vfs_bio.c revision 136927
1147072Sbrooks/*
2147072Sbrooks * Copyright (c) 1994,1997 John S. Dyson
3147072Sbrooks * All rights reserved.
4147072Sbrooks *
5147072Sbrooks * Redistribution and use in source and binary forms, with or without
6147072Sbrooks * modification, are permitted provided that the following conditions
7147072Sbrooks * are met:
8147072Sbrooks * 1. Redistributions of source code must retain the above copyright
9147072Sbrooks *    notice immediately at the beginning of the file, without modification,
10147072Sbrooks *    this list of conditions, and the following disclaimer.
11147072Sbrooks * 2. Absolutely no warranty of function or purpose is made by the author
12147072Sbrooks *		John S. Dyson.
13147072Sbrooks */
14147072Sbrooks
15147072Sbrooks/*
16147072Sbrooks * this file contains a new buffer I/O scheme implementing a coherent
17147072Sbrooks * VM object and buffer cache scheme.  Pains have been taken to make
18147072Sbrooks * sure that the performance degradation associated with schemes such
19147072Sbrooks * as this is not realized.
20147072Sbrooks *
21147072Sbrooks * Author:  John S. Dyson
22147072Sbrooks * Significant help during the development and debugging phases
23147072Sbrooks * had been provided by David Greenman, also of the FreeBSD core team.
24147072Sbrooks *
25147072Sbrooks * see man buf(9) for more info.
26147072Sbrooks */
27147072Sbrooks
28147072Sbrooks#include <sys/cdefs.h>
29147072Sbrooks__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 136927 2004-10-24 20:03:41Z phk $");
30147072Sbrooks
31147072Sbrooks#include <sys/param.h>
32147072Sbrooks#include <sys/systm.h>
33147072Sbrooks#include <sys/bio.h>
34147072Sbrooks#include <sys/conf.h>
35147072Sbrooks#include <sys/buf.h>
36147072Sbrooks#include <sys/devicestat.h>
37147072Sbrooks#include <sys/eventhandler.h>
38147072Sbrooks#include <sys/lock.h>
39147072Sbrooks#include <sys/malloc.h>
40147072Sbrooks#include <sys/mount.h>
41147072Sbrooks#include <sys/mutex.h>
42147072Sbrooks#include <sys/kernel.h>
43147072Sbrooks#include <sys/kthread.h>
44147072Sbrooks#include <sys/proc.h>
45147072Sbrooks#include <sys/resourcevar.h>
46147072Sbrooks#include <sys/sysctl.h>
47147072Sbrooks#include <sys/vmmeter.h>
48147072Sbrooks#include <sys/vnode.h>
49147072Sbrooks#include <vm/vm.h>
50147072Sbrooks#include <vm/vm_param.h>
51147072Sbrooks#include <vm/vm_kern.h>
52147072Sbrooks#include <vm/vm_pageout.h>
53147072Sbrooks#include <vm/vm_page.h>
54147072Sbrooks#include <vm/vm_object.h>
55147072Sbrooks#include <vm/vm_extern.h>
56147072Sbrooks#include <vm/vm_map.h>
57147072Sbrooks#include "opt_directio.h"
58147072Sbrooks#include "opt_swap.h"
59147072Sbrooks
60147072Sbrooksstatic MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
61147072Sbrooks
62147072Sbrooksstruct	bio_ops bioops;		/* I/O operation notification */
63147072Sbrooks
64147072Sbrooksstruct	buf_ops buf_ops_bio = {
65147072Sbrooks	.bop_name	=	"buf_ops_bio",
66147072Sbrooks	.bop_write	=	bufwrite,
67147072Sbrooks	.bop_strategy	=	bufstrategy,
68147072Sbrooks};
69147072Sbrooks
70147072Sbrooks/*
71147072Sbrooks * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
72147072Sbrooks * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
73147072Sbrooks */
74147072Sbrooksstruct buf *buf;		/* buffer header pool */
75147072Sbrooks
76147072Sbrooksstatic struct proc *bufdaemonproc;
77147072Sbrooks
78147072Sbrooksstatic int inmem(struct vnode * vp, daddr_t blkno);
79147072Sbrooksstatic void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
80147072Sbrooks		vm_offset_t to);
81147072Sbrooksstatic void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
82147072Sbrooks		vm_offset_t to);
83147072Sbrooksstatic void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
84147072Sbrooks			       int pageno, vm_page_t m);
85147072Sbrooksstatic void vfs_clean_pages(struct buf *bp);
86147072Sbrooksstatic void vfs_setdirty(struct buf *bp);
87147072Sbrooksstatic void vfs_vmio_release(struct buf *bp);
88147072Sbrooksstatic void vfs_backgroundwritedone(struct buf *bp);
89147072Sbrooksstatic int vfs_bio_clcheck(struct vnode *vp, int size,
90147072Sbrooks		daddr_t lblkno, daddr_t blkno);
91147072Sbrooksstatic int flushbufqueues(int flushdeps);
92147072Sbrooksstatic void buf_daemon(void);
93147072Sbrooksvoid bremfreel(struct buf *bp);
94147072Sbrooks
95147072Sbrooksint vmiodirenable = TRUE;
96147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
97147072Sbrooks    "Use the VM system for directory writes");
98147072Sbrooksint runningbufspace;
99147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
100147072Sbrooks    "Amount of presently outstanding async buffer io");
101147072Sbrooksstatic int bufspace;
102147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
103147072Sbrooks    "KVA memory used for bufs");
104147072Sbrooksstatic int maxbufspace;
105147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
106147072Sbrooks    "Maximum allowed value of bufspace (including buf_daemon)");
107147072Sbrooksstatic int bufmallocspace;
108147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
109147072Sbrooks    "Amount of malloced memory for buffers");
110147072Sbrooksstatic int maxbufmallocspace;
111147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
112147072Sbrooks    "Maximum amount of malloced memory for buffers");
113147072Sbrooksstatic int lobufspace;
114147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
115147072Sbrooks    "Minimum amount of buffers we want to have");
116147072Sbrooksstatic int hibufspace;
117147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
118147072Sbrooks    "Maximum allowed value of bufspace (excluding buf_daemon)");
119147072Sbrooksstatic int bufreusecnt;
120147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
121147072Sbrooks    "Number of times we have reused a buffer");
122147072Sbrooksstatic int buffreekvacnt;
123147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
124147072Sbrooks    "Number of times we have freed the KVA space from some buffer");
125147072Sbrooksstatic int bufdefragcnt;
126147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
127147072Sbrooks    "Number of times we have had to repeat buffer allocation to defragment");
128147072Sbrooksstatic int lorunningspace;
129147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
130147072Sbrooks    "Minimum preferred space used for in-progress I/O");
131147072Sbrooksstatic int hirunningspace;
132147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
133147072Sbrooks    "Maximum amount of space to use for in-progress I/O");
134147072Sbrooksstatic int dirtybufferflushes;
135147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
136147072Sbrooks    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
137147072Sbrooksstatic int altbufferflushes;
138147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
139147072Sbrooks    0, "Number of fsync flushes to limit dirty buffers");
140147072Sbrooksstatic int recursiveflushes;
141147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
142147072Sbrooks    0, "Number of flushes skipped due to being recursive");
143147072Sbrooksstatic int numdirtybuffers;
144147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
145147072Sbrooks    "Number of buffers that are dirty (has unwritten changes) at the moment");
146147072Sbrooksstatic int lodirtybuffers;
147147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
148147072Sbrooks    "How many buffers we want to have free before bufdaemon can sleep");
149147072Sbrooksstatic int hidirtybuffers;
150147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
151147072Sbrooks    "When the number of dirty buffers is considered severe");
152147072Sbrooksstatic int dirtybufthresh;
153147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
154147072Sbrooks    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
155147072Sbrooksstatic int numfreebuffers;
156147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
157147072Sbrooks    "Number of free buffers");
158147072Sbrooksstatic int lofreebuffers;
159147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
160147072Sbrooks   "XXX Unused");
161147072Sbrooksstatic int hifreebuffers;
162147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
163147072Sbrooks   "XXX Complicatedly unused");
164147072Sbrooksstatic int getnewbufcalls;
165147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
166147072Sbrooks   "Number of calls to getnewbuf");
167147072Sbrooksstatic int getnewbufrestarts;
168147072SbrooksSYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
169147072Sbrooks    "Number of times getnewbuf has had to restart a buffer aquisition");
170147072Sbrooksstatic int dobkgrdwrite = 1;
171147072SbrooksSYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
172147072Sbrooks    "Do background writes (honoring the BV_BKGRDWRITE flag)?");
173147072Sbrooks
174147072Sbrooks/*
175147072Sbrooks * Wakeup point for bufdaemon, as well as indicator of whether it is already
176147072Sbrooks * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
177147072Sbrooks * is idling.
178147072Sbrooks */
179147072Sbrooksstatic int bd_request;
180147072Sbrooks
181147072Sbrooks/*
182147072Sbrooks * This lock synchronizes access to bd_request.
183147072Sbrooks */
184147072Sbrooksstatic struct mtx bdlock;
185147072Sbrooks
186147072Sbrooks/*
187147072Sbrooks * bogus page -- for I/O to/from partially complete buffers
188147072Sbrooks * this is a temporary solution to the problem, but it is not
189147072Sbrooks * really that bad.  it would be better to split the buffer
190147072Sbrooks * for input in the case of buffers partially already in memory,
191147072Sbrooks * but the code is intricate enough already.
192147072Sbrooks */
193147072Sbrooksvm_page_t bogus_page;
194147072Sbrooks
195147072Sbrooks/*
196147072Sbrooks * Synchronization (sleep/wakeup) variable for active buffer space requests.
197147072Sbrooks * Set when wait starts, cleared prior to wakeup().
198147072Sbrooks * Used in runningbufwakeup() and waitrunningbufspace().
199147072Sbrooks */
200147072Sbrooksstatic int runningbufreq;
201147072Sbrooks
202147072Sbrooks/*
203147072Sbrooks * This lock protects the runningbufreq and synchronizes runningbufwakeup and
204147072Sbrooks * waitrunningbufspace().
205147072Sbrooks */
206147072Sbrooksstatic struct mtx rbreqlock;
207147072Sbrooks
208147072Sbrooks/*
209147072Sbrooks * Synchronization (sleep/wakeup) variable for buffer requests.
210147072Sbrooks * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
211147072Sbrooks * by and/or.
212147072Sbrooks * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
213147072Sbrooks * getnewbuf(), and getblk().
214147072Sbrooks */
215147072Sbrooksstatic int needsbuffer;
216147072Sbrooks
217147072Sbrooks/*
218147072Sbrooks * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
219147072Sbrooks */
220147072Sbrooksstatic struct mtx nblock;
221147072Sbrooks
222147072Sbrooks/*
223147072Sbrooks * Lock that protects against bwait()/bdone()/B_DONE races.
224147072Sbrooks */
225147072Sbrooks
226147072Sbrooksstatic struct mtx bdonelock;
227147072Sbrooks
228147072Sbrooks/*
229147072Sbrooks * Definitions for the buffer free lists.
230147072Sbrooks */
231147072Sbrooks#define BUFFER_QUEUES	5	/* number of free buffer queues */
232147072Sbrooks
233147072Sbrooks#define QUEUE_NONE	0	/* on no queue */
234147072Sbrooks#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
235147072Sbrooks#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
236147072Sbrooks#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
237147072Sbrooks#define QUEUE_EMPTY	4	/* empty buffer headers */
238147072Sbrooks
239147072Sbrooks/* Queues for free buffers with various properties */
240147072Sbrooksstatic TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
241147072Sbrooks
242147072Sbrooks/* Lock for the bufqueues */
243147072Sbrooksstatic struct mtx bqlock;
244147072Sbrooks
245147072Sbrooks/*
246147072Sbrooks * Single global constant for BUF_WMESG, to avoid getting multiple references.
247147072Sbrooks * buf_wmesg is referred from macros.
248147072Sbrooks */
249147072Sbrooksconst char *buf_wmesg = BUF_WMESG;
250147072Sbrooks
251147072Sbrooks#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
252147072Sbrooks#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
253147072Sbrooks#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
254147072Sbrooks#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
255147072Sbrooks
256147072Sbrooks#ifdef DIRECTIO
257147072Sbrooksextern void ffs_rawread_setup(void);
258147072Sbrooks#endif /* DIRECTIO */
259147072Sbrooks/*
260147072Sbrooks *	numdirtywakeup:
261147072Sbrooks *
262147072Sbrooks *	If someone is blocked due to there being too many dirty buffers,
263147072Sbrooks *	and numdirtybuffers is now reasonable, wake them up.
264147072Sbrooks */
265147072Sbrooks
266147072Sbrooksstatic __inline void
267147072Sbrooksnumdirtywakeup(int level)
268147072Sbrooks{
269147072Sbrooks
270147072Sbrooks	if (numdirtybuffers <= level) {
271147072Sbrooks		mtx_lock(&nblock);
272147072Sbrooks		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
273147072Sbrooks			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
274147072Sbrooks			wakeup(&needsbuffer);
275147072Sbrooks		}
276147072Sbrooks		mtx_unlock(&nblock);
277147072Sbrooks	}
278147072Sbrooks}
279147072Sbrooks
280147072Sbrooks/*
281147072Sbrooks *	bufspacewakeup:
282147072Sbrooks *
283147072Sbrooks *	Called when buffer space is potentially available for recovery.
284147072Sbrooks *	getnewbuf() will block on this flag when it is unable to free
285147072Sbrooks *	sufficient buffer space.  Buffer space becomes recoverable when
286147072Sbrooks *	bp's get placed back in the queues.
287147072Sbrooks */
288147072Sbrooks
289147072Sbrooksstatic __inline void
290147072Sbrooksbufspacewakeup(void)
291147072Sbrooks{
292147072Sbrooks
293147072Sbrooks	/*
294147072Sbrooks	 * If someone is waiting for BUF space, wake them up.  Even
295147072Sbrooks	 * though we haven't freed the kva space yet, the waiting
296147072Sbrooks	 * process will be able to now.
297147072Sbrooks	 */
298147072Sbrooks	mtx_lock(&nblock);
299147072Sbrooks	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
300147072Sbrooks		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
301147072Sbrooks		wakeup(&needsbuffer);
302147072Sbrooks	}
303147072Sbrooks	mtx_unlock(&nblock);
304147072Sbrooks}
305147072Sbrooks
306147072Sbrooks/*
307147072Sbrooks * runningbufwakeup() - in-progress I/O accounting.
308147072Sbrooks *
309147072Sbrooks */
310147072Sbrooksstatic __inline void
311147072Sbrooksrunningbufwakeup(struct buf *bp)
312147072Sbrooks{
313147072Sbrooks
314147072Sbrooks	if (bp->b_runningbufspace) {
315147072Sbrooks		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
316147072Sbrooks		bp->b_runningbufspace = 0;
317147072Sbrooks		mtx_lock(&rbreqlock);
318147072Sbrooks		if (runningbufreq && runningbufspace <= lorunningspace) {
319147072Sbrooks			runningbufreq = 0;
320147072Sbrooks			wakeup(&runningbufreq);
321147072Sbrooks		}
322147072Sbrooks		mtx_unlock(&rbreqlock);
323147072Sbrooks	}
324147072Sbrooks}
325147072Sbrooks
326147072Sbrooks/*
327147072Sbrooks *	bufcountwakeup:
328147072Sbrooks *
329147072Sbrooks *	Called when a buffer has been added to one of the free queues to
330147072Sbrooks *	account for the buffer and to wakeup anyone waiting for free buffers.
331147072Sbrooks *	This typically occurs when large amounts of metadata are being handled
332147072Sbrooks *	by the buffer cache ( else buffer space runs out first, usually ).
333147072Sbrooks */
334147072Sbrooks
335147072Sbrooksstatic __inline void
336147072Sbrooksbufcountwakeup(void)
337147072Sbrooks{
338147072Sbrooks
339147072Sbrooks	atomic_add_int(&numfreebuffers, 1);
340147072Sbrooks	mtx_lock(&nblock);
341147072Sbrooks	if (needsbuffer) {
342147072Sbrooks		needsbuffer &= ~VFS_BIO_NEED_ANY;
343147072Sbrooks		if (numfreebuffers >= hifreebuffers)
344147072Sbrooks			needsbuffer &= ~VFS_BIO_NEED_FREE;
345147072Sbrooks		wakeup(&needsbuffer);
346147072Sbrooks	}
347147072Sbrooks	mtx_unlock(&nblock);
348147072Sbrooks}
349147072Sbrooks
350147072Sbrooks/*
351147072Sbrooks *	waitrunningbufspace()
352147072Sbrooks *
353147072Sbrooks *	runningbufspace is a measure of the amount of I/O currently
354147072Sbrooks *	running.  This routine is used in async-write situations to
355147072Sbrooks *	prevent creating huge backups of pending writes to a device.
356147072Sbrooks *	Only asynchronous writes are governed by this function.
357147072Sbrooks *
358147072Sbrooks *	Reads will adjust runningbufspace, but will not block based on it.
359147072Sbrooks *	The read load has a side effect of reducing the allowed write load.
360147072Sbrooks *
361147072Sbrooks *	This does NOT turn an async write into a sync write.  It waits
362147072Sbrooks *	for earlier writes to complete and generally returns before the
363147072Sbrooks *	caller's write has reached the device.
364147072Sbrooks */
365147072Sbrooksstatic __inline void
366147072Sbrookswaitrunningbufspace(void)
367147072Sbrooks{
368147072Sbrooks
369147072Sbrooks	mtx_lock(&rbreqlock);
370147072Sbrooks	while (runningbufspace > hirunningspace) {
371147072Sbrooks		++runningbufreq;
372147072Sbrooks		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
373147072Sbrooks	}
374147072Sbrooks	mtx_unlock(&rbreqlock);
375147072Sbrooks}
376147072Sbrooks
377147072Sbrooks
378147072Sbrooks/*
379147072Sbrooks *	vfs_buf_test_cache:
380147072Sbrooks *
381147072Sbrooks *	Called when a buffer is extended.  This function clears the B_CACHE
382147072Sbrooks *	bit if the newly extended portion of the buffer does not contain
383147072Sbrooks *	valid data.
384147072Sbrooks */
385147072Sbrooksstatic __inline
386147072Sbrooksvoid
387147072Sbrooksvfs_buf_test_cache(struct buf *bp,
388147072Sbrooks		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
389147072Sbrooks		  vm_page_t m)
390147072Sbrooks{
391147072Sbrooks
392147072Sbrooks	GIANT_REQUIRED;
393147072Sbrooks
394147072Sbrooks	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
395147072Sbrooks	if (bp->b_flags & B_CACHE) {
396147072Sbrooks		int base = (foff + off) & PAGE_MASK;
397147072Sbrooks		if (vm_page_is_valid(m, base, size) == 0)
398147072Sbrooks			bp->b_flags &= ~B_CACHE;
399147072Sbrooks	}
400147072Sbrooks}
401147072Sbrooks
402147072Sbrooks/* Wake up the buffer deamon if necessary */
403147072Sbrooksstatic __inline
404147072Sbrooksvoid
405147072Sbrooksbd_wakeup(int dirtybuflevel)
406147072Sbrooks{
407147072Sbrooks
408147072Sbrooks	mtx_lock(&bdlock);
409147072Sbrooks	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
410147072Sbrooks		bd_request = 1;
411147072Sbrooks		wakeup(&bd_request);
412147072Sbrooks	}
413147072Sbrooks	mtx_unlock(&bdlock);
414147072Sbrooks}
415147072Sbrooks
416147072Sbrooks/*
417147072Sbrooks * bd_speedup - speedup the buffer cache flushing code
418147072Sbrooks */
419147072Sbrooks
420147072Sbrooksstatic __inline
421147072Sbrooksvoid
422147072Sbrooksbd_speedup(void)
423147072Sbrooks{
424147072Sbrooks
425147072Sbrooks	bd_wakeup(1);
426147072Sbrooks}
427147072Sbrooks
428147072Sbrooks/*
429147072Sbrooks * Calculating buffer cache scaling values and reserve space for buffer
430147072Sbrooks * headers.  This is called during low level kernel initialization and
431 * may be called more then once.  We CANNOT write to the memory area
432 * being reserved at this time.
433 */
434caddr_t
435kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
436{
437
438	/*
439	 * physmem_est is in pages.  Convert it to kilobytes (assumes
440	 * PAGE_SIZE is >= 1K)
441	 */
442	physmem_est = physmem_est * (PAGE_SIZE / 1024);
443
444	/*
445	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
446	 * For the first 64MB of ram nominally allocate sufficient buffers to
447	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
448	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
449	 * the buffer cache we limit the eventual kva reservation to
450	 * maxbcache bytes.
451	 *
452	 * factor represents the 1/4 x ram conversion.
453	 */
454	if (nbuf == 0) {
455		int factor = 4 * BKVASIZE / 1024;
456
457		nbuf = 50;
458		if (physmem_est > 4096)
459			nbuf += min((physmem_est - 4096) / factor,
460			    65536 / factor);
461		if (physmem_est > 65536)
462			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
463
464		if (maxbcache && nbuf > maxbcache / BKVASIZE)
465			nbuf = maxbcache / BKVASIZE;
466	}
467
468#if 0
469	/*
470	 * Do not allow the buffer_map to be more then 1/2 the size of the
471	 * kernel_map.
472	 */
473	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
474	    (BKVASIZE * 2)) {
475		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
476		    (BKVASIZE * 2);
477		printf("Warning: nbufs capped at %d\n", nbuf);
478	}
479#endif
480
481	/*
482	 * swbufs are used as temporary holders for I/O, such as paging I/O.
483	 * We have no less then 16 and no more then 256.
484	 */
485	nswbuf = max(min(nbuf/4, 256), 16);
486#ifdef NSWBUF_MIN
487	if (nswbuf < NSWBUF_MIN)
488		nswbuf = NSWBUF_MIN;
489#endif
490#ifdef DIRECTIO
491	ffs_rawread_setup();
492#endif
493
494	/*
495	 * Reserve space for the buffer cache buffers
496	 */
497	swbuf = (void *)v;
498	v = (caddr_t)(swbuf + nswbuf);
499	buf = (void *)v;
500	v = (caddr_t)(buf + nbuf);
501
502	return(v);
503}
504
505/* Initialize the buffer subsystem.  Called before use of any buffers. */
506void
507bufinit(void)
508{
509	struct buf *bp;
510	int i;
511
512	GIANT_REQUIRED;
513
514	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
515	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
516	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
517	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
518	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
519
520	/* next, make a null set of free lists */
521	for (i = 0; i < BUFFER_QUEUES; i++)
522		TAILQ_INIT(&bufqueues[i]);
523
524	/* finally, initialize each buffer header and stick on empty q */
525	for (i = 0; i < nbuf; i++) {
526		bp = &buf[i];
527		bzero(bp, sizeof *bp);
528		bp->b_flags = B_INVAL;	/* we're just an empty header */
529		bp->b_dev = NULL;
530		bp->b_rcred = NOCRED;
531		bp->b_wcred = NOCRED;
532		bp->b_qindex = QUEUE_EMPTY;
533		bp->b_vflags = 0;
534		bp->b_xflags = 0;
535		LIST_INIT(&bp->b_dep);
536		BUF_LOCKINIT(bp);
537		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
538	}
539
540	/*
541	 * maxbufspace is the absolute maximum amount of buffer space we are
542	 * allowed to reserve in KVM and in real terms.  The absolute maximum
543	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
544	 * used by most other processes.  The differential is required to
545	 * ensure that buf_daemon is able to run when other processes might
546	 * be blocked waiting for buffer space.
547	 *
548	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
549	 * this may result in KVM fragmentation which is not handled optimally
550	 * by the system.
551	 */
552	maxbufspace = nbuf * BKVASIZE;
553	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
554	lobufspace = hibufspace - MAXBSIZE;
555
556	lorunningspace = 512 * 1024;
557	hirunningspace = 1024 * 1024;
558
559/*
560 * Limit the amount of malloc memory since it is wired permanently into
561 * the kernel space.  Even though this is accounted for in the buffer
562 * allocation, we don't want the malloced region to grow uncontrolled.
563 * The malloc scheme improves memory utilization significantly on average
564 * (small) directories.
565 */
566	maxbufmallocspace = hibufspace / 20;
567
568/*
569 * Reduce the chance of a deadlock occuring by limiting the number
570 * of delayed-write dirty buffers we allow to stack up.
571 */
572	hidirtybuffers = nbuf / 4 + 20;
573	dirtybufthresh = hidirtybuffers * 9 / 10;
574	numdirtybuffers = 0;
575/*
576 * To support extreme low-memory systems, make sure hidirtybuffers cannot
577 * eat up all available buffer space.  This occurs when our minimum cannot
578 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
579 * BKVASIZE'd (8K) buffers.
580 */
581	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
582		hidirtybuffers >>= 1;
583	}
584	lodirtybuffers = hidirtybuffers / 2;
585
586/*
587 * Try to keep the number of free buffers in the specified range,
588 * and give special processes (e.g. like buf_daemon) access to an
589 * emergency reserve.
590 */
591	lofreebuffers = nbuf / 18 + 5;
592	hifreebuffers = 2 * lofreebuffers;
593	numfreebuffers = nbuf;
594
595/*
596 * Maximum number of async ops initiated per buf_daemon loop.  This is
597 * somewhat of a hack at the moment, we really need to limit ourselves
598 * based on the number of bytes of I/O in-transit that were initiated
599 * from buf_daemon.
600 */
601
602	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
603	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
604}
605
606/*
607 * bfreekva() - free the kva allocation for a buffer.
608 *
609 *	Must be called at splbio() or higher as this is the only locking for
610 *	buffer_map.
611 *
612 *	Since this call frees up buffer space, we call bufspacewakeup().
613 */
614static void
615bfreekva(struct buf *bp)
616{
617
618	GIANT_REQUIRED;
619
620	if (bp->b_kvasize) {
621		atomic_add_int(&buffreekvacnt, 1);
622		atomic_subtract_int(&bufspace, bp->b_kvasize);
623		vm_map_delete(buffer_map,
624		    (vm_offset_t) bp->b_kvabase,
625		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
626		);
627		bp->b_kvasize = 0;
628		bufspacewakeup();
629	}
630}
631
632/*
633 *	bremfree:
634 *
635 *	Remove the buffer from the appropriate free list.
636 */
637void
638bremfree(struct buf *bp)
639{
640
641	mtx_lock(&bqlock);
642	bremfreel(bp);
643	mtx_unlock(&bqlock);
644}
645
646void
647bremfreel(struct buf *bp)
648{
649	int s = splbio();
650	int old_qindex = bp->b_qindex;
651
652	GIANT_REQUIRED;
653
654	if (bp->b_qindex != QUEUE_NONE) {
655		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
656		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
657		bp->b_qindex = QUEUE_NONE;
658	} else {
659		if (BUF_REFCNT(bp) <= 1)
660			panic("bremfree: removing a buffer not on a queue");
661	}
662
663	/*
664	 * Fixup numfreebuffers count.  If the buffer is invalid or not
665	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
666	 * the buffer was free and we must decrement numfreebuffers.
667	 */
668	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
669		switch(old_qindex) {
670		case QUEUE_DIRTY:
671		case QUEUE_CLEAN:
672		case QUEUE_EMPTY:
673		case QUEUE_EMPTYKVA:
674			atomic_subtract_int(&numfreebuffers, 1);
675			break;
676		default:
677			break;
678		}
679	}
680	splx(s);
681}
682
683
684/*
685 * Get a buffer with the specified data.  Look in the cache first.  We
686 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
687 * is set, the buffer is valid and we do not have to do anything ( see
688 * getblk() ).  This is really just a special case of breadn().
689 */
690int
691bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
692    struct buf **bpp)
693{
694
695	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
696}
697
698/*
699 * Operates like bread, but also starts asynchronous I/O on
700 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
701 * to initiating I/O . If B_CACHE is set, the buffer is valid
702 * and we do not have to do anything.
703 */
704int
705breadn(struct vnode * vp, daddr_t blkno, int size,
706    daddr_t * rablkno, int *rabsize,
707    int cnt, struct ucred * cred, struct buf **bpp)
708{
709	struct buf *bp, *rabp;
710	int i;
711	int rv = 0, readwait = 0;
712
713	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
714
715	/* if not found in cache, do some I/O */
716	if ((bp->b_flags & B_CACHE) == 0) {
717		if (curthread != PCPU_GET(idlethread))
718			curthread->td_proc->p_stats->p_ru.ru_inblock++;
719		bp->b_iocmd = BIO_READ;
720		bp->b_flags &= ~B_INVAL;
721		bp->b_ioflags &= ~BIO_ERROR;
722		if (bp->b_rcred == NOCRED && cred != NOCRED)
723			bp->b_rcred = crhold(cred);
724		vfs_busy_pages(bp, 0);
725		bp->b_iooffset = dbtob(bp->b_blkno);
726		bstrategy(bp);
727		++readwait;
728	}
729
730	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
731		if (inmem(vp, *rablkno))
732			continue;
733		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
734
735		if ((rabp->b_flags & B_CACHE) == 0) {
736			if (curthread != PCPU_GET(idlethread))
737				curthread->td_proc->p_stats->p_ru.ru_inblock++;
738			rabp->b_flags |= B_ASYNC;
739			rabp->b_flags &= ~B_INVAL;
740			rabp->b_ioflags &= ~BIO_ERROR;
741			rabp->b_iocmd = BIO_READ;
742			if (rabp->b_rcred == NOCRED && cred != NOCRED)
743				rabp->b_rcred = crhold(cred);
744			vfs_busy_pages(rabp, 0);
745			BUF_KERNPROC(rabp);
746			rabp->b_iooffset = dbtob(rabp->b_blkno);
747			bstrategy(rabp);
748		} else {
749			brelse(rabp);
750		}
751	}
752
753	if (readwait) {
754		rv = bufwait(bp);
755	}
756	return (rv);
757}
758
759/*
760 * Write, release buffer on completion.  (Done by iodone
761 * if async).  Do not bother writing anything if the buffer
762 * is invalid.
763 *
764 * Note that we set B_CACHE here, indicating that buffer is
765 * fully valid and thus cacheable.  This is true even of NFS
766 * now so we set it generally.  This could be set either here
767 * or in biodone() since the I/O is synchronous.  We put it
768 * here.
769 */
770int
771bufwrite(struct buf *bp)
772{
773	int oldflags, s;
774	struct buf *newbp;
775
776	if (bp->b_flags & B_INVAL) {
777		brelse(bp);
778		return (0);
779	}
780
781	oldflags = bp->b_flags;
782
783	if (BUF_REFCNT(bp) == 0)
784		panic("bufwrite: buffer is not busy???");
785	s = splbio();
786	/*
787	 * If a background write is already in progress, delay
788	 * writing this block if it is asynchronous. Otherwise
789	 * wait for the background write to complete.
790	 */
791	BO_LOCK(bp->b_bufobj);
792	if (bp->b_vflags & BV_BKGRDINPROG) {
793		if (bp->b_flags & B_ASYNC) {
794			BO_UNLOCK(bp->b_bufobj);
795			splx(s);
796			bdwrite(bp);
797			return (0);
798		}
799		bp->b_vflags |= BV_BKGRDWAIT;
800		msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj), PRIBIO, "bwrbg", 0);
801		if (bp->b_vflags & BV_BKGRDINPROG)
802			panic("bufwrite: still writing");
803	}
804	BO_UNLOCK(bp->b_bufobj);
805
806	/* Mark the buffer clean */
807	bundirty(bp);
808
809	/*
810	 * If this buffer is marked for background writing and we
811	 * do not have to wait for it, make a copy and write the
812	 * copy so as to leave this buffer ready for further use.
813	 *
814	 * This optimization eats a lot of memory.  If we have a page
815	 * or buffer shortfall we can't do it.
816	 */
817	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
818	    (bp->b_flags & B_ASYNC) &&
819	    !vm_page_count_severe() &&
820	    !buf_dirty_count_severe()) {
821		KASSERT(bp->b_iodone == NULL,
822		    ("bufwrite: needs chained iodone (%p)", bp->b_iodone));
823
824		/* get a new block */
825		newbp = geteblk(bp->b_bufsize);
826
827		/*
828		 * set it to be identical to the old block.  We have to
829		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
830		 * to avoid confusing the splay tree and gbincore().
831		 */
832		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
833		newbp->b_lblkno = bp->b_lblkno;
834		newbp->b_xflags |= BX_BKGRDMARKER;
835		BO_LOCK(bp->b_bufobj);
836		bp->b_vflags |= BV_BKGRDINPROG;
837		bgetvp(bp->b_vp, newbp);
838		BO_UNLOCK(bp->b_bufobj);
839		newbp->b_bufobj = &bp->b_vp->v_bufobj;
840		newbp->b_blkno = bp->b_blkno;
841		newbp->b_offset = bp->b_offset;
842		newbp->b_iodone = vfs_backgroundwritedone;
843		newbp->b_flags |= B_ASYNC;
844		newbp->b_flags &= ~B_INVAL;
845
846		/* move over the dependencies */
847		if (LIST_FIRST(&bp->b_dep) != NULL)
848			buf_movedeps(bp, newbp);
849
850		/*
851		 * Initiate write on the copy, release the original to
852		 * the B_LOCKED queue so that it cannot go away until
853		 * the background write completes. If not locked it could go
854		 * away and then be reconstituted while it was being written.
855		 * If the reconstituted buffer were written, we could end up
856		 * with two background copies being written at the same time.
857		 */
858		bqrelse(bp);
859		bp = newbp;
860	}
861
862	bp->b_flags &= ~B_DONE;
863	bp->b_ioflags &= ~BIO_ERROR;
864	bp->b_flags |= B_CACHE;
865	bp->b_iocmd = BIO_WRITE;
866
867	bufobj_wref(bp->b_bufobj);
868	vfs_busy_pages(bp, 1);
869
870	/*
871	 * Normal bwrites pipeline writes
872	 */
873	bp->b_runningbufspace = bp->b_bufsize;
874	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
875
876	if (curthread != PCPU_GET(idlethread))
877		curthread->td_proc->p_stats->p_ru.ru_oublock++;
878	splx(s);
879	if (oldflags & B_ASYNC)
880		BUF_KERNPROC(bp);
881	bp->b_iooffset = dbtob(bp->b_blkno);
882	bstrategy(bp);
883
884	if ((oldflags & B_ASYNC) == 0) {
885		int rtval = bufwait(bp);
886		brelse(bp);
887		return (rtval);
888	} else {
889		/*
890		 * don't allow the async write to saturate the I/O
891		 * system.  We will not deadlock here because
892		 * we are blocking waiting for I/O that is already in-progress
893		 * to complete. We do not block here if it is the update
894		 * or syncer daemon trying to clean up as that can lead
895		 * to deadlock.
896		 */
897		if (curthread->td_proc != bufdaemonproc &&
898		    curthread->td_proc != updateproc)
899			waitrunningbufspace();
900	}
901
902	return (0);
903}
904
905/*
906 * Complete a background write started from bwrite.
907 */
908static void
909vfs_backgroundwritedone(struct buf *bp)
910{
911	struct buf *origbp;
912
913	/*
914	 * Find the original buffer that we are writing.
915	 */
916	BO_LOCK(bp->b_bufobj);
917	if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL)
918		panic("backgroundwritedone: lost buffer");
919
920	/*
921	 * Clear the BV_BKGRDINPROG flag in the original buffer
922	 * and awaken it if it is waiting for the write to complete.
923	 * If BV_BKGRDINPROG is not set in the original buffer it must
924	 * have been released and re-instantiated - which is not legal.
925	 */
926	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
927	    ("backgroundwritedone: lost buffer2"));
928	origbp->b_vflags &= ~BV_BKGRDINPROG;
929	if (origbp->b_vflags & BV_BKGRDWAIT) {
930		origbp->b_vflags &= ~BV_BKGRDWAIT;
931		wakeup(&origbp->b_xflags);
932	}
933	BO_UNLOCK(bp->b_bufobj);
934	/*
935	 * Process dependencies then return any unfinished ones.
936	 */
937	if (LIST_FIRST(&bp->b_dep) != NULL)
938		buf_complete(bp);
939	if (LIST_FIRST(&bp->b_dep) != NULL)
940		buf_movedeps(bp, origbp);
941
942	/*
943	 * This buffer is marked B_NOCACHE, so when it is released
944	 * by biodone, it will be tossed. We mark it with BIO_READ
945	 * to avoid biodone doing a second bufobj_wdrop.
946	 */
947	bp->b_flags |= B_NOCACHE;
948	bp->b_iocmd = BIO_READ;
949	bp->b_flags &= ~(B_CACHE | B_DONE);
950	bp->b_iodone = 0;
951	bufdone(bp);
952}
953
954/*
955 * Delayed write. (Buffer is marked dirty).  Do not bother writing
956 * anything if the buffer is marked invalid.
957 *
958 * Note that since the buffer must be completely valid, we can safely
959 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
960 * biodone() in order to prevent getblk from writing the buffer
961 * out synchronously.
962 */
963void
964bdwrite(struct buf *bp)
965{
966	struct thread *td = curthread;
967	struct vnode *vp;
968	struct buf *nbp;
969	struct bufobj *bo;
970
971	GIANT_REQUIRED;
972
973	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
974	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
975
976	if (bp->b_flags & B_INVAL) {
977		brelse(bp);
978		return;
979	}
980
981	/*
982	 * If we have too many dirty buffers, don't create any more.
983	 * If we are wildly over our limit, then force a complete
984	 * cleanup. Otherwise, just keep the situation from getting
985	 * out of control. Note that we have to avoid a recursive
986	 * disaster and not try to clean up after our own cleanup!
987	 */
988	vp = bp->b_vp;
989	bo = bp->b_bufobj;
990	BO_LOCK(bo);
991	if (td->td_pflags & TDP_COWINPROGRESS) {
992		recursiveflushes++;
993	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
994		BO_UNLOCK(bo);
995		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
996		BO_LOCK(bo);
997		altbufferflushes++;
998	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
999		/*
1000		 * Try to find a buffer to flush.
1001		 */
1002		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1003			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1004			    buf_countdeps(nbp, 0) ||
1005			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1006				continue;
1007			if (bp == nbp)
1008				panic("bdwrite: found ourselves");
1009			BO_UNLOCK(bo);
1010			if (nbp->b_flags & B_CLUSTEROK) {
1011				vfs_bio_awrite(nbp);
1012			} else {
1013				bremfree(nbp);
1014				bawrite(nbp);
1015			}
1016			BO_LOCK(bo);
1017			dirtybufferflushes++;
1018			break;
1019		}
1020	}
1021	BO_UNLOCK(bo);
1022
1023	bdirty(bp);
1024	/*
1025	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1026	 * true even of NFS now.
1027	 */
1028	bp->b_flags |= B_CACHE;
1029
1030	/*
1031	 * This bmap keeps the system from needing to do the bmap later,
1032	 * perhaps when the system is attempting to do a sync.  Since it
1033	 * is likely that the indirect block -- or whatever other datastructure
1034	 * that the filesystem needs is still in memory now, it is a good
1035	 * thing to do this.  Note also, that if the pageout daemon is
1036	 * requesting a sync -- there might not be enough memory to do
1037	 * the bmap then...  So, this is important to do.
1038	 */
1039	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1040		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1041	}
1042
1043	/*
1044	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1045	 */
1046	vfs_setdirty(bp);
1047
1048	/*
1049	 * We need to do this here to satisfy the vnode_pager and the
1050	 * pageout daemon, so that it thinks that the pages have been
1051	 * "cleaned".  Note that since the pages are in a delayed write
1052	 * buffer -- the VFS layer "will" see that the pages get written
1053	 * out on the next sync, or perhaps the cluster will be completed.
1054	 */
1055	vfs_clean_pages(bp);
1056	bqrelse(bp);
1057
1058	/*
1059	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1060	 * buffers (midpoint between our recovery point and our stall
1061	 * point).
1062	 */
1063	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1064
1065	/*
1066	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1067	 * due to the softdep code.
1068	 */
1069}
1070
1071/*
1072 *	bdirty:
1073 *
1074 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1075 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1076 *	itself to properly update it in the dirty/clean lists.  We mark it
1077 *	B_DONE to ensure that any asynchronization of the buffer properly
1078 *	clears B_DONE ( else a panic will occur later ).
1079 *
1080 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1081 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1082 *	should only be called if the buffer is known-good.
1083 *
1084 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1085 *	count.
1086 *
1087 *	Must be called at splbio().
1088 *	The buffer must be on QUEUE_NONE.
1089 */
1090void
1091bdirty(struct buf *bp)
1092{
1093
1094	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1095	KASSERT(bp->b_qindex == QUEUE_NONE,
1096	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1097	bp->b_flags &= ~(B_RELBUF);
1098	bp->b_iocmd = BIO_WRITE;
1099
1100	if ((bp->b_flags & B_DELWRI) == 0) {
1101		bp->b_flags |= B_DONE | B_DELWRI;
1102		reassignbuf(bp);
1103		atomic_add_int(&numdirtybuffers, 1);
1104		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1105	}
1106}
1107
1108/*
1109 *	bundirty:
1110 *
1111 *	Clear B_DELWRI for buffer.
1112 *
1113 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1114 *	count.
1115 *
1116 *	Must be called at splbio().
1117 *	The buffer must be on QUEUE_NONE.
1118 */
1119
1120void
1121bundirty(struct buf *bp)
1122{
1123
1124	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1125	KASSERT(bp->b_qindex == QUEUE_NONE,
1126	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1127
1128	if (bp->b_flags & B_DELWRI) {
1129		bp->b_flags &= ~B_DELWRI;
1130		reassignbuf(bp);
1131		atomic_subtract_int(&numdirtybuffers, 1);
1132		numdirtywakeup(lodirtybuffers);
1133	}
1134	/*
1135	 * Since it is now being written, we can clear its deferred write flag.
1136	 */
1137	bp->b_flags &= ~B_DEFERRED;
1138}
1139
1140/*
1141 *	bawrite:
1142 *
1143 *	Asynchronous write.  Start output on a buffer, but do not wait for
1144 *	it to complete.  The buffer is released when the output completes.
1145 *
1146 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1147 *	B_INVAL buffers.  Not us.
1148 */
1149void
1150bawrite(struct buf *bp)
1151{
1152
1153	bp->b_flags |= B_ASYNC;
1154	(void) bwrite(bp);
1155}
1156
1157/*
1158 *	bwillwrite:
1159 *
1160 *	Called prior to the locking of any vnodes when we are expecting to
1161 *	write.  We do not want to starve the buffer cache with too many
1162 *	dirty buffers so we block here.  By blocking prior to the locking
1163 *	of any vnodes we attempt to avoid the situation where a locked vnode
1164 *	prevents the various system daemons from flushing related buffers.
1165 */
1166
1167void
1168bwillwrite(void)
1169{
1170
1171	if (numdirtybuffers >= hidirtybuffers) {
1172		int s;
1173
1174		mtx_lock(&Giant);
1175		s = splbio();
1176		mtx_lock(&nblock);
1177		while (numdirtybuffers >= hidirtybuffers) {
1178			bd_wakeup(1);
1179			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1180			msleep(&needsbuffer, &nblock,
1181			    (PRIBIO + 4), "flswai", 0);
1182		}
1183		splx(s);
1184		mtx_unlock(&nblock);
1185		mtx_unlock(&Giant);
1186	}
1187}
1188
1189/*
1190 * Return true if we have too many dirty buffers.
1191 */
1192int
1193buf_dirty_count_severe(void)
1194{
1195
1196	return(numdirtybuffers >= hidirtybuffers);
1197}
1198
1199/*
1200 *	brelse:
1201 *
1202 *	Release a busy buffer and, if requested, free its resources.  The
1203 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1204 *	to be accessed later as a cache entity or reused for other purposes.
1205 */
1206void
1207brelse(struct buf *bp)
1208{
1209	int s;
1210
1211	GIANT_REQUIRED;
1212
1213	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1214	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1215
1216	s = splbio();
1217
1218	if (bp->b_iocmd == BIO_WRITE &&
1219	    (bp->b_ioflags & BIO_ERROR) &&
1220	    !(bp->b_flags & B_INVAL)) {
1221		/*
1222		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1223		 * pages from being scrapped.  If B_INVAL is set then
1224		 * this case is not run and the next case is run to
1225		 * destroy the buffer.  B_INVAL can occur if the buffer
1226		 * is outside the range supported by the underlying device.
1227		 */
1228		bp->b_ioflags &= ~BIO_ERROR;
1229		bdirty(bp);
1230	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1231	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1232		/*
1233		 * Either a failed I/O or we were asked to free or not
1234		 * cache the buffer.
1235		 */
1236		bp->b_flags |= B_INVAL;
1237		if (LIST_FIRST(&bp->b_dep) != NULL)
1238			buf_deallocate(bp);
1239		if (bp->b_flags & B_DELWRI) {
1240			atomic_subtract_int(&numdirtybuffers, 1);
1241			numdirtywakeup(lodirtybuffers);
1242		}
1243		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1244		if ((bp->b_flags & B_VMIO) == 0) {
1245			if (bp->b_bufsize)
1246				allocbuf(bp, 0);
1247			if (bp->b_vp)
1248				brelvp(bp);
1249		}
1250	}
1251
1252	/*
1253	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1254	 * is called with B_DELWRI set, the underlying pages may wind up
1255	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1256	 * because pages associated with a B_DELWRI bp are marked clean.
1257	 *
1258	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1259	 * if B_DELWRI is set.
1260	 *
1261	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1262	 * on pages to return pages to the VM page queues.
1263	 */
1264	if (bp->b_flags & B_DELWRI)
1265		bp->b_flags &= ~B_RELBUF;
1266	else if (vm_page_count_severe()) {
1267		/*
1268		 * XXX This lock may not be necessary since BKGRDINPROG
1269		 * cannot be set while we hold the buf lock, it can only be
1270		 * cleared if it is already pending.
1271		 */
1272		if (bp->b_vp) {
1273			BO_LOCK(bp->b_bufobj);
1274			if (!(bp->b_vflags & BV_BKGRDINPROG))
1275				bp->b_flags |= B_RELBUF;
1276			BO_UNLOCK(bp->b_bufobj);
1277		} else
1278			bp->b_flags |= B_RELBUF;
1279	}
1280
1281	/*
1282	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1283	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1284	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1285	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1286	 *
1287	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1288	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1289	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1290	 *
1291	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1292	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1293	 * the commit state and we cannot afford to lose the buffer. If the
1294	 * buffer has a background write in progress, we need to keep it
1295	 * around to prevent it from being reconstituted and starting a second
1296	 * background write.
1297	 */
1298	if ((bp->b_flags & B_VMIO)
1299	    && !(bp->b_vp->v_mount != NULL &&
1300		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1301		 !vn_isdisk(bp->b_vp, NULL) &&
1302		 (bp->b_flags & B_DELWRI))
1303	    ) {
1304
1305		int i, j, resid;
1306		vm_page_t m;
1307		off_t foff;
1308		vm_pindex_t poff;
1309		vm_object_t obj;
1310
1311		obj = bp->b_object;
1312
1313		/*
1314		 * Get the base offset and length of the buffer.  Note that
1315		 * in the VMIO case if the buffer block size is not
1316		 * page-aligned then b_data pointer may not be page-aligned.
1317		 * But our b_pages[] array *IS* page aligned.
1318		 *
1319		 * block sizes less then DEV_BSIZE (usually 512) are not
1320		 * supported due to the page granularity bits (m->valid,
1321		 * m->dirty, etc...).
1322		 *
1323		 * See man buf(9) for more information
1324		 */
1325		resid = bp->b_bufsize;
1326		foff = bp->b_offset;
1327		VM_OBJECT_LOCK(obj);
1328		for (i = 0; i < bp->b_npages; i++) {
1329			int had_bogus = 0;
1330
1331			m = bp->b_pages[i];
1332
1333			/*
1334			 * If we hit a bogus page, fixup *all* the bogus pages
1335			 * now.
1336			 */
1337			if (m == bogus_page) {
1338				poff = OFF_TO_IDX(bp->b_offset);
1339				had_bogus = 1;
1340
1341				for (j = i; j < bp->b_npages; j++) {
1342					vm_page_t mtmp;
1343					mtmp = bp->b_pages[j];
1344					if (mtmp == bogus_page) {
1345						mtmp = vm_page_lookup(obj, poff + j);
1346						if (!mtmp) {
1347							panic("brelse: page missing\n");
1348						}
1349						bp->b_pages[j] = mtmp;
1350					}
1351				}
1352
1353				if ((bp->b_flags & B_INVAL) == 0) {
1354					pmap_qenter(
1355					    trunc_page((vm_offset_t)bp->b_data),					    bp->b_pages, bp->b_npages);
1356				}
1357				m = bp->b_pages[i];
1358			}
1359			if ((bp->b_flags & B_NOCACHE) ||
1360			    (bp->b_ioflags & BIO_ERROR)) {
1361				int poffset = foff & PAGE_MASK;
1362				int presid = resid > (PAGE_SIZE - poffset) ?
1363					(PAGE_SIZE - poffset) : resid;
1364
1365				KASSERT(presid >= 0, ("brelse: extra page"));
1366				vm_page_lock_queues();
1367				vm_page_set_invalid(m, poffset, presid);
1368				vm_page_unlock_queues();
1369				if (had_bogus)
1370					printf("avoided corruption bug in bogus_page/brelse code\n");
1371			}
1372			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1373			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1374		}
1375		VM_OBJECT_UNLOCK(obj);
1376		if (bp->b_flags & (B_INVAL | B_RELBUF))
1377			vfs_vmio_release(bp);
1378
1379	} else if (bp->b_flags & B_VMIO) {
1380
1381		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1382			vfs_vmio_release(bp);
1383		}
1384
1385	}
1386
1387	if (bp->b_qindex != QUEUE_NONE)
1388		panic("brelse: free buffer onto another queue???");
1389	if (BUF_REFCNT(bp) > 1) {
1390		/* do not release to free list */
1391		BUF_UNLOCK(bp);
1392		splx(s);
1393		return;
1394	}
1395
1396	/* enqueue */
1397	mtx_lock(&bqlock);
1398
1399	/* buffers with no memory */
1400	if (bp->b_bufsize == 0) {
1401		bp->b_flags |= B_INVAL;
1402		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1403		if (bp->b_vflags & BV_BKGRDINPROG)
1404			panic("losing buffer 1");
1405		if (bp->b_kvasize) {
1406			bp->b_qindex = QUEUE_EMPTYKVA;
1407		} else {
1408			bp->b_qindex = QUEUE_EMPTY;
1409		}
1410		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1411		bp->b_dev = NULL;
1412	/* buffers with junk contents */
1413	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1414	    (bp->b_ioflags & BIO_ERROR)) {
1415		bp->b_flags |= B_INVAL;
1416		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1417		if (bp->b_vflags & BV_BKGRDINPROG)
1418			panic("losing buffer 2");
1419		bp->b_qindex = QUEUE_CLEAN;
1420		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1421		bp->b_dev = NULL;
1422	/* remaining buffers */
1423	} else {
1424		if (bp->b_flags & B_DELWRI)
1425			bp->b_qindex = QUEUE_DIRTY;
1426		else
1427			bp->b_qindex = QUEUE_CLEAN;
1428		if (bp->b_flags & B_AGE)
1429			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1430		else
1431			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1432	}
1433	mtx_unlock(&bqlock);
1434
1435	/*
1436	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1437	 * placed the buffer on the correct queue.  We must also disassociate
1438	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1439	 * find it.
1440	 */
1441	if (bp->b_flags & B_INVAL) {
1442		if (bp->b_flags & B_DELWRI)
1443			bundirty(bp);
1444		if (bp->b_vp)
1445			brelvp(bp);
1446	}
1447
1448	/*
1449	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1450	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1451	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1452	 * if B_INVAL is set ).
1453	 */
1454
1455	if (!(bp->b_flags & B_DELWRI))
1456		bufcountwakeup();
1457
1458	/*
1459	 * Something we can maybe free or reuse
1460	 */
1461	if (bp->b_bufsize || bp->b_kvasize)
1462		bufspacewakeup();
1463
1464	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1465	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1466		panic("brelse: not dirty");
1467	/* unlock */
1468	BUF_UNLOCK(bp);
1469	splx(s);
1470}
1471
1472/*
1473 * Release a buffer back to the appropriate queue but do not try to free
1474 * it.  The buffer is expected to be used again soon.
1475 *
1476 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1477 * biodone() to requeue an async I/O on completion.  It is also used when
1478 * known good buffers need to be requeued but we think we may need the data
1479 * again soon.
1480 *
1481 * XXX we should be able to leave the B_RELBUF hint set on completion.
1482 */
1483void
1484bqrelse(struct buf *bp)
1485{
1486	int s;
1487
1488	s = splbio();
1489
1490	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1491	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1492
1493	if (bp->b_qindex != QUEUE_NONE)
1494		panic("bqrelse: free buffer onto another queue???");
1495	if (BUF_REFCNT(bp) > 1) {
1496		/* do not release to free list */
1497		BUF_UNLOCK(bp);
1498		splx(s);
1499		return;
1500	}
1501	mtx_lock(&bqlock);
1502	/* buffers with stale but valid contents */
1503	if (bp->b_flags & B_DELWRI) {
1504		bp->b_qindex = QUEUE_DIRTY;
1505		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1506	} else {
1507		/*
1508		 * XXX This lock may not be necessary since BKGRDINPROG
1509		 * cannot be set while we hold the buf lock, it can only be
1510		 * cleared if it is already pending.
1511		 */
1512		BO_LOCK(bp->b_bufobj);
1513		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1514			BO_UNLOCK(bp->b_bufobj);
1515			bp->b_qindex = QUEUE_CLEAN;
1516			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1517			    b_freelist);
1518		} else {
1519			/*
1520			 * We are too low on memory, we have to try to free
1521			 * the buffer (most importantly: the wired pages
1522			 * making up its backing store) *now*.
1523			 */
1524			BO_UNLOCK(bp->b_bufobj);
1525			mtx_unlock(&bqlock);
1526			splx(s);
1527			brelse(bp);
1528			return;
1529		}
1530	}
1531	mtx_unlock(&bqlock);
1532
1533	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1534		bufcountwakeup();
1535
1536	/*
1537	 * Something we can maybe free or reuse.
1538	 */
1539	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1540		bufspacewakeup();
1541
1542	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1543	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1544		panic("bqrelse: not dirty");
1545	/* unlock */
1546	BUF_UNLOCK(bp);
1547	splx(s);
1548}
1549
1550/* Give pages used by the bp back to the VM system (where possible) */
1551static void
1552vfs_vmio_release(struct buf *bp)
1553{
1554	int i;
1555	vm_page_t m;
1556
1557	GIANT_REQUIRED;
1558	VM_OBJECT_LOCK(bp->b_object);
1559	vm_page_lock_queues();
1560	for (i = 0; i < bp->b_npages; i++) {
1561		m = bp->b_pages[i];
1562		bp->b_pages[i] = NULL;
1563		/*
1564		 * In order to keep page LRU ordering consistent, put
1565		 * everything on the inactive queue.
1566		 */
1567		vm_page_unwire(m, 0);
1568		/*
1569		 * We don't mess with busy pages, it is
1570		 * the responsibility of the process that
1571		 * busied the pages to deal with them.
1572		 */
1573		if ((m->flags & PG_BUSY) || (m->busy != 0))
1574			continue;
1575
1576		if (m->wire_count == 0) {
1577			/*
1578			 * Might as well free the page if we can and it has
1579			 * no valid data.  We also free the page if the
1580			 * buffer was used for direct I/O
1581			 */
1582			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1583			    m->hold_count == 0) {
1584				vm_page_busy(m);
1585				pmap_remove_all(m);
1586				vm_page_free(m);
1587			} else if (bp->b_flags & B_DIRECT) {
1588				vm_page_try_to_free(m);
1589			} else if (vm_page_count_severe()) {
1590				vm_page_try_to_cache(m);
1591			}
1592		}
1593	}
1594	vm_page_unlock_queues();
1595	VM_OBJECT_UNLOCK(bp->b_object);
1596	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1597
1598	if (bp->b_bufsize) {
1599		bufspacewakeup();
1600		bp->b_bufsize = 0;
1601	}
1602	bp->b_npages = 0;
1603	bp->b_flags &= ~B_VMIO;
1604	if (bp->b_vp)
1605		brelvp(bp);
1606}
1607
1608/*
1609 * Check to see if a block at a particular lbn is available for a clustered
1610 * write.
1611 */
1612static int
1613vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1614{
1615	struct buf *bpa;
1616	int match;
1617
1618	match = 0;
1619
1620	/* If the buf isn't in core skip it */
1621	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1622		return (0);
1623
1624	/* If the buf is busy we don't want to wait for it */
1625	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1626		return (0);
1627
1628	/* Only cluster with valid clusterable delayed write buffers */
1629	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1630	    (B_DELWRI | B_CLUSTEROK))
1631		goto done;
1632
1633	if (bpa->b_bufsize != size)
1634		goto done;
1635
1636	/*
1637	 * Check to see if it is in the expected place on disk and that the
1638	 * block has been mapped.
1639	 */
1640	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1641		match = 1;
1642done:
1643	BUF_UNLOCK(bpa);
1644	return (match);
1645}
1646
1647/*
1648 *	vfs_bio_awrite:
1649 *
1650 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1651 *	This is much better then the old way of writing only one buffer at
1652 *	a time.  Note that we may not be presented with the buffers in the
1653 *	correct order, so we search for the cluster in both directions.
1654 */
1655int
1656vfs_bio_awrite(struct buf *bp)
1657{
1658	int i;
1659	int j;
1660	daddr_t lblkno = bp->b_lblkno;
1661	struct vnode *vp = bp->b_vp;
1662	int s;
1663	int ncl;
1664	int nwritten;
1665	int size;
1666	int maxcl;
1667
1668	s = splbio();
1669	/*
1670	 * right now we support clustered writing only to regular files.  If
1671	 * we find a clusterable block we could be in the middle of a cluster
1672	 * rather then at the beginning.
1673	 */
1674	if ((vp->v_type == VREG) &&
1675	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1676	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1677
1678		size = vp->v_mount->mnt_stat.f_iosize;
1679		maxcl = MAXPHYS / size;
1680
1681		VI_LOCK(vp);
1682		for (i = 1; i < maxcl; i++)
1683			if (vfs_bio_clcheck(vp, size, lblkno + i,
1684			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1685				break;
1686
1687		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1688			if (vfs_bio_clcheck(vp, size, lblkno - j,
1689			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1690				break;
1691
1692		VI_UNLOCK(vp);
1693		--j;
1694		ncl = i + j;
1695		/*
1696		 * this is a possible cluster write
1697		 */
1698		if (ncl != 1) {
1699			BUF_UNLOCK(bp);
1700			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1701			splx(s);
1702			return nwritten;
1703		}
1704	}
1705
1706	bremfree(bp);
1707	bp->b_flags |= B_ASYNC;
1708
1709	splx(s);
1710	/*
1711	 * default (old) behavior, writing out only one block
1712	 *
1713	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1714	 */
1715	nwritten = bp->b_bufsize;
1716	(void) bwrite(bp);
1717
1718	return nwritten;
1719}
1720
1721/*
1722 *	getnewbuf:
1723 *
1724 *	Find and initialize a new buffer header, freeing up existing buffers
1725 *	in the bufqueues as necessary.  The new buffer is returned locked.
1726 *
1727 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1728 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1729 *
1730 *	We block if:
1731 *		We have insufficient buffer headers
1732 *		We have insufficient buffer space
1733 *		buffer_map is too fragmented ( space reservation fails )
1734 *		If we have to flush dirty buffers ( but we try to avoid this )
1735 *
1736 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1737 *	Instead we ask the buf daemon to do it for us.  We attempt to
1738 *	avoid piecemeal wakeups of the pageout daemon.
1739 */
1740
1741static struct buf *
1742getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1743{
1744	struct buf *bp;
1745	struct buf *nbp;
1746	int defrag = 0;
1747	int nqindex;
1748	static int flushingbufs;
1749
1750	GIANT_REQUIRED;
1751
1752	/*
1753	 * We can't afford to block since we might be holding a vnode lock,
1754	 * which may prevent system daemons from running.  We deal with
1755	 * low-memory situations by proactively returning memory and running
1756	 * async I/O rather then sync I/O.
1757	 */
1758
1759	atomic_add_int(&getnewbufcalls, 1);
1760	atomic_subtract_int(&getnewbufrestarts, 1);
1761restart:
1762	atomic_add_int(&getnewbufrestarts, 1);
1763
1764	/*
1765	 * Setup for scan.  If we do not have enough free buffers,
1766	 * we setup a degenerate case that immediately fails.  Note
1767	 * that if we are specially marked process, we are allowed to
1768	 * dip into our reserves.
1769	 *
1770	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1771	 *
1772	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1773	 * However, there are a number of cases (defragging, reusing, ...)
1774	 * where we cannot backup.
1775	 */
1776	mtx_lock(&bqlock);
1777	nqindex = QUEUE_EMPTYKVA;
1778	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1779
1780	if (nbp == NULL) {
1781		/*
1782		 * If no EMPTYKVA buffers and we are either
1783		 * defragging or reusing, locate a CLEAN buffer
1784		 * to free or reuse.  If bufspace useage is low
1785		 * skip this step so we can allocate a new buffer.
1786		 */
1787		if (defrag || bufspace >= lobufspace) {
1788			nqindex = QUEUE_CLEAN;
1789			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1790		}
1791
1792		/*
1793		 * If we could not find or were not allowed to reuse a
1794		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1795		 * buffer.  We can only use an EMPTY buffer if allocating
1796		 * its KVA would not otherwise run us out of buffer space.
1797		 */
1798		if (nbp == NULL && defrag == 0 &&
1799		    bufspace + maxsize < hibufspace) {
1800			nqindex = QUEUE_EMPTY;
1801			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1802		}
1803	}
1804
1805	/*
1806	 * Run scan, possibly freeing data and/or kva mappings on the fly
1807	 * depending.
1808	 */
1809
1810	while ((bp = nbp) != NULL) {
1811		int qindex = nqindex;
1812
1813		/*
1814		 * Calculate next bp ( we can only use it if we do not block
1815		 * or do other fancy things ).
1816		 */
1817		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1818			switch(qindex) {
1819			case QUEUE_EMPTY:
1820				nqindex = QUEUE_EMPTYKVA;
1821				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1822					break;
1823				/* FALLTHROUGH */
1824			case QUEUE_EMPTYKVA:
1825				nqindex = QUEUE_CLEAN;
1826				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1827					break;
1828				/* FALLTHROUGH */
1829			case QUEUE_CLEAN:
1830				/*
1831				 * nbp is NULL.
1832				 */
1833				break;
1834			}
1835		}
1836		if (bp->b_vp) {
1837			BO_LOCK(bp->b_bufobj);
1838			if (bp->b_vflags & BV_BKGRDINPROG) {
1839				BO_UNLOCK(bp->b_bufobj);
1840				continue;
1841			}
1842			BO_UNLOCK(bp->b_bufobj);
1843		}
1844
1845		/*
1846		 * Sanity Checks
1847		 */
1848		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1849
1850		/*
1851		 * Note: we no longer distinguish between VMIO and non-VMIO
1852		 * buffers.
1853		 */
1854
1855		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1856
1857		/*
1858		 * If we are defragging then we need a buffer with
1859		 * b_kvasize != 0.  XXX this situation should no longer
1860		 * occur, if defrag is non-zero the buffer's b_kvasize
1861		 * should also be non-zero at this point.  XXX
1862		 */
1863		if (defrag && bp->b_kvasize == 0) {
1864			printf("Warning: defrag empty buffer %p\n", bp);
1865			continue;
1866		}
1867
1868		/*
1869		 * Start freeing the bp.  This is somewhat involved.  nbp
1870		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1871		 */
1872
1873		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1874			panic("getnewbuf: locked buf");
1875		bremfreel(bp);
1876		mtx_unlock(&bqlock);
1877
1878		if (qindex == QUEUE_CLEAN) {
1879			if (bp->b_flags & B_VMIO) {
1880				bp->b_flags &= ~B_ASYNC;
1881				vfs_vmio_release(bp);
1882			}
1883			if (bp->b_vp)
1884				brelvp(bp);
1885		}
1886
1887		/*
1888		 * NOTE:  nbp is now entirely invalid.  We can only restart
1889		 * the scan from this point on.
1890		 *
1891		 * Get the rest of the buffer freed up.  b_kva* is still
1892		 * valid after this operation.
1893		 */
1894
1895		if (bp->b_rcred != NOCRED) {
1896			crfree(bp->b_rcred);
1897			bp->b_rcred = NOCRED;
1898		}
1899		if (bp->b_wcred != NOCRED) {
1900			crfree(bp->b_wcred);
1901			bp->b_wcred = NOCRED;
1902		}
1903		if (LIST_FIRST(&bp->b_dep) != NULL)
1904			buf_deallocate(bp);
1905		if (bp->b_vflags & BV_BKGRDINPROG)
1906			panic("losing buffer 3");
1907
1908		if (bp->b_bufsize)
1909			allocbuf(bp, 0);
1910
1911		bp->b_flags = 0;
1912		bp->b_ioflags = 0;
1913		bp->b_xflags = 0;
1914		bp->b_vflags = 0;
1915		bp->b_dev = NULL;
1916		bp->b_vp = NULL;
1917		bp->b_blkno = bp->b_lblkno = 0;
1918		bp->b_offset = NOOFFSET;
1919		bp->b_iodone = 0;
1920		bp->b_error = 0;
1921		bp->b_resid = 0;
1922		bp->b_bcount = 0;
1923		bp->b_npages = 0;
1924		bp->b_dirtyoff = bp->b_dirtyend = 0;
1925		bp->b_magic = B_MAGIC_BIO;
1926		bp->b_object = NULL;
1927		bp->b_bufobj = NULL;
1928
1929		LIST_INIT(&bp->b_dep);
1930
1931		/*
1932		 * If we are defragging then free the buffer.
1933		 */
1934		if (defrag) {
1935			bp->b_flags |= B_INVAL;
1936			bfreekva(bp);
1937			brelse(bp);
1938			defrag = 0;
1939			goto restart;
1940		}
1941
1942		/*
1943		 * If we are overcomitted then recover the buffer and its
1944		 * KVM space.  This occurs in rare situations when multiple
1945		 * processes are blocked in getnewbuf() or allocbuf().
1946		 */
1947		if (bufspace >= hibufspace)
1948			flushingbufs = 1;
1949		if (flushingbufs && bp->b_kvasize != 0) {
1950			bp->b_flags |= B_INVAL;
1951			bfreekva(bp);
1952			brelse(bp);
1953			goto restart;
1954		}
1955		if (bufspace < lobufspace)
1956			flushingbufs = 0;
1957		break;
1958	}
1959
1960	/*
1961	 * If we exhausted our list, sleep as appropriate.  We may have to
1962	 * wakeup various daemons and write out some dirty buffers.
1963	 *
1964	 * Generally we are sleeping due to insufficient buffer space.
1965	 */
1966
1967	if (bp == NULL) {
1968		int flags;
1969		char *waitmsg;
1970
1971		mtx_unlock(&bqlock);
1972		if (defrag) {
1973			flags = VFS_BIO_NEED_BUFSPACE;
1974			waitmsg = "nbufkv";
1975		} else if (bufspace >= hibufspace) {
1976			waitmsg = "nbufbs";
1977			flags = VFS_BIO_NEED_BUFSPACE;
1978		} else {
1979			waitmsg = "newbuf";
1980			flags = VFS_BIO_NEED_ANY;
1981		}
1982
1983		bd_speedup();	/* heeeelp */
1984
1985		mtx_lock(&nblock);
1986		needsbuffer |= flags;
1987		while (needsbuffer & flags) {
1988			if (msleep(&needsbuffer, &nblock,
1989			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1990				mtx_unlock(&nblock);
1991				return (NULL);
1992			}
1993		}
1994		mtx_unlock(&nblock);
1995	} else {
1996		/*
1997		 * We finally have a valid bp.  We aren't quite out of the
1998		 * woods, we still have to reserve kva space.  In order
1999		 * to keep fragmentation sane we only allocate kva in
2000		 * BKVASIZE chunks.
2001		 */
2002		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2003
2004		if (maxsize != bp->b_kvasize) {
2005			vm_offset_t addr = 0;
2006
2007			bfreekva(bp);
2008
2009			if (vm_map_findspace(buffer_map,
2010				vm_map_min(buffer_map), maxsize, &addr)) {
2011				/*
2012				 * Uh oh.  Buffer map is to fragmented.  We
2013				 * must defragment the map.
2014				 */
2015				atomic_add_int(&bufdefragcnt, 1);
2016				defrag = 1;
2017				bp->b_flags |= B_INVAL;
2018				brelse(bp);
2019				goto restart;
2020			}
2021			if (addr) {
2022				vm_map_insert(buffer_map, NULL, 0,
2023					addr, addr + maxsize,
2024					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2025
2026				bp->b_kvabase = (caddr_t) addr;
2027				bp->b_kvasize = maxsize;
2028				atomic_add_int(&bufspace, bp->b_kvasize);
2029				atomic_add_int(&bufreusecnt, 1);
2030			}
2031		}
2032		bp->b_saveaddr = bp->b_kvabase;
2033		bp->b_data = bp->b_saveaddr;
2034	}
2035	return(bp);
2036}
2037
2038/*
2039 *	buf_daemon:
2040 *
2041 *	buffer flushing daemon.  Buffers are normally flushed by the
2042 *	update daemon but if it cannot keep up this process starts to
2043 *	take the load in an attempt to prevent getnewbuf() from blocking.
2044 */
2045
2046static struct kproc_desc buf_kp = {
2047	"bufdaemon",
2048	buf_daemon,
2049	&bufdaemonproc
2050};
2051SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2052
2053static void
2054buf_daemon()
2055{
2056	int s;
2057
2058	mtx_lock(&Giant);
2059
2060	/*
2061	 * This process needs to be suspended prior to shutdown sync.
2062	 */
2063	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2064	    SHUTDOWN_PRI_LAST);
2065
2066	/*
2067	 * This process is allowed to take the buffer cache to the limit
2068	 */
2069	s = splbio();
2070	mtx_lock(&bdlock);
2071
2072	for (;;) {
2073		bd_request = 0;
2074		mtx_unlock(&bdlock);
2075
2076		kthread_suspend_check(bufdaemonproc);
2077
2078		/*
2079		 * Do the flush.  Limit the amount of in-transit I/O we
2080		 * allow to build up, otherwise we would completely saturate
2081		 * the I/O system.  Wakeup any waiting processes before we
2082		 * normally would so they can run in parallel with our drain.
2083		 */
2084		while (numdirtybuffers > lodirtybuffers) {
2085			if (flushbufqueues(0) == 0) {
2086				/*
2087				 * Could not find any buffers without rollback
2088				 * dependencies, so just write the first one
2089				 * in the hopes of eventually making progress.
2090				 */
2091				flushbufqueues(1);
2092				break;
2093			}
2094			waitrunningbufspace();
2095			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2096		}
2097
2098		/*
2099		 * Only clear bd_request if we have reached our low water
2100		 * mark.  The buf_daemon normally waits 1 second and
2101		 * then incrementally flushes any dirty buffers that have
2102		 * built up, within reason.
2103		 *
2104		 * If we were unable to hit our low water mark and couldn't
2105		 * find any flushable buffers, we sleep half a second.
2106		 * Otherwise we loop immediately.
2107		 */
2108		mtx_lock(&bdlock);
2109		if (numdirtybuffers <= lodirtybuffers) {
2110			/*
2111			 * We reached our low water mark, reset the
2112			 * request and sleep until we are needed again.
2113			 * The sleep is just so the suspend code works.
2114			 */
2115			bd_request = 0;
2116			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2117		} else {
2118			/*
2119			 * We couldn't find any flushable dirty buffers but
2120			 * still have too many dirty buffers, we
2121			 * have to sleep and try again.  (rare)
2122			 */
2123			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2124		}
2125	}
2126}
2127
2128/*
2129 *	flushbufqueues:
2130 *
2131 *	Try to flush a buffer in the dirty queue.  We must be careful to
2132 *	free up B_INVAL buffers instead of write them, which NFS is
2133 *	particularly sensitive to.
2134 */
2135int flushwithdeps = 0;
2136SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2137    0, "Number of buffers flushed with dependecies that require rollbacks");
2138
2139static int
2140flushbufqueues(int flushdeps)
2141{
2142	struct thread *td = curthread;
2143	struct vnode *vp;
2144	struct mount *mp;
2145	struct buf *bp;
2146	int hasdeps;
2147
2148	mtx_lock(&bqlock);
2149	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2150		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2151			continue;
2152		KASSERT((bp->b_flags & B_DELWRI),
2153		    ("unexpected clean buffer %p", bp));
2154		BO_LOCK(bp->b_bufobj);
2155		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
2156			BO_UNLOCK(bp->b_bufobj);
2157			BUF_UNLOCK(bp);
2158			continue;
2159		}
2160		BO_UNLOCK(bp->b_bufobj);
2161		if (bp->b_flags & B_INVAL) {
2162			bremfreel(bp);
2163			mtx_unlock(&bqlock);
2164			brelse(bp);
2165			return (1);
2166		}
2167
2168		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2169			if (flushdeps == 0) {
2170				BUF_UNLOCK(bp);
2171				continue;
2172			}
2173			hasdeps = 1;
2174		} else
2175			hasdeps = 0;
2176		/*
2177		 * We must hold the lock on a vnode before writing
2178		 * one of its buffers. Otherwise we may confuse, or
2179		 * in the case of a snapshot vnode, deadlock the
2180		 * system.
2181		 *
2182		 * The lock order here is the reverse of the normal
2183		 * of vnode followed by buf lock.  This is ok because
2184		 * the NOWAIT will prevent deadlock.
2185		 */
2186		vp = bp->b_vp;
2187		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2188			BUF_UNLOCK(bp);
2189			continue;
2190		}
2191		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2192			mtx_unlock(&bqlock);
2193			vfs_bio_awrite(bp);
2194			vn_finished_write(mp);
2195			VOP_UNLOCK(vp, 0, td);
2196			flushwithdeps += hasdeps;
2197			return (1);
2198		}
2199		vn_finished_write(mp);
2200		BUF_UNLOCK(bp);
2201	}
2202	mtx_unlock(&bqlock);
2203	return (0);
2204}
2205
2206/*
2207 * Check to see if a block is currently memory resident.
2208 */
2209struct buf *
2210incore(struct bufobj *bo, daddr_t blkno)
2211{
2212	struct buf *bp;
2213
2214	int s = splbio();
2215	BO_LOCK(bo);
2216	bp = gbincore(bo, blkno);
2217	BO_UNLOCK(bo);
2218	splx(s);
2219	return (bp);
2220}
2221
2222/*
2223 * Returns true if no I/O is needed to access the
2224 * associated VM object.  This is like incore except
2225 * it also hunts around in the VM system for the data.
2226 */
2227
2228static int
2229inmem(struct vnode * vp, daddr_t blkno)
2230{
2231	vm_object_t obj;
2232	vm_offset_t toff, tinc, size;
2233	vm_page_t m;
2234	vm_ooffset_t off;
2235
2236	GIANT_REQUIRED;
2237	ASSERT_VOP_LOCKED(vp, "inmem");
2238
2239	if (incore(&vp->v_bufobj, blkno))
2240		return 1;
2241	if (vp->v_mount == NULL)
2242		return 0;
2243	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2244		return 0;
2245
2246	size = PAGE_SIZE;
2247	if (size > vp->v_mount->mnt_stat.f_iosize)
2248		size = vp->v_mount->mnt_stat.f_iosize;
2249	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2250
2251	VM_OBJECT_LOCK(obj);
2252	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2253		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2254		if (!m)
2255			goto notinmem;
2256		tinc = size;
2257		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2258			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2259		if (vm_page_is_valid(m,
2260		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2261			goto notinmem;
2262	}
2263	VM_OBJECT_UNLOCK(obj);
2264	return 1;
2265
2266notinmem:
2267	VM_OBJECT_UNLOCK(obj);
2268	return (0);
2269}
2270
2271/*
2272 *	vfs_setdirty:
2273 *
2274 *	Sets the dirty range for a buffer based on the status of the dirty
2275 *	bits in the pages comprising the buffer.
2276 *
2277 *	The range is limited to the size of the buffer.
2278 *
2279 *	This routine is primarily used by NFS, but is generalized for the
2280 *	B_VMIO case.
2281 */
2282static void
2283vfs_setdirty(struct buf *bp)
2284{
2285	int i;
2286	vm_object_t object;
2287
2288	GIANT_REQUIRED;
2289	/*
2290	 * Degenerate case - empty buffer
2291	 */
2292
2293	if (bp->b_bufsize == 0)
2294		return;
2295
2296	/*
2297	 * We qualify the scan for modified pages on whether the
2298	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2299	 * is not cleared simply by protecting pages off.
2300	 */
2301
2302	if ((bp->b_flags & B_VMIO) == 0)
2303		return;
2304
2305	object = bp->b_pages[0]->object;
2306	VM_OBJECT_LOCK(object);
2307	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2308		printf("Warning: object %p writeable but not mightbedirty\n", object);
2309	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2310		printf("Warning: object %p mightbedirty but not writeable\n", object);
2311
2312	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2313		vm_offset_t boffset;
2314		vm_offset_t eoffset;
2315
2316		vm_page_lock_queues();
2317		/*
2318		 * test the pages to see if they have been modified directly
2319		 * by users through the VM system.
2320		 */
2321		for (i = 0; i < bp->b_npages; i++)
2322			vm_page_test_dirty(bp->b_pages[i]);
2323
2324		/*
2325		 * Calculate the encompassing dirty range, boffset and eoffset,
2326		 * (eoffset - boffset) bytes.
2327		 */
2328
2329		for (i = 0; i < bp->b_npages; i++) {
2330			if (bp->b_pages[i]->dirty)
2331				break;
2332		}
2333		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2334
2335		for (i = bp->b_npages - 1; i >= 0; --i) {
2336			if (bp->b_pages[i]->dirty) {
2337				break;
2338			}
2339		}
2340		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2341
2342		vm_page_unlock_queues();
2343		/*
2344		 * Fit it to the buffer.
2345		 */
2346
2347		if (eoffset > bp->b_bcount)
2348			eoffset = bp->b_bcount;
2349
2350		/*
2351		 * If we have a good dirty range, merge with the existing
2352		 * dirty range.
2353		 */
2354
2355		if (boffset < eoffset) {
2356			if (bp->b_dirtyoff > boffset)
2357				bp->b_dirtyoff = boffset;
2358			if (bp->b_dirtyend < eoffset)
2359				bp->b_dirtyend = eoffset;
2360		}
2361	}
2362	VM_OBJECT_UNLOCK(object);
2363}
2364
2365/*
2366 *	getblk:
2367 *
2368 *	Get a block given a specified block and offset into a file/device.
2369 *	The buffers B_DONE bit will be cleared on return, making it almost
2370 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2371 *	return.  The caller should clear B_INVAL prior to initiating a
2372 *	READ.
2373 *
2374 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2375 *	an existing buffer.
2376 *
2377 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2378 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2379 *	and then cleared based on the backing VM.  If the previous buffer is
2380 *	non-0-sized but invalid, B_CACHE will be cleared.
2381 *
2382 *	If getblk() must create a new buffer, the new buffer is returned with
2383 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2384 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2385 *	backing VM.
2386 *
2387 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2388 *	B_CACHE bit is clear.
2389 *
2390 *	What this means, basically, is that the caller should use B_CACHE to
2391 *	determine whether the buffer is fully valid or not and should clear
2392 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2393 *	the buffer by loading its data area with something, the caller needs
2394 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2395 *	the caller should set B_CACHE ( as an optimization ), else the caller
2396 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2397 *	a write attempt or if it was a successfull read.  If the caller
2398 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2399 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2400 */
2401struct buf *
2402getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2403    int flags)
2404{
2405	struct buf *bp;
2406	struct bufobj *bo;
2407	int s;
2408	int error;
2409	ASSERT_VOP_LOCKED(vp, "getblk");
2410
2411	if (size > MAXBSIZE)
2412		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2413
2414	bo = &vp->v_bufobj;
2415	s = splbio();
2416loop:
2417	/*
2418	 * Block if we are low on buffers.   Certain processes are allowed
2419	 * to completely exhaust the buffer cache.
2420         *
2421         * If this check ever becomes a bottleneck it may be better to
2422         * move it into the else, when gbincore() fails.  At the moment
2423         * it isn't a problem.
2424	 *
2425	 * XXX remove if 0 sections (clean this up after its proven)
2426         */
2427	if (numfreebuffers == 0) {
2428		if (curthread == PCPU_GET(idlethread))
2429			return NULL;
2430		mtx_lock(&nblock);
2431		needsbuffer |= VFS_BIO_NEED_ANY;
2432		mtx_unlock(&nblock);
2433	}
2434
2435	VI_LOCK(vp);
2436	bp = gbincore(bo, blkno);
2437	if (bp != NULL) {
2438		int lockflags;
2439		/*
2440		 * Buffer is in-core.  If the buffer is not busy, it must
2441		 * be on a queue.
2442		 */
2443		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2444
2445		if (flags & GB_LOCK_NOWAIT)
2446			lockflags |= LK_NOWAIT;
2447
2448		error = BUF_TIMELOCK(bp, lockflags,
2449		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2450
2451		/*
2452		 * If we slept and got the lock we have to restart in case
2453		 * the buffer changed identities.
2454		 */
2455		if (error == ENOLCK)
2456			goto loop;
2457		/* We timed out or were interrupted. */
2458		else if (error)
2459			return (NULL);
2460
2461		/*
2462		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2463		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2464		 * and for a VMIO buffer B_CACHE is adjusted according to the
2465		 * backing VM cache.
2466		 */
2467		if (bp->b_flags & B_INVAL)
2468			bp->b_flags &= ~B_CACHE;
2469		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2470			bp->b_flags |= B_CACHE;
2471		bremfree(bp);
2472
2473		/*
2474		 * check for size inconsistancies for non-VMIO case.
2475		 */
2476
2477		if (bp->b_bcount != size) {
2478			if ((bp->b_flags & B_VMIO) == 0 ||
2479			    (size > bp->b_kvasize)) {
2480				if (bp->b_flags & B_DELWRI) {
2481					bp->b_flags |= B_NOCACHE;
2482					bwrite(bp);
2483				} else {
2484					if ((bp->b_flags & B_VMIO) &&
2485					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2486						bp->b_flags |= B_RELBUF;
2487						brelse(bp);
2488					} else {
2489						bp->b_flags |= B_NOCACHE;
2490						bwrite(bp);
2491					}
2492				}
2493				goto loop;
2494			}
2495		}
2496
2497		/*
2498		 * If the size is inconsistant in the VMIO case, we can resize
2499		 * the buffer.  This might lead to B_CACHE getting set or
2500		 * cleared.  If the size has not changed, B_CACHE remains
2501		 * unchanged from its previous state.
2502		 */
2503
2504		if (bp->b_bcount != size)
2505			allocbuf(bp, size);
2506
2507		KASSERT(bp->b_offset != NOOFFSET,
2508		    ("getblk: no buffer offset"));
2509
2510		/*
2511		 * A buffer with B_DELWRI set and B_CACHE clear must
2512		 * be committed before we can return the buffer in
2513		 * order to prevent the caller from issuing a read
2514		 * ( due to B_CACHE not being set ) and overwriting
2515		 * it.
2516		 *
2517		 * Most callers, including NFS and FFS, need this to
2518		 * operate properly either because they assume they
2519		 * can issue a read if B_CACHE is not set, or because
2520		 * ( for example ) an uncached B_DELWRI might loop due
2521		 * to softupdates re-dirtying the buffer.  In the latter
2522		 * case, B_CACHE is set after the first write completes,
2523		 * preventing further loops.
2524		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2525		 * above while extending the buffer, we cannot allow the
2526		 * buffer to remain with B_CACHE set after the write
2527		 * completes or it will represent a corrupt state.  To
2528		 * deal with this we set B_NOCACHE to scrap the buffer
2529		 * after the write.
2530		 *
2531		 * We might be able to do something fancy, like setting
2532		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2533		 * so the below call doesn't set B_CACHE, but that gets real
2534		 * confusing.  This is much easier.
2535		 */
2536
2537		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2538			bp->b_flags |= B_NOCACHE;
2539			bwrite(bp);
2540			goto loop;
2541		}
2542
2543		splx(s);
2544		bp->b_flags &= ~B_DONE;
2545	} else {
2546		int bsize, maxsize, vmio;
2547		off_t offset;
2548
2549		/*
2550		 * Buffer is not in-core, create new buffer.  The buffer
2551		 * returned by getnewbuf() is locked.  Note that the returned
2552		 * buffer is also considered valid (not marked B_INVAL).
2553		 */
2554		VI_UNLOCK(vp);
2555		/*
2556		 * If the user does not want us to create the buffer, bail out
2557		 * here.
2558		 */
2559		if (flags & GB_NOCREAT) {
2560			splx(s);
2561			return NULL;
2562		}
2563		if (vn_isdisk(vp, NULL))
2564			bsize = DEV_BSIZE;
2565		else if (vp->v_mountedhere)
2566			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2567		else if (vp->v_mount)
2568			bsize = vp->v_mount->mnt_stat.f_iosize;
2569		else
2570			bsize = size;
2571
2572		if (vp->v_bsize != bsize) {
2573#if 0
2574			printf("WARNING: Wrong block size on vnode: %d should be %d\n", vp->v_bsize, bsize);
2575#endif
2576			vp->v_bsize = bsize;
2577		}
2578
2579		offset = blkno * bsize;
2580		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2581		    (vp->v_vflag & VV_OBJBUF);
2582		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2583		maxsize = imax(maxsize, bsize);
2584
2585		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2586		if (bp == NULL) {
2587			if (slpflag || slptimeo) {
2588				splx(s);
2589				return NULL;
2590			}
2591			goto loop;
2592		}
2593
2594		/*
2595		 * This code is used to make sure that a buffer is not
2596		 * created while the getnewbuf routine is blocked.
2597		 * This can be a problem whether the vnode is locked or not.
2598		 * If the buffer is created out from under us, we have to
2599		 * throw away the one we just created.  There is now window
2600		 * race because we are safely running at splbio() from the
2601		 * point of the duplicate buffer creation through to here,
2602		 * and we've locked the buffer.
2603		 *
2604		 * Note: this must occur before we associate the buffer
2605		 * with the vp especially considering limitations in
2606		 * the splay tree implementation when dealing with duplicate
2607		 * lblkno's.
2608		 */
2609		BO_LOCK(bo);
2610		if (gbincore(bo, blkno)) {
2611			BO_UNLOCK(bo);
2612			bp->b_flags |= B_INVAL;
2613			brelse(bp);
2614			goto loop;
2615		}
2616
2617		/*
2618		 * Insert the buffer into the hash, so that it can
2619		 * be found by incore.
2620		 */
2621		bp->b_blkno = bp->b_lblkno = blkno;
2622		bp->b_offset = offset;
2623
2624		bgetvp(vp, bp);
2625		BO_UNLOCK(bo);
2626
2627		/*
2628		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2629		 * buffer size starts out as 0, B_CACHE will be set by
2630		 * allocbuf() for the VMIO case prior to it testing the
2631		 * backing store for validity.
2632		 */
2633
2634		if (vmio) {
2635			bp->b_flags |= B_VMIO;
2636#if defined(VFS_BIO_DEBUG)
2637			if (vn_canvmio(vp) != TRUE)
2638				printf("getblk: VMIO on vnode type %d\n",
2639					vp->v_type);
2640#endif
2641			VOP_GETVOBJECT(vp, &bp->b_object);
2642		} else {
2643			bp->b_flags &= ~B_VMIO;
2644			bp->b_object = NULL;
2645		}
2646
2647		allocbuf(bp, size);
2648
2649		splx(s);
2650		bp->b_flags &= ~B_DONE;
2651	}
2652	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2653	KASSERT(bp->b_bufobj == bo,
2654	    ("wrong b_bufobj %p should be %p", bp->b_bufobj, bo));
2655	return (bp);
2656}
2657
2658/*
2659 * Get an empty, disassociated buffer of given size.  The buffer is initially
2660 * set to B_INVAL.
2661 */
2662struct buf *
2663geteblk(int size)
2664{
2665	struct buf *bp;
2666	int s;
2667	int maxsize;
2668
2669	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2670
2671	s = splbio();
2672	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2673		continue;
2674	splx(s);
2675	allocbuf(bp, size);
2676	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2677	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2678	return (bp);
2679}
2680
2681
2682/*
2683 * This code constitutes the buffer memory from either anonymous system
2684 * memory (in the case of non-VMIO operations) or from an associated
2685 * VM object (in the case of VMIO operations).  This code is able to
2686 * resize a buffer up or down.
2687 *
2688 * Note that this code is tricky, and has many complications to resolve
2689 * deadlock or inconsistant data situations.  Tread lightly!!!
2690 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2691 * the caller.  Calling this code willy nilly can result in the loss of data.
2692 *
2693 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2694 * B_CACHE for the non-VMIO case.
2695 */
2696
2697int
2698allocbuf(struct buf *bp, int size)
2699{
2700	int newbsize, mbsize;
2701	int i;
2702
2703	GIANT_REQUIRED;
2704
2705	if (BUF_REFCNT(bp) == 0)
2706		panic("allocbuf: buffer not busy");
2707
2708	if (bp->b_kvasize < size)
2709		panic("allocbuf: buffer too small");
2710
2711	if ((bp->b_flags & B_VMIO) == 0) {
2712		caddr_t origbuf;
2713		int origbufsize;
2714		/*
2715		 * Just get anonymous memory from the kernel.  Don't
2716		 * mess with B_CACHE.
2717		 */
2718		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2719		if (bp->b_flags & B_MALLOC)
2720			newbsize = mbsize;
2721		else
2722			newbsize = round_page(size);
2723
2724		if (newbsize < bp->b_bufsize) {
2725			/*
2726			 * malloced buffers are not shrunk
2727			 */
2728			if (bp->b_flags & B_MALLOC) {
2729				if (newbsize) {
2730					bp->b_bcount = size;
2731				} else {
2732					free(bp->b_data, M_BIOBUF);
2733					if (bp->b_bufsize) {
2734						atomic_subtract_int(
2735						    &bufmallocspace,
2736						    bp->b_bufsize);
2737						bufspacewakeup();
2738						bp->b_bufsize = 0;
2739					}
2740					bp->b_saveaddr = bp->b_kvabase;
2741					bp->b_data = bp->b_saveaddr;
2742					bp->b_bcount = 0;
2743					bp->b_flags &= ~B_MALLOC;
2744				}
2745				return 1;
2746			}
2747			vm_hold_free_pages(
2748			    bp,
2749			    (vm_offset_t) bp->b_data + newbsize,
2750			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2751		} else if (newbsize > bp->b_bufsize) {
2752			/*
2753			 * We only use malloced memory on the first allocation.
2754			 * and revert to page-allocated memory when the buffer
2755			 * grows.
2756			 */
2757			/*
2758			 * There is a potential smp race here that could lead
2759			 * to bufmallocspace slightly passing the max.  It
2760			 * is probably extremely rare and not worth worrying
2761			 * over.
2762			 */
2763			if ( (bufmallocspace < maxbufmallocspace) &&
2764				(bp->b_bufsize == 0) &&
2765				(mbsize <= PAGE_SIZE/2)) {
2766
2767				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2768				bp->b_bufsize = mbsize;
2769				bp->b_bcount = size;
2770				bp->b_flags |= B_MALLOC;
2771				atomic_add_int(&bufmallocspace, mbsize);
2772				return 1;
2773			}
2774			origbuf = NULL;
2775			origbufsize = 0;
2776			/*
2777			 * If the buffer is growing on its other-than-first allocation,
2778			 * then we revert to the page-allocation scheme.
2779			 */
2780			if (bp->b_flags & B_MALLOC) {
2781				origbuf = bp->b_data;
2782				origbufsize = bp->b_bufsize;
2783				bp->b_data = bp->b_kvabase;
2784				if (bp->b_bufsize) {
2785					atomic_subtract_int(&bufmallocspace,
2786					    bp->b_bufsize);
2787					bufspacewakeup();
2788					bp->b_bufsize = 0;
2789				}
2790				bp->b_flags &= ~B_MALLOC;
2791				newbsize = round_page(newbsize);
2792			}
2793			vm_hold_load_pages(
2794			    bp,
2795			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2796			    (vm_offset_t) bp->b_data + newbsize);
2797			if (origbuf) {
2798				bcopy(origbuf, bp->b_data, origbufsize);
2799				free(origbuf, M_BIOBUF);
2800			}
2801		}
2802	} else {
2803		int desiredpages;
2804
2805		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2806		desiredpages = (size == 0) ? 0 :
2807			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2808
2809		if (bp->b_flags & B_MALLOC)
2810			panic("allocbuf: VMIO buffer can't be malloced");
2811		/*
2812		 * Set B_CACHE initially if buffer is 0 length or will become
2813		 * 0-length.
2814		 */
2815		if (size == 0 || bp->b_bufsize == 0)
2816			bp->b_flags |= B_CACHE;
2817
2818		if (newbsize < bp->b_bufsize) {
2819			/*
2820			 * DEV_BSIZE aligned new buffer size is less then the
2821			 * DEV_BSIZE aligned existing buffer size.  Figure out
2822			 * if we have to remove any pages.
2823			 */
2824			if (desiredpages < bp->b_npages) {
2825				vm_page_t m;
2826
2827				vm_page_lock_queues();
2828				for (i = desiredpages; i < bp->b_npages; i++) {
2829					/*
2830					 * the page is not freed here -- it
2831					 * is the responsibility of
2832					 * vnode_pager_setsize
2833					 */
2834					m = bp->b_pages[i];
2835					KASSERT(m != bogus_page,
2836					    ("allocbuf: bogus page found"));
2837					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2838						vm_page_lock_queues();
2839
2840					bp->b_pages[i] = NULL;
2841					vm_page_unwire(m, 0);
2842				}
2843				vm_page_unlock_queues();
2844				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2845				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2846				bp->b_npages = desiredpages;
2847			}
2848		} else if (size > bp->b_bcount) {
2849			/*
2850			 * We are growing the buffer, possibly in a
2851			 * byte-granular fashion.
2852			 */
2853			struct vnode *vp;
2854			vm_object_t obj;
2855			vm_offset_t toff;
2856			vm_offset_t tinc;
2857
2858			/*
2859			 * Step 1, bring in the VM pages from the object,
2860			 * allocating them if necessary.  We must clear
2861			 * B_CACHE if these pages are not valid for the
2862			 * range covered by the buffer.
2863			 */
2864
2865			vp = bp->b_vp;
2866			obj = bp->b_object;
2867
2868			VM_OBJECT_LOCK(obj);
2869			while (bp->b_npages < desiredpages) {
2870				vm_page_t m;
2871				vm_pindex_t pi;
2872
2873				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2874				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2875					/*
2876					 * note: must allocate system pages
2877					 * since blocking here could intefere
2878					 * with paging I/O, no matter which
2879					 * process we are.
2880					 */
2881					m = vm_page_alloc(obj, pi,
2882					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2883					if (m == NULL) {
2884						atomic_add_int(&vm_pageout_deficit,
2885						    desiredpages - bp->b_npages);
2886						VM_OBJECT_UNLOCK(obj);
2887						VM_WAIT;
2888						VM_OBJECT_LOCK(obj);
2889					} else {
2890						vm_page_lock_queues();
2891						vm_page_wakeup(m);
2892						vm_page_unlock_queues();
2893						bp->b_flags &= ~B_CACHE;
2894						bp->b_pages[bp->b_npages] = m;
2895						++bp->b_npages;
2896					}
2897					continue;
2898				}
2899
2900				/*
2901				 * We found a page.  If we have to sleep on it,
2902				 * retry because it might have gotten freed out
2903				 * from under us.
2904				 *
2905				 * We can only test PG_BUSY here.  Blocking on
2906				 * m->busy might lead to a deadlock:
2907				 *
2908				 *  vm_fault->getpages->cluster_read->allocbuf
2909				 *
2910				 */
2911				vm_page_lock_queues();
2912				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2913					continue;
2914
2915				/*
2916				 * We have a good page.  Should we wakeup the
2917				 * page daemon?
2918				 */
2919				if ((curproc != pageproc) &&
2920				    ((m->queue - m->pc) == PQ_CACHE) &&
2921				    ((cnt.v_free_count + cnt.v_cache_count) <
2922					(cnt.v_free_min + cnt.v_cache_min))) {
2923					pagedaemon_wakeup();
2924				}
2925				vm_page_wire(m);
2926				vm_page_unlock_queues();
2927				bp->b_pages[bp->b_npages] = m;
2928				++bp->b_npages;
2929			}
2930
2931			/*
2932			 * Step 2.  We've loaded the pages into the buffer,
2933			 * we have to figure out if we can still have B_CACHE
2934			 * set.  Note that B_CACHE is set according to the
2935			 * byte-granular range ( bcount and size ), new the
2936			 * aligned range ( newbsize ).
2937			 *
2938			 * The VM test is against m->valid, which is DEV_BSIZE
2939			 * aligned.  Needless to say, the validity of the data
2940			 * needs to also be DEV_BSIZE aligned.  Note that this
2941			 * fails with NFS if the server or some other client
2942			 * extends the file's EOF.  If our buffer is resized,
2943			 * B_CACHE may remain set! XXX
2944			 */
2945
2946			toff = bp->b_bcount;
2947			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2948
2949			while ((bp->b_flags & B_CACHE) && toff < size) {
2950				vm_pindex_t pi;
2951
2952				if (tinc > (size - toff))
2953					tinc = size - toff;
2954
2955				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2956				    PAGE_SHIFT;
2957
2958				vfs_buf_test_cache(
2959				    bp,
2960				    bp->b_offset,
2961				    toff,
2962				    tinc,
2963				    bp->b_pages[pi]
2964				);
2965				toff += tinc;
2966				tinc = PAGE_SIZE;
2967			}
2968			VM_OBJECT_UNLOCK(obj);
2969
2970			/*
2971			 * Step 3, fixup the KVM pmap.  Remember that
2972			 * bp->b_data is relative to bp->b_offset, but
2973			 * bp->b_offset may be offset into the first page.
2974			 */
2975
2976			bp->b_data = (caddr_t)
2977			    trunc_page((vm_offset_t)bp->b_data);
2978			pmap_qenter(
2979			    (vm_offset_t)bp->b_data,
2980			    bp->b_pages,
2981			    bp->b_npages
2982			);
2983
2984			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2985			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2986		}
2987	}
2988	if (newbsize < bp->b_bufsize)
2989		bufspacewakeup();
2990	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2991	bp->b_bcount = size;		/* requested buffer size	*/
2992	return 1;
2993}
2994
2995void
2996biodone(struct bio *bp)
2997{
2998
2999	mtx_lock(&bdonelock);
3000	bp->bio_flags |= BIO_DONE;
3001	if (bp->bio_done == NULL)
3002		wakeup(bp);
3003	mtx_unlock(&bdonelock);
3004	if (bp->bio_done != NULL)
3005		bp->bio_done(bp);
3006}
3007
3008/*
3009 * Wait for a BIO to finish.
3010 *
3011 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3012 * case is not yet clear.
3013 */
3014int
3015biowait(struct bio *bp, const char *wchan)
3016{
3017
3018	mtx_lock(&bdonelock);
3019	while ((bp->bio_flags & BIO_DONE) == 0)
3020		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3021	mtx_unlock(&bdonelock);
3022	if (bp->bio_error != 0)
3023		return (bp->bio_error);
3024	if (!(bp->bio_flags & BIO_ERROR))
3025		return (0);
3026	return (EIO);
3027}
3028
3029void
3030biofinish(struct bio *bp, struct devstat *stat, int error)
3031{
3032
3033	if (error) {
3034		bp->bio_error = error;
3035		bp->bio_flags |= BIO_ERROR;
3036	}
3037	if (stat != NULL)
3038		devstat_end_transaction_bio(stat, bp);
3039	biodone(bp);
3040}
3041
3042/*
3043 *	bufwait:
3044 *
3045 *	Wait for buffer I/O completion, returning error status.  The buffer
3046 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3047 *	error and cleared.
3048 */
3049int
3050bufwait(struct buf *bp)
3051{
3052	int s;
3053
3054	s = splbio();
3055	if (bp->b_iocmd == BIO_READ)
3056		bwait(bp, PRIBIO, "biord");
3057	else
3058		bwait(bp, PRIBIO, "biowr");
3059	splx(s);
3060	if (bp->b_flags & B_EINTR) {
3061		bp->b_flags &= ~B_EINTR;
3062		return (EINTR);
3063	}
3064	if (bp->b_ioflags & BIO_ERROR) {
3065		return (bp->b_error ? bp->b_error : EIO);
3066	} else {
3067		return (0);
3068	}
3069}
3070
3071 /*
3072  * Call back function from struct bio back up to struct buf.
3073  */
3074static void
3075bufdonebio(struct bio *bp)
3076{
3077
3078	/* Device drivers may or may not hold giant, hold it here. */
3079	mtx_lock(&Giant);
3080	bufdone(bp->bio_caller2);
3081	mtx_unlock(&Giant);
3082}
3083
3084void
3085dev_strategy(struct buf *bp)
3086{
3087	struct cdevsw *csw;
3088	struct cdev *dev;
3089
3090	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3091		panic("b_iocmd botch");
3092	bp->b_io.bio_done = bufdonebio;
3093	bp->b_io.bio_caller2 = bp;
3094	dev = bp->b_io.bio_dev;
3095	KASSERT(dev->si_refcount > 0,
3096	    ("dev_strategy on un-referenced struct cdev *(%s)",
3097	    devtoname(dev)));
3098	csw = dev_refthread(dev);
3099	if (csw == NULL) {
3100		bp->b_error = ENXIO;
3101		bp->b_ioflags = BIO_ERROR;
3102		mtx_lock(&Giant);	/* XXX: too defensive ? */
3103		bufdone(bp);
3104		mtx_unlock(&Giant);	/* XXX: too defensive ? */
3105		return;
3106	}
3107	(*csw->d_strategy)(&bp->b_io);
3108	dev_relthread(dev);
3109}
3110
3111/*
3112 *	bufdone:
3113 *
3114 *	Finish I/O on a buffer, optionally calling a completion function.
3115 *	This is usually called from an interrupt so process blocking is
3116 *	not allowed.
3117 *
3118 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3119 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3120 *	assuming B_INVAL is clear.
3121 *
3122 *	For the VMIO case, we set B_CACHE if the op was a read and no
3123 *	read error occured, or if the op was a write.  B_CACHE is never
3124 *	set if the buffer is invalid or otherwise uncacheable.
3125 *
3126 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3127 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3128 *	in the biodone routine.
3129 */
3130void
3131bufdone(struct buf *bp)
3132{
3133	int s;
3134	void    (*biodone)(struct buf *);
3135
3136
3137	s = splbio();
3138
3139	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3140	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3141
3142	bp->b_flags |= B_DONE;
3143	runningbufwakeup(bp);
3144
3145	if (bp->b_iocmd == BIO_WRITE && bp->b_bufobj != NULL)
3146		bufobj_wdrop(bp->b_bufobj);
3147
3148	/* call optional completion function if requested */
3149	if (bp->b_iodone != NULL) {
3150		biodone = bp->b_iodone;
3151		bp->b_iodone = NULL;
3152		(*biodone) (bp);
3153		splx(s);
3154		return;
3155	}
3156	if (LIST_FIRST(&bp->b_dep) != NULL)
3157		buf_complete(bp);
3158
3159	if (bp->b_flags & B_VMIO) {
3160		int i;
3161		vm_ooffset_t foff;
3162		vm_page_t m;
3163		vm_object_t obj;
3164		int iosize;
3165		struct vnode *vp = bp->b_vp;
3166
3167		obj = bp->b_object;
3168
3169#if defined(VFS_BIO_DEBUG)
3170		mp_fixme("usecount and vflag accessed without locks.");
3171		if (vp->v_usecount == 0) {
3172			panic("biodone: zero vnode ref count");
3173		}
3174
3175		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3176			panic("biodone: vnode is not setup for merged cache");
3177		}
3178#endif
3179
3180		foff = bp->b_offset;
3181		KASSERT(bp->b_offset != NOOFFSET,
3182		    ("biodone: no buffer offset"));
3183
3184		VM_OBJECT_LOCK(obj);
3185#if defined(VFS_BIO_DEBUG)
3186		if (obj->paging_in_progress < bp->b_npages) {
3187			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3188			    obj->paging_in_progress, bp->b_npages);
3189		}
3190#endif
3191
3192		/*
3193		 * Set B_CACHE if the op was a normal read and no error
3194		 * occured.  B_CACHE is set for writes in the b*write()
3195		 * routines.
3196		 */
3197		iosize = bp->b_bcount - bp->b_resid;
3198		if (bp->b_iocmd == BIO_READ &&
3199		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3200		    !(bp->b_ioflags & BIO_ERROR)) {
3201			bp->b_flags |= B_CACHE;
3202		}
3203		vm_page_lock_queues();
3204		for (i = 0; i < bp->b_npages; i++) {
3205			int bogusflag = 0;
3206			int resid;
3207
3208			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3209			if (resid > iosize)
3210				resid = iosize;
3211
3212			/*
3213			 * cleanup bogus pages, restoring the originals
3214			 */
3215			m = bp->b_pages[i];
3216			if (m == bogus_page) {
3217				bogusflag = 1;
3218				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3219				if (m == NULL)
3220					panic("biodone: page disappeared!");
3221				bp->b_pages[i] = m;
3222				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3223			}
3224#if defined(VFS_BIO_DEBUG)
3225			if (OFF_TO_IDX(foff) != m->pindex) {
3226				printf(
3227"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3228				    (intmax_t)foff, (uintmax_t)m->pindex);
3229			}
3230#endif
3231
3232			/*
3233			 * In the write case, the valid and clean bits are
3234			 * already changed correctly ( see bdwrite() ), so we
3235			 * only need to do this here in the read case.
3236			 */
3237			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3238				vfs_page_set_valid(bp, foff, i, m);
3239			}
3240
3241			/*
3242			 * when debugging new filesystems or buffer I/O methods, this
3243			 * is the most common error that pops up.  if you see this, you
3244			 * have not set the page busy flag correctly!!!
3245			 */
3246			if (m->busy == 0) {
3247				printf("biodone: page busy < 0, "
3248				    "pindex: %d, foff: 0x(%x,%x), "
3249				    "resid: %d, index: %d\n",
3250				    (int) m->pindex, (int)(foff >> 32),
3251						(int) foff & 0xffffffff, resid, i);
3252				if (!vn_isdisk(vp, NULL))
3253					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3254					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3255					    (intmax_t) bp->b_lblkno,
3256					    bp->b_flags, bp->b_npages);
3257				else
3258					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3259					    (intmax_t) bp->b_lblkno,
3260					    bp->b_flags, bp->b_npages);
3261				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3262				    (u_long)m->valid, (u_long)m->dirty,
3263				    m->wire_count);
3264				panic("biodone: page busy < 0\n");
3265			}
3266			vm_page_io_finish(m);
3267			vm_object_pip_subtract(obj, 1);
3268			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3269			iosize -= resid;
3270		}
3271		vm_page_unlock_queues();
3272		vm_object_pip_wakeupn(obj, 0);
3273		VM_OBJECT_UNLOCK(obj);
3274	}
3275
3276	/*
3277	 * For asynchronous completions, release the buffer now. The brelse
3278	 * will do a wakeup there if necessary - so no need to do a wakeup
3279	 * here in the async case. The sync case always needs to do a wakeup.
3280	 */
3281
3282	if (bp->b_flags & B_ASYNC) {
3283		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3284			brelse(bp);
3285		else
3286			bqrelse(bp);
3287	} else {
3288		bdone(bp);
3289	}
3290	splx(s);
3291}
3292
3293/*
3294 * This routine is called in lieu of iodone in the case of
3295 * incomplete I/O.  This keeps the busy status for pages
3296 * consistant.
3297 */
3298void
3299vfs_unbusy_pages(struct buf *bp)
3300{
3301	int i;
3302	vm_object_t obj;
3303	vm_page_t m;
3304
3305	runningbufwakeup(bp);
3306	if (!(bp->b_flags & B_VMIO))
3307		return;
3308
3309	obj = bp->b_object;
3310	VM_OBJECT_LOCK(obj);
3311	vm_page_lock_queues();
3312	for (i = 0; i < bp->b_npages; i++) {
3313		m = bp->b_pages[i];
3314		if (m == bogus_page) {
3315			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3316			if (!m)
3317				panic("vfs_unbusy_pages: page missing\n");
3318			bp->b_pages[i] = m;
3319			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3320			    bp->b_pages, bp->b_npages);
3321		}
3322		vm_object_pip_subtract(obj, 1);
3323		vm_page_io_finish(m);
3324	}
3325	vm_page_unlock_queues();
3326	vm_object_pip_wakeupn(obj, 0);
3327	VM_OBJECT_UNLOCK(obj);
3328}
3329
3330/*
3331 * vfs_page_set_valid:
3332 *
3333 *	Set the valid bits in a page based on the supplied offset.   The
3334 *	range is restricted to the buffer's size.
3335 *
3336 *	This routine is typically called after a read completes.
3337 */
3338static void
3339vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3340{
3341	vm_ooffset_t soff, eoff;
3342
3343	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3344	/*
3345	 * Start and end offsets in buffer.  eoff - soff may not cross a
3346	 * page boundry or cross the end of the buffer.  The end of the
3347	 * buffer, in this case, is our file EOF, not the allocation size
3348	 * of the buffer.
3349	 */
3350	soff = off;
3351	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3352	if (eoff > bp->b_offset + bp->b_bcount)
3353		eoff = bp->b_offset + bp->b_bcount;
3354
3355	/*
3356	 * Set valid range.  This is typically the entire buffer and thus the
3357	 * entire page.
3358	 */
3359	if (eoff > soff) {
3360		vm_page_set_validclean(
3361		    m,
3362		   (vm_offset_t) (soff & PAGE_MASK),
3363		   (vm_offset_t) (eoff - soff)
3364		);
3365	}
3366}
3367
3368/*
3369 * This routine is called before a device strategy routine.
3370 * It is used to tell the VM system that paging I/O is in
3371 * progress, and treat the pages associated with the buffer
3372 * almost as being PG_BUSY.  Also the object paging_in_progress
3373 * flag is handled to make sure that the object doesn't become
3374 * inconsistant.
3375 *
3376 * Since I/O has not been initiated yet, certain buffer flags
3377 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3378 * and should be ignored.
3379 */
3380void
3381vfs_busy_pages(struct buf *bp, int clear_modify)
3382{
3383	int i, bogus;
3384	vm_object_t obj;
3385	vm_ooffset_t foff;
3386	vm_page_t m;
3387
3388	if (!(bp->b_flags & B_VMIO))
3389		return;
3390
3391	obj = bp->b_object;
3392	foff = bp->b_offset;
3393	KASSERT(bp->b_offset != NOOFFSET,
3394	    ("vfs_busy_pages: no buffer offset"));
3395	vfs_setdirty(bp);
3396	VM_OBJECT_LOCK(obj);
3397retry:
3398	vm_page_lock_queues();
3399	for (i = 0; i < bp->b_npages; i++) {
3400		m = bp->b_pages[i];
3401
3402		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3403			goto retry;
3404	}
3405	bogus = 0;
3406	for (i = 0; i < bp->b_npages; i++) {
3407		m = bp->b_pages[i];
3408
3409		if ((bp->b_flags & B_CLUSTER) == 0) {
3410			vm_object_pip_add(obj, 1);
3411			vm_page_io_start(m);
3412		}
3413		/*
3414		 * When readying a buffer for a read ( i.e
3415		 * clear_modify == 0 ), it is important to do
3416		 * bogus_page replacement for valid pages in
3417		 * partially instantiated buffers.  Partially
3418		 * instantiated buffers can, in turn, occur when
3419		 * reconstituting a buffer from its VM backing store
3420		 * base.  We only have to do this if B_CACHE is
3421		 * clear ( which causes the I/O to occur in the
3422		 * first place ).  The replacement prevents the read
3423		 * I/O from overwriting potentially dirty VM-backed
3424		 * pages.  XXX bogus page replacement is, uh, bogus.
3425		 * It may not work properly with small-block devices.
3426		 * We need to find a better way.
3427		 */
3428		pmap_remove_all(m);
3429		if (clear_modify)
3430			vfs_page_set_valid(bp, foff, i, m);
3431		else if (m->valid == VM_PAGE_BITS_ALL &&
3432			(bp->b_flags & B_CACHE) == 0) {
3433			bp->b_pages[i] = bogus_page;
3434			bogus++;
3435		}
3436		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3437	}
3438	vm_page_unlock_queues();
3439	VM_OBJECT_UNLOCK(obj);
3440	if (bogus)
3441		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3442		    bp->b_pages, bp->b_npages);
3443}
3444
3445/*
3446 * Tell the VM system that the pages associated with this buffer
3447 * are clean.  This is used for delayed writes where the data is
3448 * going to go to disk eventually without additional VM intevention.
3449 *
3450 * Note that while we only really need to clean through to b_bcount, we
3451 * just go ahead and clean through to b_bufsize.
3452 */
3453static void
3454vfs_clean_pages(struct buf *bp)
3455{
3456	int i;
3457	vm_ooffset_t foff, noff, eoff;
3458	vm_page_t m;
3459
3460	if (!(bp->b_flags & B_VMIO))
3461		return;
3462
3463	foff = bp->b_offset;
3464	KASSERT(bp->b_offset != NOOFFSET,
3465	    ("vfs_clean_pages: no buffer offset"));
3466	VM_OBJECT_LOCK(bp->b_object);
3467	vm_page_lock_queues();
3468	for (i = 0; i < bp->b_npages; i++) {
3469		m = bp->b_pages[i];
3470		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3471		eoff = noff;
3472
3473		if (eoff > bp->b_offset + bp->b_bufsize)
3474			eoff = bp->b_offset + bp->b_bufsize;
3475		vfs_page_set_valid(bp, foff, i, m);
3476		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3477		foff = noff;
3478	}
3479	vm_page_unlock_queues();
3480	VM_OBJECT_UNLOCK(bp->b_object);
3481}
3482
3483/*
3484 *	vfs_bio_set_validclean:
3485 *
3486 *	Set the range within the buffer to valid and clean.  The range is
3487 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3488 *	itself may be offset from the beginning of the first page.
3489 *
3490 */
3491
3492void
3493vfs_bio_set_validclean(struct buf *bp, int base, int size)
3494{
3495	int i, n;
3496	vm_page_t m;
3497
3498	if (!(bp->b_flags & B_VMIO))
3499		return;
3500
3501	/*
3502	 * Fixup base to be relative to beginning of first page.
3503	 * Set initial n to be the maximum number of bytes in the
3504	 * first page that can be validated.
3505	 */
3506
3507	base += (bp->b_offset & PAGE_MASK);
3508	n = PAGE_SIZE - (base & PAGE_MASK);
3509
3510	VM_OBJECT_LOCK(bp->b_object);
3511	vm_page_lock_queues();
3512	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3513		m = bp->b_pages[i];
3514
3515		if (n > size)
3516			n = size;
3517
3518		vm_page_set_validclean(m, base & PAGE_MASK, n);
3519		base += n;
3520		size -= n;
3521		n = PAGE_SIZE;
3522	}
3523	vm_page_unlock_queues();
3524	VM_OBJECT_UNLOCK(bp->b_object);
3525}
3526
3527/*
3528 *	vfs_bio_clrbuf:
3529 *
3530 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3531 *	to clear BIO_ERROR and B_INVAL.
3532 *
3533 *	Note that while we only theoretically need to clear through b_bcount,
3534 *	we go ahead and clear through b_bufsize.
3535 */
3536
3537void
3538vfs_bio_clrbuf(struct buf *bp)
3539{
3540	int i, j, mask = 0;
3541	caddr_t sa, ea;
3542
3543	GIANT_REQUIRED;
3544
3545	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3546		clrbuf(bp);
3547		return;
3548	}
3549	bp->b_flags &= ~B_INVAL;
3550	bp->b_ioflags &= ~BIO_ERROR;
3551	VM_OBJECT_LOCK(bp->b_object);
3552	if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3553	    (bp->b_offset & PAGE_MASK) == 0) {
3554		if (bp->b_pages[0] == bogus_page)
3555			goto unlock;
3556		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3557		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3558		if ((bp->b_pages[0]->valid & mask) == mask)
3559			goto unlock;
3560		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3561		    ((bp->b_pages[0]->valid & mask) == 0)) {
3562			bzero(bp->b_data, bp->b_bufsize);
3563			bp->b_pages[0]->valid |= mask;
3564			goto unlock;
3565		}
3566	}
3567	ea = sa = bp->b_data;
3568	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3569		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3570		ea = (caddr_t)(vm_offset_t)ulmin(
3571		    (u_long)(vm_offset_t)ea,
3572		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3573		if (bp->b_pages[i] == bogus_page)
3574			continue;
3575		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3576		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3577		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3578		if ((bp->b_pages[i]->valid & mask) == mask)
3579			continue;
3580		if ((bp->b_pages[i]->valid & mask) == 0) {
3581			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3582				bzero(sa, ea - sa);
3583		} else {
3584			for (; sa < ea; sa += DEV_BSIZE, j++) {
3585				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3586					(bp->b_pages[i]->valid & (1<<j)) == 0)
3587					bzero(sa, DEV_BSIZE);
3588			}
3589		}
3590		bp->b_pages[i]->valid |= mask;
3591	}
3592unlock:
3593	VM_OBJECT_UNLOCK(bp->b_object);
3594	bp->b_resid = 0;
3595}
3596
3597/*
3598 * vm_hold_load_pages and vm_hold_free_pages get pages into
3599 * a buffers address space.  The pages are anonymous and are
3600 * not associated with a file object.
3601 */
3602static void
3603vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3604{
3605	vm_offset_t pg;
3606	vm_page_t p;
3607	int index;
3608
3609	to = round_page(to);
3610	from = round_page(from);
3611	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3612
3613	VM_OBJECT_LOCK(kernel_object);
3614	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3615tryagain:
3616		/*
3617		 * note: must allocate system pages since blocking here
3618		 * could intefere with paging I/O, no matter which
3619		 * process we are.
3620		 */
3621		p = vm_page_alloc(kernel_object,
3622			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3623		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3624		if (!p) {
3625			atomic_add_int(&vm_pageout_deficit,
3626			    (to - pg) >> PAGE_SHIFT);
3627			VM_OBJECT_UNLOCK(kernel_object);
3628			VM_WAIT;
3629			VM_OBJECT_LOCK(kernel_object);
3630			goto tryagain;
3631		}
3632		p->valid = VM_PAGE_BITS_ALL;
3633		pmap_qenter(pg, &p, 1);
3634		bp->b_pages[index] = p;
3635		vm_page_lock_queues();
3636		vm_page_wakeup(p);
3637		vm_page_unlock_queues();
3638	}
3639	VM_OBJECT_UNLOCK(kernel_object);
3640	bp->b_npages = index;
3641}
3642
3643/* Return pages associated with this buf to the vm system */
3644static void
3645vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3646{
3647	vm_offset_t pg;
3648	vm_page_t p;
3649	int index, newnpages;
3650
3651	GIANT_REQUIRED;
3652
3653	from = round_page(from);
3654	to = round_page(to);
3655	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3656
3657	VM_OBJECT_LOCK(kernel_object);
3658	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3659		p = bp->b_pages[index];
3660		if (p && (index < bp->b_npages)) {
3661			if (p->busy) {
3662				printf(
3663			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3664				    (intmax_t)bp->b_blkno,
3665				    (intmax_t)bp->b_lblkno);
3666			}
3667			bp->b_pages[index] = NULL;
3668			pmap_qremove(pg, 1);
3669			vm_page_lock_queues();
3670			vm_page_busy(p);
3671			vm_page_unwire(p, 0);
3672			vm_page_free(p);
3673			vm_page_unlock_queues();
3674		}
3675	}
3676	VM_OBJECT_UNLOCK(kernel_object);
3677	bp->b_npages = newnpages;
3678}
3679
3680/*
3681 * Map an IO request into kernel virtual address space.
3682 *
3683 * All requests are (re)mapped into kernel VA space.
3684 * Notice that we use b_bufsize for the size of the buffer
3685 * to be mapped.  b_bcount might be modified by the driver.
3686 *
3687 * Note that even if the caller determines that the address space should
3688 * be valid, a race or a smaller-file mapped into a larger space may
3689 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3690 * check the return value.
3691 */
3692int
3693vmapbuf(struct buf *bp)
3694{
3695	caddr_t addr, kva;
3696	vm_prot_t prot;
3697	int pidx, i;
3698	struct vm_page *m;
3699	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3700
3701	if (bp->b_bufsize < 0)
3702		return (-1);
3703	prot = VM_PROT_READ;
3704	if (bp->b_iocmd == BIO_READ)
3705		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3706	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3707	     addr < bp->b_data + bp->b_bufsize;
3708	     addr += PAGE_SIZE, pidx++) {
3709		/*
3710		 * Do the vm_fault if needed; do the copy-on-write thing
3711		 * when reading stuff off device into memory.
3712		 *
3713		 * NOTE! Must use pmap_extract() because addr may be in
3714		 * the userland address space, and kextract is only guarenteed
3715		 * to work for the kernland address space (see: sparc64 port).
3716		 */
3717retry:
3718		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3719		    prot) < 0) {
3720			vm_page_lock_queues();
3721			for (i = 0; i < pidx; ++i) {
3722				vm_page_unhold(bp->b_pages[i]);
3723				bp->b_pages[i] = NULL;
3724			}
3725			vm_page_unlock_queues();
3726			return(-1);
3727		}
3728		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3729		if (m == NULL)
3730			goto retry;
3731		bp->b_pages[pidx] = m;
3732	}
3733	if (pidx > btoc(MAXPHYS))
3734		panic("vmapbuf: mapped more than MAXPHYS");
3735	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3736
3737	kva = bp->b_saveaddr;
3738	bp->b_npages = pidx;
3739	bp->b_saveaddr = bp->b_data;
3740	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3741	return(0);
3742}
3743
3744/*
3745 * Free the io map PTEs associated with this IO operation.
3746 * We also invalidate the TLB entries and restore the original b_addr.
3747 */
3748void
3749vunmapbuf(struct buf *bp)
3750{
3751	int pidx;
3752	int npages;
3753
3754	npages = bp->b_npages;
3755	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3756	vm_page_lock_queues();
3757	for (pidx = 0; pidx < npages; pidx++)
3758		vm_page_unhold(bp->b_pages[pidx]);
3759	vm_page_unlock_queues();
3760
3761	bp->b_data = bp->b_saveaddr;
3762}
3763
3764void
3765bdone(struct buf *bp)
3766{
3767
3768	mtx_lock(&bdonelock);
3769	bp->b_flags |= B_DONE;
3770	wakeup(bp);
3771	mtx_unlock(&bdonelock);
3772}
3773
3774void
3775bwait(struct buf *bp, u_char pri, const char *wchan)
3776{
3777
3778	mtx_lock(&bdonelock);
3779	while ((bp->b_flags & B_DONE) == 0)
3780		msleep(bp, &bdonelock, pri, wchan, 0);
3781	mtx_unlock(&bdonelock);
3782}
3783
3784void
3785bufstrategy(struct bufobj *bo, struct buf *bp)
3786{
3787	int i = 0;
3788	struct vnode *vp;
3789
3790	vp = bp->b_vp;
3791#if 0
3792	KASSERT(vp == bo->bo_vnode, ("Inconsistent vnode bufstrategy"));
3793	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3794	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3795#endif
3796	if (vp->v_type == VCHR) {
3797		if (!buf_prewrite(bp->b_vp, bp))
3798			i = VOP_SPECSTRATEGY(vp, bp);
3799	} else {
3800		i = VOP_STRATEGY(vp, bp);
3801	}
3802	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3803}
3804
3805void
3806bufobj_wref(struct bufobj *bo)
3807{
3808
3809	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3810	BO_LOCK(bo);
3811	bo->bo_numoutput++;
3812	BO_UNLOCK(bo);
3813}
3814
3815void
3816bufobj_wdrop(struct bufobj *bo)
3817{
3818
3819	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3820	BO_LOCK(bo);
3821	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3822	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3823		bo->bo_flag &= ~BO_WWAIT;
3824		wakeup(&bo->bo_numoutput);
3825	}
3826	BO_UNLOCK(bo);
3827}
3828
3829int
3830bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3831{
3832	int error;
3833
3834	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3835	ASSERT_BO_LOCKED(bo);
3836	error = 0;
3837	while (bo->bo_numoutput) {
3838		bo->bo_flag |= BO_WWAIT;
3839		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3840		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3841		if (error)
3842			break;
3843	}
3844	return (error);
3845}
3846
3847#include "opt_ddb.h"
3848#ifdef DDB
3849#include <ddb/ddb.h>
3850
3851/* DDB command to show buffer data */
3852DB_SHOW_COMMAND(buffer, db_show_buffer)
3853{
3854	/* get args */
3855	struct buf *bp = (struct buf *)addr;
3856
3857	if (!have_addr) {
3858		db_printf("usage: show buffer <addr>\n");
3859		return;
3860	}
3861
3862	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3863	db_printf(
3864	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3865	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd\n",
3866	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3867	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3868	    (intmax_t)bp->b_blkno);
3869	if (bp->b_npages) {
3870		int i;
3871		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3872		for (i = 0; i < bp->b_npages; i++) {
3873			vm_page_t m;
3874			m = bp->b_pages[i];
3875			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3876			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3877			if ((i + 1) < bp->b_npages)
3878				db_printf(",");
3879		}
3880		db_printf("\n");
3881	}
3882}
3883#endif /* DDB */
3884