vfs_bio.c revision 150741
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 150741 2005-09-30 01:30:01Z truckman $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82	.bop_sync	=	bufsync,
83};
84
85/*
86 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
87 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
88 */
89struct buf *buf;		/* buffer header pool */
90
91static struct proc *bufdaemonproc;
92
93static int inmem(struct vnode *vp, daddr_t blkno);
94static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
95		vm_offset_t to);
96static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
99			       int pageno, vm_page_t m);
100static void vfs_clean_pages(struct buf *bp);
101static void vfs_setdirty(struct buf *bp);
102static void vfs_vmio_release(struct buf *bp);
103static int vfs_bio_clcheck(struct vnode *vp, int size,
104		daddr_t lblkno, daddr_t blkno);
105static int flushbufqueues(int flushdeps);
106static void buf_daemon(void);
107static void bremfreel(struct buf *bp);
108
109int vmiodirenable = TRUE;
110SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
111    "Use the VM system for directory writes");
112int runningbufspace;
113SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
114    "Amount of presently outstanding async buffer io");
115static int bufspace;
116SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
117    "KVA memory used for bufs");
118static int maxbufspace;
119SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
120    "Maximum allowed value of bufspace (including buf_daemon)");
121static int bufmallocspace;
122SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
123    "Amount of malloced memory for buffers");
124static int maxbufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
126    "Maximum amount of malloced memory for buffers");
127static int lobufspace;
128SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
129    "Minimum amount of buffers we want to have");
130int hibufspace;
131SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
132    "Maximum allowed value of bufspace (excluding buf_daemon)");
133static int bufreusecnt;
134SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
135    "Number of times we have reused a buffer");
136static int buffreekvacnt;
137SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
138    "Number of times we have freed the KVA space from some buffer");
139static int bufdefragcnt;
140SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
141    "Number of times we have had to repeat buffer allocation to defragment");
142static int lorunningspace;
143SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
144    "Minimum preferred space used for in-progress I/O");
145static int hirunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
147    "Maximum amount of space to use for in-progress I/O");
148static int dirtybufferflushes;
149SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
150    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
151static int altbufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
153    0, "Number of fsync flushes to limit dirty buffers");
154static int recursiveflushes;
155SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
156    0, "Number of flushes skipped due to being recursive");
157static int numdirtybuffers;
158SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
159    "Number of buffers that are dirty (has unwritten changes) at the moment");
160static int lodirtybuffers;
161SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
162    "How many buffers we want to have free before bufdaemon can sleep");
163static int hidirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
165    "When the number of dirty buffers is considered severe");
166static int dirtybufthresh;
167SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
168    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
169static int numfreebuffers;
170SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
171    "Number of free buffers");
172static int lofreebuffers;
173SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
174   "XXX Unused");
175static int hifreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
177   "XXX Complicatedly unused");
178static int getnewbufcalls;
179SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
180   "Number of calls to getnewbuf");
181static int getnewbufrestarts;
182SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
183    "Number of times getnewbuf has had to restart a buffer aquisition");
184
185/*
186 * Wakeup point for bufdaemon, as well as indicator of whether it is already
187 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
188 * is idling.
189 */
190static int bd_request;
191
192/*
193 * This lock synchronizes access to bd_request.
194 */
195static struct mtx bdlock;
196
197/*
198 * bogus page -- for I/O to/from partially complete buffers
199 * this is a temporary solution to the problem, but it is not
200 * really that bad.  it would be better to split the buffer
201 * for input in the case of buffers partially already in memory,
202 * but the code is intricate enough already.
203 */
204vm_page_t bogus_page;
205
206/*
207 * Synchronization (sleep/wakeup) variable for active buffer space requests.
208 * Set when wait starts, cleared prior to wakeup().
209 * Used in runningbufwakeup() and waitrunningbufspace().
210 */
211static int runningbufreq;
212
213/*
214 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
215 * waitrunningbufspace().
216 */
217static struct mtx rbreqlock;
218
219/*
220 * Synchronization (sleep/wakeup) variable for buffer requests.
221 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
222 * by and/or.
223 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
224 * getnewbuf(), and getblk().
225 */
226static int needsbuffer;
227
228/*
229 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
230 */
231static struct mtx nblock;
232
233/*
234 * Lock that protects against bwait()/bdone()/B_DONE races.
235 */
236
237static struct mtx bdonelock;
238
239/*
240 * Definitions for the buffer free lists.
241 */
242#define BUFFER_QUEUES	5	/* number of free buffer queues */
243
244#define QUEUE_NONE	0	/* on no queue */
245#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
246#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
247#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
248#define QUEUE_EMPTY	4	/* empty buffer headers */
249
250/* Queues for free buffers with various properties */
251static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
252
253/* Lock for the bufqueues */
254static struct mtx bqlock;
255
256/*
257 * Single global constant for BUF_WMESG, to avoid getting multiple references.
258 * buf_wmesg is referred from macros.
259 */
260const char *buf_wmesg = BUF_WMESG;
261
262#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
263#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
264#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
265#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
266
267#ifdef DIRECTIO
268extern void ffs_rawread_setup(void);
269#endif /* DIRECTIO */
270/*
271 *	numdirtywakeup:
272 *
273 *	If someone is blocked due to there being too many dirty buffers,
274 *	and numdirtybuffers is now reasonable, wake them up.
275 */
276
277static __inline void
278numdirtywakeup(int level)
279{
280
281	if (numdirtybuffers <= level) {
282		mtx_lock(&nblock);
283		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
284			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
285			wakeup(&needsbuffer);
286		}
287		mtx_unlock(&nblock);
288	}
289}
290
291/*
292 *	bufspacewakeup:
293 *
294 *	Called when buffer space is potentially available for recovery.
295 *	getnewbuf() will block on this flag when it is unable to free
296 *	sufficient buffer space.  Buffer space becomes recoverable when
297 *	bp's get placed back in the queues.
298 */
299
300static __inline void
301bufspacewakeup(void)
302{
303
304	/*
305	 * If someone is waiting for BUF space, wake them up.  Even
306	 * though we haven't freed the kva space yet, the waiting
307	 * process will be able to now.
308	 */
309	mtx_lock(&nblock);
310	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
311		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
312		wakeup(&needsbuffer);
313	}
314	mtx_unlock(&nblock);
315}
316
317/*
318 * runningbufwakeup() - in-progress I/O accounting.
319 *
320 */
321void
322runningbufwakeup(struct buf *bp)
323{
324
325	if (bp->b_runningbufspace) {
326		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
327		bp->b_runningbufspace = 0;
328		mtx_lock(&rbreqlock);
329		if (runningbufreq && runningbufspace <= lorunningspace) {
330			runningbufreq = 0;
331			wakeup(&runningbufreq);
332		}
333		mtx_unlock(&rbreqlock);
334	}
335}
336
337/*
338 *	bufcountwakeup:
339 *
340 *	Called when a buffer has been added to one of the free queues to
341 *	account for the buffer and to wakeup anyone waiting for free buffers.
342 *	This typically occurs when large amounts of metadata are being handled
343 *	by the buffer cache ( else buffer space runs out first, usually ).
344 */
345
346static __inline void
347bufcountwakeup(void)
348{
349
350	atomic_add_int(&numfreebuffers, 1);
351	mtx_lock(&nblock);
352	if (needsbuffer) {
353		needsbuffer &= ~VFS_BIO_NEED_ANY;
354		if (numfreebuffers >= hifreebuffers)
355			needsbuffer &= ~VFS_BIO_NEED_FREE;
356		wakeup(&needsbuffer);
357	}
358	mtx_unlock(&nblock);
359}
360
361/*
362 *	waitrunningbufspace()
363 *
364 *	runningbufspace is a measure of the amount of I/O currently
365 *	running.  This routine is used in async-write situations to
366 *	prevent creating huge backups of pending writes to a device.
367 *	Only asynchronous writes are governed by this function.
368 *
369 *	Reads will adjust runningbufspace, but will not block based on it.
370 *	The read load has a side effect of reducing the allowed write load.
371 *
372 *	This does NOT turn an async write into a sync write.  It waits
373 *	for earlier writes to complete and generally returns before the
374 *	caller's write has reached the device.
375 */
376static __inline void
377waitrunningbufspace(void)
378{
379
380	mtx_lock(&rbreqlock);
381	while (runningbufspace > hirunningspace) {
382		++runningbufreq;
383		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
384	}
385	mtx_unlock(&rbreqlock);
386}
387
388
389/*
390 *	vfs_buf_test_cache:
391 *
392 *	Called when a buffer is extended.  This function clears the B_CACHE
393 *	bit if the newly extended portion of the buffer does not contain
394 *	valid data.
395 */
396static __inline
397void
398vfs_buf_test_cache(struct buf *bp,
399		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
400		  vm_page_t m)
401{
402
403	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
404	if (bp->b_flags & B_CACHE) {
405		int base = (foff + off) & PAGE_MASK;
406		if (vm_page_is_valid(m, base, size) == 0)
407			bp->b_flags &= ~B_CACHE;
408	}
409}
410
411/* Wake up the buffer deamon if necessary */
412static __inline
413void
414bd_wakeup(int dirtybuflevel)
415{
416
417	mtx_lock(&bdlock);
418	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
419		bd_request = 1;
420		wakeup(&bd_request);
421	}
422	mtx_unlock(&bdlock);
423}
424
425/*
426 * bd_speedup - speedup the buffer cache flushing code
427 */
428
429static __inline
430void
431bd_speedup(void)
432{
433
434	bd_wakeup(1);
435}
436
437/*
438 * Calculating buffer cache scaling values and reserve space for buffer
439 * headers.  This is called during low level kernel initialization and
440 * may be called more then once.  We CANNOT write to the memory area
441 * being reserved at this time.
442 */
443caddr_t
444kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
445{
446
447	/*
448	 * physmem_est is in pages.  Convert it to kilobytes (assumes
449	 * PAGE_SIZE is >= 1K)
450	 */
451	physmem_est = physmem_est * (PAGE_SIZE / 1024);
452
453	/*
454	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
455	 * For the first 64MB of ram nominally allocate sufficient buffers to
456	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
457	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
458	 * the buffer cache we limit the eventual kva reservation to
459	 * maxbcache bytes.
460	 *
461	 * factor represents the 1/4 x ram conversion.
462	 */
463	if (nbuf == 0) {
464		int factor = 4 * BKVASIZE / 1024;
465
466		nbuf = 50;
467		if (physmem_est > 4096)
468			nbuf += min((physmem_est - 4096) / factor,
469			    65536 / factor);
470		if (physmem_est > 65536)
471			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
472
473		if (maxbcache && nbuf > maxbcache / BKVASIZE)
474			nbuf = maxbcache / BKVASIZE;
475	}
476
477#if 0
478	/*
479	 * Do not allow the buffer_map to be more then 1/2 the size of the
480	 * kernel_map.
481	 */
482	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
483	    (BKVASIZE * 2)) {
484		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
485		    (BKVASIZE * 2);
486		printf("Warning: nbufs capped at %d\n", nbuf);
487	}
488#endif
489
490	/*
491	 * swbufs are used as temporary holders for I/O, such as paging I/O.
492	 * We have no less then 16 and no more then 256.
493	 */
494	nswbuf = max(min(nbuf/4, 256), 16);
495#ifdef NSWBUF_MIN
496	if (nswbuf < NSWBUF_MIN)
497		nswbuf = NSWBUF_MIN;
498#endif
499#ifdef DIRECTIO
500	ffs_rawread_setup();
501#endif
502
503	/*
504	 * Reserve space for the buffer cache buffers
505	 */
506	swbuf = (void *)v;
507	v = (caddr_t)(swbuf + nswbuf);
508	buf = (void *)v;
509	v = (caddr_t)(buf + nbuf);
510
511	return(v);
512}
513
514/* Initialize the buffer subsystem.  Called before use of any buffers. */
515void
516bufinit(void)
517{
518	struct buf *bp;
519	int i;
520
521	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
522	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
523	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
524	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
525	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
526
527	/* next, make a null set of free lists */
528	for (i = 0; i < BUFFER_QUEUES; i++)
529		TAILQ_INIT(&bufqueues[i]);
530
531	/* finally, initialize each buffer header and stick on empty q */
532	for (i = 0; i < nbuf; i++) {
533		bp = &buf[i];
534		bzero(bp, sizeof *bp);
535		bp->b_flags = B_INVAL;	/* we're just an empty header */
536		bp->b_rcred = NOCRED;
537		bp->b_wcred = NOCRED;
538		bp->b_qindex = QUEUE_EMPTY;
539		bp->b_vflags = 0;
540		bp->b_xflags = 0;
541		LIST_INIT(&bp->b_dep);
542		BUF_LOCKINIT(bp);
543		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
544	}
545
546	/*
547	 * maxbufspace is the absolute maximum amount of buffer space we are
548	 * allowed to reserve in KVM and in real terms.  The absolute maximum
549	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
550	 * used by most other processes.  The differential is required to
551	 * ensure that buf_daemon is able to run when other processes might
552	 * be blocked waiting for buffer space.
553	 *
554	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
555	 * this may result in KVM fragmentation which is not handled optimally
556	 * by the system.
557	 */
558	maxbufspace = nbuf * BKVASIZE;
559	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
560	lobufspace = hibufspace - MAXBSIZE;
561
562	lorunningspace = 512 * 1024;
563	hirunningspace = 1024 * 1024;
564
565/*
566 * Limit the amount of malloc memory since it is wired permanently into
567 * the kernel space.  Even though this is accounted for in the buffer
568 * allocation, we don't want the malloced region to grow uncontrolled.
569 * The malloc scheme improves memory utilization significantly on average
570 * (small) directories.
571 */
572	maxbufmallocspace = hibufspace / 20;
573
574/*
575 * Reduce the chance of a deadlock occuring by limiting the number
576 * of delayed-write dirty buffers we allow to stack up.
577 */
578	hidirtybuffers = nbuf / 4 + 20;
579	dirtybufthresh = hidirtybuffers * 9 / 10;
580	numdirtybuffers = 0;
581/*
582 * To support extreme low-memory systems, make sure hidirtybuffers cannot
583 * eat up all available buffer space.  This occurs when our minimum cannot
584 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
585 * BKVASIZE'd (8K) buffers.
586 */
587	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
588		hidirtybuffers >>= 1;
589	}
590	lodirtybuffers = hidirtybuffers / 2;
591
592/*
593 * Try to keep the number of free buffers in the specified range,
594 * and give special processes (e.g. like buf_daemon) access to an
595 * emergency reserve.
596 */
597	lofreebuffers = nbuf / 18 + 5;
598	hifreebuffers = 2 * lofreebuffers;
599	numfreebuffers = nbuf;
600
601/*
602 * Maximum number of async ops initiated per buf_daemon loop.  This is
603 * somewhat of a hack at the moment, we really need to limit ourselves
604 * based on the number of bytes of I/O in-transit that were initiated
605 * from buf_daemon.
606 */
607
608	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
609	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
610}
611
612/*
613 * bfreekva() - free the kva allocation for a buffer.
614 *
615 *	Since this call frees up buffer space, we call bufspacewakeup().
616 */
617static void
618bfreekva(struct buf *bp)
619{
620
621	if (bp->b_kvasize) {
622		atomic_add_int(&buffreekvacnt, 1);
623		atomic_subtract_int(&bufspace, bp->b_kvasize);
624		vm_map_lock(buffer_map);
625		vm_map_delete(buffer_map,
626		    (vm_offset_t) bp->b_kvabase,
627		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
628		);
629		vm_map_unlock(buffer_map);
630		bp->b_kvasize = 0;
631		bufspacewakeup();
632	}
633}
634
635/*
636 *	bremfree:
637 *
638 *	Mark the buffer for removal from the appropriate free list in brelse.
639 *
640 */
641void
642bremfree(struct buf *bp)
643{
644
645	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
646	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
647	KASSERT((bp->b_flags & B_REMFREE) == 0,
648	    ("bremfree: buffer %p already marked for delayed removal.", bp));
649	KASSERT(bp->b_qindex != QUEUE_NONE,
650	    ("bremfree: buffer %p not on a queue.", bp));
651
652	bp->b_flags |= B_REMFREE;
653	/* Fixup numfreebuffers count.  */
654	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
655		atomic_subtract_int(&numfreebuffers, 1);
656}
657
658/*
659 *	bremfreef:
660 *
661 *	Force an immediate removal from a free list.  Used only in nfs when
662 *	it abuses the b_freelist pointer.
663 */
664void
665bremfreef(struct buf *bp)
666{
667	mtx_lock(&bqlock);
668	bremfreel(bp);
669	mtx_unlock(&bqlock);
670}
671
672/*
673 *	bremfreel:
674 *
675 *	Removes a buffer from the free list, must be called with the
676 *	bqlock held.
677 */
678static void
679bremfreel(struct buf *bp)
680{
681	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
682	    bp, bp->b_vp, bp->b_flags);
683	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
684	KASSERT(bp->b_qindex != QUEUE_NONE,
685	    ("bremfreel: buffer %p not on a queue.", bp));
686	mtx_assert(&bqlock, MA_OWNED);
687
688	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
689	bp->b_qindex = QUEUE_NONE;
690	/*
691	 * If this was a delayed bremfree() we only need to remove the buffer
692	 * from the queue and return the stats are already done.
693	 */
694	if (bp->b_flags & B_REMFREE) {
695		bp->b_flags &= ~B_REMFREE;
696		return;
697	}
698	/*
699	 * Fixup numfreebuffers count.  If the buffer is invalid or not
700	 * delayed-write, the buffer was free and we must decrement
701	 * numfreebuffers.
702	 */
703	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
704		atomic_subtract_int(&numfreebuffers, 1);
705}
706
707
708/*
709 * Get a buffer with the specified data.  Look in the cache first.  We
710 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
711 * is set, the buffer is valid and we do not have to do anything ( see
712 * getblk() ).  This is really just a special case of breadn().
713 */
714int
715bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
716    struct buf **bpp)
717{
718
719	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
720}
721
722/*
723 * Operates like bread, but also starts asynchronous I/O on
724 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
725 * to initiating I/O . If B_CACHE is set, the buffer is valid
726 * and we do not have to do anything.
727 */
728int
729breadn(struct vnode * vp, daddr_t blkno, int size,
730    daddr_t * rablkno, int *rabsize,
731    int cnt, struct ucred * cred, struct buf **bpp)
732{
733	struct buf *bp, *rabp;
734	int i;
735	int rv = 0, readwait = 0;
736
737	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
738	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
739
740	/* if not found in cache, do some I/O */
741	if ((bp->b_flags & B_CACHE) == 0) {
742		if (curthread != PCPU_GET(idlethread))
743			curthread->td_proc->p_stats->p_ru.ru_inblock++;
744		bp->b_iocmd = BIO_READ;
745		bp->b_flags &= ~B_INVAL;
746		bp->b_ioflags &= ~BIO_ERROR;
747		if (bp->b_rcred == NOCRED && cred != NOCRED)
748			bp->b_rcred = crhold(cred);
749		vfs_busy_pages(bp, 0);
750		bp->b_iooffset = dbtob(bp->b_blkno);
751		bstrategy(bp);
752		++readwait;
753	}
754
755	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
756		if (inmem(vp, *rablkno))
757			continue;
758		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
759
760		if ((rabp->b_flags & B_CACHE) == 0) {
761			if (curthread != PCPU_GET(idlethread))
762				curthread->td_proc->p_stats->p_ru.ru_inblock++;
763			rabp->b_flags |= B_ASYNC;
764			rabp->b_flags &= ~B_INVAL;
765			rabp->b_ioflags &= ~BIO_ERROR;
766			rabp->b_iocmd = BIO_READ;
767			if (rabp->b_rcred == NOCRED && cred != NOCRED)
768				rabp->b_rcred = crhold(cred);
769			vfs_busy_pages(rabp, 0);
770			BUF_KERNPROC(rabp);
771			rabp->b_iooffset = dbtob(rabp->b_blkno);
772			bstrategy(rabp);
773		} else {
774			brelse(rabp);
775		}
776	}
777
778	if (readwait) {
779		rv = bufwait(bp);
780	}
781	return (rv);
782}
783
784/*
785 * Write, release buffer on completion.  (Done by iodone
786 * if async).  Do not bother writing anything if the buffer
787 * is invalid.
788 *
789 * Note that we set B_CACHE here, indicating that buffer is
790 * fully valid and thus cacheable.  This is true even of NFS
791 * now so we set it generally.  This could be set either here
792 * or in biodone() since the I/O is synchronous.  We put it
793 * here.
794 */
795int
796bufwrite(struct buf *bp)
797{
798	int oldflags;
799
800	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
801	if (bp->b_flags & B_INVAL) {
802		brelse(bp);
803		return (0);
804	}
805
806	oldflags = bp->b_flags;
807
808	if (BUF_REFCNT(bp) == 0)
809		panic("bufwrite: buffer is not busy???");
810	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
811	    ("FFS background buffer should not get here %p", bp));
812
813	/* Mark the buffer clean */
814	bundirty(bp);
815
816	bp->b_flags &= ~B_DONE;
817	bp->b_ioflags &= ~BIO_ERROR;
818	bp->b_flags |= B_CACHE;
819	bp->b_iocmd = BIO_WRITE;
820
821	bufobj_wref(bp->b_bufobj);
822	vfs_busy_pages(bp, 1);
823
824	/*
825	 * Normal bwrites pipeline writes
826	 */
827	bp->b_runningbufspace = bp->b_bufsize;
828	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
829
830	if (curthread != PCPU_GET(idlethread))
831		curthread->td_proc->p_stats->p_ru.ru_oublock++;
832	if (oldflags & B_ASYNC)
833		BUF_KERNPROC(bp);
834	bp->b_iooffset = dbtob(bp->b_blkno);
835	bstrategy(bp);
836
837	if ((oldflags & B_ASYNC) == 0) {
838		int rtval = bufwait(bp);
839		brelse(bp);
840		return (rtval);
841	} else {
842		/*
843		 * don't allow the async write to saturate the I/O
844		 * system.  We will not deadlock here because
845		 * we are blocking waiting for I/O that is already in-progress
846		 * to complete. We do not block here if it is the update
847		 * or syncer daemon trying to clean up as that can lead
848		 * to deadlock.
849		 */
850		if ((curthread->td_pflags & TDP_NORUNNINGBUF) == 0)
851			waitrunningbufspace();
852	}
853
854	return (0);
855}
856
857/*
858 * Delayed write. (Buffer is marked dirty).  Do not bother writing
859 * anything if the buffer is marked invalid.
860 *
861 * Note that since the buffer must be completely valid, we can safely
862 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
863 * biodone() in order to prevent getblk from writing the buffer
864 * out synchronously.
865 */
866void
867bdwrite(struct buf *bp)
868{
869	struct thread *td = curthread;
870	struct vnode *vp;
871	struct buf *nbp;
872	struct bufobj *bo;
873
874	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
875	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
876	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
877
878	if (bp->b_flags & B_INVAL) {
879		brelse(bp);
880		return;
881	}
882
883	/*
884	 * If we have too many dirty buffers, don't create any more.
885	 * If we are wildly over our limit, then force a complete
886	 * cleanup. Otherwise, just keep the situation from getting
887	 * out of control. Note that we have to avoid a recursive
888	 * disaster and not try to clean up after our own cleanup!
889	 */
890	vp = bp->b_vp;
891	bo = bp->b_bufobj;
892	if ((td->td_pflags & TDP_COWINPROGRESS) == 0) {
893		BO_LOCK(bo);
894		if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
895			BO_UNLOCK(bo);
896			(void) VOP_FSYNC(vp, MNT_NOWAIT, td);
897			altbufferflushes++;
898		} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
899			/*
900			 * Try to find a buffer to flush.
901			 */
902			TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
903				if ((nbp->b_vflags & BV_BKGRDINPROG) ||
904				    BUF_LOCK(nbp,
905				    LK_EXCLUSIVE | LK_NOWAIT, NULL))
906					continue;
907				if (bp == nbp)
908					panic("bdwrite: found ourselves");
909				BO_UNLOCK(bo);
910				/* Don't countdeps with the bo lock held. */
911				if (buf_countdeps(nbp, 0)) {
912					BO_LOCK(bo);
913					BUF_UNLOCK(nbp);
914					continue;
915				}
916				if (nbp->b_flags & B_CLUSTEROK) {
917					vfs_bio_awrite(nbp);
918				} else {
919					bremfree(nbp);
920					bawrite(nbp);
921				}
922				dirtybufferflushes++;
923				break;
924			}
925			if (nbp == NULL)
926				BO_UNLOCK(bo);
927		} else
928			BO_UNLOCK(bo);
929	} else
930		recursiveflushes++;
931
932	bdirty(bp);
933	/*
934	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
935	 * true even of NFS now.
936	 */
937	bp->b_flags |= B_CACHE;
938
939	/*
940	 * This bmap keeps the system from needing to do the bmap later,
941	 * perhaps when the system is attempting to do a sync.  Since it
942	 * is likely that the indirect block -- or whatever other datastructure
943	 * that the filesystem needs is still in memory now, it is a good
944	 * thing to do this.  Note also, that if the pageout daemon is
945	 * requesting a sync -- there might not be enough memory to do
946	 * the bmap then...  So, this is important to do.
947	 */
948	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
949		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
950	}
951
952	/*
953	 * Set the *dirty* buffer range based upon the VM system dirty pages.
954	 */
955	vfs_setdirty(bp);
956
957	/*
958	 * We need to do this here to satisfy the vnode_pager and the
959	 * pageout daemon, so that it thinks that the pages have been
960	 * "cleaned".  Note that since the pages are in a delayed write
961	 * buffer -- the VFS layer "will" see that the pages get written
962	 * out on the next sync, or perhaps the cluster will be completed.
963	 */
964	vfs_clean_pages(bp);
965	bqrelse(bp);
966
967	/*
968	 * Wakeup the buffer flushing daemon if we have a lot of dirty
969	 * buffers (midpoint between our recovery point and our stall
970	 * point).
971	 */
972	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
973
974	/*
975	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
976	 * due to the softdep code.
977	 */
978}
979
980/*
981 *	bdirty:
982 *
983 *	Turn buffer into delayed write request.  We must clear BIO_READ and
984 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
985 *	itself to properly update it in the dirty/clean lists.  We mark it
986 *	B_DONE to ensure that any asynchronization of the buffer properly
987 *	clears B_DONE ( else a panic will occur later ).
988 *
989 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
990 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
991 *	should only be called if the buffer is known-good.
992 *
993 *	Since the buffer is not on a queue, we do not update the numfreebuffers
994 *	count.
995 *
996 *	The buffer must be on QUEUE_NONE.
997 */
998void
999bdirty(struct buf *bp)
1000{
1001
1002	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1003	    bp, bp->b_vp, bp->b_flags);
1004	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1005	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1006	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1007	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1008	bp->b_flags &= ~(B_RELBUF);
1009	bp->b_iocmd = BIO_WRITE;
1010
1011	if ((bp->b_flags & B_DELWRI) == 0) {
1012		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1013		reassignbuf(bp);
1014		atomic_add_int(&numdirtybuffers, 1);
1015		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1016	}
1017}
1018
1019/*
1020 *	bundirty:
1021 *
1022 *	Clear B_DELWRI for buffer.
1023 *
1024 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1025 *	count.
1026 *
1027 *	The buffer must be on QUEUE_NONE.
1028 */
1029
1030void
1031bundirty(struct buf *bp)
1032{
1033
1034	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1035	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1036	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1037	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1038	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1039
1040	if (bp->b_flags & B_DELWRI) {
1041		bp->b_flags &= ~B_DELWRI;
1042		reassignbuf(bp);
1043		atomic_subtract_int(&numdirtybuffers, 1);
1044		numdirtywakeup(lodirtybuffers);
1045	}
1046	/*
1047	 * Since it is now being written, we can clear its deferred write flag.
1048	 */
1049	bp->b_flags &= ~B_DEFERRED;
1050}
1051
1052/*
1053 *	bawrite:
1054 *
1055 *	Asynchronous write.  Start output on a buffer, but do not wait for
1056 *	it to complete.  The buffer is released when the output completes.
1057 *
1058 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1059 *	B_INVAL buffers.  Not us.
1060 */
1061void
1062bawrite(struct buf *bp)
1063{
1064
1065	bp->b_flags |= B_ASYNC;
1066	(void) bwrite(bp);
1067}
1068
1069/*
1070 *	bwillwrite:
1071 *
1072 *	Called prior to the locking of any vnodes when we are expecting to
1073 *	write.  We do not want to starve the buffer cache with too many
1074 *	dirty buffers so we block here.  By blocking prior to the locking
1075 *	of any vnodes we attempt to avoid the situation where a locked vnode
1076 *	prevents the various system daemons from flushing related buffers.
1077 */
1078
1079void
1080bwillwrite(void)
1081{
1082
1083	if (numdirtybuffers >= hidirtybuffers) {
1084		mtx_lock(&nblock);
1085		while (numdirtybuffers >= hidirtybuffers) {
1086			bd_wakeup(1);
1087			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1088			msleep(&needsbuffer, &nblock,
1089			    (PRIBIO + 4), "flswai", 0);
1090		}
1091		mtx_unlock(&nblock);
1092	}
1093}
1094
1095/*
1096 * Return true if we have too many dirty buffers.
1097 */
1098int
1099buf_dirty_count_severe(void)
1100{
1101
1102	return(numdirtybuffers >= hidirtybuffers);
1103}
1104
1105/*
1106 *	brelse:
1107 *
1108 *	Release a busy buffer and, if requested, free its resources.  The
1109 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1110 *	to be accessed later as a cache entity or reused for other purposes.
1111 */
1112void
1113brelse(struct buf *bp)
1114{
1115	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1116	    bp, bp->b_vp, bp->b_flags);
1117	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1118	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1119
1120	if (bp->b_iocmd == BIO_WRITE &&
1121	    (bp->b_ioflags & BIO_ERROR) &&
1122	    !(bp->b_flags & B_INVAL)) {
1123		/*
1124		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1125		 * pages from being scrapped.  If B_INVAL is set then
1126		 * this case is not run and the next case is run to
1127		 * destroy the buffer.  B_INVAL can occur if the buffer
1128		 * is outside the range supported by the underlying device.
1129		 */
1130		bp->b_ioflags &= ~BIO_ERROR;
1131		bdirty(bp);
1132	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1133	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1134		/*
1135		 * Either a failed I/O or we were asked to free or not
1136		 * cache the buffer.
1137		 */
1138		bp->b_flags |= B_INVAL;
1139		if (LIST_FIRST(&bp->b_dep) != NULL)
1140			buf_deallocate(bp);
1141		if (bp->b_flags & B_DELWRI) {
1142			atomic_subtract_int(&numdirtybuffers, 1);
1143			numdirtywakeup(lodirtybuffers);
1144		}
1145		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1146		if ((bp->b_flags & B_VMIO) == 0) {
1147			if (bp->b_bufsize)
1148				allocbuf(bp, 0);
1149			if (bp->b_vp)
1150				brelvp(bp);
1151		}
1152	}
1153
1154	/*
1155	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1156	 * is called with B_DELWRI set, the underlying pages may wind up
1157	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1158	 * because pages associated with a B_DELWRI bp are marked clean.
1159	 *
1160	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1161	 * if B_DELWRI is set.
1162	 *
1163	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1164	 * on pages to return pages to the VM page queues.
1165	 */
1166	if (bp->b_flags & B_DELWRI)
1167		bp->b_flags &= ~B_RELBUF;
1168	else if (vm_page_count_severe()) {
1169		/*
1170		 * XXX This lock may not be necessary since BKGRDINPROG
1171		 * cannot be set while we hold the buf lock, it can only be
1172		 * cleared if it is already pending.
1173		 */
1174		if (bp->b_vp) {
1175			BO_LOCK(bp->b_bufobj);
1176			if (!(bp->b_vflags & BV_BKGRDINPROG))
1177				bp->b_flags |= B_RELBUF;
1178			BO_UNLOCK(bp->b_bufobj);
1179		} else
1180			bp->b_flags |= B_RELBUF;
1181	}
1182
1183	/*
1184	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1185	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1186	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1187	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1188	 *
1189	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1190	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1191	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1192	 *
1193	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1194	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1195	 * the commit state and we cannot afford to lose the buffer. If the
1196	 * buffer has a background write in progress, we need to keep it
1197	 * around to prevent it from being reconstituted and starting a second
1198	 * background write.
1199	 */
1200	if ((bp->b_flags & B_VMIO)
1201	    && !(bp->b_vp->v_mount != NULL &&
1202		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1203		 !vn_isdisk(bp->b_vp, NULL) &&
1204		 (bp->b_flags & B_DELWRI))
1205	    ) {
1206
1207		int i, j, resid;
1208		vm_page_t m;
1209		off_t foff;
1210		vm_pindex_t poff;
1211		vm_object_t obj;
1212
1213		obj = bp->b_bufobj->bo_object;
1214
1215		/*
1216		 * Get the base offset and length of the buffer.  Note that
1217		 * in the VMIO case if the buffer block size is not
1218		 * page-aligned then b_data pointer may not be page-aligned.
1219		 * But our b_pages[] array *IS* page aligned.
1220		 *
1221		 * block sizes less then DEV_BSIZE (usually 512) are not
1222		 * supported due to the page granularity bits (m->valid,
1223		 * m->dirty, etc...).
1224		 *
1225		 * See man buf(9) for more information
1226		 */
1227		resid = bp->b_bufsize;
1228		foff = bp->b_offset;
1229		VM_OBJECT_LOCK(obj);
1230		for (i = 0; i < bp->b_npages; i++) {
1231			int had_bogus = 0;
1232
1233			m = bp->b_pages[i];
1234
1235			/*
1236			 * If we hit a bogus page, fixup *all* the bogus pages
1237			 * now.
1238			 */
1239			if (m == bogus_page) {
1240				poff = OFF_TO_IDX(bp->b_offset);
1241				had_bogus = 1;
1242
1243				for (j = i; j < bp->b_npages; j++) {
1244					vm_page_t mtmp;
1245					mtmp = bp->b_pages[j];
1246					if (mtmp == bogus_page) {
1247						mtmp = vm_page_lookup(obj, poff + j);
1248						if (!mtmp) {
1249							panic("brelse: page missing\n");
1250						}
1251						bp->b_pages[j] = mtmp;
1252					}
1253				}
1254
1255				if ((bp->b_flags & B_INVAL) == 0) {
1256					pmap_qenter(
1257					    trunc_page((vm_offset_t)bp->b_data),
1258					    bp->b_pages, bp->b_npages);
1259				}
1260				m = bp->b_pages[i];
1261			}
1262			if ((bp->b_flags & B_NOCACHE) ||
1263			    (bp->b_ioflags & BIO_ERROR)) {
1264				int poffset = foff & PAGE_MASK;
1265				int presid = resid > (PAGE_SIZE - poffset) ?
1266					(PAGE_SIZE - poffset) : resid;
1267
1268				KASSERT(presid >= 0, ("brelse: extra page"));
1269				vm_page_lock_queues();
1270				vm_page_set_invalid(m, poffset, presid);
1271				vm_page_unlock_queues();
1272				if (had_bogus)
1273					printf("avoided corruption bug in bogus_page/brelse code\n");
1274			}
1275			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1276			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1277		}
1278		VM_OBJECT_UNLOCK(obj);
1279		if (bp->b_flags & (B_INVAL | B_RELBUF))
1280			vfs_vmio_release(bp);
1281
1282	} else if (bp->b_flags & B_VMIO) {
1283
1284		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1285			vfs_vmio_release(bp);
1286		}
1287
1288	}
1289
1290	if (BUF_REFCNT(bp) > 1) {
1291		/* do not release to free list */
1292		BUF_UNLOCK(bp);
1293		return;
1294	}
1295
1296	/* enqueue */
1297	mtx_lock(&bqlock);
1298	/* Handle delayed bremfree() processing. */
1299	if (bp->b_flags & B_REMFREE)
1300		bremfreel(bp);
1301	if (bp->b_qindex != QUEUE_NONE)
1302		panic("brelse: free buffer onto another queue???");
1303
1304	/* buffers with no memory */
1305	if (bp->b_bufsize == 0) {
1306		bp->b_flags |= B_INVAL;
1307		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1308		if (bp->b_vflags & BV_BKGRDINPROG)
1309			panic("losing buffer 1");
1310		if (bp->b_kvasize) {
1311			bp->b_qindex = QUEUE_EMPTYKVA;
1312		} else {
1313			bp->b_qindex = QUEUE_EMPTY;
1314		}
1315		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1316	/* buffers with junk contents */
1317	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1318	    (bp->b_ioflags & BIO_ERROR)) {
1319		bp->b_flags |= B_INVAL;
1320		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1321		if (bp->b_vflags & BV_BKGRDINPROG)
1322			panic("losing buffer 2");
1323		bp->b_qindex = QUEUE_CLEAN;
1324		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1325	/* remaining buffers */
1326	} else {
1327		if (bp->b_flags & B_DELWRI)
1328			bp->b_qindex = QUEUE_DIRTY;
1329		else
1330			bp->b_qindex = QUEUE_CLEAN;
1331		if (bp->b_flags & B_AGE)
1332			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1333		else
1334			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1335	}
1336	mtx_unlock(&bqlock);
1337
1338	/*
1339	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1340	 * placed the buffer on the correct queue.  We must also disassociate
1341	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1342	 * find it.
1343	 */
1344	if (bp->b_flags & B_INVAL) {
1345		if (bp->b_flags & B_DELWRI)
1346			bundirty(bp);
1347		if (bp->b_vp)
1348			brelvp(bp);
1349	}
1350
1351	/*
1352	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1353	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1354	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1355	 * if B_INVAL is set ).
1356	 */
1357
1358	if (!(bp->b_flags & B_DELWRI))
1359		bufcountwakeup();
1360
1361	/*
1362	 * Something we can maybe free or reuse
1363	 */
1364	if (bp->b_bufsize || bp->b_kvasize)
1365		bufspacewakeup();
1366
1367	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1368	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1369		panic("brelse: not dirty");
1370	/* unlock */
1371	BUF_UNLOCK(bp);
1372}
1373
1374/*
1375 * Release a buffer back to the appropriate queue but do not try to free
1376 * it.  The buffer is expected to be used again soon.
1377 *
1378 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1379 * biodone() to requeue an async I/O on completion.  It is also used when
1380 * known good buffers need to be requeued but we think we may need the data
1381 * again soon.
1382 *
1383 * XXX we should be able to leave the B_RELBUF hint set on completion.
1384 */
1385void
1386bqrelse(struct buf *bp)
1387{
1388	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1389	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1390	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1391
1392	if (BUF_REFCNT(bp) > 1) {
1393		/* do not release to free list */
1394		BUF_UNLOCK(bp);
1395		return;
1396	}
1397	mtx_lock(&bqlock);
1398	/* Handle delayed bremfree() processing. */
1399	if (bp->b_flags & B_REMFREE)
1400		bremfreel(bp);
1401	if (bp->b_qindex != QUEUE_NONE)
1402		panic("bqrelse: free buffer onto another queue???");
1403	/* buffers with stale but valid contents */
1404	if (bp->b_flags & B_DELWRI) {
1405		bp->b_qindex = QUEUE_DIRTY;
1406		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1407	} else {
1408		/*
1409		 * XXX This lock may not be necessary since BKGRDINPROG
1410		 * cannot be set while we hold the buf lock, it can only be
1411		 * cleared if it is already pending.
1412		 */
1413		BO_LOCK(bp->b_bufobj);
1414		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1415			BO_UNLOCK(bp->b_bufobj);
1416			bp->b_qindex = QUEUE_CLEAN;
1417			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1418			    b_freelist);
1419		} else {
1420			/*
1421			 * We are too low on memory, we have to try to free
1422			 * the buffer (most importantly: the wired pages
1423			 * making up its backing store) *now*.
1424			 */
1425			BO_UNLOCK(bp->b_bufobj);
1426			mtx_unlock(&bqlock);
1427			brelse(bp);
1428			return;
1429		}
1430	}
1431	mtx_unlock(&bqlock);
1432
1433	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1434		bufcountwakeup();
1435
1436	/*
1437	 * Something we can maybe free or reuse.
1438	 */
1439	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1440		bufspacewakeup();
1441
1442	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1443	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1444		panic("bqrelse: not dirty");
1445	/* unlock */
1446	BUF_UNLOCK(bp);
1447}
1448
1449/* Give pages used by the bp back to the VM system (where possible) */
1450static void
1451vfs_vmio_release(struct buf *bp)
1452{
1453	int i;
1454	vm_page_t m;
1455
1456	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1457	vm_page_lock_queues();
1458	for (i = 0; i < bp->b_npages; i++) {
1459		m = bp->b_pages[i];
1460		bp->b_pages[i] = NULL;
1461		/*
1462		 * In order to keep page LRU ordering consistent, put
1463		 * everything on the inactive queue.
1464		 */
1465		vm_page_unwire(m, 0);
1466		/*
1467		 * We don't mess with busy pages, it is
1468		 * the responsibility of the process that
1469		 * busied the pages to deal with them.
1470		 */
1471		if ((m->flags & PG_BUSY) || (m->busy != 0))
1472			continue;
1473
1474		if (m->wire_count == 0) {
1475			/*
1476			 * Might as well free the page if we can and it has
1477			 * no valid data.  We also free the page if the
1478			 * buffer was used for direct I/O
1479			 */
1480			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1481			    m->hold_count == 0) {
1482				pmap_remove_all(m);
1483				vm_page_free(m);
1484			} else if (bp->b_flags & B_DIRECT) {
1485				vm_page_try_to_free(m);
1486			} else if (vm_page_count_severe()) {
1487				vm_page_try_to_cache(m);
1488			}
1489		}
1490	}
1491	vm_page_unlock_queues();
1492	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1493	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1494
1495	if (bp->b_bufsize) {
1496		bufspacewakeup();
1497		bp->b_bufsize = 0;
1498	}
1499	bp->b_npages = 0;
1500	bp->b_flags &= ~B_VMIO;
1501	if (bp->b_vp)
1502		brelvp(bp);
1503}
1504
1505/*
1506 * Check to see if a block at a particular lbn is available for a clustered
1507 * write.
1508 */
1509static int
1510vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1511{
1512	struct buf *bpa;
1513	int match;
1514
1515	match = 0;
1516
1517	/* If the buf isn't in core skip it */
1518	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1519		return (0);
1520
1521	/* If the buf is busy we don't want to wait for it */
1522	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1523		return (0);
1524
1525	/* Only cluster with valid clusterable delayed write buffers */
1526	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1527	    (B_DELWRI | B_CLUSTEROK))
1528		goto done;
1529
1530	if (bpa->b_bufsize != size)
1531		goto done;
1532
1533	/*
1534	 * Check to see if it is in the expected place on disk and that the
1535	 * block has been mapped.
1536	 */
1537	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1538		match = 1;
1539done:
1540	BUF_UNLOCK(bpa);
1541	return (match);
1542}
1543
1544/*
1545 *	vfs_bio_awrite:
1546 *
1547 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1548 *	This is much better then the old way of writing only one buffer at
1549 *	a time.  Note that we may not be presented with the buffers in the
1550 *	correct order, so we search for the cluster in both directions.
1551 */
1552int
1553vfs_bio_awrite(struct buf *bp)
1554{
1555	int i;
1556	int j;
1557	daddr_t lblkno = bp->b_lblkno;
1558	struct vnode *vp = bp->b_vp;
1559	int ncl;
1560	int nwritten;
1561	int size;
1562	int maxcl;
1563
1564	/*
1565	 * right now we support clustered writing only to regular files.  If
1566	 * we find a clusterable block we could be in the middle of a cluster
1567	 * rather then at the beginning.
1568	 */
1569	if ((vp->v_type == VREG) &&
1570	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1571	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1572
1573		size = vp->v_mount->mnt_stat.f_iosize;
1574		maxcl = MAXPHYS / size;
1575
1576		VI_LOCK(vp);
1577		for (i = 1; i < maxcl; i++)
1578			if (vfs_bio_clcheck(vp, size, lblkno + i,
1579			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1580				break;
1581
1582		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1583			if (vfs_bio_clcheck(vp, size, lblkno - j,
1584			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1585				break;
1586
1587		VI_UNLOCK(vp);
1588		--j;
1589		ncl = i + j;
1590		/*
1591		 * this is a possible cluster write
1592		 */
1593		if (ncl != 1) {
1594			BUF_UNLOCK(bp);
1595			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1596			return nwritten;
1597		}
1598	}
1599	bremfree(bp);
1600	bp->b_flags |= B_ASYNC;
1601	/*
1602	 * default (old) behavior, writing out only one block
1603	 *
1604	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1605	 */
1606	nwritten = bp->b_bufsize;
1607	(void) bwrite(bp);
1608
1609	return nwritten;
1610}
1611
1612/*
1613 *	getnewbuf:
1614 *
1615 *	Find and initialize a new buffer header, freeing up existing buffers
1616 *	in the bufqueues as necessary.  The new buffer is returned locked.
1617 *
1618 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1619 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1620 *
1621 *	We block if:
1622 *		We have insufficient buffer headers
1623 *		We have insufficient buffer space
1624 *		buffer_map is too fragmented ( space reservation fails )
1625 *		If we have to flush dirty buffers ( but we try to avoid this )
1626 *
1627 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1628 *	Instead we ask the buf daemon to do it for us.  We attempt to
1629 *	avoid piecemeal wakeups of the pageout daemon.
1630 */
1631
1632static struct buf *
1633getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1634{
1635	struct buf *bp;
1636	struct buf *nbp;
1637	int defrag = 0;
1638	int nqindex;
1639	static int flushingbufs;
1640
1641	/*
1642	 * We can't afford to block since we might be holding a vnode lock,
1643	 * which may prevent system daemons from running.  We deal with
1644	 * low-memory situations by proactively returning memory and running
1645	 * async I/O rather then sync I/O.
1646	 */
1647
1648	atomic_add_int(&getnewbufcalls, 1);
1649	atomic_subtract_int(&getnewbufrestarts, 1);
1650restart:
1651	atomic_add_int(&getnewbufrestarts, 1);
1652
1653	/*
1654	 * Setup for scan.  If we do not have enough free buffers,
1655	 * we setup a degenerate case that immediately fails.  Note
1656	 * that if we are specially marked process, we are allowed to
1657	 * dip into our reserves.
1658	 *
1659	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1660	 *
1661	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1662	 * However, there are a number of cases (defragging, reusing, ...)
1663	 * where we cannot backup.
1664	 */
1665	mtx_lock(&bqlock);
1666	nqindex = QUEUE_EMPTYKVA;
1667	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1668
1669	if (nbp == NULL) {
1670		/*
1671		 * If no EMPTYKVA buffers and we are either
1672		 * defragging or reusing, locate a CLEAN buffer
1673		 * to free or reuse.  If bufspace useage is low
1674		 * skip this step so we can allocate a new buffer.
1675		 */
1676		if (defrag || bufspace >= lobufspace) {
1677			nqindex = QUEUE_CLEAN;
1678			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1679		}
1680
1681		/*
1682		 * If we could not find or were not allowed to reuse a
1683		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1684		 * buffer.  We can only use an EMPTY buffer if allocating
1685		 * its KVA would not otherwise run us out of buffer space.
1686		 */
1687		if (nbp == NULL && defrag == 0 &&
1688		    bufspace + maxsize < hibufspace) {
1689			nqindex = QUEUE_EMPTY;
1690			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1691		}
1692	}
1693
1694	/*
1695	 * Run scan, possibly freeing data and/or kva mappings on the fly
1696	 * depending.
1697	 */
1698
1699	while ((bp = nbp) != NULL) {
1700		int qindex = nqindex;
1701
1702		/*
1703		 * Calculate next bp ( we can only use it if we do not block
1704		 * or do other fancy things ).
1705		 */
1706		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1707			switch(qindex) {
1708			case QUEUE_EMPTY:
1709				nqindex = QUEUE_EMPTYKVA;
1710				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1711					break;
1712				/* FALLTHROUGH */
1713			case QUEUE_EMPTYKVA:
1714				nqindex = QUEUE_CLEAN;
1715				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1716					break;
1717				/* FALLTHROUGH */
1718			case QUEUE_CLEAN:
1719				/*
1720				 * nbp is NULL.
1721				 */
1722				break;
1723			}
1724		}
1725		/*
1726		 * If we are defragging then we need a buffer with
1727		 * b_kvasize != 0.  XXX this situation should no longer
1728		 * occur, if defrag is non-zero the buffer's b_kvasize
1729		 * should also be non-zero at this point.  XXX
1730		 */
1731		if (defrag && bp->b_kvasize == 0) {
1732			printf("Warning: defrag empty buffer %p\n", bp);
1733			continue;
1734		}
1735
1736		/*
1737		 * Start freeing the bp.  This is somewhat involved.  nbp
1738		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1739		 */
1740		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1741			continue;
1742		if (bp->b_vp) {
1743			BO_LOCK(bp->b_bufobj);
1744			if (bp->b_vflags & BV_BKGRDINPROG) {
1745				BO_UNLOCK(bp->b_bufobj);
1746				BUF_UNLOCK(bp);
1747				continue;
1748			}
1749			BO_UNLOCK(bp->b_bufobj);
1750		}
1751		CTR6(KTR_BUF,
1752		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1753		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1754		    bp->b_kvasize, bp->b_bufsize, qindex);
1755
1756		/*
1757		 * Sanity Checks
1758		 */
1759		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1760
1761		/*
1762		 * Note: we no longer distinguish between VMIO and non-VMIO
1763		 * buffers.
1764		 */
1765
1766		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1767
1768		bremfreel(bp);
1769		mtx_unlock(&bqlock);
1770
1771		if (qindex == QUEUE_CLEAN) {
1772			if (bp->b_flags & B_VMIO) {
1773				bp->b_flags &= ~B_ASYNC;
1774				vfs_vmio_release(bp);
1775			}
1776			if (bp->b_vp)
1777				brelvp(bp);
1778		}
1779
1780		/*
1781		 * NOTE:  nbp is now entirely invalid.  We can only restart
1782		 * the scan from this point on.
1783		 *
1784		 * Get the rest of the buffer freed up.  b_kva* is still
1785		 * valid after this operation.
1786		 */
1787
1788		if (bp->b_rcred != NOCRED) {
1789			crfree(bp->b_rcred);
1790			bp->b_rcred = NOCRED;
1791		}
1792		if (bp->b_wcred != NOCRED) {
1793			crfree(bp->b_wcred);
1794			bp->b_wcred = NOCRED;
1795		}
1796		if (LIST_FIRST(&bp->b_dep) != NULL)
1797			buf_deallocate(bp);
1798		if (bp->b_vflags & BV_BKGRDINPROG)
1799			panic("losing buffer 3");
1800		KASSERT(bp->b_vp == NULL,
1801		    ("bp: %p still has vnode %p.  qindex: %d",
1802		    bp, bp->b_vp, qindex));
1803		KASSERT((bp->b_xflags & (BX_VNCLEAN|BX_VNDIRTY)) == 0,
1804		   ("bp: %p still on a buffer list. xflags %X",
1805		    bp, bp->b_xflags));
1806
1807		if (bp->b_bufsize)
1808			allocbuf(bp, 0);
1809
1810		bp->b_flags = 0;
1811		bp->b_ioflags = 0;
1812		bp->b_xflags = 0;
1813		bp->b_vflags = 0;
1814		bp->b_vp = NULL;
1815		bp->b_blkno = bp->b_lblkno = 0;
1816		bp->b_offset = NOOFFSET;
1817		bp->b_iodone = 0;
1818		bp->b_error = 0;
1819		bp->b_resid = 0;
1820		bp->b_bcount = 0;
1821		bp->b_npages = 0;
1822		bp->b_dirtyoff = bp->b_dirtyend = 0;
1823		bp->b_bufobj = NULL;
1824
1825		LIST_INIT(&bp->b_dep);
1826
1827		/*
1828		 * If we are defragging then free the buffer.
1829		 */
1830		if (defrag) {
1831			bp->b_flags |= B_INVAL;
1832			bfreekva(bp);
1833			brelse(bp);
1834			defrag = 0;
1835			goto restart;
1836		}
1837
1838		/*
1839		 * If we are overcomitted then recover the buffer and its
1840		 * KVM space.  This occurs in rare situations when multiple
1841		 * processes are blocked in getnewbuf() or allocbuf().
1842		 */
1843		if (bufspace >= hibufspace)
1844			flushingbufs = 1;
1845		if (flushingbufs && bp->b_kvasize != 0) {
1846			bp->b_flags |= B_INVAL;
1847			bfreekva(bp);
1848			brelse(bp);
1849			goto restart;
1850		}
1851		if (bufspace < lobufspace)
1852			flushingbufs = 0;
1853		break;
1854	}
1855
1856	/*
1857	 * If we exhausted our list, sleep as appropriate.  We may have to
1858	 * wakeup various daemons and write out some dirty buffers.
1859	 *
1860	 * Generally we are sleeping due to insufficient buffer space.
1861	 */
1862
1863	if (bp == NULL) {
1864		int flags;
1865		char *waitmsg;
1866
1867		mtx_unlock(&bqlock);
1868		if (defrag) {
1869			flags = VFS_BIO_NEED_BUFSPACE;
1870			waitmsg = "nbufkv";
1871		} else if (bufspace >= hibufspace) {
1872			waitmsg = "nbufbs";
1873			flags = VFS_BIO_NEED_BUFSPACE;
1874		} else {
1875			waitmsg = "newbuf";
1876			flags = VFS_BIO_NEED_ANY;
1877		}
1878
1879		bd_speedup();	/* heeeelp */
1880
1881		mtx_lock(&nblock);
1882		needsbuffer |= flags;
1883		while (needsbuffer & flags) {
1884			if (msleep(&needsbuffer, &nblock,
1885			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1886				mtx_unlock(&nblock);
1887				return (NULL);
1888			}
1889		}
1890		mtx_unlock(&nblock);
1891	} else {
1892		/*
1893		 * We finally have a valid bp.  We aren't quite out of the
1894		 * woods, we still have to reserve kva space.  In order
1895		 * to keep fragmentation sane we only allocate kva in
1896		 * BKVASIZE chunks.
1897		 */
1898		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1899
1900		if (maxsize != bp->b_kvasize) {
1901			vm_offset_t addr = 0;
1902
1903			bfreekva(bp);
1904
1905			vm_map_lock(buffer_map);
1906			if (vm_map_findspace(buffer_map,
1907				vm_map_min(buffer_map), maxsize, &addr)) {
1908				/*
1909				 * Uh oh.  Buffer map is to fragmented.  We
1910				 * must defragment the map.
1911				 */
1912				atomic_add_int(&bufdefragcnt, 1);
1913				vm_map_unlock(buffer_map);
1914				defrag = 1;
1915				bp->b_flags |= B_INVAL;
1916				brelse(bp);
1917				goto restart;
1918			}
1919			if (addr) {
1920				vm_map_insert(buffer_map, NULL, 0,
1921					addr, addr + maxsize,
1922					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1923
1924				bp->b_kvabase = (caddr_t) addr;
1925				bp->b_kvasize = maxsize;
1926				atomic_add_int(&bufspace, bp->b_kvasize);
1927				atomic_add_int(&bufreusecnt, 1);
1928			}
1929			vm_map_unlock(buffer_map);
1930		}
1931		bp->b_saveaddr = bp->b_kvabase;
1932		bp->b_data = bp->b_saveaddr;
1933	}
1934	return(bp);
1935}
1936
1937/*
1938 *	buf_daemon:
1939 *
1940 *	buffer flushing daemon.  Buffers are normally flushed by the
1941 *	update daemon but if it cannot keep up this process starts to
1942 *	take the load in an attempt to prevent getnewbuf() from blocking.
1943 */
1944
1945static struct kproc_desc buf_kp = {
1946	"bufdaemon",
1947	buf_daemon,
1948	&bufdaemonproc
1949};
1950SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1951
1952static void
1953buf_daemon()
1954{
1955	mtx_lock(&Giant);
1956
1957	/*
1958	 * This process needs to be suspended prior to shutdown sync.
1959	 */
1960	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1961	    SHUTDOWN_PRI_LAST);
1962
1963	/*
1964	 * This process is allowed to take the buffer cache to the limit
1965	 */
1966	curthread->td_pflags |= TDP_NORUNNINGBUF;
1967	mtx_lock(&bdlock);
1968	for (;;) {
1969		bd_request = 0;
1970		mtx_unlock(&bdlock);
1971
1972		kthread_suspend_check(bufdaemonproc);
1973
1974		/*
1975		 * Do the flush.  Limit the amount of in-transit I/O we
1976		 * allow to build up, otherwise we would completely saturate
1977		 * the I/O system.  Wakeup any waiting processes before we
1978		 * normally would so they can run in parallel with our drain.
1979		 */
1980		while (numdirtybuffers > lodirtybuffers) {
1981			if (flushbufqueues(0) == 0) {
1982				/*
1983				 * Could not find any buffers without rollback
1984				 * dependencies, so just write the first one
1985				 * in the hopes of eventually making progress.
1986				 */
1987				flushbufqueues(1);
1988				break;
1989			}
1990			uio_yield();
1991		}
1992
1993		/*
1994		 * Only clear bd_request if we have reached our low water
1995		 * mark.  The buf_daemon normally waits 1 second and
1996		 * then incrementally flushes any dirty buffers that have
1997		 * built up, within reason.
1998		 *
1999		 * If we were unable to hit our low water mark and couldn't
2000		 * find any flushable buffers, we sleep half a second.
2001		 * Otherwise we loop immediately.
2002		 */
2003		mtx_lock(&bdlock);
2004		if (numdirtybuffers <= lodirtybuffers) {
2005			/*
2006			 * We reached our low water mark, reset the
2007			 * request and sleep until we are needed again.
2008			 * The sleep is just so the suspend code works.
2009			 */
2010			bd_request = 0;
2011			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2012		} else {
2013			/*
2014			 * We couldn't find any flushable dirty buffers but
2015			 * still have too many dirty buffers, we
2016			 * have to sleep and try again.  (rare)
2017			 */
2018			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2019		}
2020	}
2021}
2022
2023/*
2024 *	flushbufqueues:
2025 *
2026 *	Try to flush a buffer in the dirty queue.  We must be careful to
2027 *	free up B_INVAL buffers instead of write them, which NFS is
2028 *	particularly sensitive to.
2029 */
2030static int flushwithdeps = 0;
2031SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2032    0, "Number of buffers flushed with dependecies that require rollbacks");
2033
2034static int
2035flushbufqueues(int flushdeps)
2036{
2037	struct thread *td = curthread;
2038	struct buf sentinel;
2039	struct vnode *vp;
2040	struct mount *mp;
2041	struct buf *bp;
2042	int hasdeps;
2043	int flushed;
2044	int target;
2045
2046	target = numdirtybuffers - lodirtybuffers;
2047	if (flushdeps && target > 2)
2048		target /= 2;
2049	flushed = 0;
2050	bp = NULL;
2051	mtx_lock(&bqlock);
2052	TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], &sentinel, b_freelist);
2053	while (flushed != target) {
2054		bp = TAILQ_FIRST(&bufqueues[QUEUE_DIRTY]);
2055		if (bp == &sentinel)
2056			break;
2057		TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
2058		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
2059
2060		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2061			continue;
2062		BO_LOCK(bp->b_bufobj);
2063		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2064		    (bp->b_flags & B_DELWRI) == 0) {
2065			BO_UNLOCK(bp->b_bufobj);
2066			BUF_UNLOCK(bp);
2067			continue;
2068		}
2069		BO_UNLOCK(bp->b_bufobj);
2070		if (bp->b_flags & B_INVAL) {
2071			bremfreel(bp);
2072			mtx_unlock(&bqlock);
2073			brelse(bp);
2074			flushed++;
2075			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2076			mtx_lock(&bqlock);
2077			continue;
2078		}
2079
2080		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2081			if (flushdeps == 0) {
2082				BUF_UNLOCK(bp);
2083				continue;
2084			}
2085			hasdeps = 1;
2086		} else
2087			hasdeps = 0;
2088		/*
2089		 * We must hold the lock on a vnode before writing
2090		 * one of its buffers. Otherwise we may confuse, or
2091		 * in the case of a snapshot vnode, deadlock the
2092		 * system.
2093		 *
2094		 * The lock order here is the reverse of the normal
2095		 * of vnode followed by buf lock.  This is ok because
2096		 * the NOWAIT will prevent deadlock.
2097		 */
2098		vp = bp->b_vp;
2099		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2100			BUF_UNLOCK(bp);
2101			continue;
2102		}
2103		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2104			mtx_unlock(&bqlock);
2105			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2106			    bp, bp->b_vp, bp->b_flags);
2107			vfs_bio_awrite(bp);
2108			vn_finished_write(mp);
2109			VOP_UNLOCK(vp, 0, td);
2110			flushwithdeps += hasdeps;
2111			flushed++;
2112			waitrunningbufspace();
2113			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2114			mtx_lock(&bqlock);
2115			continue;
2116		}
2117		vn_finished_write(mp);
2118		BUF_UNLOCK(bp);
2119	}
2120	TAILQ_REMOVE(&bufqueues[QUEUE_DIRTY], &sentinel, b_freelist);
2121	mtx_unlock(&bqlock);
2122	return (flushed);
2123}
2124
2125/*
2126 * Check to see if a block is currently memory resident.
2127 */
2128struct buf *
2129incore(struct bufobj *bo, daddr_t blkno)
2130{
2131	struct buf *bp;
2132
2133	BO_LOCK(bo);
2134	bp = gbincore(bo, blkno);
2135	BO_UNLOCK(bo);
2136	return (bp);
2137}
2138
2139/*
2140 * Returns true if no I/O is needed to access the
2141 * associated VM object.  This is like incore except
2142 * it also hunts around in the VM system for the data.
2143 */
2144
2145static int
2146inmem(struct vnode * vp, daddr_t blkno)
2147{
2148	vm_object_t obj;
2149	vm_offset_t toff, tinc, size;
2150	vm_page_t m;
2151	vm_ooffset_t off;
2152
2153	ASSERT_VOP_LOCKED(vp, "inmem");
2154
2155	if (incore(&vp->v_bufobj, blkno))
2156		return 1;
2157	if (vp->v_mount == NULL)
2158		return 0;
2159	obj = vp->v_object;
2160	if (obj == NULL)
2161		return (0);
2162
2163	size = PAGE_SIZE;
2164	if (size > vp->v_mount->mnt_stat.f_iosize)
2165		size = vp->v_mount->mnt_stat.f_iosize;
2166	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2167
2168	VM_OBJECT_LOCK(obj);
2169	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2170		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2171		if (!m)
2172			goto notinmem;
2173		tinc = size;
2174		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2175			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2176		if (vm_page_is_valid(m,
2177		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2178			goto notinmem;
2179	}
2180	VM_OBJECT_UNLOCK(obj);
2181	return 1;
2182
2183notinmem:
2184	VM_OBJECT_UNLOCK(obj);
2185	return (0);
2186}
2187
2188/*
2189 *	vfs_setdirty:
2190 *
2191 *	Sets the dirty range for a buffer based on the status of the dirty
2192 *	bits in the pages comprising the buffer.
2193 *
2194 *	The range is limited to the size of the buffer.
2195 *
2196 *	This routine is primarily used by NFS, but is generalized for the
2197 *	B_VMIO case.
2198 */
2199static void
2200vfs_setdirty(struct buf *bp)
2201{
2202	int i;
2203	vm_object_t object;
2204
2205	/*
2206	 * Degenerate case - empty buffer
2207	 */
2208
2209	if (bp->b_bufsize == 0)
2210		return;
2211
2212	/*
2213	 * We qualify the scan for modified pages on whether the
2214	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2215	 * is not cleared simply by protecting pages off.
2216	 */
2217
2218	if ((bp->b_flags & B_VMIO) == 0)
2219		return;
2220
2221	object = bp->b_pages[0]->object;
2222	VM_OBJECT_LOCK(object);
2223	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2224		printf("Warning: object %p writeable but not mightbedirty\n", object);
2225	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2226		printf("Warning: object %p mightbedirty but not writeable\n", object);
2227
2228	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2229		vm_offset_t boffset;
2230		vm_offset_t eoffset;
2231
2232		vm_page_lock_queues();
2233		/*
2234		 * test the pages to see if they have been modified directly
2235		 * by users through the VM system.
2236		 */
2237		for (i = 0; i < bp->b_npages; i++)
2238			vm_page_test_dirty(bp->b_pages[i]);
2239
2240		/*
2241		 * Calculate the encompassing dirty range, boffset and eoffset,
2242		 * (eoffset - boffset) bytes.
2243		 */
2244
2245		for (i = 0; i < bp->b_npages; i++) {
2246			if (bp->b_pages[i]->dirty)
2247				break;
2248		}
2249		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2250
2251		for (i = bp->b_npages - 1; i >= 0; --i) {
2252			if (bp->b_pages[i]->dirty) {
2253				break;
2254			}
2255		}
2256		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2257
2258		vm_page_unlock_queues();
2259		/*
2260		 * Fit it to the buffer.
2261		 */
2262
2263		if (eoffset > bp->b_bcount)
2264			eoffset = bp->b_bcount;
2265
2266		/*
2267		 * If we have a good dirty range, merge with the existing
2268		 * dirty range.
2269		 */
2270
2271		if (boffset < eoffset) {
2272			if (bp->b_dirtyoff > boffset)
2273				bp->b_dirtyoff = boffset;
2274			if (bp->b_dirtyend < eoffset)
2275				bp->b_dirtyend = eoffset;
2276		}
2277	}
2278	VM_OBJECT_UNLOCK(object);
2279}
2280
2281/*
2282 *	getblk:
2283 *
2284 *	Get a block given a specified block and offset into a file/device.
2285 *	The buffers B_DONE bit will be cleared on return, making it almost
2286 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2287 *	return.  The caller should clear B_INVAL prior to initiating a
2288 *	READ.
2289 *
2290 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2291 *	an existing buffer.
2292 *
2293 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2294 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2295 *	and then cleared based on the backing VM.  If the previous buffer is
2296 *	non-0-sized but invalid, B_CACHE will be cleared.
2297 *
2298 *	If getblk() must create a new buffer, the new buffer is returned with
2299 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2300 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2301 *	backing VM.
2302 *
2303 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2304 *	B_CACHE bit is clear.
2305 *
2306 *	What this means, basically, is that the caller should use B_CACHE to
2307 *	determine whether the buffer is fully valid or not and should clear
2308 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2309 *	the buffer by loading its data area with something, the caller needs
2310 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2311 *	the caller should set B_CACHE ( as an optimization ), else the caller
2312 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2313 *	a write attempt or if it was a successfull read.  If the caller
2314 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2315 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2316 */
2317struct buf *
2318getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2319    int flags)
2320{
2321	struct buf *bp;
2322	struct bufobj *bo;
2323	int error;
2324
2325	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2326	ASSERT_VOP_LOCKED(vp, "getblk");
2327	if (size > MAXBSIZE)
2328		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2329
2330	bo = &vp->v_bufobj;
2331loop:
2332	/*
2333	 * Block if we are low on buffers.   Certain processes are allowed
2334	 * to completely exhaust the buffer cache.
2335         *
2336         * If this check ever becomes a bottleneck it may be better to
2337         * move it into the else, when gbincore() fails.  At the moment
2338         * it isn't a problem.
2339	 *
2340	 * XXX remove if 0 sections (clean this up after its proven)
2341         */
2342	if (numfreebuffers == 0) {
2343		if (curthread == PCPU_GET(idlethread))
2344			return NULL;
2345		mtx_lock(&nblock);
2346		needsbuffer |= VFS_BIO_NEED_ANY;
2347		mtx_unlock(&nblock);
2348	}
2349
2350	VI_LOCK(vp);
2351	bp = gbincore(bo, blkno);
2352	if (bp != NULL) {
2353		int lockflags;
2354		/*
2355		 * Buffer is in-core.  If the buffer is not busy, it must
2356		 * be on a queue.
2357		 */
2358		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2359
2360		if (flags & GB_LOCK_NOWAIT)
2361			lockflags |= LK_NOWAIT;
2362
2363		error = BUF_TIMELOCK(bp, lockflags,
2364		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2365
2366		/*
2367		 * If we slept and got the lock we have to restart in case
2368		 * the buffer changed identities.
2369		 */
2370		if (error == ENOLCK)
2371			goto loop;
2372		/* We timed out or were interrupted. */
2373		else if (error)
2374			return (NULL);
2375
2376		/*
2377		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2378		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2379		 * and for a VMIO buffer B_CACHE is adjusted according to the
2380		 * backing VM cache.
2381		 */
2382		if (bp->b_flags & B_INVAL)
2383			bp->b_flags &= ~B_CACHE;
2384		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2385			bp->b_flags |= B_CACHE;
2386		bremfree(bp);
2387
2388		/*
2389		 * check for size inconsistancies for non-VMIO case.
2390		 */
2391
2392		if (bp->b_bcount != size) {
2393			if ((bp->b_flags & B_VMIO) == 0 ||
2394			    (size > bp->b_kvasize)) {
2395				if (bp->b_flags & B_DELWRI) {
2396					bp->b_flags |= B_NOCACHE;
2397					bwrite(bp);
2398				} else {
2399					if ((bp->b_flags & B_VMIO) &&
2400					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2401						bp->b_flags |= B_RELBUF;
2402						brelse(bp);
2403					} else {
2404						bp->b_flags |= B_NOCACHE;
2405						bwrite(bp);
2406					}
2407				}
2408				goto loop;
2409			}
2410		}
2411
2412		/*
2413		 * If the size is inconsistant in the VMIO case, we can resize
2414		 * the buffer.  This might lead to B_CACHE getting set or
2415		 * cleared.  If the size has not changed, B_CACHE remains
2416		 * unchanged from its previous state.
2417		 */
2418
2419		if (bp->b_bcount != size)
2420			allocbuf(bp, size);
2421
2422		KASSERT(bp->b_offset != NOOFFSET,
2423		    ("getblk: no buffer offset"));
2424
2425		/*
2426		 * A buffer with B_DELWRI set and B_CACHE clear must
2427		 * be committed before we can return the buffer in
2428		 * order to prevent the caller from issuing a read
2429		 * ( due to B_CACHE not being set ) and overwriting
2430		 * it.
2431		 *
2432		 * Most callers, including NFS and FFS, need this to
2433		 * operate properly either because they assume they
2434		 * can issue a read if B_CACHE is not set, or because
2435		 * ( for example ) an uncached B_DELWRI might loop due
2436		 * to softupdates re-dirtying the buffer.  In the latter
2437		 * case, B_CACHE is set after the first write completes,
2438		 * preventing further loops.
2439		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2440		 * above while extending the buffer, we cannot allow the
2441		 * buffer to remain with B_CACHE set after the write
2442		 * completes or it will represent a corrupt state.  To
2443		 * deal with this we set B_NOCACHE to scrap the buffer
2444		 * after the write.
2445		 *
2446		 * We might be able to do something fancy, like setting
2447		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2448		 * so the below call doesn't set B_CACHE, but that gets real
2449		 * confusing.  This is much easier.
2450		 */
2451
2452		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2453			bp->b_flags |= B_NOCACHE;
2454			bwrite(bp);
2455			goto loop;
2456		}
2457		bp->b_flags &= ~B_DONE;
2458	} else {
2459		int bsize, maxsize, vmio;
2460		off_t offset;
2461
2462		/*
2463		 * Buffer is not in-core, create new buffer.  The buffer
2464		 * returned by getnewbuf() is locked.  Note that the returned
2465		 * buffer is also considered valid (not marked B_INVAL).
2466		 */
2467		VI_UNLOCK(vp);
2468		/*
2469		 * If the user does not want us to create the buffer, bail out
2470		 * here.
2471		 */
2472		if (flags & GB_NOCREAT)
2473			return NULL;
2474		bsize = bo->bo_bsize;
2475		offset = blkno * bsize;
2476		vmio = vp->v_object != NULL;
2477		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2478		maxsize = imax(maxsize, bsize);
2479
2480		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2481		if (bp == NULL) {
2482			if (slpflag || slptimeo)
2483				return NULL;
2484			goto loop;
2485		}
2486
2487		/*
2488		 * This code is used to make sure that a buffer is not
2489		 * created while the getnewbuf routine is blocked.
2490		 * This can be a problem whether the vnode is locked or not.
2491		 * If the buffer is created out from under us, we have to
2492		 * throw away the one we just created.
2493		 *
2494		 * Note: this must occur before we associate the buffer
2495		 * with the vp especially considering limitations in
2496		 * the splay tree implementation when dealing with duplicate
2497		 * lblkno's.
2498		 */
2499		BO_LOCK(bo);
2500		if (gbincore(bo, blkno)) {
2501			BO_UNLOCK(bo);
2502			bp->b_flags |= B_INVAL;
2503			brelse(bp);
2504			goto loop;
2505		}
2506
2507		/*
2508		 * Insert the buffer into the hash, so that it can
2509		 * be found by incore.
2510		 */
2511		bp->b_blkno = bp->b_lblkno = blkno;
2512		bp->b_offset = offset;
2513
2514		bgetvp(vp, bp);
2515		BO_UNLOCK(bo);
2516
2517		/*
2518		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2519		 * buffer size starts out as 0, B_CACHE will be set by
2520		 * allocbuf() for the VMIO case prior to it testing the
2521		 * backing store for validity.
2522		 */
2523
2524		if (vmio) {
2525			bp->b_flags |= B_VMIO;
2526#if defined(VFS_BIO_DEBUG)
2527			if (vn_canvmio(vp) != TRUE)
2528				printf("getblk: VMIO on vnode type %d\n",
2529					vp->v_type);
2530#endif
2531			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2532			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2533			    bp, vp->v_object, bp->b_bufobj->bo_object));
2534		} else {
2535			bp->b_flags &= ~B_VMIO;
2536			KASSERT(bp->b_bufobj->bo_object == NULL,
2537			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2538			    bp, bp->b_bufobj->bo_object));
2539		}
2540
2541		allocbuf(bp, size);
2542		bp->b_flags &= ~B_DONE;
2543	}
2544	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2545	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2546	KASSERT(bp->b_bufobj == bo,
2547	    ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
2548	return (bp);
2549}
2550
2551/*
2552 * Get an empty, disassociated buffer of given size.  The buffer is initially
2553 * set to B_INVAL.
2554 */
2555struct buf *
2556geteblk(int size)
2557{
2558	struct buf *bp;
2559	int maxsize;
2560
2561	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2562	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2563		continue;
2564	allocbuf(bp, size);
2565	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2566	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2567	return (bp);
2568}
2569
2570
2571/*
2572 * This code constitutes the buffer memory from either anonymous system
2573 * memory (in the case of non-VMIO operations) or from an associated
2574 * VM object (in the case of VMIO operations).  This code is able to
2575 * resize a buffer up or down.
2576 *
2577 * Note that this code is tricky, and has many complications to resolve
2578 * deadlock or inconsistant data situations.  Tread lightly!!!
2579 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2580 * the caller.  Calling this code willy nilly can result in the loss of data.
2581 *
2582 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2583 * B_CACHE for the non-VMIO case.
2584 */
2585
2586int
2587allocbuf(struct buf *bp, int size)
2588{
2589	int newbsize, mbsize;
2590	int i;
2591
2592	if (BUF_REFCNT(bp) == 0)
2593		panic("allocbuf: buffer not busy");
2594
2595	if (bp->b_kvasize < size)
2596		panic("allocbuf: buffer too small");
2597
2598	if ((bp->b_flags & B_VMIO) == 0) {
2599		caddr_t origbuf;
2600		int origbufsize;
2601		/*
2602		 * Just get anonymous memory from the kernel.  Don't
2603		 * mess with B_CACHE.
2604		 */
2605		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2606		if (bp->b_flags & B_MALLOC)
2607			newbsize = mbsize;
2608		else
2609			newbsize = round_page(size);
2610
2611		if (newbsize < bp->b_bufsize) {
2612			/*
2613			 * malloced buffers are not shrunk
2614			 */
2615			if (bp->b_flags & B_MALLOC) {
2616				if (newbsize) {
2617					bp->b_bcount = size;
2618				} else {
2619					free(bp->b_data, M_BIOBUF);
2620					if (bp->b_bufsize) {
2621						atomic_subtract_int(
2622						    &bufmallocspace,
2623						    bp->b_bufsize);
2624						bufspacewakeup();
2625						bp->b_bufsize = 0;
2626					}
2627					bp->b_saveaddr = bp->b_kvabase;
2628					bp->b_data = bp->b_saveaddr;
2629					bp->b_bcount = 0;
2630					bp->b_flags &= ~B_MALLOC;
2631				}
2632				return 1;
2633			}
2634			vm_hold_free_pages(
2635			    bp,
2636			    (vm_offset_t) bp->b_data + newbsize,
2637			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2638		} else if (newbsize > bp->b_bufsize) {
2639			/*
2640			 * We only use malloced memory on the first allocation.
2641			 * and revert to page-allocated memory when the buffer
2642			 * grows.
2643			 */
2644			/*
2645			 * There is a potential smp race here that could lead
2646			 * to bufmallocspace slightly passing the max.  It
2647			 * is probably extremely rare and not worth worrying
2648			 * over.
2649			 */
2650			if ( (bufmallocspace < maxbufmallocspace) &&
2651				(bp->b_bufsize == 0) &&
2652				(mbsize <= PAGE_SIZE/2)) {
2653
2654				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2655				bp->b_bufsize = mbsize;
2656				bp->b_bcount = size;
2657				bp->b_flags |= B_MALLOC;
2658				atomic_add_int(&bufmallocspace, mbsize);
2659				return 1;
2660			}
2661			origbuf = NULL;
2662			origbufsize = 0;
2663			/*
2664			 * If the buffer is growing on its other-than-first allocation,
2665			 * then we revert to the page-allocation scheme.
2666			 */
2667			if (bp->b_flags & B_MALLOC) {
2668				origbuf = bp->b_data;
2669				origbufsize = bp->b_bufsize;
2670				bp->b_data = bp->b_kvabase;
2671				if (bp->b_bufsize) {
2672					atomic_subtract_int(&bufmallocspace,
2673					    bp->b_bufsize);
2674					bufspacewakeup();
2675					bp->b_bufsize = 0;
2676				}
2677				bp->b_flags &= ~B_MALLOC;
2678				newbsize = round_page(newbsize);
2679			}
2680			vm_hold_load_pages(
2681			    bp,
2682			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2683			    (vm_offset_t) bp->b_data + newbsize);
2684			if (origbuf) {
2685				bcopy(origbuf, bp->b_data, origbufsize);
2686				free(origbuf, M_BIOBUF);
2687			}
2688		}
2689	} else {
2690		int desiredpages;
2691
2692		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2693		desiredpages = (size == 0) ? 0 :
2694			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2695
2696		if (bp->b_flags & B_MALLOC)
2697			panic("allocbuf: VMIO buffer can't be malloced");
2698		/*
2699		 * Set B_CACHE initially if buffer is 0 length or will become
2700		 * 0-length.
2701		 */
2702		if (size == 0 || bp->b_bufsize == 0)
2703			bp->b_flags |= B_CACHE;
2704
2705		if (newbsize < bp->b_bufsize) {
2706			/*
2707			 * DEV_BSIZE aligned new buffer size is less then the
2708			 * DEV_BSIZE aligned existing buffer size.  Figure out
2709			 * if we have to remove any pages.
2710			 */
2711			if (desiredpages < bp->b_npages) {
2712				vm_page_t m;
2713
2714				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2715				vm_page_lock_queues();
2716				for (i = desiredpages; i < bp->b_npages; i++) {
2717					/*
2718					 * the page is not freed here -- it
2719					 * is the responsibility of
2720					 * vnode_pager_setsize
2721					 */
2722					m = bp->b_pages[i];
2723					KASSERT(m != bogus_page,
2724					    ("allocbuf: bogus page found"));
2725					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2726						vm_page_lock_queues();
2727
2728					bp->b_pages[i] = NULL;
2729					vm_page_unwire(m, 0);
2730				}
2731				vm_page_unlock_queues();
2732				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2733				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2734				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2735				bp->b_npages = desiredpages;
2736			}
2737		} else if (size > bp->b_bcount) {
2738			/*
2739			 * We are growing the buffer, possibly in a
2740			 * byte-granular fashion.
2741			 */
2742			struct vnode *vp;
2743			vm_object_t obj;
2744			vm_offset_t toff;
2745			vm_offset_t tinc;
2746
2747			/*
2748			 * Step 1, bring in the VM pages from the object,
2749			 * allocating them if necessary.  We must clear
2750			 * B_CACHE if these pages are not valid for the
2751			 * range covered by the buffer.
2752			 */
2753
2754			vp = bp->b_vp;
2755			obj = bp->b_bufobj->bo_object;
2756
2757			VM_OBJECT_LOCK(obj);
2758			while (bp->b_npages < desiredpages) {
2759				vm_page_t m;
2760				vm_pindex_t pi;
2761
2762				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2763				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2764					/*
2765					 * note: must allocate system pages
2766					 * since blocking here could intefere
2767					 * with paging I/O, no matter which
2768					 * process we are.
2769					 */
2770					m = vm_page_alloc(obj, pi,
2771					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2772					    VM_ALLOC_WIRED);
2773					if (m == NULL) {
2774						atomic_add_int(&vm_pageout_deficit,
2775						    desiredpages - bp->b_npages);
2776						VM_OBJECT_UNLOCK(obj);
2777						VM_WAIT;
2778						VM_OBJECT_LOCK(obj);
2779					} else {
2780						bp->b_flags &= ~B_CACHE;
2781						bp->b_pages[bp->b_npages] = m;
2782						++bp->b_npages;
2783					}
2784					continue;
2785				}
2786
2787				/*
2788				 * We found a page.  If we have to sleep on it,
2789				 * retry because it might have gotten freed out
2790				 * from under us.
2791				 *
2792				 * We can only test PG_BUSY here.  Blocking on
2793				 * m->busy might lead to a deadlock:
2794				 *
2795				 *  vm_fault->getpages->cluster_read->allocbuf
2796				 *
2797				 */
2798				vm_page_lock_queues();
2799				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2800					continue;
2801
2802				/*
2803				 * We have a good page.  Should we wakeup the
2804				 * page daemon?
2805				 */
2806				if ((curproc != pageproc) &&
2807				    ((m->queue - m->pc) == PQ_CACHE) &&
2808				    ((cnt.v_free_count + cnt.v_cache_count) <
2809					(cnt.v_free_min + cnt.v_cache_min))) {
2810					pagedaemon_wakeup();
2811				}
2812				vm_page_wire(m);
2813				vm_page_unlock_queues();
2814				bp->b_pages[bp->b_npages] = m;
2815				++bp->b_npages;
2816			}
2817
2818			/*
2819			 * Step 2.  We've loaded the pages into the buffer,
2820			 * we have to figure out if we can still have B_CACHE
2821			 * set.  Note that B_CACHE is set according to the
2822			 * byte-granular range ( bcount and size ), new the
2823			 * aligned range ( newbsize ).
2824			 *
2825			 * The VM test is against m->valid, which is DEV_BSIZE
2826			 * aligned.  Needless to say, the validity of the data
2827			 * needs to also be DEV_BSIZE aligned.  Note that this
2828			 * fails with NFS if the server or some other client
2829			 * extends the file's EOF.  If our buffer is resized,
2830			 * B_CACHE may remain set! XXX
2831			 */
2832
2833			toff = bp->b_bcount;
2834			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2835
2836			while ((bp->b_flags & B_CACHE) && toff < size) {
2837				vm_pindex_t pi;
2838
2839				if (tinc > (size - toff))
2840					tinc = size - toff;
2841
2842				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2843				    PAGE_SHIFT;
2844
2845				vfs_buf_test_cache(
2846				    bp,
2847				    bp->b_offset,
2848				    toff,
2849				    tinc,
2850				    bp->b_pages[pi]
2851				);
2852				toff += tinc;
2853				tinc = PAGE_SIZE;
2854			}
2855			VM_OBJECT_UNLOCK(obj);
2856
2857			/*
2858			 * Step 3, fixup the KVM pmap.  Remember that
2859			 * bp->b_data is relative to bp->b_offset, but
2860			 * bp->b_offset may be offset into the first page.
2861			 */
2862
2863			bp->b_data = (caddr_t)
2864			    trunc_page((vm_offset_t)bp->b_data);
2865			pmap_qenter(
2866			    (vm_offset_t)bp->b_data,
2867			    bp->b_pages,
2868			    bp->b_npages
2869			);
2870
2871			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2872			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2873		}
2874	}
2875	if (newbsize < bp->b_bufsize)
2876		bufspacewakeup();
2877	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2878	bp->b_bcount = size;		/* requested buffer size	*/
2879	return 1;
2880}
2881
2882void
2883biodone(struct bio *bp)
2884{
2885	void (*done)(struct bio *);
2886
2887	mtx_lock(&bdonelock);
2888	bp->bio_flags |= BIO_DONE;
2889	done = bp->bio_done;
2890	if (done == NULL)
2891		wakeup(bp);
2892	mtx_unlock(&bdonelock);
2893	if (done != NULL)
2894		done(bp);
2895}
2896
2897/*
2898 * Wait for a BIO to finish.
2899 *
2900 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2901 * case is not yet clear.
2902 */
2903int
2904biowait(struct bio *bp, const char *wchan)
2905{
2906
2907	mtx_lock(&bdonelock);
2908	while ((bp->bio_flags & BIO_DONE) == 0)
2909		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2910	mtx_unlock(&bdonelock);
2911	if (bp->bio_error != 0)
2912		return (bp->bio_error);
2913	if (!(bp->bio_flags & BIO_ERROR))
2914		return (0);
2915	return (EIO);
2916}
2917
2918void
2919biofinish(struct bio *bp, struct devstat *stat, int error)
2920{
2921
2922	if (error) {
2923		bp->bio_error = error;
2924		bp->bio_flags |= BIO_ERROR;
2925	}
2926	if (stat != NULL)
2927		devstat_end_transaction_bio(stat, bp);
2928	biodone(bp);
2929}
2930
2931/*
2932 *	bufwait:
2933 *
2934 *	Wait for buffer I/O completion, returning error status.  The buffer
2935 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
2936 *	error and cleared.
2937 */
2938int
2939bufwait(struct buf *bp)
2940{
2941	if (bp->b_iocmd == BIO_READ)
2942		bwait(bp, PRIBIO, "biord");
2943	else
2944		bwait(bp, PRIBIO, "biowr");
2945	if (bp->b_flags & B_EINTR) {
2946		bp->b_flags &= ~B_EINTR;
2947		return (EINTR);
2948	}
2949	if (bp->b_ioflags & BIO_ERROR) {
2950		return (bp->b_error ? bp->b_error : EIO);
2951	} else {
2952		return (0);
2953	}
2954}
2955
2956 /*
2957  * Call back function from struct bio back up to struct buf.
2958  */
2959static void
2960bufdonebio(struct bio *bip)
2961{
2962	struct buf *bp;
2963
2964	bp = bip->bio_caller2;
2965	bp->b_resid = bp->b_bcount - bip->bio_completed;
2966	bp->b_resid = bip->bio_resid;	/* XXX: remove */
2967	bp->b_ioflags = bip->bio_flags;
2968	bp->b_error = bip->bio_error;
2969	if (bp->b_error)
2970		bp->b_ioflags |= BIO_ERROR;
2971	bufdone(bp);
2972	g_destroy_bio(bip);
2973}
2974
2975void
2976dev_strategy(struct cdev *dev, struct buf *bp)
2977{
2978	struct cdevsw *csw;
2979	struct bio *bip;
2980
2981	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
2982		panic("b_iocmd botch");
2983	for (;;) {
2984		bip = g_new_bio();
2985		if (bip != NULL)
2986			break;
2987		/* Try again later */
2988		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
2989	}
2990	bip->bio_cmd = bp->b_iocmd;
2991	bip->bio_offset = bp->b_iooffset;
2992	bip->bio_length = bp->b_bcount;
2993	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
2994	bip->bio_data = bp->b_data;
2995	bip->bio_done = bufdonebio;
2996	bip->bio_caller2 = bp;
2997	bip->bio_dev = dev;
2998	KASSERT(dev->si_refcount > 0,
2999	    ("dev_strategy on un-referenced struct cdev *(%s)",
3000	    devtoname(dev)));
3001	csw = dev_refthread(dev);
3002	if (csw == NULL) {
3003		bp->b_error = ENXIO;
3004		bp->b_ioflags = BIO_ERROR;
3005		bufdone(bp);
3006		return;
3007	}
3008	(*csw->d_strategy)(bip);
3009	dev_relthread(dev);
3010}
3011
3012/*
3013 *	bufdone:
3014 *
3015 *	Finish I/O on a buffer, optionally calling a completion function.
3016 *	This is usually called from an interrupt so process blocking is
3017 *	not allowed.
3018 *
3019 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3020 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3021 *	assuming B_INVAL is clear.
3022 *
3023 *	For the VMIO case, we set B_CACHE if the op was a read and no
3024 *	read error occured, or if the op was a write.  B_CACHE is never
3025 *	set if the buffer is invalid or otherwise uncacheable.
3026 *
3027 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3028 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3029 *	in the biodone routine.
3030 */
3031void
3032bufdone(struct buf *bp)
3033{
3034	struct bufobj *dropobj;
3035	void    (*biodone)(struct buf *);
3036
3037
3038	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3039	dropobj = NULL;
3040
3041	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3042	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3043
3044	runningbufwakeup(bp);
3045	if (bp->b_iocmd == BIO_WRITE)
3046		dropobj = bp->b_bufobj;
3047	/* call optional completion function if requested */
3048	if (bp->b_iodone != NULL) {
3049		biodone = bp->b_iodone;
3050		bp->b_iodone = NULL;
3051		(*biodone) (bp);
3052		if (dropobj)
3053			bufobj_wdrop(dropobj);
3054		return;
3055	}
3056	if (LIST_FIRST(&bp->b_dep) != NULL)
3057		buf_complete(bp);
3058
3059	if (bp->b_flags & B_VMIO) {
3060		int i;
3061		vm_ooffset_t foff;
3062		vm_page_t m;
3063		vm_object_t obj;
3064		int iosize;
3065		struct vnode *vp = bp->b_vp;
3066
3067		obj = bp->b_bufobj->bo_object;
3068
3069#if defined(VFS_BIO_DEBUG)
3070		mp_fixme("usecount and vflag accessed without locks.");
3071		if (vp->v_usecount == 0) {
3072			panic("biodone: zero vnode ref count");
3073		}
3074
3075		KASSERT(vp->v_object != NULL,
3076			("biodone: vnode %p has no vm_object", vp));
3077#endif
3078
3079		foff = bp->b_offset;
3080		KASSERT(bp->b_offset != NOOFFSET,
3081		    ("biodone: no buffer offset"));
3082
3083		VM_OBJECT_LOCK(obj);
3084#if defined(VFS_BIO_DEBUG)
3085		if (obj->paging_in_progress < bp->b_npages) {
3086			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3087			    obj->paging_in_progress, bp->b_npages);
3088		}
3089#endif
3090
3091		/*
3092		 * Set B_CACHE if the op was a normal read and no error
3093		 * occured.  B_CACHE is set for writes in the b*write()
3094		 * routines.
3095		 */
3096		iosize = bp->b_bcount - bp->b_resid;
3097		if (bp->b_iocmd == BIO_READ &&
3098		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3099		    !(bp->b_ioflags & BIO_ERROR)) {
3100			bp->b_flags |= B_CACHE;
3101		}
3102		vm_page_lock_queues();
3103		for (i = 0; i < bp->b_npages; i++) {
3104			int bogusflag = 0;
3105			int resid;
3106
3107			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3108			if (resid > iosize)
3109				resid = iosize;
3110
3111			/*
3112			 * cleanup bogus pages, restoring the originals
3113			 */
3114			m = bp->b_pages[i];
3115			if (m == bogus_page) {
3116				bogusflag = 1;
3117				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3118				if (m == NULL)
3119					panic("biodone: page disappeared!");
3120				bp->b_pages[i] = m;
3121				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3122			}
3123#if defined(VFS_BIO_DEBUG)
3124			if (OFF_TO_IDX(foff) != m->pindex) {
3125				printf(
3126"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3127				    (intmax_t)foff, (uintmax_t)m->pindex);
3128			}
3129#endif
3130
3131			/*
3132			 * In the write case, the valid and clean bits are
3133			 * already changed correctly ( see bdwrite() ), so we
3134			 * only need to do this here in the read case.
3135			 */
3136			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3137				vfs_page_set_valid(bp, foff, i, m);
3138			}
3139
3140			/*
3141			 * when debugging new filesystems or buffer I/O methods, this
3142			 * is the most common error that pops up.  if you see this, you
3143			 * have not set the page busy flag correctly!!!
3144			 */
3145			if (m->busy == 0) {
3146				printf("biodone: page busy < 0, "
3147				    "pindex: %d, foff: 0x(%x,%x), "
3148				    "resid: %d, index: %d\n",
3149				    (int) m->pindex, (int)(foff >> 32),
3150						(int) foff & 0xffffffff, resid, i);
3151				if (!vn_isdisk(vp, NULL))
3152					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3153					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3154					    (intmax_t) bp->b_lblkno,
3155					    bp->b_flags, bp->b_npages);
3156				else
3157					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3158					    (intmax_t) bp->b_lblkno,
3159					    bp->b_flags, bp->b_npages);
3160				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3161				    (u_long)m->valid, (u_long)m->dirty,
3162				    m->wire_count);
3163				panic("biodone: page busy < 0\n");
3164			}
3165			vm_page_io_finish(m);
3166			vm_object_pip_subtract(obj, 1);
3167			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3168			iosize -= resid;
3169		}
3170		vm_page_unlock_queues();
3171		vm_object_pip_wakeupn(obj, 0);
3172		VM_OBJECT_UNLOCK(obj);
3173	}
3174
3175	/*
3176	 * For asynchronous completions, release the buffer now. The brelse
3177	 * will do a wakeup there if necessary - so no need to do a wakeup
3178	 * here in the async case. The sync case always needs to do a wakeup.
3179	 */
3180
3181	if (bp->b_flags & B_ASYNC) {
3182		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3183			brelse(bp);
3184		else
3185			bqrelse(bp);
3186	} else
3187		bdone(bp);
3188	if (dropobj)
3189		bufobj_wdrop(dropobj);
3190}
3191
3192/*
3193 * This routine is called in lieu of iodone in the case of
3194 * incomplete I/O.  This keeps the busy status for pages
3195 * consistant.
3196 */
3197void
3198vfs_unbusy_pages(struct buf *bp)
3199{
3200	int i;
3201	vm_object_t obj;
3202	vm_page_t m;
3203
3204	runningbufwakeup(bp);
3205	if (!(bp->b_flags & B_VMIO))
3206		return;
3207
3208	obj = bp->b_bufobj->bo_object;
3209	VM_OBJECT_LOCK(obj);
3210	vm_page_lock_queues();
3211	for (i = 0; i < bp->b_npages; i++) {
3212		m = bp->b_pages[i];
3213		if (m == bogus_page) {
3214			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3215			if (!m)
3216				panic("vfs_unbusy_pages: page missing\n");
3217			bp->b_pages[i] = m;
3218			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3219			    bp->b_pages, bp->b_npages);
3220		}
3221		vm_object_pip_subtract(obj, 1);
3222		vm_page_io_finish(m);
3223	}
3224	vm_page_unlock_queues();
3225	vm_object_pip_wakeupn(obj, 0);
3226	VM_OBJECT_UNLOCK(obj);
3227}
3228
3229/*
3230 * vfs_page_set_valid:
3231 *
3232 *	Set the valid bits in a page based on the supplied offset.   The
3233 *	range is restricted to the buffer's size.
3234 *
3235 *	This routine is typically called after a read completes.
3236 */
3237static void
3238vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3239{
3240	vm_ooffset_t soff, eoff;
3241
3242	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3243	/*
3244	 * Start and end offsets in buffer.  eoff - soff may not cross a
3245	 * page boundry or cross the end of the buffer.  The end of the
3246	 * buffer, in this case, is our file EOF, not the allocation size
3247	 * of the buffer.
3248	 */
3249	soff = off;
3250	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3251	if (eoff > bp->b_offset + bp->b_bcount)
3252		eoff = bp->b_offset + bp->b_bcount;
3253
3254	/*
3255	 * Set valid range.  This is typically the entire buffer and thus the
3256	 * entire page.
3257	 */
3258	if (eoff > soff) {
3259		vm_page_set_validclean(
3260		    m,
3261		   (vm_offset_t) (soff & PAGE_MASK),
3262		   (vm_offset_t) (eoff - soff)
3263		);
3264	}
3265}
3266
3267/*
3268 * This routine is called before a device strategy routine.
3269 * It is used to tell the VM system that paging I/O is in
3270 * progress, and treat the pages associated with the buffer
3271 * almost as being PG_BUSY.  Also the object paging_in_progress
3272 * flag is handled to make sure that the object doesn't become
3273 * inconsistant.
3274 *
3275 * Since I/O has not been initiated yet, certain buffer flags
3276 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3277 * and should be ignored.
3278 */
3279void
3280vfs_busy_pages(struct buf *bp, int clear_modify)
3281{
3282	int i, bogus;
3283	vm_object_t obj;
3284	vm_ooffset_t foff;
3285	vm_page_t m;
3286
3287	if (!(bp->b_flags & B_VMIO))
3288		return;
3289
3290	obj = bp->b_bufobj->bo_object;
3291	foff = bp->b_offset;
3292	KASSERT(bp->b_offset != NOOFFSET,
3293	    ("vfs_busy_pages: no buffer offset"));
3294	vfs_setdirty(bp);
3295	VM_OBJECT_LOCK(obj);
3296retry:
3297	vm_page_lock_queues();
3298	for (i = 0; i < bp->b_npages; i++) {
3299		m = bp->b_pages[i];
3300
3301		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3302			goto retry;
3303	}
3304	bogus = 0;
3305	for (i = 0; i < bp->b_npages; i++) {
3306		m = bp->b_pages[i];
3307
3308		if ((bp->b_flags & B_CLUSTER) == 0) {
3309			vm_object_pip_add(obj, 1);
3310			vm_page_io_start(m);
3311		}
3312		/*
3313		 * When readying a buffer for a read ( i.e
3314		 * clear_modify == 0 ), it is important to do
3315		 * bogus_page replacement for valid pages in
3316		 * partially instantiated buffers.  Partially
3317		 * instantiated buffers can, in turn, occur when
3318		 * reconstituting a buffer from its VM backing store
3319		 * base.  We only have to do this if B_CACHE is
3320		 * clear ( which causes the I/O to occur in the
3321		 * first place ).  The replacement prevents the read
3322		 * I/O from overwriting potentially dirty VM-backed
3323		 * pages.  XXX bogus page replacement is, uh, bogus.
3324		 * It may not work properly with small-block devices.
3325		 * We need to find a better way.
3326		 */
3327		pmap_remove_all(m);
3328		if (clear_modify)
3329			vfs_page_set_valid(bp, foff, i, m);
3330		else if (m->valid == VM_PAGE_BITS_ALL &&
3331		    (bp->b_flags & B_CACHE) == 0) {
3332			bp->b_pages[i] = bogus_page;
3333			bogus++;
3334		}
3335		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3336	}
3337	vm_page_unlock_queues();
3338	VM_OBJECT_UNLOCK(obj);
3339	if (bogus)
3340		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3341		    bp->b_pages, bp->b_npages);
3342}
3343
3344/*
3345 * Tell the VM system that the pages associated with this buffer
3346 * are clean.  This is used for delayed writes where the data is
3347 * going to go to disk eventually without additional VM intevention.
3348 *
3349 * Note that while we only really need to clean through to b_bcount, we
3350 * just go ahead and clean through to b_bufsize.
3351 */
3352static void
3353vfs_clean_pages(struct buf *bp)
3354{
3355	int i;
3356	vm_ooffset_t foff, noff, eoff;
3357	vm_page_t m;
3358
3359	if (!(bp->b_flags & B_VMIO))
3360		return;
3361
3362	foff = bp->b_offset;
3363	KASSERT(bp->b_offset != NOOFFSET,
3364	    ("vfs_clean_pages: no buffer offset"));
3365	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3366	vm_page_lock_queues();
3367	for (i = 0; i < bp->b_npages; i++) {
3368		m = bp->b_pages[i];
3369		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3370		eoff = noff;
3371
3372		if (eoff > bp->b_offset + bp->b_bufsize)
3373			eoff = bp->b_offset + bp->b_bufsize;
3374		vfs_page_set_valid(bp, foff, i, m);
3375		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3376		foff = noff;
3377	}
3378	vm_page_unlock_queues();
3379	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3380}
3381
3382/*
3383 *	vfs_bio_set_validclean:
3384 *
3385 *	Set the range within the buffer to valid and clean.  The range is
3386 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3387 *	itself may be offset from the beginning of the first page.
3388 *
3389 */
3390
3391void
3392vfs_bio_set_validclean(struct buf *bp, int base, int size)
3393{
3394	int i, n;
3395	vm_page_t m;
3396
3397	if (!(bp->b_flags & B_VMIO))
3398		return;
3399	/*
3400	 * Fixup base to be relative to beginning of first page.
3401	 * Set initial n to be the maximum number of bytes in the
3402	 * first page that can be validated.
3403	 */
3404
3405	base += (bp->b_offset & PAGE_MASK);
3406	n = PAGE_SIZE - (base & PAGE_MASK);
3407
3408	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3409	vm_page_lock_queues();
3410	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3411		m = bp->b_pages[i];
3412		if (n > size)
3413			n = size;
3414		vm_page_set_validclean(m, base & PAGE_MASK, n);
3415		base += n;
3416		size -= n;
3417		n = PAGE_SIZE;
3418	}
3419	vm_page_unlock_queues();
3420	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3421}
3422
3423/*
3424 *	vfs_bio_clrbuf:
3425 *
3426 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3427 *	to clear BIO_ERROR and B_INVAL.
3428 *
3429 *	Note that while we only theoretically need to clear through b_bcount,
3430 *	we go ahead and clear through b_bufsize.
3431 */
3432
3433void
3434vfs_bio_clrbuf(struct buf *bp)
3435{
3436	int i, j, mask = 0;
3437	caddr_t sa, ea;
3438
3439	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3440		clrbuf(bp);
3441		return;
3442	}
3443
3444	bp->b_flags &= ~B_INVAL;
3445	bp->b_ioflags &= ~BIO_ERROR;
3446	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3447	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3448	    (bp->b_offset & PAGE_MASK) == 0) {
3449		if (bp->b_pages[0] == bogus_page)
3450			goto unlock;
3451		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3452		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3453		if ((bp->b_pages[0]->valid & mask) == mask)
3454			goto unlock;
3455		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3456		    ((bp->b_pages[0]->valid & mask) == 0)) {
3457			bzero(bp->b_data, bp->b_bufsize);
3458			bp->b_pages[0]->valid |= mask;
3459			goto unlock;
3460		}
3461	}
3462	ea = sa = bp->b_data;
3463	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3464		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3465		ea = (caddr_t)(vm_offset_t)ulmin(
3466		    (u_long)(vm_offset_t)ea,
3467		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3468		if (bp->b_pages[i] == bogus_page)
3469			continue;
3470		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3471		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3472		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3473		if ((bp->b_pages[i]->valid & mask) == mask)
3474			continue;
3475		if ((bp->b_pages[i]->valid & mask) == 0) {
3476			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3477				bzero(sa, ea - sa);
3478		} else {
3479			for (; sa < ea; sa += DEV_BSIZE, j++) {
3480				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3481				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3482					bzero(sa, DEV_BSIZE);
3483			}
3484		}
3485		bp->b_pages[i]->valid |= mask;
3486	}
3487unlock:
3488	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3489	bp->b_resid = 0;
3490}
3491
3492/*
3493 * vm_hold_load_pages and vm_hold_free_pages get pages into
3494 * a buffers address space.  The pages are anonymous and are
3495 * not associated with a file object.
3496 */
3497static void
3498vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3499{
3500	vm_offset_t pg;
3501	vm_page_t p;
3502	int index;
3503
3504	to = round_page(to);
3505	from = round_page(from);
3506	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3507
3508	VM_OBJECT_LOCK(kernel_object);
3509	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3510tryagain:
3511		/*
3512		 * note: must allocate system pages since blocking here
3513		 * could intefere with paging I/O, no matter which
3514		 * process we are.
3515		 */
3516		p = vm_page_alloc(kernel_object,
3517			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3518		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3519		if (!p) {
3520			atomic_add_int(&vm_pageout_deficit,
3521			    (to - pg) >> PAGE_SHIFT);
3522			VM_OBJECT_UNLOCK(kernel_object);
3523			VM_WAIT;
3524			VM_OBJECT_LOCK(kernel_object);
3525			goto tryagain;
3526		}
3527		p->valid = VM_PAGE_BITS_ALL;
3528		pmap_qenter(pg, &p, 1);
3529		bp->b_pages[index] = p;
3530	}
3531	VM_OBJECT_UNLOCK(kernel_object);
3532	bp->b_npages = index;
3533}
3534
3535/* Return pages associated with this buf to the vm system */
3536static void
3537vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3538{
3539	vm_offset_t pg;
3540	vm_page_t p;
3541	int index, newnpages;
3542
3543	from = round_page(from);
3544	to = round_page(to);
3545	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3546
3547	VM_OBJECT_LOCK(kernel_object);
3548	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3549		p = bp->b_pages[index];
3550		if (p && (index < bp->b_npages)) {
3551			if (p->busy) {
3552				printf(
3553			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3554				    (intmax_t)bp->b_blkno,
3555				    (intmax_t)bp->b_lblkno);
3556			}
3557			bp->b_pages[index] = NULL;
3558			pmap_qremove(pg, 1);
3559			vm_page_lock_queues();
3560			vm_page_unwire(p, 0);
3561			vm_page_free(p);
3562			vm_page_unlock_queues();
3563		}
3564	}
3565	VM_OBJECT_UNLOCK(kernel_object);
3566	bp->b_npages = newnpages;
3567}
3568
3569/*
3570 * Map an IO request into kernel virtual address space.
3571 *
3572 * All requests are (re)mapped into kernel VA space.
3573 * Notice that we use b_bufsize for the size of the buffer
3574 * to be mapped.  b_bcount might be modified by the driver.
3575 *
3576 * Note that even if the caller determines that the address space should
3577 * be valid, a race or a smaller-file mapped into a larger space may
3578 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3579 * check the return value.
3580 */
3581int
3582vmapbuf(struct buf *bp)
3583{
3584	caddr_t addr, kva;
3585	vm_prot_t prot;
3586	int pidx, i;
3587	struct vm_page *m;
3588	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3589
3590	if (bp->b_bufsize < 0)
3591		return (-1);
3592	prot = VM_PROT_READ;
3593	if (bp->b_iocmd == BIO_READ)
3594		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3595	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3596	     addr < bp->b_data + bp->b_bufsize;
3597	     addr += PAGE_SIZE, pidx++) {
3598		/*
3599		 * Do the vm_fault if needed; do the copy-on-write thing
3600		 * when reading stuff off device into memory.
3601		 *
3602		 * NOTE! Must use pmap_extract() because addr may be in
3603		 * the userland address space, and kextract is only guarenteed
3604		 * to work for the kernland address space (see: sparc64 port).
3605		 */
3606retry:
3607		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3608		    prot) < 0) {
3609			vm_page_lock_queues();
3610			for (i = 0; i < pidx; ++i) {
3611				vm_page_unhold(bp->b_pages[i]);
3612				bp->b_pages[i] = NULL;
3613			}
3614			vm_page_unlock_queues();
3615			return(-1);
3616		}
3617		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3618		if (m == NULL)
3619			goto retry;
3620		bp->b_pages[pidx] = m;
3621	}
3622	if (pidx > btoc(MAXPHYS))
3623		panic("vmapbuf: mapped more than MAXPHYS");
3624	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3625
3626	kva = bp->b_saveaddr;
3627	bp->b_npages = pidx;
3628	bp->b_saveaddr = bp->b_data;
3629	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3630	return(0);
3631}
3632
3633/*
3634 * Free the io map PTEs associated with this IO operation.
3635 * We also invalidate the TLB entries and restore the original b_addr.
3636 */
3637void
3638vunmapbuf(struct buf *bp)
3639{
3640	int pidx;
3641	int npages;
3642
3643	npages = bp->b_npages;
3644	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3645	vm_page_lock_queues();
3646	for (pidx = 0; pidx < npages; pidx++)
3647		vm_page_unhold(bp->b_pages[pidx]);
3648	vm_page_unlock_queues();
3649
3650	bp->b_data = bp->b_saveaddr;
3651}
3652
3653void
3654bdone(struct buf *bp)
3655{
3656
3657	mtx_lock(&bdonelock);
3658	bp->b_flags |= B_DONE;
3659	wakeup(bp);
3660	mtx_unlock(&bdonelock);
3661}
3662
3663void
3664bwait(struct buf *bp, u_char pri, const char *wchan)
3665{
3666
3667	mtx_lock(&bdonelock);
3668	while ((bp->b_flags & B_DONE) == 0)
3669		msleep(bp, &bdonelock, pri, wchan, 0);
3670	mtx_unlock(&bdonelock);
3671}
3672
3673int
3674bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3675{
3676
3677	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3678}
3679
3680void
3681bufstrategy(struct bufobj *bo, struct buf *bp)
3682{
3683	int i = 0;
3684	struct vnode *vp;
3685
3686	vp = bp->b_vp;
3687	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3688	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3689	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3690	i = VOP_STRATEGY(vp, bp);
3691	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3692}
3693
3694void
3695bufobj_wrefl(struct bufobj *bo)
3696{
3697
3698	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3699	ASSERT_BO_LOCKED(bo);
3700	bo->bo_numoutput++;
3701}
3702
3703void
3704bufobj_wref(struct bufobj *bo)
3705{
3706
3707	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3708	BO_LOCK(bo);
3709	bo->bo_numoutput++;
3710	BO_UNLOCK(bo);
3711}
3712
3713void
3714bufobj_wdrop(struct bufobj *bo)
3715{
3716
3717	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3718	BO_LOCK(bo);
3719	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3720	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3721		bo->bo_flag &= ~BO_WWAIT;
3722		wakeup(&bo->bo_numoutput);
3723	}
3724	BO_UNLOCK(bo);
3725}
3726
3727int
3728bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3729{
3730	int error;
3731
3732	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3733	ASSERT_BO_LOCKED(bo);
3734	error = 0;
3735	while (bo->bo_numoutput) {
3736		bo->bo_flag |= BO_WWAIT;
3737		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3738		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3739		if (error)
3740			break;
3741	}
3742	return (error);
3743}
3744
3745#include "opt_ddb.h"
3746#ifdef DDB
3747#include <ddb/ddb.h>
3748
3749/* DDB command to show buffer data */
3750DB_SHOW_COMMAND(buffer, db_show_buffer)
3751{
3752	/* get args */
3753	struct buf *bp = (struct buf *)addr;
3754
3755	if (!have_addr) {
3756		db_printf("usage: show buffer <addr>\n");
3757		return;
3758	}
3759
3760	db_printf("buf at %p\n", bp);
3761	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3762	db_printf(
3763	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3764	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3765	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3766	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3767	if (bp->b_npages) {
3768		int i;
3769		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3770		for (i = 0; i < bp->b_npages; i++) {
3771			vm_page_t m;
3772			m = bp->b_pages[i];
3773			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3774			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3775			if ((i + 1) < bp->b_npages)
3776				db_printf(",");
3777		}
3778		db_printf("\n");
3779	}
3780	lockmgr_printinfo(&bp->b_lock);
3781}
3782
3783DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3784{
3785	struct buf *bp;
3786	int i;
3787
3788	for (i = 0; i < nbuf; i++) {
3789		bp = &buf[i];
3790		if (lockcount(&bp->b_lock)) {
3791			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3792			db_printf("\n");
3793		}
3794	}
3795}
3796#endif /* DDB */
3797