vfs_bio.c revision 137197
1/*-
2 * Copyright (c) 2004 Poul-Henning Kamp
3 * Copyright (c) 1994,1997 John S. Dyson
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/*
29 * this file contains a new buffer I/O scheme implementing a coherent
30 * VM object and buffer cache scheme.  Pains have been taken to make
31 * sure that the performance degradation associated with schemes such
32 * as this is not realized.
33 *
34 * Author:  John S. Dyson
35 * Significant help during the development and debugging phases
36 * had been provided by David Greenman, also of the FreeBSD core team.
37 *
38 * see man buf(9) for more info.
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 137197 2004-11-04 09:48:18Z phk $");
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/bio.h>
47#include <sys/conf.h>
48#include <sys/buf.h>
49#include <sys/devicestat.h>
50#include <sys/eventhandler.h>
51#include <sys/lock.h>
52#include <sys/malloc.h>
53#include <sys/mount.h>
54#include <sys/mutex.h>
55#include <sys/kernel.h>
56#include <sys/kthread.h>
57#include <sys/proc.h>
58#include <sys/resourcevar.h>
59#include <sys/sysctl.h>
60#include <sys/vmmeter.h>
61#include <sys/vnode.h>
62#include <geom/geom.h>
63#include <vm/vm.h>
64#include <vm/vm_param.h>
65#include <vm/vm_kern.h>
66#include <vm/vm_pageout.h>
67#include <vm/vm_page.h>
68#include <vm/vm_object.h>
69#include <vm/vm_extern.h>
70#include <vm/vm_map.h>
71#include "opt_directio.h"
72#include "opt_swap.h"
73
74static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
75
76struct	bio_ops bioops;		/* I/O operation notification */
77
78struct	buf_ops buf_ops_bio = {
79	.bop_name	=	"buf_ops_bio",
80	.bop_write	=	bufwrite,
81	.bop_strategy	=	bufstrategy,
82};
83
84/*
85 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
86 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
87 */
88struct buf *buf;		/* buffer header pool */
89
90static struct proc *bufdaemonproc;
91
92static int inmem(struct vnode *vp, daddr_t blkno);
93static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
94		vm_offset_t to);
95static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
96		vm_offset_t to);
97static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
98			       int pageno, vm_page_t m);
99static void vfs_clean_pages(struct buf *bp);
100static void vfs_setdirty(struct buf *bp);
101static void vfs_vmio_release(struct buf *bp);
102static void vfs_backgroundwritedone(struct buf *bp);
103static int vfs_bio_clcheck(struct vnode *vp, int size,
104		daddr_t lblkno, daddr_t blkno);
105static int flushbufqueues(int flushdeps);
106static void buf_daemon(void);
107void bremfreel(struct buf *bp);
108
109int vmiodirenable = TRUE;
110SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
111    "Use the VM system for directory writes");
112int runningbufspace;
113SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
114    "Amount of presently outstanding async buffer io");
115static int bufspace;
116SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
117    "KVA memory used for bufs");
118static int maxbufspace;
119SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
120    "Maximum allowed value of bufspace (including buf_daemon)");
121static int bufmallocspace;
122SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
123    "Amount of malloced memory for buffers");
124static int maxbufmallocspace;
125SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
126    "Maximum amount of malloced memory for buffers");
127static int lobufspace;
128SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
129    "Minimum amount of buffers we want to have");
130static int hibufspace;
131SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
132    "Maximum allowed value of bufspace (excluding buf_daemon)");
133static int bufreusecnt;
134SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
135    "Number of times we have reused a buffer");
136static int buffreekvacnt;
137SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
138    "Number of times we have freed the KVA space from some buffer");
139static int bufdefragcnt;
140SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
141    "Number of times we have had to repeat buffer allocation to defragment");
142static int lorunningspace;
143SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
144    "Minimum preferred space used for in-progress I/O");
145static int hirunningspace;
146SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
147    "Maximum amount of space to use for in-progress I/O");
148static int dirtybufferflushes;
149SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
150    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
151static int altbufferflushes;
152SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
153    0, "Number of fsync flushes to limit dirty buffers");
154static int recursiveflushes;
155SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
156    0, "Number of flushes skipped due to being recursive");
157static int numdirtybuffers;
158SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
159    "Number of buffers that are dirty (has unwritten changes) at the moment");
160static int lodirtybuffers;
161SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
162    "How many buffers we want to have free before bufdaemon can sleep");
163static int hidirtybuffers;
164SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
165    "When the number of dirty buffers is considered severe");
166static int dirtybufthresh;
167SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
168    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
169static int numfreebuffers;
170SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
171    "Number of free buffers");
172static int lofreebuffers;
173SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
174   "XXX Unused");
175static int hifreebuffers;
176SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
177   "XXX Complicatedly unused");
178static int getnewbufcalls;
179SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
180   "Number of calls to getnewbuf");
181static int getnewbufrestarts;
182SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
183    "Number of times getnewbuf has had to restart a buffer aquisition");
184static int dobkgrdwrite = 1;
185SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
186    "Do background writes (honoring the BV_BKGRDWRITE flag)?");
187
188/*
189 * Wakeup point for bufdaemon, as well as indicator of whether it is already
190 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
191 * is idling.
192 */
193static int bd_request;
194
195/*
196 * This lock synchronizes access to bd_request.
197 */
198static struct mtx bdlock;
199
200/*
201 * bogus page -- for I/O to/from partially complete buffers
202 * this is a temporary solution to the problem, but it is not
203 * really that bad.  it would be better to split the buffer
204 * for input in the case of buffers partially already in memory,
205 * but the code is intricate enough already.
206 */
207vm_page_t bogus_page;
208
209/*
210 * Synchronization (sleep/wakeup) variable for active buffer space requests.
211 * Set when wait starts, cleared prior to wakeup().
212 * Used in runningbufwakeup() and waitrunningbufspace().
213 */
214static int runningbufreq;
215
216/*
217 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
218 * waitrunningbufspace().
219 */
220static struct mtx rbreqlock;
221
222/*
223 * Synchronization (sleep/wakeup) variable for buffer requests.
224 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
225 * by and/or.
226 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
227 * getnewbuf(), and getblk().
228 */
229static int needsbuffer;
230
231/*
232 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
233 */
234static struct mtx nblock;
235
236/*
237 * Lock that protects against bwait()/bdone()/B_DONE races.
238 */
239
240static struct mtx bdonelock;
241
242/*
243 * Definitions for the buffer free lists.
244 */
245#define BUFFER_QUEUES	5	/* number of free buffer queues */
246
247#define QUEUE_NONE	0	/* on no queue */
248#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
249#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
250#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
251#define QUEUE_EMPTY	4	/* empty buffer headers */
252
253/* Queues for free buffers with various properties */
254static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
255
256/* Lock for the bufqueues */
257static struct mtx bqlock;
258
259/*
260 * Single global constant for BUF_WMESG, to avoid getting multiple references.
261 * buf_wmesg is referred from macros.
262 */
263const char *buf_wmesg = BUF_WMESG;
264
265#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
266#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
267#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
268#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
269
270#ifdef DIRECTIO
271extern void ffs_rawread_setup(void);
272#endif /* DIRECTIO */
273/*
274 *	numdirtywakeup:
275 *
276 *	If someone is blocked due to there being too many dirty buffers,
277 *	and numdirtybuffers is now reasonable, wake them up.
278 */
279
280static __inline void
281numdirtywakeup(int level)
282{
283
284	if (numdirtybuffers <= level) {
285		mtx_lock(&nblock);
286		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
287			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
288			wakeup(&needsbuffer);
289		}
290		mtx_unlock(&nblock);
291	}
292}
293
294/*
295 *	bufspacewakeup:
296 *
297 *	Called when buffer space is potentially available for recovery.
298 *	getnewbuf() will block on this flag when it is unable to free
299 *	sufficient buffer space.  Buffer space becomes recoverable when
300 *	bp's get placed back in the queues.
301 */
302
303static __inline void
304bufspacewakeup(void)
305{
306
307	/*
308	 * If someone is waiting for BUF space, wake them up.  Even
309	 * though we haven't freed the kva space yet, the waiting
310	 * process will be able to now.
311	 */
312	mtx_lock(&nblock);
313	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
314		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
315		wakeup(&needsbuffer);
316	}
317	mtx_unlock(&nblock);
318}
319
320/*
321 * runningbufwakeup() - in-progress I/O accounting.
322 *
323 */
324static __inline void
325runningbufwakeup(struct buf *bp)
326{
327
328	if (bp->b_runningbufspace) {
329		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
330		bp->b_runningbufspace = 0;
331		mtx_lock(&rbreqlock);
332		if (runningbufreq && runningbufspace <= lorunningspace) {
333			runningbufreq = 0;
334			wakeup(&runningbufreq);
335		}
336		mtx_unlock(&rbreqlock);
337	}
338}
339
340/*
341 *	bufcountwakeup:
342 *
343 *	Called when a buffer has been added to one of the free queues to
344 *	account for the buffer and to wakeup anyone waiting for free buffers.
345 *	This typically occurs when large amounts of metadata are being handled
346 *	by the buffer cache ( else buffer space runs out first, usually ).
347 */
348
349static __inline void
350bufcountwakeup(void)
351{
352
353	atomic_add_int(&numfreebuffers, 1);
354	mtx_lock(&nblock);
355	if (needsbuffer) {
356		needsbuffer &= ~VFS_BIO_NEED_ANY;
357		if (numfreebuffers >= hifreebuffers)
358			needsbuffer &= ~VFS_BIO_NEED_FREE;
359		wakeup(&needsbuffer);
360	}
361	mtx_unlock(&nblock);
362}
363
364/*
365 *	waitrunningbufspace()
366 *
367 *	runningbufspace is a measure of the amount of I/O currently
368 *	running.  This routine is used in async-write situations to
369 *	prevent creating huge backups of pending writes to a device.
370 *	Only asynchronous writes are governed by this function.
371 *
372 *	Reads will adjust runningbufspace, but will not block based on it.
373 *	The read load has a side effect of reducing the allowed write load.
374 *
375 *	This does NOT turn an async write into a sync write.  It waits
376 *	for earlier writes to complete and generally returns before the
377 *	caller's write has reached the device.
378 */
379static __inline void
380waitrunningbufspace(void)
381{
382
383	mtx_lock(&rbreqlock);
384	while (runningbufspace > hirunningspace) {
385		++runningbufreq;
386		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
387	}
388	mtx_unlock(&rbreqlock);
389}
390
391
392/*
393 *	vfs_buf_test_cache:
394 *
395 *	Called when a buffer is extended.  This function clears the B_CACHE
396 *	bit if the newly extended portion of the buffer does not contain
397 *	valid data.
398 */
399static __inline
400void
401vfs_buf_test_cache(struct buf *bp,
402		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
403		  vm_page_t m)
404{
405
406	GIANT_REQUIRED;
407
408	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
409	if (bp->b_flags & B_CACHE) {
410		int base = (foff + off) & PAGE_MASK;
411		if (vm_page_is_valid(m, base, size) == 0)
412			bp->b_flags &= ~B_CACHE;
413	}
414}
415
416/* Wake up the buffer deamon if necessary */
417static __inline
418void
419bd_wakeup(int dirtybuflevel)
420{
421
422	mtx_lock(&bdlock);
423	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
424		bd_request = 1;
425		wakeup(&bd_request);
426	}
427	mtx_unlock(&bdlock);
428}
429
430/*
431 * bd_speedup - speedup the buffer cache flushing code
432 */
433
434static __inline
435void
436bd_speedup(void)
437{
438
439	bd_wakeup(1);
440}
441
442/*
443 * Calculating buffer cache scaling values and reserve space for buffer
444 * headers.  This is called during low level kernel initialization and
445 * may be called more then once.  We CANNOT write to the memory area
446 * being reserved at this time.
447 */
448caddr_t
449kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
450{
451
452	/*
453	 * physmem_est is in pages.  Convert it to kilobytes (assumes
454	 * PAGE_SIZE is >= 1K)
455	 */
456	physmem_est = physmem_est * (PAGE_SIZE / 1024);
457
458	/*
459	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
460	 * For the first 64MB of ram nominally allocate sufficient buffers to
461	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
462	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
463	 * the buffer cache we limit the eventual kva reservation to
464	 * maxbcache bytes.
465	 *
466	 * factor represents the 1/4 x ram conversion.
467	 */
468	if (nbuf == 0) {
469		int factor = 4 * BKVASIZE / 1024;
470
471		nbuf = 50;
472		if (physmem_est > 4096)
473			nbuf += min((physmem_est - 4096) / factor,
474			    65536 / factor);
475		if (physmem_est > 65536)
476			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
477
478		if (maxbcache && nbuf > maxbcache / BKVASIZE)
479			nbuf = maxbcache / BKVASIZE;
480	}
481
482#if 0
483	/*
484	 * Do not allow the buffer_map to be more then 1/2 the size of the
485	 * kernel_map.
486	 */
487	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
488	    (BKVASIZE * 2)) {
489		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
490		    (BKVASIZE * 2);
491		printf("Warning: nbufs capped at %d\n", nbuf);
492	}
493#endif
494
495	/*
496	 * swbufs are used as temporary holders for I/O, such as paging I/O.
497	 * We have no less then 16 and no more then 256.
498	 */
499	nswbuf = max(min(nbuf/4, 256), 16);
500#ifdef NSWBUF_MIN
501	if (nswbuf < NSWBUF_MIN)
502		nswbuf = NSWBUF_MIN;
503#endif
504#ifdef DIRECTIO
505	ffs_rawread_setup();
506#endif
507
508	/*
509	 * Reserve space for the buffer cache buffers
510	 */
511	swbuf = (void *)v;
512	v = (caddr_t)(swbuf + nswbuf);
513	buf = (void *)v;
514	v = (caddr_t)(buf + nbuf);
515
516	return(v);
517}
518
519/* Initialize the buffer subsystem.  Called before use of any buffers. */
520void
521bufinit(void)
522{
523	struct buf *bp;
524	int i;
525
526	GIANT_REQUIRED;
527
528	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
529	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
530	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
531	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
532	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
533
534	/* next, make a null set of free lists */
535	for (i = 0; i < BUFFER_QUEUES; i++)
536		TAILQ_INIT(&bufqueues[i]);
537
538	/* finally, initialize each buffer header and stick on empty q */
539	for (i = 0; i < nbuf; i++) {
540		bp = &buf[i];
541		bzero(bp, sizeof *bp);
542		bp->b_flags = B_INVAL;	/* we're just an empty header */
543		bp->b_rcred = NOCRED;
544		bp->b_wcred = NOCRED;
545		bp->b_qindex = QUEUE_EMPTY;
546		bp->b_vflags = 0;
547		bp->b_xflags = 0;
548		LIST_INIT(&bp->b_dep);
549		BUF_LOCKINIT(bp);
550		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
551	}
552
553	/*
554	 * maxbufspace is the absolute maximum amount of buffer space we are
555	 * allowed to reserve in KVM and in real terms.  The absolute maximum
556	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
557	 * used by most other processes.  The differential is required to
558	 * ensure that buf_daemon is able to run when other processes might
559	 * be blocked waiting for buffer space.
560	 *
561	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
562	 * this may result in KVM fragmentation which is not handled optimally
563	 * by the system.
564	 */
565	maxbufspace = nbuf * BKVASIZE;
566	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
567	lobufspace = hibufspace - MAXBSIZE;
568
569	lorunningspace = 512 * 1024;
570	hirunningspace = 1024 * 1024;
571
572/*
573 * Limit the amount of malloc memory since it is wired permanently into
574 * the kernel space.  Even though this is accounted for in the buffer
575 * allocation, we don't want the malloced region to grow uncontrolled.
576 * The malloc scheme improves memory utilization significantly on average
577 * (small) directories.
578 */
579	maxbufmallocspace = hibufspace / 20;
580
581/*
582 * Reduce the chance of a deadlock occuring by limiting the number
583 * of delayed-write dirty buffers we allow to stack up.
584 */
585	hidirtybuffers = nbuf / 4 + 20;
586	dirtybufthresh = hidirtybuffers * 9 / 10;
587	numdirtybuffers = 0;
588/*
589 * To support extreme low-memory systems, make sure hidirtybuffers cannot
590 * eat up all available buffer space.  This occurs when our minimum cannot
591 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
592 * BKVASIZE'd (8K) buffers.
593 */
594	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
595		hidirtybuffers >>= 1;
596	}
597	lodirtybuffers = hidirtybuffers / 2;
598
599/*
600 * Try to keep the number of free buffers in the specified range,
601 * and give special processes (e.g. like buf_daemon) access to an
602 * emergency reserve.
603 */
604	lofreebuffers = nbuf / 18 + 5;
605	hifreebuffers = 2 * lofreebuffers;
606	numfreebuffers = nbuf;
607
608/*
609 * Maximum number of async ops initiated per buf_daemon loop.  This is
610 * somewhat of a hack at the moment, we really need to limit ourselves
611 * based on the number of bytes of I/O in-transit that were initiated
612 * from buf_daemon.
613 */
614
615	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
616	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
617}
618
619/*
620 * bfreekva() - free the kva allocation for a buffer.
621 *
622 *	Must be called at splbio() or higher as this is the only locking for
623 *	buffer_map.
624 *
625 *	Since this call frees up buffer space, we call bufspacewakeup().
626 */
627static void
628bfreekva(struct buf *bp)
629{
630
631	GIANT_REQUIRED;
632
633	if (bp->b_kvasize) {
634		atomic_add_int(&buffreekvacnt, 1);
635		atomic_subtract_int(&bufspace, bp->b_kvasize);
636		vm_map_delete(buffer_map,
637		    (vm_offset_t) bp->b_kvabase,
638		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
639		);
640		bp->b_kvasize = 0;
641		bufspacewakeup();
642	}
643}
644
645/*
646 *	bremfree:
647 *
648 *	Remove the buffer from the appropriate free list.
649 */
650void
651bremfree(struct buf *bp)
652{
653
654	mtx_lock(&bqlock);
655	bremfreel(bp);
656	mtx_unlock(&bqlock);
657}
658
659void
660bremfreel(struct buf *bp)
661{
662	int s = splbio();
663	int old_qindex = bp->b_qindex;
664
665	GIANT_REQUIRED;
666
667	if (bp->b_qindex != QUEUE_NONE) {
668		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
669		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
670		bp->b_qindex = QUEUE_NONE;
671	} else {
672		if (BUF_REFCNT(bp) <= 1)
673			panic("bremfree: removing a buffer not on a queue");
674	}
675
676	/*
677	 * Fixup numfreebuffers count.  If the buffer is invalid or not
678	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
679	 * the buffer was free and we must decrement numfreebuffers.
680	 */
681	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
682		switch(old_qindex) {
683		case QUEUE_DIRTY:
684		case QUEUE_CLEAN:
685		case QUEUE_EMPTY:
686		case QUEUE_EMPTYKVA:
687			atomic_subtract_int(&numfreebuffers, 1);
688			break;
689		default:
690			break;
691		}
692	}
693	splx(s);
694}
695
696
697/*
698 * Get a buffer with the specified data.  Look in the cache first.  We
699 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
700 * is set, the buffer is valid and we do not have to do anything ( see
701 * getblk() ).  This is really just a special case of breadn().
702 */
703int
704bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
705    struct buf **bpp)
706{
707
708	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
709}
710
711/*
712 * Operates like bread, but also starts asynchronous I/O on
713 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
714 * to initiating I/O . If B_CACHE is set, the buffer is valid
715 * and we do not have to do anything.
716 */
717int
718breadn(struct vnode * vp, daddr_t blkno, int size,
719    daddr_t * rablkno, int *rabsize,
720    int cnt, struct ucred * cred, struct buf **bpp)
721{
722	struct buf *bp, *rabp;
723	int i;
724	int rv = 0, readwait = 0;
725
726	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
727
728	/* if not found in cache, do some I/O */
729	if ((bp->b_flags & B_CACHE) == 0) {
730		if (curthread != PCPU_GET(idlethread))
731			curthread->td_proc->p_stats->p_ru.ru_inblock++;
732		bp->b_iocmd = BIO_READ;
733		bp->b_flags &= ~B_INVAL;
734		bp->b_ioflags &= ~BIO_ERROR;
735		if (bp->b_rcred == NOCRED && cred != NOCRED)
736			bp->b_rcred = crhold(cred);
737		vfs_busy_pages(bp, 0);
738		bp->b_iooffset = dbtob(bp->b_blkno);
739		bstrategy(bp);
740		++readwait;
741	}
742
743	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
744		if (inmem(vp, *rablkno))
745			continue;
746		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
747
748		if ((rabp->b_flags & B_CACHE) == 0) {
749			if (curthread != PCPU_GET(idlethread))
750				curthread->td_proc->p_stats->p_ru.ru_inblock++;
751			rabp->b_flags |= B_ASYNC;
752			rabp->b_flags &= ~B_INVAL;
753			rabp->b_ioflags &= ~BIO_ERROR;
754			rabp->b_iocmd = BIO_READ;
755			if (rabp->b_rcred == NOCRED && cred != NOCRED)
756				rabp->b_rcred = crhold(cred);
757			vfs_busy_pages(rabp, 0);
758			BUF_KERNPROC(rabp);
759			rabp->b_iooffset = dbtob(rabp->b_blkno);
760			bstrategy(rabp);
761		} else {
762			brelse(rabp);
763		}
764	}
765
766	if (readwait) {
767		rv = bufwait(bp);
768	}
769	return (rv);
770}
771
772/*
773 * Write, release buffer on completion.  (Done by iodone
774 * if async).  Do not bother writing anything if the buffer
775 * is invalid.
776 *
777 * Note that we set B_CACHE here, indicating that buffer is
778 * fully valid and thus cacheable.  This is true even of NFS
779 * now so we set it generally.  This could be set either here
780 * or in biodone() since the I/O is synchronous.  We put it
781 * here.
782 */
783int
784bufwrite(struct buf *bp)
785{
786	int oldflags, s;
787	struct buf *newbp;
788
789	if (bp->b_flags & B_INVAL) {
790		brelse(bp);
791		return (0);
792	}
793
794	oldflags = bp->b_flags;
795
796	if (BUF_REFCNT(bp) == 0)
797		panic("bufwrite: buffer is not busy???");
798	s = splbio();
799	/*
800	 * If a background write is already in progress, delay
801	 * writing this block if it is asynchronous. Otherwise
802	 * wait for the background write to complete.
803	 */
804	BO_LOCK(bp->b_bufobj);
805	if (bp->b_vflags & BV_BKGRDINPROG) {
806		if (bp->b_flags & B_ASYNC) {
807			BO_UNLOCK(bp->b_bufobj);
808			splx(s);
809			bdwrite(bp);
810			return (0);
811		}
812		bp->b_vflags |= BV_BKGRDWAIT;
813		msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj), PRIBIO, "bwrbg", 0);
814		if (bp->b_vflags & BV_BKGRDINPROG)
815			panic("bufwrite: still writing");
816	}
817	BO_UNLOCK(bp->b_bufobj);
818
819	/* Mark the buffer clean */
820	bundirty(bp);
821
822	/*
823	 * If this buffer is marked for background writing and we
824	 * do not have to wait for it, make a copy and write the
825	 * copy so as to leave this buffer ready for further use.
826	 *
827	 * This optimization eats a lot of memory.  If we have a page
828	 * or buffer shortfall we can't do it.
829	 */
830	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
831	    (bp->b_flags & B_ASYNC) &&
832	    !vm_page_count_severe() &&
833	    !buf_dirty_count_severe()) {
834		KASSERT(bp->b_iodone == NULL,
835		    ("bufwrite: needs chained iodone (%p)", bp->b_iodone));
836
837		/* get a new block */
838		newbp = geteblk(bp->b_bufsize);
839
840		/*
841		 * set it to be identical to the old block.  We have to
842		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
843		 * to avoid confusing the splay tree and gbincore().
844		 */
845		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
846		newbp->b_lblkno = bp->b_lblkno;
847		newbp->b_xflags |= BX_BKGRDMARKER;
848		BO_LOCK(bp->b_bufobj);
849		bp->b_vflags |= BV_BKGRDINPROG;
850		bgetvp(bp->b_vp, newbp);
851		BO_UNLOCK(bp->b_bufobj);
852		newbp->b_bufobj = &bp->b_vp->v_bufobj;
853		newbp->b_blkno = bp->b_blkno;
854		newbp->b_offset = bp->b_offset;
855		newbp->b_iodone = vfs_backgroundwritedone;
856		newbp->b_flags |= B_ASYNC;
857		newbp->b_flags &= ~B_INVAL;
858
859		/* move over the dependencies */
860		if (LIST_FIRST(&bp->b_dep) != NULL)
861			buf_movedeps(bp, newbp);
862
863		/*
864		 * Initiate write on the copy, release the original to
865		 * the B_LOCKED queue so that it cannot go away until
866		 * the background write completes. If not locked it could go
867		 * away and then be reconstituted while it was being written.
868		 * If the reconstituted buffer were written, we could end up
869		 * with two background copies being written at the same time.
870		 */
871		bqrelse(bp);
872		bp = newbp;
873	}
874
875	bp->b_flags &= ~B_DONE;
876	bp->b_ioflags &= ~BIO_ERROR;
877	bp->b_flags |= B_CACHE;
878	bp->b_iocmd = BIO_WRITE;
879
880	bufobj_wref(bp->b_bufobj);
881	vfs_busy_pages(bp, 1);
882
883	/*
884	 * Normal bwrites pipeline writes
885	 */
886	bp->b_runningbufspace = bp->b_bufsize;
887	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
888
889	if (curthread != PCPU_GET(idlethread))
890		curthread->td_proc->p_stats->p_ru.ru_oublock++;
891	splx(s);
892	if (oldflags & B_ASYNC)
893		BUF_KERNPROC(bp);
894	bp->b_iooffset = dbtob(bp->b_blkno);
895	bstrategy(bp);
896
897	if ((oldflags & B_ASYNC) == 0) {
898		int rtval = bufwait(bp);
899		brelse(bp);
900		return (rtval);
901	} else {
902		/*
903		 * don't allow the async write to saturate the I/O
904		 * system.  We will not deadlock here because
905		 * we are blocking waiting for I/O that is already in-progress
906		 * to complete. We do not block here if it is the update
907		 * or syncer daemon trying to clean up as that can lead
908		 * to deadlock.
909		 */
910		if (curthread->td_proc != bufdaemonproc &&
911		    curthread->td_proc != updateproc)
912			waitrunningbufspace();
913	}
914
915	return (0);
916}
917
918/*
919 * Complete a background write started from bwrite.
920 */
921static void
922vfs_backgroundwritedone(struct buf *bp)
923{
924	struct buf *origbp;
925
926	/*
927	 * Find the original buffer that we are writing.
928	 */
929	BO_LOCK(bp->b_bufobj);
930	if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL)
931		panic("backgroundwritedone: lost buffer");
932
933	/*
934	 * Clear the BV_BKGRDINPROG flag in the original buffer
935	 * and awaken it if it is waiting for the write to complete.
936	 * If BV_BKGRDINPROG is not set in the original buffer it must
937	 * have been released and re-instantiated - which is not legal.
938	 */
939	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
940	    ("backgroundwritedone: lost buffer2"));
941	origbp->b_vflags &= ~BV_BKGRDINPROG;
942	if (origbp->b_vflags & BV_BKGRDWAIT) {
943		origbp->b_vflags &= ~BV_BKGRDWAIT;
944		wakeup(&origbp->b_xflags);
945	}
946	BO_UNLOCK(bp->b_bufobj);
947	/*
948	 * Process dependencies then return any unfinished ones.
949	 */
950	if (LIST_FIRST(&bp->b_dep) != NULL)
951		buf_complete(bp);
952	if (LIST_FIRST(&bp->b_dep) != NULL)
953		buf_movedeps(bp, origbp);
954
955	/*
956	 * This buffer is marked B_NOCACHE, so when it is released
957	 * by biodone, it will be tossed. We mark it with BIO_READ
958	 * to avoid biodone doing a second bufobj_wdrop.
959	 */
960	bp->b_flags |= B_NOCACHE;
961	bp->b_iocmd = BIO_READ;
962	bp->b_flags &= ~(B_CACHE | B_DONE);
963	bp->b_iodone = 0;
964	bufdone(bp);
965}
966
967/*
968 * Delayed write. (Buffer is marked dirty).  Do not bother writing
969 * anything if the buffer is marked invalid.
970 *
971 * Note that since the buffer must be completely valid, we can safely
972 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
973 * biodone() in order to prevent getblk from writing the buffer
974 * out synchronously.
975 */
976void
977bdwrite(struct buf *bp)
978{
979	struct thread *td = curthread;
980	struct vnode *vp;
981	struct buf *nbp;
982	struct bufobj *bo;
983
984	GIANT_REQUIRED;
985
986	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
987	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
988
989	if (bp->b_flags & B_INVAL) {
990		brelse(bp);
991		return;
992	}
993
994	/*
995	 * If we have too many dirty buffers, don't create any more.
996	 * If we are wildly over our limit, then force a complete
997	 * cleanup. Otherwise, just keep the situation from getting
998	 * out of control. Note that we have to avoid a recursive
999	 * disaster and not try to clean up after our own cleanup!
1000	 */
1001	vp = bp->b_vp;
1002	bo = bp->b_bufobj;
1003	BO_LOCK(bo);
1004	if (td->td_pflags & TDP_COWINPROGRESS) {
1005		recursiveflushes++;
1006	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1007		BO_UNLOCK(bo);
1008		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
1009		BO_LOCK(bo);
1010		altbufferflushes++;
1011	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1012		/*
1013		 * Try to find a buffer to flush.
1014		 */
1015		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1016			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1017			    buf_countdeps(nbp, 0) ||
1018			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1019				continue;
1020			if (bp == nbp)
1021				panic("bdwrite: found ourselves");
1022			BO_UNLOCK(bo);
1023			if (nbp->b_flags & B_CLUSTEROK) {
1024				vfs_bio_awrite(nbp);
1025			} else {
1026				bremfree(nbp);
1027				bawrite(nbp);
1028			}
1029			BO_LOCK(bo);
1030			dirtybufferflushes++;
1031			break;
1032		}
1033	}
1034	BO_UNLOCK(bo);
1035
1036	bdirty(bp);
1037	/*
1038	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1039	 * true even of NFS now.
1040	 */
1041	bp->b_flags |= B_CACHE;
1042
1043	/*
1044	 * This bmap keeps the system from needing to do the bmap later,
1045	 * perhaps when the system is attempting to do a sync.  Since it
1046	 * is likely that the indirect block -- or whatever other datastructure
1047	 * that the filesystem needs is still in memory now, it is a good
1048	 * thing to do this.  Note also, that if the pageout daemon is
1049	 * requesting a sync -- there might not be enough memory to do
1050	 * the bmap then...  So, this is important to do.
1051	 */
1052	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1053		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1054	}
1055
1056	/*
1057	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1058	 */
1059	vfs_setdirty(bp);
1060
1061	/*
1062	 * We need to do this here to satisfy the vnode_pager and the
1063	 * pageout daemon, so that it thinks that the pages have been
1064	 * "cleaned".  Note that since the pages are in a delayed write
1065	 * buffer -- the VFS layer "will" see that the pages get written
1066	 * out on the next sync, or perhaps the cluster will be completed.
1067	 */
1068	vfs_clean_pages(bp);
1069	bqrelse(bp);
1070
1071	/*
1072	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1073	 * buffers (midpoint between our recovery point and our stall
1074	 * point).
1075	 */
1076	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1077
1078	/*
1079	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1080	 * due to the softdep code.
1081	 */
1082}
1083
1084/*
1085 *	bdirty:
1086 *
1087 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1088 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1089 *	itself to properly update it in the dirty/clean lists.  We mark it
1090 *	B_DONE to ensure that any asynchronization of the buffer properly
1091 *	clears B_DONE ( else a panic will occur later ).
1092 *
1093 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1094 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1095 *	should only be called if the buffer is known-good.
1096 *
1097 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1098 *	count.
1099 *
1100 *	Must be called at splbio().
1101 *	The buffer must be on QUEUE_NONE.
1102 */
1103void
1104bdirty(struct buf *bp)
1105{
1106
1107	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1108	KASSERT(bp->b_qindex == QUEUE_NONE,
1109	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1110	bp->b_flags &= ~(B_RELBUF);
1111	bp->b_iocmd = BIO_WRITE;
1112
1113	if ((bp->b_flags & B_DELWRI) == 0) {
1114		bp->b_flags |= B_DONE | B_DELWRI;
1115		reassignbuf(bp);
1116		atomic_add_int(&numdirtybuffers, 1);
1117		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1118	}
1119}
1120
1121/*
1122 *	bundirty:
1123 *
1124 *	Clear B_DELWRI for buffer.
1125 *
1126 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1127 *	count.
1128 *
1129 *	Must be called at splbio().
1130 *	The buffer must be on QUEUE_NONE.
1131 */
1132
1133void
1134bundirty(struct buf *bp)
1135{
1136
1137	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1138	KASSERT(bp->b_qindex == QUEUE_NONE,
1139	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1140
1141	if (bp->b_flags & B_DELWRI) {
1142		bp->b_flags &= ~B_DELWRI;
1143		reassignbuf(bp);
1144		atomic_subtract_int(&numdirtybuffers, 1);
1145		numdirtywakeup(lodirtybuffers);
1146	}
1147	/*
1148	 * Since it is now being written, we can clear its deferred write flag.
1149	 */
1150	bp->b_flags &= ~B_DEFERRED;
1151}
1152
1153/*
1154 *	bawrite:
1155 *
1156 *	Asynchronous write.  Start output on a buffer, but do not wait for
1157 *	it to complete.  The buffer is released when the output completes.
1158 *
1159 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1160 *	B_INVAL buffers.  Not us.
1161 */
1162void
1163bawrite(struct buf *bp)
1164{
1165
1166	bp->b_flags |= B_ASYNC;
1167	(void) bwrite(bp);
1168}
1169
1170/*
1171 *	bwillwrite:
1172 *
1173 *	Called prior to the locking of any vnodes when we are expecting to
1174 *	write.  We do not want to starve the buffer cache with too many
1175 *	dirty buffers so we block here.  By blocking prior to the locking
1176 *	of any vnodes we attempt to avoid the situation where a locked vnode
1177 *	prevents the various system daemons from flushing related buffers.
1178 */
1179
1180void
1181bwillwrite(void)
1182{
1183
1184	if (numdirtybuffers >= hidirtybuffers) {
1185		int s;
1186
1187		mtx_lock(&Giant);
1188		s = splbio();
1189		mtx_lock(&nblock);
1190		while (numdirtybuffers >= hidirtybuffers) {
1191			bd_wakeup(1);
1192			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1193			msleep(&needsbuffer, &nblock,
1194			    (PRIBIO + 4), "flswai", 0);
1195		}
1196		splx(s);
1197		mtx_unlock(&nblock);
1198		mtx_unlock(&Giant);
1199	}
1200}
1201
1202/*
1203 * Return true if we have too many dirty buffers.
1204 */
1205int
1206buf_dirty_count_severe(void)
1207{
1208
1209	return(numdirtybuffers >= hidirtybuffers);
1210}
1211
1212/*
1213 *	brelse:
1214 *
1215 *	Release a busy buffer and, if requested, free its resources.  The
1216 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1217 *	to be accessed later as a cache entity or reused for other purposes.
1218 */
1219void
1220brelse(struct buf *bp)
1221{
1222	int s;
1223
1224	GIANT_REQUIRED;
1225
1226	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1227	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1228
1229	s = splbio();
1230
1231	if (bp->b_iocmd == BIO_WRITE &&
1232	    (bp->b_ioflags & BIO_ERROR) &&
1233	    !(bp->b_flags & B_INVAL)) {
1234		/*
1235		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1236		 * pages from being scrapped.  If B_INVAL is set then
1237		 * this case is not run and the next case is run to
1238		 * destroy the buffer.  B_INVAL can occur if the buffer
1239		 * is outside the range supported by the underlying device.
1240		 */
1241		bp->b_ioflags &= ~BIO_ERROR;
1242		bdirty(bp);
1243	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1244	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1245		/*
1246		 * Either a failed I/O or we were asked to free or not
1247		 * cache the buffer.
1248		 */
1249		bp->b_flags |= B_INVAL;
1250		if (LIST_FIRST(&bp->b_dep) != NULL)
1251			buf_deallocate(bp);
1252		if (bp->b_flags & B_DELWRI) {
1253			atomic_subtract_int(&numdirtybuffers, 1);
1254			numdirtywakeup(lodirtybuffers);
1255		}
1256		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1257		if ((bp->b_flags & B_VMIO) == 0) {
1258			if (bp->b_bufsize)
1259				allocbuf(bp, 0);
1260			if (bp->b_vp)
1261				brelvp(bp);
1262		}
1263	}
1264
1265	/*
1266	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1267	 * is called with B_DELWRI set, the underlying pages may wind up
1268	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1269	 * because pages associated with a B_DELWRI bp are marked clean.
1270	 *
1271	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1272	 * if B_DELWRI is set.
1273	 *
1274	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1275	 * on pages to return pages to the VM page queues.
1276	 */
1277	if (bp->b_flags & B_DELWRI)
1278		bp->b_flags &= ~B_RELBUF;
1279	else if (vm_page_count_severe()) {
1280		/*
1281		 * XXX This lock may not be necessary since BKGRDINPROG
1282		 * cannot be set while we hold the buf lock, it can only be
1283		 * cleared if it is already pending.
1284		 */
1285		if (bp->b_vp) {
1286			BO_LOCK(bp->b_bufobj);
1287			if (!(bp->b_vflags & BV_BKGRDINPROG))
1288				bp->b_flags |= B_RELBUF;
1289			BO_UNLOCK(bp->b_bufobj);
1290		} else
1291			bp->b_flags |= B_RELBUF;
1292	}
1293
1294	/*
1295	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1296	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1297	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1298	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1299	 *
1300	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1301	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1302	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1303	 *
1304	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1305	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1306	 * the commit state and we cannot afford to lose the buffer. If the
1307	 * buffer has a background write in progress, we need to keep it
1308	 * around to prevent it from being reconstituted and starting a second
1309	 * background write.
1310	 */
1311	if ((bp->b_flags & B_VMIO)
1312	    && !(bp->b_vp->v_mount != NULL &&
1313		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1314		 !vn_isdisk(bp->b_vp, NULL) &&
1315		 (bp->b_flags & B_DELWRI))
1316	    ) {
1317
1318		int i, j, resid;
1319		vm_page_t m;
1320		off_t foff;
1321		vm_pindex_t poff;
1322		vm_object_t obj;
1323
1324		obj = bp->b_bufobj->bo_object;
1325
1326		/*
1327		 * Get the base offset and length of the buffer.  Note that
1328		 * in the VMIO case if the buffer block size is not
1329		 * page-aligned then b_data pointer may not be page-aligned.
1330		 * But our b_pages[] array *IS* page aligned.
1331		 *
1332		 * block sizes less then DEV_BSIZE (usually 512) are not
1333		 * supported due to the page granularity bits (m->valid,
1334		 * m->dirty, etc...).
1335		 *
1336		 * See man buf(9) for more information
1337		 */
1338		resid = bp->b_bufsize;
1339		foff = bp->b_offset;
1340		VM_OBJECT_LOCK(obj);
1341		for (i = 0; i < bp->b_npages; i++) {
1342			int had_bogus = 0;
1343
1344			m = bp->b_pages[i];
1345
1346			/*
1347			 * If we hit a bogus page, fixup *all* the bogus pages
1348			 * now.
1349			 */
1350			if (m == bogus_page) {
1351				poff = OFF_TO_IDX(bp->b_offset);
1352				had_bogus = 1;
1353
1354				for (j = i; j < bp->b_npages; j++) {
1355					vm_page_t mtmp;
1356					mtmp = bp->b_pages[j];
1357					if (mtmp == bogus_page) {
1358						mtmp = vm_page_lookup(obj, poff + j);
1359						if (!mtmp) {
1360							panic("brelse: page missing\n");
1361						}
1362						bp->b_pages[j] = mtmp;
1363					}
1364				}
1365
1366				if ((bp->b_flags & B_INVAL) == 0) {
1367					pmap_qenter(
1368					    trunc_page((vm_offset_t)bp->b_data),
1369					    bp->b_pages, bp->b_npages);
1370				}
1371				m = bp->b_pages[i];
1372			}
1373			if ((bp->b_flags & B_NOCACHE) ||
1374			    (bp->b_ioflags & BIO_ERROR)) {
1375				int poffset = foff & PAGE_MASK;
1376				int presid = resid > (PAGE_SIZE - poffset) ?
1377					(PAGE_SIZE - poffset) : resid;
1378
1379				KASSERT(presid >= 0, ("brelse: extra page"));
1380				vm_page_lock_queues();
1381				vm_page_set_invalid(m, poffset, presid);
1382				vm_page_unlock_queues();
1383				if (had_bogus)
1384					printf("avoided corruption bug in bogus_page/brelse code\n");
1385			}
1386			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1387			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1388		}
1389		VM_OBJECT_UNLOCK(obj);
1390		if (bp->b_flags & (B_INVAL | B_RELBUF))
1391			vfs_vmio_release(bp);
1392
1393	} else if (bp->b_flags & B_VMIO) {
1394
1395		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1396			vfs_vmio_release(bp);
1397		}
1398
1399	}
1400
1401	if (bp->b_qindex != QUEUE_NONE)
1402		panic("brelse: free buffer onto another queue???");
1403	if (BUF_REFCNT(bp) > 1) {
1404		/* do not release to free list */
1405		BUF_UNLOCK(bp);
1406		splx(s);
1407		return;
1408	}
1409
1410	/* enqueue */
1411	mtx_lock(&bqlock);
1412
1413	/* buffers with no memory */
1414	if (bp->b_bufsize == 0) {
1415		bp->b_flags |= B_INVAL;
1416		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1417		if (bp->b_vflags & BV_BKGRDINPROG)
1418			panic("losing buffer 1");
1419		if (bp->b_kvasize) {
1420			bp->b_qindex = QUEUE_EMPTYKVA;
1421		} else {
1422			bp->b_qindex = QUEUE_EMPTY;
1423		}
1424		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1425	/* buffers with junk contents */
1426	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1427	    (bp->b_ioflags & BIO_ERROR)) {
1428		bp->b_flags |= B_INVAL;
1429		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1430		if (bp->b_vflags & BV_BKGRDINPROG)
1431			panic("losing buffer 2");
1432		bp->b_qindex = QUEUE_CLEAN;
1433		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1434	/* remaining buffers */
1435	} else {
1436		if (bp->b_flags & B_DELWRI)
1437			bp->b_qindex = QUEUE_DIRTY;
1438		else
1439			bp->b_qindex = QUEUE_CLEAN;
1440		if (bp->b_flags & B_AGE)
1441			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1442		else
1443			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1444	}
1445	mtx_unlock(&bqlock);
1446
1447	/*
1448	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1449	 * placed the buffer on the correct queue.  We must also disassociate
1450	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1451	 * find it.
1452	 */
1453	if (bp->b_flags & B_INVAL) {
1454		if (bp->b_flags & B_DELWRI)
1455			bundirty(bp);
1456		if (bp->b_vp)
1457			brelvp(bp);
1458	}
1459
1460	/*
1461	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1462	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1463	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1464	 * if B_INVAL is set ).
1465	 */
1466
1467	if (!(bp->b_flags & B_DELWRI))
1468		bufcountwakeup();
1469
1470	/*
1471	 * Something we can maybe free or reuse
1472	 */
1473	if (bp->b_bufsize || bp->b_kvasize)
1474		bufspacewakeup();
1475
1476	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1477	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1478		panic("brelse: not dirty");
1479	/* unlock */
1480	BUF_UNLOCK(bp);
1481	splx(s);
1482}
1483
1484/*
1485 * Release a buffer back to the appropriate queue but do not try to free
1486 * it.  The buffer is expected to be used again soon.
1487 *
1488 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1489 * biodone() to requeue an async I/O on completion.  It is also used when
1490 * known good buffers need to be requeued but we think we may need the data
1491 * again soon.
1492 *
1493 * XXX we should be able to leave the B_RELBUF hint set on completion.
1494 */
1495void
1496bqrelse(struct buf *bp)
1497{
1498	int s;
1499
1500	s = splbio();
1501
1502	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1503	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1504
1505	if (bp->b_qindex != QUEUE_NONE)
1506		panic("bqrelse: free buffer onto another queue???");
1507	if (BUF_REFCNT(bp) > 1) {
1508		/* do not release to free list */
1509		BUF_UNLOCK(bp);
1510		splx(s);
1511		return;
1512	}
1513	mtx_lock(&bqlock);
1514	/* buffers with stale but valid contents */
1515	if (bp->b_flags & B_DELWRI) {
1516		bp->b_qindex = QUEUE_DIRTY;
1517		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1518	} else {
1519		/*
1520		 * XXX This lock may not be necessary since BKGRDINPROG
1521		 * cannot be set while we hold the buf lock, it can only be
1522		 * cleared if it is already pending.
1523		 */
1524		BO_LOCK(bp->b_bufobj);
1525		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1526			BO_UNLOCK(bp->b_bufobj);
1527			bp->b_qindex = QUEUE_CLEAN;
1528			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1529			    b_freelist);
1530		} else {
1531			/*
1532			 * We are too low on memory, we have to try to free
1533			 * the buffer (most importantly: the wired pages
1534			 * making up its backing store) *now*.
1535			 */
1536			BO_UNLOCK(bp->b_bufobj);
1537			mtx_unlock(&bqlock);
1538			splx(s);
1539			brelse(bp);
1540			return;
1541		}
1542	}
1543	mtx_unlock(&bqlock);
1544
1545	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1546		bufcountwakeup();
1547
1548	/*
1549	 * Something we can maybe free or reuse.
1550	 */
1551	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1552		bufspacewakeup();
1553
1554	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1555	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1556		panic("bqrelse: not dirty");
1557	/* unlock */
1558	BUF_UNLOCK(bp);
1559	splx(s);
1560}
1561
1562/* Give pages used by the bp back to the VM system (where possible) */
1563static void
1564vfs_vmio_release(struct buf *bp)
1565{
1566	int i;
1567	vm_page_t m;
1568
1569	GIANT_REQUIRED;
1570	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
1571	vm_page_lock_queues();
1572	for (i = 0; i < bp->b_npages; i++) {
1573		m = bp->b_pages[i];
1574		bp->b_pages[i] = NULL;
1575		/*
1576		 * In order to keep page LRU ordering consistent, put
1577		 * everything on the inactive queue.
1578		 */
1579		vm_page_unwire(m, 0);
1580		/*
1581		 * We don't mess with busy pages, it is
1582		 * the responsibility of the process that
1583		 * busied the pages to deal with them.
1584		 */
1585		if ((m->flags & PG_BUSY) || (m->busy != 0))
1586			continue;
1587
1588		if (m->wire_count == 0) {
1589			/*
1590			 * Might as well free the page if we can and it has
1591			 * no valid data.  We also free the page if the
1592			 * buffer was used for direct I/O
1593			 */
1594			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1595			    m->hold_count == 0) {
1596				pmap_remove_all(m);
1597				vm_page_free(m);
1598			} else if (bp->b_flags & B_DIRECT) {
1599				vm_page_try_to_free(m);
1600			} else if (vm_page_count_severe()) {
1601				vm_page_try_to_cache(m);
1602			}
1603		}
1604	}
1605	vm_page_unlock_queues();
1606	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
1607	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1608
1609	if (bp->b_bufsize) {
1610		bufspacewakeup();
1611		bp->b_bufsize = 0;
1612	}
1613	bp->b_npages = 0;
1614	bp->b_flags &= ~B_VMIO;
1615	if (bp->b_vp)
1616		brelvp(bp);
1617}
1618
1619/*
1620 * Check to see if a block at a particular lbn is available for a clustered
1621 * write.
1622 */
1623static int
1624vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1625{
1626	struct buf *bpa;
1627	int match;
1628
1629	match = 0;
1630
1631	/* If the buf isn't in core skip it */
1632	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1633		return (0);
1634
1635	/* If the buf is busy we don't want to wait for it */
1636	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1637		return (0);
1638
1639	/* Only cluster with valid clusterable delayed write buffers */
1640	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1641	    (B_DELWRI | B_CLUSTEROK))
1642		goto done;
1643
1644	if (bpa->b_bufsize != size)
1645		goto done;
1646
1647	/*
1648	 * Check to see if it is in the expected place on disk and that the
1649	 * block has been mapped.
1650	 */
1651	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1652		match = 1;
1653done:
1654	BUF_UNLOCK(bpa);
1655	return (match);
1656}
1657
1658/*
1659 *	vfs_bio_awrite:
1660 *
1661 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1662 *	This is much better then the old way of writing only one buffer at
1663 *	a time.  Note that we may not be presented with the buffers in the
1664 *	correct order, so we search for the cluster in both directions.
1665 */
1666int
1667vfs_bio_awrite(struct buf *bp)
1668{
1669	int i;
1670	int j;
1671	daddr_t lblkno = bp->b_lblkno;
1672	struct vnode *vp = bp->b_vp;
1673	int s;
1674	int ncl;
1675	int nwritten;
1676	int size;
1677	int maxcl;
1678
1679	s = splbio();
1680	/*
1681	 * right now we support clustered writing only to regular files.  If
1682	 * we find a clusterable block we could be in the middle of a cluster
1683	 * rather then at the beginning.
1684	 */
1685	if ((vp->v_type == VREG) &&
1686	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1687	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1688
1689		size = vp->v_mount->mnt_stat.f_iosize;
1690		maxcl = MAXPHYS / size;
1691
1692		VI_LOCK(vp);
1693		for (i = 1; i < maxcl; i++)
1694			if (vfs_bio_clcheck(vp, size, lblkno + i,
1695			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1696				break;
1697
1698		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1699			if (vfs_bio_clcheck(vp, size, lblkno - j,
1700			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1701				break;
1702
1703		VI_UNLOCK(vp);
1704		--j;
1705		ncl = i + j;
1706		/*
1707		 * this is a possible cluster write
1708		 */
1709		if (ncl != 1) {
1710			BUF_UNLOCK(bp);
1711			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1712			splx(s);
1713			return nwritten;
1714		}
1715	}
1716
1717	bremfree(bp);
1718	bp->b_flags |= B_ASYNC;
1719
1720	splx(s);
1721	/*
1722	 * default (old) behavior, writing out only one block
1723	 *
1724	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1725	 */
1726	nwritten = bp->b_bufsize;
1727	(void) bwrite(bp);
1728
1729	return nwritten;
1730}
1731
1732/*
1733 *	getnewbuf:
1734 *
1735 *	Find and initialize a new buffer header, freeing up existing buffers
1736 *	in the bufqueues as necessary.  The new buffer is returned locked.
1737 *
1738 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1739 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1740 *
1741 *	We block if:
1742 *		We have insufficient buffer headers
1743 *		We have insufficient buffer space
1744 *		buffer_map is too fragmented ( space reservation fails )
1745 *		If we have to flush dirty buffers ( but we try to avoid this )
1746 *
1747 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1748 *	Instead we ask the buf daemon to do it for us.  We attempt to
1749 *	avoid piecemeal wakeups of the pageout daemon.
1750 */
1751
1752static struct buf *
1753getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1754{
1755	struct buf *bp;
1756	struct buf *nbp;
1757	int defrag = 0;
1758	int nqindex;
1759	static int flushingbufs;
1760
1761	GIANT_REQUIRED;
1762
1763	/*
1764	 * We can't afford to block since we might be holding a vnode lock,
1765	 * which may prevent system daemons from running.  We deal with
1766	 * low-memory situations by proactively returning memory and running
1767	 * async I/O rather then sync I/O.
1768	 */
1769
1770	atomic_add_int(&getnewbufcalls, 1);
1771	atomic_subtract_int(&getnewbufrestarts, 1);
1772restart:
1773	atomic_add_int(&getnewbufrestarts, 1);
1774
1775	/*
1776	 * Setup for scan.  If we do not have enough free buffers,
1777	 * we setup a degenerate case that immediately fails.  Note
1778	 * that if we are specially marked process, we are allowed to
1779	 * dip into our reserves.
1780	 *
1781	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1782	 *
1783	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1784	 * However, there are a number of cases (defragging, reusing, ...)
1785	 * where we cannot backup.
1786	 */
1787	mtx_lock(&bqlock);
1788	nqindex = QUEUE_EMPTYKVA;
1789	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1790
1791	if (nbp == NULL) {
1792		/*
1793		 * If no EMPTYKVA buffers and we are either
1794		 * defragging or reusing, locate a CLEAN buffer
1795		 * to free or reuse.  If bufspace useage is low
1796		 * skip this step so we can allocate a new buffer.
1797		 */
1798		if (defrag || bufspace >= lobufspace) {
1799			nqindex = QUEUE_CLEAN;
1800			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1801		}
1802
1803		/*
1804		 * If we could not find or were not allowed to reuse a
1805		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1806		 * buffer.  We can only use an EMPTY buffer if allocating
1807		 * its KVA would not otherwise run us out of buffer space.
1808		 */
1809		if (nbp == NULL && defrag == 0 &&
1810		    bufspace + maxsize < hibufspace) {
1811			nqindex = QUEUE_EMPTY;
1812			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1813		}
1814	}
1815
1816	/*
1817	 * Run scan, possibly freeing data and/or kva mappings on the fly
1818	 * depending.
1819	 */
1820
1821	while ((bp = nbp) != NULL) {
1822		int qindex = nqindex;
1823
1824		/*
1825		 * Calculate next bp ( we can only use it if we do not block
1826		 * or do other fancy things ).
1827		 */
1828		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1829			switch(qindex) {
1830			case QUEUE_EMPTY:
1831				nqindex = QUEUE_EMPTYKVA;
1832				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1833					break;
1834				/* FALLTHROUGH */
1835			case QUEUE_EMPTYKVA:
1836				nqindex = QUEUE_CLEAN;
1837				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1838					break;
1839				/* FALLTHROUGH */
1840			case QUEUE_CLEAN:
1841				/*
1842				 * nbp is NULL.
1843				 */
1844				break;
1845			}
1846		}
1847		if (bp->b_vp) {
1848			BO_LOCK(bp->b_bufobj);
1849			if (bp->b_vflags & BV_BKGRDINPROG) {
1850				BO_UNLOCK(bp->b_bufobj);
1851				continue;
1852			}
1853			BO_UNLOCK(bp->b_bufobj);
1854		}
1855
1856		/*
1857		 * Sanity Checks
1858		 */
1859		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1860
1861		/*
1862		 * Note: we no longer distinguish between VMIO and non-VMIO
1863		 * buffers.
1864		 */
1865
1866		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1867
1868		/*
1869		 * If we are defragging then we need a buffer with
1870		 * b_kvasize != 0.  XXX this situation should no longer
1871		 * occur, if defrag is non-zero the buffer's b_kvasize
1872		 * should also be non-zero at this point.  XXX
1873		 */
1874		if (defrag && bp->b_kvasize == 0) {
1875			printf("Warning: defrag empty buffer %p\n", bp);
1876			continue;
1877		}
1878
1879		/*
1880		 * Start freeing the bp.  This is somewhat involved.  nbp
1881		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1882		 */
1883
1884		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1885			panic("getnewbuf: locked buf");
1886		bremfreel(bp);
1887		mtx_unlock(&bqlock);
1888
1889		if (qindex == QUEUE_CLEAN) {
1890			if (bp->b_flags & B_VMIO) {
1891				bp->b_flags &= ~B_ASYNC;
1892				vfs_vmio_release(bp);
1893			}
1894			if (bp->b_vp)
1895				brelvp(bp);
1896		}
1897
1898		/*
1899		 * NOTE:  nbp is now entirely invalid.  We can only restart
1900		 * the scan from this point on.
1901		 *
1902		 * Get the rest of the buffer freed up.  b_kva* is still
1903		 * valid after this operation.
1904		 */
1905
1906		if (bp->b_rcred != NOCRED) {
1907			crfree(bp->b_rcred);
1908			bp->b_rcred = NOCRED;
1909		}
1910		if (bp->b_wcred != NOCRED) {
1911			crfree(bp->b_wcred);
1912			bp->b_wcred = NOCRED;
1913		}
1914		if (LIST_FIRST(&bp->b_dep) != NULL)
1915			buf_deallocate(bp);
1916		if (bp->b_vflags & BV_BKGRDINPROG)
1917			panic("losing buffer 3");
1918
1919		if (bp->b_bufsize)
1920			allocbuf(bp, 0);
1921
1922		bp->b_flags = 0;
1923		bp->b_ioflags = 0;
1924		bp->b_xflags = 0;
1925		bp->b_vflags = 0;
1926		bp->b_vp = NULL;
1927		bp->b_blkno = bp->b_lblkno = 0;
1928		bp->b_offset = NOOFFSET;
1929		bp->b_iodone = 0;
1930		bp->b_error = 0;
1931		bp->b_resid = 0;
1932		bp->b_bcount = 0;
1933		bp->b_npages = 0;
1934		bp->b_dirtyoff = bp->b_dirtyend = 0;
1935		bp->b_bufobj = NULL;
1936
1937		LIST_INIT(&bp->b_dep);
1938
1939		/*
1940		 * If we are defragging then free the buffer.
1941		 */
1942		if (defrag) {
1943			bp->b_flags |= B_INVAL;
1944			bfreekva(bp);
1945			brelse(bp);
1946			defrag = 0;
1947			goto restart;
1948		}
1949
1950		/*
1951		 * If we are overcomitted then recover the buffer and its
1952		 * KVM space.  This occurs in rare situations when multiple
1953		 * processes are blocked in getnewbuf() or allocbuf().
1954		 */
1955		if (bufspace >= hibufspace)
1956			flushingbufs = 1;
1957		if (flushingbufs && bp->b_kvasize != 0) {
1958			bp->b_flags |= B_INVAL;
1959			bfreekva(bp);
1960			brelse(bp);
1961			goto restart;
1962		}
1963		if (bufspace < lobufspace)
1964			flushingbufs = 0;
1965		break;
1966	}
1967
1968	/*
1969	 * If we exhausted our list, sleep as appropriate.  We may have to
1970	 * wakeup various daemons and write out some dirty buffers.
1971	 *
1972	 * Generally we are sleeping due to insufficient buffer space.
1973	 */
1974
1975	if (bp == NULL) {
1976		int flags;
1977		char *waitmsg;
1978
1979		mtx_unlock(&bqlock);
1980		if (defrag) {
1981			flags = VFS_BIO_NEED_BUFSPACE;
1982			waitmsg = "nbufkv";
1983		} else if (bufspace >= hibufspace) {
1984			waitmsg = "nbufbs";
1985			flags = VFS_BIO_NEED_BUFSPACE;
1986		} else {
1987			waitmsg = "newbuf";
1988			flags = VFS_BIO_NEED_ANY;
1989		}
1990
1991		bd_speedup();	/* heeeelp */
1992
1993		mtx_lock(&nblock);
1994		needsbuffer |= flags;
1995		while (needsbuffer & flags) {
1996			if (msleep(&needsbuffer, &nblock,
1997			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1998				mtx_unlock(&nblock);
1999				return (NULL);
2000			}
2001		}
2002		mtx_unlock(&nblock);
2003	} else {
2004		/*
2005		 * We finally have a valid bp.  We aren't quite out of the
2006		 * woods, we still have to reserve kva space.  In order
2007		 * to keep fragmentation sane we only allocate kva in
2008		 * BKVASIZE chunks.
2009		 */
2010		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2011
2012		if (maxsize != bp->b_kvasize) {
2013			vm_offset_t addr = 0;
2014
2015			bfreekva(bp);
2016
2017			if (vm_map_findspace(buffer_map,
2018				vm_map_min(buffer_map), maxsize, &addr)) {
2019				/*
2020				 * Uh oh.  Buffer map is to fragmented.  We
2021				 * must defragment the map.
2022				 */
2023				atomic_add_int(&bufdefragcnt, 1);
2024				defrag = 1;
2025				bp->b_flags |= B_INVAL;
2026				brelse(bp);
2027				goto restart;
2028			}
2029			if (addr) {
2030				vm_map_insert(buffer_map, NULL, 0,
2031					addr, addr + maxsize,
2032					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2033
2034				bp->b_kvabase = (caddr_t) addr;
2035				bp->b_kvasize = maxsize;
2036				atomic_add_int(&bufspace, bp->b_kvasize);
2037				atomic_add_int(&bufreusecnt, 1);
2038			}
2039		}
2040		bp->b_saveaddr = bp->b_kvabase;
2041		bp->b_data = bp->b_saveaddr;
2042	}
2043	return(bp);
2044}
2045
2046/*
2047 *	buf_daemon:
2048 *
2049 *	buffer flushing daemon.  Buffers are normally flushed by the
2050 *	update daemon but if it cannot keep up this process starts to
2051 *	take the load in an attempt to prevent getnewbuf() from blocking.
2052 */
2053
2054static struct kproc_desc buf_kp = {
2055	"bufdaemon",
2056	buf_daemon,
2057	&bufdaemonproc
2058};
2059SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2060
2061static void
2062buf_daemon()
2063{
2064	int s;
2065
2066	mtx_lock(&Giant);
2067
2068	/*
2069	 * This process needs to be suspended prior to shutdown sync.
2070	 */
2071	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2072	    SHUTDOWN_PRI_LAST);
2073
2074	/*
2075	 * This process is allowed to take the buffer cache to the limit
2076	 */
2077	s = splbio();
2078	mtx_lock(&bdlock);
2079
2080	for (;;) {
2081		bd_request = 0;
2082		mtx_unlock(&bdlock);
2083
2084		kthread_suspend_check(bufdaemonproc);
2085
2086		/*
2087		 * Do the flush.  Limit the amount of in-transit I/O we
2088		 * allow to build up, otherwise we would completely saturate
2089		 * the I/O system.  Wakeup any waiting processes before we
2090		 * normally would so they can run in parallel with our drain.
2091		 */
2092		while (numdirtybuffers > lodirtybuffers) {
2093			if (flushbufqueues(0) == 0) {
2094				/*
2095				 * Could not find any buffers without rollback
2096				 * dependencies, so just write the first one
2097				 * in the hopes of eventually making progress.
2098				 */
2099				flushbufqueues(1);
2100				break;
2101			}
2102			waitrunningbufspace();
2103			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2104		}
2105
2106		/*
2107		 * Only clear bd_request if we have reached our low water
2108		 * mark.  The buf_daemon normally waits 1 second and
2109		 * then incrementally flushes any dirty buffers that have
2110		 * built up, within reason.
2111		 *
2112		 * If we were unable to hit our low water mark and couldn't
2113		 * find any flushable buffers, we sleep half a second.
2114		 * Otherwise we loop immediately.
2115		 */
2116		mtx_lock(&bdlock);
2117		if (numdirtybuffers <= lodirtybuffers) {
2118			/*
2119			 * We reached our low water mark, reset the
2120			 * request and sleep until we are needed again.
2121			 * The sleep is just so the suspend code works.
2122			 */
2123			bd_request = 0;
2124			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2125		} else {
2126			/*
2127			 * We couldn't find any flushable dirty buffers but
2128			 * still have too many dirty buffers, we
2129			 * have to sleep and try again.  (rare)
2130			 */
2131			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2132		}
2133	}
2134}
2135
2136/*
2137 *	flushbufqueues:
2138 *
2139 *	Try to flush a buffer in the dirty queue.  We must be careful to
2140 *	free up B_INVAL buffers instead of write them, which NFS is
2141 *	particularly sensitive to.
2142 */
2143int flushwithdeps = 0;
2144SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2145    0, "Number of buffers flushed with dependecies that require rollbacks");
2146
2147static int
2148flushbufqueues(int flushdeps)
2149{
2150	struct thread *td = curthread;
2151	struct vnode *vp;
2152	struct mount *mp;
2153	struct buf *bp;
2154	int hasdeps;
2155
2156	mtx_lock(&bqlock);
2157	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2158		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2159			continue;
2160		KASSERT((bp->b_flags & B_DELWRI),
2161		    ("unexpected clean buffer %p", bp));
2162		BO_LOCK(bp->b_bufobj);
2163		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
2164			BO_UNLOCK(bp->b_bufobj);
2165			BUF_UNLOCK(bp);
2166			continue;
2167		}
2168		BO_UNLOCK(bp->b_bufobj);
2169		if (bp->b_flags & B_INVAL) {
2170			bremfreel(bp);
2171			mtx_unlock(&bqlock);
2172			brelse(bp);
2173			return (1);
2174		}
2175
2176		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2177			if (flushdeps == 0) {
2178				BUF_UNLOCK(bp);
2179				continue;
2180			}
2181			hasdeps = 1;
2182		} else
2183			hasdeps = 0;
2184		/*
2185		 * We must hold the lock on a vnode before writing
2186		 * one of its buffers. Otherwise we may confuse, or
2187		 * in the case of a snapshot vnode, deadlock the
2188		 * system.
2189		 *
2190		 * The lock order here is the reverse of the normal
2191		 * of vnode followed by buf lock.  This is ok because
2192		 * the NOWAIT will prevent deadlock.
2193		 */
2194		vp = bp->b_vp;
2195		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2196			BUF_UNLOCK(bp);
2197			continue;
2198		}
2199		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2200			mtx_unlock(&bqlock);
2201			vfs_bio_awrite(bp);
2202			vn_finished_write(mp);
2203			VOP_UNLOCK(vp, 0, td);
2204			flushwithdeps += hasdeps;
2205			return (1);
2206		}
2207		vn_finished_write(mp);
2208		BUF_UNLOCK(bp);
2209	}
2210	mtx_unlock(&bqlock);
2211	return (0);
2212}
2213
2214/*
2215 * Check to see if a block is currently memory resident.
2216 */
2217struct buf *
2218incore(struct bufobj *bo, daddr_t blkno)
2219{
2220	struct buf *bp;
2221
2222	int s = splbio();
2223	BO_LOCK(bo);
2224	bp = gbincore(bo, blkno);
2225	BO_UNLOCK(bo);
2226	splx(s);
2227	return (bp);
2228}
2229
2230/*
2231 * Returns true if no I/O is needed to access the
2232 * associated VM object.  This is like incore except
2233 * it also hunts around in the VM system for the data.
2234 */
2235
2236static int
2237inmem(struct vnode * vp, daddr_t blkno)
2238{
2239	vm_object_t obj;
2240	vm_offset_t toff, tinc, size;
2241	vm_page_t m;
2242	vm_ooffset_t off;
2243
2244	GIANT_REQUIRED;
2245	ASSERT_VOP_LOCKED(vp, "inmem");
2246
2247	if (incore(&vp->v_bufobj, blkno))
2248		return 1;
2249	if (vp->v_mount == NULL)
2250		return 0;
2251	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2252		return 0;
2253
2254	size = PAGE_SIZE;
2255	if (size > vp->v_mount->mnt_stat.f_iosize)
2256		size = vp->v_mount->mnt_stat.f_iosize;
2257	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2258
2259	VM_OBJECT_LOCK(obj);
2260	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2261		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2262		if (!m)
2263			goto notinmem;
2264		tinc = size;
2265		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2266			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2267		if (vm_page_is_valid(m,
2268		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2269			goto notinmem;
2270	}
2271	VM_OBJECT_UNLOCK(obj);
2272	return 1;
2273
2274notinmem:
2275	VM_OBJECT_UNLOCK(obj);
2276	return (0);
2277}
2278
2279/*
2280 *	vfs_setdirty:
2281 *
2282 *	Sets the dirty range for a buffer based on the status of the dirty
2283 *	bits in the pages comprising the buffer.
2284 *
2285 *	The range is limited to the size of the buffer.
2286 *
2287 *	This routine is primarily used by NFS, but is generalized for the
2288 *	B_VMIO case.
2289 */
2290static void
2291vfs_setdirty(struct buf *bp)
2292{
2293	int i;
2294	vm_object_t object;
2295
2296	GIANT_REQUIRED;
2297	/*
2298	 * Degenerate case - empty buffer
2299	 */
2300
2301	if (bp->b_bufsize == 0)
2302		return;
2303
2304	/*
2305	 * We qualify the scan for modified pages on whether the
2306	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2307	 * is not cleared simply by protecting pages off.
2308	 */
2309
2310	if ((bp->b_flags & B_VMIO) == 0)
2311		return;
2312
2313	object = bp->b_pages[0]->object;
2314	VM_OBJECT_LOCK(object);
2315	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2316		printf("Warning: object %p writeable but not mightbedirty\n", object);
2317	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2318		printf("Warning: object %p mightbedirty but not writeable\n", object);
2319
2320	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2321		vm_offset_t boffset;
2322		vm_offset_t eoffset;
2323
2324		vm_page_lock_queues();
2325		/*
2326		 * test the pages to see if they have been modified directly
2327		 * by users through the VM system.
2328		 */
2329		for (i = 0; i < bp->b_npages; i++)
2330			vm_page_test_dirty(bp->b_pages[i]);
2331
2332		/*
2333		 * Calculate the encompassing dirty range, boffset and eoffset,
2334		 * (eoffset - boffset) bytes.
2335		 */
2336
2337		for (i = 0; i < bp->b_npages; i++) {
2338			if (bp->b_pages[i]->dirty)
2339				break;
2340		}
2341		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2342
2343		for (i = bp->b_npages - 1; i >= 0; --i) {
2344			if (bp->b_pages[i]->dirty) {
2345				break;
2346			}
2347		}
2348		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2349
2350		vm_page_unlock_queues();
2351		/*
2352		 * Fit it to the buffer.
2353		 */
2354
2355		if (eoffset > bp->b_bcount)
2356			eoffset = bp->b_bcount;
2357
2358		/*
2359		 * If we have a good dirty range, merge with the existing
2360		 * dirty range.
2361		 */
2362
2363		if (boffset < eoffset) {
2364			if (bp->b_dirtyoff > boffset)
2365				bp->b_dirtyoff = boffset;
2366			if (bp->b_dirtyend < eoffset)
2367				bp->b_dirtyend = eoffset;
2368		}
2369	}
2370	VM_OBJECT_UNLOCK(object);
2371}
2372
2373/*
2374 *	getblk:
2375 *
2376 *	Get a block given a specified block and offset into a file/device.
2377 *	The buffers B_DONE bit will be cleared on return, making it almost
2378 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2379 *	return.  The caller should clear B_INVAL prior to initiating a
2380 *	READ.
2381 *
2382 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2383 *	an existing buffer.
2384 *
2385 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2386 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2387 *	and then cleared based on the backing VM.  If the previous buffer is
2388 *	non-0-sized but invalid, B_CACHE will be cleared.
2389 *
2390 *	If getblk() must create a new buffer, the new buffer is returned with
2391 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2392 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2393 *	backing VM.
2394 *
2395 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2396 *	B_CACHE bit is clear.
2397 *
2398 *	What this means, basically, is that the caller should use B_CACHE to
2399 *	determine whether the buffer is fully valid or not and should clear
2400 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2401 *	the buffer by loading its data area with something, the caller needs
2402 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2403 *	the caller should set B_CACHE ( as an optimization ), else the caller
2404 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2405 *	a write attempt or if it was a successfull read.  If the caller
2406 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2407 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2408 */
2409struct buf *
2410getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2411    int flags)
2412{
2413	struct buf *bp;
2414	struct bufobj *bo;
2415	int s;
2416	int error;
2417	ASSERT_VOP_LOCKED(vp, "getblk");
2418	struct vm_object *vmo;
2419
2420	if (size > MAXBSIZE)
2421		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2422
2423	bo = &vp->v_bufobj;
2424	s = splbio();
2425loop:
2426	/*
2427	 * Block if we are low on buffers.   Certain processes are allowed
2428	 * to completely exhaust the buffer cache.
2429         *
2430         * If this check ever becomes a bottleneck it may be better to
2431         * move it into the else, when gbincore() fails.  At the moment
2432         * it isn't a problem.
2433	 *
2434	 * XXX remove if 0 sections (clean this up after its proven)
2435         */
2436	if (numfreebuffers == 0) {
2437		if (curthread == PCPU_GET(idlethread))
2438			return NULL;
2439		mtx_lock(&nblock);
2440		needsbuffer |= VFS_BIO_NEED_ANY;
2441		mtx_unlock(&nblock);
2442	}
2443
2444	VI_LOCK(vp);
2445	bp = gbincore(bo, blkno);
2446	if (bp != NULL) {
2447		int lockflags;
2448		/*
2449		 * Buffer is in-core.  If the buffer is not busy, it must
2450		 * be on a queue.
2451		 */
2452		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2453
2454		if (flags & GB_LOCK_NOWAIT)
2455			lockflags |= LK_NOWAIT;
2456
2457		error = BUF_TIMELOCK(bp, lockflags,
2458		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2459
2460		/*
2461		 * If we slept and got the lock we have to restart in case
2462		 * the buffer changed identities.
2463		 */
2464		if (error == ENOLCK)
2465			goto loop;
2466		/* We timed out or were interrupted. */
2467		else if (error)
2468			return (NULL);
2469
2470		/*
2471		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2472		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2473		 * and for a VMIO buffer B_CACHE is adjusted according to the
2474		 * backing VM cache.
2475		 */
2476		if (bp->b_flags & B_INVAL)
2477			bp->b_flags &= ~B_CACHE;
2478		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2479			bp->b_flags |= B_CACHE;
2480		bremfree(bp);
2481
2482		/*
2483		 * check for size inconsistancies for non-VMIO case.
2484		 */
2485
2486		if (bp->b_bcount != size) {
2487			if ((bp->b_flags & B_VMIO) == 0 ||
2488			    (size > bp->b_kvasize)) {
2489				if (bp->b_flags & B_DELWRI) {
2490					bp->b_flags |= B_NOCACHE;
2491					bwrite(bp);
2492				} else {
2493					if ((bp->b_flags & B_VMIO) &&
2494					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2495						bp->b_flags |= B_RELBUF;
2496						brelse(bp);
2497					} else {
2498						bp->b_flags |= B_NOCACHE;
2499						bwrite(bp);
2500					}
2501				}
2502				goto loop;
2503			}
2504		}
2505
2506		/*
2507		 * If the size is inconsistant in the VMIO case, we can resize
2508		 * the buffer.  This might lead to B_CACHE getting set or
2509		 * cleared.  If the size has not changed, B_CACHE remains
2510		 * unchanged from its previous state.
2511		 */
2512
2513		if (bp->b_bcount != size)
2514			allocbuf(bp, size);
2515
2516		KASSERT(bp->b_offset != NOOFFSET,
2517		    ("getblk: no buffer offset"));
2518
2519		/*
2520		 * A buffer with B_DELWRI set and B_CACHE clear must
2521		 * be committed before we can return the buffer in
2522		 * order to prevent the caller from issuing a read
2523		 * ( due to B_CACHE not being set ) and overwriting
2524		 * it.
2525		 *
2526		 * Most callers, including NFS and FFS, need this to
2527		 * operate properly either because they assume they
2528		 * can issue a read if B_CACHE is not set, or because
2529		 * ( for example ) an uncached B_DELWRI might loop due
2530		 * to softupdates re-dirtying the buffer.  In the latter
2531		 * case, B_CACHE is set after the first write completes,
2532		 * preventing further loops.
2533		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2534		 * above while extending the buffer, we cannot allow the
2535		 * buffer to remain with B_CACHE set after the write
2536		 * completes or it will represent a corrupt state.  To
2537		 * deal with this we set B_NOCACHE to scrap the buffer
2538		 * after the write.
2539		 *
2540		 * We might be able to do something fancy, like setting
2541		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2542		 * so the below call doesn't set B_CACHE, but that gets real
2543		 * confusing.  This is much easier.
2544		 */
2545
2546		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2547			bp->b_flags |= B_NOCACHE;
2548			bwrite(bp);
2549			goto loop;
2550		}
2551
2552		splx(s);
2553		bp->b_flags &= ~B_DONE;
2554	} else {
2555		int bsize, maxsize, vmio;
2556		off_t offset;
2557
2558		/*
2559		 * Buffer is not in-core, create new buffer.  The buffer
2560		 * returned by getnewbuf() is locked.  Note that the returned
2561		 * buffer is also considered valid (not marked B_INVAL).
2562		 */
2563		VI_UNLOCK(vp);
2564		/*
2565		 * If the user does not want us to create the buffer, bail out
2566		 * here.
2567		 */
2568		if (flags & GB_NOCREAT) {
2569			splx(s);
2570			return NULL;
2571		}
2572
2573		bsize = bo->bo_bsize;
2574		offset = blkno * bsize;
2575		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2576		    (vp->v_vflag & VV_OBJBUF);
2577		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2578		maxsize = imax(maxsize, bsize);
2579
2580		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2581		if (bp == NULL) {
2582			if (slpflag || slptimeo) {
2583				splx(s);
2584				return NULL;
2585			}
2586			goto loop;
2587		}
2588
2589		/*
2590		 * This code is used to make sure that a buffer is not
2591		 * created while the getnewbuf routine is blocked.
2592		 * This can be a problem whether the vnode is locked or not.
2593		 * If the buffer is created out from under us, we have to
2594		 * throw away the one we just created.  There is now window
2595		 * race because we are safely running at splbio() from the
2596		 * point of the duplicate buffer creation through to here,
2597		 * and we've locked the buffer.
2598		 *
2599		 * Note: this must occur before we associate the buffer
2600		 * with the vp especially considering limitations in
2601		 * the splay tree implementation when dealing with duplicate
2602		 * lblkno's.
2603		 */
2604		BO_LOCK(bo);
2605		if (gbincore(bo, blkno)) {
2606			BO_UNLOCK(bo);
2607			bp->b_flags |= B_INVAL;
2608			brelse(bp);
2609			goto loop;
2610		}
2611
2612		/*
2613		 * Insert the buffer into the hash, so that it can
2614		 * be found by incore.
2615		 */
2616		bp->b_blkno = bp->b_lblkno = blkno;
2617		bp->b_offset = offset;
2618
2619		bgetvp(vp, bp);
2620		BO_UNLOCK(bo);
2621
2622		/*
2623		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2624		 * buffer size starts out as 0, B_CACHE will be set by
2625		 * allocbuf() for the VMIO case prior to it testing the
2626		 * backing store for validity.
2627		 */
2628
2629		if (vmio) {
2630			bp->b_flags |= B_VMIO;
2631#if defined(VFS_BIO_DEBUG)
2632			if (vn_canvmio(vp) != TRUE)
2633				printf("getblk: VMIO on vnode type %d\n",
2634					vp->v_type);
2635#endif
2636			VOP_GETVOBJECT(vp, &vmo);
2637			KASSERT(vmo == bp->b_bufobj->bo_object,
2638			    ("ARGH! different b_bufobj->bo_object %p %p %p\n",
2639			    bp, vmo, bp->b_bufobj->bo_object));
2640		} else {
2641			bp->b_flags &= ~B_VMIO;
2642			KASSERT(bp->b_bufobj->bo_object == NULL,
2643			    ("ARGH! has b_bufobj->bo_object %p %p\n",
2644			    bp, bp->b_bufobj->bo_object));
2645		}
2646
2647		allocbuf(bp, size);
2648
2649		splx(s);
2650		bp->b_flags &= ~B_DONE;
2651	}
2652	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2653	KASSERT(bp->b_bufobj == bo,
2654	    ("wrong b_bufobj %p should be %p", bp->b_bufobj, bo));
2655	return (bp);
2656}
2657
2658/*
2659 * Get an empty, disassociated buffer of given size.  The buffer is initially
2660 * set to B_INVAL.
2661 */
2662struct buf *
2663geteblk(int size)
2664{
2665	struct buf *bp;
2666	int s;
2667	int maxsize;
2668
2669	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2670
2671	s = splbio();
2672	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2673		continue;
2674	splx(s);
2675	allocbuf(bp, size);
2676	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2677	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2678	return (bp);
2679}
2680
2681
2682/*
2683 * This code constitutes the buffer memory from either anonymous system
2684 * memory (in the case of non-VMIO operations) or from an associated
2685 * VM object (in the case of VMIO operations).  This code is able to
2686 * resize a buffer up or down.
2687 *
2688 * Note that this code is tricky, and has many complications to resolve
2689 * deadlock or inconsistant data situations.  Tread lightly!!!
2690 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2691 * the caller.  Calling this code willy nilly can result in the loss of data.
2692 *
2693 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2694 * B_CACHE for the non-VMIO case.
2695 */
2696
2697int
2698allocbuf(struct buf *bp, int size)
2699{
2700	int newbsize, mbsize;
2701	int i;
2702
2703	GIANT_REQUIRED;
2704
2705	if (BUF_REFCNT(bp) == 0)
2706		panic("allocbuf: buffer not busy");
2707
2708	if (bp->b_kvasize < size)
2709		panic("allocbuf: buffer too small");
2710
2711	if ((bp->b_flags & B_VMIO) == 0) {
2712		caddr_t origbuf;
2713		int origbufsize;
2714		/*
2715		 * Just get anonymous memory from the kernel.  Don't
2716		 * mess with B_CACHE.
2717		 */
2718		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2719		if (bp->b_flags & B_MALLOC)
2720			newbsize = mbsize;
2721		else
2722			newbsize = round_page(size);
2723
2724		if (newbsize < bp->b_bufsize) {
2725			/*
2726			 * malloced buffers are not shrunk
2727			 */
2728			if (bp->b_flags & B_MALLOC) {
2729				if (newbsize) {
2730					bp->b_bcount = size;
2731				} else {
2732					free(bp->b_data, M_BIOBUF);
2733					if (bp->b_bufsize) {
2734						atomic_subtract_int(
2735						    &bufmallocspace,
2736						    bp->b_bufsize);
2737						bufspacewakeup();
2738						bp->b_bufsize = 0;
2739					}
2740					bp->b_saveaddr = bp->b_kvabase;
2741					bp->b_data = bp->b_saveaddr;
2742					bp->b_bcount = 0;
2743					bp->b_flags &= ~B_MALLOC;
2744				}
2745				return 1;
2746			}
2747			vm_hold_free_pages(
2748			    bp,
2749			    (vm_offset_t) bp->b_data + newbsize,
2750			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2751		} else if (newbsize > bp->b_bufsize) {
2752			/*
2753			 * We only use malloced memory on the first allocation.
2754			 * and revert to page-allocated memory when the buffer
2755			 * grows.
2756			 */
2757			/*
2758			 * There is a potential smp race here that could lead
2759			 * to bufmallocspace slightly passing the max.  It
2760			 * is probably extremely rare and not worth worrying
2761			 * over.
2762			 */
2763			if ( (bufmallocspace < maxbufmallocspace) &&
2764				(bp->b_bufsize == 0) &&
2765				(mbsize <= PAGE_SIZE/2)) {
2766
2767				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2768				bp->b_bufsize = mbsize;
2769				bp->b_bcount = size;
2770				bp->b_flags |= B_MALLOC;
2771				atomic_add_int(&bufmallocspace, mbsize);
2772				return 1;
2773			}
2774			origbuf = NULL;
2775			origbufsize = 0;
2776			/*
2777			 * If the buffer is growing on its other-than-first allocation,
2778			 * then we revert to the page-allocation scheme.
2779			 */
2780			if (bp->b_flags & B_MALLOC) {
2781				origbuf = bp->b_data;
2782				origbufsize = bp->b_bufsize;
2783				bp->b_data = bp->b_kvabase;
2784				if (bp->b_bufsize) {
2785					atomic_subtract_int(&bufmallocspace,
2786					    bp->b_bufsize);
2787					bufspacewakeup();
2788					bp->b_bufsize = 0;
2789				}
2790				bp->b_flags &= ~B_MALLOC;
2791				newbsize = round_page(newbsize);
2792			}
2793			vm_hold_load_pages(
2794			    bp,
2795			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2796			    (vm_offset_t) bp->b_data + newbsize);
2797			if (origbuf) {
2798				bcopy(origbuf, bp->b_data, origbufsize);
2799				free(origbuf, M_BIOBUF);
2800			}
2801		}
2802	} else {
2803		int desiredpages;
2804
2805		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2806		desiredpages = (size == 0) ? 0 :
2807			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2808
2809		if (bp->b_flags & B_MALLOC)
2810			panic("allocbuf: VMIO buffer can't be malloced");
2811		/*
2812		 * Set B_CACHE initially if buffer is 0 length or will become
2813		 * 0-length.
2814		 */
2815		if (size == 0 || bp->b_bufsize == 0)
2816			bp->b_flags |= B_CACHE;
2817
2818		if (newbsize < bp->b_bufsize) {
2819			/*
2820			 * DEV_BSIZE aligned new buffer size is less then the
2821			 * DEV_BSIZE aligned existing buffer size.  Figure out
2822			 * if we have to remove any pages.
2823			 */
2824			if (desiredpages < bp->b_npages) {
2825				vm_page_t m;
2826
2827				VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
2828				vm_page_lock_queues();
2829				for (i = desiredpages; i < bp->b_npages; i++) {
2830					/*
2831					 * the page is not freed here -- it
2832					 * is the responsibility of
2833					 * vnode_pager_setsize
2834					 */
2835					m = bp->b_pages[i];
2836					KASSERT(m != bogus_page,
2837					    ("allocbuf: bogus page found"));
2838					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2839						vm_page_lock_queues();
2840
2841					bp->b_pages[i] = NULL;
2842					vm_page_unwire(m, 0);
2843				}
2844				vm_page_unlock_queues();
2845				VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
2846				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2847				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2848				bp->b_npages = desiredpages;
2849			}
2850		} else if (size > bp->b_bcount) {
2851			/*
2852			 * We are growing the buffer, possibly in a
2853			 * byte-granular fashion.
2854			 */
2855			struct vnode *vp;
2856			vm_object_t obj;
2857			vm_offset_t toff;
2858			vm_offset_t tinc;
2859
2860			/*
2861			 * Step 1, bring in the VM pages from the object,
2862			 * allocating them if necessary.  We must clear
2863			 * B_CACHE if these pages are not valid for the
2864			 * range covered by the buffer.
2865			 */
2866
2867			vp = bp->b_vp;
2868			obj = bp->b_bufobj->bo_object;
2869
2870			VM_OBJECT_LOCK(obj);
2871			while (bp->b_npages < desiredpages) {
2872				vm_page_t m;
2873				vm_pindex_t pi;
2874
2875				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2876				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2877					/*
2878					 * note: must allocate system pages
2879					 * since blocking here could intefere
2880					 * with paging I/O, no matter which
2881					 * process we are.
2882					 */
2883					m = vm_page_alloc(obj, pi,
2884					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2885					    VM_ALLOC_WIRED);
2886					if (m == NULL) {
2887						atomic_add_int(&vm_pageout_deficit,
2888						    desiredpages - bp->b_npages);
2889						VM_OBJECT_UNLOCK(obj);
2890						VM_WAIT;
2891						VM_OBJECT_LOCK(obj);
2892					} else {
2893						bp->b_flags &= ~B_CACHE;
2894						bp->b_pages[bp->b_npages] = m;
2895						++bp->b_npages;
2896					}
2897					continue;
2898				}
2899
2900				/*
2901				 * We found a page.  If we have to sleep on it,
2902				 * retry because it might have gotten freed out
2903				 * from under us.
2904				 *
2905				 * We can only test PG_BUSY here.  Blocking on
2906				 * m->busy might lead to a deadlock:
2907				 *
2908				 *  vm_fault->getpages->cluster_read->allocbuf
2909				 *
2910				 */
2911				vm_page_lock_queues();
2912				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2913					continue;
2914
2915				/*
2916				 * We have a good page.  Should we wakeup the
2917				 * page daemon?
2918				 */
2919				if ((curproc != pageproc) &&
2920				    ((m->queue - m->pc) == PQ_CACHE) &&
2921				    ((cnt.v_free_count + cnt.v_cache_count) <
2922					(cnt.v_free_min + cnt.v_cache_min))) {
2923					pagedaemon_wakeup();
2924				}
2925				vm_page_wire(m);
2926				vm_page_unlock_queues();
2927				bp->b_pages[bp->b_npages] = m;
2928				++bp->b_npages;
2929			}
2930
2931			/*
2932			 * Step 2.  We've loaded the pages into the buffer,
2933			 * we have to figure out if we can still have B_CACHE
2934			 * set.  Note that B_CACHE is set according to the
2935			 * byte-granular range ( bcount and size ), new the
2936			 * aligned range ( newbsize ).
2937			 *
2938			 * The VM test is against m->valid, which is DEV_BSIZE
2939			 * aligned.  Needless to say, the validity of the data
2940			 * needs to also be DEV_BSIZE aligned.  Note that this
2941			 * fails with NFS if the server or some other client
2942			 * extends the file's EOF.  If our buffer is resized,
2943			 * B_CACHE may remain set! XXX
2944			 */
2945
2946			toff = bp->b_bcount;
2947			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2948
2949			while ((bp->b_flags & B_CACHE) && toff < size) {
2950				vm_pindex_t pi;
2951
2952				if (tinc > (size - toff))
2953					tinc = size - toff;
2954
2955				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2956				    PAGE_SHIFT;
2957
2958				vfs_buf_test_cache(
2959				    bp,
2960				    bp->b_offset,
2961				    toff,
2962				    tinc,
2963				    bp->b_pages[pi]
2964				);
2965				toff += tinc;
2966				tinc = PAGE_SIZE;
2967			}
2968			VM_OBJECT_UNLOCK(obj);
2969
2970			/*
2971			 * Step 3, fixup the KVM pmap.  Remember that
2972			 * bp->b_data is relative to bp->b_offset, but
2973			 * bp->b_offset may be offset into the first page.
2974			 */
2975
2976			bp->b_data = (caddr_t)
2977			    trunc_page((vm_offset_t)bp->b_data);
2978			pmap_qenter(
2979			    (vm_offset_t)bp->b_data,
2980			    bp->b_pages,
2981			    bp->b_npages
2982			);
2983
2984			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2985			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2986		}
2987	}
2988	if (newbsize < bp->b_bufsize)
2989		bufspacewakeup();
2990	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2991	bp->b_bcount = size;		/* requested buffer size	*/
2992	return 1;
2993}
2994
2995void
2996biodone(struct bio *bp)
2997{
2998
2999	mtx_lock(&bdonelock);
3000	bp->bio_flags |= BIO_DONE;
3001	if (bp->bio_done == NULL)
3002		wakeup(bp);
3003	mtx_unlock(&bdonelock);
3004	if (bp->bio_done != NULL)
3005		bp->bio_done(bp);
3006}
3007
3008/*
3009 * Wait for a BIO to finish.
3010 *
3011 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3012 * case is not yet clear.
3013 */
3014int
3015biowait(struct bio *bp, const char *wchan)
3016{
3017
3018	mtx_lock(&bdonelock);
3019	while ((bp->bio_flags & BIO_DONE) == 0)
3020		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3021	mtx_unlock(&bdonelock);
3022	if (bp->bio_error != 0)
3023		return (bp->bio_error);
3024	if (!(bp->bio_flags & BIO_ERROR))
3025		return (0);
3026	return (EIO);
3027}
3028
3029void
3030biofinish(struct bio *bp, struct devstat *stat, int error)
3031{
3032
3033	if (error) {
3034		bp->bio_error = error;
3035		bp->bio_flags |= BIO_ERROR;
3036	}
3037	if (stat != NULL)
3038		devstat_end_transaction_bio(stat, bp);
3039	biodone(bp);
3040}
3041
3042/*
3043 *	bufwait:
3044 *
3045 *	Wait for buffer I/O completion, returning error status.  The buffer
3046 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3047 *	error and cleared.
3048 */
3049int
3050bufwait(struct buf *bp)
3051{
3052	int s;
3053
3054	s = splbio();
3055	if (bp->b_iocmd == BIO_READ)
3056		bwait(bp, PRIBIO, "biord");
3057	else
3058		bwait(bp, PRIBIO, "biowr");
3059	splx(s);
3060	if (bp->b_flags & B_EINTR) {
3061		bp->b_flags &= ~B_EINTR;
3062		return (EINTR);
3063	}
3064	if (bp->b_ioflags & BIO_ERROR) {
3065		return (bp->b_error ? bp->b_error : EIO);
3066	} else {
3067		return (0);
3068	}
3069}
3070
3071 /*
3072  * Call back function from struct bio back up to struct buf.
3073  */
3074static void
3075bufdonebio(struct bio *bip)
3076{
3077	struct buf *bp;
3078
3079	/* Device drivers may or may not hold giant, hold it here. */
3080	mtx_lock(&Giant);
3081	bp = bip->bio_caller2;
3082	bp->b_resid = bp->b_bcount - bip->bio_completed;
3083	bp->b_resid = bip->bio_resid;	/* XXX: remove */
3084	bp->b_ioflags = bip->bio_flags;
3085	bp->b_error = bip->bio_error;
3086	if (bp->b_error)
3087		bp->b_ioflags |= BIO_ERROR;
3088	bufdone(bp);
3089	mtx_unlock(&Giant);
3090	g_destroy_bio(bip);
3091}
3092
3093void
3094dev_strategy(struct cdev *dev, struct buf *bp)
3095{
3096	struct cdevsw *csw;
3097	struct bio *bip;
3098
3099	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3100		panic("b_iocmd botch");
3101	for (;;) {
3102		bip = g_new_bio();
3103		if (bip != NULL)
3104			break;
3105		/* Try again later */
3106		tsleep(&bp, PRIBIO, "dev_strat", hz/10);
3107	}
3108	bip->bio_cmd = bp->b_iocmd;
3109	bip->bio_offset = bp->b_iooffset;
3110	bip->bio_length = bp->b_bcount;
3111	bip->bio_bcount = bp->b_bcount;	/* XXX: remove */
3112	bip->bio_data = bp->b_data;
3113	bip->bio_done = bufdonebio;
3114	bip->bio_caller2 = bp;
3115	bip->bio_dev = dev;
3116	KASSERT(dev->si_refcount > 0,
3117	    ("dev_strategy on un-referenced struct cdev *(%s)",
3118	    devtoname(dev)));
3119	csw = dev_refthread(dev);
3120	if (csw == NULL) {
3121		bp->b_error = ENXIO;
3122		bp->b_ioflags = BIO_ERROR;
3123		mtx_lock(&Giant);	/* XXX: too defensive ? */
3124		bufdone(bp);
3125		mtx_unlock(&Giant);	/* XXX: too defensive ? */
3126		return;
3127	}
3128	(*csw->d_strategy)(bip);
3129	dev_relthread(dev);
3130}
3131
3132/*
3133 *	bufdone:
3134 *
3135 *	Finish I/O on a buffer, optionally calling a completion function.
3136 *	This is usually called from an interrupt so process blocking is
3137 *	not allowed.
3138 *
3139 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3140 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3141 *	assuming B_INVAL is clear.
3142 *
3143 *	For the VMIO case, we set B_CACHE if the op was a read and no
3144 *	read error occured, or if the op was a write.  B_CACHE is never
3145 *	set if the buffer is invalid or otherwise uncacheable.
3146 *
3147 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3148 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3149 *	in the biodone routine.
3150 */
3151void
3152bufdone(struct buf *bp)
3153{
3154	int s;
3155	void    (*biodone)(struct buf *);
3156
3157
3158	s = splbio();
3159
3160	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3161	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3162
3163	bp->b_flags |= B_DONE;
3164	runningbufwakeup(bp);
3165
3166	if (bp->b_iocmd == BIO_WRITE && bp->b_bufobj != NULL)
3167		bufobj_wdrop(bp->b_bufobj);
3168
3169	/* call optional completion function if requested */
3170	if (bp->b_iodone != NULL) {
3171		biodone = bp->b_iodone;
3172		bp->b_iodone = NULL;
3173		(*biodone) (bp);
3174		splx(s);
3175		return;
3176	}
3177	if (LIST_FIRST(&bp->b_dep) != NULL)
3178		buf_complete(bp);
3179
3180	if (bp->b_flags & B_VMIO) {
3181		int i;
3182		vm_ooffset_t foff;
3183		vm_page_t m;
3184		vm_object_t obj;
3185		int iosize;
3186		struct vnode *vp = bp->b_vp;
3187
3188		obj = bp->b_bufobj->bo_object;
3189
3190#if defined(VFS_BIO_DEBUG)
3191		mp_fixme("usecount and vflag accessed without locks.");
3192		if (vp->v_usecount == 0) {
3193			panic("biodone: zero vnode ref count");
3194		}
3195
3196		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3197			panic("biodone: vnode is not setup for merged cache");
3198		}
3199#endif
3200
3201		foff = bp->b_offset;
3202		KASSERT(bp->b_offset != NOOFFSET,
3203		    ("biodone: no buffer offset"));
3204
3205		VM_OBJECT_LOCK(obj);
3206#if defined(VFS_BIO_DEBUG)
3207		if (obj->paging_in_progress < bp->b_npages) {
3208			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3209			    obj->paging_in_progress, bp->b_npages);
3210		}
3211#endif
3212
3213		/*
3214		 * Set B_CACHE if the op was a normal read and no error
3215		 * occured.  B_CACHE is set for writes in the b*write()
3216		 * routines.
3217		 */
3218		iosize = bp->b_bcount - bp->b_resid;
3219		if (bp->b_iocmd == BIO_READ &&
3220		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3221		    !(bp->b_ioflags & BIO_ERROR)) {
3222			bp->b_flags |= B_CACHE;
3223		}
3224		vm_page_lock_queues();
3225		for (i = 0; i < bp->b_npages; i++) {
3226			int bogusflag = 0;
3227			int resid;
3228
3229			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3230			if (resid > iosize)
3231				resid = iosize;
3232
3233			/*
3234			 * cleanup bogus pages, restoring the originals
3235			 */
3236			m = bp->b_pages[i];
3237			if (m == bogus_page) {
3238				bogusflag = 1;
3239				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3240				if (m == NULL)
3241					panic("biodone: page disappeared!");
3242				bp->b_pages[i] = m;
3243				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3244			}
3245#if defined(VFS_BIO_DEBUG)
3246			if (OFF_TO_IDX(foff) != m->pindex) {
3247				printf(
3248"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3249				    (intmax_t)foff, (uintmax_t)m->pindex);
3250			}
3251#endif
3252
3253			/*
3254			 * In the write case, the valid and clean bits are
3255			 * already changed correctly ( see bdwrite() ), so we
3256			 * only need to do this here in the read case.
3257			 */
3258			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3259				vfs_page_set_valid(bp, foff, i, m);
3260			}
3261
3262			/*
3263			 * when debugging new filesystems or buffer I/O methods, this
3264			 * is the most common error that pops up.  if you see this, you
3265			 * have not set the page busy flag correctly!!!
3266			 */
3267			if (m->busy == 0) {
3268				printf("biodone: page busy < 0, "
3269				    "pindex: %d, foff: 0x(%x,%x), "
3270				    "resid: %d, index: %d\n",
3271				    (int) m->pindex, (int)(foff >> 32),
3272						(int) foff & 0xffffffff, resid, i);
3273				if (!vn_isdisk(vp, NULL))
3274					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3275					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3276					    (intmax_t) bp->b_lblkno,
3277					    bp->b_flags, bp->b_npages);
3278				else
3279					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3280					    (intmax_t) bp->b_lblkno,
3281					    bp->b_flags, bp->b_npages);
3282				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3283				    (u_long)m->valid, (u_long)m->dirty,
3284				    m->wire_count);
3285				panic("biodone: page busy < 0\n");
3286			}
3287			vm_page_io_finish(m);
3288			vm_object_pip_subtract(obj, 1);
3289			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3290			iosize -= resid;
3291		}
3292		vm_page_unlock_queues();
3293		vm_object_pip_wakeupn(obj, 0);
3294		VM_OBJECT_UNLOCK(obj);
3295	}
3296
3297	/*
3298	 * For asynchronous completions, release the buffer now. The brelse
3299	 * will do a wakeup there if necessary - so no need to do a wakeup
3300	 * here in the async case. The sync case always needs to do a wakeup.
3301	 */
3302
3303	if (bp->b_flags & B_ASYNC) {
3304		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3305			brelse(bp);
3306		else
3307			bqrelse(bp);
3308	} else {
3309		bdone(bp);
3310	}
3311	splx(s);
3312}
3313
3314/*
3315 * This routine is called in lieu of iodone in the case of
3316 * incomplete I/O.  This keeps the busy status for pages
3317 * consistant.
3318 */
3319void
3320vfs_unbusy_pages(struct buf *bp)
3321{
3322	int i;
3323	vm_object_t obj;
3324	vm_page_t m;
3325
3326	runningbufwakeup(bp);
3327	if (!(bp->b_flags & B_VMIO))
3328		return;
3329
3330	obj = bp->b_bufobj->bo_object;
3331	VM_OBJECT_LOCK(obj);
3332	vm_page_lock_queues();
3333	for (i = 0; i < bp->b_npages; i++) {
3334		m = bp->b_pages[i];
3335		if (m == bogus_page) {
3336			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3337			if (!m)
3338				panic("vfs_unbusy_pages: page missing\n");
3339			bp->b_pages[i] = m;
3340			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3341			    bp->b_pages, bp->b_npages);
3342		}
3343		vm_object_pip_subtract(obj, 1);
3344		vm_page_io_finish(m);
3345	}
3346	vm_page_unlock_queues();
3347	vm_object_pip_wakeupn(obj, 0);
3348	VM_OBJECT_UNLOCK(obj);
3349}
3350
3351/*
3352 * vfs_page_set_valid:
3353 *
3354 *	Set the valid bits in a page based on the supplied offset.   The
3355 *	range is restricted to the buffer's size.
3356 *
3357 *	This routine is typically called after a read completes.
3358 */
3359static void
3360vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3361{
3362	vm_ooffset_t soff, eoff;
3363
3364	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3365	/*
3366	 * Start and end offsets in buffer.  eoff - soff may not cross a
3367	 * page boundry or cross the end of the buffer.  The end of the
3368	 * buffer, in this case, is our file EOF, not the allocation size
3369	 * of the buffer.
3370	 */
3371	soff = off;
3372	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3373	if (eoff > bp->b_offset + bp->b_bcount)
3374		eoff = bp->b_offset + bp->b_bcount;
3375
3376	/*
3377	 * Set valid range.  This is typically the entire buffer and thus the
3378	 * entire page.
3379	 */
3380	if (eoff > soff) {
3381		vm_page_set_validclean(
3382		    m,
3383		   (vm_offset_t) (soff & PAGE_MASK),
3384		   (vm_offset_t) (eoff - soff)
3385		);
3386	}
3387}
3388
3389/*
3390 * This routine is called before a device strategy routine.
3391 * It is used to tell the VM system that paging I/O is in
3392 * progress, and treat the pages associated with the buffer
3393 * almost as being PG_BUSY.  Also the object paging_in_progress
3394 * flag is handled to make sure that the object doesn't become
3395 * inconsistant.
3396 *
3397 * Since I/O has not been initiated yet, certain buffer flags
3398 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3399 * and should be ignored.
3400 */
3401void
3402vfs_busy_pages(struct buf *bp, int clear_modify)
3403{
3404	int i, bogus;
3405	vm_object_t obj;
3406	vm_ooffset_t foff;
3407	vm_page_t m;
3408
3409	if (!(bp->b_flags & B_VMIO))
3410		return;
3411
3412	obj = bp->b_bufobj->bo_object;
3413	foff = bp->b_offset;
3414	KASSERT(bp->b_offset != NOOFFSET,
3415	    ("vfs_busy_pages: no buffer offset"));
3416	vfs_setdirty(bp);
3417	VM_OBJECT_LOCK(obj);
3418retry:
3419	vm_page_lock_queues();
3420	for (i = 0; i < bp->b_npages; i++) {
3421		m = bp->b_pages[i];
3422
3423		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3424			goto retry;
3425	}
3426	bogus = 0;
3427	for (i = 0; i < bp->b_npages; i++) {
3428		m = bp->b_pages[i];
3429
3430		if ((bp->b_flags & B_CLUSTER) == 0) {
3431			vm_object_pip_add(obj, 1);
3432			vm_page_io_start(m);
3433		}
3434		/*
3435		 * When readying a buffer for a read ( i.e
3436		 * clear_modify == 0 ), it is important to do
3437		 * bogus_page replacement for valid pages in
3438		 * partially instantiated buffers.  Partially
3439		 * instantiated buffers can, in turn, occur when
3440		 * reconstituting a buffer from its VM backing store
3441		 * base.  We only have to do this if B_CACHE is
3442		 * clear ( which causes the I/O to occur in the
3443		 * first place ).  The replacement prevents the read
3444		 * I/O from overwriting potentially dirty VM-backed
3445		 * pages.  XXX bogus page replacement is, uh, bogus.
3446		 * It may not work properly with small-block devices.
3447		 * We need to find a better way.
3448		 */
3449		pmap_remove_all(m);
3450		if (clear_modify)
3451			vfs_page_set_valid(bp, foff, i, m);
3452		else if (m->valid == VM_PAGE_BITS_ALL &&
3453		    (bp->b_flags & B_CACHE) == 0) {
3454			bp->b_pages[i] = bogus_page;
3455			bogus++;
3456		}
3457		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3458	}
3459	vm_page_unlock_queues();
3460	VM_OBJECT_UNLOCK(obj);
3461	if (bogus)
3462		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3463		    bp->b_pages, bp->b_npages);
3464}
3465
3466/*
3467 * Tell the VM system that the pages associated with this buffer
3468 * are clean.  This is used for delayed writes where the data is
3469 * going to go to disk eventually without additional VM intevention.
3470 *
3471 * Note that while we only really need to clean through to b_bcount, we
3472 * just go ahead and clean through to b_bufsize.
3473 */
3474static void
3475vfs_clean_pages(struct buf *bp)
3476{
3477	int i;
3478	vm_ooffset_t foff, noff, eoff;
3479	vm_page_t m;
3480
3481	if (!(bp->b_flags & B_VMIO))
3482		return;
3483
3484	foff = bp->b_offset;
3485	KASSERT(bp->b_offset != NOOFFSET,
3486	    ("vfs_clean_pages: no buffer offset"));
3487	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3488	vm_page_lock_queues();
3489	for (i = 0; i < bp->b_npages; i++) {
3490		m = bp->b_pages[i];
3491		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3492		eoff = noff;
3493
3494		if (eoff > bp->b_offset + bp->b_bufsize)
3495			eoff = bp->b_offset + bp->b_bufsize;
3496		vfs_page_set_valid(bp, foff, i, m);
3497		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3498		foff = noff;
3499	}
3500	vm_page_unlock_queues();
3501	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3502}
3503
3504/*
3505 *	vfs_bio_set_validclean:
3506 *
3507 *	Set the range within the buffer to valid and clean.  The range is
3508 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3509 *	itself may be offset from the beginning of the first page.
3510 *
3511 */
3512
3513void
3514vfs_bio_set_validclean(struct buf *bp, int base, int size)
3515{
3516	int i, n;
3517	vm_page_t m;
3518
3519	if (!(bp->b_flags & B_VMIO))
3520		return;
3521	/*
3522	 * Fixup base to be relative to beginning of first page.
3523	 * Set initial n to be the maximum number of bytes in the
3524	 * first page that can be validated.
3525	 */
3526
3527	base += (bp->b_offset & PAGE_MASK);
3528	n = PAGE_SIZE - (base & PAGE_MASK);
3529
3530	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3531	vm_page_lock_queues();
3532	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3533		m = bp->b_pages[i];
3534		if (n > size)
3535			n = size;
3536		vm_page_set_validclean(m, base & PAGE_MASK, n);
3537		base += n;
3538		size -= n;
3539		n = PAGE_SIZE;
3540	}
3541	vm_page_unlock_queues();
3542	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3543}
3544
3545/*
3546 *	vfs_bio_clrbuf:
3547 *
3548 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3549 *	to clear BIO_ERROR and B_INVAL.
3550 *
3551 *	Note that while we only theoretically need to clear through b_bcount,
3552 *	we go ahead and clear through b_bufsize.
3553 */
3554
3555void
3556vfs_bio_clrbuf(struct buf *bp)
3557{
3558	int i, j, mask = 0;
3559	caddr_t sa, ea;
3560
3561	GIANT_REQUIRED;
3562
3563	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3564		clrbuf(bp);
3565		return;
3566	}
3567
3568	bp->b_flags &= ~B_INVAL;
3569	bp->b_ioflags &= ~BIO_ERROR;
3570	VM_OBJECT_LOCK(bp->b_bufobj->bo_object);
3571	if ((bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3572	    (bp->b_offset & PAGE_MASK) == 0) {
3573		if (bp->b_pages[0] == bogus_page)
3574			goto unlock;
3575		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3576		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3577		if ((bp->b_pages[0]->valid & mask) == mask)
3578			goto unlock;
3579		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3580		    ((bp->b_pages[0]->valid & mask) == 0)) {
3581			bzero(bp->b_data, bp->b_bufsize);
3582			bp->b_pages[0]->valid |= mask;
3583			goto unlock;
3584		}
3585	}
3586	ea = sa = bp->b_data;
3587	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3588		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3589		ea = (caddr_t)(vm_offset_t)ulmin(
3590		    (u_long)(vm_offset_t)ea,
3591		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3592		if (bp->b_pages[i] == bogus_page)
3593			continue;
3594		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3595		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3596		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3597		if ((bp->b_pages[i]->valid & mask) == mask)
3598			continue;
3599		if ((bp->b_pages[i]->valid & mask) == 0) {
3600			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3601				bzero(sa, ea - sa);
3602		} else {
3603			for (; sa < ea; sa += DEV_BSIZE, j++) {
3604				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3605				    (bp->b_pages[i]->valid & (1 << j)) == 0)
3606					bzero(sa, DEV_BSIZE);
3607			}
3608		}
3609		bp->b_pages[i]->valid |= mask;
3610	}
3611unlock:
3612	VM_OBJECT_UNLOCK(bp->b_bufobj->bo_object);
3613	bp->b_resid = 0;
3614}
3615
3616/*
3617 * vm_hold_load_pages and vm_hold_free_pages get pages into
3618 * a buffers address space.  The pages are anonymous and are
3619 * not associated with a file object.
3620 */
3621static void
3622vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3623{
3624	vm_offset_t pg;
3625	vm_page_t p;
3626	int index;
3627
3628	to = round_page(to);
3629	from = round_page(from);
3630	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3631
3632	VM_OBJECT_LOCK(kernel_object);
3633	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3634tryagain:
3635		/*
3636		 * note: must allocate system pages since blocking here
3637		 * could intefere with paging I/O, no matter which
3638		 * process we are.
3639		 */
3640		p = vm_page_alloc(kernel_object,
3641			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3642		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3643		if (!p) {
3644			atomic_add_int(&vm_pageout_deficit,
3645			    (to - pg) >> PAGE_SHIFT);
3646			VM_OBJECT_UNLOCK(kernel_object);
3647			VM_WAIT;
3648			VM_OBJECT_LOCK(kernel_object);
3649			goto tryagain;
3650		}
3651		p->valid = VM_PAGE_BITS_ALL;
3652		pmap_qenter(pg, &p, 1);
3653		bp->b_pages[index] = p;
3654	}
3655	VM_OBJECT_UNLOCK(kernel_object);
3656	bp->b_npages = index;
3657}
3658
3659/* Return pages associated with this buf to the vm system */
3660static void
3661vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3662{
3663	vm_offset_t pg;
3664	vm_page_t p;
3665	int index, newnpages;
3666
3667	from = round_page(from);
3668	to = round_page(to);
3669	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3670
3671	VM_OBJECT_LOCK(kernel_object);
3672	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3673		p = bp->b_pages[index];
3674		if (p && (index < bp->b_npages)) {
3675			if (p->busy) {
3676				printf(
3677			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3678				    (intmax_t)bp->b_blkno,
3679				    (intmax_t)bp->b_lblkno);
3680			}
3681			bp->b_pages[index] = NULL;
3682			pmap_qremove(pg, 1);
3683			vm_page_lock_queues();
3684			vm_page_unwire(p, 0);
3685			vm_page_free(p);
3686			vm_page_unlock_queues();
3687		}
3688	}
3689	VM_OBJECT_UNLOCK(kernel_object);
3690	bp->b_npages = newnpages;
3691}
3692
3693/*
3694 * Map an IO request into kernel virtual address space.
3695 *
3696 * All requests are (re)mapped into kernel VA space.
3697 * Notice that we use b_bufsize for the size of the buffer
3698 * to be mapped.  b_bcount might be modified by the driver.
3699 *
3700 * Note that even if the caller determines that the address space should
3701 * be valid, a race or a smaller-file mapped into a larger space may
3702 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3703 * check the return value.
3704 */
3705int
3706vmapbuf(struct buf *bp)
3707{
3708	caddr_t addr, kva;
3709	vm_prot_t prot;
3710	int pidx, i;
3711	struct vm_page *m;
3712	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3713
3714	if (bp->b_bufsize < 0)
3715		return (-1);
3716	prot = VM_PROT_READ;
3717	if (bp->b_iocmd == BIO_READ)
3718		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3719	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3720	     addr < bp->b_data + bp->b_bufsize;
3721	     addr += PAGE_SIZE, pidx++) {
3722		/*
3723		 * Do the vm_fault if needed; do the copy-on-write thing
3724		 * when reading stuff off device into memory.
3725		 *
3726		 * NOTE! Must use pmap_extract() because addr may be in
3727		 * the userland address space, and kextract is only guarenteed
3728		 * to work for the kernland address space (see: sparc64 port).
3729		 */
3730retry:
3731		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3732		    prot) < 0) {
3733			vm_page_lock_queues();
3734			for (i = 0; i < pidx; ++i) {
3735				vm_page_unhold(bp->b_pages[i]);
3736				bp->b_pages[i] = NULL;
3737			}
3738			vm_page_unlock_queues();
3739			return(-1);
3740		}
3741		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3742		if (m == NULL)
3743			goto retry;
3744		bp->b_pages[pidx] = m;
3745	}
3746	if (pidx > btoc(MAXPHYS))
3747		panic("vmapbuf: mapped more than MAXPHYS");
3748	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3749
3750	kva = bp->b_saveaddr;
3751	bp->b_npages = pidx;
3752	bp->b_saveaddr = bp->b_data;
3753	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3754	return(0);
3755}
3756
3757/*
3758 * Free the io map PTEs associated with this IO operation.
3759 * We also invalidate the TLB entries and restore the original b_addr.
3760 */
3761void
3762vunmapbuf(struct buf *bp)
3763{
3764	int pidx;
3765	int npages;
3766
3767	npages = bp->b_npages;
3768	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3769	vm_page_lock_queues();
3770	for (pidx = 0; pidx < npages; pidx++)
3771		vm_page_unhold(bp->b_pages[pidx]);
3772	vm_page_unlock_queues();
3773
3774	bp->b_data = bp->b_saveaddr;
3775}
3776
3777void
3778bdone(struct buf *bp)
3779{
3780
3781	mtx_lock(&bdonelock);
3782	bp->b_flags |= B_DONE;
3783	wakeup(bp);
3784	mtx_unlock(&bdonelock);
3785}
3786
3787void
3788bwait(struct buf *bp, u_char pri, const char *wchan)
3789{
3790
3791	mtx_lock(&bdonelock);
3792	while ((bp->b_flags & B_DONE) == 0)
3793		msleep(bp, &bdonelock, pri, wchan, 0);
3794	mtx_unlock(&bdonelock);
3795}
3796
3797void
3798bufstrategy(struct bufobj *bo, struct buf *bp)
3799{
3800	int i = 0;
3801	struct vnode *vp;
3802
3803	vp = bp->b_vp;
3804	KASSERT(vp == bo->bo_private, ("Inconsistent vnode bufstrategy"));
3805	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3806	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3807	i = VOP_STRATEGY(vp, bp);
3808	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3809}
3810
3811void
3812bufobj_wref(struct bufobj *bo)
3813{
3814
3815	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3816	BO_LOCK(bo);
3817	bo->bo_numoutput++;
3818	BO_UNLOCK(bo);
3819}
3820
3821void
3822bufobj_wdrop(struct bufobj *bo)
3823{
3824
3825	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3826	BO_LOCK(bo);
3827	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3828	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3829		bo->bo_flag &= ~BO_WWAIT;
3830		wakeup(&bo->bo_numoutput);
3831	}
3832	BO_UNLOCK(bo);
3833}
3834
3835int
3836bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3837{
3838	int error;
3839
3840	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3841	ASSERT_BO_LOCKED(bo);
3842	error = 0;
3843	while (bo->bo_numoutput) {
3844		bo->bo_flag |= BO_WWAIT;
3845		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3846		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3847		if (error)
3848			break;
3849	}
3850	return (error);
3851}
3852
3853#include "opt_ddb.h"
3854#ifdef DDB
3855#include <ddb/ddb.h>
3856
3857/* DDB command to show buffer data */
3858DB_SHOW_COMMAND(buffer, db_show_buffer)
3859{
3860	/* get args */
3861	struct buf *bp = (struct buf *)addr;
3862
3863	if (!have_addr) {
3864		db_printf("usage: show buffer <addr>\n");
3865		return;
3866	}
3867
3868	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3869	db_printf(
3870	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3871	    "b_bufobj = (%p), b_data = %p, b_blkno = %jd\n",
3872	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3873	    bp->b_bufobj, bp->b_data, (intmax_t)bp->b_blkno);
3874	if (bp->b_npages) {
3875		int i;
3876		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3877		for (i = 0; i < bp->b_npages; i++) {
3878			vm_page_t m;
3879			m = bp->b_pages[i];
3880			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3881			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3882			if ((i + 1) < bp->b_npages)
3883				db_printf(",");
3884		}
3885		db_printf("\n");
3886	}
3887}
3888#endif /* DDB */
3889