vfs_bio.c revision 144084
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 144084 2005-03-25 00:20:37Z jeff $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82	.bop_sync	=	bufsync,
83};
84
85/*
86 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
87 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
88 */
89struct buf *buf;		/* buffer header pool */
90
91static struct proc *bufdaemonproc;
92
93static int inmem(struct vnode *vp, daddr_t blkno);
94static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
95		vm_offset_t to);
96static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
97		vm_offset_t to);
98static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
99			       int pageno, vm_page_t m);
100static void vfs_clean_pages(struct buf *bp);
101static void vfs_setdirty(struct buf *bp);
102static void vfs_vmio_release(struct buf *bp);
103static int vfs_bio_clcheck(struct vnode *vp, int size,
104		daddr_t lblkno, daddr_t blkno);
105static int flushbufqueues(int flushdeps);
106static void buf_daemon(void);
107static void bremfreel(struct buf *bp);
108
109int vmiodirenable = TRUE;
110SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
111    "Use the VM system for directory writes");
112int runningbufspace;
113SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
114    "Amount of presently outstanding async buffer io");
115static int bufspace;
116SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
117    "KVA memory used for bufs");
118static int maxbufspace;
119SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
120    "Maximum allowed value of bufspace (including buf_daemon)");
121static int bufmallocspace;
122SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
123    "Amount of malloced memory for buffers");
124static int maxbufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
126    "Maximum amount of malloced memory for buffers");
127static int lobufspace;
128SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
129    "Minimum amount of buffers we want to have");
130static int hibufspace;
131SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
132    "Maximum allowed value of bufspace (excluding buf_daemon)");
133static int bufreusecnt;
134SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
135    "Number of times we have reused a buffer");
136static int buffreekvacnt;
137SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
138    "Number of times we have freed the KVA space from some buffer");
139static int bufdefragcnt;
140SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
141    "Number of times we have had to repeat buffer allocation to defragment");
142static int lorunningspace;
143SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
144    "Minimum preferred space used for in-progress I/O");
145static int hirunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
147    "Maximum amount of space to use for in-progress I/O");
148static int dirtybufferflushes;
149SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
150    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
151static int altbufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
153    0, "Number of fsync flushes to limit dirty buffers");
154static int recursiveflushes;
155SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
156    0, "Number of flushes skipped due to being recursive");
157static int numdirtybuffers;
158SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
159    "Number of buffers that are dirty (has unwritten changes) at the moment");
160static int lodirtybuffers;
161SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
162    "How many buffers we want to have free before bufdaemon can sleep");
163static int hidirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
165    "When the number of dirty buffers is considered severe");
166static int dirtybufthresh;
167SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
168    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
169static int numfreebuffers;
170SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
171    "Number of free buffers");
172static int lofreebuffers;
173SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
174   "XXX Unused");
175static int hifreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
177   "XXX Complicatedly unused");
178static int getnewbufcalls;
179SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
180   "Number of calls to getnewbuf");
181static int getnewbufrestarts;
182SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
183    "Number of times getnewbuf has had to restart a buffer aquisition");
184
185/*
186 * Wakeup point for bufdaemon, as well as indicator of whether it is already
187 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
188 * is idling.
189 */
190static int bd_request;
191
192/*
193 * This lock synchronizes access to bd_request.
194 */
195static struct mtx bdlock;
196
197/*
198 * bogus page -- for I/O to/from partially complete buffers
199 * this is a temporary solution to the problem, but it is not
200 * really that bad.  it would be better to split the buffer
201 * for input in the case of buffers partially already in memory,
202 * but the code is intricate enough already.
203 */
204vm_page_t bogus_page;
205
206/*
207 * Synchronization (sleep/wakeup) variable for active buffer space requests.
208 * Set when wait starts, cleared prior to wakeup().
209 * Used in runningbufwakeup() and waitrunningbufspace().
210 */
211static int runningbufreq;
212
213/*
214 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
215 * waitrunningbufspace().
216 */
217static struct mtx rbreqlock;
218
219/*
220 * Synchronization (sleep/wakeup) variable for buffer requests.
221 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
222 * by and/or.
223 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
224 * getnewbuf(), and getblk().
225 */
226static int needsbuffer;
227
228/*
229 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
230 */
231static struct mtx nblock;
232
233/*
234 * Lock that protects against bwait()/bdone()/B_DONE races.
235 */
236
237static struct mtx bdonelock;
238
239/*
240 * Definitions for the buffer free lists.
241 */
242#define BUFFER_QUEUES	5	/* number of free buffer queues */
243
244#define QUEUE_NONE	0	/* on no queue */
245#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
246#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
247#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
248#define QUEUE_EMPTY	4	/* empty buffer headers */
249
250/* Queues for free buffers with various properties */
251static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
252
253/* Lock for the bufqueues */
254static struct mtx bqlock;
255
256/*
257 * Single global constant for BUF_WMESG, to avoid getting multiple references.
258 * buf_wmesg is referred from macros.
259 */
260const char *buf_wmesg = BUF_WMESG;
261
262#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
263#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
264#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
265#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
266
267#ifdef DIRECTIO
268extern void ffs_rawread_setup(void);
269#endif /* DIRECTIO */
270/*
271 *	numdirtywakeup:
272 *
273 *	If someone is blocked due to there being too many dirty buffers,
274 *	and numdirtybuffers is now reasonable, wake them up.
275 */
276
277static __inline void
278numdirtywakeup(int level)
279{
280
281	if (numdirtybuffers <= level) {
282		mtx_lock(&nblock);
283		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
284			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
285			wakeup(&needsbuffer);
286		}
287		mtx_unlock(&nblock);
288	}
289}
290
291/*
292 *	bufspacewakeup:
293 *
294 *	Called when buffer space is potentially available for recovery.
295 *	getnewbuf() will block on this flag when it is unable to free
296 *	sufficient buffer space.  Buffer space becomes recoverable when
297 *	bp's get placed back in the queues.
298 */
299
300static __inline void
301bufspacewakeup(void)
302{
303
304	/*
305	 * If someone is waiting for BUF space, wake them up.  Even
306	 * though we haven't freed the kva space yet, the waiting
307	 * process will be able to now.
308	 */
309	mtx_lock(&nblock);
310	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
311		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
312		wakeup(&needsbuffer);
313	}
314	mtx_unlock(&nblock);
315}
316
317/*
318 * runningbufwakeup() - in-progress I/O accounting.
319 *
320 */
321static __inline void
322runningbufwakeup(struct buf *bp)
323{
324
325	if (bp->b_runningbufspace) {
326		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
327		bp->b_runningbufspace = 0;
328		mtx_lock(&rbreqlock);
329		if (runningbufreq && runningbufspace <= lorunningspace) {
330			runningbufreq = 0;
331			wakeup(&runningbufreq);
332		}
333		mtx_unlock(&rbreqlock);
334	}
335}
336
337/*
338 *	bufcountwakeup:
339 *
340 *	Called when a buffer has been added to one of the free queues to
341 *	account for the buffer and to wakeup anyone waiting for free buffers.
342 *	This typically occurs when large amounts of metadata are being handled
343 *	by the buffer cache ( else buffer space runs out first, usually ).
344 */
345
346static __inline void
347bufcountwakeup(void)
348{
349
350	atomic_add_int(&numfreebuffers, 1);
351	mtx_lock(&nblock);
352	if (needsbuffer) {
353		needsbuffer &= ~VFS_BIO_NEED_ANY;
354		if (numfreebuffers >= hifreebuffers)
355			needsbuffer &= ~VFS_BIO_NEED_FREE;
356		wakeup(&needsbuffer);
357	}
358	mtx_unlock(&nblock);
359}
360
361/*
362 *	waitrunningbufspace()
363 *
364 *	runningbufspace is a measure of the amount of I/O currently
365 *	running.  This routine is used in async-write situations to
366 *	prevent creating huge backups of pending writes to a device.
367 *	Only asynchronous writes are governed by this function.
368 *
369 *	Reads will adjust runningbufspace, but will not block based on it.
370 *	The read load has a side effect of reducing the allowed write load.
371 *
372 *	This does NOT turn an async write into a sync write.  It waits
373 *	for earlier writes to complete and generally returns before the
374 *	caller's write has reached the device.
375 */
376static __inline void
377waitrunningbufspace(void)
378{
379
380	mtx_lock(&rbreqlock);
381	while (runningbufspace > hirunningspace) {
382		++runningbufreq;
383		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
384	}
385	mtx_unlock(&rbreqlock);
386}
387
388
389/*
390 *	vfs_buf_test_cache:
391 *
392 *	Called when a buffer is extended.  This function clears the B_CACHE
393 *	bit if the newly extended portion of the buffer does not contain
394 *	valid data.
395 */
396static __inline
397void
398vfs_buf_test_cache(struct buf *bp,
399		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
400		  vm_page_t m)
401{
402
403	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
404	if (bp->b_flags & B_CACHE) {
405		int base = (foff + off) & PAGE_MASK;
406		if (vm_page_is_valid(m, base, size) == 0)
407			bp->b_flags &= ~B_CACHE;
408	}
409}
410
411/* Wake up the buffer deamon if necessary */
412static __inline
413void
414bd_wakeup(int dirtybuflevel)
415{
416
417	mtx_lock(&bdlock);
418	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
419		bd_request = 1;
420		wakeup(&bd_request);
421	}
422	mtx_unlock(&bdlock);
423}
424
425/*
426 * bd_speedup - speedup the buffer cache flushing code
427 */
428
429static __inline
430void
431bd_speedup(void)
432{
433
434	bd_wakeup(1);
435}
436
437/*
438 * Calculating buffer cache scaling values and reserve space for buffer
439 * headers.  This is called during low level kernel initialization and
440 * may be called more then once.  We CANNOT write to the memory area
441 * being reserved at this time.
442 */
443caddr_t
444kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
445{
446
447	/*
448	 * physmem_est is in pages.  Convert it to kilobytes (assumes
449	 * PAGE_SIZE is >= 1K)
450	 */
451	physmem_est = physmem_est * (PAGE_SIZE / 1024);
452
453	/*
454	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
455	 * For the first 64MB of ram nominally allocate sufficient buffers to
456	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
457	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
458	 * the buffer cache we limit the eventual kva reservation to
459	 * maxbcache bytes.
460	 *
461	 * factor represents the 1/4 x ram conversion.
462	 */
463	if (nbuf == 0) {
464		int factor = 4 * BKVASIZE / 1024;
465
466		nbuf = 50;
467		if (physmem_est > 4096)
468			nbuf += min((physmem_est - 4096) / factor,
469			    65536 / factor);
470		if (physmem_est > 65536)
471			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
472
473		if (maxbcache && nbuf > maxbcache / BKVASIZE)
474			nbuf = maxbcache / BKVASIZE;
475	}
476
477#if 0
478	/*
479	 * Do not allow the buffer_map to be more then 1/2 the size of the
480	 * kernel_map.
481	 */
482	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
483	    (BKVASIZE * 2)) {
484		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
485		    (BKVASIZE * 2);
486		printf("Warning: nbufs capped at %d\n", nbuf);
487	}
488#endif
489
490	/*
491	 * swbufs are used as temporary holders for I/O, such as paging I/O.
492	 * We have no less then 16 and no more then 256.
493	 */
494	nswbuf = max(min(nbuf/4, 256), 16);
495#ifdef NSWBUF_MIN
496	if (nswbuf < NSWBUF_MIN)
497		nswbuf = NSWBUF_MIN;
498#endif
499#ifdef DIRECTIO
500	ffs_rawread_setup();
501#endif
502
503	/*
504	 * Reserve space for the buffer cache buffers
505	 */
506	swbuf = (void *)v;
507	v = (caddr_t)(swbuf + nswbuf);
508	buf = (void *)v;
509	v = (caddr_t)(buf + nbuf);
510
511	return(v);
512}
513
514/* Initialize the buffer subsystem.  Called before use of any buffers. */
515void
516bufinit(void)
517{
518	struct buf *bp;
519	int i;
520
521	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
522	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
523	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
524	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
525	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
526
527	/* next, make a null set of free lists */
528	for (i = 0; i < BUFFER_QUEUES; i++)
529		TAILQ_INIT(&bufqueues[i]);
530
531	/* finally, initialize each buffer header and stick on empty q */
532	for (i = 0; i < nbuf; i++) {
533		bp = &buf[i];
534		bzero(bp, sizeof *bp);
535		bp->b_flags = B_INVAL;	/* we're just an empty header */
536		bp->b_rcred = NOCRED;
537		bp->b_wcred = NOCRED;
538		bp->b_qindex = QUEUE_EMPTY;
539		bp->b_vflags = 0;
540		bp->b_xflags = 0;
541		LIST_INIT(&bp->b_dep);
542		BUF_LOCKINIT(bp);
543		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
544	}
545
546	/*
547	 * maxbufspace is the absolute maximum amount of buffer space we are
548	 * allowed to reserve in KVM and in real terms.  The absolute maximum
549	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
550	 * used by most other processes.  The differential is required to
551	 * ensure that buf_daemon is able to run when other processes might
552	 * be blocked waiting for buffer space.
553	 *
554	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
555	 * this may result in KVM fragmentation which is not handled optimally
556	 * by the system.
557	 */
558	maxbufspace = nbuf * BKVASIZE;
559	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
560	lobufspace = hibufspace - MAXBSIZE;
561
562	lorunningspace = 512 * 1024;
563	hirunningspace = 1024 * 1024;
564
565/*
566 * Limit the amount of malloc memory since it is wired permanently into
567 * the kernel space.  Even though this is accounted for in the buffer
568 * allocation, we don't want the malloced region to grow uncontrolled.
569 * The malloc scheme improves memory utilization significantly on average
570 * (small) directories.
571 */
572	maxbufmallocspace = hibufspace / 20;
573
574/*
575 * Reduce the chance of a deadlock occuring by limiting the number
576 * of delayed-write dirty buffers we allow to stack up.
577 */
578	hidirtybuffers = nbuf / 4 + 20;
579	dirtybufthresh = hidirtybuffers * 9 / 10;
580	numdirtybuffers = 0;
581/*
582 * To support extreme low-memory systems, make sure hidirtybuffers cannot
583 * eat up all available buffer space.  This occurs when our minimum cannot
584 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
585 * BKVASIZE'd (8K) buffers.
586 */
587	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
588		hidirtybuffers >>= 1;
589	}
590	lodirtybuffers = hidirtybuffers / 2;
591
592/*
593 * Try to keep the number of free buffers in the specified range,
594 * and give special processes (e.g. like buf_daemon) access to an
595 * emergency reserve.
596 */
597	lofreebuffers = nbuf / 18 + 5;
598	hifreebuffers = 2 * lofreebuffers;
599	numfreebuffers = nbuf;
600
601/*
602 * Maximum number of async ops initiated per buf_daemon loop.  This is
603 * somewhat of a hack at the moment, we really need to limit ourselves
604 * based on the number of bytes of I/O in-transit that were initiated
605 * from buf_daemon.
606 */
607
608	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
609	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
610}
611
612/*
613 * bfreekva() - free the kva allocation for a buffer.
614 *
615 *	Must be called at splbio() or higher as this is the only locking for
616 *	buffer_map.
617 *
618 *	Since this call frees up buffer space, we call bufspacewakeup().
619 */
620static void
621bfreekva(struct buf *bp)
622{
623
624	if (bp->b_kvasize) {
625		atomic_add_int(&buffreekvacnt, 1);
626		atomic_subtract_int(&bufspace, bp->b_kvasize);
627		vm_map_lock(buffer_map);
628		vm_map_delete(buffer_map,
629		    (vm_offset_t) bp->b_kvabase,
630		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
631		);
632		vm_map_unlock(buffer_map);
633		bp->b_kvasize = 0;
634		bufspacewakeup();
635	}
636}
637
638/*
639 *	bremfree:
640 *
641 *	Mark the buffer for removal from the appropriate free list in brelse.
642 *
643 */
644void
645bremfree(struct buf *bp)
646{
647
648	CTR3(KTR_BUF, "bremfree(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
649	KASSERT(BUF_REFCNT(bp), ("bremfree: buf must be locked."));
650	KASSERT((bp->b_flags & B_REMFREE) == 0 && bp->b_qindex != QUEUE_NONE,
651	    ("bremfree: buffer %p not on a queue.", bp));
652
653	bp->b_flags |= B_REMFREE;
654	/* Fixup numfreebuffers count.  */
655	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
656		atomic_subtract_int(&numfreebuffers, 1);
657}
658
659/*
660 *	bremfreef:
661 *
662 *	Force an immediate removal from a free list.  Used only in nfs when
663 *	it abuses the b_freelist pointer.
664 */
665void
666bremfreef(struct buf *bp)
667{
668	mtx_lock(&bqlock);
669	bremfreel(bp);
670	mtx_unlock(&bqlock);
671}
672
673/*
674 *	bremfreel:
675 *
676 *	Removes a buffer from the free list, must be called with the
677 *	bqlock held.
678 */
679static void
680bremfreel(struct buf *bp)
681{
682	int s = splbio();
683
684	CTR3(KTR_BUF, "bremfreel(%p) vp %p flags %X",
685	    bp, bp->b_vp, bp->b_flags);
686	KASSERT(BUF_REFCNT(bp), ("bremfreel: buffer %p not locked.", bp));
687	KASSERT(bp->b_qindex != QUEUE_NONE,
688	    ("bremfreel: buffer %p not on a queue.", bp));
689	mtx_assert(&bqlock, MA_OWNED);
690
691	TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
692	bp->b_qindex = QUEUE_NONE;
693	/*
694	 * If this was a delayed bremfree() we only need to remove the buffer
695	 * from the queue and return the stats are already done.
696	 */
697	if (bp->b_flags & B_REMFREE) {
698		bp->b_flags &= ~B_REMFREE;
699		splx(s);
700		return;
701	}
702	/*
703	 * Fixup numfreebuffers count.  If the buffer is invalid or not
704	 * delayed-write, the buffer was free and we must decrement
705	 * numfreebuffers.
706	 */
707	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0)
708		atomic_subtract_int(&numfreebuffers, 1);
709	splx(s);
710}
711
712
713/*
714 * Get a buffer with the specified data.  Look in the cache first.  We
715 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
716 * is set, the buffer is valid and we do not have to do anything ( see
717 * getblk() ).  This is really just a special case of breadn().
718 */
719int
720bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
721    struct buf **bpp)
722{
723
724	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
725}
726
727/*
728 * Operates like bread, but also starts asynchronous I/O on
729 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
730 * to initiating I/O . If B_CACHE is set, the buffer is valid
731 * and we do not have to do anything.
732 */
733int
734breadn(struct vnode * vp, daddr_t blkno, int size,
735    daddr_t * rablkno, int *rabsize,
736    int cnt, struct ucred * cred, struct buf **bpp)
737{
738	struct buf *bp, *rabp;
739	int i;
740	int rv = 0, readwait = 0;
741
742	CTR3(KTR_BUF, "breadn(%p, %jd, %d)", vp, blkno, size);
743	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
744
745	/* if not found in cache, do some I/O */
746	if ((bp->b_flags & B_CACHE) == 0) {
747		if (curthread != PCPU_GET(idlethread))
748			curthread->td_proc->p_stats->p_ru.ru_inblock++;
749		bp->b_iocmd = BIO_READ;
750		bp->b_flags &= ~B_INVAL;
751		bp->b_ioflags &= ~BIO_ERROR;
752		if (bp->b_rcred == NOCRED && cred != NOCRED)
753			bp->b_rcred = crhold(cred);
754		vfs_busy_pages(bp, 0);
755		bp->b_iooffset = dbtob(bp->b_blkno);
756		bstrategy(bp);
757		++readwait;
758	}
759
760	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
761		if (inmem(vp, *rablkno))
762			continue;
763		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
764
765		if ((rabp->b_flags & B_CACHE) == 0) {
766			if (curthread != PCPU_GET(idlethread))
767				curthread->td_proc->p_stats->p_ru.ru_inblock++;
768			rabp->b_flags |= B_ASYNC;
769			rabp->b_flags &= ~B_INVAL;
770			rabp->b_ioflags &= ~BIO_ERROR;
771			rabp->b_iocmd = BIO_READ;
772			if (rabp->b_rcred == NOCRED && cred != NOCRED)
773				rabp->b_rcred = crhold(cred);
774			vfs_busy_pages(rabp, 0);
775			BUF_KERNPROC(rabp);
776			rabp->b_iooffset = dbtob(rabp->b_blkno);
777			bstrategy(rabp);
778		} else {
779			brelse(rabp);
780		}
781	}
782
783	if (readwait) {
784		rv = bufwait(bp);
785	}
786	return (rv);
787}
788
789/*
790 * Write, release buffer on completion.  (Done by iodone
791 * if async).  Do not bother writing anything if the buffer
792 * is invalid.
793 *
794 * Note that we set B_CACHE here, indicating that buffer is
795 * fully valid and thus cacheable.  This is true even of NFS
796 * now so we set it generally.  This could be set either here
797 * or in biodone() since the I/O is synchronous.  We put it
798 * here.
799 */
800int
801bufwrite(struct buf *bp)
802{
803	int oldflags, s;
804
805	CTR3(KTR_BUF, "bufwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
806	if (bp->b_flags & B_INVAL) {
807		brelse(bp);
808		return (0);
809	}
810
811	oldflags = bp->b_flags;
812
813	if (BUF_REFCNT(bp) == 0)
814		panic("bufwrite: buffer is not busy???");
815	s = splbio();
816
817	KASSERT(!(bp->b_vflags & BV_BKGRDINPROG),
818	    ("FFS background buffer should not get here %p", bp));
819
820	/* Mark the buffer clean */
821	bundirty(bp);
822
823	bp->b_flags &= ~B_DONE;
824	bp->b_ioflags &= ~BIO_ERROR;
825	bp->b_flags |= B_CACHE;
826	bp->b_iocmd = BIO_WRITE;
827
828	bufobj_wref(bp->b_bufobj);
829	vfs_busy_pages(bp, 1);
830
831	/*
832	 * Normal bwrites pipeline writes
833	 */
834	bp->b_runningbufspace = bp->b_bufsize;
835	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
836
837	if (curthread != PCPU_GET(idlethread))
838		curthread->td_proc->p_stats->p_ru.ru_oublock++;
839	splx(s);
840	if (oldflags & B_ASYNC)
841		BUF_KERNPROC(bp);
842	bp->b_iooffset = dbtob(bp->b_blkno);
843	bstrategy(bp);
844
845	if ((oldflags & B_ASYNC) == 0) {
846		int rtval = bufwait(bp);
847		brelse(bp);
848		return (rtval);
849	} else {
850		/*
851		 * don't allow the async write to saturate the I/O
852		 * system.  We will not deadlock here because
853		 * we are blocking waiting for I/O that is already in-progress
854		 * to complete. We do not block here if it is the update
855		 * or syncer daemon trying to clean up as that can lead
856		 * to deadlock.
857		 */
858		if (curthread->td_proc != bufdaemonproc &&
859		    curthread->td_proc != updateproc)
860			waitrunningbufspace();
861	}
862
863	return (0);
864}
865
866/*
867 * Delayed write. (Buffer is marked dirty).  Do not bother writing
868 * anything if the buffer is marked invalid.
869 *
870 * Note that since the buffer must be completely valid, we can safely
871 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
872 * biodone() in order to prevent getblk from writing the buffer
873 * out synchronously.
874 */
875void
876bdwrite(struct buf *bp)
877{
878	struct thread *td = curthread;
879	struct vnode *vp;
880	struct buf *nbp;
881	struct bufobj *bo;
882
883	CTR3(KTR_BUF, "bdwrite(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
884	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
885	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
886
887	if (bp->b_flags & B_INVAL) {
888		brelse(bp);
889		return;
890	}
891
892	/*
893	 * If we have too many dirty buffers, don't create any more.
894	 * If we are wildly over our limit, then force a complete
895	 * cleanup. Otherwise, just keep the situation from getting
896	 * out of control. Note that we have to avoid a recursive
897	 * disaster and not try to clean up after our own cleanup!
898	 */
899	vp = bp->b_vp;
900	bo = bp->b_bufobj;
901	if ((td->td_pflags & TDP_COWINPROGRESS) == 0) {
902		BO_LOCK(bo);
903		if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
904			BO_UNLOCK(bo);
905			(void) VOP_FSYNC(vp, MNT_NOWAIT, td);
906			altbufferflushes++;
907		} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
908			/*
909			 * Try to find a buffer to flush.
910			 */
911			TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
912				if ((nbp->b_vflags & BV_BKGRDINPROG) ||
913				    BUF_LOCK(nbp,
914				    LK_EXCLUSIVE | LK_NOWAIT, NULL))
915					continue;
916				if (bp == nbp)
917					panic("bdwrite: found ourselves");
918				BO_UNLOCK(bo);
919				/* Don't countdeps with the bo lock held. */
920				if (buf_countdeps(nbp, 0)) {
921					BO_LOCK(bo);
922					BUF_UNLOCK(nbp);
923					continue;
924				}
925				if (nbp->b_flags & B_CLUSTEROK) {
926					vfs_bio_awrite(nbp);
927				} else {
928					bremfree(nbp);
929					bawrite(nbp);
930				}
931				dirtybufferflushes++;
932				break;
933			}
934			if (nbp == NULL)
935				BO_UNLOCK(bo);
936		} else
937			BO_UNLOCK(bo);
938	} else
939		recursiveflushes++;
940
941	bdirty(bp);
942	/*
943	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
944	 * true even of NFS now.
945	 */
946	bp->b_flags |= B_CACHE;
947
948	/*
949	 * This bmap keeps the system from needing to do the bmap later,
950	 * perhaps when the system is attempting to do a sync.  Since it
951	 * is likely that the indirect block -- or whatever other datastructure
952	 * that the filesystem needs is still in memory now, it is a good
953	 * thing to do this.  Note also, that if the pageout daemon is
954	 * requesting a sync -- there might not be enough memory to do
955	 * the bmap then...  So, this is important to do.
956	 */
957	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
958		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
959	}
960
961	/*
962	 * Set the *dirty* buffer range based upon the VM system dirty pages.
963	 */
964	vfs_setdirty(bp);
965
966	/*
967	 * We need to do this here to satisfy the vnode_pager and the
968	 * pageout daemon, so that it thinks that the pages have been
969	 * "cleaned".  Note that since the pages are in a delayed write
970	 * buffer -- the VFS layer "will" see that the pages get written
971	 * out on the next sync, or perhaps the cluster will be completed.
972	 */
973	vfs_clean_pages(bp);
974	bqrelse(bp);
975
976	/*
977	 * Wakeup the buffer flushing daemon if we have a lot of dirty
978	 * buffers (midpoint between our recovery point and our stall
979	 * point).
980	 */
981	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
982
983	/*
984	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
985	 * due to the softdep code.
986	 */
987}
988
989/*
990 *	bdirty:
991 *
992 *	Turn buffer into delayed write request.  We must clear BIO_READ and
993 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
994 *	itself to properly update it in the dirty/clean lists.  We mark it
995 *	B_DONE to ensure that any asynchronization of the buffer properly
996 *	clears B_DONE ( else a panic will occur later ).
997 *
998 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
999 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1000 *	should only be called if the buffer is known-good.
1001 *
1002 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1003 *	count.
1004 *
1005 *	Must be called at splbio().
1006 *	The buffer must be on QUEUE_NONE.
1007 */
1008void
1009bdirty(struct buf *bp)
1010{
1011
1012	CTR3(KTR_BUF, "bdirty(%p) vp %p flags %X",
1013	    bp, bp->b_vp, bp->b_flags);
1014	KASSERT(BUF_REFCNT(bp) == 1, ("bdirty: bp %p not locked",bp));
1015	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1016	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1017	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1018	bp->b_flags &= ~(B_RELBUF);
1019	bp->b_iocmd = BIO_WRITE;
1020
1021	if ((bp->b_flags & B_DELWRI) == 0) {
1022		bp->b_flags |= /* XXX B_DONE | */ B_DELWRI;
1023		reassignbuf(bp);
1024		atomic_add_int(&numdirtybuffers, 1);
1025		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1026	}
1027}
1028
1029/*
1030 *	bundirty:
1031 *
1032 *	Clear B_DELWRI for buffer.
1033 *
1034 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1035 *	count.
1036 *
1037 *	Must be called at splbio().
1038 *	The buffer must be on QUEUE_NONE.
1039 */
1040
1041void
1042bundirty(struct buf *bp)
1043{
1044
1045	CTR3(KTR_BUF, "bundirty(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1046	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1047	KASSERT(bp->b_flags & B_REMFREE || bp->b_qindex == QUEUE_NONE,
1048	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1049	KASSERT(BUF_REFCNT(bp) == 1, ("bundirty: bp %p not locked",bp));
1050
1051	if (bp->b_flags & B_DELWRI) {
1052		bp->b_flags &= ~B_DELWRI;
1053		reassignbuf(bp);
1054		atomic_subtract_int(&numdirtybuffers, 1);
1055		numdirtywakeup(lodirtybuffers);
1056	}
1057	/*
1058	 * Since it is now being written, we can clear its deferred write flag.
1059	 */
1060	bp->b_flags &= ~B_DEFERRED;
1061}
1062
1063/*
1064 *	bawrite:
1065 *
1066 *	Asynchronous write.  Start output on a buffer, but do not wait for
1067 *	it to complete.  The buffer is released when the output completes.
1068 *
1069 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1070 *	B_INVAL buffers.  Not us.
1071 */
1072void
1073bawrite(struct buf *bp)
1074{
1075
1076	bp->b_flags |= B_ASYNC;
1077	(void) bwrite(bp);
1078}
1079
1080/*
1081 *	bwillwrite:
1082 *
1083 *	Called prior to the locking of any vnodes when we are expecting to
1084 *	write.  We do not want to starve the buffer cache with too many
1085 *	dirty buffers so we block here.  By blocking prior to the locking
1086 *	of any vnodes we attempt to avoid the situation where a locked vnode
1087 *	prevents the various system daemons from flushing related buffers.
1088 */
1089
1090void
1091bwillwrite(void)
1092{
1093
1094	if (numdirtybuffers >= hidirtybuffers) {
1095		int s;
1096
1097		s = splbio();
1098		mtx_lock(&nblock);
1099		while (numdirtybuffers >= hidirtybuffers) {
1100			bd_wakeup(1);
1101			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1102			msleep(&needsbuffer, &nblock,
1103			    (PRIBIO + 4), "flswai", 0);
1104		}
1105		splx(s);
1106		mtx_unlock(&nblock);
1107	}
1108}
1109
1110/*
1111 * Return true if we have too many dirty buffers.
1112 */
1113int
1114buf_dirty_count_severe(void)
1115{
1116
1117	return(numdirtybuffers >= hidirtybuffers);
1118}
1119
1120/*
1121 *	brelse:
1122 *
1123 *	Release a busy buffer and, if requested, free its resources.  The
1124 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1125 *	to be accessed later as a cache entity or reused for other purposes.
1126 */
1127void
1128brelse(struct buf *bp)
1129{
1130	int s;
1131
1132	CTR3(KTR_BUF, "brelse(%p) vp %p flags %X",
1133	    bp, bp->b_vp, bp->b_flags);
1134	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1135	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1136
1137	s = splbio();
1138
1139	if (bp->b_iocmd == BIO_WRITE &&
1140	    (bp->b_ioflags & BIO_ERROR) &&
1141	    !(bp->b_flags & B_INVAL)) {
1142		/*
1143		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1144		 * pages from being scrapped.  If B_INVAL is set then
1145		 * this case is not run and the next case is run to
1146		 * destroy the buffer.  B_INVAL can occur if the buffer
1147		 * is outside the range supported by the underlying device.
1148		 */
1149		bp->b_ioflags &= ~BIO_ERROR;
1150		bdirty(bp);
1151	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1152	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1153		/*
1154		 * Either a failed I/O or we were asked to free or not
1155		 * cache the buffer.
1156		 */
1157		bp->b_flags |= B_INVAL;
1158		if (LIST_FIRST(&bp->b_dep) != NULL)
1159			buf_deallocate(bp);
1160		if (bp->b_flags & B_DELWRI) {
1161			atomic_subtract_int(&numdirtybuffers, 1);
1162			numdirtywakeup(lodirtybuffers);
1163		}
1164		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1165		if ((bp->b_flags & B_VMIO) == 0) {
1166			if (bp->b_bufsize)
1167				allocbuf(bp, 0);
1168			if (bp->b_vp)
1169				brelvp(bp);
1170		}
1171	}
1172
1173	/*
1174	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1175	 * is called with B_DELWRI set, the underlying pages may wind up
1176	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1177	 * because pages associated with a B_DELWRI bp are marked clean.
1178	 *
1179	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1180	 * if B_DELWRI is set.
1181	 *
1182	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1183	 * on pages to return pages to the VM page queues.
1184	 */
1185	if (bp->b_flags & B_DELWRI)
1186		bp->b_flags &= ~B_RELBUF;
1187	else if (vm_page_count_severe()) {
1188		/*
1189		 * XXX This lock may not be necessary since BKGRDINPROG
1190		 * cannot be set while we hold the buf lock, it can only be
1191		 * cleared if it is already pending.
1192		 */
1193		if (bp->b_vp) {
1194			BO_LOCK(bp->b_bufobj);
1195			if (!(bp->b_vflags & BV_BKGRDINPROG))
1196				bp->b_flags |= B_RELBUF;
1197			BO_UNLOCK(bp->b_bufobj);
1198		} else
1199			bp->b_flags |= B_RELBUF;
1200	}
1201
1202	/*
1203	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1204	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1205	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1206	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1207	 *
1208	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1209	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1210	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1211	 *
1212	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1213	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1214	 * the commit state and we cannot afford to lose the buffer. If the
1215	 * buffer has a background write in progress, we need to keep it
1216	 * around to prevent it from being reconstituted and starting a second
1217	 * background write.
1218	 */
1219	if ((bp->b_flags & B_VMIO)
1220	    && !(bp->b_vp->v_mount != NULL &&
1221		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1222		 !vn_isdisk(bp->b_vp, NULL) &&
1223		 (bp->b_flags & B_DELWRI))
1224	    ) {
1225
1226		int i, j, resid;
1227		vm_page_t m;
1228		off_t foff;
1229		vm_pindex_t poff;
1230		vm_object_t obj;
1231
1232		obj = bp->b_bufobj->bo_object;
1233
1234		/*
1235		 * Get the base offset and length of the buffer.  Note that
1236		 * in the VMIO case if the buffer block size is not
1237		 * page-aligned then b_data pointer may not be page-aligned.
1238		 * But our b_pages[] array *IS* page aligned.
1239		 *
1240		 * block sizes less then DEV_BSIZE (usually 512) are not
1241		 * supported due to the page granularity bits (m->valid,
1242		 * m->dirty, etc...).
1243		 *
1244		 * See man buf(9) for more information
1245		 */
1246		resid = bp->b_bufsize;
1247		foff = bp->b_offset;
1248		VM_OBJECT_LOCK(obj);
1249		for (i = 0; i < bp->b_npages; i++) {
1250			int had_bogus = 0;
1251
1252			m = bp->b_pages[i];
1253
1254			/*
1255			 * If we hit a bogus page, fixup *all* the bogus pages
1256			 * now.
1257			 */
1258			if (m == bogus_page) {
1259				poff = OFF_TO_IDX(bp->b_offset);
1260				had_bogus = 1;
1261
1262				for (j = i; j < bp->b_npages; j++) {
1263					vm_page_t mtmp;
1264					mtmp = bp->b_pages[j];
1265					if (mtmp == bogus_page) {
1266						mtmp = vm_page_lookup(obj, poff + j);
1267						if (!mtmp) {
1268							panic("brelse: page missing\n");
1269						}
1270						bp->b_pages[j] = mtmp;
1271					}
1272				}
1273
1274				if ((bp->b_flags & B_INVAL) == 0) {
1275					pmap_qenter(
1276					    trunc_page((vm_offset_t)bp->b_data),
1277					    bp->b_pages, bp->b_npages);
1278				}
1279				m = bp->b_pages[i];
1280			}
1281			if ((bp->b_flags & B_NOCACHE) ||
1282			    (bp->b_ioflags & BIO_ERROR)) {
1283				int poffset = foff & PAGE_MASK;
1284				int presid = resid > (PAGE_SIZE - poffset) ?
1285					(PAGE_SIZE - poffset) : resid;
1286
1287				KASSERT(presid >= 0, ("brelse: extra page"));
1288				vm_page_lock_queues();
1289				vm_page_set_invalid(m, poffset, presid);
1290				vm_page_unlock_queues();
1291				if (had_bogus)
1292					printf("avoided corruption bug in bogus_page/brelse code\n");
1293			}
1294			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1295			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1296		}
1297		VM_OBJECT_UNLOCK(obj);
1298		if (bp->b_flags & (B_INVAL | B_RELBUF))
1299			vfs_vmio_release(bp);
1300
1301	} else if (bp->b_flags & B_VMIO) {
1302
1303		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1304			vfs_vmio_release(bp);
1305		}
1306
1307	}
1308
1309	if (BUF_REFCNT(bp) > 1) {
1310		/* do not release to free list */
1311		BUF_UNLOCK(bp);
1312		splx(s);
1313		return;
1314	}
1315
1316	/* enqueue */
1317	mtx_lock(&bqlock);
1318	/* Handle delayed bremfree() processing. */
1319	if (bp->b_flags & B_REMFREE)
1320		bremfreel(bp);
1321	if (bp->b_qindex != QUEUE_NONE)
1322		panic("brelse: free buffer onto another queue???");
1323
1324	/* buffers with no memory */
1325	if (bp->b_bufsize == 0) {
1326		bp->b_flags |= B_INVAL;
1327		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1328		if (bp->b_vflags & BV_BKGRDINPROG)
1329			panic("losing buffer 1");
1330		if (bp->b_kvasize) {
1331			bp->b_qindex = QUEUE_EMPTYKVA;
1332		} else {
1333			bp->b_qindex = QUEUE_EMPTY;
1334		}
1335		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1336	/* buffers with junk contents */
1337	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1338	    (bp->b_ioflags & BIO_ERROR)) {
1339		bp->b_flags |= B_INVAL;
1340		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1341		if (bp->b_vflags & BV_BKGRDINPROG)
1342			panic("losing buffer 2");
1343		bp->b_qindex = QUEUE_CLEAN;
1344		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1345	/* remaining buffers */
1346	} else {
1347		if (bp->b_flags & B_DELWRI)
1348			bp->b_qindex = QUEUE_DIRTY;
1349		else
1350			bp->b_qindex = QUEUE_CLEAN;
1351		if (bp->b_flags & B_AGE)
1352			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1353		else
1354			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1355	}
1356	mtx_unlock(&bqlock);
1357
1358	/*
1359	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1360	 * placed the buffer on the correct queue.  We must also disassociate
1361	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1362	 * find it.
1363	 */
1364	if (bp->b_flags & B_INVAL) {
1365		if (bp->b_flags & B_DELWRI)
1366			bundirty(bp);
1367		if (bp->b_vp)
1368			brelvp(bp);
1369	}
1370
1371	/*
1372	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1373	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1374	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1375	 * if B_INVAL is set ).
1376	 */
1377
1378	if (!(bp->b_flags & B_DELWRI))
1379		bufcountwakeup();
1380
1381	/*
1382	 * Something we can maybe free or reuse
1383	 */
1384	if (bp->b_bufsize || bp->b_kvasize)
1385		bufspacewakeup();
1386
1387	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1388	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1389		panic("brelse: not dirty");
1390	/* unlock */
1391	BUF_UNLOCK(bp);
1392	splx(s);
1393}
1394
1395/*
1396 * Release a buffer back to the appropriate queue but do not try to free
1397 * it.  The buffer is expected to be used again soon.
1398 *
1399 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1400 * biodone() to requeue an async I/O on completion.  It is also used when
1401 * known good buffers need to be requeued but we think we may need the data
1402 * again soon.
1403 *
1404 * XXX we should be able to leave the B_RELBUF hint set on completion.
1405 */
1406void
1407bqrelse(struct buf *bp)
1408{
1409	int s;
1410
1411	s = splbio();
1412
1413	CTR3(KTR_BUF, "bqrelse(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
1414	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1415	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1416
1417	if (BUF_REFCNT(bp) > 1) {
1418		/* do not release to free list */
1419		BUF_UNLOCK(bp);
1420		splx(s);
1421		return;
1422	}
1423	mtx_lock(&bqlock);
1424	/* Handle delayed bremfree() processing. */
1425	if (bp->b_flags & B_REMFREE)
1426		bremfreel(bp);
1427	if (bp->b_qindex != QUEUE_NONE)
1428		panic("bqrelse: free buffer onto another queue???");
1429	/* buffers with stale but valid contents */
1430	if (bp->b_flags & B_DELWRI) {
1431		bp->b_qindex = QUEUE_DIRTY;
1432		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1433	} else {
1434		/*
1435		 * XXX This lock may not be necessary since BKGRDINPROG
1436		 * cannot be set while we hold the buf lock, it can only be
1437		 * cleared if it is already pending.
1438		 */
1439		BO_LOCK(bp->b_bufobj);
1440		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1441			BO_UNLOCK(bp->b_bufobj);
1442			bp->b_qindex = QUEUE_CLEAN;
1443			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1444			    b_freelist);
1445		} else {
1446			/*
1447			 * We are too low on memory, we have to try to free
1448			 * the buffer (most importantly: the wired pages
1449			 * making up its backing store) *now*.
1450			 */
1451			BO_UNLOCK(bp->b_bufobj);
1452			mtx_unlock(&bqlock);
1453			splx(s);
1454			brelse(bp);
1455			return;
1456		}
1457	}
1458	mtx_unlock(&bqlock);
1459
1460	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1461		bufcountwakeup();
1462
1463	/*
1464	 * Something we can maybe free or reuse.
1465	 */
1466	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1467		bufspacewakeup();
1468
1469	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1470	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1471		panic("bqrelse: not dirty");
1472	/* unlock */
1473	BUF_UNLOCK(bp);
1474	splx(s);
1475}
1476
1477/* Give pages used by the bp back to the VM system (where possible) */
1478static void
1479vfs_vmio_release(struct buf *bp)
1480{
1481	int i;
1482	vm_page_t m;
1483
1484	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1485	vm_page_lock_queues();
1486	for (i = 0; i < bp->b_npages; i++) {
1487		m = bp->b_pages[i];
1488		bp->b_pages[i] = NULL;
1489		/*
1490		 * In order to keep page LRU ordering consistent, put
1491		 * everything on the inactive queue.
1492		 */
1493		vm_page_unwire(m, 0);
1494		/*
1495		 * We don't mess with busy pages, it is
1496		 * the responsibility of the process that
1497		 * busied the pages to deal with them.
1498		 */
1499		if ((m->flags & PG_BUSY) || (m->busy != 0))
1500			continue;
1501
1502		if (m->wire_count == 0) {
1503			/*
1504			 * Might as well free the page if we can and it has
1505			 * no valid data.  We also free the page if the
1506			 * buffer was used for direct I/O
1507			 */
1508			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1509			    m->hold_count == 0) {
1510				pmap_remove_all(m);
1511				vm_page_free(m);
1512			} else if (bp->b_flags & B_DIRECT) {
1513				vm_page_try_to_free(m);
1514			} else if (vm_page_count_severe()) {
1515				vm_page_try_to_cache(m);
1516			}
1517		}
1518	}
1519	vm_page_unlock_queues();
1520	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1521	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1522
1523	if (bp->b_bufsize) {
1524		bufspacewakeup();
1525		bp->b_bufsize = 0;
1526	}
1527	bp->b_npages = 0;
1528	bp->b_flags &= ~B_VMIO;
1529	if (bp->b_vp)
1530		brelvp(bp);
1531}
1532
1533/*
1534 * Check to see if a block at a particular lbn is available for a clustered
1535 * write.
1536 */
1537static int
1538vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1539{
1540	struct buf *bpa;
1541	int match;
1542
1543	match = 0;
1544
1545	/* If the buf isn't in core skip it */
1546	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1547		return (0);
1548
1549	/* If the buf is busy we don't want to wait for it */
1550	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1551		return (0);
1552
1553	/* Only cluster with valid clusterable delayed write buffers */
1554	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1555	    (B_DELWRI | B_CLUSTEROK))
1556		goto done;
1557
1558	if (bpa->b_bufsize != size)
1559		goto done;
1560
1561	/*
1562	 * Check to see if it is in the expected place on disk and that the
1563	 * block has been mapped.
1564	 */
1565	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1566		match = 1;
1567done:
1568	BUF_UNLOCK(bpa);
1569	return (match);
1570}
1571
1572/*
1573 *	vfs_bio_awrite:
1574 *
1575 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1576 *	This is much better then the old way of writing only one buffer at
1577 *	a time.  Note that we may not be presented with the buffers in the
1578 *	correct order, so we search for the cluster in both directions.
1579 */
1580int
1581vfs_bio_awrite(struct buf *bp)
1582{
1583	int i;
1584	int j;
1585	daddr_t lblkno = bp->b_lblkno;
1586	struct vnode *vp = bp->b_vp;
1587	int s;
1588	int ncl;
1589	int nwritten;
1590	int size;
1591	int maxcl;
1592
1593	s = splbio();
1594	/*
1595	 * right now we support clustered writing only to regular files.  If
1596	 * we find a clusterable block we could be in the middle of a cluster
1597	 * rather then at the beginning.
1598	 */
1599	if ((vp->v_type == VREG) &&
1600	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1601	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1602
1603		size = vp->v_mount->mnt_stat.f_iosize;
1604		maxcl = MAXPHYS / size;
1605
1606		VI_LOCK(vp);
1607		for (i = 1; i < maxcl; i++)
1608			if (vfs_bio_clcheck(vp, size, lblkno + i,
1609			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1610				break;
1611
1612		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1613			if (vfs_bio_clcheck(vp, size, lblkno - j,
1614			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1615				break;
1616
1617		VI_UNLOCK(vp);
1618		--j;
1619		ncl = i + j;
1620		/*
1621		 * this is a possible cluster write
1622		 */
1623		if (ncl != 1) {
1624			BUF_UNLOCK(bp);
1625			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1626			splx(s);
1627			return nwritten;
1628		}
1629	}
1630
1631	bremfree(bp);
1632	bp->b_flags |= B_ASYNC;
1633
1634	splx(s);
1635	/*
1636	 * default (old) behavior, writing out only one block
1637	 *
1638	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1639	 */
1640	nwritten = bp->b_bufsize;
1641	(void) bwrite(bp);
1642
1643	return nwritten;
1644}
1645
1646/*
1647 *	getnewbuf:
1648 *
1649 *	Find and initialize a new buffer header, freeing up existing buffers
1650 *	in the bufqueues as necessary.  The new buffer is returned locked.
1651 *
1652 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1653 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1654 *
1655 *	We block if:
1656 *		We have insufficient buffer headers
1657 *		We have insufficient buffer space
1658 *		buffer_map is too fragmented ( space reservation fails )
1659 *		If we have to flush dirty buffers ( but we try to avoid this )
1660 *
1661 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1662 *	Instead we ask the buf daemon to do it for us.  We attempt to
1663 *	avoid piecemeal wakeups of the pageout daemon.
1664 */
1665
1666static struct buf *
1667getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1668{
1669	struct buf *bp;
1670	struct buf *nbp;
1671	int defrag = 0;
1672	int nqindex;
1673	static int flushingbufs;
1674
1675	/*
1676	 * We can't afford to block since we might be holding a vnode lock,
1677	 * which may prevent system daemons from running.  We deal with
1678	 * low-memory situations by proactively returning memory and running
1679	 * async I/O rather then sync I/O.
1680	 */
1681
1682	atomic_add_int(&getnewbufcalls, 1);
1683	atomic_subtract_int(&getnewbufrestarts, 1);
1684restart:
1685	atomic_add_int(&getnewbufrestarts, 1);
1686
1687	/*
1688	 * Setup for scan.  If we do not have enough free buffers,
1689	 * we setup a degenerate case that immediately fails.  Note
1690	 * that if we are specially marked process, we are allowed to
1691	 * dip into our reserves.
1692	 *
1693	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1694	 *
1695	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1696	 * However, there are a number of cases (defragging, reusing, ...)
1697	 * where we cannot backup.
1698	 */
1699	mtx_lock(&bqlock);
1700	nqindex = QUEUE_EMPTYKVA;
1701	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1702
1703	if (nbp == NULL) {
1704		/*
1705		 * If no EMPTYKVA buffers and we are either
1706		 * defragging or reusing, locate a CLEAN buffer
1707		 * to free or reuse.  If bufspace useage is low
1708		 * skip this step so we can allocate a new buffer.
1709		 */
1710		if (defrag || bufspace >= lobufspace) {
1711			nqindex = QUEUE_CLEAN;
1712			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1713		}
1714
1715		/*
1716		 * If we could not find or were not allowed to reuse a
1717		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1718		 * buffer.  We can only use an EMPTY buffer if allocating
1719		 * its KVA would not otherwise run us out of buffer space.
1720		 */
1721		if (nbp == NULL && defrag == 0 &&
1722		    bufspace + maxsize < hibufspace) {
1723			nqindex = QUEUE_EMPTY;
1724			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1725		}
1726	}
1727
1728	/*
1729	 * Run scan, possibly freeing data and/or kva mappings on the fly
1730	 * depending.
1731	 */
1732
1733	while ((bp = nbp) != NULL) {
1734		int qindex = nqindex;
1735
1736		/*
1737		 * Calculate next bp ( we can only use it if we do not block
1738		 * or do other fancy things ).
1739		 */
1740		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1741			switch(qindex) {
1742			case QUEUE_EMPTY:
1743				nqindex = QUEUE_EMPTYKVA;
1744				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1745					break;
1746				/* FALLTHROUGH */
1747			case QUEUE_EMPTYKVA:
1748				nqindex = QUEUE_CLEAN;
1749				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1750					break;
1751				/* FALLTHROUGH */
1752			case QUEUE_CLEAN:
1753				/*
1754				 * nbp is NULL.
1755				 */
1756				break;
1757			}
1758		}
1759		/*
1760		 * If we are defragging then we need a buffer with
1761		 * b_kvasize != 0.  XXX this situation should no longer
1762		 * occur, if defrag is non-zero the buffer's b_kvasize
1763		 * should also be non-zero at this point.  XXX
1764		 */
1765		if (defrag && bp->b_kvasize == 0) {
1766			printf("Warning: defrag empty buffer %p\n", bp);
1767			continue;
1768		}
1769
1770		/*
1771		 * Start freeing the bp.  This is somewhat involved.  nbp
1772		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1773		 */
1774		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1775			continue;
1776		if (bp->b_vp) {
1777			BO_LOCK(bp->b_bufobj);
1778			if (bp->b_vflags & BV_BKGRDINPROG) {
1779				BO_UNLOCK(bp->b_bufobj);
1780				BUF_UNLOCK(bp);
1781				continue;
1782			}
1783			BO_UNLOCK(bp->b_bufobj);
1784		}
1785		CTR6(KTR_BUF,
1786		    "getnewbuf(%p) vp %p flags %X kvasize %d bufsize %d "
1787		    "queue %d (recycling)", bp, bp->b_vp, bp->b_flags,
1788		    bp->b_kvasize, bp->b_bufsize, qindex);
1789
1790		/*
1791		 * Sanity Checks
1792		 */
1793		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1794
1795		/*
1796		 * Note: we no longer distinguish between VMIO and non-VMIO
1797		 * buffers.
1798		 */
1799
1800		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1801
1802		bremfreel(bp);
1803		mtx_unlock(&bqlock);
1804
1805		if (qindex == QUEUE_CLEAN) {
1806			if (bp->b_flags & B_VMIO) {
1807				bp->b_flags &= ~B_ASYNC;
1808				vfs_vmio_release(bp);
1809			}
1810			if (bp->b_vp)
1811				brelvp(bp);
1812		}
1813
1814		/*
1815		 * NOTE:  nbp is now entirely invalid.  We can only restart
1816		 * the scan from this point on.
1817		 *
1818		 * Get the rest of the buffer freed up.  b_kva* is still
1819		 * valid after this operation.
1820		 */
1821
1822		if (bp->b_rcred != NOCRED) {
1823			crfree(bp->b_rcred);
1824			bp->b_rcred = NOCRED;
1825		}
1826		if (bp->b_wcred != NOCRED) {
1827			crfree(bp->b_wcred);
1828			bp->b_wcred = NOCRED;
1829		}
1830		if (LIST_FIRST(&bp->b_dep) != NULL)
1831			buf_deallocate(bp);
1832		if (bp->b_vflags & BV_BKGRDINPROG)
1833			panic("losing buffer 3");
1834
1835		if (bp->b_bufsize)
1836			allocbuf(bp, 0);
1837
1838		bp->b_flags = 0;
1839		bp->b_ioflags = 0;
1840		bp->b_xflags = 0;
1841		bp->b_vflags = 0;
1842		bp->b_vp = NULL;
1843		bp->b_blkno = bp->b_lblkno = 0;
1844		bp->b_offset = NOOFFSET;
1845		bp->b_iodone = 0;
1846		bp->b_error = 0;
1847		bp->b_resid = 0;
1848		bp->b_bcount = 0;
1849		bp->b_npages = 0;
1850		bp->b_dirtyoff = bp->b_dirtyend = 0;
1851		bp->b_bufobj = NULL;
1852
1853		LIST_INIT(&bp->b_dep);
1854
1855		/*
1856		 * If we are defragging then free the buffer.
1857		 */
1858		if (defrag) {
1859			bp->b_flags |= B_INVAL;
1860			bfreekva(bp);
1861			brelse(bp);
1862			defrag = 0;
1863			goto restart;
1864		}
1865
1866		/*
1867		 * If we are overcomitted then recover the buffer and its
1868		 * KVM space.  This occurs in rare situations when multiple
1869		 * processes are blocked in getnewbuf() or allocbuf().
1870		 */
1871		if (bufspace >= hibufspace)
1872			flushingbufs = 1;
1873		if (flushingbufs && bp->b_kvasize != 0) {
1874			bp->b_flags |= B_INVAL;
1875			bfreekva(bp);
1876			brelse(bp);
1877			goto restart;
1878		}
1879		if (bufspace < lobufspace)
1880			flushingbufs = 0;
1881		break;
1882	}
1883
1884	/*
1885	 * If we exhausted our list, sleep as appropriate.  We may have to
1886	 * wakeup various daemons and write out some dirty buffers.
1887	 *
1888	 * Generally we are sleeping due to insufficient buffer space.
1889	 */
1890
1891	if (bp == NULL) {
1892		int flags;
1893		char *waitmsg;
1894
1895		mtx_unlock(&bqlock);
1896		if (defrag) {
1897			flags = VFS_BIO_NEED_BUFSPACE;
1898			waitmsg = "nbufkv";
1899		} else if (bufspace >= hibufspace) {
1900			waitmsg = "nbufbs";
1901			flags = VFS_BIO_NEED_BUFSPACE;
1902		} else {
1903			waitmsg = "newbuf";
1904			flags = VFS_BIO_NEED_ANY;
1905		}
1906
1907		bd_speedup();	/* heeeelp */
1908
1909		mtx_lock(&nblock);
1910		needsbuffer |= flags;
1911		while (needsbuffer & flags) {
1912			if (msleep(&needsbuffer, &nblock,
1913			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1914				mtx_unlock(&nblock);
1915				return (NULL);
1916			}
1917		}
1918		mtx_unlock(&nblock);
1919	} else {
1920		/*
1921		 * We finally have a valid bp.  We aren't quite out of the
1922		 * woods, we still have to reserve kva space.  In order
1923		 * to keep fragmentation sane we only allocate kva in
1924		 * BKVASIZE chunks.
1925		 */
1926		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
1927
1928		if (maxsize != bp->b_kvasize) {
1929			vm_offset_t addr = 0;
1930
1931			bfreekva(bp);
1932
1933			vm_map_lock(buffer_map);
1934			if (vm_map_findspace(buffer_map,
1935				vm_map_min(buffer_map), maxsize, &addr)) {
1936				/*
1937				 * Uh oh.  Buffer map is to fragmented.  We
1938				 * must defragment the map.
1939				 */
1940				atomic_add_int(&bufdefragcnt, 1);
1941				vm_map_unlock(buffer_map);
1942				defrag = 1;
1943				bp->b_flags |= B_INVAL;
1944				brelse(bp);
1945				goto restart;
1946			}
1947			if (addr) {
1948				vm_map_insert(buffer_map, NULL, 0,
1949					addr, addr + maxsize,
1950					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
1951
1952				bp->b_kvabase = (caddr_t) addr;
1953				bp->b_kvasize = maxsize;
1954				atomic_add_int(&bufspace, bp->b_kvasize);
1955				atomic_add_int(&bufreusecnt, 1);
1956			}
1957			vm_map_unlock(buffer_map);
1958		}
1959		bp->b_saveaddr = bp->b_kvabase;
1960		bp->b_data = bp->b_saveaddr;
1961	}
1962	return(bp);
1963}
1964
1965/*
1966 *	buf_daemon:
1967 *
1968 *	buffer flushing daemon.  Buffers are normally flushed by the
1969 *	update daemon but if it cannot keep up this process starts to
1970 *	take the load in an attempt to prevent getnewbuf() from blocking.
1971 */
1972
1973static struct kproc_desc buf_kp = {
1974	"bufdaemon",
1975	buf_daemon,
1976	&bufdaemonproc
1977};
1978SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
1979
1980static void
1981buf_daemon()
1982{
1983	int s;
1984
1985	mtx_lock(&Giant);
1986
1987	/*
1988	 * This process needs to be suspended prior to shutdown sync.
1989	 */
1990	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
1991	    SHUTDOWN_PRI_LAST);
1992
1993	/*
1994	 * This process is allowed to take the buffer cache to the limit
1995	 */
1996	s = splbio();
1997	mtx_lock(&bdlock);
1998
1999	for (;;) {
2000		bd_request = 0;
2001		mtx_unlock(&bdlock);
2002
2003		kthread_suspend_check(bufdaemonproc);
2004
2005		/*
2006		 * Do the flush.  Limit the amount of in-transit I/O we
2007		 * allow to build up, otherwise we would completely saturate
2008		 * the I/O system.  Wakeup any waiting processes before we
2009		 * normally would so they can run in parallel with our drain.
2010		 */
2011		while (numdirtybuffers > lodirtybuffers) {
2012			if (flushbufqueues(0) == 0) {
2013				/*
2014				 * Could not find any buffers without rollback
2015				 * dependencies, so just write the first one
2016				 * in the hopes of eventually making progress.
2017				 */
2018				flushbufqueues(1);
2019				break;
2020			}
2021			waitrunningbufspace();
2022			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2023		}
2024
2025		/*
2026		 * Only clear bd_request if we have reached our low water
2027		 * mark.  The buf_daemon normally waits 1 second and
2028		 * then incrementally flushes any dirty buffers that have
2029		 * built up, within reason.
2030		 *
2031		 * If we were unable to hit our low water mark and couldn't
2032		 * find any flushable buffers, we sleep half a second.
2033		 * Otherwise we loop immediately.
2034		 */
2035		mtx_lock(&bdlock);
2036		if (numdirtybuffers <= lodirtybuffers) {
2037			/*
2038			 * We reached our low water mark, reset the
2039			 * request and sleep until we are needed again.
2040			 * The sleep is just so the suspend code works.
2041			 */
2042			bd_request = 0;
2043			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2044		} else {
2045			/*
2046			 * We couldn't find any flushable dirty buffers but
2047			 * still have too many dirty buffers, we
2048			 * have to sleep and try again.  (rare)
2049			 */
2050			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2051		}
2052	}
2053}
2054
2055/*
2056 *	flushbufqueues:
2057 *
2058 *	Try to flush a buffer in the dirty queue.  We must be careful to
2059 *	free up B_INVAL buffers instead of write them, which NFS is
2060 *	particularly sensitive to.
2061 */
2062static int flushwithdeps = 0;
2063SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2064    0, "Number of buffers flushed with dependecies that require rollbacks");
2065
2066static int
2067flushbufqueues(int flushdeps)
2068{
2069	struct thread *td = curthread;
2070	struct vnode *vp;
2071	struct mount *mp;
2072	struct buf *bp;
2073	int hasdeps;
2074
2075	mtx_lock(&bqlock);
2076	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2077		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2078			continue;
2079		BO_LOCK(bp->b_bufobj);
2080		if ((bp->b_vflags & BV_BKGRDINPROG) != 0 ||
2081		    (bp->b_flags & B_DELWRI) == 0) {
2082			BO_UNLOCK(bp->b_bufobj);
2083			BUF_UNLOCK(bp);
2084			continue;
2085		}
2086		BO_UNLOCK(bp->b_bufobj);
2087		if (bp->b_flags & B_INVAL) {
2088			bremfreel(bp);
2089			mtx_unlock(&bqlock);
2090			brelse(bp);
2091			return (1);
2092		}
2093
2094		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2095			if (flushdeps == 0) {
2096				BUF_UNLOCK(bp);
2097				continue;
2098			}
2099			hasdeps = 1;
2100		} else
2101			hasdeps = 0;
2102		/*
2103		 * We must hold the lock on a vnode before writing
2104		 * one of its buffers. Otherwise we may confuse, or
2105		 * in the case of a snapshot vnode, deadlock the
2106		 * system.
2107		 *
2108		 * The lock order here is the reverse of the normal
2109		 * of vnode followed by buf lock.  This is ok because
2110		 * the NOWAIT will prevent deadlock.
2111		 */
2112		vp = bp->b_vp;
2113		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2114			BUF_UNLOCK(bp);
2115			continue;
2116		}
2117		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2118			mtx_unlock(&bqlock);
2119			CTR3(KTR_BUF, "flushbufqueue(%p) vp %p flags %X",
2120			    bp, bp->b_vp, bp->b_flags);
2121			vfs_bio_awrite(bp);
2122			vn_finished_write(mp);
2123			VOP_UNLOCK(vp, 0, td);
2124			flushwithdeps += hasdeps;
2125			return (1);
2126		}
2127		vn_finished_write(mp);
2128		BUF_UNLOCK(bp);
2129	}
2130	mtx_unlock(&bqlock);
2131	return (0);
2132}
2133
2134/*
2135 * Check to see if a block is currently memory resident.
2136 */
2137struct buf *
2138incore(struct bufobj *bo, daddr_t blkno)
2139{
2140	struct buf *bp;
2141
2142	int s = splbio();
2143	BO_LOCK(bo);
2144	bp = gbincore(bo, blkno);
2145	BO_UNLOCK(bo);
2146	splx(s);
2147	return (bp);
2148}
2149
2150/*
2151 * Returns true if no I/O is needed to access the
2152 * associated VM object.  This is like incore except
2153 * it also hunts around in the VM system for the data.
2154 */
2155
2156static int
2157inmem(struct vnode * vp, daddr_t blkno)
2158{
2159	vm_object_t obj;
2160	vm_offset_t toff, tinc, size;
2161	vm_page_t m;
2162	vm_ooffset_t off;
2163
2164	ASSERT_VOP_LOCKED(vp, "inmem");
2165
2166	if (incore(&vp->v_bufobj, blkno))
2167		return 1;
2168	if (vp->v_mount == NULL)
2169		return 0;
2170	obj = vp->v_object;
2171	if (obj == NULL)
2172		return (0);
2173
2174	size = PAGE_SIZE;
2175	if (size > vp->v_mount->mnt_stat.f_iosize)
2176		size = vp->v_mount->mnt_stat.f_iosize;
2177	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2178
2179	VM_OBJECT_LOCK(obj);
2180	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2181		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2182		if (!m)
2183			goto notinmem;
2184		tinc = size;
2185		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2186			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2187		if (vm_page_is_valid(m,
2188		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2189			goto notinmem;
2190	}
2191	VM_OBJECT_UNLOCK(obj);
2192	return 1;
2193
2194notinmem:
2195	VM_OBJECT_UNLOCK(obj);
2196	return (0);
2197}
2198
2199/*
2200 *	vfs_setdirty:
2201 *
2202 *	Sets the dirty range for a buffer based on the status of the dirty
2203 *	bits in the pages comprising the buffer.
2204 *
2205 *	The range is limited to the size of the buffer.
2206 *
2207 *	This routine is primarily used by NFS, but is generalized for the
2208 *	B_VMIO case.
2209 */
2210static void
2211vfs_setdirty(struct buf *bp)
2212{
2213	int i;
2214	vm_object_t object;
2215
2216	/*
2217	 * Degenerate case - empty buffer
2218	 */
2219
2220	if (bp->b_bufsize == 0)
2221		return;
2222
2223	/*
2224	 * We qualify the scan for modified pages on whether the
2225	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2226	 * is not cleared simply by protecting pages off.
2227	 */
2228
2229	if ((bp->b_flags & B_VMIO) == 0)
2230		return;
2231
2232	object = bp->b_pages[0]->object;
2233	VM_OBJECT_LOCK(object);
2234	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2235		printf("Warning: object %p writeable but not mightbedirty\n", object);
2236	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2237		printf("Warning: object %p mightbedirty but not writeable\n", object);
2238
2239	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2240		vm_offset_t boffset;
2241		vm_offset_t eoffset;
2242
2243		vm_page_lock_queues();
2244		/*
2245		 * test the pages to see if they have been modified directly
2246		 * by users through the VM system.
2247		 */
2248		for (i = 0; i < bp->b_npages; i++)
2249			vm_page_test_dirty(bp->b_pages[i]);
2250
2251		/*
2252		 * Calculate the encompassing dirty range, boffset and eoffset,
2253		 * (eoffset - boffset) bytes.
2254		 */
2255
2256		for (i = 0; i < bp->b_npages; i++) {
2257			if (bp->b_pages[i]->dirty)
2258				break;
2259		}
2260		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2261
2262		for (i = bp->b_npages - 1; i >= 0; --i) {
2263			if (bp->b_pages[i]->dirty) {
2264				break;
2265			}
2266		}
2267		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2268
2269		vm_page_unlock_queues();
2270		/*
2271		 * Fit it to the buffer.
2272		 */
2273
2274		if (eoffset > bp->b_bcount)
2275			eoffset = bp->b_bcount;
2276
2277		/*
2278		 * If we have a good dirty range, merge with the existing
2279		 * dirty range.
2280		 */
2281
2282		if (boffset < eoffset) {
2283			if (bp->b_dirtyoff > boffset)
2284				bp->b_dirtyoff = boffset;
2285			if (bp->b_dirtyend < eoffset)
2286				bp->b_dirtyend = eoffset;
2287		}
2288	}
2289	VM_OBJECT_UNLOCK(object);
2290}
2291
2292/*
2293 *	getblk:
2294 *
2295 *	Get a block given a specified block and offset into a file/device.
2296 *	The buffers B_DONE bit will be cleared on return, making it almost
2297 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2298 *	return.  The caller should clear B_INVAL prior to initiating a
2299 *	READ.
2300 *
2301 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2302 *	an existing buffer.
2303 *
2304 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2305 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2306 *	and then cleared based on the backing VM.  If the previous buffer is
2307 *	non-0-sized but invalid, B_CACHE will be cleared.
2308 *
2309 *	If getblk() must create a new buffer, the new buffer is returned with
2310 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2311 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2312 *	backing VM.
2313 *
2314 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2315 *	B_CACHE bit is clear.
2316 *
2317 *	What this means, basically, is that the caller should use B_CACHE to
2318 *	determine whether the buffer is fully valid or not and should clear
2319 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2320 *	the buffer by loading its data area with something, the caller needs
2321 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2322 *	the caller should set B_CACHE ( as an optimization ), else the caller
2323 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2324 *	a write attempt or if it was a successfull read.  If the caller
2325 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2326 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2327 */
2328struct buf *
2329getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2330    int flags)
2331{
2332	struct buf *bp;
2333	struct bufobj *bo;
2334	int s;
2335	int error;
2336
2337	CTR3(KTR_BUF, "getblk(%p, %ld, %d)", vp, (long)blkno, size);
2338	ASSERT_VOP_LOCKED(vp, "getblk");
2339	if (size > MAXBSIZE)
2340		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2341
2342	bo = &vp->v_bufobj;
2343	s = splbio();
2344loop:
2345	/*
2346	 * Block if we are low on buffers.   Certain processes are allowed
2347	 * to completely exhaust the buffer cache.
2348         *
2349         * If this check ever becomes a bottleneck it may be better to
2350         * move it into the else, when gbincore() fails.  At the moment
2351         * it isn't a problem.
2352	 *
2353	 * XXX remove if 0 sections (clean this up after its proven)
2354         */
2355	if (numfreebuffers == 0) {
2356		if (curthread == PCPU_GET(idlethread))
2357			return NULL;
2358		mtx_lock(&nblock);
2359		needsbuffer |= VFS_BIO_NEED_ANY;
2360		mtx_unlock(&nblock);
2361	}
2362
2363	VI_LOCK(vp);
2364	bp = gbincore(bo, blkno);
2365	if (bp != NULL) {
2366		int lockflags;
2367		/*
2368		 * Buffer is in-core.  If the buffer is not busy, it must
2369		 * be on a queue.
2370		 */
2371		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2372
2373		if (flags & GB_LOCK_NOWAIT)
2374			lockflags |= LK_NOWAIT;
2375
2376		error = BUF_TIMELOCK(bp, lockflags,
2377		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2378
2379		/*
2380		 * If we slept and got the lock we have to restart in case
2381		 * the buffer changed identities.
2382		 */
2383		if (error == ENOLCK)
2384			goto loop;
2385		/* We timed out or were interrupted. */
2386		else if (error)
2387			return (NULL);
2388
2389		/*
2390		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2391		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2392		 * and for a VMIO buffer B_CACHE is adjusted according to the
2393		 * backing VM cache.
2394		 */
2395		if (bp->b_flags & B_INVAL)
2396			bp->b_flags &= ~B_CACHE;
2397		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2398			bp->b_flags |= B_CACHE;
2399		bremfree(bp);
2400
2401		/*
2402		 * check for size inconsistancies for non-VMIO case.
2403		 */
2404
2405		if (bp->b_bcount != size) {
2406			if ((bp->b_flags & B_VMIO) == 0 ||
2407			    (size > bp->b_kvasize)) {
2408				if (bp->b_flags & B_DELWRI) {
2409					bp->b_flags |= B_NOCACHE;
2410					bwrite(bp);
2411				} else {
2412					if ((bp->b_flags & B_VMIO) &&
2413					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2414						bp->b_flags |= B_RELBUF;
2415						brelse(bp);
2416					} else {
2417						bp->b_flags |= B_NOCACHE;
2418						bwrite(bp);
2419					}
2420				}
2421				goto loop;
2422			}
2423		}
2424
2425		/*
2426		 * If the size is inconsistant in the VMIO case, we can resize
2427		 * the buffer.  This might lead to B_CACHE getting set or
2428		 * cleared.  If the size has not changed, B_CACHE remains
2429		 * unchanged from its previous state.
2430		 */
2431
2432		if (bp->b_bcount != size)
2433			allocbuf(bp, size);
2434
2435		KASSERT(bp->b_offset != NOOFFSET,
2436		    ("getblk: no buffer offset"));
2437
2438		/*
2439		 * A buffer with B_DELWRI set and B_CACHE clear must
2440		 * be committed before we can return the buffer in
2441		 * order to prevent the caller from issuing a read
2442		 * ( due to B_CACHE not being set ) and overwriting
2443		 * it.
2444		 *
2445		 * Most callers, including NFS and FFS, need this to
2446		 * operate properly either because they assume they
2447		 * can issue a read if B_CACHE is not set, or because
2448		 * ( for example ) an uncached B_DELWRI might loop due
2449		 * to softupdates re-dirtying the buffer.  In the latter
2450		 * case, B_CACHE is set after the first write completes,
2451		 * preventing further loops.
2452		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2453		 * above while extending the buffer, we cannot allow the
2454		 * buffer to remain with B_CACHE set after the write
2455		 * completes or it will represent a corrupt state.  To
2456		 * deal with this we set B_NOCACHE to scrap the buffer
2457		 * after the write.
2458		 *
2459		 * We might be able to do something fancy, like setting
2460		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2461		 * so the below call doesn't set B_CACHE, but that gets real
2462		 * confusing.  This is much easier.
2463		 */
2464
2465		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2466			bp->b_flags |= B_NOCACHE;
2467			bwrite(bp);
2468			goto loop;
2469		}
2470
2471		splx(s);
2472		bp->b_flags &= ~B_DONE;
2473	} else {
2474		int bsize, maxsize, vmio;
2475		off_t offset;
2476
2477		/*
2478		 * Buffer is not in-core, create new buffer.  The buffer
2479		 * returned by getnewbuf() is locked.  Note that the returned
2480		 * buffer is also considered valid (not marked B_INVAL).
2481		 */
2482		VI_UNLOCK(vp);
2483		/*
2484		 * If the user does not want us to create the buffer, bail out
2485		 * here.
2486		 */
2487		if (flags & GB_NOCREAT) {
2488			splx(s);
2489			return NULL;
2490		}
2491
2492		bsize = bo->bo_bsize;
2493		offset = blkno * bsize;
2494		vmio = vp->v_object != NULL;
2495		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2496		maxsize = imax(maxsize, bsize);
2497
2498		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2499		if (bp == NULL) {
2500			if (slpflag || slptimeo) {
2501				splx(s);
2502				return NULL;
2503			}
2504			goto loop;
2505		}
2506
2507		/*
2508		 * This code is used to make sure that a buffer is not
2509		 * created while the getnewbuf routine is blocked.
2510		 * This can be a problem whether the vnode is locked or not.
2511		 * If the buffer is created out from under us, we have to
2512		 * throw away the one we just created.  There is now window
2513		 * race because we are safely running at splbio() from the
2514		 * point of the duplicate buffer creation through to here,
2515		 * and we've locked the buffer.
2516		 *
2517		 * Note: this must occur before we associate the buffer
2518		 * with the vp especially considering limitations in
2519		 * the splay tree implementation when dealing with duplicate
2520		 * lblkno's.
2521		 */
2522		BO_LOCK(bo);
2523		if (gbincore(bo, blkno)) {
2524			BO_UNLOCK(bo);
2525			bp->b_flags |= B_INVAL;
2526			brelse(bp);
2527			goto loop;
2528		}
2529
2530		/*
2531		 * Insert the buffer into the hash, so that it can
2532		 * be found by incore.
2533		 */
2534		bp->b_blkno = bp->b_lblkno = blkno;
2535		bp->b_offset = offset;
2536
2537		bgetvp(vp, bp);
2538		BO_UNLOCK(bo);
2539
2540		/*
2541		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2542		 * buffer size starts out as 0, B_CACHE will be set by
2543		 * allocbuf() for the VMIO case prior to it testing the
2544		 * backing store for validity.
2545		 */
2546
2547		if (vmio) {
2548			bp->b_flags |= B_VMIO;
2549#if defined(VFS_BIO_DEBUG)
2550			if (vn_canvmio(vp) != TRUE)
2551				printf("getblk: VMIO on vnode type %d\n",
2552					vp->v_type);
2553#endif
2554			KASSERT(vp->v_object == bp->b_bufobj->bo_object,
2555			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2556			    bp, vp->v_object, bp->b_bufobj->bo_object));
2557		} else {
2558			bp->b_flags &= ~B_VMIO;
2559			KASSERT(bp->b_bufobj->bo_object == NULL,
2560			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2561			    bp, bp->b_bufobj->bo_object));
2562		}
2563
2564		allocbuf(bp, size);
2565
2566		splx(s);
2567		bp->b_flags &= ~B_DONE;
2568	}
2569	CTR4(KTR_BUF, "getblk(%p, %ld, %d) = %p", vp, (long)blkno, size, bp);
2570	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2571	KASSERT(bp->b_bufobj == bo,
2572	    ("wrong b_bufobj %p should be %p", bp->b_bufobj, bo));
2573	return (bp);
2574}
2575
2576/*
2577 * Get an empty, disassociated buffer of given size.  The buffer is initially
2578 * set to B_INVAL.
2579 */
2580struct buf *
2581geteblk(int size)
2582{
2583	struct buf *bp;
2584	int s;
2585	int maxsize;
2586
2587	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2588
2589	s = splbio();
2590	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2591		continue;
2592	splx(s);
2593	allocbuf(bp, size);
2594	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2595	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2596	return (bp);
2597}
2598
2599
2600/*
2601 * This code constitutes the buffer memory from either anonymous system
2602 * memory (in the case of non-VMIO operations) or from an associated
2603 * VM object (in the case of VMIO operations).  This code is able to
2604 * resize a buffer up or down.
2605 *
2606 * Note that this code is tricky, and has many complications to resolve
2607 * deadlock or inconsistant data situations.  Tread lightly!!!
2608 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2609 * the caller.  Calling this code willy nilly can result in the loss of data.
2610 *
2611 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2612 * B_CACHE for the non-VMIO case.
2613 */
2614
2615int
2616allocbuf(struct buf *bp, int size)
2617{
2618	int newbsize, mbsize;
2619	int i;
2620
2621	if (BUF_REFCNT(bp) == 0)
2622		panic("allocbuf: buffer not busy");
2623
2624	if (bp->b_kvasize < size)
2625		panic("allocbuf: buffer too small");
2626
2627	if ((bp->b_flags & B_VMIO) == 0) {
2628		caddr_t origbuf;
2629		int origbufsize;
2630		/*
2631		 * Just get anonymous memory from the kernel.  Don't
2632		 * mess with B_CACHE.
2633		 */
2634		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2635		if (bp->b_flags & B_MALLOC)
2636			newbsize = mbsize;
2637		else
2638			newbsize = round_page(size);
2639
2640		if (newbsize < bp->b_bufsize) {
2641			/*
2642			 * malloced buffers are not shrunk
2643			 */
2644			if (bp->b_flags & B_MALLOC) {
2645				if (newbsize) {
2646					bp->b_bcount = size;
2647				} else {
2648					free(bp->b_data, M_BIOBUF);
2649					if (bp->b_bufsize) {
2650						atomic_subtract_int(
2651						    &bufmallocspace,
2652						    bp->b_bufsize);
2653						bufspacewakeup();
2654						bp->b_bufsize = 0;
2655					}
2656					bp->b_saveaddr = bp->b_kvabase;
2657					bp->b_data = bp->b_saveaddr;
2658					bp->b_bcount = 0;
2659					bp->b_flags &= ~B_MALLOC;
2660				}
2661				return 1;
2662			}
2663			vm_hold_free_pages(
2664			    bp,
2665			    (vm_offset_t) bp->b_data + newbsize,
2666			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2667		} else if (newbsize > bp->b_bufsize) {
2668			/*
2669			 * We only use malloced memory on the first allocation.
2670			 * and revert to page-allocated memory when the buffer
2671			 * grows.
2672			 */
2673			/*
2674			 * There is a potential smp race here that could lead
2675			 * to bufmallocspace slightly passing the max.  It
2676			 * is probably extremely rare and not worth worrying
2677			 * over.
2678			 */
2679			if ( (bufmallocspace < maxbufmallocspace) &&
2680				(bp->b_bufsize == 0) &&
2681				(mbsize <= PAGE_SIZE/2)) {
2682
2683				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2684				bp->b_bufsize = mbsize;
2685				bp->b_bcount = size;
2686				bp->b_flags |= B_MALLOC;
2687				atomic_add_int(&bufmallocspace, mbsize);
2688				return 1;
2689			}
2690			origbuf = NULL;
2691			origbufsize = 0;
2692			/*
2693			 * If the buffer is growing on its other-than-first allocation,
2694			 * then we revert to the page-allocation scheme.
2695			 */
2696			if (bp->b_flags & B_MALLOC) {
2697				origbuf = bp->b_data;
2698				origbufsize = bp->b_bufsize;
2699				bp->b_data = bp->b_kvabase;
2700				if (bp->b_bufsize) {
2701					atomic_subtract_int(&bufmallocspace,
2702					    bp->b_bufsize);
2703					bufspacewakeup();
2704					bp->b_bufsize = 0;
2705				}
2706				bp->b_flags &= ~B_MALLOC;
2707				newbsize = round_page(newbsize);
2708			}
2709			vm_hold_load_pages(
2710			    bp,
2711			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2712			    (vm_offset_t) bp->b_data + newbsize);
2713			if (origbuf) {
2714				bcopy(origbuf, bp->b_data, origbufsize);
2715				free(origbuf, M_BIOBUF);
2716			}
2717		}
2718	} else {
2719		int desiredpages;
2720
2721		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2722		desiredpages = (size == 0) ? 0 :
2723			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2724
2725		if (bp->b_flags & B_MALLOC)
2726			panic("allocbuf: VMIO buffer can't be malloced");
2727		/*
2728		 * Set B_CACHE initially if buffer is 0 length or will become
2729		 * 0-length.
2730		 */
2731		if (size == 0 || bp->b_bufsize == 0)
2732			bp->b_flags |= B_CACHE;
2733
2734		if (newbsize < bp->b_bufsize) {
2735			/*
2736			 * DEV_BSIZE aligned new buffer size is less then the
2737			 * DEV_BSIZE aligned existing buffer size.  Figure out
2738			 * if we have to remove any pages.
2739			 */
2740			if (desiredpages < bp->b_npages) {
2741				vm_page_t m;
2742
2743				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2744				vm_page_lock_queues();
2745				for (i = desiredpages; i < bp->b_npages; i++) {
2746					/*
2747					 * the page is not freed here -- it
2748					 * is the responsibility of
2749					 * vnode_pager_setsize
2750					 */
2751					m = bp->b_pages[i];
2752					KASSERT(m != bogus_page,
2753					    ("allocbuf: bogus page found"));
2754					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2755						vm_page_lock_queues();
2756
2757					bp->b_pages[i] = NULL;
2758					vm_page_unwire(m, 0);
2759				}
2760				vm_page_unlock_queues();
2761				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2762				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2763				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2764				bp->b_npages = desiredpages;
2765			}
2766		} else if (size > bp->b_bcount) {
2767			/*
2768			 * We are growing the buffer, possibly in a
2769			 * byte-granular fashion.
2770			 */
2771			struct vnode *vp;
2772			vm_object_t obj;
2773			vm_offset_t toff;
2774			vm_offset_t tinc;
2775
2776			/*
2777			 * Step 1, bring in the VM pages from the object,
2778			 * allocating them if necessary.  We must clear
2779			 * B_CACHE if these pages are not valid for the
2780			 * range covered by the buffer.
2781			 */
2782
2783			vp = bp->b_vp;
2784			obj = bp->b_bufobj->bo_object;
2785
2786			VM_OBJECT_LOCK(obj);
2787			while (bp->b_npages < desiredpages) {
2788				vm_page_t m;
2789				vm_pindex_t pi;
2790
2791				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2792				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2793					/*
2794					 * note: must allocate system pages
2795					 * since blocking here could intefere
2796					 * with paging I/O, no matter which
2797					 * process we are.
2798					 */
2799					m = vm_page_alloc(obj, pi,
2800					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2801					    VM_ALLOC_WIRED);
2802					if (m == NULL) {
2803						atomic_add_int(&vm_pageout_deficit,
2804						    desiredpages - bp->b_npages);
2805						VM_OBJECT_UNLOCK(obj);
2806						VM_WAIT;
2807						VM_OBJECT_LOCK(obj);
2808					} else {
2809						bp->b_flags &= ~B_CACHE;
2810						bp->b_pages[bp->b_npages] = m;
2811						++bp->b_npages;
2812					}
2813					continue;
2814				}
2815
2816				/*
2817				 * We found a page.  If we have to sleep on it,
2818				 * retry because it might have gotten freed out
2819				 * from under us.
2820				 *
2821				 * We can only test PG_BUSY here.  Blocking on
2822				 * m->busy might lead to a deadlock:
2823				 *
2824				 *  vm_fault->getpages->cluster_read->allocbuf
2825				 *
2826				 */
2827				vm_page_lock_queues();
2828				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2829					continue;
2830
2831				/*
2832				 * We have a good page.  Should we wakeup the
2833				 * page daemon?
2834				 */
2835				if ((curproc != pageproc) &&
2836				    ((m->queue - m->pc) == PQ_CACHE) &&
2837				    ((cnt.v_free_count + cnt.v_cache_count) <
2838					(cnt.v_free_min + cnt.v_cache_min))) {
2839					pagedaemon_wakeup();
2840				}
2841				vm_page_wire(m);
2842				vm_page_unlock_queues();
2843				bp->b_pages[bp->b_npages] = m;
2844				++bp->b_npages;
2845			}
2846
2847			/*
2848			 * Step 2.  We've loaded the pages into the buffer,
2849			 * we have to figure out if we can still have B_CACHE
2850			 * set.  Note that B_CACHE is set according to the
2851			 * byte-granular range ( bcount and size ), new the
2852			 * aligned range ( newbsize ).
2853			 *
2854			 * The VM test is against m->valid, which is DEV_BSIZE
2855			 * aligned.  Needless to say, the validity of the data
2856			 * needs to also be DEV_BSIZE aligned.  Note that this
2857			 * fails with NFS if the server or some other client
2858			 * extends the file's EOF.  If our buffer is resized,
2859			 * B_CACHE may remain set! XXX
2860			 */
2861
2862			toff = bp->b_bcount;
2863			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2864
2865			while ((bp->b_flags & B_CACHE) && toff < size) {
2866				vm_pindex_t pi;
2867
2868				if (tinc > (size - toff))
2869					tinc = size - toff;
2870
2871				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2872				    PAGE_SHIFT;
2873
2874				vfs_buf_test_cache(
2875				    bp,
2876				    bp->b_offset,
2877				    toff,
2878				    tinc,
2879				    bp->b_pages[pi]
2880				);
2881				toff += tinc;
2882				tinc = PAGE_SIZE;
2883			}
2884			VM_OBJECT_UNLOCK(obj);
2885
2886			/*
2887			 * Step 3, fixup the KVM pmap.  Remember that
2888			 * bp->b_data is relative to bp->b_offset, but
2889			 * bp->b_offset may be offset into the first page.
2890			 */
2891
2892			bp->b_data = (caddr_t)
2893			    trunc_page((vm_offset_t)bp->b_data);
2894			pmap_qenter(
2895			    (vm_offset_t)bp->b_data,
2896			    bp->b_pages,
2897			    bp->b_npages
2898			);
2899
2900			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2901			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2902		}
2903	}
2904	if (newbsize < bp->b_bufsize)
2905		bufspacewakeup();
2906	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2907	bp->b_bcount = size;		/* requested buffer size	*/
2908	return 1;
2909}
2910
2911void
2912biodone(struct bio *bp)
2913{
2914
2915	mtx_lock(&bdonelock);
2916	bp->bio_flags |= BIO_DONE;
2917	if (bp->bio_done == NULL)
2918		wakeup(bp);
2919	mtx_unlock(&bdonelock);
2920	if (bp->bio_done != NULL)
2921		bp->bio_done(bp);
2922}
2923
2924/*
2925 * Wait for a BIO to finish.
2926 *
2927 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
2928 * case is not yet clear.
2929 */
2930int
2931biowait(struct bio *bp, const char *wchan)
2932{
2933
2934	mtx_lock(&bdonelock);
2935	while ((bp->bio_flags & BIO_DONE) == 0)
2936		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
2937	mtx_unlock(&bdonelock);
2938	if (bp->bio_error != 0)
2939		return (bp->bio_error);
2940	if (!(bp->bio_flags & BIO_ERROR))
2941		return (0);
2942	return (EIO);
2943}
2944
2945void
2946biofinish(struct bio *bp, struct devstat *stat, int error)
2947{
2948
2949	if (error) {
2950		bp->bio_error = error;
2951		bp->bio_flags |= BIO_ERROR;
2952	}
2953	if (stat != NULL)
2954		devstat_end_transaction_bio(stat, bp);
2955	biodone(bp);
2956}
2957
2958/*
2959 *	bufwait:
2960 *
2961 *	Wait for buffer I/O completion, returning error status.  The buffer
2962 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
2963 *	error and cleared.
2964 */
2965int
2966bufwait(struct buf *bp)
2967{
2968	int s;
2969
2970	s = splbio();
2971	if (bp->b_iocmd == BIO_READ)
2972		bwait(bp, PRIBIO, "biord");
2973	else
2974		bwait(bp, PRIBIO, "biowr");
2975	splx(s);
2976	if (bp->b_flags & B_EINTR) {
2977		bp->b_flags &= ~B_EINTR;
2978		return (EINTR);
2979	}
2980	if (bp->b_ioflags & BIO_ERROR) {
2981		return (bp->b_error ? bp->b_error : EIO);
2982	} else {
2983		return (0);
2984	}
2985}
2986
2987 /*
2988  * Call back function from struct bio back up to struct buf.
2989  */
2990static void
2991bufdonebio(struct bio *bip)
2992{
2993	struct buf *bp;
2994
2995	bp = bip->bio_caller2;
2996	bp->b_resid = bp->b_bcount - bip->bio_completed;
2997	bp->b_resid = bip->bio_resid;	/* XXX: remove */
2998	bp->b_ioflags = bip->bio_flags;
2999	bp->b_error = bip->bio_error;
3000	if (bp->b_error)
3001		bp->b_ioflags |= BIO_ERROR;
3002	bufdone(bp);
3003	g_destroy_bio(bip);
3004}
3005
3006void
3007dev_strategy(struct cdev *dev, struct buf *bp)
3008{
3009	struct cdevsw *csw;
3010	struct bio *bip;
3011
3012	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3013		panic("b_iocmd botch");
3014	for (;;) {
3015		bip = g_new_bio();
3016		if (bip != NULL)
3017			break;
3018		/* Try again later */
3019		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3020	}
3021	bip->bio_cmd = bp->b_iocmd;
3022	bip->bio_offset = bp->b_iooffset;
3023	bip->bio_length = bp->b_bcount;
3024	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3025	bip->bio_data = bp->b_data;
3026	bip->bio_done = bufdonebio;
3027	bip->bio_caller2 = bp;
3028	bip->bio_dev = dev;
3029	KASSERT(dev->si_refcount > 0,
3030	    ("dev_strategy on un-referenced struct cdev *(%s)",
3031	    devtoname(dev)));
3032	csw = dev_refthread(dev);
3033	if (csw == NULL) {
3034		bp->b_error = ENXIO;
3035		bp->b_ioflags = BIO_ERROR;
3036		bufdone(bp);
3037		return;
3038	}
3039	(*csw->d_strategy)(bip);
3040	dev_relthread(dev);
3041}
3042
3043/*
3044 *	bufdone:
3045 *
3046 *	Finish I/O on a buffer, optionally calling a completion function.
3047 *	This is usually called from an interrupt so process blocking is
3048 *	not allowed.
3049 *
3050 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3051 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3052 *	assuming B_INVAL is clear.
3053 *
3054 *	For the VMIO case, we set B_CACHE if the op was a read and no
3055 *	read error occured, or if the op was a write.  B_CACHE is never
3056 *	set if the buffer is invalid or otherwise uncacheable.
3057 *
3058 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3059 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3060 *	in the biodone routine.
3061 */
3062void
3063bufdone(struct buf *bp)
3064{
3065	struct bufobj *dropobj;
3066	int s;
3067	void    (*biodone)(struct buf *);
3068
3069
3070	CTR3(KTR_BUF, "bufdone(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
3071	s = splbio();
3072	dropobj = NULL;
3073
3074	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3075	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3076
3077	runningbufwakeup(bp);
3078	if (bp->b_iocmd == BIO_WRITE)
3079		dropobj = bp->b_bufobj;
3080	/* call optional completion function if requested */
3081	if (bp->b_iodone != NULL) {
3082		biodone = bp->b_iodone;
3083		bp->b_iodone = NULL;
3084		/*
3085		 * Device drivers may or may not hold giant, hold it here
3086		 * if we're calling into unknown code.
3087		 */
3088		mtx_lock(&Giant);
3089		bp->b_flags |= B_DONE;
3090		(*biodone) (bp);
3091		mtx_unlock(&Giant);
3092		if (dropobj)
3093			bufobj_wdrop(dropobj);
3094		splx(s);
3095		return;
3096	}
3097	if (LIST_FIRST(&bp->b_dep) != NULL)
3098		buf_complete(bp);
3099
3100	if (bp->b_flags & B_VMIO) {
3101		int i;
3102		vm_ooffset_t foff;
3103		vm_page_t m;
3104		vm_object_t obj;
3105		int iosize;
3106		struct vnode *vp = bp->b_vp;
3107
3108		obj = bp->b_bufobj->bo_object;
3109
3110#if defined(VFS_BIO_DEBUG)
3111		mp_fixme("usecount and vflag accessed without locks.");
3112		if (vp->v_usecount == 0) {
3113			panic("biodone: zero vnode ref count");
3114		}
3115
3116		KASSERT(vp->v_object != NULL,
3117			("biodone: vnode %p has no vm_object", vp));
3118#endif
3119
3120		foff = bp->b_offset;
3121		KASSERT(bp->b_offset != NOOFFSET,
3122		    ("biodone: no buffer offset"));
3123
3124		VM_OBJECT_LOCK(obj);
3125#if defined(VFS_BIO_DEBUG)
3126		if (obj->paging_in_progress < bp->b_npages) {
3127			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3128			    obj->paging_in_progress, bp->b_npages);
3129		}
3130#endif
3131
3132		/*
3133		 * Set B_CACHE if the op was a normal read and no error
3134		 * occured.  B_CACHE is set for writes in the b*write()
3135		 * routines.
3136		 */
3137		iosize = bp->b_bcount - bp->b_resid;
3138		if (bp->b_iocmd == BIO_READ &&
3139		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3140		    !(bp->b_ioflags & BIO_ERROR)) {
3141			bp->b_flags |= B_CACHE;
3142		}
3143		vm_page_lock_queues();
3144		for (i = 0; i < bp->b_npages; i++) {
3145			int bogusflag = 0;
3146			int resid;
3147
3148			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3149			if (resid > iosize)
3150				resid = iosize;
3151
3152			/*
3153			 * cleanup bogus pages, restoring the originals
3154			 */
3155			m = bp->b_pages[i];
3156			if (m == bogus_page) {
3157				bogusflag = 1;
3158				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3159				if (m == NULL)
3160					panic("biodone: page disappeared!");
3161				bp->b_pages[i] = m;
3162				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3163			}
3164#if defined(VFS_BIO_DEBUG)
3165			if (OFF_TO_IDX(foff) != m->pindex) {
3166				printf(
3167"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3168				    (intmax_t)foff, (uintmax_t)m->pindex);
3169			}
3170#endif
3171
3172			/*
3173			 * In the write case, the valid and clean bits are
3174			 * already changed correctly ( see bdwrite() ), so we
3175			 * only need to do this here in the read case.
3176			 */
3177			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3178				vfs_page_set_valid(bp, foff, i, m);
3179			}
3180
3181			/*
3182			 * when debugging new filesystems or buffer I/O methods, this
3183			 * is the most common error that pops up.  if you see this, you
3184			 * have not set the page busy flag correctly!!!
3185			 */
3186			if (m->busy == 0) {
3187				printf("biodone: page busy < 0, "
3188				    "pindex: %d, foff: 0x(%x,%x), "
3189				    "resid: %d, index: %d\n",
3190				    (int) m->pindex, (int)(foff >> 32),
3191						(int) foff & 0xffffffff, resid, i);
3192				if (!vn_isdisk(vp, NULL))
3193					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3194					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3195					    (intmax_t) bp->b_lblkno,
3196					    bp->b_flags, bp->b_npages);
3197				else
3198					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3199					    (intmax_t) bp->b_lblkno,
3200					    bp->b_flags, bp->b_npages);
3201				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3202				    (u_long)m->valid, (u_long)m->dirty,
3203				    m->wire_count);
3204				panic("biodone: page busy < 0\n");
3205			}
3206			vm_page_io_finish(m);
3207			vm_object_pip_subtract(obj, 1);
3208			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3209			iosize -= resid;
3210		}
3211		vm_page_unlock_queues();
3212		vm_object_pip_wakeupn(obj, 0);
3213		VM_OBJECT_UNLOCK(obj);
3214	}
3215
3216	/*
3217	 * For asynchronous completions, release the buffer now. The brelse
3218	 * will do a wakeup there if necessary - so no need to do a wakeup
3219	 * here in the async case. The sync case always needs to do a wakeup.
3220	 */
3221
3222	if (bp->b_flags & B_ASYNC) {
3223		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3224			brelse(bp);
3225		else
3226			bqrelse(bp);
3227	} else
3228		bdone(bp);
3229	if (dropobj)
3230		bufobj_wdrop(dropobj);
3231	splx(s);
3232}
3233
3234/*
3235 * This routine is called in lieu of iodone in the case of
3236 * incomplete I/O.  This keeps the busy status for pages
3237 * consistant.
3238 */
3239void
3240vfs_unbusy_pages(struct buf *bp)
3241{
3242	int i;
3243	vm_object_t obj;
3244	vm_page_t m;
3245
3246	runningbufwakeup(bp);
3247	if (!(bp->b_flags & B_VMIO))
3248		return;
3249
3250	obj = bp->b_bufobj->bo_object;
3251	VM_OBJECT_LOCK(obj);
3252	vm_page_lock_queues();
3253	for (i = 0; i < bp->b_npages; i++) {
3254		m = bp->b_pages[i];
3255		if (m == bogus_page) {
3256			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3257			if (!m)
3258				panic("vfs_unbusy_pages: page missing\n");
3259			bp->b_pages[i] = m;
3260			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3261			    bp->b_pages, bp->b_npages);
3262		}
3263		vm_object_pip_subtract(obj, 1);
3264		vm_page_io_finish(m);
3265	}
3266	vm_page_unlock_queues();
3267	vm_object_pip_wakeupn(obj, 0);
3268	VM_OBJECT_UNLOCK(obj);
3269}
3270
3271/*
3272 * vfs_page_set_valid:
3273 *
3274 *	Set the valid bits in a page based on the supplied offset.   The
3275 *	range is restricted to the buffer's size.
3276 *
3277 *	This routine is typically called after a read completes.
3278 */
3279static void
3280vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3281{
3282	vm_ooffset_t soff, eoff;
3283
3284	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3285	/*
3286	 * Start and end offsets in buffer.  eoff - soff may not cross a
3287	 * page boundry or cross the end of the buffer.  The end of the
3288	 * buffer, in this case, is our file EOF, not the allocation size
3289	 * of the buffer.
3290	 */
3291	soff = off;
3292	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3293	if (eoff > bp->b_offset + bp->b_bcount)
3294		eoff = bp->b_offset + bp->b_bcount;
3295
3296	/*
3297	 * Set valid range.  This is typically the entire buffer and thus the
3298	 * entire page.
3299	 */
3300	if (eoff > soff) {
3301		vm_page_set_validclean(
3302		    m,
3303		   (vm_offset_t) (soff & PAGE_MASK),
3304		   (vm_offset_t) (eoff - soff)
3305		);
3306	}
3307}
3308
3309/*
3310 * This routine is called before a device strategy routine.
3311 * It is used to tell the VM system that paging I/O is in
3312 * progress, and treat the pages associated with the buffer
3313 * almost as being PG_BUSY.  Also the object paging_in_progress
3314 * flag is handled to make sure that the object doesn't become
3315 * inconsistant.
3316 *
3317 * Since I/O has not been initiated yet, certain buffer flags
3318 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3319 * and should be ignored.
3320 */
3321void
3322vfs_busy_pages(struct buf *bp, int clear_modify)
3323{
3324	int i, bogus;
3325	vm_object_t obj;
3326	vm_ooffset_t foff;
3327	vm_page_t m;
3328
3329	if (!(bp->b_flags & B_VMIO))
3330		return;
3331
3332	obj = bp->b_bufobj->bo_object;
3333	foff = bp->b_offset;
3334	KASSERT(bp->b_offset != NOOFFSET,
3335	    ("vfs_busy_pages: no buffer offset"));
3336	vfs_setdirty(bp);
3337	VM_OBJECT_LOCK(obj);
3338retry:
3339	vm_page_lock_queues();
3340	for (i = 0; i < bp->b_npages; i++) {
3341		m = bp->b_pages[i];
3342
3343		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3344			goto retry;
3345	}
3346	bogus = 0;
3347	for (i = 0; i < bp->b_npages; i++) {
3348		m = bp->b_pages[i];
3349
3350		if ((bp->b_flags & B_CLUSTER) == 0) {
3351			vm_object_pip_add(obj, 1);
3352			vm_page_io_start(m);
3353		}
3354		/*
3355		 * When readying a buffer for a read ( i.e
3356		 * clear_modify == 0 ), it is important to do
3357		 * bogus_page replacement for valid pages in
3358		 * partially instantiated buffers.  Partially
3359		 * instantiated buffers can, in turn, occur when
3360		 * reconstituting a buffer from its VM backing store
3361		 * base.  We only have to do this if B_CACHE is
3362		 * clear ( which causes the I/O to occur in the
3363		 * first place ).  The replacement prevents the read
3364		 * I/O from overwriting potentially dirty VM-backed
3365		 * pages.  XXX bogus page replacement is, uh, bogus.
3366		 * It may not work properly with small-block devices.
3367		 * We need to find a better way.
3368		 */
3369		pmap_remove_all(m);
3370		if (clear_modify)
3371			vfs_page_set_valid(bp, foff, i, m);
3372		else if (m->valid == VM_PAGE_BITS_ALL &&
3373		    (bp->b_flags & B_CACHE) == 0) {
3374			bp->b_pages[i] = bogus_page;
3375			bogus++;
3376		}
3377		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3378	}
3379	vm_page_unlock_queues();
3380	VM_OBJECT_UNLOCK(obj);
3381	if (bogus)
3382		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3383		    bp->b_pages, bp->b_npages);
3384}
3385
3386/*
3387 * Tell the VM system that the pages associated with this buffer
3388 * are clean.  This is used for delayed writes where the data is
3389 * going to go to disk eventually without additional VM intevention.
3390 *
3391 * Note that while we only really need to clean through to b_bcount, we
3392 * just go ahead and clean through to b_bufsize.
3393 */
3394static void
3395vfs_clean_pages(struct buf *bp)
3396{
3397	int i;
3398	vm_ooffset_t foff, noff, eoff;
3399	vm_page_t m;
3400
3401	if (!(bp->b_flags & B_VMIO))
3402		return;
3403
3404	foff = bp->b_offset;
3405	KASSERT(bp->b_offset != NOOFFSET,
3406	    ("vfs_clean_pages: no buffer offset"));
3407	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3408	vm_page_lock_queues();
3409	for (i = 0; i < bp->b_npages; i++) {
3410		m = bp->b_pages[i];
3411		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3412		eoff = noff;
3413
3414		if (eoff > bp->b_offset + bp->b_bufsize)
3415			eoff = bp->b_offset + bp->b_bufsize;
3416		vfs_page_set_valid(bp, foff, i, m);
3417		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3418		foff = noff;
3419	}
3420	vm_page_unlock_queues();
3421	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3422}
3423
3424/*
3425 *	vfs_bio_set_validclean:
3426 *
3427 *	Set the range within the buffer to valid and clean.  The range is
3428 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3429 *	itself may be offset from the beginning of the first page.
3430 *
3431 */
3432
3433void
3434vfs_bio_set_validclean(struct buf *bp, int base, int size)
3435{
3436	int i, n;
3437	vm_page_t m;
3438
3439	if (!(bp->b_flags & B_VMIO))
3440		return;
3441	/*
3442	 * Fixup base to be relative to beginning of first page.
3443	 * Set initial n to be the maximum number of bytes in the
3444	 * first page that can be validated.
3445	 */
3446
3447	base += (bp->b_offset & PAGE_MASK);
3448	n = PAGE_SIZE - (base & PAGE_MASK);
3449
3450	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3451	vm_page_lock_queues();
3452	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3453		m = bp->b_pages[i];
3454		if (n > size)
3455			n = size;
3456		vm_page_set_validclean(m, base & PAGE_MASK, n);
3457		base += n;
3458		size -= n;
3459		n = PAGE_SIZE;
3460	}
3461	vm_page_unlock_queues();
3462	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3463}
3464
3465/*
3466 *	vfs_bio_clrbuf:
3467 *
3468 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3469 *	to clear BIO_ERROR and B_INVAL.
3470 *
3471 *	Note that while we only theoretically need to clear through b_bcount,
3472 *	we go ahead and clear through b_bufsize.
3473 */
3474
3475void
3476vfs_bio_clrbuf(struct buf *bp)
3477{
3478	int i, j, mask = 0;
3479	caddr_t sa, ea;
3480
3481	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3482		clrbuf(bp);
3483		return;
3484	}
3485
3486	bp->b_flags &= ~B_INVAL;
3487	bp->b_ioflags &= ~BIO_ERROR;
3488	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3489	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3490	    (bp->b_offset & PAGE_MASK) == 0) {
3491		if (bp->b_pages[0] == bogus_page)
3492			goto unlock;
3493		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3494		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3495		if ((bp->b_pages[0]->valid & mask) == mask)
3496			goto unlock;
3497		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3498		    ((bp->b_pages[0]->valid & mask) == 0)) {
3499			bzero(bp->b_data, bp->b_bufsize);
3500			bp->b_pages[0]->valid |= mask;
3501			goto unlock;
3502		}
3503	}
3504	ea = sa = bp->b_data;
3505	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3506		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3507		ea = (caddr_t)(vm_offset_t)ulmin(
3508		    (u_long)(vm_offset_t)ea,
3509		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3510		if (bp->b_pages[i] == bogus_page)
3511			continue;
3512		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3513		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3514		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3515		if ((bp->b_pages[i]->valid & mask) == mask)
3516			continue;
3517		if ((bp->b_pages[i]->valid & mask) == 0) {
3518			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3519				bzero(sa, ea - sa);
3520		} else {
3521			for (; sa < ea; sa += DEV_BSIZE, j++) {
3522				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3523				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3524					bzero(sa, DEV_BSIZE);
3525			}
3526		}
3527		bp->b_pages[i]->valid |= mask;
3528	}
3529unlock:
3530	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3531	bp->b_resid = 0;
3532}
3533
3534/*
3535 * vm_hold_load_pages and vm_hold_free_pages get pages into
3536 * a buffers address space.  The pages are anonymous and are
3537 * not associated with a file object.
3538 */
3539static void
3540vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3541{
3542	vm_offset_t pg;
3543	vm_page_t p;
3544	int index;
3545
3546	to = round_page(to);
3547	from = round_page(from);
3548	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3549
3550	VM_OBJECT_LOCK(kernel_object);
3551	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3552tryagain:
3553		/*
3554		 * note: must allocate system pages since blocking here
3555		 * could intefere with paging I/O, no matter which
3556		 * process we are.
3557		 */
3558		p = vm_page_alloc(kernel_object,
3559			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3560		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3561		if (!p) {
3562			atomic_add_int(&vm_pageout_deficit,
3563			    (to - pg) >> PAGE_SHIFT);
3564			VM_OBJECT_UNLOCK(kernel_object);
3565			VM_WAIT;
3566			VM_OBJECT_LOCK(kernel_object);
3567			goto tryagain;
3568		}
3569		p->valid = VM_PAGE_BITS_ALL;
3570		pmap_qenter(pg, &p, 1);
3571		bp->b_pages[index] = p;
3572	}
3573	VM_OBJECT_UNLOCK(kernel_object);
3574	bp->b_npages = index;
3575}
3576
3577/* Return pages associated with this buf to the vm system */
3578static void
3579vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3580{
3581	vm_offset_t pg;
3582	vm_page_t p;
3583	int index, newnpages;
3584
3585	from = round_page(from);
3586	to = round_page(to);
3587	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3588
3589	VM_OBJECT_LOCK(kernel_object);
3590	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3591		p = bp->b_pages[index];
3592		if (p && (index < bp->b_npages)) {
3593			if (p->busy) {
3594				printf(
3595			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3596				    (intmax_t)bp->b_blkno,
3597				    (intmax_t)bp->b_lblkno);
3598			}
3599			bp->b_pages[index] = NULL;
3600			pmap_qremove(pg, 1);
3601			vm_page_lock_queues();
3602			vm_page_unwire(p, 0);
3603			vm_page_free(p);
3604			vm_page_unlock_queues();
3605		}
3606	}
3607	VM_OBJECT_UNLOCK(kernel_object);
3608	bp->b_npages = newnpages;
3609}
3610
3611/*
3612 * Map an IO request into kernel virtual address space.
3613 *
3614 * All requests are (re)mapped into kernel VA space.
3615 * Notice that we use b_bufsize for the size of the buffer
3616 * to be mapped.  b_bcount might be modified by the driver.
3617 *
3618 * Note that even if the caller determines that the address space should
3619 * be valid, a race or a smaller-file mapped into a larger space may
3620 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3621 * check the return value.
3622 */
3623int
3624vmapbuf(struct buf *bp)
3625{
3626	caddr_t addr, kva;
3627	vm_prot_t prot;
3628	int pidx, i;
3629	struct vm_page *m;
3630	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3631
3632	if (bp->b_bufsize < 0)
3633		return (-1);
3634	prot = VM_PROT_READ;
3635	if (bp->b_iocmd == BIO_READ)
3636		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3637	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3638	     addr < bp->b_data + bp->b_bufsize;
3639	     addr += PAGE_SIZE, pidx++) {
3640		/*
3641		 * Do the vm_fault if needed; do the copy-on-write thing
3642		 * when reading stuff off device into memory.
3643		 *
3644		 * NOTE! Must use pmap_extract() because addr may be in
3645		 * the userland address space, and kextract is only guarenteed
3646		 * to work for the kernland address space (see: sparc64 port).
3647		 */
3648retry:
3649		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3650		    prot) < 0) {
3651			vm_page_lock_queues();
3652			for (i = 0; i < pidx; ++i) {
3653				vm_page_unhold(bp->b_pages[i]);
3654				bp->b_pages[i] = NULL;
3655			}
3656			vm_page_unlock_queues();
3657			return(-1);
3658		}
3659		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3660		if (m == NULL)
3661			goto retry;
3662		bp->b_pages[pidx] = m;
3663	}
3664	if (pidx > btoc(MAXPHYS))
3665		panic("vmapbuf: mapped more than MAXPHYS");
3666	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3667
3668	kva = bp->b_saveaddr;
3669	bp->b_npages = pidx;
3670	bp->b_saveaddr = bp->b_data;
3671	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3672	return(0);
3673}
3674
3675/*
3676 * Free the io map PTEs associated with this IO operation.
3677 * We also invalidate the TLB entries and restore the original b_addr.
3678 */
3679void
3680vunmapbuf(struct buf *bp)
3681{
3682	int pidx;
3683	int npages;
3684
3685	npages = bp->b_npages;
3686	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3687	vm_page_lock_queues();
3688	for (pidx = 0; pidx < npages; pidx++)
3689		vm_page_unhold(bp->b_pages[pidx]);
3690	vm_page_unlock_queues();
3691
3692	bp->b_data = bp->b_saveaddr;
3693}
3694
3695void
3696bdone(struct buf *bp)
3697{
3698
3699	mtx_lock(&bdonelock);
3700	bp->b_flags |= B_DONE;
3701	wakeup(bp);
3702	mtx_unlock(&bdonelock);
3703}
3704
3705void
3706bwait(struct buf *bp, u_char pri, const char *wchan)
3707{
3708
3709	mtx_lock(&bdonelock);
3710	while ((bp->b_flags & B_DONE) == 0)
3711		msleep(bp, &bdonelock, pri, wchan, 0);
3712	mtx_unlock(&bdonelock);
3713}
3714
3715int
3716bufsync(struct bufobj *bo, int waitfor, struct thread *td)
3717{
3718
3719	return (VOP_FSYNC(bo->__bo_vnode, waitfor, td));
3720}
3721
3722void
3723bufstrategy(struct bufobj *bo, struct buf *bp)
3724{
3725	int i = 0;
3726	struct vnode *vp;
3727
3728	vp = bp->b_vp;
3729	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3730	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3731	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3732	i = VOP_STRATEGY(vp, bp);
3733	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3734}
3735
3736void
3737bufobj_wref(struct bufobj *bo)
3738{
3739
3740	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3741	BO_LOCK(bo);
3742	bo->bo_numoutput++;
3743	BO_UNLOCK(bo);
3744}
3745
3746void
3747bufobj_wdrop(struct bufobj *bo)
3748{
3749
3750	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3751	BO_LOCK(bo);
3752	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3753	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3754		bo->bo_flag &= ~BO_WWAIT;
3755		wakeup(&bo->bo_numoutput);
3756	}
3757	BO_UNLOCK(bo);
3758}
3759
3760int
3761bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3762{
3763	int error;
3764
3765	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3766	ASSERT_BO_LOCKED(bo);
3767	error = 0;
3768	while (bo->bo_numoutput) {
3769		bo->bo_flag |= BO_WWAIT;
3770		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3771		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3772		if (error)
3773			break;
3774	}
3775	return (error);
3776}
3777
3778#include "opt_ddb.h"
3779#ifdef DDB
3780#include <ddb/ddb.h>
3781
3782/* DDB command to show buffer data */
3783DB_SHOW_COMMAND(buffer, db_show_buffer)
3784{
3785	/* get args */
3786	struct buf *bp = (struct buf *)addr;
3787
3788	if (!have_addr) {
3789		db_printf("usage: show buffer <addr>\n");
3790		return;
3791	}
3792
3793	db_printf("buf at %p\n", bp);
3794	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3795	db_printf(
3796	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3797	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3798	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3799	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3800	db_printf("lockstatus = %d, excl count = %d, excl owner %p\n",
3801	    lockstatus(&bp->b_lock, NULL), bp->b_lock.lk_exclusivecount,
3802	    bp->b_lock.lk_lockholder);
3803	if (bp->b_npages) {
3804		int i;
3805		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3806		for (i = 0; i < bp->b_npages; i++) {
3807			vm_page_t m;
3808			m = bp->b_pages[i];
3809			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3810			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3811			if ((i + 1) < bp->b_npages)
3812				db_printf(",");
3813		}
3814		db_printf("\n");
3815	}
3816}
3817
3818DB_SHOW_COMMAND(lockedbufs, lockedbufs)
3819{
3820	struct buf *bp;
3821	int i;
3822
3823	for (i = 0; i < nbuf; i++) {
3824		bp = &buf[i];
3825		if (lockcount(&bp->b_lock)) {
3826			db_show_buffer((uintptr_t)bp, 1, 0, NULL);
3827			db_printf("\n");
3828		}
3829	}
3830}
3831#endif /* DDB */
3832