vfs_bio.c revision 154695
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 154695 2006-01-23 00:00:45Z alc $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "biobuf", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82	.bop_sync	=	bufsync,
83};
84
85/*
86 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
87 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
88 */
89struct buf *buf;		/* buffer header pool */
90
91static struct proc *bufdaemonproc;
92
93static int inmem(struct vnode *vp, daddr_t blkno);
94static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
95		vm_offset_t to);
96static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
99			       int pageno, vm_page_t m);
100static void vfs_clean_pages(struct buf *bp);
101static void vfs_setdirty(struct buf *bp);
102static void vfs_vmio_release(struct buf *bp);
103static int vfs_bio_clcheck(struct vnode *vp, int size,
104		daddr_t lblkno, daddr_t blkno);
105static int flushbufqueues(int flushdeps);
106static void buf_daemon(void);
107static void bremfreel(struct buf *bp);
108
109int vmiodirenable = TRUE;
110SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
111    "Use the VM system for directory writes");
112int runningbufspace;
113SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
114    "Amount of presently outstanding async buffer io");
115static int bufspace;
116SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
117    "KVA memory used for bufs");
118static int maxbufspace;
119SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
120    "Maximum allowed value of bufspace (including buf_daemon)");
121static int bufmallocspace;
122SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
123    "Amount of malloced memory for buffers");
124static int maxbufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
126    "Maximum amount of malloced memory for buffers");
127static int lobufspace;
128SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
129    "Minimum amount of buffers we want to have");
130int hibufspace;
131SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
132    "Maximum allowed value of bufspace (excluding buf_daemon)");
133static int bufreusecnt;
134SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
135    "Number of times we have reused a buffer");
136static int buffreekvacnt;
137SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
138    "Number of times we have freed the KVA space from some buffer");
139static int bufdefragcnt;
140SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
141    "Number of times we have had to repeat buffer allocation to defragment");
142static int lorunningspace;
143SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
144    "Minimum preferred space used for in-progress I/O");
145static int hirunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
147    "Maximum amount of space to use for in-progress I/O");
148static int dirtybufferflushes;
149SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
150    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
151static int altbufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
153    0, "Number of fsync flushes to limit dirty buffers");
154static int recursiveflushes;
155SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
156    0, "Number of flushes skipped due to being recursive");
157static int numdirtybuffers;
158SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
159    "Number of buffers that are dirty (has unwritten changes) at the moment");
160static int lodirtybuffers;
161SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
162    "How many buffers we want to have free before bufdaemon can sleep");
163static int hidirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
165    "When the number of dirty buffers is considered severe");
166static int dirtybufthresh;
167SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
168    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
169static int numfreebuffers;
170SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
171    "Number of free buffers");
172static int lofreebuffers;
173SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
174   "XXX Unused");
175static int hifreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
177   "XXX Complicatedly unused");
178static int getnewbufcalls;
179SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
180   "Number of calls to getnewbuf");
181static int getnewbufrestarts;
182SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
183    "Number of times getnewbuf has had to restart a buffer aquisition");
184
185/*
186 * Wakeup point for bufdaemon, as well as indicator of whether it is already
187 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
188 * is idling.
189 */
190static int bd_request;
191
192/*
193 * This lock synchronizes access to bd_request.
194 */
195static struct mtx bdlock;
196
197/*
198 * bogus page -- for I/O to/from partially complete buffers
199 * this is a temporary solution to the problem, but it is not
200 * really that bad.  it would be better to split the buffer
201 * for input in the case of buffers partially already in memory,
202 * but the code is intricate enough already.
203 */
204vm_page_t bogus_page;
205
206/*
207 * Synchronization (sleep/wakeup) variable for active buffer space requests.
208 * Set when wait starts, cleared prior to wakeup().
209 * Used in runningbufwakeup() and waitrunningbufspace().
210 */
211static int runningbufreq;
212
213/*
214 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
215 * waitrunningbufspace().
216 */
217static struct mtx rbreqlock;
218
219/*
220 * Synchronization (sleep/wakeup) variable for buffer requests.
221 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
222 * by and/or.
223 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
224 * getnewbuf(), and getblk().
225 */
226static int needsbuffer;
227
228/*
229 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
230 */
231static struct mtx nblock;
232
233/*
234 * Lock that protects against bwait()/bdone()/B_DONE races.
235 */
236
237static struct mtx bdonelock;
238
239/*
240 * Lock that protects against bwait()/bdone()/B_DONE races.
241 */
242static struct mtx bpinlock;
243
244/*
245 * Definitions for the buffer free lists.
246 */
247#define BUFFER_QUEUES	5	/* number of free buffer queues */
248
249#define QUEUE_NONE	0	/* on no queue */
250#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
251#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
252#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
253#define QUEUE_EMPTY	4	/* empty buffer headers */
254
255/* Queues for free buffers with various properties */
256static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
257
258/* Lock for the bufqueues */
259static struct mtx bqlock;
260
261/*
262 * Single global constant for BUF_WMESG, to avoid getting multiple references.
263 * buf_wmesg is referred from macros.
264 */
265const char *buf_wmesg = BUF_WMESG;
266
267#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
268#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
269#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
270#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
271
272#ifdef DIRECTIO
273extern void ffs_rawread_setup(void);
274#endif /* DIRECTIO */
275/*
276 *	numdirtywakeup:
277 *
278 *	If someone is blocked due to there being too many dirty buffers,
279 *	and numdirtybuffers is now reasonable, wake them up.
280 */
281
282static __inline void
283numdirtywakeup(int level)
284{
285
286	if (numdirtybuffers <= level) {
287		mtx_lock(&nblock);
288		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
289			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
290			wakeup(&needsbuffer);
291		}
292		mtx_unlock(&nblock);
293	}
294}
295
296/*
297 *	bufspacewakeup:
298 *
299 *	Called when buffer space is potentially available for recovery.
300 *	getnewbuf() will block on this flag when it is unable to free
301 *	sufficient buffer space.  Buffer space becomes recoverable when
302 *	bp's get placed back in the queues.
303 */
304
305static __inline void
306bufspacewakeup(void)
307{
308
309	/*
310	 * If someone is waiting for BUF space, wake them up.  Even
311	 * though we haven't freed the kva space yet, the waiting
312	 * process will be able to now.
313	 */
314	mtx_lock(&nblock);
315	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
316		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
317		wakeup(&needsbuffer);
318	}
319	mtx_unlock(&nblock);
320}
321
322/*
323 * runningbufwakeup() - in-progress I/O accounting.
324 *
325 */
326void
327runningbufwakeup(struct buf *bp)
328{
329
330	if (bp->b_runningbufspace) {
331		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
332		bp->b_runningbufspace = 0;
333		mtx_lock(&rbreqlock);
334		if (runningbufreq && runningbufspace <= lorunningspace) {
335			runningbufreq = 0;
336			wakeup(&runningbufreq);
337		}
338		mtx_unlock(&rbreqlock);
339	}
340}
341
342/*
343 *	bufcountwakeup:
344 *
345 *	Called when a buffer has been added to one of the free queues to
346 *	account for the buffer and to wakeup anyone waiting for free buffers.
347 *	This typically occurs when large amounts of metadata are being handled
348 *	by the buffer cache ( else buffer space runs out first, usually ).
349 */
350
351static __inline void
352bufcountwakeup(void)
353{
354
355	atomic_add_int(&numfreebuffers, 1);
356	mtx_lock(&nblock);
357	if (needsbuffer) {
358		needsbuffer &= ~VFS_BIO_NEED_ANY;
359		if (numfreebuffers >= hifreebuffers)
360			needsbuffer &= ~VFS_BIO_NEED_FREE;
361		wakeup(&needsbuffer);
362	}
363	mtx_unlock(&nblock);
364}
365
366/*
367 *	waitrunningbufspace()
368 *
369 *	runningbufspace is a measure of the amount of I/O currently
370 *	running.  This routine is used in async-write situations to
371 *	prevent creating huge backups of pending writes to a device.
372 *	Only asynchronous writes are governed by this function.
373 *
374 *	Reads will adjust runningbufspace, but will not block based on it.
375 *	The read load has a side effect of reducing the allowed write load.
376 *
377 *	This does NOT turn an async write into a sync write.  It waits
378 *	for earlier writes to complete and generally returns before the
379 *	caller's write has reached the device.
380 */
381void
382waitrunningbufspace(void)
383{
384
385	mtx_lock(&rbreqlock);
386	while (runningbufspace > hirunningspace) {
387		++runningbufreq;
388		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
389	}
390	mtx_unlock(&rbreqlock);
391}
392
393
394/*
395 *	vfs_buf_test_cache:
396 *
397 *	Called when a buffer is extended.  This function clears the B_CACHE
398 *	bit if the newly extended portion of the buffer does not contain
399 *	valid data.
400 */
401static __inline
402void
403vfs_buf_test_cache(struct buf *bp,
404		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
405		  vm_page_t m)
406{
407
408	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
409	if (bp->b_flags & B_CACHE) {
410		int base = (foff + off) & PAGE_MASK;
411		if (vm_page_is_valid(m, base, size) == 0)
412			bp->b_flags &= ~B_CACHE;
413	}
414}
415
416/* Wake up the buffer deamon if necessary */
417static __inline
418void
419bd_wakeup(int dirtybuflevel)
420{
421
422	mtx_lock(&bdlock);
423	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
424		bd_request = 1;
425		wakeup(&bd_request);
426	}
427	mtx_unlock(&bdlock);
428}
429
430/*
431 * bd_speedup - speedup the buffer cache flushing code
432 */
433
434static __inline
435void
436bd_speedup(void)
437{
438
439	bd_wakeup(1);
440}
441
442/*
443 * Calculating buffer cache scaling values and reserve space for buffer
444 * headers.  This is called during low level kernel initialization and
445 * may be called more then once.  We CANNOT write to the memory area
446 * being reserved at this time.
447 */
448caddr_t
449kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
450{
451
452	/*
453	 * physmem_est is in pages.  Convert it to kilobytes (assumes
454	 * PAGE_SIZE is >= 1K)
455	 */
456	physmem_est = physmem_est * (PAGE_SIZE / 1024);
457
458	/*
459	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
460	 * For the first 64MB of ram nominally allocate sufficient buffers to
461	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
462	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
463	 * the buffer cache we limit the eventual kva reservation to
464	 * maxbcache bytes.
465	 *
466	 * factor represents the 1/4 x ram conversion.
467	 */
468	if (nbuf == 0) {
469		int factor = 4 * BKVASIZE / 1024;
470
471		nbuf = 50;
472		if (physmem_est > 4096)
473			nbuf += min((physmem_est - 4096) / factor,
474			    65536 / factor);
475		if (physmem_est > 65536)
476			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
477
478		if (maxbcache && nbuf > maxbcache / BKVASIZE)
479			nbuf = maxbcache / BKVASIZE;
480	}
481
482#if 0
483	/*
484	 * Do not allow the buffer_map to be more then 1/2 the size of the
485	 * kernel_map.
486	 */
487	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
488	    (BKVASIZE * 2)) {
489		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
490		    (BKVASIZE * 2);
491		printf("Warning: nbufs capped at %d\n", nbuf);
492	}
493#endif
494
495	/*
496	 * swbufs are used as temporary holders for I/O, such as paging I/O.
497	 * We have no less then 16 and no more then 256.
498	 */
499	nswbuf = max(min(nbuf/4, 256), 16);
500#ifdef NSWBUF_MIN
501	if (nswbuf < NSWBUF_MIN)
502		nswbuf = NSWBUF_MIN;
503#endif
504#ifdef DIRECTIO
505	ffs_rawread_setup();
506#endif
507
508	/*
509	 * Reserve space for the buffer cache buffers
510	 */
511	swbuf = (void *)v;
512	v = (caddr_t)(swbuf + nswbuf);
513	buf = (void *)v;
514	v = (caddr_t)(buf + nbuf);
515
516	return(v);
517}
518
519/* Initialize the buffer subsystem.  Called before use of any buffers. */
520void
521bufinit(void)
522{
523	struct buf *bp;
524	int i;
525
526	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
527	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
528	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
529	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
530	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
531	mtx_init(&bpinlock, "bpin lock", NULL, MTX_DEF);
532
533	/* next, make a null set of free lists */
534	for (i = 0; i < BUFFER_QUEUES; i++)
535		TAILQ_INIT(&bufqueues[i]);
536
537	/* finally, initialize each buffer header and stick on empty q */
538	for (i = 0; i < nbuf; i++) {
539		bp = &buf[i];
540		bzero(bp, sizeof *bp);
541		bp->b_flags = B_INVAL;	/* we're just an empty header */
542		bp->b_rcred = NOCRED;
543		bp->b_wcred = NOCRED;
544		bp->b_qindex = QUEUE_EMPTY;
545		bp->b_vflags = 0;
546		bp->b_xflags = 0;
547		LIST_INIT(&bp->b_dep);
548		BUF_LOCKINIT(bp);
549		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
550	}
551
552	/*
553	 * maxbufspace is the absolute maximum amount of buffer space we are
554	 * allowed to reserve in KVM and in real terms.  The absolute maximum
555	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
556	 * used by most other processes.  The differential is required to
557	 * ensure that buf_daemon is able to run when other processes might
558	 * be blocked waiting for buffer space.
559	 *
560	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
561	 * this may result in KVM fragmentation which is not handled optimally
562	 * by the system.
563	 */
564	maxbufspace = nbuf * BKVASIZE;
565	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
566	lobufspace = hibufspace - MAXBSIZE;
567
568	lorunningspace = 512 * 1024;
569	hirunningspace = 1024 * 1024;
570
571/*
572 * Limit the amount of malloc memory since it is wired permanently into
573 * the kernel space.  Even though this is accounted for in the buffer
574 * allocation, we don't want the malloced region to grow uncontrolled.
575 * The malloc scheme improves memory utilization significantly on average
576 * (small) directories.
577 */
578	maxbufmallocspace = hibufspace / 20;
579
580/*
581 * Reduce the chance of a deadlock occuring by limiting the number
582 * of delayed-write dirty buffers we allow to stack up.
583 */
584	hidirtybuffers = nbuf / 4 + 20;
585	dirtybufthresh = hidirtybuffers * 9 / 10;
586	numdirtybuffers = 0;
587/*
588 * To support extreme low-memory systems, make sure hidirtybuffers cannot
589 * eat up all available buffer space.  This occurs when our minimum cannot
590 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
591 * BKVASIZE'd (8K) buffers.
592 */
593	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
594		hidirtybuffers >>= 1;
595	}
596	lodirtybuffers = hidirtybuffers / 2;
597
598/*
599 * Try to keep the number of free buffers in the specified range,
600 * and give special processes (e.g. like buf_daemon) access to an
601 * emergency reserve.
602 */
603	lofreebuffers = nbuf / 18 + 5;
604	hifreebuffers = 2 * lofreebuffers;
605	numfreebuffers = nbuf;
606
607/*
608 * Maximum number of async ops initiated per buf_daemon loop.  This is
609 * somewhat of a hack at the moment, we really need to limit ourselves
610 * based on the number of bytes of I/O in-transit that were initiated
611 * from buf_daemon.
612 */
613
614	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
615	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
616}
617
618/*
619 * bfreekva() - free the kva allocation for a buffer.
620 *
621 *	Since this call frees up buffer space, we call bufspacewakeup().
622 */
623static void
624bfreekva(struct buf *bp)
625{
626
627	if (bp->b_kvasize) {
628		atomic_add_int(&buffreekvacnt, 1);
629		atomic_subtract_int(&bufspace, bp->b_kvasize);
630		vm_map_lock(buffer_map);
631		vm_map_delete(buffer_map,
632		    (vm_offset_t) bp->b_kvabase,
633		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
634		);
635		vm_map_unlock(buffer_map);
636		bp->b_kvasize = 0;
637		bufspacewakeup();
638	}
639}
640
641/*
642 *	bremfree:
643 *
644 *	Mark the buffer for removal from the appropriate free list in brelse.
645 *
646 */
647void
648bremfree(struct buf *bp)
649{
650
651	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
652	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
653	KASSERT((bp->b_flags & B_REMFREE) == 0,
654	    ("bremfree: buffer %p already marked for delayed removal.", bp));
655	KASSERT(bp->b_qindex != QUEUE_NONE,
656	    ("bremfree: buffer %p not on a queue.", bp));
657
658	bp->b_flags |= B_REMFREE;
659	/* Fixup numfreebuffers count.  */
660	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
661		atomic_subtract_int(&numfreebuffers, 1);
662}
663
664/*
665 *	bremfreef:
666 *
667 *	Force an immediate removal from a free list.  Used only in nfs when
668 *	it abuses the b_freelist pointer.
669 */
670void
671bremfreef(struct buf *bp)
672{
673	mtx_lock(&bqlock);
674	bremfreel(bp);
675	mtx_unlock(&bqlock);
676}
677
678/*
679 *	bremfreel:
680 *
681 *	Removes a buffer from the free list, must be called with the
682 *	bqlock held.
683 */
684static void
685bremfreel(struct buf *bp)
686{
687	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
688	    bp, bp->b_vp, bp->b_flags);
689	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
690	KASSERT(bp->b_qindex != QUEUE_NONE,
691	    ("bremfreel: buffer %p not on a queue.", bp));
692	mtx_assert(&bqlock, MA_OWNED);
693
694	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
695	bp->b_qindex = QUEUE_NONE;
696	/*
697	 * If this was a delayed bremfree() we only need to remove the buffer
698	 * from the queue and return the stats are already done.
699	 */
700	if (bp->b_flags & B_REMFREE) {
701		bp->b_flags &= ~B_REMFREE;
702		return;
703	}
704	/*
705	 * Fixup numfreebuffers count.  If the buffer is invalid or not
706	 * delayed-write, the buffer was free and we must decrement
707	 * numfreebuffers.
708	 */
709	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
710		atomic_subtract_int(&numfreebuffers, 1);
711}
712
713
714/*
715 * Get a buffer with the specified data.  Look in the cache first.  We
716 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
717 * is set, the buffer is valid and we do not have to do anything ( see
718 * getblk() ).  This is really just a special case of breadn().
719 */
720int
721bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
722    struct buf **bpp)
723{
724
725	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
726}
727
728/*
729 * Attempt to initiate asynchronous I/O on read-ahead blocks.  We must
730 * clear BIO_ERROR and B_INVAL prior to initiating I/O . If B_CACHE is set,
731 * the buffer is valid and we do not have to do anything.
732 */
733void
734breada(struct vnode * vp, daddr_t * rablkno, int * rabsize,
735    int cnt, struct ucred * cred)
736{
737	struct buf *rabp;
738	int i;
739
740	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
741		if (inmem(vp, *rablkno))
742			continue;
743		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
744
745		if ((rabp->b_flags & B_CACHE) == 0) {
746			if (curthread != PCPU_GET(idlethread))
747				curthread->td_proc->p_stats->p_ru.ru_inblock++;
748			rabp->b_flags |= B_ASYNC;
749			rabp->b_flags &= ~B_INVAL;
750			rabp->b_ioflags &= ~BIO_ERROR;
751			rabp->b_iocmd = BIO_READ;
752			if (rabp->b_rcred == NOCRED && cred != NOCRED)
753				rabp->b_rcred = crhold(cred);
754			vfs_busy_pages(rabp, 0);
755			BUF_KERNPROC(rabp);
756			rabp->b_iooffset = dbtob(rabp->b_blkno);
757			bstrategy(rabp);
758		} else {
759			brelse(rabp);
760		}
761	}
762}
763
764/*
765 * Operates like bread, but also starts asynchronous I/O on
766 * read-ahead blocks.
767 */
768int
769breadn(struct vnode * vp, daddr_t blkno, int size,
770    daddr_t * rablkno, int *rabsize,
771    int cnt, struct ucred * cred, struct buf **bpp)
772{
773	struct buf *bp;
774	int rv = 0, readwait = 0;
775
776	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
777	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
778
779	/* if not found in cache, do some I/O */
780	if ((bp->b_flags & B_CACHE) == 0) {
781		if (curthread != PCPU_GET(idlethread))
782			curthread->td_proc->p_stats->p_ru.ru_inblock++;
783		bp->b_iocmd = BIO_READ;
784		bp->b_flags &= ~B_INVAL;
785		bp->b_ioflags &= ~BIO_ERROR;
786		if (bp->b_rcred == NOCRED && cred != NOCRED)
787			bp->b_rcred = crhold(cred);
788		vfs_busy_pages(bp, 0);
789		bp->b_iooffset = dbtob(bp->b_blkno);
790		bstrategy(bp);
791		++readwait;
792	}
793
794	breada(vp, rablkno, rabsize, cnt, cred);
795
796	if (readwait) {
797		rv = bufwait(bp);
798	}
799	return (rv);
800}
801
802/*
803 * Write, release buffer on completion.  (Done by iodone
804 * if async).  Do not bother writing anything if the buffer
805 * is invalid.
806 *
807 * Note that we set B_CACHE here, indicating that buffer is
808 * fully valid and thus cacheable.  This is true even of NFS
809 * now so we set it generally.  This could be set either here
810 * or in biodone() since the I/O is synchronous.  We put it
811 * here.
812 */
813int
814bufwrite(struct buf *bp)
815{
816	int oldflags;
817
818	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
819	if (bp->b_flags & B_INVAL) {
820		brelse(bp);
821		return (0);
822	}
823
824	oldflags = bp->b_flags;
825
826	if (BUF_REFCNT(bp) == 0)
827		panic("bufwrite: buffer is not busy???");
828
829	if (bp->b_pin_count > 0)
830		bunpin_wait(bp);
831
832	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
833	    ("FFS background buffer should not get here %p", bp));
834
835	/* Mark the buffer clean */
836	bundirty(bp);
837
838	bp->b_flags &= ~B_DONE;
839	bp->b_ioflags &= ~BIO_ERROR;
840	bp->b_flags |= B_CACHE;
841	bp->b_iocmd = BIO_WRITE;
842
843	bufobj_wref(bp->b_bufobj);
844	vfs_busy_pages(bp, 1);
845
846	/*
847	 * Normal bwrites pipeline writes
848	 */
849	bp->b_runningbufspace = bp->b_bufsize;
850	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
851
852	if (curthread != PCPU_GET(idlethread))
853		curthread->td_proc->p_stats->p_ru.ru_oublock++;
854	if (oldflags & B_ASYNC)
855		BUF_KERNPROC(bp);
856	bp->b_iooffset = dbtob(bp->b_blkno);
857	bstrategy(bp);
858
859	if ((oldflags & B_ASYNC) == 0) {
860		int rtval = bufwait(bp);
861		brelse(bp);
862		return (rtval);
863	} else {
864		/*
865		 * don't allow the async write to saturate the I/O
866		 * system.  We will not deadlock here because
867		 * we are blocking waiting for I/O that is already in-progress
868		 * to complete. We do not block here if it is the update
869		 * or syncer daemon trying to clean up as that can lead
870		 * to deadlock.
871		 */
872		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0)
873			waitrunningbufspace();
874	}
875
876	return (0);
877}
878
879/*
880 * Delayed write. (Buffer is marked dirty).  Do not bother writing
881 * anything if the buffer is marked invalid.
882 *
883 * Note that since the buffer must be completely valid, we can safely
884 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
885 * biodone() in order to prevent getblk from writing the buffer
886 * out synchronously.
887 */
888void
889bdwrite(struct buf *bp)
890{
891	struct thread *td = curthread;
892	struct vnode *vp;
893	struct buf *nbp;
894	struct bufobj *bo;
895
896	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
897	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
898	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
899
900	if (bp->b_flags & B_INVAL) {
901		brelse(bp);
902		return;
903	}
904
905	/*
906	 * If we have too many dirty buffers, don't create any more.
907	 * If we are wildly over our limit, then force a complete
908	 * cleanup. Otherwise, just keep the situation from getting
909	 * out of control. Note that we have to avoid a recursive
910	 * disaster and not try to clean up after our own cleanup!
911	 */
912	vp = bp->b_vp;
913	bo = bp->b_bufobj;
914	if ((td->td_pflags & TDP_COWINPROGRESS) == 0) {
915		BO_LOCK(bo);
916		if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
917			BO_UNLOCK(bo);
918			(void) VOP_FSYNC(vp, MNT_NOWAIT, td);
919			altbufferflushes++;
920		} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
921			/*
922			 * Try to find a buffer to flush.
923			 */
924			TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
925				if ((nbp->b_vflags & BV_BKGRDINPROG) ||
926				    BUF_LOCK(nbp,
927				    LK_EXCLUSIVE | LK_NOWAIT, NULL))
928					continue;
929				if (bp == nbp)
930					panic("bdwrite: found ourselves");
931				BO_UNLOCK(bo);
932				/* Don't countdeps with the bo lock held. */
933				if (buf_countdeps(nbp, 0)) {
934					BO_LOCK(bo);
935					BUF_UNLOCK(nbp);
936					continue;
937				}
938				if (nbp->b_flags & B_CLUSTEROK) {
939					vfs_bio_awrite(nbp);
940				} else {
941					bremfree(nbp);
942					bawrite(nbp);
943				}
944				dirtybufferflushes++;
945				break;
946			}
947			if (nbp == NULL)
948				BO_UNLOCK(bo);
949		} else
950			BO_UNLOCK(bo);
951	} else
952		recursiveflushes++;
953
954	bdirty(bp);
955	/*
956	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
957	 * true even of NFS now.
958	 */
959	bp->b_flags |= B_CACHE;
960
961	/*
962	 * This bmap keeps the system from needing to do the bmap later,
963	 * perhaps when the system is attempting to do a sync.  Since it
964	 * is likely that the indirect block -- or whatever other datastructure
965	 * that the filesystem needs is still in memory now, it is a good
966	 * thing to do this.  Note also, that if the pageout daemon is
967	 * requesting a sync -- there might not be enough memory to do
968	 * the bmap then...  So, this is important to do.
969	 */
970	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
971		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
972	}
973
974	/*
975	 * Set the *dirty* buffer range based upon the VM system dirty pages.
976	 */
977	vfs_setdirty(bp);
978
979	/*
980	 * We need to do this here to satisfy the vnode_pager and the
981	 * pageout daemon, so that it thinks that the pages have been
982	 * "cleaned".  Note that since the pages are in a delayed write
983	 * buffer -- the VFS layer "will" see that the pages get written
984	 * out on the next sync, or perhaps the cluster will be completed.
985	 */
986	vfs_clean_pages(bp);
987	bqrelse(bp);
988
989	/*
990	 * Wakeup the buffer flushing daemon if we have a lot of dirty
991	 * buffers (midpoint between our recovery point and our stall
992	 * point).
993	 */
994	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
995
996	/*
997	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
998	 * due to the softdep code.
999	 */
1000}
1001
1002/*
1003 *	bdirty:
1004 *
1005 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1006 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1007 *	itself to properly update it in the dirty/clean lists.  We mark it
1008 *	B_DONE to ensure that any asynchronization of the buffer properly
1009 *	clears B_DONE ( else a panic will occur later ).
1010 *
1011 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1012 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1013 *	should only be called if the buffer is known-good.
1014 *
1015 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1016 *	count.
1017 *
1018 *	The buffer must be on QUEUE_NONE.
1019 */
1020void
1021bdirty(struct buf *bp)
1022{
1023
1024	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1025	    bp, bp->b_vp, bp->b_flags);
1026	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1027	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1028	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1029	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1030	bp->b_flags &= ~(B_RELBUF);
1031	bp->b_iocmd = BIO_WRITE;
1032
1033	if ((bp->b_flags & B_DELWRI) == 0) {
1034		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1035		reassignbuf(bp);
1036		atomic_add_int(&numdirtybuffers, 1);
1037		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1038	}
1039}
1040
1041/*
1042 *	bundirty:
1043 *
1044 *	Clear B_DELWRI for buffer.
1045 *
1046 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1047 *	count.
1048 *
1049 *	The buffer must be on QUEUE_NONE.
1050 */
1051
1052void
1053bundirty(struct buf *bp)
1054{
1055
1056	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1057	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1058	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1059	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1060	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1061
1062	if (bp->b_flags & B_DELWRI) {
1063		bp->b_flags &= ~B_DELWRI;
1064		reassignbuf(bp);
1065		atomic_subtract_int(&numdirtybuffers, 1);
1066		numdirtywakeup(lodirtybuffers);
1067	}
1068	/*
1069	 * Since it is now being written, we can clear its deferred write flag.
1070	 */
1071	bp->b_flags &= ~B_DEFERRED;
1072}
1073
1074/*
1075 *	bawrite:
1076 *
1077 *	Asynchronous write.  Start output on a buffer, but do not wait for
1078 *	it to complete.  The buffer is released when the output completes.
1079 *
1080 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1081 *	B_INVAL buffers.  Not us.
1082 */
1083void
1084bawrite(struct buf *bp)
1085{
1086
1087	bp->b_flags |= B_ASYNC;
1088	(void) bwrite(bp);
1089}
1090
1091/*
1092 *	bwillwrite:
1093 *
1094 *	Called prior to the locking of any vnodes when we are expecting to
1095 *	write.  We do not want to starve the buffer cache with too many
1096 *	dirty buffers so we block here.  By blocking prior to the locking
1097 *	of any vnodes we attempt to avoid the situation where a locked vnode
1098 *	prevents the various system daemons from flushing related buffers.
1099 */
1100
1101void
1102bwillwrite(void)
1103{
1104
1105	if (numdirtybuffers >= hidirtybuffers) {
1106		mtx_lock(&nblock);
1107		while (numdirtybuffers >= hidirtybuffers) {
1108			bd_wakeup(1);
1109			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1110			msleep(&needsbuffer, &nblock,
1111			    (PRIBIO + 4), "flswai", 0);
1112		}
1113		mtx_unlock(&nblock);
1114	}
1115}
1116
1117/*
1118 * Return true if we have too many dirty buffers.
1119 */
1120int
1121buf_dirty_count_severe(void)
1122{
1123
1124	return(numdirtybuffers >= hidirtybuffers);
1125}
1126
1127/*
1128 *	brelse:
1129 *
1130 *	Release a busy buffer and, if requested, free its resources.  The
1131 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1132 *	to be accessed later as a cache entity or reused for other purposes.
1133 */
1134void
1135brelse(struct buf *bp)
1136{
1137	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1138	    bp, bp->b_vp, bp->b_flags);
1139	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1140	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1141
1142	if (bp->b_flags & B_MANAGED) {
1143		bqrelse(bp);
1144		return;
1145	}
1146
1147	if (bp->b_iocmd == BIO_WRITE &&
1148	    (bp->b_ioflags & BIO_ERROR) &&
1149	    !(bp->b_flags & B_INVAL)) {
1150		/*
1151		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1152		 * pages from being scrapped.  If B_INVAL is set then
1153		 * this case is not run and the next case is run to
1154		 * destroy the buffer.  B_INVAL can occur if the buffer
1155		 * is outside the range supported by the underlying device.
1156		 */
1157		bp->b_ioflags &= ~BIO_ERROR;
1158		bdirty(bp);
1159	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1160	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1161		/*
1162		 * Either a failed I/O or we were asked to free or not
1163		 * cache the buffer.
1164		 */
1165		bp->b_flags |= B_INVAL;
1166		if (LIST_FIRST(&bp->b_dep) != NULL)
1167			buf_deallocate(bp);
1168		if (bp->b_flags & B_DELWRI) {
1169			atomic_subtract_int(&numdirtybuffers, 1);
1170			numdirtywakeup(lodirtybuffers);
1171		}
1172		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1173		if ((bp->b_flags & B_VMIO) == 0) {
1174			if (bp->b_bufsize)
1175				allocbuf(bp, 0);
1176			if (bp->b_vp)
1177				brelvp(bp);
1178		}
1179	}
1180
1181	/*
1182	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1183	 * is called with B_DELWRI set, the underlying pages may wind up
1184	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1185	 * because pages associated with a B_DELWRI bp are marked clean.
1186	 *
1187	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1188	 * if B_DELWRI is set.
1189	 *
1190	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1191	 * on pages to return pages to the VM page queues.
1192	 */
1193	if (bp->b_flags & B_DELWRI)
1194		bp->b_flags &= ~B_RELBUF;
1195	else if (vm_page_count_severe()) {
1196		/*
1197		 * XXX This lock may not be necessary since BKGRDINPROG
1198		 * cannot be set while we hold the buf lock, it can only be
1199		 * cleared if it is already pending.
1200		 */
1201		if (bp->b_vp) {
1202			BO_LOCK(bp->b_bufobj);
1203			if (!(bp->b_vflags & BV_BKGRDINPROG))
1204				bp->b_flags |= B_RELBUF;
1205			BO_UNLOCK(bp->b_bufobj);
1206		} else
1207			bp->b_flags |= B_RELBUF;
1208	}
1209
1210	/*
1211	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1212	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1213	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1214	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1215	 *
1216	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1217	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1218	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1219	 *
1220	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1221	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1222	 * the commit state and we cannot afford to lose the buffer. If the
1223	 * buffer has a background write in progress, we need to keep it
1224	 * around to prevent it from being reconstituted and starting a second
1225	 * background write.
1226	 */
1227	if ((bp->b_flags & B_VMIO)
1228	    && !(bp->b_vp->v_mount != NULL &&
1229		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1230		 !vn_isdisk(bp->b_vp, NULL) &&
1231		 (bp->b_flags & B_DELWRI))
1232	    ) {
1233
1234		int i, j, resid;
1235		vm_page_t m;
1236		off_t foff;
1237		vm_pindex_t poff;
1238		vm_object_t obj;
1239
1240		obj = bp->b_bufobj->bo_object;
1241
1242		/*
1243		 * Get the base offset and length of the buffer.  Note that
1244		 * in the VMIO case if the buffer block size is not
1245		 * page-aligned then b_data pointer may not be page-aligned.
1246		 * But our b_pages[] array *IS* page aligned.
1247		 *
1248		 * block sizes less then DEV_BSIZE (usually 512) are not
1249		 * supported due to the page granularity bits (m->valid,
1250		 * m->dirty, etc...).
1251		 *
1252		 * See man buf(9) for more information
1253		 */
1254		resid = bp->b_bufsize;
1255		foff = bp->b_offset;
1256		VM_OBJECT_LOCK(obj);
1257		for (i = 0; i < bp->b_npages; i++) {
1258			int had_bogus = 0;
1259
1260			m = bp->b_pages[i];
1261
1262			/*
1263			 * If we hit a bogus page, fixup *all* the bogus pages
1264			 * now.
1265			 */
1266			if (m == bogus_page) {
1267				poff = OFF_TO_IDX(bp->b_offset);
1268				had_bogus = 1;
1269
1270				for (j = i; j < bp->b_npages; j++) {
1271					vm_page_t mtmp;
1272					mtmp = bp->b_pages[j];
1273					if (mtmp == bogus_page) {
1274						mtmp = vm_page_lookup(obj, poff + j);
1275						if (!mtmp) {
1276							panic("brelse: page missing\n");
1277						}
1278						bp->b_pages[j] = mtmp;
1279					}
1280				}
1281
1282				if ((bp->b_flags & B_INVAL) == 0) {
1283					pmap_qenter(
1284					    trunc_page((vm_offset_t)bp->b_data),
1285					    bp->b_pages, bp->b_npages);
1286				}
1287				m = bp->b_pages[i];
1288			}
1289			if ((bp->b_flags & B_NOCACHE) ||
1290			    (bp->b_ioflags & BIO_ERROR)) {
1291				int poffset = foff & PAGE_MASK;
1292				int presid = resid > (PAGE_SIZE - poffset) ?
1293					(PAGE_SIZE - poffset) : resid;
1294
1295				KASSERT(presid >= 0, ("brelse: extra page"));
1296				vm_page_lock_queues();
1297				vm_page_set_invalid(m, poffset, presid);
1298				vm_page_unlock_queues();
1299				if (had_bogus)
1300					printf("avoided corruption bug in bogus_page/brelse code\n");
1301			}
1302			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1303			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1304		}
1305		VM_OBJECT_UNLOCK(obj);
1306		if (bp->b_flags & (B_INVAL | B_RELBUF))
1307			vfs_vmio_release(bp);
1308
1309	} else if (bp->b_flags & B_VMIO) {
1310
1311		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1312			vfs_vmio_release(bp);
1313		}
1314
1315	}
1316
1317	if (BUF_REFCNT(bp) > 1) {
1318		/* do not release to free list */
1319		BUF_UNLOCK(bp);
1320		return;
1321	}
1322
1323	/* enqueue */
1324	mtx_lock(&bqlock);
1325	/* Handle delayed bremfree() processing. */
1326	if (bp->b_flags & B_REMFREE)
1327		bremfreel(bp);
1328	if (bp->b_qindex != QUEUE_NONE)
1329		panic("brelse: free buffer onto another queue???");
1330
1331	/* buffers with no memory */
1332	if (bp->b_bufsize == 0) {
1333		bp->b_flags |= B_INVAL;
1334		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1335		if (bp->b_vflags & BV_BKGRDINPROG)
1336			panic("losing buffer 1");
1337		if (bp->b_kvasize) {
1338			bp->b_qindex = QUEUE_EMPTYKVA;
1339		} else {
1340			bp->b_qindex = QUEUE_EMPTY;
1341		}
1342		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1343	/* buffers with junk contents */
1344	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1345	    (bp->b_ioflags & BIO_ERROR)) {
1346		bp->b_flags |= B_INVAL;
1347		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1348		if (bp->b_vflags & BV_BKGRDINPROG)
1349			panic("losing buffer 2");
1350		bp->b_qindex = QUEUE_CLEAN;
1351		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1352	/* remaining buffers */
1353	} else {
1354		if (bp->b_flags & B_DELWRI)
1355			bp->b_qindex = QUEUE_DIRTY;
1356		else
1357			bp->b_qindex = QUEUE_CLEAN;
1358		if (bp->b_flags & B_AGE)
1359			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1360		else
1361			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1362	}
1363	mtx_unlock(&bqlock);
1364
1365	/*
1366	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1367	 * placed the buffer on the correct queue.  We must also disassociate
1368	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1369	 * find it.
1370	 */
1371	if (bp->b_flags & B_INVAL) {
1372		if (bp->b_flags & B_DELWRI)
1373			bundirty(bp);
1374		if (bp->b_vp)
1375			brelvp(bp);
1376	}
1377
1378	/*
1379	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1380	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1381	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1382	 * if B_INVAL is set ).
1383	 */
1384
1385	if (!(bp->b_flags & B_DELWRI))
1386		bufcountwakeup();
1387
1388	/*
1389	 * Something we can maybe free or reuse
1390	 */
1391	if (bp->b_bufsize || bp->b_kvasize)
1392		bufspacewakeup();
1393
1394	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1395	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1396		panic("brelse: not dirty");
1397	/* unlock */
1398	BUF_UNLOCK(bp);
1399}
1400
1401/*
1402 * Release a buffer back to the appropriate queue but do not try to free
1403 * it.  The buffer is expected to be used again soon.
1404 *
1405 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1406 * biodone() to requeue an async I/O on completion.  It is also used when
1407 * known good buffers need to be requeued but we think we may need the data
1408 * again soon.
1409 *
1410 * XXX we should be able to leave the B_RELBUF hint set on completion.
1411 */
1412void
1413bqrelse(struct buf *bp)
1414{
1415	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1416	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1417	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1418
1419	if (BUF_REFCNT(bp) > 1) {
1420		/* do not release to free list */
1421		BUF_UNLOCK(bp);
1422		return;
1423	}
1424
1425	if (bp->b_flags & B_MANAGED) {
1426		if (bp->b_flags & B_REMFREE) {
1427			mtx_lock(&bqlock);
1428			bremfreel(bp);
1429			mtx_unlock(&bqlock);
1430		}
1431		bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1432		BUF_UNLOCK(bp);
1433		return;
1434	}
1435
1436	mtx_lock(&bqlock);
1437	/* Handle delayed bremfree() processing. */
1438	if (bp->b_flags & B_REMFREE)
1439		bremfreel(bp);
1440	if (bp->b_qindex != QUEUE_NONE)
1441		panic("bqrelse: free buffer onto another queue???");
1442	/* buffers with stale but valid contents */
1443	if (bp->b_flags & B_DELWRI) {
1444		bp->b_qindex = QUEUE_DIRTY;
1445		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1446	} else {
1447		/*
1448		 * XXX This lock may not be necessary since BKGRDINPROG
1449		 * cannot be set while we hold the buf lock, it can only be
1450		 * cleared if it is already pending.
1451		 */
1452		BO_LOCK(bp->b_bufobj);
1453		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1454			BO_UNLOCK(bp->b_bufobj);
1455			bp->b_qindex = QUEUE_CLEAN;
1456			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1457			    b_freelist);
1458		} else {
1459			/*
1460			 * We are too low on memory, we have to try to free
1461			 * the buffer (most importantly: the wired pages
1462			 * making up its backing store) *now*.
1463			 */
1464			BO_UNLOCK(bp->b_bufobj);
1465			mtx_unlock(&bqlock);
1466			brelse(bp);
1467			return;
1468		}
1469	}
1470	mtx_unlock(&bqlock);
1471
1472	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1473		bufcountwakeup();
1474
1475	/*
1476	 * Something we can maybe free or reuse.
1477	 */
1478	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1479		bufspacewakeup();
1480
1481	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1482	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1483		panic("bqrelse: not dirty");
1484	/* unlock */
1485	BUF_UNLOCK(bp);
1486}
1487
1488/* Give pages used by the bp back to the VM system (where possible) */
1489static void
1490vfs_vmio_release(struct buf *bp)
1491{
1492	int i;
1493	vm_page_t m;
1494
1495	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1496	vm_page_lock_queues();
1497	for (i = 0; i < bp->b_npages; i++) {
1498		m = bp->b_pages[i];
1499		bp->b_pages[i] = NULL;
1500		/*
1501		 * In order to keep page LRU ordering consistent, put
1502		 * everything on the inactive queue.
1503		 */
1504		vm_page_unwire(m, 0);
1505		/*
1506		 * We don't mess with busy pages, it is
1507		 * the responsibility of the process that
1508		 * busied the pages to deal with them.
1509		 */
1510		if ((m->flags & PG_BUSY) || (m->busy != 0))
1511			continue;
1512
1513		if (m->wire_count == 0) {
1514			/*
1515			 * Might as well free the page if we can and it has
1516			 * no valid data.  We also free the page if the
1517			 * buffer was used for direct I/O
1518			 */
1519			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1520			    m->hold_count == 0) {
1521				vm_page_free(m);
1522			} else if (bp->b_flags & B_DIRECT) {
1523				vm_page_try_to_free(m);
1524			} else if (vm_page_count_severe()) {
1525				vm_page_try_to_cache(m);
1526			}
1527		}
1528	}
1529	vm_page_unlock_queues();
1530	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1531	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1532
1533	if (bp->b_bufsize) {
1534		bufspacewakeup();
1535		bp->b_bufsize = 0;
1536	}
1537	bp->b_npages = 0;
1538	bp->b_flags &= ~B_VMIO;
1539	if (bp->b_vp)
1540		brelvp(bp);
1541}
1542
1543/*
1544 * Check to see if a block at a particular lbn is available for a clustered
1545 * write.
1546 */
1547static int
1548vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1549{
1550	struct buf *bpa;
1551	int match;
1552
1553	match = 0;
1554
1555	/* If the buf isn't in core skip it */
1556	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1557		return (0);
1558
1559	/* If the buf is busy we don't want to wait for it */
1560	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1561		return (0);
1562
1563	/* Only cluster with valid clusterable delayed write buffers */
1564	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1565	    (B_DELWRI | B_CLUSTEROK))
1566		goto done;
1567
1568	if (bpa->b_bufsize != size)
1569		goto done;
1570
1571	/*
1572	 * Check to see if it is in the expected place on disk and that the
1573	 * block has been mapped.
1574	 */
1575	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1576		match = 1;
1577done:
1578	BUF_UNLOCK(bpa);
1579	return (match);
1580}
1581
1582/*
1583 *	vfs_bio_awrite:
1584 *
1585 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1586 *	This is much better then the old way of writing only one buffer at
1587 *	a time.  Note that we may not be presented with the buffers in the
1588 *	correct order, so we search for the cluster in both directions.
1589 */
1590int
1591vfs_bio_awrite(struct buf *bp)
1592{
1593	int i;
1594	int j;
1595	daddr_t lblkno = bp->b_lblkno;
1596	struct vnode *vp = bp->b_vp;
1597	int ncl;
1598	int nwritten;
1599	int size;
1600	int maxcl;
1601
1602	/*
1603	 * right now we support clustered writing only to regular files.  If
1604	 * we find a clusterable block we could be in the middle of a cluster
1605	 * rather then at the beginning.
1606	 */
1607	if ((vp->v_type == VREG) &&
1608	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1609	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1610
1611		size = vp->v_mount->mnt_stat.f_iosize;
1612		maxcl = MAXPHYS / size;
1613
1614		VI_LOCK(vp);
1615		for (i = 1; i < maxcl; i++)
1616			if (vfs_bio_clcheck(vp, size, lblkno + i,
1617			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1618				break;
1619
1620		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1621			if (vfs_bio_clcheck(vp, size, lblkno - j,
1622			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1623				break;
1624
1625		VI_UNLOCK(vp);
1626		--j;
1627		ncl = i + j;
1628		/*
1629		 * this is a possible cluster write
1630		 */
1631		if (ncl != 1) {
1632			BUF_UNLOCK(bp);
1633			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1634			return nwritten;
1635		}
1636	}
1637	bremfree(bp);
1638	bp->b_flags |= B_ASYNC;
1639	/*
1640	 * default (old) behavior, writing out only one block
1641	 *
1642	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1643	 */
1644	nwritten = bp->b_bufsize;
1645	(void) bwrite(bp);
1646
1647	return nwritten;
1648}
1649
1650/*
1651 *	getnewbuf:
1652 *
1653 *	Find and initialize a new buffer header, freeing up existing buffers
1654 *	in the bufqueues as necessary.  The new buffer is returned locked.
1655 *
1656 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1657 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1658 *
1659 *	We block if:
1660 *		We have insufficient buffer headers
1661 *		We have insufficient buffer space
1662 *		buffer_map is too fragmented ( space reservation fails )
1663 *		If we have to flush dirty buffers ( but we try to avoid this )
1664 *
1665 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1666 *	Instead we ask the buf daemon to do it for us.  We attempt to
1667 *	avoid piecemeal wakeups of the pageout daemon.
1668 */
1669
1670static struct buf *
1671getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1672{
1673	struct buf *bp;
1674	struct buf *nbp;
1675	int defrag = 0;
1676	int nqindex;
1677	static int flushingbufs;
1678
1679	/*
1680	 * We can't afford to block since we might be holding a vnode lock,
1681	 * which may prevent system daemons from running.  We deal with
1682	 * low-memory situations by proactively returning memory and running
1683	 * async I/O rather then sync I/O.
1684	 */
1685
1686	atomic_add_int(&getnewbufcalls, 1);
1687	atomic_subtract_int(&getnewbufrestarts, 1);
1688restart:
1689	atomic_add_int(&getnewbufrestarts, 1);
1690
1691	/*
1692	 * Setup for scan.  If we do not have enough free buffers,
1693	 * we setup a degenerate case that immediately fails.  Note
1694	 * that if we are specially marked process, we are allowed to
1695	 * dip into our reserves.
1696	 *
1697	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1698	 *
1699	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1700	 * However, there are a number of cases (defragging, reusing, ...)
1701	 * where we cannot backup.
1702	 */
1703	mtx_lock(&bqlock);
1704	nqindex = QUEUE_EMPTYKVA;
1705	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1706
1707	if (nbp == NULL) {
1708		/*
1709		 * If no EMPTYKVA buffers and we are either
1710		 * defragging or reusing, locate a CLEAN buffer
1711		 * to free or reuse.  If bufspace useage is low
1712		 * skip this step so we can allocate a new buffer.
1713		 */
1714		if (defrag || bufspace >= lobufspace) {
1715			nqindex = QUEUE_CLEAN;
1716			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1717		}
1718
1719		/*
1720		 * If we could not find or were not allowed to reuse a
1721		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1722		 * buffer.  We can only use an EMPTY buffer if allocating
1723		 * its KVA would not otherwise run us out of buffer space.
1724		 */
1725		if (nbp == NULL && defrag == 0 &&
1726		    bufspace + maxsize < hibufspace) {
1727			nqindex = QUEUE_EMPTY;
1728			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1729		}
1730	}
1731
1732	/*
1733	 * Run scan, possibly freeing data and/or kva mappings on the fly
1734	 * depending.
1735	 */
1736
1737	while ((bp = nbp) != NULL) {
1738		int qindex = nqindex;
1739
1740		/*
1741		 * Calculate next bp ( we can only use it if we do not block
1742		 * or do other fancy things ).
1743		 */
1744		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1745			switch(qindex) {
1746			case QUEUE_EMPTY:
1747				nqindex = QUEUE_EMPTYKVA;
1748				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1749					break;
1750				/* FALLTHROUGH */
1751			case QUEUE_EMPTYKVA:
1752				nqindex = QUEUE_CLEAN;
1753				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1754					break;
1755				/* FALLTHROUGH */
1756			case QUEUE_CLEAN:
1757				/*
1758				 * nbp is NULL.
1759				 */
1760				break;
1761			}
1762		}
1763		/*
1764		 * If we are defragging then we need a buffer with
1765		 * b_kvasize != 0.  XXX this situation should no longer
1766		 * occur, if defrag is non-zero the buffer's b_kvasize
1767		 * should also be non-zero at this point.  XXX
1768		 */
1769		if (defrag && bp->b_kvasize == 0) {
1770			printf("Warning: defrag empty buffer %p\n", bp);
1771			continue;
1772		}
1773
1774		/*
1775		 * Start freeing the bp.  This is somewhat involved.  nbp
1776		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1777		 */
1778		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1779			continue;
1780		if (bp->b_vp) {
1781			BO_LOCK(bp->b_bufobj);
1782			if (bp->b_vflags & BV_BKGRDINPROG) {
1783				BO_UNLOCK(bp->b_bufobj);
1784				BUF_UNLOCK(bp);
1785				continue;
1786			}
1787			BO_UNLOCK(bp->b_bufobj);
1788		}
1789		CTR6(KTR_BUF,
1790		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1791		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1792		    bp->b_kvasize, bp->b_bufsize, qindex);
1793
1794		/*
1795		 * Sanity Checks
1796		 */
1797		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1798
1799		/*
1800		 * Note: we no longer distinguish between VMIO and non-VMIO
1801		 * buffers.
1802		 */
1803
1804		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1805
1806		bremfreel(bp);
1807		mtx_unlock(&bqlock);
1808
1809		if (qindex == QUEUE_CLEAN) {
1810			if (bp->b_flags & B_VMIO) {
1811				bp->b_flags &= ~B_ASYNC;
1812				vfs_vmio_release(bp);
1813			}
1814			if (bp->b_vp)
1815				brelvp(bp);
1816		}
1817
1818		/*
1819		 * NOTE:  nbp is now entirely invalid.  We can only restart
1820		 * the scan from this point on.
1821		 *
1822		 * Get the rest of the buffer freed up.  b_kva* is still
1823		 * valid after this operation.
1824		 */
1825
1826		if (bp->b_rcred != NOCRED) {
1827			crfree(bp->b_rcred);
1828			bp->b_rcred = NOCRED;
1829		}
1830		if (bp->b_wcred != NOCRED) {
1831			crfree(bp->b_wcred);
1832			bp->b_wcred = NOCRED;
1833		}
1834		if (LIST_FIRST(&bp->b_dep) != NULL)
1835			buf_deallocate(bp);
1836		if (bp->b_vflags & BV_BKGRDINPROG)
1837			panic("losing buffer 3");
1838		KASSERT(bp->b_vp == NULL,
1839		    ("bp: %p still has vnode %p.  qindex: %d",
1840		    bp, bp->b_vp, qindex));
1841		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1842		   ("bp: %p still on a buffer list. xflags %X",
1843		    bp, bp->b_xflags));
1844
1845		if (bp->b_bufsize)
1846			allocbuf(bp, 0);
1847
1848		bp->b_flags = 0;
1849		bp->b_ioflags = 0;
1850		bp->b_xflags = 0;
1851		bp->b_vflags = 0;
1852		bp->b_vp = NULL;
1853		bp->b_blkno = bp->b_lblkno = 0;
1854		bp->b_offset = NOOFFSET;
1855		bp->b_iodone = 0;
1856		bp->b_error = 0;
1857		bp->b_resid = 0;
1858		bp->b_bcount = 0;
1859		bp->b_npages = 0;
1860		bp->b_dirtyoff = bp->b_dirtyend = 0;
1861		bp->b_bufobj = NULL;
1862		bp->b_pin_count = 0;
1863		bp->b_fsprivate1 = NULL;
1864		bp->b_fsprivate2 = NULL;
1865		bp->b_fsprivate3 = NULL;
1866
1867		LIST_INIT(&bp->b_dep);
1868
1869		/*
1870		 * If we are defragging then free the buffer.
1871		 */
1872		if (defrag) {
1873			bp->b_flags |= B_INVAL;
1874			bfreekva(bp);
1875			brelse(bp);
1876			defrag = 0;
1877			goto restart;
1878		}
1879
1880		/*
1881		 * If we are overcomitted then recover the buffer and its
1882		 * KVM space.  This occurs in rare situations when multiple
1883		 * processes are blocked in getnewbuf() or allocbuf().
1884		 */
1885		if (bufspace >= hibufspace)
1886			flushingbufs = 1;
1887		if (flushingbufs && bp->b_kvasize != 0) {
1888			bp->b_flags |= B_INVAL;
1889			bfreekva(bp);
1890			brelse(bp);
1891			goto restart;
1892		}
1893		if (bufspace < lobufspace)
1894			flushingbufs = 0;
1895		break;
1896	}
1897
1898	/*
1899	 * If we exhausted our list, sleep as appropriate.  We may have to
1900	 * wakeup various daemons and write out some dirty buffers.
1901	 *
1902	 * Generally we are sleeping due to insufficient buffer space.
1903	 */
1904
1905	if (bp == NULL) {
1906		int flags;
1907		char *waitmsg;
1908
1909		if (defrag) {
1910			flags = VFS_BIO_NEED_BUFSPACE;
1911			waitmsg = "nbufkv";
1912		} else if (bufspace >= hibufspace) {
1913			waitmsg = "nbufbs";
1914			flags = VFS_BIO_NEED_BUFSPACE;
1915		} else {
1916			waitmsg = "newbuf";
1917			flags = VFS_BIO_NEED_ANY;
1918		}
1919		mtx_lock(&nblock);
1920		needsbuffer |= flags;
1921		mtx_unlock(&nblock);
1922		mtx_unlock(&bqlock);
1923
1924		bd_speedup();	/* heeeelp */
1925
1926		mtx_lock(&nblock);
1927		while (needsbuffer & flags) {
1928			if (msleep(&needsbuffer, &nblock,
1929			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1930				mtx_unlock(&nblock);
1931				return (NULL);
1932			}
1933		}
1934		mtx_unlock(&nblock);
1935	} else {
1936		/*
1937		 * We finally have a valid bp.  We aren't quite out of the
1938		 * woods, we still have to reserve kva space.  In order
1939		 * to keep fragmentation sane we only allocate kva in
1940		 * BKVASIZE chunks.
1941		 */
1942		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1943
1944		if (maxsize != bp->b_kvasize) {
1945			vm_offset_t addr = 0;
1946
1947			bfreekva(bp);
1948
1949			vm_map_lock(buffer_map);
1950			if (vm_map_findspace(buffer_map,
1951				vm_map_min(buffer_map), maxsize, &addr)) {
1952				/*
1953				 * Uh oh.  Buffer map is to fragmented.  We
1954				 * must defragment the map.
1955				 */
1956				atomic_add_int(&bufdefragcnt, 1);
1957				vm_map_unlock(buffer_map);
1958				defrag = 1;
1959				bp->b_flags |= B_INVAL;
1960				brelse(bp);
1961				goto restart;
1962			}
1963			if (addr) {
1964				vm_map_insert(buffer_map, NULL, 0,
1965					addr, addr + maxsize,
1966					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1967
1968				bp->b_kvabase = (caddr_t) addr;
1969				bp->b_kvasize = maxsize;
1970				atomic_add_int(&bufspace, bp->b_kvasize);
1971				atomic_add_int(&bufreusecnt, 1);
1972			}
1973			vm_map_unlock(buffer_map);
1974		}
1975		bp->b_saveaddr = bp->b_kvabase;
1976		bp->b_data = bp->b_saveaddr;
1977	}
1978	return(bp);
1979}
1980
1981/*
1982 *	buf_daemon:
1983 *
1984 *	buffer flushing daemon.  Buffers are normally flushed by the
1985 *	update daemon but if it cannot keep up this process starts to
1986 *	take the load in an attempt to prevent getnewbuf() from blocking.
1987 */
1988
1989static struct kproc_desc buf_kp = {
1990	"bufdaemon",
1991	buf_daemon,
1992	&bufdaemonproc
1993};
1994SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1995
1996static void
1997buf_daemon()
1998{
1999	mtx_lock(&Giant);
2000
2001	/*
2002	 * This process needs to be suspended prior to shutdown sync.
2003	 */
2004	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2005	    SHUTDOWN_PRI_LAST);
2006
2007	/*
2008	 * This process is allowed to take the buffer cache to the limit
2009	 */
2010	curthread->td_pflags |= TDP_NORUNNINGBUF;
2011	mtx_lock(&bdlock);
2012	for (;;) {
2013		bd_request = 0;
2014		mtx_unlock(&bdlock);
2015
2016		kthread_suspend_check(bufdaemonproc);
2017
2018		/*
2019		 * Do the flush.  Limit the amount of in-transit I/O we
2020		 * allow to build up, otherwise we would completely saturate
2021		 * the I/O system.  Wakeup any waiting processes before we
2022		 * normally would so they can run in parallel with our drain.
2023		 */
2024		while (numdirtybuffers > lodirtybuffers) {
2025			if (flushbufqueues(0) == 0) {
2026				/*
2027				 * Could not find any buffers without rollback
2028				 * dependencies, so just write the first one
2029				 * in the hopes of eventually making progress.
2030				 */
2031				flushbufqueues(1);
2032				break;
2033			}
2034			uio_yield();
2035		}
2036
2037		/*
2038		 * Only clear bd_request if we have reached our low water
2039		 * mark.  The buf_daemon normally waits 1 second and
2040		 * then incrementally flushes any dirty buffers that have
2041		 * built up, within reason.
2042		 *
2043		 * If we were unable to hit our low water mark and couldn't
2044		 * find any flushable buffers, we sleep half a second.
2045		 * Otherwise we loop immediately.
2046		 */
2047		mtx_lock(&bdlock);
2048		if (numdirtybuffers <= lodirtybuffers) {
2049			/*
2050			 * We reached our low water mark, reset the
2051			 * request and sleep until we are needed again.
2052			 * The sleep is just so the suspend code works.
2053			 */
2054			bd_request = 0;
2055			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2056		} else {
2057			/*
2058			 * We couldn't find any flushable dirty buffers but
2059			 * still have too many dirty buffers, we
2060			 * have to sleep and try again.  (rare)
2061			 */
2062			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2063		}
2064	}
2065}
2066
2067/*
2068 *	flushbufqueues:
2069 *
2070 *	Try to flush a buffer in the dirty queue.  We must be careful to
2071 *	free up B_INVAL buffers instead of write them, which NFS is
2072 *	particularly sensitive to.
2073 */
2074static int flushwithdeps = 0;
2075SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2076    0, "Number of buffers flushed with dependecies that require rollbacks");
2077
2078static int
2079flushbufqueues(int flushdeps)
2080{
2081	struct thread *td = curthread;
2082	struct buf sentinel;
2083	struct vnode *vp;
2084	struct mount *mp;
2085	struct buf *bp;
2086	int hasdeps;
2087	int flushed;
2088	int target;
2089
2090	target = numdirtybuffers - lodirtybuffers;
2091	if (flushdeps && target > 2)
2092		target /= 2;
2093	flushed = 0;
2094	bp = NULL;
2095	mtx_lock(&bqlock);
2096	TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], &sentinel, b_freelist);
2097	while (flushed != target) {
2098		bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2099		if (bp == &sentinel)
2100			break;
2101		TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
2102		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
2103
2104		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2105			continue;
2106		if (bp->b_pin_count > 0) {
2107			BUF_UNLOCK(bp);
2108			continue;
2109		}
2110		BO_LOCK(bp->b_bufobj);
2111		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2112		    (bp->b_flags & B_DELWRI) == 0) {
2113			BO_UNLOCK(bp->b_bufobj);
2114			BUF_UNLOCK(bp);
2115			continue;
2116		}
2117		BO_UNLOCK(bp->b_bufobj);
2118		if (bp->b_flags & B_INVAL) {
2119			bremfreel(bp);
2120			mtx_unlock(&bqlock);
2121			brelse(bp);
2122			flushed++;
2123			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2124			mtx_lock(&bqlock);
2125			continue;
2126		}
2127
2128		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2129			if (flushdeps == 0) {
2130				BUF_UNLOCK(bp);
2131				continue;
2132			}
2133			hasdeps = 1;
2134		} else
2135			hasdeps = 0;
2136		/*
2137		 * We must hold the lock on a vnode before writing
2138		 * one of its buffers. Otherwise we may confuse, or
2139		 * in the case of a snapshot vnode, deadlock the
2140		 * system.
2141		 *
2142		 * The lock order here is the reverse of the normal
2143		 * of vnode followed by buf lock.  This is ok because
2144		 * the NOWAIT will prevent deadlock.
2145		 */
2146		vp = bp->b_vp;
2147		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2148			BUF_UNLOCK(bp);
2149			continue;
2150		}
2151		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2152			mtx_unlock(&bqlock);
2153			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2154			    bp, bp->b_vp, bp->b_flags);
2155			vfs_bio_awrite(bp);
2156			vn_finished_write(mp);
2157			VOP_UNLOCK(vp, 0, td);
2158			flushwithdeps += hasdeps;
2159			flushed++;
2160			waitrunningbufspace();
2161			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2162			mtx_lock(&bqlock);
2163			continue;
2164		}
2165		vn_finished_write(mp);
2166		BUF_UNLOCK(bp);
2167	}
2168	TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], &sentinel, b_freelist);
2169	mtx_unlock(&bqlock);
2170	return (flushed);
2171}
2172
2173/*
2174 * Check to see if a block is currently memory resident.
2175 */
2176struct buf *
2177incore(struct bufobj *bo, daddr_t blkno)
2178{
2179	struct buf *bp;
2180
2181	BO_LOCK(bo);
2182	bp = gbincore(bo, blkno);
2183	BO_UNLOCK(bo);
2184	return (bp);
2185}
2186
2187/*
2188 * Returns true if no I/O is needed to access the
2189 * associated VM object.  This is like incore except
2190 * it also hunts around in the VM system for the data.
2191 */
2192
2193static int
2194inmem(struct vnode * vp, daddr_t blkno)
2195{
2196	vm_object_t obj;
2197	vm_offset_t toff, tinc, size;
2198	vm_page_t m;
2199	vm_ooffset_t off;
2200
2201	ASSERT_VOP_LOCKED(vp, "inmem");
2202
2203	if (incore(&vp->v_bufobj, blkno))
2204		return 1;
2205	if (vp->v_mount == NULL)
2206		return 0;
2207	obj = vp->v_object;
2208	if (obj == NULL)
2209		return (0);
2210
2211	size = PAGE_SIZE;
2212	if (size > vp->v_mount->mnt_stat.f_iosize)
2213		size = vp->v_mount->mnt_stat.f_iosize;
2214	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2215
2216	VM_OBJECT_LOCK(obj);
2217	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2218		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2219		if (!m)
2220			goto notinmem;
2221		tinc = size;
2222		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2223			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2224		if (vm_page_is_valid(m,
2225		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2226			goto notinmem;
2227	}
2228	VM_OBJECT_UNLOCK(obj);
2229	return 1;
2230
2231notinmem:
2232	VM_OBJECT_UNLOCK(obj);
2233	return (0);
2234}
2235
2236/*
2237 *	vfs_setdirty:
2238 *
2239 *	Sets the dirty range for a buffer based on the status of the dirty
2240 *	bits in the pages comprising the buffer.
2241 *
2242 *	The range is limited to the size of the buffer.
2243 *
2244 *	This routine is primarily used by NFS, but is generalized for the
2245 *	B_VMIO case.
2246 */
2247static void
2248vfs_setdirty(struct buf *bp)
2249{
2250	int i;
2251	vm_object_t object;
2252
2253	/*
2254	 * Degenerate case - empty buffer
2255	 */
2256
2257	if (bp->b_bufsize == 0)
2258		return;
2259
2260	/*
2261	 * We qualify the scan for modified pages on whether the
2262	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2263	 * is not cleared simply by protecting pages off.
2264	 */
2265
2266	if ((bp->b_flags & B_VMIO) == 0)
2267		return;
2268
2269	object = bp->b_pages[0]->object;
2270	VM_OBJECT_LOCK(object);
2271	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2272		printf("Warning: object %p writeable but not mightbedirty\n", object);
2273	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2274		printf("Warning: object %p mightbedirty but not writeable\n", object);
2275
2276	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2277		vm_offset_t boffset;
2278		vm_offset_t eoffset;
2279
2280		vm_page_lock_queues();
2281		/*
2282		 * test the pages to see if they have been modified directly
2283		 * by users through the VM system.
2284		 */
2285		for (i = 0; i < bp->b_npages; i++)
2286			vm_page_test_dirty(bp->b_pages[i]);
2287
2288		/*
2289		 * Calculate the encompassing dirty range, boffset and eoffset,
2290		 * (eoffset - boffset) bytes.
2291		 */
2292
2293		for (i = 0; i < bp->b_npages; i++) {
2294			if (bp->b_pages[i]->dirty)
2295				break;
2296		}
2297		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2298
2299		for (i = bp->b_npages - 1; i >= 0; --i) {
2300			if (bp->b_pages[i]->dirty) {
2301				break;
2302			}
2303		}
2304		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2305
2306		vm_page_unlock_queues();
2307		/*
2308		 * Fit it to the buffer.
2309		 */
2310
2311		if (eoffset > bp->b_bcount)
2312			eoffset = bp->b_bcount;
2313
2314		/*
2315		 * If we have a good dirty range, merge with the existing
2316		 * dirty range.
2317		 */
2318
2319		if (boffset < eoffset) {
2320			if (bp->b_dirtyoff > boffset)
2321				bp->b_dirtyoff = boffset;
2322			if (bp->b_dirtyend < eoffset)
2323				bp->b_dirtyend = eoffset;
2324		}
2325	}
2326	VM_OBJECT_UNLOCK(object);
2327}
2328
2329/*
2330 *	getblk:
2331 *
2332 *	Get a block given a specified block and offset into a file/device.
2333 *	The buffers B_DONE bit will be cleared on return, making it almost
2334 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2335 *	return.  The caller should clear B_INVAL prior to initiating a
2336 *	READ.
2337 *
2338 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2339 *	an existing buffer.
2340 *
2341 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2342 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2343 *	and then cleared based on the backing VM.  If the previous buffer is
2344 *	non-0-sized but invalid, B_CACHE will be cleared.
2345 *
2346 *	If getblk() must create a new buffer, the new buffer is returned with
2347 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2348 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2349 *	backing VM.
2350 *
2351 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2352 *	B_CACHE bit is clear.
2353 *
2354 *	What this means, basically, is that the caller should use B_CACHE to
2355 *	determine whether the buffer is fully valid or not and should clear
2356 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2357 *	the buffer by loading its data area with something, the caller needs
2358 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2359 *	the caller should set B_CACHE ( as an optimization ), else the caller
2360 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2361 *	a write attempt or if it was a successfull read.  If the caller
2362 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2363 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2364 */
2365struct buf *
2366getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2367    int flags)
2368{
2369	struct buf *bp;
2370	struct bufobj *bo;
2371	int error;
2372
2373	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2374	ASSERT_VOP_LOCKED(vp, "getblk");
2375	if (size > MAXBSIZE)
2376		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2377
2378	bo = &vp->v_bufobj;
2379loop:
2380	/*
2381	 * Block if we are low on buffers.   Certain processes are allowed
2382	 * to completely exhaust the buffer cache.
2383         *
2384         * If this check ever becomes a bottleneck it may be better to
2385         * move it into the else, when gbincore() fails.  At the moment
2386         * it isn't a problem.
2387	 *
2388	 * XXX remove if 0 sections (clean this up after its proven)
2389         */
2390	if (numfreebuffers == 0) {
2391		if (curthread == PCPU_GET(idlethread))
2392			return NULL;
2393		mtx_lock(&nblock);
2394		needsbuffer |= VFS_BIO_NEED_ANY;
2395		mtx_unlock(&nblock);
2396	}
2397
2398	VI_LOCK(vp);
2399	bp = gbincore(bo, blkno);
2400	if (bp != NULL) {
2401		int lockflags;
2402		/*
2403		 * Buffer is in-core.  If the buffer is not busy, it must
2404		 * be on a queue.
2405		 */
2406		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2407
2408		if (flags & GB_LOCK_NOWAIT)
2409			lockflags |= LK_NOWAIT;
2410
2411		error = BUF_TIMELOCK(bp, lockflags,
2412		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2413
2414		/*
2415		 * If we slept and got the lock we have to restart in case
2416		 * the buffer changed identities.
2417		 */
2418		if (error == ENOLCK)
2419			goto loop;
2420		/* We timed out or were interrupted. */
2421		else if (error)
2422			return (NULL);
2423
2424		/*
2425		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2426		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2427		 * and for a VMIO buffer B_CACHE is adjusted according to the
2428		 * backing VM cache.
2429		 */
2430		if (bp->b_flags & B_INVAL)
2431			bp->b_flags &= ~B_CACHE;
2432		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2433			bp->b_flags |= B_CACHE;
2434		bremfree(bp);
2435
2436		/*
2437		 * check for size inconsistancies for non-VMIO case.
2438		 */
2439
2440		if (bp->b_bcount != size) {
2441			if ((bp->b_flags & B_VMIO) == 0 ||
2442			    (size > bp->b_kvasize)) {
2443				if (bp->b_flags & B_DELWRI) {
2444					/*
2445					 * If buffer is pinned and caller does
2446					 * not want sleep  waiting for it to be
2447					 * unpinned, bail out
2448					 * */
2449					if (bp->b_pin_count > 0) {
2450						if (flags & GB_LOCK_NOWAIT) {
2451							bqrelse(bp);
2452							return (NULL);
2453						} else {
2454							bunpin_wait(bp);
2455						}
2456					}
2457					bp->b_flags |= B_NOCACHE;
2458					bwrite(bp);
2459				} else {
2460					if (LIST_FIRST(&bp->b_dep) == NULL) {
2461						bp->b_flags |= B_RELBUF;
2462						brelse(bp);
2463					} else {
2464						bp->b_flags |= B_NOCACHE;
2465						bwrite(bp);
2466					}
2467				}
2468				goto loop;
2469			}
2470		}
2471
2472		/*
2473		 * If the size is inconsistant in the VMIO case, we can resize
2474		 * the buffer.  This might lead to B_CACHE getting set or
2475		 * cleared.  If the size has not changed, B_CACHE remains
2476		 * unchanged from its previous state.
2477		 */
2478
2479		if (bp->b_bcount != size)
2480			allocbuf(bp, size);
2481
2482		KASSERT(bp->b_offset != NOOFFSET,
2483		    ("getblk: no buffer offset"));
2484
2485		/*
2486		 * A buffer with B_DELWRI set and B_CACHE clear must
2487		 * be committed before we can return the buffer in
2488		 * order to prevent the caller from issuing a read
2489		 * ( due to B_CACHE not being set ) and overwriting
2490		 * it.
2491		 *
2492		 * Most callers, including NFS and FFS, need this to
2493		 * operate properly either because they assume they
2494		 * can issue a read if B_CACHE is not set, or because
2495		 * ( for example ) an uncached B_DELWRI might loop due
2496		 * to softupdates re-dirtying the buffer.  In the latter
2497		 * case, B_CACHE is set after the first write completes,
2498		 * preventing further loops.
2499		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2500		 * above while extending the buffer, we cannot allow the
2501		 * buffer to remain with B_CACHE set after the write
2502		 * completes or it will represent a corrupt state.  To
2503		 * deal with this we set B_NOCACHE to scrap the buffer
2504		 * after the write.
2505		 *
2506		 * We might be able to do something fancy, like setting
2507		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2508		 * so the below call doesn't set B_CACHE, but that gets real
2509		 * confusing.  This is much easier.
2510		 */
2511
2512		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2513			bp->b_flags |= B_NOCACHE;
2514			bwrite(bp);
2515			goto loop;
2516		}
2517		bp->b_flags &= ~B_DONE;
2518	} else {
2519		int bsize, maxsize, vmio;
2520		off_t offset;
2521
2522		/*
2523		 * Buffer is not in-core, create new buffer.  The buffer
2524		 * returned by getnewbuf() is locked.  Note that the returned
2525		 * buffer is also considered valid (not marked B_INVAL).
2526		 */
2527		VI_UNLOCK(vp);
2528		/*
2529		 * If the user does not want us to create the buffer, bail out
2530		 * here.
2531		 */
2532		if (flags & GB_NOCREAT)
2533			return NULL;
2534		bsize = bo->bo_bsize;
2535		offset = blkno * bsize;
2536		vmio = vp->v_object != NULL;
2537		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2538		maxsize = imax(maxsize, bsize);
2539
2540		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2541		if (bp == NULL) {
2542			if (slpflag || slptimeo)
2543				return NULL;
2544			goto loop;
2545		}
2546
2547		/*
2548		 * This code is used to make sure that a buffer is not
2549		 * created while the getnewbuf routine is blocked.
2550		 * This can be a problem whether the vnode is locked or not.
2551		 * If the buffer is created out from under us, we have to
2552		 * throw away the one we just created.
2553		 *
2554		 * Note: this must occur before we associate the buffer
2555		 * with the vp especially considering limitations in
2556		 * the splay tree implementation when dealing with duplicate
2557		 * lblkno's.
2558		 */
2559		BO_LOCK(bo);
2560		if (gbincore(bo, blkno)) {
2561			BO_UNLOCK(bo);
2562			bp->b_flags |= B_INVAL;
2563			brelse(bp);
2564			goto loop;
2565		}
2566
2567		/*
2568		 * Insert the buffer into the hash, so that it can
2569		 * be found by incore.
2570		 */
2571		bp->b_blkno = bp->b_lblkno = blkno;
2572		bp->b_offset = offset;
2573
2574		bgetvp(vp, bp);
2575		BO_UNLOCK(bo);
2576
2577		/*
2578		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2579		 * buffer size starts out as 0, B_CACHE will be set by
2580		 * allocbuf() for the VMIO case prior to it testing the
2581		 * backing store for validity.
2582		 */
2583
2584		if (vmio) {
2585			bp->b_flags |= B_VMIO;
2586#if defined(VFS_BIO_DEBUG)
2587			if (vn_canvmio(vp) != TRUE)
2588				printf("getblk: VMIO on vnode type %d\n",
2589					vp->v_type);
2590#endif
2591			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2592			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2593			    bp, vp->v_object, bp->b_bufobj->bo_object));
2594		} else {
2595			bp->b_flags &= ~B_VMIO;
2596			KASSERT(bp->b_bufobj->bo_object == NULL,
2597			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2598			    bp, bp->b_bufobj->bo_object));
2599		}
2600
2601		allocbuf(bp, size);
2602		bp->b_flags &= ~B_DONE;
2603	}
2604	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2605	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2606	KASSERT(bp->b_bufobj == bo,
2607	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2608	return (bp);
2609}
2610
2611/*
2612 * Get an empty, disassociated buffer of given size.  The buffer is initially
2613 * set to B_INVAL.
2614 */
2615struct buf *
2616geteblk(int size)
2617{
2618	struct buf *bp;
2619	int maxsize;
2620
2621	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2622	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2623		continue;
2624	allocbuf(bp, size);
2625	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2626	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2627	return (bp);
2628}
2629
2630
2631/*
2632 * This code constitutes the buffer memory from either anonymous system
2633 * memory (in the case of non-VMIO operations) or from an associated
2634 * VM object (in the case of VMIO operations).  This code is able to
2635 * resize a buffer up or down.
2636 *
2637 * Note that this code is tricky, and has many complications to resolve
2638 * deadlock or inconsistant data situations.  Tread lightly!!!
2639 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2640 * the caller.  Calling this code willy nilly can result in the loss of data.
2641 *
2642 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2643 * B_CACHE for the non-VMIO case.
2644 */
2645
2646int
2647allocbuf(struct buf *bp, int size)
2648{
2649	int newbsize, mbsize;
2650	int i;
2651
2652	if (BUF_REFCNT(bp) == 0)
2653		panic("allocbuf: buffer not busy");
2654
2655	if (bp->b_kvasize < size)
2656		panic("allocbuf: buffer too small");
2657
2658	if ((bp->b_flags & B_VMIO) == 0) {
2659		caddr_t origbuf;
2660		int origbufsize;
2661		/*
2662		 * Just get anonymous memory from the kernel.  Don't
2663		 * mess with B_CACHE.
2664		 */
2665		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2666		if (bp->b_flags & B_MALLOC)
2667			newbsize = mbsize;
2668		else
2669			newbsize = round_page(size);
2670
2671		if (newbsize < bp->b_bufsize) {
2672			/*
2673			 * malloced buffers are not shrunk
2674			 */
2675			if (bp->b_flags & B_MALLOC) {
2676				if (newbsize) {
2677					bp->b_bcount = size;
2678				} else {
2679					free(bp->b_data, M_BIOBUF);
2680					if (bp->b_bufsize) {
2681						atomic_subtract_int(
2682						    &bufmallocspace,
2683						    bp->b_bufsize);
2684						bufspacewakeup();
2685						bp->b_bufsize = 0;
2686					}
2687					bp->b_saveaddr = bp->b_kvabase;
2688					bp->b_data = bp->b_saveaddr;
2689					bp->b_bcount = 0;
2690					bp->b_flags &= ~B_MALLOC;
2691				}
2692				return 1;
2693			}
2694			vm_hold_free_pages(
2695			    bp,
2696			    (vm_offset_t) bp->b_data + newbsize,
2697			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2698		} else if (newbsize > bp->b_bufsize) {
2699			/*
2700			 * We only use malloced memory on the first allocation.
2701			 * and revert to page-allocated memory when the buffer
2702			 * grows.
2703			 */
2704			/*
2705			 * There is a potential smp race here that could lead
2706			 * to bufmallocspace slightly passing the max.  It
2707			 * is probably extremely rare and not worth worrying
2708			 * over.
2709			 */
2710			if ( (bufmallocspace < maxbufmallocspace) &&
2711				(bp->b_bufsize == 0) &&
2712				(mbsize <= PAGE_SIZE/2)) {
2713
2714				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2715				bp->b_bufsize = mbsize;
2716				bp->b_bcount = size;
2717				bp->b_flags |= B_MALLOC;
2718				atomic_add_int(&bufmallocspace, mbsize);
2719				return 1;
2720			}
2721			origbuf = NULL;
2722			origbufsize = 0;
2723			/*
2724			 * If the buffer is growing on its other-than-first allocation,
2725			 * then we revert to the page-allocation scheme.
2726			 */
2727			if (bp->b_flags & B_MALLOC) {
2728				origbuf = bp->b_data;
2729				origbufsize = bp->b_bufsize;
2730				bp->b_data = bp->b_kvabase;
2731				if (bp->b_bufsize) {
2732					atomic_subtract_int(&bufmallocspace,
2733					    bp->b_bufsize);
2734					bufspacewakeup();
2735					bp->b_bufsize = 0;
2736				}
2737				bp->b_flags &= ~B_MALLOC;
2738				newbsize = round_page(newbsize);
2739			}
2740			vm_hold_load_pages(
2741			    bp,
2742			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2743			    (vm_offset_t) bp->b_data + newbsize);
2744			if (origbuf) {
2745				bcopy(origbuf, bp->b_data, origbufsize);
2746				free(origbuf, M_BIOBUF);
2747			}
2748		}
2749	} else {
2750		int desiredpages;
2751
2752		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2753		desiredpages = (size == 0) ? 0 :
2754			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2755
2756		if (bp->b_flags & B_MALLOC)
2757			panic("allocbuf: VMIO buffer can't be malloced");
2758		/*
2759		 * Set B_CACHE initially if buffer is 0 length or will become
2760		 * 0-length.
2761		 */
2762		if (size == 0 || bp->b_bufsize == 0)
2763			bp->b_flags |= B_CACHE;
2764
2765		if (newbsize < bp->b_bufsize) {
2766			/*
2767			 * DEV_BSIZE aligned new buffer size is less then the
2768			 * DEV_BSIZE aligned existing buffer size.  Figure out
2769			 * if we have to remove any pages.
2770			 */
2771			if (desiredpages < bp->b_npages) {
2772				vm_page_t m;
2773
2774				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2775				vm_page_lock_queues();
2776				for (i = desiredpages; i < bp->b_npages; i++) {
2777					/*
2778					 * the page is not freed here -- it
2779					 * is the responsibility of
2780					 * vnode_pager_setsize
2781					 */
2782					m = bp->b_pages[i];
2783					KASSERT(m != bogus_page,
2784					    ("allocbuf: bogus page found"));
2785					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2786						vm_page_lock_queues();
2787
2788					bp->b_pages[i] = NULL;
2789					vm_page_unwire(m, 0);
2790				}
2791				vm_page_unlock_queues();
2792				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2793				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2794				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2795				bp->b_npages = desiredpages;
2796			}
2797		} else if (size > bp->b_bcount) {
2798			/*
2799			 * We are growing the buffer, possibly in a
2800			 * byte-granular fashion.
2801			 */
2802			struct vnode *vp;
2803			vm_object_t obj;
2804			vm_offset_t toff;
2805			vm_offset_t tinc;
2806
2807			/*
2808			 * Step 1, bring in the VM pages from the object,
2809			 * allocating them if necessary.  We must clear
2810			 * B_CACHE if these pages are not valid for the
2811			 * range covered by the buffer.
2812			 */
2813
2814			vp = bp->b_vp;
2815			obj = bp->b_bufobj->bo_object;
2816
2817			VM_OBJECT_LOCK(obj);
2818			while (bp->b_npages < desiredpages) {
2819				vm_page_t m;
2820				vm_pindex_t pi;
2821
2822				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2823				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2824					/*
2825					 * note: must allocate system pages
2826					 * since blocking here could intefere
2827					 * with paging I/O, no matter which
2828					 * process we are.
2829					 */
2830					m = vm_page_alloc(obj, pi,
2831					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2832					    VM_ALLOC_WIRED);
2833					if (m == NULL) {
2834						atomic_add_int(&vm_pageout_deficit,
2835						    desiredpages - bp->b_npages);
2836						VM_OBJECT_UNLOCK(obj);
2837						VM_WAIT;
2838						VM_OBJECT_LOCK(obj);
2839					} else {
2840						bp->b_flags &= ~B_CACHE;
2841						bp->b_pages[bp->b_npages] = m;
2842						++bp->b_npages;
2843					}
2844					continue;
2845				}
2846
2847				/*
2848				 * We found a page.  If we have to sleep on it,
2849				 * retry because it might have gotten freed out
2850				 * from under us.
2851				 *
2852				 * We can only test PG_BUSY here.  Blocking on
2853				 * m->busy might lead to a deadlock:
2854				 *
2855				 *  vm_fault->getpages->cluster_read->allocbuf
2856				 *
2857				 */
2858				vm_page_lock_queues();
2859				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2860					continue;
2861
2862				/*
2863				 * We have a good page.  Should we wakeup the
2864				 * page daemon?
2865				 */
2866				if ((curproc != pageproc) &&
2867				    (VM_PAGE_INQUEUE1(m, PQ_CACHE)) &&
2868				    ((cnt.v_free_count + cnt.v_cache_count) <
2869			 		(cnt.v_free_min + cnt.v_cache_min))) {
2870					pagedaemon_wakeup();
2871				}
2872				vm_page_wire(m);
2873				vm_page_unlock_queues();
2874				bp->b_pages[bp->b_npages] = m;
2875				++bp->b_npages;
2876			}
2877
2878			/*
2879			 * Step 2.  We've loaded the pages into the buffer,
2880			 * we have to figure out if we can still have B_CACHE
2881			 * set.  Note that B_CACHE is set according to the
2882			 * byte-granular range ( bcount and size ), new the
2883			 * aligned range ( newbsize ).
2884			 *
2885			 * The VM test is against m->valid, which is DEV_BSIZE
2886			 * aligned.  Needless to say, the validity of the data
2887			 * needs to also be DEV_BSIZE aligned.  Note that this
2888			 * fails with NFS if the server or some other client
2889			 * extends the file's EOF.  If our buffer is resized,
2890			 * B_CACHE may remain set! XXX
2891			 */
2892
2893			toff = bp->b_bcount;
2894			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2895
2896			while ((bp->b_flags & B_CACHE) && toff < size) {
2897				vm_pindex_t pi;
2898
2899				if (tinc > (size - toff))
2900					tinc = size - toff;
2901
2902				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2903				    PAGE_SHIFT;
2904
2905				vfs_buf_test_cache(
2906				    bp,
2907				    bp->b_offset,
2908				    toff,
2909				    tinc,
2910				    bp->b_pages[pi]
2911				);
2912				toff += tinc;
2913				tinc = PAGE_SIZE;
2914			}
2915			VM_OBJECT_UNLOCK(obj);
2916
2917			/*
2918			 * Step 3, fixup the KVM pmap.  Remember that
2919			 * bp->b_data is relative to bp->b_offset, but
2920			 * bp->b_offset may be offset into the first page.
2921			 */
2922
2923			bp->b_data = (caddr_t)
2924			    trunc_page((vm_offset_t)bp->b_data);
2925			pmap_qenter(
2926			    (vm_offset_t)bp->b_data,
2927			    bp->b_pages,
2928			    bp->b_npages
2929			);
2930
2931			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2932			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2933		}
2934	}
2935	if (newbsize < bp->b_bufsize)
2936		bufspacewakeup();
2937	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2938	bp->b_bcount = size;		/* requested buffer size	*/
2939	return 1;
2940}
2941
2942void
2943biodone(struct bio *bp)
2944{
2945	void (*done)(struct bio *);
2946
2947	mtx_lock(&bdonelock);
2948	bp->bio_flags |= BIO_DONE;
2949	done = bp->bio_done;
2950	if (done == NULL)
2951		wakeup(bp);
2952	mtx_unlock(&bdonelock);
2953	if (done != NULL)
2954		done(bp);
2955}
2956
2957/*
2958 * Wait for a BIO to finish.
2959 *
2960 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2961 * case is not yet clear.
2962 */
2963int
2964biowait(struct bio *bp, const char *wchan)
2965{
2966
2967	mtx_lock(&bdonelock);
2968	while ((bp->bio_flags & BIO_DONE) == 0)
2969		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2970	mtx_unlock(&bdonelock);
2971	if (bp->bio_error != 0)
2972		return (bp->bio_error);
2973	if (!(bp->bio_flags & BIO_ERROR))
2974		return (0);
2975	return (EIO);
2976}
2977
2978void
2979biofinish(struct bio *bp, struct devstat *stat, int error)
2980{
2981
2982	if (error) {
2983		bp->bio_error = error;
2984		bp->bio_flags |= BIO_ERROR;
2985	}
2986	if (stat != NULL)
2987		devstat_end_transaction_bio(stat, bp);
2988	biodone(bp);
2989}
2990
2991/*
2992 *	bufwait:
2993 *
2994 *	Wait for buffer I/O completion, returning error status.  The buffer
2995 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
2996 *	error and cleared.
2997 */
2998int
2999bufwait(struct buf *bp)
3000{
3001	if (bp->b_iocmd == BIO_READ)
3002		bwait(bp, PRIBIO, "biord");
3003	else
3004		bwait(bp, PRIBIO, "biowr");
3005	if (bp->b_flags & B_EINTR) {
3006		bp->b_flags &= ~B_EINTR;
3007		return (EINTR);
3008	}
3009	if (bp->b_ioflags & BIO_ERROR) {
3010		return (bp->b_error ? bp->b_error : EIO);
3011	} else {
3012		return (0);
3013	}
3014}
3015
3016 /*
3017  * Call back function from struct bio back up to struct buf.
3018  */
3019static void
3020bufdonebio(struct bio *bip)
3021{
3022	struct buf *bp;
3023
3024	bp = bip->bio_caller2;
3025	bp->b_resid = bp->b_bcount - bip->bio_completed;
3026	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3027	bp->b_ioflags = bip->bio_flags;
3028	bp->b_error = bip->bio_error;
3029	if (bp->b_error)
3030		bp->b_ioflags |= BIO_ERROR;
3031	bufdone(bp);
3032	g_destroy_bio(bip);
3033}
3034
3035void
3036dev_strategy(struct cdev *dev, struct buf *bp)
3037{
3038	struct cdevsw *csw;
3039	struct bio *bip;
3040
3041	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3042		panic("b_iocmd botch");
3043	for (;;) {
3044		bip = g_new_bio();
3045		if (bip != NULL)
3046			break;
3047		/* Try again later */
3048		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3049	}
3050	bip->bio_cmd = bp->b_iocmd;
3051	bip->bio_offset = bp->b_iooffset;
3052	bip->bio_length = bp->b_bcount;
3053	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3054	bip->bio_data = bp->b_data;
3055	bip->bio_done = bufdonebio;
3056	bip->bio_caller2 = bp;
3057	bip->bio_dev = dev;
3058	KASSERT(dev->si_refcount > 0,
3059	    ("dev_strategy on un-referenced struct cdev *(%s)",
3060	    devtoname(dev)));
3061	csw = dev_refthread(dev);
3062	if (csw == NULL) {
3063		bp->b_error = ENXIO;
3064		bp->b_ioflags = BIO_ERROR;
3065		bufdone(bp);
3066		return;
3067	}
3068	(*csw->d_strategy)(bip);
3069	dev_relthread(dev);
3070}
3071
3072/*
3073 *	bufdone:
3074 *
3075 *	Finish I/O on a buffer, optionally calling a completion function.
3076 *	This is usually called from an interrupt so process blocking is
3077 *	not allowed.
3078 *
3079 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3080 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3081 *	assuming B_INVAL is clear.
3082 *
3083 *	For the VMIO case, we set B_CACHE if the op was a read and no
3084 *	read error occured, or if the op was a write.  B_CACHE is never
3085 *	set if the buffer is invalid or otherwise uncacheable.
3086 *
3087 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3088 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3089 *	in the biodone routine.
3090 */
3091void
3092bufdone(struct buf *bp)
3093{
3094	struct bufobj *dropobj;
3095	void    (*biodone)(struct buf *);
3096
3097	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3098	dropobj = NULL;
3099
3100	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3101	    BUF_REFCNT(bp)));
3102	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3103
3104	runningbufwakeup(bp);
3105	if (bp->b_iocmd == BIO_WRITE)
3106		dropobj = bp->b_bufobj;
3107	/* call optional completion function if requested */
3108	if (bp->b_iodone != NULL) {
3109		biodone = bp->b_iodone;
3110		bp->b_iodone = NULL;
3111		(*biodone) (bp);
3112		if (dropobj)
3113			bufobj_wdrop(dropobj);
3114		return;
3115	}
3116
3117	bufdone_finish(bp);
3118
3119	if (dropobj)
3120		bufobj_wdrop(dropobj);
3121}
3122
3123void
3124bufdone_finish(struct buf *bp)
3125{
3126	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp,
3127	    BUF_REFCNT(bp)));
3128
3129	if (LIST_FIRST(&bp->b_dep) != NULL)
3130		buf_complete(bp);
3131
3132	if (bp->b_flags & B_VMIO) {
3133		int i;
3134		vm_ooffset_t foff;
3135		vm_page_t m;
3136		vm_object_t obj;
3137		int iosize;
3138		struct vnode *vp = bp->b_vp;
3139
3140		obj = bp->b_bufobj->bo_object;
3141
3142#if defined(VFS_BIO_DEBUG)
3143		mp_fixme("usecount and vflag accessed without locks.");
3144		if (vp->v_usecount == 0) {
3145			panic("biodone: zero vnode ref count");
3146		}
3147
3148		KASSERT(vp->v_object != NULL,
3149			("biodone: vnode %p has no vm_object", vp));
3150#endif
3151
3152		foff = bp->b_offset;
3153		KASSERT(bp->b_offset != NOOFFSET,
3154		    ("biodone: no buffer offset"));
3155
3156		VM_OBJECT_LOCK(obj);
3157#if defined(VFS_BIO_DEBUG)
3158		if (obj->paging_in_progress < bp->b_npages) {
3159			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3160			    obj->paging_in_progress, bp->b_npages);
3161		}
3162#endif
3163
3164		/*
3165		 * Set B_CACHE if the op was a normal read and no error
3166		 * occured.  B_CACHE is set for writes in the b*write()
3167		 * routines.
3168		 */
3169		iosize = bp->b_bcount - bp->b_resid;
3170		if (bp->b_iocmd == BIO_READ &&
3171		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3172		    !(bp->b_ioflags & BIO_ERROR)) {
3173			bp->b_flags |= B_CACHE;
3174		}
3175		vm_page_lock_queues();
3176		for (i = 0; i < bp->b_npages; i++) {
3177			int bogusflag = 0;
3178			int resid;
3179
3180			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3181			if (resid > iosize)
3182				resid = iosize;
3183
3184			/*
3185			 * cleanup bogus pages, restoring the originals
3186			 */
3187			m = bp->b_pages[i];
3188			if (m == bogus_page) {
3189				bogusflag = 1;
3190				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3191				if (m == NULL)
3192					panic("biodone: page disappeared!");
3193				bp->b_pages[i] = m;
3194				pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3195				    bp->b_pages, bp->b_npages);
3196			}
3197#if defined(VFS_BIO_DEBUG)
3198			if (OFF_TO_IDX(foff) != m->pindex) {
3199				printf(
3200"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3201				    (intmax_t)foff, (uintmax_t)m->pindex);
3202			}
3203#endif
3204
3205			/*
3206			 * In the write case, the valid and clean bits are
3207			 * already changed correctly ( see bdwrite() ), so we
3208			 * only need to do this here in the read case.
3209			 */
3210			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3211				vfs_page_set_valid(bp, foff, i, m);
3212			}
3213
3214			/*
3215			 * when debugging new filesystems or buffer I/O methods, this
3216			 * is the most common error that pops up.  if you see this, you
3217			 * have not set the page busy flag correctly!!!
3218			 */
3219			if (m->busy == 0) {
3220				printf("biodone: page busy < 0, "
3221				    "pindex: %d, foff: 0x(%x,%x), "
3222				    "resid: %d, index: %d\n",
3223				    (int) m->pindex, (int)(foff >> 32),
3224						(int) foff & 0xffffffff, resid, i);
3225				if (!vn_isdisk(vp, NULL))
3226					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3227					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3228					    (intmax_t) bp->b_lblkno,
3229					    bp->b_flags, bp->b_npages);
3230				else
3231					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3232					    (intmax_t) bp->b_lblkno,
3233					    bp->b_flags, bp->b_npages);
3234				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3235				    (u_long)m->valid, (u_long)m->dirty,
3236				    m->wire_count);
3237				panic("biodone: page busy < 0\n");
3238			}
3239			vm_page_io_finish(m);
3240			vm_object_pip_subtract(obj, 1);
3241			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3242			iosize -= resid;
3243		}
3244		vm_page_unlock_queues();
3245		vm_object_pip_wakeupn(obj, 0);
3246		VM_OBJECT_UNLOCK(obj);
3247	}
3248
3249	/*
3250	 * For asynchronous completions, release the buffer now. The brelse
3251	 * will do a wakeup there if necessary - so no need to do a wakeup
3252	 * here in the async case. The sync case always needs to do a wakeup.
3253	 */
3254
3255	if (bp->b_flags & B_ASYNC) {
3256		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3257			brelse(bp);
3258		else
3259			bqrelse(bp);
3260	} else
3261		bdone(bp);
3262}
3263
3264/*
3265 * This routine is called in lieu of iodone in the case of
3266 * incomplete I/O.  This keeps the busy status for pages
3267 * consistant.
3268 */
3269void
3270vfs_unbusy_pages(struct buf *bp)
3271{
3272	int i;
3273	vm_object_t obj;
3274	vm_page_t m;
3275
3276	runningbufwakeup(bp);
3277	if (!(bp->b_flags & B_VMIO))
3278		return;
3279
3280	obj = bp->b_bufobj->bo_object;
3281	VM_OBJECT_LOCK(obj);
3282	vm_page_lock_queues();
3283	for (i = 0; i < bp->b_npages; i++) {
3284		m = bp->b_pages[i];
3285		if (m == bogus_page) {
3286			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3287			if (!m)
3288				panic("vfs_unbusy_pages: page missing\n");
3289			bp->b_pages[i] = m;
3290			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3291			    bp->b_pages, bp->b_npages);
3292		}
3293		vm_object_pip_subtract(obj, 1);
3294		vm_page_io_finish(m);
3295	}
3296	vm_page_unlock_queues();
3297	vm_object_pip_wakeupn(obj, 0);
3298	VM_OBJECT_UNLOCK(obj);
3299}
3300
3301/*
3302 * vfs_page_set_valid:
3303 *
3304 *	Set the valid bits in a page based on the supplied offset.   The
3305 *	range is restricted to the buffer's size.
3306 *
3307 *	This routine is typically called after a read completes.
3308 */
3309static void
3310vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3311{
3312	vm_ooffset_t soff, eoff;
3313
3314	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3315	/*
3316	 * Start and end offsets in buffer.  eoff - soff may not cross a
3317	 * page boundry or cross the end of the buffer.  The end of the
3318	 * buffer, in this case, is our file EOF, not the allocation size
3319	 * of the buffer.
3320	 */
3321	soff = off;
3322	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3323	if (eoff > bp->b_offset + bp->b_bcount)
3324		eoff = bp->b_offset + bp->b_bcount;
3325
3326	/*
3327	 * Set valid range.  This is typically the entire buffer and thus the
3328	 * entire page.
3329	 */
3330	if (eoff > soff) {
3331		vm_page_set_validclean(
3332		    m,
3333		   (vm_offset_t) (soff & PAGE_MASK),
3334		   (vm_offset_t) (eoff - soff)
3335		);
3336	}
3337}
3338
3339/*
3340 * This routine is called before a device strategy routine.
3341 * It is used to tell the VM system that paging I/O is in
3342 * progress, and treat the pages associated with the buffer
3343 * almost as being PG_BUSY.  Also the object paging_in_progress
3344 * flag is handled to make sure that the object doesn't become
3345 * inconsistant.
3346 *
3347 * Since I/O has not been initiated yet, certain buffer flags
3348 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3349 * and should be ignored.
3350 */
3351void
3352vfs_busy_pages(struct buf *bp, int clear_modify)
3353{
3354	int i, bogus;
3355	vm_object_t obj;
3356	vm_ooffset_t foff;
3357	vm_page_t m;
3358
3359	if (!(bp->b_flags & B_VMIO))
3360		return;
3361
3362	obj = bp->b_bufobj->bo_object;
3363	foff = bp->b_offset;
3364	KASSERT(bp->b_offset != NOOFFSET,
3365	    ("vfs_busy_pages: no buffer offset"));
3366	vfs_setdirty(bp);
3367	VM_OBJECT_LOCK(obj);
3368retry:
3369	vm_page_lock_queues();
3370	for (i = 0; i < bp->b_npages; i++) {
3371		m = bp->b_pages[i];
3372
3373		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3374			goto retry;
3375	}
3376	bogus = 0;
3377	for (i = 0; i < bp->b_npages; i++) {
3378		m = bp->b_pages[i];
3379
3380		if ((bp->b_flags & B_CLUSTER) == 0) {
3381			vm_object_pip_add(obj, 1);
3382			vm_page_io_start(m);
3383		}
3384		/*
3385		 * When readying a buffer for a read ( i.e
3386		 * clear_modify == 0 ), it is important to do
3387		 * bogus_page replacement for valid pages in
3388		 * partially instantiated buffers.  Partially
3389		 * instantiated buffers can, in turn, occur when
3390		 * reconstituting a buffer from its VM backing store
3391		 * base.  We only have to do this if B_CACHE is
3392		 * clear ( which causes the I/O to occur in the
3393		 * first place ).  The replacement prevents the read
3394		 * I/O from overwriting potentially dirty VM-backed
3395		 * pages.  XXX bogus page replacement is, uh, bogus.
3396		 * It may not work properly with small-block devices.
3397		 * We need to find a better way.
3398		 */
3399		pmap_remove_all(m);
3400		if (clear_modify)
3401			vfs_page_set_valid(bp, foff, i, m);
3402		else if (m->valid == VM_PAGE_BITS_ALL &&
3403		    (bp->b_flags & B_CACHE) == 0) {
3404			bp->b_pages[i] = bogus_page;
3405			bogus++;
3406		}
3407		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3408	}
3409	vm_page_unlock_queues();
3410	VM_OBJECT_UNLOCK(obj);
3411	if (bogus)
3412		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3413		    bp->b_pages, bp->b_npages);
3414}
3415
3416/*
3417 * Tell the VM system that the pages associated with this buffer
3418 * are clean.  This is used for delayed writes where the data is
3419 * going to go to disk eventually without additional VM intevention.
3420 *
3421 * Note that while we only really need to clean through to b_bcount, we
3422 * just go ahead and clean through to b_bufsize.
3423 */
3424static void
3425vfs_clean_pages(struct buf *bp)
3426{
3427	int i;
3428	vm_ooffset_t foff, noff, eoff;
3429	vm_page_t m;
3430
3431	if (!(bp->b_flags & B_VMIO))
3432		return;
3433
3434	foff = bp->b_offset;
3435	KASSERT(bp->b_offset != NOOFFSET,
3436	    ("vfs_clean_pages: no buffer offset"));
3437	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3438	vm_page_lock_queues();
3439	for (i = 0; i < bp->b_npages; i++) {
3440		m = bp->b_pages[i];
3441		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3442		eoff = noff;
3443
3444		if (eoff > bp->b_offset + bp->b_bufsize)
3445			eoff = bp->b_offset + bp->b_bufsize;
3446		vfs_page_set_valid(bp, foff, i, m);
3447		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3448		foff = noff;
3449	}
3450	vm_page_unlock_queues();
3451	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3452}
3453
3454/*
3455 *	vfs_bio_set_validclean:
3456 *
3457 *	Set the range within the buffer to valid and clean.  The range is
3458 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3459 *	itself may be offset from the beginning of the first page.
3460 *
3461 */
3462
3463void
3464vfs_bio_set_validclean(struct buf *bp, int base, int size)
3465{
3466	int i, n;
3467	vm_page_t m;
3468
3469	if (!(bp->b_flags & B_VMIO))
3470		return;
3471	/*
3472	 * Fixup base to be relative to beginning of first page.
3473	 * Set initial n to be the maximum number of bytes in the
3474	 * first page that can be validated.
3475	 */
3476
3477	base += (bp->b_offset & PAGE_MASK);
3478	n = PAGE_SIZE - (base & PAGE_MASK);
3479
3480	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3481	vm_page_lock_queues();
3482	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3483		m = bp->b_pages[i];
3484		if (n > size)
3485			n = size;
3486		vm_page_set_validclean(m, base & PAGE_MASK, n);
3487		base += n;
3488		size -= n;
3489		n = PAGE_SIZE;
3490	}
3491	vm_page_unlock_queues();
3492	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3493}
3494
3495/*
3496 *	vfs_bio_clrbuf:
3497 *
3498 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3499 *	to clear BIO_ERROR and B_INVAL.
3500 *
3501 *	Note that while we only theoretically need to clear through b_bcount,
3502 *	we go ahead and clear through b_bufsize.
3503 */
3504
3505void
3506vfs_bio_clrbuf(struct buf *bp)
3507{
3508	int i, j, mask = 0;
3509	caddr_t sa, ea;
3510
3511	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3512		clrbuf(bp);
3513		return;
3514	}
3515
3516	bp->b_flags &= ~B_INVAL;
3517	bp->b_ioflags &= ~BIO_ERROR;
3518	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3519	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3520	    (bp->b_offset & PAGE_MASK) == 0) {
3521		if (bp->b_pages[0] == bogus_page)
3522			goto unlock;
3523		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3524		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3525		if ((bp->b_pages[0]->valid & mask) == mask)
3526			goto unlock;
3527		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3528		    ((bp->b_pages[0]->valid & mask) == 0)) {
3529			bzero(bp->b_data, bp->b_bufsize);
3530			bp->b_pages[0]->valid |= mask;
3531			goto unlock;
3532		}
3533	}
3534	ea = sa = bp->b_data;
3535	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3536		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3537		ea = (caddr_t)(vm_offset_t)ulmin(
3538		    (u_long)(vm_offset_t)ea,
3539		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3540		if (bp->b_pages[i] == bogus_page)
3541			continue;
3542		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3543		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3544		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3545		if ((bp->b_pages[i]->valid & mask) == mask)
3546			continue;
3547		if ((bp->b_pages[i]->valid & mask) == 0) {
3548			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3549				bzero(sa, ea - sa);
3550		} else {
3551			for (; sa < ea; sa += DEV_BSIZE, j++) {
3552				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3553				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3554					bzero(sa, DEV_BSIZE);
3555			}
3556		}
3557		bp->b_pages[i]->valid |= mask;
3558	}
3559unlock:
3560	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3561	bp->b_resid = 0;
3562}
3563
3564/*
3565 * vm_hold_load_pages and vm_hold_free_pages get pages into
3566 * a buffers address space.  The pages are anonymous and are
3567 * not associated with a file object.
3568 */
3569static void
3570vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3571{
3572	vm_offset_t pg;
3573	vm_page_t p;
3574	int index;
3575
3576	to = round_page(to);
3577	from = round_page(from);
3578	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3579
3580	VM_OBJECT_LOCK(kernel_object);
3581	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3582tryagain:
3583		/*
3584		 * note: must allocate system pages since blocking here
3585		 * could intefere with paging I/O, no matter which
3586		 * process we are.
3587		 */
3588		p = vm_page_alloc(kernel_object,
3589			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3590		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3591		if (!p) {
3592			atomic_add_int(&vm_pageout_deficit,
3593			    (to - pg) >> PAGE_SHIFT);
3594			VM_OBJECT_UNLOCK(kernel_object);
3595			VM_WAIT;
3596			VM_OBJECT_LOCK(kernel_object);
3597			goto tryagain;
3598		}
3599		p->valid = VM_PAGE_BITS_ALL;
3600		pmap_qenter(pg, &p, 1);
3601		bp->b_pages[index] = p;
3602	}
3603	VM_OBJECT_UNLOCK(kernel_object);
3604	bp->b_npages = index;
3605}
3606
3607/* Return pages associated with this buf to the vm system */
3608static void
3609vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3610{
3611	vm_offset_t pg;
3612	vm_page_t p;
3613	int index, newnpages;
3614
3615	from = round_page(from);
3616	to = round_page(to);
3617	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3618
3619	VM_OBJECT_LOCK(kernel_object);
3620	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3621		p = bp->b_pages[index];
3622		if (p && (index < bp->b_npages)) {
3623			if (p->busy) {
3624				printf(
3625			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3626				    (intmax_t)bp->b_blkno,
3627				    (intmax_t)bp->b_lblkno);
3628			}
3629			bp->b_pages[index] = NULL;
3630			pmap_qremove(pg, 1);
3631			vm_page_lock_queues();
3632			vm_page_unwire(p, 0);
3633			vm_page_free(p);
3634			vm_page_unlock_queues();
3635		}
3636	}
3637	VM_OBJECT_UNLOCK(kernel_object);
3638	bp->b_npages = newnpages;
3639}
3640
3641/*
3642 * Map an IO request into kernel virtual address space.
3643 *
3644 * All requests are (re)mapped into kernel VA space.
3645 * Notice that we use b_bufsize for the size of the buffer
3646 * to be mapped.  b_bcount might be modified by the driver.
3647 *
3648 * Note that even if the caller determines that the address space should
3649 * be valid, a race or a smaller-file mapped into a larger space may
3650 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3651 * check the return value.
3652 */
3653int
3654vmapbuf(struct buf *bp)
3655{
3656	caddr_t addr, kva;
3657	vm_prot_t prot;
3658	int pidx, i;
3659	struct vm_page *m;
3660	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3661
3662	if (bp->b_bufsize < 0)
3663		return (-1);
3664	prot = VM_PROT_READ;
3665	if (bp->b_iocmd == BIO_READ)
3666		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3667	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3668	     addr < bp->b_data + bp->b_bufsize;
3669	     addr += PAGE_SIZE, pidx++) {
3670		/*
3671		 * Do the vm_fault if needed; do the copy-on-write thing
3672		 * when reading stuff off device into memory.
3673		 *
3674		 * NOTE! Must use pmap_extract() because addr may be in
3675		 * the userland address space, and kextract is only guarenteed
3676		 * to work for the kernland address space (see: sparc64 port).
3677		 */
3678retry:
3679		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3680		    prot) < 0) {
3681			vm_page_lock_queues();
3682			for (i = 0; i < pidx; ++i) {
3683				vm_page_unhold(bp->b_pages[i]);
3684				bp->b_pages[i] = NULL;
3685			}
3686			vm_page_unlock_queues();
3687			return(-1);
3688		}
3689		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3690		if (m == NULL)
3691			goto retry;
3692		bp->b_pages[pidx] = m;
3693	}
3694	if (pidx > btoc(MAXPHYS))
3695		panic("vmapbuf: mapped more than MAXPHYS");
3696	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3697
3698	kva = bp->b_saveaddr;
3699	bp->b_npages = pidx;
3700	bp->b_saveaddr = bp->b_data;
3701	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3702	return(0);
3703}
3704
3705/*
3706 * Free the io map PTEs associated with this IO operation.
3707 * We also invalidate the TLB entries and restore the original b_addr.
3708 */
3709void
3710vunmapbuf(struct buf *bp)
3711{
3712	int pidx;
3713	int npages;
3714
3715	npages = bp->b_npages;
3716	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3717	vm_page_lock_queues();
3718	for (pidx = 0; pidx < npages; pidx++)
3719		vm_page_unhold(bp->b_pages[pidx]);
3720	vm_page_unlock_queues();
3721
3722	bp->b_data = bp->b_saveaddr;
3723}
3724
3725void
3726bdone(struct buf *bp)
3727{
3728
3729	mtx_lock(&bdonelock);
3730	bp->b_flags |= B_DONE;
3731	wakeup(bp);
3732	mtx_unlock(&bdonelock);
3733}
3734
3735void
3736bwait(struct buf *bp, u_char pri, const char *wchan)
3737{
3738
3739	mtx_lock(&bdonelock);
3740	while ((bp->b_flags & B_DONE) == 0)
3741		msleep(bp, &bdonelock, pri, wchan, 0);
3742	mtx_unlock(&bdonelock);
3743}
3744
3745int
3746bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3747{
3748
3749	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3750}
3751
3752void
3753bufstrategy(struct bufobj *bo, struct buf *bp)
3754{
3755	int i = 0;
3756	struct vnode *vp;
3757
3758	vp = bp->b_vp;
3759	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3760	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3761	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3762	i = VOP_STRATEGY(vp, bp);
3763	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3764}
3765
3766void
3767bufobj_wrefl(struct bufobj *bo)
3768{
3769
3770	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3771	ASSERT_BO_LOCKED(bo);
3772	bo->bo_numoutput++;
3773}
3774
3775void
3776bufobj_wref(struct bufobj *bo)
3777{
3778
3779	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3780	BO_LOCK(bo);
3781	bo->bo_numoutput++;
3782	BO_UNLOCK(bo);
3783}
3784
3785void
3786bufobj_wdrop(struct bufobj *bo)
3787{
3788
3789	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3790	BO_LOCK(bo);
3791	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3792	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3793		bo->bo_flag &= ~BO_WWAIT;
3794		wakeup(&bo->bo_numoutput);
3795	}
3796	BO_UNLOCK(bo);
3797}
3798
3799int
3800bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3801{
3802	int error;
3803
3804	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3805	ASSERT_BO_LOCKED(bo);
3806	error = 0;
3807	while (bo->bo_numoutput) {
3808		bo->bo_flag |= BO_WWAIT;
3809		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3810		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3811		if (error)
3812			break;
3813	}
3814	return (error);
3815}
3816
3817void
3818bpin(struct buf *bp)
3819{
3820	mtx_lock(&bpinlock);
3821	bp->b_pin_count++;
3822	mtx_unlock(&bpinlock);
3823}
3824
3825void
3826bunpin(struct buf *bp)
3827{
3828	mtx_lock(&bpinlock);
3829	if (--bp->b_pin_count == 0)
3830		wakeup(bp);
3831	mtx_unlock(&bpinlock);
3832}
3833
3834void
3835bunpin_wait(struct buf *bp)
3836{
3837	mtx_lock(&bpinlock);
3838	while (bp->b_pin_count > 0)
3839		msleep(bp, &bpinlock, PRIBIO, "bwunpin", 0);
3840	mtx_unlock(&bpinlock);
3841}
3842
3843#include "opt_ddb.h"
3844#ifdef DDB
3845#include <ddb/ddb.h>
3846
3847/* DDB command to show buffer data */
3848DB_SHOW_COMMAND(buffer, db_show_buffer)
3849{
3850	/* get args */
3851	struct buf *bp = (struct buf *)addr;
3852
3853	if (!have_addr) {
3854		db_printf("usage: show buffer <addr>\n");
3855		return;
3856	}
3857
3858	db_printf("buf at %p\n", bp);
3859	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3860	db_printf(
3861	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3862	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3863	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3864	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3865	if (bp->b_npages) {
3866		int i;
3867		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3868		for (i = 0; i < bp->b_npages; i++) {
3869			vm_page_t m;
3870			m = bp->b_pages[i];
3871			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3872			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3873			if ((i + 1) < bp->b_npages)
3874				db_printf(",");
3875		}
3876		db_printf("\n");
3877	}
3878	lockmgr_printinfo(&bp->b_lock);
3879}
3880
3881DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3882{
3883	struct buf *bp;
3884	int i;
3885
3886	for (i = 0; i < nbuf; i++) {
3887		bp = &buf[i];
3888		if (lockcount(&bp->b_lock)) {
3889			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3890			db_printf("\n");
3891		}
3892	}
3893}
3894#endif /* DDB */
3895