_free(p);
1760		}
1761	}
1762	bp->b_npages = from >> PAGE_SHIFT;
1763}
1764