vfs_bio.c revision 136965
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 */
14
15/*
16 * this file contains a new buffer I/O scheme implementing a coherent
17 * VM object and buffer cache scheme.  Pains have been taken to make
18 * sure that the performance degradation associated with schemes such
19 * as this is not realized.
20 *
21 * Author:  John S. Dyson
22 * Significant help during the development and debugging phases
23 * had been provided by David Greenman, also of the FreeBSD core team.
24 *
25 * see man buf(9) for more info.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 136965 2004-10-26 06:58:26Z alc $");
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/bio.h>
34#include <sys/conf.h>
35#include <sys/buf.h>
36#include <sys/devicestat.h>
37#include <sys/eventhandler.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mount.h>
41#include <sys/mutex.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/proc.h>
45#include <sys/resourcevar.h>
46#include <sys/sysctl.h>
47#include <sys/vmmeter.h>
48#include <sys/vnode.h>
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/vm_kern.h>
52#include <vm/vm_pageout.h>
53#include <vm/vm_page.h>
54#include <vm/vm_object.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_map.h>
57#include "opt_directio.h"
58#include "opt_swap.h"
59
60static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
61
62struct	bio_ops bioops;		/* I/O operation notification */
63
64struct	buf_ops buf_ops_bio = {
65	.bop_name	=	"buf_ops_bio",
66	.bop_write	=	bufwrite,
67	.bop_strategy	=	bufstrategy,
68};
69
70/*
71 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
72 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
73 */
74struct buf *buf;		/* buffer header pool */
75
76static struct proc *bufdaemonproc;
77
78static int inmem(struct vnode * vp, daddr_t blkno);
79static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
80		vm_offset_t to);
81static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
82		vm_offset_t to);
83static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
84			       int pageno, vm_page_t m);
85static void vfs_clean_pages(struct buf *bp);
86static void vfs_setdirty(struct buf *bp);
87static void vfs_vmio_release(struct buf *bp);
88static void vfs_backgroundwritedone(struct buf *bp);
89static int vfs_bio_clcheck(struct vnode *vp, int size,
90		daddr_t lblkno, daddr_t blkno);
91static int flushbufqueues(int flushdeps);
92static void buf_daemon(void);
93void bremfreel(struct buf *bp);
94
95int vmiodirenable = TRUE;
96SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
97    "Use the VM system for directory writes");
98int runningbufspace;
99SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
100    "Amount of presently outstanding async buffer io");
101static int bufspace;
102SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
103    "KVA memory used for bufs");
104static int maxbufspace;
105SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
106    "Maximum allowed value of bufspace (including buf_daemon)");
107static int bufmallocspace;
108SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
109    "Amount of malloced memory for buffers");
110static int maxbufmallocspace;
111SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
112    "Maximum amount of malloced memory for buffers");
113static int lobufspace;
114SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
115    "Minimum amount of buffers we want to have");
116static int hibufspace;
117SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
118    "Maximum allowed value of bufspace (excluding buf_daemon)");
119static int bufreusecnt;
120SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
121    "Number of times we have reused a buffer");
122static int buffreekvacnt;
123SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
124    "Number of times we have freed the KVA space from some buffer");
125static int bufdefragcnt;
126SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
127    "Number of times we have had to repeat buffer allocation to defragment");
128static int lorunningspace;
129SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
130    "Minimum preferred space used for in-progress I/O");
131static int hirunningspace;
132SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
133    "Maximum amount of space to use for in-progress I/O");
134static int dirtybufferflushes;
135SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
136    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
137static int altbufferflushes;
138SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
139    0, "Number of fsync flushes to limit dirty buffers");
140static int recursiveflushes;
141SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
142    0, "Number of flushes skipped due to being recursive");
143static int numdirtybuffers;
144SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
145    "Number of buffers that are dirty (has unwritten changes) at the moment");
146static int lodirtybuffers;
147SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
148    "How many buffers we want to have free before bufdaemon can sleep");
149static int hidirtybuffers;
150SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
151    "When the number of dirty buffers is considered severe");
152static int dirtybufthresh;
153SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
154    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
155static int numfreebuffers;
156SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
157    "Number of free buffers");
158static int lofreebuffers;
159SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
160   "XXX Unused");
161static int hifreebuffers;
162SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
163   "XXX Complicatedly unused");
164static int getnewbufcalls;
165SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
166   "Number of calls to getnewbuf");
167static int getnewbufrestarts;
168SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
169    "Number of times getnewbuf has had to restart a buffer aquisition");
170static int dobkgrdwrite = 1;
171SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
172    "Do background writes (honoring the BV_BKGRDWRITE flag)?");
173
174/*
175 * Wakeup point for bufdaemon, as well as indicator of whether it is already
176 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
177 * is idling.
178 */
179static int bd_request;
180
181/*
182 * This lock synchronizes access to bd_request.
183 */
184static struct mtx bdlock;
185
186/*
187 * bogus page -- for I/O to/from partially complete buffers
188 * this is a temporary solution to the problem, but it is not
189 * really that bad.  it would be better to split the buffer
190 * for input in the case of buffers partially already in memory,
191 * but the code is intricate enough already.
192 */
193vm_page_t bogus_page;
194
195/*
196 * Synchronization (sleep/wakeup) variable for active buffer space requests.
197 * Set when wait starts, cleared prior to wakeup().
198 * Used in runningbufwakeup() and waitrunningbufspace().
199 */
200static int runningbufreq;
201
202/*
203 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
204 * waitrunningbufspace().
205 */
206static struct mtx rbreqlock;
207
208/*
209 * Synchronization (sleep/wakeup) variable for buffer requests.
210 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
211 * by and/or.
212 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
213 * getnewbuf(), and getblk().
214 */
215static int needsbuffer;
216
217/*
218 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
219 */
220static struct mtx nblock;
221
222/*
223 * Lock that protects against bwait()/bdone()/B_DONE races.
224 */
225
226static struct mtx bdonelock;
227
228/*
229 * Definitions for the buffer free lists.
230 */
231#define BUFFER_QUEUES	5	/* number of free buffer queues */
232
233#define QUEUE_NONE	0	/* on no queue */
234#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
235#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
236#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
237#define QUEUE_EMPTY	4	/* empty buffer headers */
238
239/* Queues for free buffers with various properties */
240static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
241
242/* Lock for the bufqueues */
243static struct mtx bqlock;
244
245/*
246 * Single global constant for BUF_WMESG, to avoid getting multiple references.
247 * buf_wmesg is referred from macros.
248 */
249const char *buf_wmesg = BUF_WMESG;
250
251#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
252#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
253#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
254#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
255
256#ifdef DIRECTIO
257extern void ffs_rawread_setup(void);
258#endif /* DIRECTIO */
259/*
260 *	numdirtywakeup:
261 *
262 *	If someone is blocked due to there being too many dirty buffers,
263 *	and numdirtybuffers is now reasonable, wake them up.
264 */
265
266static __inline void
267numdirtywakeup(int level)
268{
269
270	if (numdirtybuffers <= level) {
271		mtx_lock(&nblock);
272		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
273			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
274			wakeup(&needsbuffer);
275		}
276		mtx_unlock(&nblock);
277	}
278}
279
280/*
281 *	bufspacewakeup:
282 *
283 *	Called when buffer space is potentially available for recovery.
284 *	getnewbuf() will block on this flag when it is unable to free
285 *	sufficient buffer space.  Buffer space becomes recoverable when
286 *	bp's get placed back in the queues.
287 */
288
289static __inline void
290bufspacewakeup(void)
291{
292
293	/*
294	 * If someone is waiting for BUF space, wake them up.  Even
295	 * though we haven't freed the kva space yet, the waiting
296	 * process will be able to now.
297	 */
298	mtx_lock(&nblock);
299	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
300		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
301		wakeup(&needsbuffer);
302	}
303	mtx_unlock(&nblock);
304}
305
306/*
307 * runningbufwakeup() - in-progress I/O accounting.
308 *
309 */
310static __inline void
311runningbufwakeup(struct buf *bp)
312{
313
314	if (bp->b_runningbufspace) {
315		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
316		bp->b_runningbufspace = 0;
317		mtx_lock(&rbreqlock);
318		if (runningbufreq && runningbufspace <= lorunningspace) {
319			runningbufreq = 0;
320			wakeup(&runningbufreq);
321		}
322		mtx_unlock(&rbreqlock);
323	}
324}
325
326/*
327 *	bufcountwakeup:
328 *
329 *	Called when a buffer has been added to one of the free queues to
330 *	account for the buffer and to wakeup anyone waiting for free buffers.
331 *	This typically occurs when large amounts of metadata are being handled
332 *	by the buffer cache ( else buffer space runs out first, usually ).
333 */
334
335static __inline void
336bufcountwakeup(void)
337{
338
339	atomic_add_int(&numfreebuffers, 1);
340	mtx_lock(&nblock);
341	if (needsbuffer) {
342		needsbuffer &= ~VFS_BIO_NEED_ANY;
343		if (numfreebuffers >= hifreebuffers)
344			needsbuffer &= ~VFS_BIO_NEED_FREE;
345		wakeup(&needsbuffer);
346	}
347	mtx_unlock(&nblock);
348}
349
350/*
351 *	waitrunningbufspace()
352 *
353 *	runningbufspace is a measure of the amount of I/O currently
354 *	running.  This routine is used in async-write situations to
355 *	prevent creating huge backups of pending writes to a device.
356 *	Only asynchronous writes are governed by this function.
357 *
358 *	Reads will adjust runningbufspace, but will not block based on it.
359 *	The read load has a side effect of reducing the allowed write load.
360 *
361 *	This does NOT turn an async write into a sync write.  It waits
362 *	for earlier writes to complete and generally returns before the
363 *	caller's write has reached the device.
364 */
365static __inline void
366waitrunningbufspace(void)
367{
368
369	mtx_lock(&rbreqlock);
370	while (runningbufspace > hirunningspace) {
371		++runningbufreq;
372		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
373	}
374	mtx_unlock(&rbreqlock);
375}
376
377
378/*
379 *	vfs_buf_test_cache:
380 *
381 *	Called when a buffer is extended.  This function clears the B_CACHE
382 *	bit if the newly extended portion of the buffer does not contain
383 *	valid data.
384 */
385static __inline
386void
387vfs_buf_test_cache(struct buf *bp,
388		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
389		  vm_page_t m)
390{
391
392	GIANT_REQUIRED;
393
394	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
395	if (bp->b_flags & B_CACHE) {
396		int base = (foff + off) & PAGE_MASK;
397		if (vm_page_is_valid(m, base, size) == 0)
398			bp->b_flags &= ~B_CACHE;
399	}
400}
401
402/* Wake up the buffer deamon if necessary */
403static __inline
404void
405bd_wakeup(int dirtybuflevel)
406{
407
408	mtx_lock(&bdlock);
409	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
410		bd_request = 1;
411		wakeup(&bd_request);
412	}
413	mtx_unlock(&bdlock);
414}
415
416/*
417 * bd_speedup - speedup the buffer cache flushing code
418 */
419
420static __inline
421void
422bd_speedup(void)
423{
424
425	bd_wakeup(1);
426}
427
428/*
429 * Calculating buffer cache scaling values and reserve space for buffer
430 * headers.  This is called during low level kernel initialization and
431 * may be called more then once.  We CANNOT write to the memory area
432 * being reserved at this time.
433 */
434caddr_t
435kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
436{
437
438	/*
439	 * physmem_est is in pages.  Convert it to kilobytes (assumes
440	 * PAGE_SIZE is >= 1K)
441	 */
442	physmem_est = physmem_est * (PAGE_SIZE / 1024);
443
444	/*
445	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
446	 * For the first 64MB of ram nominally allocate sufficient buffers to
447	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
448	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
449	 * the buffer cache we limit the eventual kva reservation to
450	 * maxbcache bytes.
451	 *
452	 * factor represents the 1/4 x ram conversion.
453	 */
454	if (nbuf == 0) {
455		int factor = 4 * BKVASIZE / 1024;
456
457		nbuf = 50;
458		if (physmem_est > 4096)
459			nbuf += min((physmem_est - 4096) / factor,
460			    65536 / factor);
461		if (physmem_est > 65536)
462			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
463
464		if (maxbcache && nbuf > maxbcache / BKVASIZE)
465			nbuf = maxbcache / BKVASIZE;
466	}
467
468#if 0
469	/*
470	 * Do not allow the buffer_map to be more then 1/2 the size of the
471	 * kernel_map.
472	 */
473	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
474	    (BKVASIZE * 2)) {
475		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
476		    (BKVASIZE * 2);
477		printf("Warning: nbufs capped at %d\n", nbuf);
478	}
479#endif
480
481	/*
482	 * swbufs are used as temporary holders for I/O, such as paging I/O.
483	 * We have no less then 16 and no more then 256.
484	 */
485	nswbuf = max(min(nbuf/4, 256), 16);
486#ifdef NSWBUF_MIN
487	if (nswbuf < NSWBUF_MIN)
488		nswbuf = NSWBUF_MIN;
489#endif
490#ifdef DIRECTIO
491	ffs_rawread_setup();
492#endif
493
494	/*
495	 * Reserve space for the buffer cache buffers
496	 */
497	swbuf = (void *)v;
498	v = (caddr_t)(swbuf + nswbuf);
499	buf = (void *)v;
500	v = (caddr_t)(buf + nbuf);
501
502	return(v);
503}
504
505/* Initialize the buffer subsystem.  Called before use of any buffers. */
506void
507bufinit(void)
508{
509	struct buf *bp;
510	int i;
511
512	GIANT_REQUIRED;
513
514	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
515	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
516	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
517	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
518	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
519
520	/* next, make a null set of free lists */
521	for (i = 0; i < BUFFER_QUEUES; i++)
522		TAILQ_INIT(&bufqueues[i]);
523
524	/* finally, initialize each buffer header and stick on empty q */
525	for (i = 0; i < nbuf; i++) {
526		bp = &buf[i];
527		bzero(bp, sizeof *bp);
528		bp->b_flags = B_INVAL;	/* we're just an empty header */
529		bp->b_dev = NULL;
530		bp->b_rcred = NOCRED;
531		bp->b_wcred = NOCRED;
532		bp->b_qindex = QUEUE_EMPTY;
533		bp->b_vflags = 0;
534		bp->b_xflags = 0;
535		LIST_INIT(&bp->b_dep);
536		BUF_LOCKINIT(bp);
537		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
538	}
539
540	/*
541	 * maxbufspace is the absolute maximum amount of buffer space we are
542	 * allowed to reserve in KVM and in real terms.  The absolute maximum
543	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
544	 * used by most other processes.  The differential is required to
545	 * ensure that buf_daemon is able to run when other processes might
546	 * be blocked waiting for buffer space.
547	 *
548	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
549	 * this may result in KVM fragmentation which is not handled optimally
550	 * by the system.
551	 */
552	maxbufspace = nbuf * BKVASIZE;
553	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
554	lobufspace = hibufspace - MAXBSIZE;
555
556	lorunningspace = 512 * 1024;
557	hirunningspace = 1024 * 1024;
558
559/*
560 * Limit the amount of malloc memory since it is wired permanently into
561 * the kernel space.  Even though this is accounted for in the buffer
562 * allocation, we don't want the malloced region to grow uncontrolled.
563 * The malloc scheme improves memory utilization significantly on average
564 * (small) directories.
565 */
566	maxbufmallocspace = hibufspace / 20;
567
568/*
569 * Reduce the chance of a deadlock occuring by limiting the number
570 * of delayed-write dirty buffers we allow to stack up.
571 */
572	hidirtybuffers = nbuf / 4 + 20;
573	dirtybufthresh = hidirtybuffers * 9 / 10;
574	numdirtybuffers = 0;
575/*
576 * To support extreme low-memory systems, make sure hidirtybuffers cannot
577 * eat up all available buffer space.  This occurs when our minimum cannot
578 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
579 * BKVASIZE'd (8K) buffers.
580 */
581	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
582		hidirtybuffers >>= 1;
583	}
584	lodirtybuffers = hidirtybuffers / 2;
585
586/*
587 * Try to keep the number of free buffers in the specified range,
588 * and give special processes (e.g. like buf_daemon) access to an
589 * emergency reserve.
590 */
591	lofreebuffers = nbuf / 18 + 5;
592	hifreebuffers = 2 * lofreebuffers;
593	numfreebuffers = nbuf;
594
595/*
596 * Maximum number of async ops initiated per buf_daemon loop.  This is
597 * somewhat of a hack at the moment, we really need to limit ourselves
598 * based on the number of bytes of I/O in-transit that were initiated
599 * from buf_daemon.
600 */
601
602	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
603	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
604}
605
606/*
607 * bfreekva() - free the kva allocation for a buffer.
608 *
609 *	Must be called at splbio() or higher as this is the only locking for
610 *	buffer_map.
611 *
612 *	Since this call frees up buffer space, we call bufspacewakeup().
613 */
614static void
615bfreekva(struct buf *bp)
616{
617
618	GIANT_REQUIRED;
619
620	if (bp->b_kvasize) {
621		atomic_add_int(&buffreekvacnt, 1);
622		atomic_subtract_int(&bufspace, bp->b_kvasize);
623		vm_map_delete(buffer_map,
624		    (vm_offset_t) bp->b_kvabase,
625		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
626		);
627		bp->b_kvasize = 0;
628		bufspacewakeup();
629	}
630}
631
632/*
633 *	bremfree:
634 *
635 *	Remove the buffer from the appropriate free list.
636 */
637void
638bremfree(struct buf *bp)
639{
640
641	mtx_lock(&bqlock);
642	bremfreel(bp);
643	mtx_unlock(&bqlock);
644}
645
646void
647bremfreel(struct buf *bp)
648{
649	int s = splbio();
650	int old_qindex = bp->b_qindex;
651
652	GIANT_REQUIRED;
653
654	if (bp->b_qindex != QUEUE_NONE) {
655		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
656		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
657		bp->b_qindex = QUEUE_NONE;
658	} else {
659		if (BUF_REFCNT(bp) <= 1)
660			panic("bremfree: removing a buffer not on a queue");
661	}
662
663	/*
664	 * Fixup numfreebuffers count.  If the buffer is invalid or not
665	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
666	 * the buffer was free and we must decrement numfreebuffers.
667	 */
668	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
669		switch(old_qindex) {
670		case QUEUE_DIRTY:
671		case QUEUE_CLEAN:
672		case QUEUE_EMPTY:
673		case QUEUE_EMPTYKVA:
674			atomic_subtract_int(&numfreebuffers, 1);
675			break;
676		default:
677			break;
678		}
679	}
680	splx(s);
681}
682
683
684/*
685 * Get a buffer with the specified data.  Look in the cache first.  We
686 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
687 * is set, the buffer is valid and we do not have to do anything ( see
688 * getblk() ).  This is really just a special case of breadn().
689 */
690int
691bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
692    struct buf **bpp)
693{
694
695	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
696}
697
698/*
699 * Operates like bread, but also starts asynchronous I/O on
700 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
701 * to initiating I/O . If B_CACHE is set, the buffer is valid
702 * and we do not have to do anything.
703 */
704int
705breadn(struct vnode * vp, daddr_t blkno, int size,
706    daddr_t * rablkno, int *rabsize,
707    int cnt, struct ucred * cred, struct buf **bpp)
708{
709	struct buf *bp, *rabp;
710	int i;
711	int rv = 0, readwait = 0;
712
713	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
714
715	/* if not found in cache, do some I/O */
716	if ((bp->b_flags & B_CACHE) == 0) {
717		if (curthread != PCPU_GET(idlethread))
718			curthread->td_proc->p_stats->p_ru.ru_inblock++;
719		bp->b_iocmd = BIO_READ;
720		bp->b_flags &= ~B_INVAL;
721		bp->b_ioflags &= ~BIO_ERROR;
722		if (bp->b_rcred == NOCRED && cred != NOCRED)
723			bp->b_rcred = crhold(cred);
724		vfs_busy_pages(bp, 0);
725		bp->b_iooffset = dbtob(bp->b_blkno);
726		bstrategy(bp);
727		++readwait;
728	}
729
730	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
731		if (inmem(vp, *rablkno))
732			continue;
733		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
734
735		if ((rabp->b_flags & B_CACHE) == 0) {
736			if (curthread != PCPU_GET(idlethread))
737				curthread->td_proc->p_stats->p_ru.ru_inblock++;
738			rabp->b_flags |= B_ASYNC;
739			rabp->b_flags &= ~B_INVAL;
740			rabp->b_ioflags &= ~BIO_ERROR;
741			rabp->b_iocmd = BIO_READ;
742			if (rabp->b_rcred == NOCRED && cred != NOCRED)
743				rabp->b_rcred = crhold(cred);
744			vfs_busy_pages(rabp, 0);
745			BUF_KERNPROC(rabp);
746			rabp->b_iooffset = dbtob(rabp->b_blkno);
747			bstrategy(rabp);
748		} else {
749			brelse(rabp);
750		}
751	}
752
753	if (readwait) {
754		rv = bufwait(bp);
755	}
756	return (rv);
757}
758
759/*
760 * Write, release buffer on completion.  (Done by iodone
761 * if async).  Do not bother writing anything if the buffer
762 * is invalid.
763 *
764 * Note that we set B_CACHE here, indicating that buffer is
765 * fully valid and thus cacheable.  This is true even of NFS
766 * now so we set it generally.  This could be set either here
767 * or in biodone() since the I/O is synchronous.  We put it
768 * here.
769 */
770int
771bufwrite(struct buf *bp)
772{
773	int oldflags, s;
774	struct buf *newbp;
775
776	if (bp->b_flags & B_INVAL) {
777		brelse(bp);
778		return (0);
779	}
780
781	oldflags = bp->b_flags;
782
783	if (BUF_REFCNT(bp) == 0)
784		panic("bufwrite: buffer is not busy???");
785	s = splbio();
786	/*
787	 * If a background write is already in progress, delay
788	 * writing this block if it is asynchronous. Otherwise
789	 * wait for the background write to complete.
790	 */
791	BO_LOCK(bp->b_bufobj);
792	if (bp->b_vflags & BV_BKGRDINPROG) {
793		if (bp->b_flags & B_ASYNC) {
794			BO_UNLOCK(bp->b_bufobj);
795			splx(s);
796			bdwrite(bp);
797			return (0);
798		}
799		bp->b_vflags |= BV_BKGRDWAIT;
800		msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj), PRIBIO, "bwrbg", 0);
801		if (bp->b_vflags & BV_BKGRDINPROG)
802			panic("bufwrite: still writing");
803	}
804	BO_UNLOCK(bp->b_bufobj);
805
806	/* Mark the buffer clean */
807	bundirty(bp);
808
809	/*
810	 * If this buffer is marked for background writing and we
811	 * do not have to wait for it, make a copy and write the
812	 * copy so as to leave this buffer ready for further use.
813	 *
814	 * This optimization eats a lot of memory.  If we have a page
815	 * or buffer shortfall we can't do it.
816	 */
817	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
818	    (bp->b_flags & B_ASYNC) &&
819	    !vm_page_count_severe() &&
820	    !buf_dirty_count_severe()) {
821		KASSERT(bp->b_iodone == NULL,
822		    ("bufwrite: needs chained iodone (%p)", bp->b_iodone));
823
824		/* get a new block */
825		newbp = geteblk(bp->b_bufsize);
826
827		/*
828		 * set it to be identical to the old block.  We have to
829		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
830		 * to avoid confusing the splay tree and gbincore().
831		 */
832		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
833		newbp->b_lblkno = bp->b_lblkno;
834		newbp->b_xflags |= BX_BKGRDMARKER;
835		BO_LOCK(bp->b_bufobj);
836		bp->b_vflags |= BV_BKGRDINPROG;
837		bgetvp(bp->b_vp, newbp);
838		BO_UNLOCK(bp->b_bufobj);
839		newbp->b_bufobj = &bp->b_vp->v_bufobj;
840		newbp->b_blkno = bp->b_blkno;
841		newbp->b_offset = bp->b_offset;
842		newbp->b_iodone = vfs_backgroundwritedone;
843		newbp->b_flags |= B_ASYNC;
844		newbp->b_flags &= ~B_INVAL;
845
846		/* move over the dependencies */
847		if (LIST_FIRST(&bp->b_dep) != NULL)
848			buf_movedeps(bp, newbp);
849
850		/*
851		 * Initiate write on the copy, release the original to
852		 * the B_LOCKED queue so that it cannot go away until
853		 * the background write completes. If not locked it could go
854		 * away and then be reconstituted while it was being written.
855		 * If the reconstituted buffer were written, we could end up
856		 * with two background copies being written at the same time.
857		 */
858		bqrelse(bp);
859		bp = newbp;
860	}
861
862	bp->b_flags &= ~B_DONE;
863	bp->b_ioflags &= ~BIO_ERROR;
864	bp->b_flags |= B_CACHE;
865	bp->b_iocmd = BIO_WRITE;
866
867	bufobj_wref(bp->b_bufobj);
868	vfs_busy_pages(bp, 1);
869
870	/*
871	 * Normal bwrites pipeline writes
872	 */
873	bp->b_runningbufspace = bp->b_bufsize;
874	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
875
876	if (curthread != PCPU_GET(idlethread))
877		curthread->td_proc->p_stats->p_ru.ru_oublock++;
878	splx(s);
879	if (oldflags & B_ASYNC)
880		BUF_KERNPROC(bp);
881	bp->b_iooffset = dbtob(bp->b_blkno);
882	bstrategy(bp);
883
884	if ((oldflags & B_ASYNC) == 0) {
885		int rtval = bufwait(bp);
886		brelse(bp);
887		return (rtval);
888	} else {
889		/*
890		 * don't allow the async write to saturate the I/O
891		 * system.  We will not deadlock here because
892		 * we are blocking waiting for I/O that is already in-progress
893		 * to complete. We do not block here if it is the update
894		 * or syncer daemon trying to clean up as that can lead
895		 * to deadlock.
896		 */
897		if (curthread->td_proc != bufdaemonproc &&
898		    curthread->td_proc != updateproc)
899			waitrunningbufspace();
900	}
901
902	return (0);
903}
904
905/*
906 * Complete a background write started from bwrite.
907 */
908static void
909vfs_backgroundwritedone(struct buf *bp)
910{
911	struct buf *origbp;
912
913	/*
914	 * Find the original buffer that we are writing.
915	 */
916	BO_LOCK(bp->b_bufobj);
917	if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL)
918		panic("backgroundwritedone: lost buffer");
919
920	/*
921	 * Clear the BV_BKGRDINPROG flag in the original buffer
922	 * and awaken it if it is waiting for the write to complete.
923	 * If BV_BKGRDINPROG is not set in the original buffer it must
924	 * have been released and re-instantiated - which is not legal.
925	 */
926	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
927	    ("backgroundwritedone: lost buffer2"));
928	origbp->b_vflags &= ~BV_BKGRDINPROG;
929	if (origbp->b_vflags & BV_BKGRDWAIT) {
930		origbp->b_vflags &= ~BV_BKGRDWAIT;
931		wakeup(&origbp->b_xflags);
932	}
933	BO_UNLOCK(bp->b_bufobj);
934	/*
935	 * Process dependencies then return any unfinished ones.
936	 */
937	if (LIST_FIRST(&bp->b_dep) != NULL)
938		buf_complete(bp);
939	if (LIST_FIRST(&bp->b_dep) != NULL)
940		buf_movedeps(bp, origbp);
941
942	/*
943	 * This buffer is marked B_NOCACHE, so when it is released
944	 * by biodone, it will be tossed. We mark it with BIO_READ
945	 * to avoid biodone doing a second bufobj_wdrop.
946	 */
947	bp->b_flags |= B_NOCACHE;
948	bp->b_iocmd = BIO_READ;
949	bp->b_flags &= ~(B_CACHE | B_DONE);
950	bp->b_iodone = 0;
951	bufdone(bp);
952}
953
954/*
955 * Delayed write. (Buffer is marked dirty).  Do not bother writing
956 * anything if the buffer is marked invalid.
957 *
958 * Note that since the buffer must be completely valid, we can safely
959 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
960 * biodone() in order to prevent getblk from writing the buffer
961 * out synchronously.
962 */
963void
964bdwrite(struct buf *bp)
965{
966	struct thread *td = curthread;
967	struct vnode *vp;
968	struct buf *nbp;
969	struct bufobj *bo;
970
971	GIANT_REQUIRED;
972
973	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
974	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
975
976	if (bp->b_flags & B_INVAL) {
977		brelse(bp);
978		return;
979	}
980
981	/*
982	 * If we have too many dirty buffers, don't create any more.
983	 * If we are wildly over our limit, then force a complete
984	 * cleanup. Otherwise, just keep the situation from getting
985	 * out of control. Note that we have to avoid a recursive
986	 * disaster and not try to clean up after our own cleanup!
987	 */
988	vp = bp->b_vp;
989	bo = bp->b_bufobj;
990	BO_LOCK(bo);
991	if (td->td_pflags & TDP_COWINPROGRESS) {
992		recursiveflushes++;
993	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
994		BO_UNLOCK(bo);
995		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
996		BO_LOCK(bo);
997		altbufferflushes++;
998	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
999		/*
1000		 * Try to find a buffer to flush.
1001		 */
1002		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1003			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1004			    buf_countdeps(nbp, 0) ||
1005			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1006				continue;
1007			if (bp == nbp)
1008				panic("bdwrite: found ourselves");
1009			BO_UNLOCK(bo);
1010			if (nbp->b_flags & B_CLUSTEROK) {
1011				vfs_bio_awrite(nbp);
1012			} else {
1013				bremfree(nbp);
1014				bawrite(nbp);
1015			}
1016			BO_LOCK(bo);
1017			dirtybufferflushes++;
1018			break;
1019		}
1020	}
1021	BO_UNLOCK(bo);
1022
1023	bdirty(bp);
1024	/*
1025	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1026	 * true even of NFS now.
1027	 */
1028	bp->b_flags |= B_CACHE;
1029
1030	/*
1031	 * This bmap keeps the system from needing to do the bmap later,
1032	 * perhaps when the system is attempting to do a sync.  Since it
1033	 * is likely that the indirect block -- or whatever other datastructure
1034	 * that the filesystem needs is still in memory now, it is a good
1035	 * thing to do this.  Note also, that if the pageout daemon is
1036	 * requesting a sync -- there might not be enough memory to do
1037	 * the bmap then...  So, this is important to do.
1038	 */
1039	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1040		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1041	}
1042
1043	/*
1044	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1045	 */
1046	vfs_setdirty(bp);
1047
1048	/*
1049	 * We need to do this here to satisfy the vnode_pager and the
1050	 * pageout daemon, so that it thinks that the pages have been
1051	 * "cleaned".  Note that since the pages are in a delayed write
1052	 * buffer -- the VFS layer "will" see that the pages get written
1053	 * out on the next sync, or perhaps the cluster will be completed.
1054	 */
1055	vfs_clean_pages(bp);
1056	bqrelse(bp);
1057
1058	/*
1059	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1060	 * buffers (midpoint between our recovery point and our stall
1061	 * point).
1062	 */
1063	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1064
1065	/*
1066	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1067	 * due to the softdep code.
1068	 */
1069}
1070
1071/*
1072 *	bdirty:
1073 *
1074 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1075 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1076 *	itself to properly update it in the dirty/clean lists.  We mark it
1077 *	B_DONE to ensure that any asynchronization of the buffer properly
1078 *	clears B_DONE ( else a panic will occur later ).
1079 *
1080 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1081 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1082 *	should only be called if the buffer is known-good.
1083 *
1084 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1085 *	count.
1086 *
1087 *	Must be called at splbio().
1088 *	The buffer must be on QUEUE_NONE.
1089 */
1090void
1091bdirty(struct buf *bp)
1092{
1093
1094	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1095	KASSERT(bp->b_qindex == QUEUE_NONE,
1096	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1097	bp->b_flags &= ~(B_RELBUF);
1098	bp->b_iocmd = BIO_WRITE;
1099
1100	if ((bp->b_flags & B_DELWRI) == 0) {
1101		bp->b_flags |= B_DONE | B_DELWRI;
1102		reassignbuf(bp);
1103		atomic_add_int(&numdirtybuffers, 1);
1104		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1105	}
1106}
1107
1108/*
1109 *	bundirty:
1110 *
1111 *	Clear B_DELWRI for buffer.
1112 *
1113 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1114 *	count.
1115 *
1116 *	Must be called at splbio().
1117 *	The buffer must be on QUEUE_NONE.
1118 */
1119
1120void
1121bundirty(struct buf *bp)
1122{
1123
1124	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1125	KASSERT(bp->b_qindex == QUEUE_NONE,
1126	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1127
1128	if (bp->b_flags & B_DELWRI) {
1129		bp->b_flags &= ~B_DELWRI;
1130		reassignbuf(bp);
1131		atomic_subtract_int(&numdirtybuffers, 1);
1132		numdirtywakeup(lodirtybuffers);
1133	}
1134	/*
1135	 * Since it is now being written, we can clear its deferred write flag.
1136	 */
1137	bp->b_flags &= ~B_DEFERRED;
1138}
1139
1140/*
1141 *	bawrite:
1142 *
1143 *	Asynchronous write.  Start output on a buffer, but do not wait for
1144 *	it to complete.  The buffer is released when the output completes.
1145 *
1146 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1147 *	B_INVAL buffers.  Not us.
1148 */
1149void
1150bawrite(struct buf *bp)
1151{
1152
1153	bp->b_flags |= B_ASYNC;
1154	(void) bwrite(bp);
1155}
1156
1157/*
1158 *	bwillwrite:
1159 *
1160 *	Called prior to the locking of any vnodes when we are expecting to
1161 *	write.  We do not want to starve the buffer cache with too many
1162 *	dirty buffers so we block here.  By blocking prior to the locking
1163 *	of any vnodes we attempt to avoid the situation where a locked vnode
1164 *	prevents the various system daemons from flushing related buffers.
1165 */
1166
1167void
1168bwillwrite(void)
1169{
1170
1171	if (numdirtybuffers >= hidirtybuffers) {
1172		int s;
1173
1174		mtx_lock(&Giant);
1175		s = splbio();
1176		mtx_lock(&nblock);
1177		while (numdirtybuffers >= hidirtybuffers) {
1178			bd_wakeup(1);
1179			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1180			msleep(&needsbuffer, &nblock,
1181			    (PRIBIO + 4), "flswai", 0);
1182		}
1183		splx(s);
1184		mtx_unlock(&nblock);
1185		mtx_unlock(&Giant);
1186	}
1187}
1188
1189/*
1190 * Return true if we have too many dirty buffers.
1191 */
1192int
1193buf_dirty_count_severe(void)
1194{
1195
1196	return(numdirtybuffers >= hidirtybuffers);
1197}
1198
1199/*
1200 *	brelse:
1201 *
1202 *	Release a busy buffer and, if requested, free its resources.  The
1203 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1204 *	to be accessed later as a cache entity or reused for other purposes.
1205 */
1206void
1207brelse(struct buf *bp)
1208{
1209	int s;
1210
1211	GIANT_REQUIRED;
1212
1213	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1214	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1215
1216	s = splbio();
1217
1218	if (bp->b_iocmd == BIO_WRITE &&
1219	    (bp->b_ioflags & BIO_ERROR) &&
1220	    !(bp->b_flags & B_INVAL)) {
1221		/*
1222		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1223		 * pages from being scrapped.  If B_INVAL is set then
1224		 * this case is not run and the next case is run to
1225		 * destroy the buffer.  B_INVAL can occur if the buffer
1226		 * is outside the range supported by the underlying device.
1227		 */
1228		bp->b_ioflags &= ~BIO_ERROR;
1229		bdirty(bp);
1230	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1231	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1232		/*
1233		 * Either a failed I/O or we were asked to free or not
1234		 * cache the buffer.
1235		 */
1236		bp->b_flags |= B_INVAL;
1237		if (LIST_FIRST(&bp->b_dep) != NULL)
1238			buf_deallocate(bp);
1239		if (bp->b_flags & B_DELWRI) {
1240			atomic_subtract_int(&numdirtybuffers, 1);
1241			numdirtywakeup(lodirtybuffers);
1242		}
1243		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1244		if ((bp->b_flags & B_VMIO) == 0) {
1245			if (bp->b_bufsize)
1246				allocbuf(bp, 0);
1247			if (bp->b_vp)
1248				brelvp(bp);
1249		}
1250	}
1251
1252	/*
1253	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1254	 * is called with B_DELWRI set, the underlying pages may wind up
1255	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1256	 * because pages associated with a B_DELWRI bp are marked clean.
1257	 *
1258	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1259	 * if B_DELWRI is set.
1260	 *
1261	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1262	 * on pages to return pages to the VM page queues.
1263	 */
1264	if (bp->b_flags & B_DELWRI)
1265		bp->b_flags &= ~B_RELBUF;
1266	else if (vm_page_count_severe()) {
1267		/*
1268		 * XXX This lock may not be necessary since BKGRDINPROG
1269		 * cannot be set while we hold the buf lock, it can only be
1270		 * cleared if it is already pending.
1271		 */
1272		if (bp->b_vp) {
1273			BO_LOCK(bp->b_bufobj);
1274			if (!(bp->b_vflags & BV_BKGRDINPROG))
1275				bp->b_flags |= B_RELBUF;
1276			BO_UNLOCK(bp->b_bufobj);
1277		} else
1278			bp->b_flags |= B_RELBUF;
1279	}
1280
1281	/*
1282	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1283	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1284	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1285	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1286	 *
1287	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1288	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1289	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1290	 *
1291	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1292	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1293	 * the commit state and we cannot afford to lose the buffer. If the
1294	 * buffer has a background write in progress, we need to keep it
1295	 * around to prevent it from being reconstituted and starting a second
1296	 * background write.
1297	 */
1298	if ((bp->b_flags & B_VMIO)
1299	    && !(bp->b_vp->v_mount != NULL &&
1300		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1301		 !vn_isdisk(bp->b_vp, NULL) &&
1302		 (bp->b_flags & B_DELWRI))
1303	    ) {
1304
1305		int i, j, resid;
1306		vm_page_t m;
1307		off_t foff;
1308		vm_pindex_t poff;
1309		vm_object_t obj;
1310
1311		obj = bp->b_object;
1312
1313		/*
1314		 * Get the base offset and length of the buffer.  Note that
1315		 * in the VMIO case if the buffer block size is not
1316		 * page-aligned then b_data pointer may not be page-aligned.
1317		 * But our b_pages[] array *IS* page aligned.
1318		 *
1319		 * block sizes less then DEV_BSIZE (usually 512) are not
1320		 * supported due to the page granularity bits (m->valid,
1321		 * m->dirty, etc...).
1322		 *
1323		 * See man buf(9) for more information
1324		 */
1325		resid = bp->b_bufsize;
1326		foff = bp->b_offset;
1327		VM_OBJECT_LOCK(obj);
1328		for (i = 0; i < bp->b_npages; i++) {
1329			int had_bogus = 0;
1330
1331			m = bp->b_pages[i];
1332
1333			/*
1334			 * If we hit a bogus page, fixup *all* the bogus pages
1335			 * now.
1336			 */
1337			if (m == bogus_page) {
1338				poff = OFF_TO_IDX(bp->b_offset);
1339				had_bogus = 1;
1340
1341				for (j = i; j < bp->b_npages; j++) {
1342					vm_page_t mtmp;
1343					mtmp = bp->b_pages[j];
1344					if (mtmp == bogus_page) {
1345						mtmp = vm_page_lookup(obj, poff + j);
1346						if (!mtmp) {
1347							panic("brelse: page missing\n");
1348						}
1349						bp->b_pages[j] = mtmp;
1350					}
1351				}
1352
1353				if ((bp->b_flags & B_INVAL) == 0) {
1354					pmap_qenter(
1355					    trunc_page((vm_offset_t)bp->b_data),					    bp->b_pages, bp->b_npages);
1356				}
1357				m = bp->b_pages[i];
1358			}
1359			if ((bp->b_flags & B_NOCACHE) ||
1360			    (bp->b_ioflags & BIO_ERROR)) {
1361				int poffset = foff & PAGE_MASK;
1362				int presid = resid > (PAGE_SIZE - poffset) ?
1363					(PAGE_SIZE - poffset) : resid;
1364
1365				KASSERT(presid >= 0, ("brelse: extra page"));
1366				vm_page_lock_queues();
1367				vm_page_set_invalid(m, poffset, presid);
1368				vm_page_unlock_queues();
1369				if (had_bogus)
1370					printf("avoided corruption bug in bogus_page/brelse code\n");
1371			}
1372			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1373			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1374		}
1375		VM_OBJECT_UNLOCK(obj);
1376		if (bp->b_flags & (B_INVAL | B_RELBUF))
1377			vfs_vmio_release(bp);
1378
1379	} else if (bp->b_flags & B_VMIO) {
1380
1381		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1382			vfs_vmio_release(bp);
1383		}
1384
1385	}
1386
1387	if (bp->b_qindex != QUEUE_NONE)
1388		panic("brelse: free buffer onto another queue???");
1389	if (BUF_REFCNT(bp) > 1) {
1390		/* do not release to free list */
1391		BUF_UNLOCK(bp);
1392		splx(s);
1393		return;
1394	}
1395
1396	/* enqueue */
1397	mtx_lock(&bqlock);
1398
1399	/* buffers with no memory */
1400	if (bp->b_bufsize == 0) {
1401		bp->b_flags |= B_INVAL;
1402		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1403		if (bp->b_vflags & BV_BKGRDINPROG)
1404			panic("losing buffer 1");
1405		if (bp->b_kvasize) {
1406			bp->b_qindex = QUEUE_EMPTYKVA;
1407		} else {
1408			bp->b_qindex = QUEUE_EMPTY;
1409		}
1410		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1411		bp->b_dev = NULL;
1412	/* buffers with junk contents */
1413	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1414	    (bp->b_ioflags & BIO_ERROR)) {
1415		bp->b_flags |= B_INVAL;
1416		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1417		if (bp->b_vflags & BV_BKGRDINPROG)
1418			panic("losing buffer 2");
1419		bp->b_qindex = QUEUE_CLEAN;
1420		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1421		bp->b_dev = NULL;
1422	/* remaining buffers */
1423	} else {
1424		if (bp->b_flags & B_DELWRI)
1425			bp->b_qindex = QUEUE_DIRTY;
1426		else
1427			bp->b_qindex = QUEUE_CLEAN;
1428		if (bp->b_flags & B_AGE)
1429			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1430		else
1431			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1432	}
1433	mtx_unlock(&bqlock);
1434
1435	/*
1436	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1437	 * placed the buffer on the correct queue.  We must also disassociate
1438	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1439	 * find it.
1440	 */
1441	if (bp->b_flags & B_INVAL) {
1442		if (bp->b_flags & B_DELWRI)
1443			bundirty(bp);
1444		if (bp->b_vp)
1445			brelvp(bp);
1446	}
1447
1448	/*
1449	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1450	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1451	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1452	 * if B_INVAL is set ).
1453	 */
1454
1455	if (!(bp->b_flags & B_DELWRI))
1456		bufcountwakeup();
1457
1458	/*
1459	 * Something we can maybe free or reuse
1460	 */
1461	if (bp->b_bufsize || bp->b_kvasize)
1462		bufspacewakeup();
1463
1464	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1465	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1466		panic("brelse: not dirty");
1467	/* unlock */
1468	BUF_UNLOCK(bp);
1469	splx(s);
1470}
1471
1472/*
1473 * Release a buffer back to the appropriate queue but do not try to free
1474 * it.  The buffer is expected to be used again soon.
1475 *
1476 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1477 * biodone() to requeue an async I/O on completion.  It is also used when
1478 * known good buffers need to be requeued but we think we may need the data
1479 * again soon.
1480 *
1481 * XXX we should be able to leave the B_RELBUF hint set on completion.
1482 */
1483void
1484bqrelse(struct buf *bp)
1485{
1486	int s;
1487
1488	s = splbio();
1489
1490	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1491	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1492
1493	if (bp->b_qindex != QUEUE_NONE)
1494		panic("bqrelse: free buffer onto another queue???");
1495	if (BUF_REFCNT(bp) > 1) {
1496		/* do not release to free list */
1497		BUF_UNLOCK(bp);
1498		splx(s);
1499		return;
1500	}
1501	mtx_lock(&bqlock);
1502	/* buffers with stale but valid contents */
1503	if (bp->b_flags & B_DELWRI) {
1504		bp->b_qindex = QUEUE_DIRTY;
1505		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1506	} else {
1507		/*
1508		 * XXX This lock may not be necessary since BKGRDINPROG
1509		 * cannot be set while we hold the buf lock, it can only be
1510		 * cleared if it is already pending.
1511		 */
1512		BO_LOCK(bp->b_bufobj);
1513		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1514			BO_UNLOCK(bp->b_bufobj);
1515			bp->b_qindex = QUEUE_CLEAN;
1516			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1517			    b_freelist);
1518		} else {
1519			/*
1520			 * We are too low on memory, we have to try to free
1521			 * the buffer (most importantly: the wired pages
1522			 * making up its backing store) *now*.
1523			 */
1524			BO_UNLOCK(bp->b_bufobj);
1525			mtx_unlock(&bqlock);
1526			splx(s);
1527			brelse(bp);
1528			return;
1529		}
1530	}
1531	mtx_unlock(&bqlock);
1532
1533	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1534		bufcountwakeup();
1535
1536	/*
1537	 * Something we can maybe free or reuse.
1538	 */
1539	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1540		bufspacewakeup();
1541
1542	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1543	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1544		panic("bqrelse: not dirty");
1545	/* unlock */
1546	BUF_UNLOCK(bp);
1547	splx(s);
1548}
1549
1550/* Give pages used by the bp back to the VM system (where possible) */
1551static void
1552vfs_vmio_release(struct buf *bp)
1553{
1554	int i;
1555	vm_page_t m;
1556
1557	GIANT_REQUIRED;
1558	VM_OBJECT_LOCK(bp->b_object);
1559	vm_page_lock_queues();
1560	for (i = 0; i < bp->b_npages; i++) {
1561		m = bp->b_pages[i];
1562		bp->b_pages[i] = NULL;
1563		/*
1564		 * In order to keep page LRU ordering consistent, put
1565		 * everything on the inactive queue.
1566		 */
1567		vm_page_unwire(m, 0);
1568		/*
1569		 * We don't mess with busy pages, it is
1570		 * the responsibility of the process that
1571		 * busied the pages to deal with them.
1572		 */
1573		if ((m->flags & PG_BUSY) || (m->busy != 0))
1574			continue;
1575
1576		if (m->wire_count == 0) {
1577			/*
1578			 * Might as well free the page if we can and it has
1579			 * no valid data.  We also free the page if the
1580			 * buffer was used for direct I/O
1581			 */
1582			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1583			    m->hold_count == 0) {
1584				vm_page_busy(m);
1585				pmap_remove_all(m);
1586				vm_page_free(m);
1587			} else if (bp->b_flags & B_DIRECT) {
1588				vm_page_try_to_free(m);
1589			} else if (vm_page_count_severe()) {
1590				vm_page_try_to_cache(m);
1591			}
1592		}
1593	}
1594	vm_page_unlock_queues();
1595	VM_OBJECT_UNLOCK(bp->b_object);
1596	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1597
1598	if (bp->b_bufsize) {
1599		bufspacewakeup();
1600		bp->b_bufsize = 0;
1601	}
1602	bp->b_npages = 0;
1603	bp->b_flags &= ~B_VMIO;
1604	if (bp->b_vp)
1605		brelvp(bp);
1606}
1607
1608/*
1609 * Check to see if a block at a particular lbn is available for a clustered
1610 * write.
1611 */
1612static int
1613vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1614{
1615	struct buf *bpa;
1616	int match;
1617
1618	match = 0;
1619
1620	/* If the buf isn't in core skip it */
1621	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1622		return (0);
1623
1624	/* If the buf is busy we don't want to wait for it */
1625	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1626		return (0);
1627
1628	/* Only cluster with valid clusterable delayed write buffers */
1629	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1630	    (B_DELWRI | B_CLUSTEROK))
1631		goto done;
1632
1633	if (bpa->b_bufsize != size)
1634		goto done;
1635
1636	/*
1637	 * Check to see if it is in the expected place on disk and that the
1638	 * block has been mapped.
1639	 */
1640	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1641		match = 1;
1642done:
1643	BUF_UNLOCK(bpa);
1644	return (match);
1645}
1646
1647/*
1648 *	vfs_bio_awrite:
1649 *
1650 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1651 *	This is much better then the old way of writing only one buffer at
1652 *	a time.  Note that we may not be presented with the buffers in the
1653 *	correct order, so we search for the cluster in both directions.
1654 */
1655int
1656vfs_bio_awrite(struct buf *bp)
1657{
1658	int i;
1659	int j;
1660	daddr_t lblkno = bp->b_lblkno;
1661	struct vnode *vp = bp->b_vp;
1662	int s;
1663	int ncl;
1664	int nwritten;
1665	int size;
1666	int maxcl;
1667
1668	s = splbio();
1669	/*
1670	 * right now we support clustered writing only to regular files.  If
1671	 * we find a clusterable block we could be in the middle of a cluster
1672	 * rather then at the beginning.
1673	 */
1674	if ((vp->v_type == VREG) &&
1675	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1676	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1677
1678		size = vp->v_mount->mnt_stat.f_iosize;
1679		maxcl = MAXPHYS / size;
1680
1681		VI_LOCK(vp);
1682		for (i = 1; i < maxcl; i++)
1683			if (vfs_bio_clcheck(vp, size, lblkno + i,
1684			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1685				break;
1686
1687		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1688			if (vfs_bio_clcheck(vp, size, lblkno - j,
1689			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1690				break;
1691
1692		VI_UNLOCK(vp);
1693		--j;
1694		ncl = i + j;
1695		/*
1696		 * this is a possible cluster write
1697		 */
1698		if (ncl != 1) {
1699			BUF_UNLOCK(bp);
1700			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1701			splx(s);
1702			return nwritten;
1703		}
1704	}
1705
1706	bremfree(bp);
1707	bp->b_flags |= B_ASYNC;
1708
1709	splx(s);
1710	/*
1711	 * default (old) behavior, writing out only one block
1712	 *
1713	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1714	 */
1715	nwritten = bp->b_bufsize;
1716	(void) bwrite(bp);
1717
1718	return nwritten;
1719}
1720
1721/*
1722 *	getnewbuf:
1723 *
1724 *	Find and initialize a new buffer header, freeing up existing buffers
1725 *	in the bufqueues as necessary.  The new buffer is returned locked.
1726 *
1727 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1728 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1729 *
1730 *	We block if:
1731 *		We have insufficient buffer headers
1732 *		We have insufficient buffer space
1733 *		buffer_map is too fragmented ( space reservation fails )
1734 *		If we have to flush dirty buffers ( but we try to avoid this )
1735 *
1736 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1737 *	Instead we ask the buf daemon to do it for us.  We attempt to
1738 *	avoid piecemeal wakeups of the pageout daemon.
1739 */
1740
1741static struct buf *
1742getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1743{
1744	struct buf *bp;
1745	struct buf *nbp;
1746	int defrag = 0;
1747	int nqindex;
1748	static int flushingbufs;
1749
1750	GIANT_REQUIRED;
1751
1752	/*
1753	 * We can't afford to block since we might be holding a vnode lock,
1754	 * which may prevent system daemons from running.  We deal with
1755	 * low-memory situations by proactively returning memory and running
1756	 * async I/O rather then sync I/O.
1757	 */
1758
1759	atomic_add_int(&getnewbufcalls, 1);
1760	atomic_subtract_int(&getnewbufrestarts, 1);
1761restart:
1762	atomic_add_int(&getnewbufrestarts, 1);
1763
1764	/*
1765	 * Setup for scan.  If we do not have enough free buffers,
1766	 * we setup a degenerate case that immediately fails.  Note
1767	 * that if we are specially marked process, we are allowed to
1768	 * dip into our reserves.
1769	 *
1770	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1771	 *
1772	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1773	 * However, there are a number of cases (defragging, reusing, ...)
1774	 * where we cannot backup.
1775	 */
1776	mtx_lock(&bqlock);
1777	nqindex = QUEUE_EMPTYKVA;
1778	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1779
1780	if (nbp == NULL) {
1781		/*
1782		 * If no EMPTYKVA buffers and we are either
1783		 * defragging or reusing, locate a CLEAN buffer
1784		 * to free or reuse.  If bufspace useage is low
1785		 * skip this step so we can allocate a new buffer.
1786		 */
1787		if (defrag || bufspace >= lobufspace) {
1788			nqindex = QUEUE_CLEAN;
1789			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1790		}
1791
1792		/*
1793		 * If we could not find or were not allowed to reuse a
1794		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1795		 * buffer.  We can only use an EMPTY buffer if allocating
1796		 * its KVA would not otherwise run us out of buffer space.
1797		 */
1798		if (nbp == NULL && defrag == 0 &&
1799		    bufspace + maxsize < hibufspace) {
1800			nqindex = QUEUE_EMPTY;
1801			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1802		}
1803	}
1804
1805	/*
1806	 * Run scan, possibly freeing data and/or kva mappings on the fly
1807	 * depending.
1808	 */
1809
1810	while ((bp = nbp) != NULL) {
1811		int qindex = nqindex;
1812
1813		/*
1814		 * Calculate next bp ( we can only use it if we do not block
1815		 * or do other fancy things ).
1816		 */
1817		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1818			switch(qindex) {
1819			case QUEUE_EMPTY:
1820				nqindex = QUEUE_EMPTYKVA;
1821				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1822					break;
1823				/* FALLTHROUGH */
1824			case QUEUE_EMPTYKVA:
1825				nqindex = QUEUE_CLEAN;
1826				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1827					break;
1828				/* FALLTHROUGH */
1829			case QUEUE_CLEAN:
1830				/*
1831				 * nbp is NULL.
1832				 */
1833				break;
1834			}
1835		}
1836		if (bp->b_vp) {
1837			BO_LOCK(bp->b_bufobj);
1838			if (bp->b_vflags & BV_BKGRDINPROG) {
1839				BO_UNLOCK(bp->b_bufobj);
1840				continue;
1841			}
1842			BO_UNLOCK(bp->b_bufobj);
1843		}
1844
1845		/*
1846		 * Sanity Checks
1847		 */
1848		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1849
1850		/*
1851		 * Note: we no longer distinguish between VMIO and non-VMIO
1852		 * buffers.
1853		 */
1854
1855		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1856
1857		/*
1858		 * If we are defragging then we need a buffer with
1859		 * b_kvasize != 0.  XXX this situation should no longer
1860		 * occur, if defrag is non-zero the buffer's b_kvasize
1861		 * should also be non-zero at this point.  XXX
1862		 */
1863		if (defrag && bp->b_kvasize == 0) {
1864			printf("Warning: defrag empty buffer %p\n", bp);
1865			continue;
1866		}
1867
1868		/*
1869		 * Start freeing the bp.  This is somewhat involved.  nbp
1870		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1871		 */
1872
1873		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1874			panic("getnewbuf: locked buf");
1875		bremfreel(bp);
1876		mtx_unlock(&bqlock);
1877
1878		if (qindex == QUEUE_CLEAN) {
1879			if (bp->b_flags & B_VMIO) {
1880				bp->b_flags &= ~B_ASYNC;
1881				vfs_vmio_release(bp);
1882			}
1883			if (bp->b_vp)
1884				brelvp(bp);
1885		}
1886
1887		/*
1888		 * NOTE:  nbp is now entirely invalid.  We can only restart
1889		 * the scan from this point on.
1890		 *
1891		 * Get the rest of the buffer freed up.  b_kva* is still
1892		 * valid after this operation.
1893		 */
1894
1895		if (bp->b_rcred != NOCRED) {
1896			crfree(bp->b_rcred);
1897			bp->b_rcred = NOCRED;
1898		}
1899		if (bp->b_wcred != NOCRED) {
1900			crfree(bp->b_wcred);
1901			bp->b_wcred = NOCRED;
1902		}
1903		if (LIST_FIRST(&bp->b_dep) != NULL)
1904			buf_deallocate(bp);
1905		if (bp->b_vflags & BV_BKGRDINPROG)
1906			panic("losing buffer 3");
1907
1908		if (bp->b_bufsize)
1909			allocbuf(bp, 0);
1910
1911		bp->b_flags = 0;
1912		bp->b_ioflags = 0;
1913		bp->b_xflags = 0;
1914		bp->b_vflags = 0;
1915		bp->b_dev = NULL;
1916		bp->b_vp = NULL;
1917		bp->b_blkno = bp->b_lblkno = 0;
1918		bp->b_offset = NOOFFSET;
1919		bp->b_iodone = 0;
1920		bp->b_error = 0;
1921		bp->b_resid = 0;
1922		bp->b_bcount = 0;
1923		bp->b_npages = 0;
1924		bp->b_dirtyoff = bp->b_dirtyend = 0;
1925		bp->b_magic = B_MAGIC_BIO;
1926		bp->b_bufobj = NULL;
1927
1928		LIST_INIT(&bp->b_dep);
1929
1930		/*
1931		 * If we are defragging then free the buffer.
1932		 */
1933		if (defrag) {
1934			bp->b_flags |= B_INVAL;
1935			bfreekva(bp);
1936			brelse(bp);
1937			defrag = 0;
1938			goto restart;
1939		}
1940
1941		/*
1942		 * If we are overcomitted then recover the buffer and its
1943		 * KVM space.  This occurs in rare situations when multiple
1944		 * processes are blocked in getnewbuf() or allocbuf().
1945		 */
1946		if (bufspace >= hibufspace)
1947			flushingbufs = 1;
1948		if (flushingbufs && bp->b_kvasize != 0) {
1949			bp->b_flags |= B_INVAL;
1950			bfreekva(bp);
1951			brelse(bp);
1952			goto restart;
1953		}
1954		if (bufspace < lobufspace)
1955			flushingbufs = 0;
1956		break;
1957	}
1958
1959	/*
1960	 * If we exhausted our list, sleep as appropriate.  We may have to
1961	 * wakeup various daemons and write out some dirty buffers.
1962	 *
1963	 * Generally we are sleeping due to insufficient buffer space.
1964	 */
1965
1966	if (bp == NULL) {
1967		int flags;
1968		char *waitmsg;
1969
1970		mtx_unlock(&bqlock);
1971		if (defrag) {
1972			flags = VFS_BIO_NEED_BUFSPACE;
1973			waitmsg = "nbufkv";
1974		} else if (bufspace >= hibufspace) {
1975			waitmsg = "nbufbs";
1976			flags = VFS_BIO_NEED_BUFSPACE;
1977		} else {
1978			waitmsg = "newbuf";
1979			flags = VFS_BIO_NEED_ANY;
1980		}
1981
1982		bd_speedup();	/* heeeelp */
1983
1984		mtx_lock(&nblock);
1985		needsbuffer |= flags;
1986		while (needsbuffer & flags) {
1987			if (msleep(&needsbuffer, &nblock,
1988			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1989				mtx_unlock(&nblock);
1990				return (NULL);
1991			}
1992		}
1993		mtx_unlock(&nblock);
1994	} else {
1995		/*
1996		 * We finally have a valid bp.  We aren't quite out of the
1997		 * woods, we still have to reserve kva space.  In order
1998		 * to keep fragmentation sane we only allocate kva in
1999		 * BKVASIZE chunks.
2000		 */
2001		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2002
2003		if (maxsize != bp->b_kvasize) {
2004			vm_offset_t addr = 0;
2005
2006			bfreekva(bp);
2007
2008			if (vm_map_findspace(buffer_map,
2009				vm_map_min(buffer_map), maxsize, &addr)) {
2010				/*
2011				 * Uh oh.  Buffer map is to fragmented.  We
2012				 * must defragment the map.
2013				 */
2014				atomic_add_int(&bufdefragcnt, 1);
2015				defrag = 1;
2016				bp->b_flags |= B_INVAL;
2017				brelse(bp);
2018				goto restart;
2019			}
2020			if (addr) {
2021				vm_map_insert(buffer_map, NULL, 0,
2022					addr, addr + maxsize,
2023					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2024
2025				bp->b_kvabase = (caddr_t) addr;
2026				bp->b_kvasize = maxsize;
2027				atomic_add_int(&bufspace, bp->b_kvasize);
2028				atomic_add_int(&bufreusecnt, 1);
2029			}
2030		}
2031		bp->b_saveaddr = bp->b_kvabase;
2032		bp->b_data = bp->b_saveaddr;
2033	}
2034	return(bp);
2035}
2036
2037/*
2038 *	buf_daemon:
2039 *
2040 *	buffer flushing daemon.  Buffers are normally flushed by the
2041 *	update daemon but if it cannot keep up this process starts to
2042 *	take the load in an attempt to prevent getnewbuf() from blocking.
2043 */
2044
2045static struct kproc_desc buf_kp = {
2046	"bufdaemon",
2047	buf_daemon,
2048	&bufdaemonproc
2049};
2050SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2051
2052static void
2053buf_daemon()
2054{
2055	int s;
2056
2057	mtx_lock(&Giant);
2058
2059	/*
2060	 * This process needs to be suspended prior to shutdown sync.
2061	 */
2062	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2063	    SHUTDOWN_PRI_LAST);
2064
2065	/*
2066	 * This process is allowed to take the buffer cache to the limit
2067	 */
2068	s = splbio();
2069	mtx_lock(&bdlock);
2070
2071	for (;;) {
2072		bd_request = 0;
2073		mtx_unlock(&bdlock);
2074
2075		kthread_suspend_check(bufdaemonproc);
2076
2077		/*
2078		 * Do the flush.  Limit the amount of in-transit I/O we
2079		 * allow to build up, otherwise we would completely saturate
2080		 * the I/O system.  Wakeup any waiting processes before we
2081		 * normally would so they can run in parallel with our drain.
2082		 */
2083		while (numdirtybuffers > lodirtybuffers) {
2084			if (flushbufqueues(0) == 0) {
2085				/*
2086				 * Could not find any buffers without rollback
2087				 * dependencies, so just write the first one
2088				 * in the hopes of eventually making progress.
2089				 */
2090				flushbufqueues(1);
2091				break;
2092			}
2093			waitrunningbufspace();
2094			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2095		}
2096
2097		/*
2098		 * Only clear bd_request if we have reached our low water
2099		 * mark.  The buf_daemon normally waits 1 second and
2100		 * then incrementally flushes any dirty buffers that have
2101		 * built up, within reason.
2102		 *
2103		 * If we were unable to hit our low water mark and couldn't
2104		 * find any flushable buffers, we sleep half a second.
2105		 * Otherwise we loop immediately.
2106		 */
2107		mtx_lock(&bdlock);
2108		if (numdirtybuffers <= lodirtybuffers) {
2109			/*
2110			 * We reached our low water mark, reset the
2111			 * request and sleep until we are needed again.
2112			 * The sleep is just so the suspend code works.
2113			 */
2114			bd_request = 0;
2115			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2116		} else {
2117			/*
2118			 * We couldn't find any flushable dirty buffers but
2119			 * still have too many dirty buffers, we
2120			 * have to sleep and try again.  (rare)
2121			 */
2122			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2123		}
2124	}
2125}
2126
2127/*
2128 *	flushbufqueues:
2129 *
2130 *	Try to flush a buffer in the dirty queue.  We must be careful to
2131 *	free up B_INVAL buffers instead of write them, which NFS is
2132 *	particularly sensitive to.
2133 */
2134int flushwithdeps = 0;
2135SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2136    0, "Number of buffers flushed with dependecies that require rollbacks");
2137
2138static int
2139flushbufqueues(int flushdeps)
2140{
2141	struct thread *td = curthread;
2142	struct vnode *vp;
2143	struct mount *mp;
2144	struct buf *bp;
2145	int hasdeps;
2146
2147	mtx_lock(&bqlock);
2148	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2149		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2150			continue;
2151		KASSERT((bp->b_flags & B_DELWRI),
2152		    ("unexpected clean buffer %p", bp));
2153		BO_LOCK(bp->b_bufobj);
2154		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
2155			BO_UNLOCK(bp->b_bufobj);
2156			BUF_UNLOCK(bp);
2157			continue;
2158		}
2159		BO_UNLOCK(bp->b_bufobj);
2160		if (bp->b_flags & B_INVAL) {
2161			bremfreel(bp);
2162			mtx_unlock(&bqlock);
2163			brelse(bp);
2164			return (1);
2165		}
2166
2167		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2168			if (flushdeps == 0) {
2169				BUF_UNLOCK(bp);
2170				continue;
2171			}
2172			hasdeps = 1;
2173		} else
2174			hasdeps = 0;
2175		/*
2176		 * We must hold the lock on a vnode before writing
2177		 * one of its buffers. Otherwise we may confuse, or
2178		 * in the case of a snapshot vnode, deadlock the
2179		 * system.
2180		 *
2181		 * The lock order here is the reverse of the normal
2182		 * of vnode followed by buf lock.  This is ok because
2183		 * the NOWAIT will prevent deadlock.
2184		 */
2185		vp = bp->b_vp;
2186		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2187			BUF_UNLOCK(bp);
2188			continue;
2189		}
2190		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2191			mtx_unlock(&bqlock);
2192			vfs_bio_awrite(bp);
2193			vn_finished_write(mp);
2194			VOP_UNLOCK(vp, 0, td);
2195			flushwithdeps += hasdeps;
2196			return (1);
2197		}
2198		vn_finished_write(mp);
2199		BUF_UNLOCK(bp);
2200	}
2201	mtx_unlock(&bqlock);
2202	return (0);
2203}
2204
2205/*
2206 * Check to see if a block is currently memory resident.
2207 */
2208struct buf *
2209incore(struct bufobj *bo, daddr_t blkno)
2210{
2211	struct buf *bp;
2212
2213	int s = splbio();
2214	BO_LOCK(bo);
2215	bp = gbincore(bo, blkno);
2216	BO_UNLOCK(bo);
2217	splx(s);
2218	return (bp);
2219}
2220
2221/*
2222 * Returns true if no I/O is needed to access the
2223 * associated VM object.  This is like incore except
2224 * it also hunts around in the VM system for the data.
2225 */
2226
2227static int
2228inmem(struct vnode * vp, daddr_t blkno)
2229{
2230	vm_object_t obj;
2231	vm_offset_t toff, tinc, size;
2232	vm_page_t m;
2233	vm_ooffset_t off;
2234
2235	GIANT_REQUIRED;
2236	ASSERT_VOP_LOCKED(vp, "inmem");
2237
2238	if (incore(&vp->v_bufobj, blkno))
2239		return 1;
2240	if (vp->v_mount == NULL)
2241		return 0;
2242	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2243		return 0;
2244
2245	size = PAGE_SIZE;
2246	if (size > vp->v_mount->mnt_stat.f_iosize)
2247		size = vp->v_mount->mnt_stat.f_iosize;
2248	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2249
2250	VM_OBJECT_LOCK(obj);
2251	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2252		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2253		if (!m)
2254			goto notinmem;
2255		tinc = size;
2256		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2257			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2258		if (vm_page_is_valid(m,
2259		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2260			goto notinmem;
2261	}
2262	VM_OBJECT_UNLOCK(obj);
2263	return 1;
2264
2265notinmem:
2266	VM_OBJECT_UNLOCK(obj);
2267	return (0);
2268}
2269
2270/*
2271 *	vfs_setdirty:
2272 *
2273 *	Sets the dirty range for a buffer based on the status of the dirty
2274 *	bits in the pages comprising the buffer.
2275 *
2276 *	The range is limited to the size of the buffer.
2277 *
2278 *	This routine is primarily used by NFS, but is generalized for the
2279 *	B_VMIO case.
2280 */
2281static void
2282vfs_setdirty(struct buf *bp)
2283{
2284	int i;
2285	vm_object_t object;
2286
2287	GIANT_REQUIRED;
2288	/*
2289	 * Degenerate case - empty buffer
2290	 */
2291
2292	if (bp->b_bufsize == 0)
2293		return;
2294
2295	/*
2296	 * We qualify the scan for modified pages on whether the
2297	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2298	 * is not cleared simply by protecting pages off.
2299	 */
2300
2301	if ((bp->b_flags & B_VMIO) == 0)
2302		return;
2303
2304	object = bp->b_pages[0]->object;
2305	VM_OBJECT_LOCK(object);
2306	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2307		printf("Warning: object %p writeable but not mightbedirty\n", object);
2308	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2309		printf("Warning: object %p mightbedirty but not writeable\n", object);
2310
2311	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2312		vm_offset_t boffset;
2313		vm_offset_t eoffset;
2314
2315		vm_page_lock_queues();
2316		/*
2317		 * test the pages to see if they have been modified directly
2318		 * by users through the VM system.
2319		 */
2320		for (i = 0; i < bp->b_npages; i++)
2321			vm_page_test_dirty(bp->b_pages[i]);
2322
2323		/*
2324		 * Calculate the encompassing dirty range, boffset and eoffset,
2325		 * (eoffset - boffset) bytes.
2326		 */
2327
2328		for (i = 0; i < bp->b_npages; i++) {
2329			if (bp->b_pages[i]->dirty)
2330				break;
2331		}
2332		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2333
2334		for (i = bp->b_npages - 1; i >= 0; --i) {
2335			if (bp->b_pages[i]->dirty) {
2336				break;
2337			}
2338		}
2339		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2340
2341		vm_page_unlock_queues();
2342		/*
2343		 * Fit it to the buffer.
2344		 */
2345
2346		if (eoffset > bp->b_bcount)
2347			eoffset = bp->b_bcount;
2348
2349		/*
2350		 * If we have a good dirty range, merge with the existing
2351		 * dirty range.
2352		 */
2353
2354		if (boffset < eoffset) {
2355			if (bp->b_dirtyoff > boffset)
2356				bp->b_dirtyoff = boffset;
2357			if (bp->b_dirtyend < eoffset)
2358				bp->b_dirtyend = eoffset;
2359		}
2360	}
2361	VM_OBJECT_UNLOCK(object);
2362}
2363
2364/*
2365 *	getblk:
2366 *
2367 *	Get a block given a specified block and offset into a file/device.
2368 *	The buffers B_DONE bit will be cleared on return, making it almost
2369 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2370 *	return.  The caller should clear B_INVAL prior to initiating a
2371 *	READ.
2372 *
2373 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2374 *	an existing buffer.
2375 *
2376 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2377 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2378 *	and then cleared based on the backing VM.  If the previous buffer is
2379 *	non-0-sized but invalid, B_CACHE will be cleared.
2380 *
2381 *	If getblk() must create a new buffer, the new buffer is returned with
2382 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2383 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2384 *	backing VM.
2385 *
2386 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2387 *	B_CACHE bit is clear.
2388 *
2389 *	What this means, basically, is that the caller should use B_CACHE to
2390 *	determine whether the buffer is fully valid or not and should clear
2391 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2392 *	the buffer by loading its data area with something, the caller needs
2393 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2394 *	the caller should set B_CACHE ( as an optimization ), else the caller
2395 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2396 *	a write attempt or if it was a successfull read.  If the caller
2397 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2398 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2399 */
2400struct buf *
2401getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2402    int flags)
2403{
2404	struct buf *bp;
2405	struct bufobj *bo;
2406	int s;
2407	int error;
2408	ASSERT_VOP_LOCKED(vp, "getblk");
2409	struct vm_object *vmo;
2410
2411	if (size > MAXBSIZE)
2412		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2413
2414	bo = &vp->v_bufobj;
2415	s = splbio();
2416loop:
2417	/*
2418	 * Block if we are low on buffers.   Certain processes are allowed
2419	 * to completely exhaust the buffer cache.
2420         *
2421         * If this check ever becomes a bottleneck it may be better to
2422         * move it into the else, when gbincore() fails.  At the moment
2423         * it isn't a problem.
2424	 *
2425	 * XXX remove if 0 sections (clean this up after its proven)
2426         */
2427	if (numfreebuffers == 0) {
2428		if (curthread == PCPU_GET(idlethread))
2429			return NULL;
2430		mtx_lock(&nblock);
2431		needsbuffer |= VFS_BIO_NEED_ANY;
2432		mtx_unlock(&nblock);
2433	}
2434
2435	VI_LOCK(vp);
2436	bp = gbincore(bo, blkno);
2437	if (bp != NULL) {
2438		int lockflags;
2439		/*
2440		 * Buffer is in-core.  If the buffer is not busy, it must
2441		 * be on a queue.
2442		 */
2443		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2444
2445		if (flags & GB_LOCK_NOWAIT)
2446			lockflags |= LK_NOWAIT;
2447
2448		error = BUF_TIMELOCK(bp, lockflags,
2449		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2450
2451		/*
2452		 * If we slept and got the lock we have to restart in case
2453		 * the buffer changed identities.
2454		 */
2455		if (error == ENOLCK)
2456			goto loop;
2457		/* We timed out or were interrupted. */
2458		else if (error)
2459			return (NULL);
2460
2461		/*
2462		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2463		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2464		 * and for a VMIO buffer B_CACHE is adjusted according to the
2465		 * backing VM cache.
2466		 */
2467		if (bp->b_flags & B_INVAL)
2468			bp->b_flags &= ~B_CACHE;
2469		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2470			bp->b_flags |= B_CACHE;
2471		bremfree(bp);
2472
2473		/*
2474		 * check for size inconsistancies for non-VMIO case.
2475		 */
2476
2477		if (bp->b_bcount != size) {
2478			if ((bp->b_flags & B_VMIO) == 0 ||
2479			    (size > bp->b_kvasize)) {
2480				if (bp->b_flags & B_DELWRI) {
2481					bp->b_flags |= B_NOCACHE;
2482					bwrite(bp);
2483				} else {
2484					if ((bp->b_flags & B_VMIO) &&
2485					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2486						bp->b_flags |= B_RELBUF;
2487						brelse(bp);
2488					} else {
2489						bp->b_flags |= B_NOCACHE;
2490						bwrite(bp);
2491					}
2492				}
2493				goto loop;
2494			}
2495		}
2496
2497		/*
2498		 * If the size is inconsistant in the VMIO case, we can resize
2499		 * the buffer.  This might lead to B_CACHE getting set or
2500		 * cleared.  If the size has not changed, B_CACHE remains
2501		 * unchanged from its previous state.
2502		 */
2503
2504		if (bp->b_bcount != size)
2505			allocbuf(bp, size);
2506
2507		KASSERT(bp->b_offset != NOOFFSET,
2508		    ("getblk: no buffer offset"));
2509
2510		/*
2511		 * A buffer with B_DELWRI set and B_CACHE clear must
2512		 * be committed before we can return the buffer in
2513		 * order to prevent the caller from issuing a read
2514		 * ( due to B_CACHE not being set ) and overwriting
2515		 * it.
2516		 *
2517		 * Most callers, including NFS and FFS, need this to
2518		 * operate properly either because they assume they
2519		 * can issue a read if B_CACHE is not set, or because
2520		 * ( for example ) an uncached B_DELWRI might loop due
2521		 * to softupdates re-dirtying the buffer.  In the latter
2522		 * case, B_CACHE is set after the first write completes,
2523		 * preventing further loops.
2524		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2525		 * above while extending the buffer, we cannot allow the
2526		 * buffer to remain with B_CACHE set after the write
2527		 * completes or it will represent a corrupt state.  To
2528		 * deal with this we set B_NOCACHE to scrap the buffer
2529		 * after the write.
2530		 *
2531		 * We might be able to do something fancy, like setting
2532		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2533		 * so the below call doesn't set B_CACHE, but that gets real
2534		 * confusing.  This is much easier.
2535		 */
2536
2537		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2538			bp->b_flags |= B_NOCACHE;
2539			bwrite(bp);
2540			goto loop;
2541		}
2542
2543		splx(s);
2544		bp->b_flags &= ~B_DONE;
2545	} else {
2546		int bsize, maxsize, vmio;
2547		off_t offset;
2548
2549		/*
2550		 * Buffer is not in-core, create new buffer.  The buffer
2551		 * returned by getnewbuf() is locked.  Note that the returned
2552		 * buffer is also considered valid (not marked B_INVAL).
2553		 */
2554		VI_UNLOCK(vp);
2555		/*
2556		 * If the user does not want us to create the buffer, bail out
2557		 * here.
2558		 */
2559		if (flags & GB_NOCREAT) {
2560			splx(s);
2561			return NULL;
2562		}
2563		if (vn_isdisk(vp, NULL))
2564			bsize = DEV_BSIZE;
2565		else if (vp->v_mountedhere)
2566			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2567		else if (vp->v_mount)
2568			bsize = vp->v_mount->mnt_stat.f_iosize;
2569		else
2570			bsize = size;
2571
2572		offset = blkno * bsize;
2573		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2574		    (vp->v_vflag & VV_OBJBUF);
2575		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2576		maxsize = imax(maxsize, bsize);
2577
2578		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2579		if (bp == NULL) {
2580			if (slpflag || slptimeo) {
2581				splx(s);
2582				return NULL;
2583			}
2584			goto loop;
2585		}
2586
2587		/*
2588		 * This code is used to make sure that a buffer is not
2589		 * created while the getnewbuf routine is blocked.
2590		 * This can be a problem whether the vnode is locked or not.
2591		 * If the buffer is created out from under us, we have to
2592		 * throw away the one we just created.  There is now window
2593		 * race because we are safely running at splbio() from the
2594		 * point of the duplicate buffer creation through to here,
2595		 * and we've locked the buffer.
2596		 *
2597		 * Note: this must occur before we associate the buffer
2598		 * with the vp especially considering limitations in
2599		 * the splay tree implementation when dealing with duplicate
2600		 * lblkno's.
2601		 */
2602		BO_LOCK(bo);
2603		if (gbincore(bo, blkno)) {
2604			BO_UNLOCK(bo);
2605			bp->b_flags |= B_INVAL;
2606			brelse(bp);
2607			goto loop;
2608		}
2609
2610		/*
2611		 * Insert the buffer into the hash, so that it can
2612		 * be found by incore.
2613		 */
2614		bp->b_blkno = bp->b_lblkno = blkno;
2615		bp->b_offset = offset;
2616
2617		bgetvp(vp, bp);
2618		BO_UNLOCK(bo);
2619
2620		/*
2621		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2622		 * buffer size starts out as 0, B_CACHE will be set by
2623		 * allocbuf() for the VMIO case prior to it testing the
2624		 * backing store for validity.
2625		 */
2626
2627		if (vmio) {
2628			bp->b_flags |= B_VMIO;
2629#if defined(VFS_BIO_DEBUG)
2630			if (vn_canvmio(vp) != TRUE)
2631				printf("getblk: VMIO on vnode type %d\n",
2632					vp->v_type);
2633#endif
2634			VOP_GETVOBJECT(vp, &vmo);
2635			KASSERT(vmo == bp->b_object,
2636			    ("ARGH! different b_object %p %p %p\n", bp, vmo, bp->b_object));
2637		} else {
2638			bp->b_flags &= ~B_VMIO;
2639			KASSERT(bp->b_object == NULL,
2640			    ("ARGH! has b_object %p %p\n", bp, bp->b_object));
2641		}
2642
2643		allocbuf(bp, size);
2644
2645		splx(s);
2646		bp->b_flags &= ~B_DONE;
2647	}
2648	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2649	KASSERT(bp->b_bufobj == bo,
2650	    ("wrong b_bufobj %p should be %p", bp->b_bufobj, bo));
2651	return (bp);
2652}
2653
2654/*
2655 * Get an empty, disassociated buffer of given size.  The buffer is initially
2656 * set to B_INVAL.
2657 */
2658struct buf *
2659geteblk(int size)
2660{
2661	struct buf *bp;
2662	int s;
2663	int maxsize;
2664
2665	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2666
2667	s = splbio();
2668	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2669		continue;
2670	splx(s);
2671	allocbuf(bp, size);
2672	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2673	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2674	return (bp);
2675}
2676
2677
2678/*
2679 * This code constitutes the buffer memory from either anonymous system
2680 * memory (in the case of non-VMIO operations) or from an associated
2681 * VM object (in the case of VMIO operations).  This code is able to
2682 * resize a buffer up or down.
2683 *
2684 * Note that this code is tricky, and has many complications to resolve
2685 * deadlock or inconsistant data situations.  Tread lightly!!!
2686 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2687 * the caller.  Calling this code willy nilly can result in the loss of data.
2688 *
2689 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2690 * B_CACHE for the non-VMIO case.
2691 */
2692
2693int
2694allocbuf(struct buf *bp, int size)
2695{
2696	int newbsize, mbsize;
2697	int i;
2698
2699	GIANT_REQUIRED;
2700
2701	if (BUF_REFCNT(bp) == 0)
2702		panic("allocbuf: buffer not busy");
2703
2704	if (bp->b_kvasize < size)
2705		panic("allocbuf: buffer too small");
2706
2707	if ((bp->b_flags & B_VMIO) == 0) {
2708		caddr_t origbuf;
2709		int origbufsize;
2710		/*
2711		 * Just get anonymous memory from the kernel.  Don't
2712		 * mess with B_CACHE.
2713		 */
2714		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2715		if (bp->b_flags & B_MALLOC)
2716			newbsize = mbsize;
2717		else
2718			newbsize = round_page(size);
2719
2720		if (newbsize < bp->b_bufsize) {
2721			/*
2722			 * malloced buffers are not shrunk
2723			 */
2724			if (bp->b_flags & B_MALLOC) {
2725				if (newbsize) {
2726					bp->b_bcount = size;
2727				} else {
2728					free(bp->b_data, M_BIOBUF);
2729					if (bp->b_bufsize) {
2730						atomic_subtract_int(
2731						    &bufmallocspace,
2732						    bp->b_bufsize);
2733						bufspacewakeup();
2734						bp->b_bufsize = 0;
2735					}
2736					bp->b_saveaddr = bp->b_kvabase;
2737					bp->b_data = bp->b_saveaddr;
2738					bp->b_bcount = 0;
2739					bp->b_flags &= ~B_MALLOC;
2740				}
2741				return 1;
2742			}
2743			vm_hold_free_pages(
2744			    bp,
2745			    (vm_offset_t) bp->b_data + newbsize,
2746			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2747		} else if (newbsize > bp->b_bufsize) {
2748			/*
2749			 * We only use malloced memory on the first allocation.
2750			 * and revert to page-allocated memory when the buffer
2751			 * grows.
2752			 */
2753			/*
2754			 * There is a potential smp race here that could lead
2755			 * to bufmallocspace slightly passing the max.  It
2756			 * is probably extremely rare and not worth worrying
2757			 * over.
2758			 */
2759			if ( (bufmallocspace < maxbufmallocspace) &&
2760				(bp->b_bufsize == 0) &&
2761				(mbsize <= PAGE_SIZE/2)) {
2762
2763				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2764				bp->b_bufsize = mbsize;
2765				bp->b_bcount = size;
2766				bp->b_flags |= B_MALLOC;
2767				atomic_add_int(&bufmallocspace, mbsize);
2768				return 1;
2769			}
2770			origbuf = NULL;
2771			origbufsize = 0;
2772			/*
2773			 * If the buffer is growing on its other-than-first allocation,
2774			 * then we revert to the page-allocation scheme.
2775			 */
2776			if (bp->b_flags & B_MALLOC) {
2777				origbuf = bp->b_data;
2778				origbufsize = bp->b_bufsize;
2779				bp->b_data = bp->b_kvabase;
2780				if (bp->b_bufsize) {
2781					atomic_subtract_int(&bufmallocspace,
2782					    bp->b_bufsize);
2783					bufspacewakeup();
2784					bp->b_bufsize = 0;
2785				}
2786				bp->b_flags &= ~B_MALLOC;
2787				newbsize = round_page(newbsize);
2788			}
2789			vm_hold_load_pages(
2790			    bp,
2791			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2792			    (vm_offset_t) bp->b_data + newbsize);
2793			if (origbuf) {
2794				bcopy(origbuf, bp->b_data, origbufsize);
2795				free(origbuf, M_BIOBUF);
2796			}
2797		}
2798	} else {
2799		int desiredpages;
2800
2801		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2802		desiredpages = (size == 0) ? 0 :
2803			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2804
2805		if (bp->b_flags & B_MALLOC)
2806			panic("allocbuf: VMIO buffer can't be malloced");
2807		/*
2808		 * Set B_CACHE initially if buffer is 0 length or will become
2809		 * 0-length.
2810		 */
2811		if (size == 0 || bp->b_bufsize == 0)
2812			bp->b_flags |= B_CACHE;
2813
2814		if (newbsize < bp->b_bufsize) {
2815			/*
2816			 * DEV_BSIZE aligned new buffer size is less then the
2817			 * DEV_BSIZE aligned existing buffer size.  Figure out
2818			 * if we have to remove any pages.
2819			 */
2820			if (desiredpages < bp->b_npages) {
2821				vm_page_t m;
2822
2823				VM_OBJECT_LOCK(bp->b_object);
2824				vm_page_lock_queues();
2825				for (i = desiredpages; i < bp->b_npages; i++) {
2826					/*
2827					 * the page is not freed here -- it
2828					 * is the responsibility of
2829					 * vnode_pager_setsize
2830					 */
2831					m = bp->b_pages[i];
2832					KASSERT(m != bogus_page,
2833					    ("allocbuf: bogus page found"));
2834					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2835						vm_page_lock_queues();
2836
2837					bp->b_pages[i] = NULL;
2838					vm_page_unwire(m, 0);
2839				}
2840				vm_page_unlock_queues();
2841				VM_OBJECT_UNLOCK(bp->b_object);
2842				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2843				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2844				bp->b_npages = desiredpages;
2845			}
2846		} else if (size > bp->b_bcount) {
2847			/*
2848			 * We are growing the buffer, possibly in a
2849			 * byte-granular fashion.
2850			 */
2851			struct vnode *vp;
2852			vm_object_t obj;
2853			vm_offset_t toff;
2854			vm_offset_t tinc;
2855
2856			/*
2857			 * Step 1, bring in the VM pages from the object,
2858			 * allocating them if necessary.  We must clear
2859			 * B_CACHE if these pages are not valid for the
2860			 * range covered by the buffer.
2861			 */
2862
2863			vp = bp->b_vp;
2864			obj = bp->b_object;
2865
2866			VM_OBJECT_LOCK(obj);
2867			while (bp->b_npages < desiredpages) {
2868				vm_page_t m;
2869				vm_pindex_t pi;
2870
2871				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2872				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2873					/*
2874					 * note: must allocate system pages
2875					 * since blocking here could intefere
2876					 * with paging I/O, no matter which
2877					 * process we are.
2878					 */
2879					m = vm_page_alloc(obj, pi,
2880					    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM |
2881					    VM_ALLOC_WIRED);
2882					if (m == NULL) {
2883						atomic_add_int(&vm_pageout_deficit,
2884						    desiredpages - bp->b_npages);
2885						VM_OBJECT_UNLOCK(obj);
2886						VM_WAIT;
2887						VM_OBJECT_LOCK(obj);
2888					} else {
2889						bp->b_flags &= ~B_CACHE;
2890						bp->b_pages[bp->b_npages] = m;
2891						++bp->b_npages;
2892					}
2893					continue;
2894				}
2895
2896				/*
2897				 * We found a page.  If we have to sleep on it,
2898				 * retry because it might have gotten freed out
2899				 * from under us.
2900				 *
2901				 * We can only test PG_BUSY here.  Blocking on
2902				 * m->busy might lead to a deadlock:
2903				 *
2904				 *  vm_fault->getpages->cluster_read->allocbuf
2905				 *
2906				 */
2907				vm_page_lock_queues();
2908				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2909					continue;
2910
2911				/*
2912				 * We have a good page.  Should we wakeup the
2913				 * page daemon?
2914				 */
2915				if ((curproc != pageproc) &&
2916				    ((m->queue - m->pc) == PQ_CACHE) &&
2917				    ((cnt.v_free_count + cnt.v_cache_count) <
2918					(cnt.v_free_min + cnt.v_cache_min))) {
2919					pagedaemon_wakeup();
2920				}
2921				vm_page_wire(m);
2922				vm_page_unlock_queues();
2923				bp->b_pages[bp->b_npages] = m;
2924				++bp->b_npages;
2925			}
2926
2927			/*
2928			 * Step 2.  We've loaded the pages into the buffer,
2929			 * we have to figure out if we can still have B_CACHE
2930			 * set.  Note that B_CACHE is set according to the
2931			 * byte-granular range ( bcount and size ), new the
2932			 * aligned range ( newbsize ).
2933			 *
2934			 * The VM test is against m->valid, which is DEV_BSIZE
2935			 * aligned.  Needless to say, the validity of the data
2936			 * needs to also be DEV_BSIZE aligned.  Note that this
2937			 * fails with NFS if the server or some other client
2938			 * extends the file's EOF.  If our buffer is resized,
2939			 * B_CACHE may remain set! XXX
2940			 */
2941
2942			toff = bp->b_bcount;
2943			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2944
2945			while ((bp->b_flags & B_CACHE) && toff < size) {
2946				vm_pindex_t pi;
2947
2948				if (tinc > (size - toff))
2949					tinc = size - toff;
2950
2951				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2952				    PAGE_SHIFT;
2953
2954				vfs_buf_test_cache(
2955				    bp,
2956				    bp->b_offset,
2957				    toff,
2958				    tinc,
2959				    bp->b_pages[pi]
2960				);
2961				toff += tinc;
2962				tinc = PAGE_SIZE;
2963			}
2964			VM_OBJECT_UNLOCK(obj);
2965
2966			/*
2967			 * Step 3, fixup the KVM pmap.  Remember that
2968			 * bp->b_data is relative to bp->b_offset, but
2969			 * bp->b_offset may be offset into the first page.
2970			 */
2971
2972			bp->b_data = (caddr_t)
2973			    trunc_page((vm_offset_t)bp->b_data);
2974			pmap_qenter(
2975			    (vm_offset_t)bp->b_data,
2976			    bp->b_pages,
2977			    bp->b_npages
2978			);
2979
2980			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2981			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2982		}
2983	}
2984	if (newbsize < bp->b_bufsize)
2985		bufspacewakeup();
2986	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2987	bp->b_bcount = size;		/* requested buffer size	*/
2988	return 1;
2989}
2990
2991void
2992biodone(struct bio *bp)
2993{
2994
2995	mtx_lock(&bdonelock);
2996	bp->bio_flags |= BIO_DONE;
2997	if (bp->bio_done == NULL)
2998		wakeup(bp);
2999	mtx_unlock(&bdonelock);
3000	if (bp->bio_done != NULL)
3001		bp->bio_done(bp);
3002}
3003
3004/*
3005 * Wait for a BIO to finish.
3006 *
3007 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3008 * case is not yet clear.
3009 */
3010int
3011biowait(struct bio *bp, const char *wchan)
3012{
3013
3014	mtx_lock(&bdonelock);
3015	while ((bp->bio_flags & BIO_DONE) == 0)
3016		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3017	mtx_unlock(&bdonelock);
3018	if (bp->bio_error != 0)
3019		return (bp->bio_error);
3020	if (!(bp->bio_flags & BIO_ERROR))
3021		return (0);
3022	return (EIO);
3023}
3024
3025void
3026biofinish(struct bio *bp, struct devstat *stat, int error)
3027{
3028
3029	if (error) {
3030		bp->bio_error = error;
3031		bp->bio_flags |= BIO_ERROR;
3032	}
3033	if (stat != NULL)
3034		devstat_end_transaction_bio(stat, bp);
3035	biodone(bp);
3036}
3037
3038/*
3039 *	bufwait:
3040 *
3041 *	Wait for buffer I/O completion, returning error status.  The buffer
3042 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3043 *	error and cleared.
3044 */
3045int
3046bufwait(struct buf *bp)
3047{
3048	int s;
3049
3050	s = splbio();
3051	if (bp->b_iocmd == BIO_READ)
3052		bwait(bp, PRIBIO, "biord");
3053	else
3054		bwait(bp, PRIBIO, "biowr");
3055	splx(s);
3056	if (bp->b_flags & B_EINTR) {
3057		bp->b_flags &= ~B_EINTR;
3058		return (EINTR);
3059	}
3060	if (bp->b_ioflags & BIO_ERROR) {
3061		return (bp->b_error ? bp->b_error : EIO);
3062	} else {
3063		return (0);
3064	}
3065}
3066
3067 /*
3068  * Call back function from struct bio back up to struct buf.
3069  */
3070static void
3071bufdonebio(struct bio *bp)
3072{
3073
3074	/* Device drivers may or may not hold giant, hold it here. */
3075	mtx_lock(&Giant);
3076	bufdone(bp->bio_caller2);
3077	mtx_unlock(&Giant);
3078}
3079
3080void
3081dev_strategy(struct buf *bp)
3082{
3083	struct cdevsw *csw;
3084	struct cdev *dev;
3085
3086	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3087		panic("b_iocmd botch");
3088	bp->b_io.bio_done = bufdonebio;
3089	bp->b_io.bio_caller2 = bp;
3090	dev = bp->b_io.bio_dev;
3091	KASSERT(dev->si_refcount > 0,
3092	    ("dev_strategy on un-referenced struct cdev *(%s)",
3093	    devtoname(dev)));
3094	csw = dev_refthread(dev);
3095	if (csw == NULL) {
3096		bp->b_error = ENXIO;
3097		bp->b_ioflags = BIO_ERROR;
3098		mtx_lock(&Giant);	/* XXX: too defensive ? */
3099		bufdone(bp);
3100		mtx_unlock(&Giant);	/* XXX: too defensive ? */
3101		return;
3102	}
3103	(*csw->d_strategy)(&bp->b_io);
3104	dev_relthread(dev);
3105}
3106
3107/*
3108 *	bufdone:
3109 *
3110 *	Finish I/O on a buffer, optionally calling a completion function.
3111 *	This is usually called from an interrupt so process blocking is
3112 *	not allowed.
3113 *
3114 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3115 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3116 *	assuming B_INVAL is clear.
3117 *
3118 *	For the VMIO case, we set B_CACHE if the op was a read and no
3119 *	read error occured, or if the op was a write.  B_CACHE is never
3120 *	set if the buffer is invalid or otherwise uncacheable.
3121 *
3122 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3123 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3124 *	in the biodone routine.
3125 */
3126void
3127bufdone(struct buf *bp)
3128{
3129	int s;
3130	void    (*biodone)(struct buf *);
3131
3132
3133	s = splbio();
3134
3135	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3136	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3137
3138	bp->b_flags |= B_DONE;
3139	runningbufwakeup(bp);
3140
3141	if (bp->b_iocmd == BIO_WRITE && bp->b_bufobj != NULL)
3142		bufobj_wdrop(bp->b_bufobj);
3143
3144	/* call optional completion function if requested */
3145	if (bp->b_iodone != NULL) {
3146		biodone = bp->b_iodone;
3147		bp->b_iodone = NULL;
3148		(*biodone) (bp);
3149		splx(s);
3150		return;
3151	}
3152	if (LIST_FIRST(&bp->b_dep) != NULL)
3153		buf_complete(bp);
3154
3155	if (bp->b_flags & B_VMIO) {
3156		int i;
3157		vm_ooffset_t foff;
3158		vm_page_t m;
3159		vm_object_t obj;
3160		int iosize;
3161		struct vnode *vp = bp->b_vp;
3162
3163		obj = bp->b_object;
3164
3165#if defined(VFS_BIO_DEBUG)
3166		mp_fixme("usecount and vflag accessed without locks.");
3167		if (vp->v_usecount == 0) {
3168			panic("biodone: zero vnode ref count");
3169		}
3170
3171		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3172			panic("biodone: vnode is not setup for merged cache");
3173		}
3174#endif
3175
3176		foff = bp->b_offset;
3177		KASSERT(bp->b_offset != NOOFFSET,
3178		    ("biodone: no buffer offset"));
3179
3180		VM_OBJECT_LOCK(obj);
3181#if defined(VFS_BIO_DEBUG)
3182		if (obj->paging_in_progress < bp->b_npages) {
3183			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3184			    obj->paging_in_progress, bp->b_npages);
3185		}
3186#endif
3187
3188		/*
3189		 * Set B_CACHE if the op was a normal read and no error
3190		 * occured.  B_CACHE is set for writes in the b*write()
3191		 * routines.
3192		 */
3193		iosize = bp->b_bcount - bp->b_resid;
3194		if (bp->b_iocmd == BIO_READ &&
3195		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3196		    !(bp->b_ioflags & BIO_ERROR)) {
3197			bp->b_flags |= B_CACHE;
3198		}
3199		vm_page_lock_queues();
3200		for (i = 0; i < bp->b_npages; i++) {
3201			int bogusflag = 0;
3202			int resid;
3203
3204			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3205			if (resid > iosize)
3206				resid = iosize;
3207
3208			/*
3209			 * cleanup bogus pages, restoring the originals
3210			 */
3211			m = bp->b_pages[i];
3212			if (m == bogus_page) {
3213				bogusflag = 1;
3214				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3215				if (m == NULL)
3216					panic("biodone: page disappeared!");
3217				bp->b_pages[i] = m;
3218				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3219			}
3220#if defined(VFS_BIO_DEBUG)
3221			if (OFF_TO_IDX(foff) != m->pindex) {
3222				printf(
3223"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3224				    (intmax_t)foff, (uintmax_t)m->pindex);
3225			}
3226#endif
3227
3228			/*
3229			 * In the write case, the valid and clean bits are
3230			 * already changed correctly ( see bdwrite() ), so we
3231			 * only need to do this here in the read case.
3232			 */
3233			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3234				vfs_page_set_valid(bp, foff, i, m);
3235			}
3236
3237			/*
3238			 * when debugging new filesystems or buffer I/O methods, this
3239			 * is the most common error that pops up.  if you see this, you
3240			 * have not set the page busy flag correctly!!!
3241			 */
3242			if (m->busy == 0) {
3243				printf("biodone: page busy < 0, "
3244				    "pindex: %d, foff: 0x(%x,%x), "
3245				    "resid: %d, index: %d\n",
3246				    (int) m->pindex, (int)(foff >> 32),
3247						(int) foff & 0xffffffff, resid, i);
3248				if (!vn_isdisk(vp, NULL))
3249					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3250					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3251					    (intmax_t) bp->b_lblkno,
3252					    bp->b_flags, bp->b_npages);
3253				else
3254					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3255					    (intmax_t) bp->b_lblkno,
3256					    bp->b_flags, bp->b_npages);
3257				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3258				    (u_long)m->valid, (u_long)m->dirty,
3259				    m->wire_count);
3260				panic("biodone: page busy < 0\n");
3261			}
3262			vm_page_io_finish(m);
3263			vm_object_pip_subtract(obj, 1);
3264			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3265			iosize -= resid;
3266		}
3267		vm_page_unlock_queues();
3268		vm_object_pip_wakeupn(obj, 0);
3269		VM_OBJECT_UNLOCK(obj);
3270	}
3271
3272	/*
3273	 * For asynchronous completions, release the buffer now. The brelse
3274	 * will do a wakeup there if necessary - so no need to do a wakeup
3275	 * here in the async case. The sync case always needs to do a wakeup.
3276	 */
3277
3278	if (bp->b_flags & B_ASYNC) {
3279		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3280			brelse(bp);
3281		else
3282			bqrelse(bp);
3283	} else {
3284		bdone(bp);
3285	}
3286	splx(s);
3287}
3288
3289/*
3290 * This routine is called in lieu of iodone in the case of
3291 * incomplete I/O.  This keeps the busy status for pages
3292 * consistant.
3293 */
3294void
3295vfs_unbusy_pages(struct buf *bp)
3296{
3297	int i;
3298	vm_object_t obj;
3299	vm_page_t m;
3300
3301	runningbufwakeup(bp);
3302	if (!(bp->b_flags & B_VMIO))
3303		return;
3304
3305	obj = bp->b_object;
3306	VM_OBJECT_LOCK(obj);
3307	vm_page_lock_queues();
3308	for (i = 0; i < bp->b_npages; i++) {
3309		m = bp->b_pages[i];
3310		if (m == bogus_page) {
3311			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3312			if (!m)
3313				panic("vfs_unbusy_pages: page missing\n");
3314			bp->b_pages[i] = m;
3315			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3316			    bp->b_pages, bp->b_npages);
3317		}
3318		vm_object_pip_subtract(obj, 1);
3319		vm_page_io_finish(m);
3320	}
3321	vm_page_unlock_queues();
3322	vm_object_pip_wakeupn(obj, 0);
3323	VM_OBJECT_UNLOCK(obj);
3324}
3325
3326/*
3327 * vfs_page_set_valid:
3328 *
3329 *	Set the valid bits in a page based on the supplied offset.   The
3330 *	range is restricted to the buffer's size.
3331 *
3332 *	This routine is typically called after a read completes.
3333 */
3334static void
3335vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3336{
3337	vm_ooffset_t soff, eoff;
3338
3339	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3340	/*
3341	 * Start and end offsets in buffer.  eoff - soff may not cross a
3342	 * page boundry or cross the end of the buffer.  The end of the
3343	 * buffer, in this case, is our file EOF, not the allocation size
3344	 * of the buffer.
3345	 */
3346	soff = off;
3347	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3348	if (eoff > bp->b_offset + bp->b_bcount)
3349		eoff = bp->b_offset + bp->b_bcount;
3350
3351	/*
3352	 * Set valid range.  This is typically the entire buffer and thus the
3353	 * entire page.
3354	 */
3355	if (eoff > soff) {
3356		vm_page_set_validclean(
3357		    m,
3358		   (vm_offset_t) (soff & PAGE_MASK),
3359		   (vm_offset_t) (eoff - soff)
3360		);
3361	}
3362}
3363
3364/*
3365 * This routine is called before a device strategy routine.
3366 * It is used to tell the VM system that paging I/O is in
3367 * progress, and treat the pages associated with the buffer
3368 * almost as being PG_BUSY.  Also the object paging_in_progress
3369 * flag is handled to make sure that the object doesn't become
3370 * inconsistant.
3371 *
3372 * Since I/O has not been initiated yet, certain buffer flags
3373 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3374 * and should be ignored.
3375 */
3376void
3377vfs_busy_pages(struct buf *bp, int clear_modify)
3378{
3379	int i, bogus;
3380	vm_object_t obj;
3381	vm_ooffset_t foff;
3382	vm_page_t m;
3383
3384	if (!(bp->b_flags & B_VMIO))
3385		return;
3386
3387	obj = bp->b_object;
3388	foff = bp->b_offset;
3389	KASSERT(bp->b_offset != NOOFFSET,
3390	    ("vfs_busy_pages: no buffer offset"));
3391	vfs_setdirty(bp);
3392	VM_OBJECT_LOCK(obj);
3393retry:
3394	vm_page_lock_queues();
3395	for (i = 0; i < bp->b_npages; i++) {
3396		m = bp->b_pages[i];
3397
3398		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3399			goto retry;
3400	}
3401	bogus = 0;
3402	for (i = 0; i < bp->b_npages; i++) {
3403		m = bp->b_pages[i];
3404
3405		if ((bp->b_flags & B_CLUSTER) == 0) {
3406			vm_object_pip_add(obj, 1);
3407			vm_page_io_start(m);
3408		}
3409		/*
3410		 * When readying a buffer for a read ( i.e
3411		 * clear_modify == 0 ), it is important to do
3412		 * bogus_page replacement for valid pages in
3413		 * partially instantiated buffers.  Partially
3414		 * instantiated buffers can, in turn, occur when
3415		 * reconstituting a buffer from its VM backing store
3416		 * base.  We only have to do this if B_CACHE is
3417		 * clear ( which causes the I/O to occur in the
3418		 * first place ).  The replacement prevents the read
3419		 * I/O from overwriting potentially dirty VM-backed
3420		 * pages.  XXX bogus page replacement is, uh, bogus.
3421		 * It may not work properly with small-block devices.
3422		 * We need to find a better way.
3423		 */
3424		pmap_remove_all(m);
3425		if (clear_modify)
3426			vfs_page_set_valid(bp, foff, i, m);
3427		else if (m->valid == VM_PAGE_BITS_ALL &&
3428			(bp->b_flags & B_CACHE) == 0) {
3429			bp->b_pages[i] = bogus_page;
3430			bogus++;
3431		}
3432		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3433	}
3434	vm_page_unlock_queues();
3435	VM_OBJECT_UNLOCK(obj);
3436	if (bogus)
3437		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3438		    bp->b_pages, bp->b_npages);
3439}
3440
3441/*
3442 * Tell the VM system that the pages associated with this buffer
3443 * are clean.  This is used for delayed writes where the data is
3444 * going to go to disk eventually without additional VM intevention.
3445 *
3446 * Note that while we only really need to clean through to b_bcount, we
3447 * just go ahead and clean through to b_bufsize.
3448 */
3449static void
3450vfs_clean_pages(struct buf *bp)
3451{
3452	int i;
3453	vm_ooffset_t foff, noff, eoff;
3454	vm_page_t m;
3455
3456	if (!(bp->b_flags & B_VMIO))
3457		return;
3458
3459	foff = bp->b_offset;
3460	KASSERT(bp->b_offset != NOOFFSET,
3461	    ("vfs_clean_pages: no buffer offset"));
3462	VM_OBJECT_LOCK(bp->b_object);
3463	vm_page_lock_queues();
3464	for (i = 0; i < bp->b_npages; i++) {
3465		m = bp->b_pages[i];
3466		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3467		eoff = noff;
3468
3469		if (eoff > bp->b_offset + bp->b_bufsize)
3470			eoff = bp->b_offset + bp->b_bufsize;
3471		vfs_page_set_valid(bp, foff, i, m);
3472		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3473		foff = noff;
3474	}
3475	vm_page_unlock_queues();
3476	VM_OBJECT_UNLOCK(bp->b_object);
3477}
3478
3479/*
3480 *	vfs_bio_set_validclean:
3481 *
3482 *	Set the range within the buffer to valid and clean.  The range is
3483 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3484 *	itself may be offset from the beginning of the first page.
3485 *
3486 */
3487
3488void
3489vfs_bio_set_validclean(struct buf *bp, int base, int size)
3490{
3491	int i, n;
3492	vm_page_t m;
3493
3494	if (!(bp->b_flags & B_VMIO))
3495		return;
3496
3497	/*
3498	 * Fixup base to be relative to beginning of first page.
3499	 * Set initial n to be the maximum number of bytes in the
3500	 * first page that can be validated.
3501	 */
3502
3503	base += (bp->b_offset & PAGE_MASK);
3504	n = PAGE_SIZE - (base & PAGE_MASK);
3505
3506	VM_OBJECT_LOCK(bp->b_object);
3507	vm_page_lock_queues();
3508	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3509		m = bp->b_pages[i];
3510
3511		if (n > size)
3512			n = size;
3513
3514		vm_page_set_validclean(m, base & PAGE_MASK, n);
3515		base += n;
3516		size -= n;
3517		n = PAGE_SIZE;
3518	}
3519	vm_page_unlock_queues();
3520	VM_OBJECT_UNLOCK(bp->b_object);
3521}
3522
3523/*
3524 *	vfs_bio_clrbuf:
3525 *
3526 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3527 *	to clear BIO_ERROR and B_INVAL.
3528 *
3529 *	Note that while we only theoretically need to clear through b_bcount,
3530 *	we go ahead and clear through b_bufsize.
3531 */
3532
3533void
3534vfs_bio_clrbuf(struct buf *bp)
3535{
3536	int i, j, mask = 0;
3537	caddr_t sa, ea;
3538
3539	GIANT_REQUIRED;
3540
3541	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3542		clrbuf(bp);
3543		return;
3544	}
3545	bp->b_flags &= ~B_INVAL;
3546	bp->b_ioflags &= ~BIO_ERROR;
3547	VM_OBJECT_LOCK(bp->b_object);
3548	if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3549	    (bp->b_offset & PAGE_MASK) == 0) {
3550		if (bp->b_pages[0] == bogus_page)
3551			goto unlock;
3552		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3553		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3554		if ((bp->b_pages[0]->valid & mask) == mask)
3555			goto unlock;
3556		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3557		    ((bp->b_pages[0]->valid & mask) == 0)) {
3558			bzero(bp->b_data, bp->b_bufsize);
3559			bp->b_pages[0]->valid |= mask;
3560			goto unlock;
3561		}
3562	}
3563	ea = sa = bp->b_data;
3564	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3565		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3566		ea = (caddr_t)(vm_offset_t)ulmin(
3567		    (u_long)(vm_offset_t)ea,
3568		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3569		if (bp->b_pages[i] == bogus_page)
3570			continue;
3571		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3572		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3573		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3574		if ((bp->b_pages[i]->valid & mask) == mask)
3575			continue;
3576		if ((bp->b_pages[i]->valid & mask) == 0) {
3577			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3578				bzero(sa, ea - sa);
3579		} else {
3580			for (; sa < ea; sa += DEV_BSIZE, j++) {
3581				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3582					(bp->b_pages[i]->valid & (1<<j)) == 0)
3583					bzero(sa, DEV_BSIZE);
3584			}
3585		}
3586		bp->b_pages[i]->valid |= mask;
3587	}
3588unlock:
3589	VM_OBJECT_UNLOCK(bp->b_object);
3590	bp->b_resid = 0;
3591}
3592
3593/*
3594 * vm_hold_load_pages and vm_hold_free_pages get pages into
3595 * a buffers address space.  The pages are anonymous and are
3596 * not associated with a file object.
3597 */
3598static void
3599vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3600{
3601	vm_offset_t pg;
3602	vm_page_t p;
3603	int index;
3604
3605	to = round_page(to);
3606	from = round_page(from);
3607	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3608
3609	VM_OBJECT_LOCK(kernel_object);
3610	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3611tryagain:
3612		/*
3613		 * note: must allocate system pages since blocking here
3614		 * could intefere with paging I/O, no matter which
3615		 * process we are.
3616		 */
3617		p = vm_page_alloc(kernel_object,
3618			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3619		    VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3620		if (!p) {
3621			atomic_add_int(&vm_pageout_deficit,
3622			    (to - pg) >> PAGE_SHIFT);
3623			VM_OBJECT_UNLOCK(kernel_object);
3624			VM_WAIT;
3625			VM_OBJECT_LOCK(kernel_object);
3626			goto tryagain;
3627		}
3628		p->valid = VM_PAGE_BITS_ALL;
3629		pmap_qenter(pg, &p, 1);
3630		bp->b_pages[index] = p;
3631	}
3632	VM_OBJECT_UNLOCK(kernel_object);
3633	bp->b_npages = index;
3634}
3635
3636/* Return pages associated with this buf to the vm system */
3637static void
3638vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3639{
3640	vm_offset_t pg;
3641	vm_page_t p;
3642	int index, newnpages;
3643
3644	from = round_page(from);
3645	to = round_page(to);
3646	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3647
3648	VM_OBJECT_LOCK(kernel_object);
3649	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3650		p = bp->b_pages[index];
3651		if (p && (index < bp->b_npages)) {
3652			if (p->busy) {
3653				printf(
3654			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3655				    (intmax_t)bp->b_blkno,
3656				    (intmax_t)bp->b_lblkno);
3657			}
3658			bp->b_pages[index] = NULL;
3659			pmap_qremove(pg, 1);
3660			vm_page_lock_queues();
3661			vm_page_busy(p);
3662			vm_page_unwire(p, 0);
3663			vm_page_free(p);
3664			vm_page_unlock_queues();
3665		}
3666	}
3667	VM_OBJECT_UNLOCK(kernel_object);
3668	bp->b_npages = newnpages;
3669}
3670
3671/*
3672 * Map an IO request into kernel virtual address space.
3673 *
3674 * All requests are (re)mapped into kernel VA space.
3675 * Notice that we use b_bufsize for the size of the buffer
3676 * to be mapped.  b_bcount might be modified by the driver.
3677 *
3678 * Note that even if the caller determines that the address space should
3679 * be valid, a race or a smaller-file mapped into a larger space may
3680 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3681 * check the return value.
3682 */
3683int
3684vmapbuf(struct buf *bp)
3685{
3686	caddr_t addr, kva;
3687	vm_prot_t prot;
3688	int pidx, i;
3689	struct vm_page *m;
3690	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3691
3692	if (bp->b_bufsize < 0)
3693		return (-1);
3694	prot = VM_PROT_READ;
3695	if (bp->b_iocmd == BIO_READ)
3696		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3697	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3698	     addr < bp->b_data + bp->b_bufsize;
3699	     addr += PAGE_SIZE, pidx++) {
3700		/*
3701		 * Do the vm_fault if needed; do the copy-on-write thing
3702		 * when reading stuff off device into memory.
3703		 *
3704		 * NOTE! Must use pmap_extract() because addr may be in
3705		 * the userland address space, and kextract is only guarenteed
3706		 * to work for the kernland address space (see: sparc64 port).
3707		 */
3708retry:
3709		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3710		    prot) < 0) {
3711			vm_page_lock_queues();
3712			for (i = 0; i < pidx; ++i) {
3713				vm_page_unhold(bp->b_pages[i]);
3714				bp->b_pages[i] = NULL;
3715			}
3716			vm_page_unlock_queues();
3717			return(-1);
3718		}
3719		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3720		if (m == NULL)
3721			goto retry;
3722		bp->b_pages[pidx] = m;
3723	}
3724	if (pidx > btoc(MAXPHYS))
3725		panic("vmapbuf: mapped more than MAXPHYS");
3726	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3727
3728	kva = bp->b_saveaddr;
3729	bp->b_npages = pidx;
3730	bp->b_saveaddr = bp->b_data;
3731	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3732	return(0);
3733}
3734
3735/*
3736 * Free the io map PTEs associated with this IO operation.
3737 * We also invalidate the TLB entries and restore the original b_addr.
3738 */
3739void
3740vunmapbuf(struct buf *bp)
3741{
3742	int pidx;
3743	int npages;
3744
3745	npages = bp->b_npages;
3746	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3747	vm_page_lock_queues();
3748	for (pidx = 0; pidx < npages; pidx++)
3749		vm_page_unhold(bp->b_pages[pidx]);
3750	vm_page_unlock_queues();
3751
3752	bp->b_data = bp->b_saveaddr;
3753}
3754
3755void
3756bdone(struct buf *bp)
3757{
3758
3759	mtx_lock(&bdonelock);
3760	bp->b_flags |= B_DONE;
3761	wakeup(bp);
3762	mtx_unlock(&bdonelock);
3763}
3764
3765void
3766bwait(struct buf *bp, u_char pri, const char *wchan)
3767{
3768
3769	mtx_lock(&bdonelock);
3770	while ((bp->b_flags & B_DONE) == 0)
3771		msleep(bp, &bdonelock, pri, wchan, 0);
3772	mtx_unlock(&bdonelock);
3773}
3774
3775void
3776bufstrategy(struct bufobj *bo, struct buf *bp)
3777{
3778	int i = 0;
3779	struct vnode *vp;
3780
3781	vp = bp->b_vp;
3782#if 0
3783	KASSERT(vp == bo->bo_vnode, ("Inconsistent vnode bufstrategy"));
3784	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3785	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3786#endif
3787	if (vp->v_type == VCHR) {
3788		if (!buf_prewrite(bp->b_vp, bp))
3789			i = VOP_SPECSTRATEGY(vp, bp);
3790	} else {
3791		i = VOP_STRATEGY(vp, bp);
3792	}
3793	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3794}
3795
3796void
3797bufobj_wref(struct bufobj *bo)
3798{
3799
3800	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3801	BO_LOCK(bo);
3802	bo->bo_numoutput++;
3803	BO_UNLOCK(bo);
3804}
3805
3806void
3807bufobj_wdrop(struct bufobj *bo)
3808{
3809
3810	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3811	BO_LOCK(bo);
3812	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3813	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3814		bo->bo_flag &= ~BO_WWAIT;
3815		wakeup(&bo->bo_numoutput);
3816	}
3817	BO_UNLOCK(bo);
3818}
3819
3820int
3821bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3822{
3823	int error;
3824
3825	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3826	ASSERT_BO_LOCKED(bo);
3827	error = 0;
3828	while (bo->bo_numoutput) {
3829		bo->bo_flag |= BO_WWAIT;
3830		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3831		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3832		if (error)
3833			break;
3834	}
3835	return (error);
3836}
3837
3838#include "opt_ddb.h"
3839#ifdef DDB
3840#include <ddb/ddb.h>
3841
3842/* DDB command to show buffer data */
3843DB_SHOW_COMMAND(buffer, db_show_buffer)
3844{
3845	/* get args */
3846	struct buf *bp = (struct buf *)addr;
3847
3848	if (!have_addr) {
3849		db_printf("usage: show buffer <addr>\n");
3850		return;
3851	}
3852
3853	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3854	db_printf(
3855	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3856	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd\n",
3857	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3858	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3859	    (intmax_t)bp->b_blkno);
3860	if (bp->b_npages) {
3861		int i;
3862		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3863		for (i = 0; i < bp->b_npages; i++) {
3864			vm_page_t m;
3865			m = bp->b_pages[i];
3866			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3867			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3868			if ((i + 1) < bp->b_npages)
3869				db_printf(",");
3870		}
3871		db_printf("\n");
3872	}
3873}
3874#endif /* DDB */
3875