vfs_bio.c revision 136767
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 */
14
15/*
16 * this file contains a new buffer I/O scheme implementing a coherent
17 * VM object and buffer cache scheme.  Pains have been taken to make
18 * sure that the performance degradation associated with schemes such
19 * as this is not realized.
20 *
21 * Author:  John S. Dyson
22 * Significant help during the development and debugging phases
23 * had been provided by David Greenman, also of the FreeBSD core team.
24 *
25 * see man buf(9) for more info.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 136767 2004-10-22 08:47:20Z phk $");
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/bio.h>
34#include <sys/conf.h>
35#include <sys/buf.h>
36#include <sys/devicestat.h>
37#include <sys/eventhandler.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mount.h>
41#include <sys/mutex.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/proc.h>
45#include <sys/resourcevar.h>
46#include <sys/sysctl.h>
47#include <sys/vmmeter.h>
48#include <sys/vnode.h>
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/vm_kern.h>
52#include <vm/vm_pageout.h>
53#include <vm/vm_page.h>
54#include <vm/vm_object.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_map.h>
57#include "opt_directio.h"
58#include "opt_swap.h"
59
60static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
61
62struct	bio_ops bioops;		/* I/O operation notification */
63
64static int ibwrite(struct buf *);
65static int inmem(struct vnode * vp, daddr_t blkno);
66
67struct	buf_ops buf_ops_bio = {
68	"buf_ops_bio",
69	ibwrite
70};
71
72/*
73 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
74 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
75 */
76struct buf *buf;		/* buffer header pool */
77
78static struct proc *bufdaemonproc;
79
80static void vm_hold_free_pages(struct buf *bp, vm_offset_t from,
81		vm_offset_t to);
82static void vm_hold_load_pages(struct buf *bp, vm_offset_t from,
83		vm_offset_t to);
84static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
85			       int pageno, vm_page_t m);
86static void vfs_clean_pages(struct buf *bp);
87static void vfs_setdirty(struct buf *bp);
88static void vfs_vmio_release(struct buf *bp);
89static void vfs_backgroundwritedone(struct buf *bp);
90static int vfs_bio_clcheck(struct vnode *vp, int size,
91		daddr_t lblkno, daddr_t blkno);
92static int flushbufqueues(int flushdeps);
93static void buf_daemon(void);
94void bremfreel(struct buf *bp);
95
96int vmiodirenable = TRUE;
97SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
98    "Use the VM system for directory writes");
99int runningbufspace;
100SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
101    "Amount of presently outstanding async buffer io");
102static int bufspace;
103SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
104    "KVA memory used for bufs");
105static int maxbufspace;
106SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
107    "Maximum allowed value of bufspace (including buf_daemon)");
108static int bufmallocspace;
109SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
110    "Amount of malloced memory for buffers");
111static int maxbufmallocspace;
112SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
113    "Maximum amount of malloced memory for buffers");
114static int lobufspace;
115SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
116    "Minimum amount of buffers we want to have");
117static int hibufspace;
118SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
119    "Maximum allowed value of bufspace (excluding buf_daemon)");
120static int bufreusecnt;
121SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
122    "Number of times we have reused a buffer");
123static int buffreekvacnt;
124SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
125    "Number of times we have freed the KVA space from some buffer");
126static int bufdefragcnt;
127SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
128    "Number of times we have had to repeat buffer allocation to defragment");
129static int lorunningspace;
130SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
131    "Minimum preferred space used for in-progress I/O");
132static int hirunningspace;
133SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
134    "Maximum amount of space to use for in-progress I/O");
135static int dirtybufferflushes;
136SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
137    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
138static int altbufferflushes;
139SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
140    0, "Number of fsync flushes to limit dirty buffers");
141static int recursiveflushes;
142SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
143    0, "Number of flushes skipped due to being recursive");
144static int numdirtybuffers;
145SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
146    "Number of buffers that are dirty (has unwritten changes) at the moment");
147static int lodirtybuffers;
148SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
149    "How many buffers we want to have free before bufdaemon can sleep");
150static int hidirtybuffers;
151SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
152    "When the number of dirty buffers is considered severe");
153static int dirtybufthresh;
154SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
155    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
156static int numfreebuffers;
157SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
158    "Number of free buffers");
159static int lofreebuffers;
160SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
161   "XXX Unused");
162static int hifreebuffers;
163SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
164   "XXX Complicatedly unused");
165static int getnewbufcalls;
166SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
167   "Number of calls to getnewbuf");
168static int getnewbufrestarts;
169SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
170    "Number of times getnewbuf has had to restart a buffer aquisition");
171static int dobkgrdwrite = 1;
172SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
173    "Do background writes (honoring the BV_BKGRDWRITE flag)?");
174
175/*
176 * Wakeup point for bufdaemon, as well as indicator of whether it is already
177 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
178 * is idling.
179 */
180static int bd_request;
181
182/*
183 * This lock synchronizes access to bd_request.
184 */
185static struct mtx bdlock;
186
187/*
188 * bogus page -- for I/O to/from partially complete buffers
189 * this is a temporary solution to the problem, but it is not
190 * really that bad.  it would be better to split the buffer
191 * for input in the case of buffers partially already in memory,
192 * but the code is intricate enough already.
193 */
194vm_page_t bogus_page;
195
196/*
197 * Synchronization (sleep/wakeup) variable for active buffer space requests.
198 * Set when wait starts, cleared prior to wakeup().
199 * Used in runningbufwakeup() and waitrunningbufspace().
200 */
201static int runningbufreq;
202
203/*
204 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
205 * waitrunningbufspace().
206 */
207static struct mtx rbreqlock;
208
209/*
210 * Synchronization (sleep/wakeup) variable for buffer requests.
211 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
212 * by and/or.
213 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
214 * getnewbuf(), and getblk().
215 */
216static int needsbuffer;
217
218/*
219 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
220 */
221static struct mtx nblock;
222
223/*
224 * Lock that protects against bwait()/bdone()/B_DONE races.
225 */
226
227static struct mtx bdonelock;
228
229/*
230 * Definitions for the buffer free lists.
231 */
232#define BUFFER_QUEUES	5	/* number of free buffer queues */
233
234#define QUEUE_NONE	0	/* on no queue */
235#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
236#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
237#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
238#define QUEUE_EMPTY	4	/* empty buffer headers */
239
240/* Queues for free buffers with various properties */
241static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
242
243/* Lock for the bufqueues */
244static struct mtx bqlock;
245
246/*
247 * Single global constant for BUF_WMESG, to avoid getting multiple references.
248 * buf_wmesg is referred from macros.
249 */
250const char *buf_wmesg = BUF_WMESG;
251
252#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
253#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
254#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
255#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
256
257#ifdef DIRECTIO
258extern void ffs_rawread_setup(void);
259#endif /* DIRECTIO */
260/*
261 *	numdirtywakeup:
262 *
263 *	If someone is blocked due to there being too many dirty buffers,
264 *	and numdirtybuffers is now reasonable, wake them up.
265 */
266
267static __inline void
268numdirtywakeup(int level)
269{
270
271	if (numdirtybuffers <= level) {
272		mtx_lock(&nblock);
273		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
274			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
275			wakeup(&needsbuffer);
276		}
277		mtx_unlock(&nblock);
278	}
279}
280
281/*
282 *	bufspacewakeup:
283 *
284 *	Called when buffer space is potentially available for recovery.
285 *	getnewbuf() will block on this flag when it is unable to free
286 *	sufficient buffer space.  Buffer space becomes recoverable when
287 *	bp's get placed back in the queues.
288 */
289
290static __inline void
291bufspacewakeup(void)
292{
293
294	/*
295	 * If someone is waiting for BUF space, wake them up.  Even
296	 * though we haven't freed the kva space yet, the waiting
297	 * process will be able to now.
298	 */
299	mtx_lock(&nblock);
300	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
301		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
302		wakeup(&needsbuffer);
303	}
304	mtx_unlock(&nblock);
305}
306
307/*
308 * runningbufwakeup() - in-progress I/O accounting.
309 *
310 */
311static __inline void
312runningbufwakeup(struct buf *bp)
313{
314
315	if (bp->b_runningbufspace) {
316		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
317		bp->b_runningbufspace = 0;
318		mtx_lock(&rbreqlock);
319		if (runningbufreq && runningbufspace <= lorunningspace) {
320			runningbufreq = 0;
321			wakeup(&runningbufreq);
322		}
323		mtx_unlock(&rbreqlock);
324	}
325}
326
327/*
328 *	bufcountwakeup:
329 *
330 *	Called when a buffer has been added to one of the free queues to
331 *	account for the buffer and to wakeup anyone waiting for free buffers.
332 *	This typically occurs when large amounts of metadata are being handled
333 *	by the buffer cache ( else buffer space runs out first, usually ).
334 */
335
336static __inline void
337bufcountwakeup(void)
338{
339
340	atomic_add_int(&numfreebuffers, 1);
341	mtx_lock(&nblock);
342	if (needsbuffer) {
343		needsbuffer &= ~VFS_BIO_NEED_ANY;
344		if (numfreebuffers >= hifreebuffers)
345			needsbuffer &= ~VFS_BIO_NEED_FREE;
346		wakeup(&needsbuffer);
347	}
348	mtx_unlock(&nblock);
349}
350
351/*
352 *	waitrunningbufspace()
353 *
354 *	runningbufspace is a measure of the amount of I/O currently
355 *	running.  This routine is used in async-write situations to
356 *	prevent creating huge backups of pending writes to a device.
357 *	Only asynchronous writes are governed by this function.
358 *
359 *	Reads will adjust runningbufspace, but will not block based on it.
360 *	The read load has a side effect of reducing the allowed write load.
361 *
362 *	This does NOT turn an async write into a sync write.  It waits
363 *	for earlier writes to complete and generally returns before the
364 *	caller's write has reached the device.
365 */
366static __inline void
367waitrunningbufspace(void)
368{
369
370	mtx_lock(&rbreqlock);
371	while (runningbufspace > hirunningspace) {
372		++runningbufreq;
373		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
374	}
375	mtx_unlock(&rbreqlock);
376}
377
378
379/*
380 *	vfs_buf_test_cache:
381 *
382 *	Called when a buffer is extended.  This function clears the B_CACHE
383 *	bit if the newly extended portion of the buffer does not contain
384 *	valid data.
385 */
386static __inline
387void
388vfs_buf_test_cache(struct buf *bp,
389		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
390		  vm_page_t m)
391{
392
393	GIANT_REQUIRED;
394
395	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
396	if (bp->b_flags & B_CACHE) {
397		int base = (foff + off) & PAGE_MASK;
398		if (vm_page_is_valid(m, base, size) == 0)
399			bp->b_flags &= ~B_CACHE;
400	}
401}
402
403/* Wake up the buffer deamon if necessary */
404static __inline
405void
406bd_wakeup(int dirtybuflevel)
407{
408
409	mtx_lock(&bdlock);
410	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
411		bd_request = 1;
412		wakeup(&bd_request);
413	}
414	mtx_unlock(&bdlock);
415}
416
417/*
418 * bd_speedup - speedup the buffer cache flushing code
419 */
420
421static __inline
422void
423bd_speedup(void)
424{
425
426	bd_wakeup(1);
427}
428
429/*
430 * Calculating buffer cache scaling values and reserve space for buffer
431 * headers.  This is called during low level kernel initialization and
432 * may be called more then once.  We CANNOT write to the memory area
433 * being reserved at this time.
434 */
435caddr_t
436kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
437{
438
439	/*
440	 * physmem_est is in pages.  Convert it to kilobytes (assumes
441	 * PAGE_SIZE is >= 1K)
442	 */
443	physmem_est = physmem_est * (PAGE_SIZE / 1024);
444
445	/*
446	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
447	 * For the first 64MB of ram nominally allocate sufficient buffers to
448	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
449	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
450	 * the buffer cache we limit the eventual kva reservation to
451	 * maxbcache bytes.
452	 *
453	 * factor represents the 1/4 x ram conversion.
454	 */
455	if (nbuf == 0) {
456		int factor = 4 * BKVASIZE / 1024;
457
458		nbuf = 50;
459		if (physmem_est > 4096)
460			nbuf += min((physmem_est - 4096) / factor,
461			    65536 / factor);
462		if (physmem_est > 65536)
463			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
464
465		if (maxbcache && nbuf > maxbcache / BKVASIZE)
466			nbuf = maxbcache / BKVASIZE;
467	}
468
469#if 0
470	/*
471	 * Do not allow the buffer_map to be more then 1/2 the size of the
472	 * kernel_map.
473	 */
474	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
475	    (BKVASIZE * 2)) {
476		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
477		    (BKVASIZE * 2);
478		printf("Warning: nbufs capped at %d\n", nbuf);
479	}
480#endif
481
482	/*
483	 * swbufs are used as temporary holders for I/O, such as paging I/O.
484	 * We have no less then 16 and no more then 256.
485	 */
486	nswbuf = max(min(nbuf/4, 256), 16);
487#ifdef NSWBUF_MIN
488	if (nswbuf < NSWBUF_MIN)
489		nswbuf = NSWBUF_MIN;
490#endif
491#ifdef DIRECTIO
492	ffs_rawread_setup();
493#endif
494
495	/*
496	 * Reserve space for the buffer cache buffers
497	 */
498	swbuf = (void *)v;
499	v = (caddr_t)(swbuf + nswbuf);
500	buf = (void *)v;
501	v = (caddr_t)(buf + nbuf);
502
503	return(v);
504}
505
506/* Initialize the buffer subsystem.  Called before use of any buffers. */
507void
508bufinit(void)
509{
510	struct buf *bp;
511	int i;
512
513	GIANT_REQUIRED;
514
515	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
516	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
517	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
518	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
519	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
520
521	/* next, make a null set of free lists */
522	for (i = 0; i < BUFFER_QUEUES; i++)
523		TAILQ_INIT(&bufqueues[i]);
524
525	/* finally, initialize each buffer header and stick on empty q */
526	for (i = 0; i < nbuf; i++) {
527		bp = &buf[i];
528		bzero(bp, sizeof *bp);
529		bp->b_flags = B_INVAL;	/* we're just an empty header */
530		bp->b_dev = NULL;
531		bp->b_rcred = NOCRED;
532		bp->b_wcred = NOCRED;
533		bp->b_qindex = QUEUE_EMPTY;
534		bp->b_vflags = 0;
535		bp->b_xflags = 0;
536		LIST_INIT(&bp->b_dep);
537		BUF_LOCKINIT(bp);
538		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
539	}
540
541	/*
542	 * maxbufspace is the absolute maximum amount of buffer space we are
543	 * allowed to reserve in KVM and in real terms.  The absolute maximum
544	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
545	 * used by most other processes.  The differential is required to
546	 * ensure that buf_daemon is able to run when other processes might
547	 * be blocked waiting for buffer space.
548	 *
549	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
550	 * this may result in KVM fragmentation which is not handled optimally
551	 * by the system.
552	 */
553	maxbufspace = nbuf * BKVASIZE;
554	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
555	lobufspace = hibufspace - MAXBSIZE;
556
557	lorunningspace = 512 * 1024;
558	hirunningspace = 1024 * 1024;
559
560/*
561 * Limit the amount of malloc memory since it is wired permanently into
562 * the kernel space.  Even though this is accounted for in the buffer
563 * allocation, we don't want the malloced region to grow uncontrolled.
564 * The malloc scheme improves memory utilization significantly on average
565 * (small) directories.
566 */
567	maxbufmallocspace = hibufspace / 20;
568
569/*
570 * Reduce the chance of a deadlock occuring by limiting the number
571 * of delayed-write dirty buffers we allow to stack up.
572 */
573	hidirtybuffers = nbuf / 4 + 20;
574	dirtybufthresh = hidirtybuffers * 9 / 10;
575	numdirtybuffers = 0;
576/*
577 * To support extreme low-memory systems, make sure hidirtybuffers cannot
578 * eat up all available buffer space.  This occurs when our minimum cannot
579 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
580 * BKVASIZE'd (8K) buffers.
581 */
582	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
583		hidirtybuffers >>= 1;
584	}
585	lodirtybuffers = hidirtybuffers / 2;
586
587/*
588 * Try to keep the number of free buffers in the specified range,
589 * and give special processes (e.g. like buf_daemon) access to an
590 * emergency reserve.
591 */
592	lofreebuffers = nbuf / 18 + 5;
593	hifreebuffers = 2 * lofreebuffers;
594	numfreebuffers = nbuf;
595
596/*
597 * Maximum number of async ops initiated per buf_daemon loop.  This is
598 * somewhat of a hack at the moment, we really need to limit ourselves
599 * based on the number of bytes of I/O in-transit that were initiated
600 * from buf_daemon.
601 */
602
603	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
604	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
605}
606
607/*
608 * bfreekva() - free the kva allocation for a buffer.
609 *
610 *	Must be called at splbio() or higher as this is the only locking for
611 *	buffer_map.
612 *
613 *	Since this call frees up buffer space, we call bufspacewakeup().
614 */
615static void
616bfreekva(struct buf *bp)
617{
618
619	GIANT_REQUIRED;
620
621	if (bp->b_kvasize) {
622		atomic_add_int(&buffreekvacnt, 1);
623		atomic_subtract_int(&bufspace, bp->b_kvasize);
624		vm_map_delete(buffer_map,
625		    (vm_offset_t) bp->b_kvabase,
626		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
627		);
628		bp->b_kvasize = 0;
629		bufspacewakeup();
630	}
631}
632
633/*
634 *	bremfree:
635 *
636 *	Remove the buffer from the appropriate free list.
637 */
638void
639bremfree(struct buf *bp)
640{
641
642	mtx_lock(&bqlock);
643	bremfreel(bp);
644	mtx_unlock(&bqlock);
645}
646
647void
648bremfreel(struct buf *bp)
649{
650	int s = splbio();
651	int old_qindex = bp->b_qindex;
652
653	GIANT_REQUIRED;
654
655	if (bp->b_qindex != QUEUE_NONE) {
656		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
657		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
658		bp->b_qindex = QUEUE_NONE;
659	} else {
660		if (BUF_REFCNT(bp) <= 1)
661			panic("bremfree: removing a buffer not on a queue");
662	}
663
664	/*
665	 * Fixup numfreebuffers count.  If the buffer is invalid or not
666	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
667	 * the buffer was free and we must decrement numfreebuffers.
668	 */
669	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
670		switch(old_qindex) {
671		case QUEUE_DIRTY:
672		case QUEUE_CLEAN:
673		case QUEUE_EMPTY:
674		case QUEUE_EMPTYKVA:
675			atomic_subtract_int(&numfreebuffers, 1);
676			break;
677		default:
678			break;
679		}
680	}
681	splx(s);
682}
683
684
685/*
686 * Get a buffer with the specified data.  Look in the cache first.  We
687 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
688 * is set, the buffer is valid and we do not have to do anything ( see
689 * getblk() ).  This is really just a special case of breadn().
690 */
691int
692bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
693    struct buf **bpp)
694{
695
696	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
697}
698
699/*
700 * Operates like bread, but also starts asynchronous I/O on
701 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
702 * to initiating I/O . If B_CACHE is set, the buffer is valid
703 * and we do not have to do anything.
704 */
705int
706breadn(struct vnode * vp, daddr_t blkno, int size,
707    daddr_t * rablkno, int *rabsize,
708    int cnt, struct ucred * cred, struct buf **bpp)
709{
710	struct buf *bp, *rabp;
711	int i;
712	int rv = 0, readwait = 0;
713
714	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
715
716	/* if not found in cache, do some I/O */
717	if ((bp->b_flags & B_CACHE) == 0) {
718		if (curthread != PCPU_GET(idlethread))
719			curthread->td_proc->p_stats->p_ru.ru_inblock++;
720		bp->b_iocmd = BIO_READ;
721		bp->b_flags &= ~B_INVAL;
722		bp->b_ioflags &= ~BIO_ERROR;
723		if (bp->b_rcred == NOCRED && cred != NOCRED)
724			bp->b_rcred = crhold(cred);
725		vfs_busy_pages(bp, 0);
726		bp->b_iooffset = dbtob(bp->b_blkno);
727		if (vp->v_type == VCHR)
728			VOP_SPECSTRATEGY(vp, bp);
729		else
730			VOP_STRATEGY(vp, bp);
731		++readwait;
732	}
733
734	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
735		if (inmem(vp, *rablkno))
736			continue;
737		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
738
739		if ((rabp->b_flags & B_CACHE) == 0) {
740			if (curthread != PCPU_GET(idlethread))
741				curthread->td_proc->p_stats->p_ru.ru_inblock++;
742			rabp->b_flags |= B_ASYNC;
743			rabp->b_flags &= ~B_INVAL;
744			rabp->b_ioflags &= ~BIO_ERROR;
745			rabp->b_iocmd = BIO_READ;
746			if (rabp->b_rcred == NOCRED && cred != NOCRED)
747				rabp->b_rcred = crhold(cred);
748			vfs_busy_pages(rabp, 0);
749			BUF_KERNPROC(rabp);
750			rabp->b_iooffset = dbtob(rabp->b_blkno);
751			if (vp->v_type == VCHR)
752				VOP_SPECSTRATEGY(vp, rabp);
753			else
754				VOP_STRATEGY(vp, rabp);
755		} else {
756			brelse(rabp);
757		}
758	}
759
760	if (readwait) {
761		rv = bufwait(bp);
762	}
763	return (rv);
764}
765
766/*
767 * Write, release buffer on completion.  (Done by iodone
768 * if async).  Do not bother writing anything if the buffer
769 * is invalid.
770 *
771 * Note that we set B_CACHE here, indicating that buffer is
772 * fully valid and thus cacheable.  This is true even of NFS
773 * now so we set it generally.  This could be set either here
774 * or in biodone() since the I/O is synchronous.  We put it
775 * here.
776 */
777int
778bwrite(struct buf *bp)
779{
780
781	KASSERT(bp->b_op != NULL && bp->b_op->bop_write != NULL,
782	    ("Martian buffer %p in bwrite: nobody to write it.", bp));
783	return (bp->b_op->bop_write(bp));
784}
785
786static int
787ibwrite(struct buf *bp)
788{
789	int oldflags, s;
790	struct buf *newbp;
791
792	if (bp->b_flags & B_INVAL) {
793		brelse(bp);
794		return (0);
795	}
796
797	oldflags = bp->b_flags;
798
799	if (BUF_REFCNT(bp) == 0)
800		panic("ibwrite: buffer is not busy???");
801	s = splbio();
802	/*
803	 * If a background write is already in progress, delay
804	 * writing this block if it is asynchronous. Otherwise
805	 * wait for the background write to complete.
806	 */
807	BO_LOCK(bp->b_bufobj);
808	if (bp->b_vflags & BV_BKGRDINPROG) {
809		if (bp->b_flags & B_ASYNC) {
810			BO_UNLOCK(bp->b_bufobj);
811			splx(s);
812			bdwrite(bp);
813			return (0);
814		}
815		bp->b_vflags |= BV_BKGRDWAIT;
816		msleep(&bp->b_xflags, BO_MTX(bp->b_bufobj), PRIBIO, "bwrbg", 0);
817		if (bp->b_vflags & BV_BKGRDINPROG)
818			panic("ibwrite: still writing");
819	}
820	BO_UNLOCK(bp->b_bufobj);
821
822	/* Mark the buffer clean */
823	bundirty(bp);
824
825	/*
826	 * If this buffer is marked for background writing and we
827	 * do not have to wait for it, make a copy and write the
828	 * copy so as to leave this buffer ready for further use.
829	 *
830	 * This optimization eats a lot of memory.  If we have a page
831	 * or buffer shortfall we can't do it.
832	 */
833	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
834	    (bp->b_flags & B_ASYNC) &&
835	    !vm_page_count_severe() &&
836	    !buf_dirty_count_severe()) {
837		KASSERT(bp->b_iodone == NULL,
838		    ("bufwrite: needs chained iodone (%p)", bp->b_iodone));
839
840		/* get a new block */
841		newbp = geteblk(bp->b_bufsize);
842
843		/*
844		 * set it to be identical to the old block.  We have to
845		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
846		 * to avoid confusing the splay tree and gbincore().
847		 */
848		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
849		newbp->b_lblkno = bp->b_lblkno;
850		newbp->b_xflags |= BX_BKGRDMARKER;
851		BO_LOCK(bp->b_bufobj);
852		bp->b_vflags |= BV_BKGRDINPROG;
853		bgetvp(bp->b_vp, newbp);
854		BO_UNLOCK(bp->b_bufobj);
855		newbp->b_bufobj = &bp->b_vp->v_bufobj;
856		newbp->b_blkno = bp->b_blkno;
857		newbp->b_offset = bp->b_offset;
858		newbp->b_iodone = vfs_backgroundwritedone;
859		newbp->b_flags |= B_ASYNC;
860		newbp->b_flags &= ~B_INVAL;
861
862		/* move over the dependencies */
863		if (LIST_FIRST(&bp->b_dep) != NULL)
864			buf_movedeps(bp, newbp);
865
866		/*
867		 * Initiate write on the copy, release the original to
868		 * the B_LOCKED queue so that it cannot go away until
869		 * the background write completes. If not locked it could go
870		 * away and then be reconstituted while it was being written.
871		 * If the reconstituted buffer were written, we could end up
872		 * with two background copies being written at the same time.
873		 */
874		bqrelse(bp);
875		bp = newbp;
876	}
877
878	bp->b_flags &= ~B_DONE;
879	bp->b_ioflags &= ~BIO_ERROR;
880	bp->b_flags |= B_CACHE;
881	bp->b_iocmd = BIO_WRITE;
882
883	bufobj_wref(bp->b_bufobj);
884	vfs_busy_pages(bp, 1);
885
886	/*
887	 * Normal bwrites pipeline writes
888	 */
889	bp->b_runningbufspace = bp->b_bufsize;
890	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
891
892	if (curthread != PCPU_GET(idlethread))
893		curthread->td_proc->p_stats->p_ru.ru_oublock++;
894	splx(s);
895	if (oldflags & B_ASYNC)
896		BUF_KERNPROC(bp);
897	bp->b_iooffset = dbtob(bp->b_blkno);
898	if (bp->b_vp->v_type == VCHR) {
899		if (!buf_prewrite(bp->b_vp, bp))
900			VOP_SPECSTRATEGY(bp->b_vp, bp);
901	} else {
902		VOP_STRATEGY(bp->b_vp, bp);
903	}
904
905	if ((oldflags & B_ASYNC) == 0) {
906		int rtval = bufwait(bp);
907		brelse(bp);
908		return (rtval);
909	} else {
910		/*
911		 * don't allow the async write to saturate the I/O
912		 * system.  We will not deadlock here because
913		 * we are blocking waiting for I/O that is already in-progress
914		 * to complete. We do not block here if it is the update
915		 * or syncer daemon trying to clean up as that can lead
916		 * to deadlock.
917		 */
918		if (curthread->td_proc != bufdaemonproc &&
919		    curthread->td_proc != updateproc)
920			waitrunningbufspace();
921	}
922
923	return (0);
924}
925
926/*
927 * Complete a background write started from bwrite.
928 */
929static void
930vfs_backgroundwritedone(struct buf *bp)
931{
932	struct buf *origbp;
933
934	/*
935	 * Find the original buffer that we are writing.
936	 */
937	BO_LOCK(bp->b_bufobj);
938	if ((origbp = gbincore(bp->b_bufobj, bp->b_lblkno)) == NULL)
939		panic("backgroundwritedone: lost buffer");
940
941	/*
942	 * Clear the BV_BKGRDINPROG flag in the original buffer
943	 * and awaken it if it is waiting for the write to complete.
944	 * If BV_BKGRDINPROG is not set in the original buffer it must
945	 * have been released and re-instantiated - which is not legal.
946	 */
947	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
948	    ("backgroundwritedone: lost buffer2"));
949	origbp->b_vflags &= ~BV_BKGRDINPROG;
950	if (origbp->b_vflags & BV_BKGRDWAIT) {
951		origbp->b_vflags &= ~BV_BKGRDWAIT;
952		wakeup(&origbp->b_xflags);
953	}
954	BO_UNLOCK(bp->b_bufobj);
955	/*
956	 * Process dependencies then return any unfinished ones.
957	 */
958	if (LIST_FIRST(&bp->b_dep) != NULL)
959		buf_complete(bp);
960	if (LIST_FIRST(&bp->b_dep) != NULL)
961		buf_movedeps(bp, origbp);
962
963	/*
964	 * This buffer is marked B_NOCACHE, so when it is released
965	 * by biodone, it will be tossed. We mark it with BIO_READ
966	 * to avoid biodone doing a second bufobj_wdrop.
967	 */
968	bp->b_flags |= B_NOCACHE;
969	bp->b_iocmd = BIO_READ;
970	bp->b_flags &= ~(B_CACHE | B_DONE);
971	bp->b_iodone = 0;
972	bufdone(bp);
973}
974
975/*
976 * Delayed write. (Buffer is marked dirty).  Do not bother writing
977 * anything if the buffer is marked invalid.
978 *
979 * Note that since the buffer must be completely valid, we can safely
980 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
981 * biodone() in order to prevent getblk from writing the buffer
982 * out synchronously.
983 */
984void
985bdwrite(struct buf *bp)
986{
987	struct thread *td = curthread;
988	struct vnode *vp;
989	struct buf *nbp;
990	struct bufobj *bo;
991
992	GIANT_REQUIRED;
993
994	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
995	KASSERT(BUF_REFCNT(bp) != 0, ("bdwrite: buffer is not busy"));
996
997	if (bp->b_flags & B_INVAL) {
998		brelse(bp);
999		return;
1000	}
1001
1002	/*
1003	 * If we have too many dirty buffers, don't create any more.
1004	 * If we are wildly over our limit, then force a complete
1005	 * cleanup. Otherwise, just keep the situation from getting
1006	 * out of control. Note that we have to avoid a recursive
1007	 * disaster and not try to clean up after our own cleanup!
1008	 */
1009	vp = bp->b_vp;
1010	bo = bp->b_bufobj;
1011	BO_LOCK(bo);
1012	if (td->td_pflags & TDP_COWINPROGRESS) {
1013		recursiveflushes++;
1014	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh + 10) {
1015		BO_UNLOCK(bo);
1016		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
1017		BO_LOCK(bo);
1018		altbufferflushes++;
1019	} else if (bo->bo_dirty.bv_cnt > dirtybufthresh) {
1020		/*
1021		 * Try to find a buffer to flush.
1022		 */
1023		TAILQ_FOREACH(nbp, &bo->bo_dirty.bv_hd, b_bobufs) {
1024			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1025			    buf_countdeps(nbp, 0) ||
1026			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1027				continue;
1028			if (bp == nbp)
1029				panic("bdwrite: found ourselves");
1030			BO_UNLOCK(bo);
1031			if (nbp->b_flags & B_CLUSTEROK) {
1032				vfs_bio_awrite(nbp);
1033			} else {
1034				bremfree(nbp);
1035				bawrite(nbp);
1036			}
1037			BO_LOCK(bo);
1038			dirtybufferflushes++;
1039			break;
1040		}
1041	}
1042	BO_UNLOCK(bo);
1043
1044	bdirty(bp);
1045	/*
1046	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1047	 * true even of NFS now.
1048	 */
1049	bp->b_flags |= B_CACHE;
1050
1051	/*
1052	 * This bmap keeps the system from needing to do the bmap later,
1053	 * perhaps when the system is attempting to do a sync.  Since it
1054	 * is likely that the indirect block -- or whatever other datastructure
1055	 * that the filesystem needs is still in memory now, it is a good
1056	 * thing to do this.  Note also, that if the pageout daemon is
1057	 * requesting a sync -- there might not be enough memory to do
1058	 * the bmap then...  So, this is important to do.
1059	 */
1060	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1061		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1062	}
1063
1064	/*
1065	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1066	 */
1067	vfs_setdirty(bp);
1068
1069	/*
1070	 * We need to do this here to satisfy the vnode_pager and the
1071	 * pageout daemon, so that it thinks that the pages have been
1072	 * "cleaned".  Note that since the pages are in a delayed write
1073	 * buffer -- the VFS layer "will" see that the pages get written
1074	 * out on the next sync, or perhaps the cluster will be completed.
1075	 */
1076	vfs_clean_pages(bp);
1077	bqrelse(bp);
1078
1079	/*
1080	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1081	 * buffers (midpoint between our recovery point and our stall
1082	 * point).
1083	 */
1084	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1085
1086	/*
1087	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1088	 * due to the softdep code.
1089	 */
1090}
1091
1092/*
1093 *	bdirty:
1094 *
1095 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1096 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1097 *	itself to properly update it in the dirty/clean lists.  We mark it
1098 *	B_DONE to ensure that any asynchronization of the buffer properly
1099 *	clears B_DONE ( else a panic will occur later ).
1100 *
1101 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1102 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1103 *	should only be called if the buffer is known-good.
1104 *
1105 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1106 *	count.
1107 *
1108 *	Must be called at splbio().
1109 *	The buffer must be on QUEUE_NONE.
1110 */
1111void
1112bdirty(struct buf *bp)
1113{
1114
1115	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1116	KASSERT(bp->b_qindex == QUEUE_NONE,
1117	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1118	bp->b_flags &= ~(B_RELBUF);
1119	bp->b_iocmd = BIO_WRITE;
1120
1121	if ((bp->b_flags & B_DELWRI) == 0) {
1122		bp->b_flags |= B_DONE | B_DELWRI;
1123		reassignbuf(bp);
1124		atomic_add_int(&numdirtybuffers, 1);
1125		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1126	}
1127}
1128
1129/*
1130 *	bundirty:
1131 *
1132 *	Clear B_DELWRI for buffer.
1133 *
1134 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1135 *	count.
1136 *
1137 *	Must be called at splbio().
1138 *	The buffer must be on QUEUE_NONE.
1139 */
1140
1141void
1142bundirty(struct buf *bp)
1143{
1144
1145	KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
1146	KASSERT(bp->b_qindex == QUEUE_NONE,
1147	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1148
1149	if (bp->b_flags & B_DELWRI) {
1150		bp->b_flags &= ~B_DELWRI;
1151		reassignbuf(bp);
1152		atomic_subtract_int(&numdirtybuffers, 1);
1153		numdirtywakeup(lodirtybuffers);
1154	}
1155	/*
1156	 * Since it is now being written, we can clear its deferred write flag.
1157	 */
1158	bp->b_flags &= ~B_DEFERRED;
1159}
1160
1161/*
1162 *	bawrite:
1163 *
1164 *	Asynchronous write.  Start output on a buffer, but do not wait for
1165 *	it to complete.  The buffer is released when the output completes.
1166 *
1167 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1168 *	B_INVAL buffers.  Not us.
1169 */
1170void
1171bawrite(struct buf *bp)
1172{
1173
1174	bp->b_flags |= B_ASYNC;
1175	(void) bwrite(bp);
1176}
1177
1178/*
1179 *	bwillwrite:
1180 *
1181 *	Called prior to the locking of any vnodes when we are expecting to
1182 *	write.  We do not want to starve the buffer cache with too many
1183 *	dirty buffers so we block here.  By blocking prior to the locking
1184 *	of any vnodes we attempt to avoid the situation where a locked vnode
1185 *	prevents the various system daemons from flushing related buffers.
1186 */
1187
1188void
1189bwillwrite(void)
1190{
1191
1192	if (numdirtybuffers >= hidirtybuffers) {
1193		int s;
1194
1195		mtx_lock(&Giant);
1196		s = splbio();
1197		mtx_lock(&nblock);
1198		while (numdirtybuffers >= hidirtybuffers) {
1199			bd_wakeup(1);
1200			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1201			msleep(&needsbuffer, &nblock,
1202			    (PRIBIO + 4), "flswai", 0);
1203		}
1204		splx(s);
1205		mtx_unlock(&nblock);
1206		mtx_unlock(&Giant);
1207	}
1208}
1209
1210/*
1211 * Return true if we have too many dirty buffers.
1212 */
1213int
1214buf_dirty_count_severe(void)
1215{
1216
1217	return(numdirtybuffers >= hidirtybuffers);
1218}
1219
1220/*
1221 *	brelse:
1222 *
1223 *	Release a busy buffer and, if requested, free its resources.  The
1224 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1225 *	to be accessed later as a cache entity or reused for other purposes.
1226 */
1227void
1228brelse(struct buf *bp)
1229{
1230	int s;
1231
1232	GIANT_REQUIRED;
1233
1234	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1235	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1236
1237	s = splbio();
1238
1239	if (bp->b_iocmd == BIO_WRITE &&
1240	    (bp->b_ioflags & BIO_ERROR) &&
1241	    !(bp->b_flags & B_INVAL)) {
1242		/*
1243		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1244		 * pages from being scrapped.  If B_INVAL is set then
1245		 * this case is not run and the next case is run to
1246		 * destroy the buffer.  B_INVAL can occur if the buffer
1247		 * is outside the range supported by the underlying device.
1248		 */
1249		bp->b_ioflags &= ~BIO_ERROR;
1250		bdirty(bp);
1251	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1252	    (bp->b_ioflags & BIO_ERROR) || (bp->b_bufsize <= 0)) {
1253		/*
1254		 * Either a failed I/O or we were asked to free or not
1255		 * cache the buffer.
1256		 */
1257		bp->b_flags |= B_INVAL;
1258		if (LIST_FIRST(&bp->b_dep) != NULL)
1259			buf_deallocate(bp);
1260		if (bp->b_flags & B_DELWRI) {
1261			atomic_subtract_int(&numdirtybuffers, 1);
1262			numdirtywakeup(lodirtybuffers);
1263		}
1264		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1265		if ((bp->b_flags & B_VMIO) == 0) {
1266			if (bp->b_bufsize)
1267				allocbuf(bp, 0);
1268			if (bp->b_vp)
1269				brelvp(bp);
1270		}
1271	}
1272
1273	/*
1274	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1275	 * is called with B_DELWRI set, the underlying pages may wind up
1276	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1277	 * because pages associated with a B_DELWRI bp are marked clean.
1278	 *
1279	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1280	 * if B_DELWRI is set.
1281	 *
1282	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1283	 * on pages to return pages to the VM page queues.
1284	 */
1285	if (bp->b_flags & B_DELWRI)
1286		bp->b_flags &= ~B_RELBUF;
1287	else if (vm_page_count_severe()) {
1288		/*
1289		 * XXX This lock may not be necessary since BKGRDINPROG
1290		 * cannot be set while we hold the buf lock, it can only be
1291		 * cleared if it is already pending.
1292		 */
1293		if (bp->b_vp) {
1294			BO_LOCK(bp->b_bufobj);
1295			if (!(bp->b_vflags & BV_BKGRDINPROG))
1296				bp->b_flags |= B_RELBUF;
1297			BO_UNLOCK(bp->b_bufobj);
1298		} else
1299			bp->b_flags |= B_RELBUF;
1300	}
1301
1302	/*
1303	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1304	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1305	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1306	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1307	 *
1308	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1309	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1310	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1311	 *
1312	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1313	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1314	 * the commit state and we cannot afford to lose the buffer. If the
1315	 * buffer has a background write in progress, we need to keep it
1316	 * around to prevent it from being reconstituted and starting a second
1317	 * background write.
1318	 */
1319	if ((bp->b_flags & B_VMIO)
1320	    && !(bp->b_vp->v_mount != NULL &&
1321		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1322		 !vn_isdisk(bp->b_vp, NULL) &&
1323		 (bp->b_flags & B_DELWRI))
1324	    ) {
1325
1326		int i, j, resid;
1327		vm_page_t m;
1328		off_t foff;
1329		vm_pindex_t poff;
1330		vm_object_t obj;
1331
1332		obj = bp->b_object;
1333
1334		/*
1335		 * Get the base offset and length of the buffer.  Note that
1336		 * in the VMIO case if the buffer block size is not
1337		 * page-aligned then b_data pointer may not be page-aligned.
1338		 * But our b_pages[] array *IS* page aligned.
1339		 *
1340		 * block sizes less then DEV_BSIZE (usually 512) are not
1341		 * supported due to the page granularity bits (m->valid,
1342		 * m->dirty, etc...).
1343		 *
1344		 * See man buf(9) for more information
1345		 */
1346		resid = bp->b_bufsize;
1347		foff = bp->b_offset;
1348		VM_OBJECT_LOCK(obj);
1349		for (i = 0; i < bp->b_npages; i++) {
1350			int had_bogus = 0;
1351
1352			m = bp->b_pages[i];
1353
1354			/*
1355			 * If we hit a bogus page, fixup *all* the bogus pages
1356			 * now.
1357			 */
1358			if (m == bogus_page) {
1359				poff = OFF_TO_IDX(bp->b_offset);
1360				had_bogus = 1;
1361
1362				for (j = i; j < bp->b_npages; j++) {
1363					vm_page_t mtmp;
1364					mtmp = bp->b_pages[j];
1365					if (mtmp == bogus_page) {
1366						mtmp = vm_page_lookup(obj, poff + j);
1367						if (!mtmp) {
1368							panic("brelse: page missing\n");
1369						}
1370						bp->b_pages[j] = mtmp;
1371					}
1372				}
1373
1374				if ((bp->b_flags & B_INVAL) == 0) {
1375					pmap_qenter(
1376					    trunc_page((vm_offset_t)bp->b_data),					    bp->b_pages, bp->b_npages);
1377				}
1378				m = bp->b_pages[i];
1379			}
1380			if ((bp->b_flags & B_NOCACHE) ||
1381			    (bp->b_ioflags & BIO_ERROR)) {
1382				int poffset = foff & PAGE_MASK;
1383				int presid = resid > (PAGE_SIZE - poffset) ?
1384					(PAGE_SIZE - poffset) : resid;
1385
1386				KASSERT(presid >= 0, ("brelse: extra page"));
1387				vm_page_lock_queues();
1388				vm_page_set_invalid(m, poffset, presid);
1389				vm_page_unlock_queues();
1390				if (had_bogus)
1391					printf("avoided corruption bug in bogus_page/brelse code\n");
1392			}
1393			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1394			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1395		}
1396		VM_OBJECT_UNLOCK(obj);
1397		if (bp->b_flags & (B_INVAL | B_RELBUF))
1398			vfs_vmio_release(bp);
1399
1400	} else if (bp->b_flags & B_VMIO) {
1401
1402		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1403			vfs_vmio_release(bp);
1404		}
1405
1406	}
1407
1408	if (bp->b_qindex != QUEUE_NONE)
1409		panic("brelse: free buffer onto another queue???");
1410	if (BUF_REFCNT(bp) > 1) {
1411		/* do not release to free list */
1412		BUF_UNLOCK(bp);
1413		splx(s);
1414		return;
1415	}
1416
1417	/* enqueue */
1418	mtx_lock(&bqlock);
1419
1420	/* buffers with no memory */
1421	if (bp->b_bufsize == 0) {
1422		bp->b_flags |= B_INVAL;
1423		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1424		if (bp->b_vflags & BV_BKGRDINPROG)
1425			panic("losing buffer 1");
1426		if (bp->b_kvasize) {
1427			bp->b_qindex = QUEUE_EMPTYKVA;
1428		} else {
1429			bp->b_qindex = QUEUE_EMPTY;
1430		}
1431		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1432		bp->b_dev = NULL;
1433	/* buffers with junk contents */
1434	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1435	    (bp->b_ioflags & BIO_ERROR)) {
1436		bp->b_flags |= B_INVAL;
1437		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1438		if (bp->b_vflags & BV_BKGRDINPROG)
1439			panic("losing buffer 2");
1440		bp->b_qindex = QUEUE_CLEAN;
1441		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1442		bp->b_dev = NULL;
1443	/* remaining buffers */
1444	} else {
1445		if (bp->b_flags & B_DELWRI)
1446			bp->b_qindex = QUEUE_DIRTY;
1447		else
1448			bp->b_qindex = QUEUE_CLEAN;
1449		if (bp->b_flags & B_AGE)
1450			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1451		else
1452			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1453	}
1454	mtx_unlock(&bqlock);
1455
1456	/*
1457	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1458	 * placed the buffer on the correct queue.  We must also disassociate
1459	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1460	 * find it.
1461	 */
1462	if (bp->b_flags & B_INVAL) {
1463		if (bp->b_flags & B_DELWRI)
1464			bundirty(bp);
1465		if (bp->b_vp)
1466			brelvp(bp);
1467	}
1468
1469	/*
1470	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1471	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1472	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1473	 * if B_INVAL is set ).
1474	 */
1475
1476	if (!(bp->b_flags & B_DELWRI))
1477		bufcountwakeup();
1478
1479	/*
1480	 * Something we can maybe free or reuse
1481	 */
1482	if (bp->b_bufsize || bp->b_kvasize)
1483		bufspacewakeup();
1484
1485	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1486	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1487		panic("brelse: not dirty");
1488	/* unlock */
1489	BUF_UNLOCK(bp);
1490	splx(s);
1491}
1492
1493/*
1494 * Release a buffer back to the appropriate queue but do not try to free
1495 * it.  The buffer is expected to be used again soon.
1496 *
1497 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1498 * biodone() to requeue an async I/O on completion.  It is also used when
1499 * known good buffers need to be requeued but we think we may need the data
1500 * again soon.
1501 *
1502 * XXX we should be able to leave the B_RELBUF hint set on completion.
1503 */
1504void
1505bqrelse(struct buf *bp)
1506{
1507	int s;
1508
1509	s = splbio();
1510
1511	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1512	    ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1513
1514	if (bp->b_qindex != QUEUE_NONE)
1515		panic("bqrelse: free buffer onto another queue???");
1516	if (BUF_REFCNT(bp) > 1) {
1517		/* do not release to free list */
1518		BUF_UNLOCK(bp);
1519		splx(s);
1520		return;
1521	}
1522	mtx_lock(&bqlock);
1523	/* buffers with stale but valid contents */
1524	if (bp->b_flags & B_DELWRI) {
1525		bp->b_qindex = QUEUE_DIRTY;
1526		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1527	} else {
1528		/*
1529		 * XXX This lock may not be necessary since BKGRDINPROG
1530		 * cannot be set while we hold the buf lock, it can only be
1531		 * cleared if it is already pending.
1532		 */
1533		BO_LOCK(bp->b_bufobj);
1534		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1535			BO_UNLOCK(bp->b_bufobj);
1536			bp->b_qindex = QUEUE_CLEAN;
1537			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1538			    b_freelist);
1539		} else {
1540			/*
1541			 * We are too low on memory, we have to try to free
1542			 * the buffer (most importantly: the wired pages
1543			 * making up its backing store) *now*.
1544			 */
1545			BO_UNLOCK(bp->b_bufobj);
1546			mtx_unlock(&bqlock);
1547			splx(s);
1548			brelse(bp);
1549			return;
1550		}
1551	}
1552	mtx_unlock(&bqlock);
1553
1554	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1555		bufcountwakeup();
1556
1557	/*
1558	 * Something we can maybe free or reuse.
1559	 */
1560	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1561		bufspacewakeup();
1562
1563	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1564	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1565		panic("bqrelse: not dirty");
1566	/* unlock */
1567	BUF_UNLOCK(bp);
1568	splx(s);
1569}
1570
1571/* Give pages used by the bp back to the VM system (where possible) */
1572static void
1573vfs_vmio_release(struct buf *bp)
1574{
1575	int i;
1576	vm_page_t m;
1577
1578	GIANT_REQUIRED;
1579	VM_OBJECT_LOCK(bp->b_object);
1580	vm_page_lock_queues();
1581	for (i = 0; i < bp->b_npages; i++) {
1582		m = bp->b_pages[i];
1583		bp->b_pages[i] = NULL;
1584		/*
1585		 * In order to keep page LRU ordering consistent, put
1586		 * everything on the inactive queue.
1587		 */
1588		vm_page_unwire(m, 0);
1589		/*
1590		 * We don't mess with busy pages, it is
1591		 * the responsibility of the process that
1592		 * busied the pages to deal with them.
1593		 */
1594		if ((m->flags & PG_BUSY) || (m->busy != 0))
1595			continue;
1596
1597		if (m->wire_count == 0) {
1598			/*
1599			 * Might as well free the page if we can and it has
1600			 * no valid data.  We also free the page if the
1601			 * buffer was used for direct I/O
1602			 */
1603			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1604			    m->hold_count == 0) {
1605				vm_page_busy(m);
1606				pmap_remove_all(m);
1607				vm_page_free(m);
1608			} else if (bp->b_flags & B_DIRECT) {
1609				vm_page_try_to_free(m);
1610			} else if (vm_page_count_severe()) {
1611				vm_page_try_to_cache(m);
1612			}
1613		}
1614	}
1615	vm_page_unlock_queues();
1616	VM_OBJECT_UNLOCK(bp->b_object);
1617	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1618
1619	if (bp->b_bufsize) {
1620		bufspacewakeup();
1621		bp->b_bufsize = 0;
1622	}
1623	bp->b_npages = 0;
1624	bp->b_flags &= ~B_VMIO;
1625	if (bp->b_vp)
1626		brelvp(bp);
1627}
1628
1629/*
1630 * Check to see if a block at a particular lbn is available for a clustered
1631 * write.
1632 */
1633static int
1634vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1635{
1636	struct buf *bpa;
1637	int match;
1638
1639	match = 0;
1640
1641	/* If the buf isn't in core skip it */
1642	if ((bpa = gbincore(&vp->v_bufobj, lblkno)) == NULL)
1643		return (0);
1644
1645	/* If the buf is busy we don't want to wait for it */
1646	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1647		return (0);
1648
1649	/* Only cluster with valid clusterable delayed write buffers */
1650	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1651	    (B_DELWRI | B_CLUSTEROK))
1652		goto done;
1653
1654	if (bpa->b_bufsize != size)
1655		goto done;
1656
1657	/*
1658	 * Check to see if it is in the expected place on disk and that the
1659	 * block has been mapped.
1660	 */
1661	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1662		match = 1;
1663done:
1664	BUF_UNLOCK(bpa);
1665	return (match);
1666}
1667
1668/*
1669 *	vfs_bio_awrite:
1670 *
1671 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1672 *	This is much better then the old way of writing only one buffer at
1673 *	a time.  Note that we may not be presented with the buffers in the
1674 *	correct order, so we search for the cluster in both directions.
1675 */
1676int
1677vfs_bio_awrite(struct buf *bp)
1678{
1679	int i;
1680	int j;
1681	daddr_t lblkno = bp->b_lblkno;
1682	struct vnode *vp = bp->b_vp;
1683	int s;
1684	int ncl;
1685	int nwritten;
1686	int size;
1687	int maxcl;
1688
1689	s = splbio();
1690	/*
1691	 * right now we support clustered writing only to regular files.  If
1692	 * we find a clusterable block we could be in the middle of a cluster
1693	 * rather then at the beginning.
1694	 */
1695	if ((vp->v_type == VREG) &&
1696	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1697	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1698
1699		size = vp->v_mount->mnt_stat.f_iosize;
1700		maxcl = MAXPHYS / size;
1701
1702		VI_LOCK(vp);
1703		for (i = 1; i < maxcl; i++)
1704			if (vfs_bio_clcheck(vp, size, lblkno + i,
1705			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1706				break;
1707
1708		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1709			if (vfs_bio_clcheck(vp, size, lblkno - j,
1710			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1711				break;
1712
1713		VI_UNLOCK(vp);
1714		--j;
1715		ncl = i + j;
1716		/*
1717		 * this is a possible cluster write
1718		 */
1719		if (ncl != 1) {
1720			BUF_UNLOCK(bp);
1721			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1722			splx(s);
1723			return nwritten;
1724		}
1725	}
1726
1727	bremfree(bp);
1728	bp->b_flags |= B_ASYNC;
1729
1730	splx(s);
1731	/*
1732	 * default (old) behavior, writing out only one block
1733	 *
1734	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1735	 */
1736	nwritten = bp->b_bufsize;
1737	(void) bwrite(bp);
1738
1739	return nwritten;
1740}
1741
1742/*
1743 *	getnewbuf:
1744 *
1745 *	Find and initialize a new buffer header, freeing up existing buffers
1746 *	in the bufqueues as necessary.  The new buffer is returned locked.
1747 *
1748 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1749 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1750 *
1751 *	We block if:
1752 *		We have insufficient buffer headers
1753 *		We have insufficient buffer space
1754 *		buffer_map is too fragmented ( space reservation fails )
1755 *		If we have to flush dirty buffers ( but we try to avoid this )
1756 *
1757 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1758 *	Instead we ask the buf daemon to do it for us.  We attempt to
1759 *	avoid piecemeal wakeups of the pageout daemon.
1760 */
1761
1762static struct buf *
1763getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1764{
1765	struct buf *bp;
1766	struct buf *nbp;
1767	int defrag = 0;
1768	int nqindex;
1769	static int flushingbufs;
1770
1771	GIANT_REQUIRED;
1772
1773	/*
1774	 * We can't afford to block since we might be holding a vnode lock,
1775	 * which may prevent system daemons from running.  We deal with
1776	 * low-memory situations by proactively returning memory and running
1777	 * async I/O rather then sync I/O.
1778	 */
1779
1780	atomic_add_int(&getnewbufcalls, 1);
1781	atomic_subtract_int(&getnewbufrestarts, 1);
1782restart:
1783	atomic_add_int(&getnewbufrestarts, 1);
1784
1785	/*
1786	 * Setup for scan.  If we do not have enough free buffers,
1787	 * we setup a degenerate case that immediately fails.  Note
1788	 * that if we are specially marked process, we are allowed to
1789	 * dip into our reserves.
1790	 *
1791	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1792	 *
1793	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1794	 * However, there are a number of cases (defragging, reusing, ...)
1795	 * where we cannot backup.
1796	 */
1797	mtx_lock(&bqlock);
1798	nqindex = QUEUE_EMPTYKVA;
1799	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1800
1801	if (nbp == NULL) {
1802		/*
1803		 * If no EMPTYKVA buffers and we are either
1804		 * defragging or reusing, locate a CLEAN buffer
1805		 * to free or reuse.  If bufspace useage is low
1806		 * skip this step so we can allocate a new buffer.
1807		 */
1808		if (defrag || bufspace >= lobufspace) {
1809			nqindex = QUEUE_CLEAN;
1810			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1811		}
1812
1813		/*
1814		 * If we could not find or were not allowed to reuse a
1815		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1816		 * buffer.  We can only use an EMPTY buffer if allocating
1817		 * its KVA would not otherwise run us out of buffer space.
1818		 */
1819		if (nbp == NULL && defrag == 0 &&
1820		    bufspace + maxsize < hibufspace) {
1821			nqindex = QUEUE_EMPTY;
1822			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1823		}
1824	}
1825
1826	/*
1827	 * Run scan, possibly freeing data and/or kva mappings on the fly
1828	 * depending.
1829	 */
1830
1831	while ((bp = nbp) != NULL) {
1832		int qindex = nqindex;
1833
1834		/*
1835		 * Calculate next bp ( we can only use it if we do not block
1836		 * or do other fancy things ).
1837		 */
1838		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1839			switch(qindex) {
1840			case QUEUE_EMPTY:
1841				nqindex = QUEUE_EMPTYKVA;
1842				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1843					break;
1844				/* FALLTHROUGH */
1845			case QUEUE_EMPTYKVA:
1846				nqindex = QUEUE_CLEAN;
1847				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1848					break;
1849				/* FALLTHROUGH */
1850			case QUEUE_CLEAN:
1851				/*
1852				 * nbp is NULL.
1853				 */
1854				break;
1855			}
1856		}
1857		if (bp->b_vp) {
1858			BO_LOCK(bp->b_bufobj);
1859			if (bp->b_vflags & BV_BKGRDINPROG) {
1860				BO_UNLOCK(bp->b_bufobj);
1861				continue;
1862			}
1863			BO_UNLOCK(bp->b_bufobj);
1864		}
1865
1866		/*
1867		 * Sanity Checks
1868		 */
1869		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1870
1871		/*
1872		 * Note: we no longer distinguish between VMIO and non-VMIO
1873		 * buffers.
1874		 */
1875
1876		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1877
1878		/*
1879		 * If we are defragging then we need a buffer with
1880		 * b_kvasize != 0.  XXX this situation should no longer
1881		 * occur, if defrag is non-zero the buffer's b_kvasize
1882		 * should also be non-zero at this point.  XXX
1883		 */
1884		if (defrag && bp->b_kvasize == 0) {
1885			printf("Warning: defrag empty buffer %p\n", bp);
1886			continue;
1887		}
1888
1889		/*
1890		 * Start freeing the bp.  This is somewhat involved.  nbp
1891		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1892		 */
1893
1894		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1895			panic("getnewbuf: locked buf");
1896		bremfreel(bp);
1897		mtx_unlock(&bqlock);
1898
1899		if (qindex == QUEUE_CLEAN) {
1900			if (bp->b_flags & B_VMIO) {
1901				bp->b_flags &= ~B_ASYNC;
1902				vfs_vmio_release(bp);
1903			}
1904			if (bp->b_vp)
1905				brelvp(bp);
1906		}
1907
1908		/*
1909		 * NOTE:  nbp is now entirely invalid.  We can only restart
1910		 * the scan from this point on.
1911		 *
1912		 * Get the rest of the buffer freed up.  b_kva* is still
1913		 * valid after this operation.
1914		 */
1915
1916		if (bp->b_rcred != NOCRED) {
1917			crfree(bp->b_rcred);
1918			bp->b_rcred = NOCRED;
1919		}
1920		if (bp->b_wcred != NOCRED) {
1921			crfree(bp->b_wcred);
1922			bp->b_wcred = NOCRED;
1923		}
1924		if (LIST_FIRST(&bp->b_dep) != NULL)
1925			buf_deallocate(bp);
1926		if (bp->b_vflags & BV_BKGRDINPROG)
1927			panic("losing buffer 3");
1928
1929		if (bp->b_bufsize)
1930			allocbuf(bp, 0);
1931
1932		bp->b_flags = 0;
1933		bp->b_ioflags = 0;
1934		bp->b_xflags = 0;
1935		bp->b_vflags = 0;
1936		bp->b_dev = NULL;
1937		bp->b_vp = NULL;
1938		bp->b_blkno = bp->b_lblkno = 0;
1939		bp->b_offset = NOOFFSET;
1940		bp->b_iodone = 0;
1941		bp->b_error = 0;
1942		bp->b_resid = 0;
1943		bp->b_bcount = 0;
1944		bp->b_npages = 0;
1945		bp->b_dirtyoff = bp->b_dirtyend = 0;
1946		bp->b_magic = B_MAGIC_BIO;
1947		bp->b_op = &buf_ops_bio;
1948		bp->b_object = NULL;
1949		bp->b_bufobj = NULL;
1950
1951		LIST_INIT(&bp->b_dep);
1952
1953		/*
1954		 * If we are defragging then free the buffer.
1955		 */
1956		if (defrag) {
1957			bp->b_flags |= B_INVAL;
1958			bfreekva(bp);
1959			brelse(bp);
1960			defrag = 0;
1961			goto restart;
1962		}
1963
1964		/*
1965		 * If we are overcomitted then recover the buffer and its
1966		 * KVM space.  This occurs in rare situations when multiple
1967		 * processes are blocked in getnewbuf() or allocbuf().
1968		 */
1969		if (bufspace >= hibufspace)
1970			flushingbufs = 1;
1971		if (flushingbufs && bp->b_kvasize != 0) {
1972			bp->b_flags |= B_INVAL;
1973			bfreekva(bp);
1974			brelse(bp);
1975			goto restart;
1976		}
1977		if (bufspace < lobufspace)
1978			flushingbufs = 0;
1979		break;
1980	}
1981
1982	/*
1983	 * If we exhausted our list, sleep as appropriate.  We may have to
1984	 * wakeup various daemons and write out some dirty buffers.
1985	 *
1986	 * Generally we are sleeping due to insufficient buffer space.
1987	 */
1988
1989	if (bp == NULL) {
1990		int flags;
1991		char *waitmsg;
1992
1993		mtx_unlock(&bqlock);
1994		if (defrag) {
1995			flags = VFS_BIO_NEED_BUFSPACE;
1996			waitmsg = "nbufkv";
1997		} else if (bufspace >= hibufspace) {
1998			waitmsg = "nbufbs";
1999			flags = VFS_BIO_NEED_BUFSPACE;
2000		} else {
2001			waitmsg = "newbuf";
2002			flags = VFS_BIO_NEED_ANY;
2003		}
2004
2005		bd_speedup();	/* heeeelp */
2006
2007		mtx_lock(&nblock);
2008		needsbuffer |= flags;
2009		while (needsbuffer & flags) {
2010			if (msleep(&needsbuffer, &nblock,
2011			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
2012				mtx_unlock(&nblock);
2013				return (NULL);
2014			}
2015		}
2016		mtx_unlock(&nblock);
2017	} else {
2018		/*
2019		 * We finally have a valid bp.  We aren't quite out of the
2020		 * woods, we still have to reserve kva space.  In order
2021		 * to keep fragmentation sane we only allocate kva in
2022		 * BKVASIZE chunks.
2023		 */
2024		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2025
2026		if (maxsize != bp->b_kvasize) {
2027			vm_offset_t addr = 0;
2028
2029			bfreekva(bp);
2030
2031			if (vm_map_findspace(buffer_map,
2032				vm_map_min(buffer_map), maxsize, &addr)) {
2033				/*
2034				 * Uh oh.  Buffer map is to fragmented.  We
2035				 * must defragment the map.
2036				 */
2037				atomic_add_int(&bufdefragcnt, 1);
2038				defrag = 1;
2039				bp->b_flags |= B_INVAL;
2040				brelse(bp);
2041				goto restart;
2042			}
2043			if (addr) {
2044				vm_map_insert(buffer_map, NULL, 0,
2045					addr, addr + maxsize,
2046					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2047
2048				bp->b_kvabase = (caddr_t) addr;
2049				bp->b_kvasize = maxsize;
2050				atomic_add_int(&bufspace, bp->b_kvasize);
2051				atomic_add_int(&bufreusecnt, 1);
2052			}
2053		}
2054		bp->b_saveaddr = bp->b_kvabase;
2055		bp->b_data = bp->b_saveaddr;
2056	}
2057	return(bp);
2058}
2059
2060/*
2061 *	buf_daemon:
2062 *
2063 *	buffer flushing daemon.  Buffers are normally flushed by the
2064 *	update daemon but if it cannot keep up this process starts to
2065 *	take the load in an attempt to prevent getnewbuf() from blocking.
2066 */
2067
2068static struct kproc_desc buf_kp = {
2069	"bufdaemon",
2070	buf_daemon,
2071	&bufdaemonproc
2072};
2073SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2074
2075static void
2076buf_daemon()
2077{
2078	int s;
2079
2080	mtx_lock(&Giant);
2081
2082	/*
2083	 * This process needs to be suspended prior to shutdown sync.
2084	 */
2085	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2086	    SHUTDOWN_PRI_LAST);
2087
2088	/*
2089	 * This process is allowed to take the buffer cache to the limit
2090	 */
2091	s = splbio();
2092	mtx_lock(&bdlock);
2093
2094	for (;;) {
2095		bd_request = 0;
2096		mtx_unlock(&bdlock);
2097
2098		kthread_suspend_check(bufdaemonproc);
2099
2100		/*
2101		 * Do the flush.  Limit the amount of in-transit I/O we
2102		 * allow to build up, otherwise we would completely saturate
2103		 * the I/O system.  Wakeup any waiting processes before we
2104		 * normally would so they can run in parallel with our drain.
2105		 */
2106		while (numdirtybuffers > lodirtybuffers) {
2107			if (flushbufqueues(0) == 0) {
2108				/*
2109				 * Could not find any buffers without rollback
2110				 * dependencies, so just write the first one
2111				 * in the hopes of eventually making progress.
2112				 */
2113				flushbufqueues(1);
2114				break;
2115			}
2116			waitrunningbufspace();
2117			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2118		}
2119
2120		/*
2121		 * Only clear bd_request if we have reached our low water
2122		 * mark.  The buf_daemon normally waits 1 second and
2123		 * then incrementally flushes any dirty buffers that have
2124		 * built up, within reason.
2125		 *
2126		 * If we were unable to hit our low water mark and couldn't
2127		 * find any flushable buffers, we sleep half a second.
2128		 * Otherwise we loop immediately.
2129		 */
2130		mtx_lock(&bdlock);
2131		if (numdirtybuffers <= lodirtybuffers) {
2132			/*
2133			 * We reached our low water mark, reset the
2134			 * request and sleep until we are needed again.
2135			 * The sleep is just so the suspend code works.
2136			 */
2137			bd_request = 0;
2138			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2139		} else {
2140			/*
2141			 * We couldn't find any flushable dirty buffers but
2142			 * still have too many dirty buffers, we
2143			 * have to sleep and try again.  (rare)
2144			 */
2145			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2146		}
2147	}
2148}
2149
2150/*
2151 *	flushbufqueues:
2152 *
2153 *	Try to flush a buffer in the dirty queue.  We must be careful to
2154 *	free up B_INVAL buffers instead of write them, which NFS is
2155 *	particularly sensitive to.
2156 */
2157int flushwithdeps = 0;
2158SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2159    0, "Number of buffers flushed with dependecies that require rollbacks");
2160
2161static int
2162flushbufqueues(int flushdeps)
2163{
2164	struct thread *td = curthread;
2165	struct vnode *vp;
2166	struct mount *mp;
2167	struct buf *bp;
2168	int hasdeps;
2169
2170	mtx_lock(&bqlock);
2171	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2172		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2173			continue;
2174		KASSERT((bp->b_flags & B_DELWRI),
2175		    ("unexpected clean buffer %p", bp));
2176		BO_LOCK(bp->b_bufobj);
2177		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
2178			BO_UNLOCK(bp->b_bufobj);
2179			BUF_UNLOCK(bp);
2180			continue;
2181		}
2182		BO_UNLOCK(bp->b_bufobj);
2183		if (bp->b_flags & B_INVAL) {
2184			bremfreel(bp);
2185			mtx_unlock(&bqlock);
2186			brelse(bp);
2187			return (1);
2188		}
2189
2190		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2191			if (flushdeps == 0) {
2192				BUF_UNLOCK(bp);
2193				continue;
2194			}
2195			hasdeps = 1;
2196		} else
2197			hasdeps = 0;
2198		/*
2199		 * We must hold the lock on a vnode before writing
2200		 * one of its buffers. Otherwise we may confuse, or
2201		 * in the case of a snapshot vnode, deadlock the
2202		 * system.
2203		 *
2204		 * The lock order here is the reverse of the normal
2205		 * of vnode followed by buf lock.  This is ok because
2206		 * the NOWAIT will prevent deadlock.
2207		 */
2208		vp = bp->b_vp;
2209		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2210			BUF_UNLOCK(bp);
2211			continue;
2212		}
2213		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2214			mtx_unlock(&bqlock);
2215			vfs_bio_awrite(bp);
2216			vn_finished_write(mp);
2217			VOP_UNLOCK(vp, 0, td);
2218			flushwithdeps += hasdeps;
2219			return (1);
2220		}
2221		vn_finished_write(mp);
2222		BUF_UNLOCK(bp);
2223	}
2224	mtx_unlock(&bqlock);
2225	return (0);
2226}
2227
2228/*
2229 * Check to see if a block is currently memory resident.
2230 */
2231struct buf *
2232incore(struct bufobj *bo, daddr_t blkno)
2233{
2234	struct buf *bp;
2235
2236	int s = splbio();
2237	BO_LOCK(bo);
2238	bp = gbincore(bo, blkno);
2239	BO_UNLOCK(bo);
2240	splx(s);
2241	return (bp);
2242}
2243
2244/*
2245 * Returns true if no I/O is needed to access the
2246 * associated VM object.  This is like incore except
2247 * it also hunts around in the VM system for the data.
2248 */
2249
2250static int
2251inmem(struct vnode * vp, daddr_t blkno)
2252{
2253	vm_object_t obj;
2254	vm_offset_t toff, tinc, size;
2255	vm_page_t m;
2256	vm_ooffset_t off;
2257
2258	GIANT_REQUIRED;
2259	ASSERT_VOP_LOCKED(vp, "inmem");
2260
2261	if (incore(&vp->v_bufobj, blkno))
2262		return 1;
2263	if (vp->v_mount == NULL)
2264		return 0;
2265	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2266		return 0;
2267
2268	size = PAGE_SIZE;
2269	if (size > vp->v_mount->mnt_stat.f_iosize)
2270		size = vp->v_mount->mnt_stat.f_iosize;
2271	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2272
2273	VM_OBJECT_LOCK(obj);
2274	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2275		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2276		if (!m)
2277			goto notinmem;
2278		tinc = size;
2279		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2280			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2281		if (vm_page_is_valid(m,
2282		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2283			goto notinmem;
2284	}
2285	VM_OBJECT_UNLOCK(obj);
2286	return 1;
2287
2288notinmem:
2289	VM_OBJECT_UNLOCK(obj);
2290	return (0);
2291}
2292
2293/*
2294 *	vfs_setdirty:
2295 *
2296 *	Sets the dirty range for a buffer based on the status of the dirty
2297 *	bits in the pages comprising the buffer.
2298 *
2299 *	The range is limited to the size of the buffer.
2300 *
2301 *	This routine is primarily used by NFS, but is generalized for the
2302 *	B_VMIO case.
2303 */
2304static void
2305vfs_setdirty(struct buf *bp)
2306{
2307	int i;
2308	vm_object_t object;
2309
2310	GIANT_REQUIRED;
2311	/*
2312	 * Degenerate case - empty buffer
2313	 */
2314
2315	if (bp->b_bufsize == 0)
2316		return;
2317
2318	/*
2319	 * We qualify the scan for modified pages on whether the
2320	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2321	 * is not cleared simply by protecting pages off.
2322	 */
2323
2324	if ((bp->b_flags & B_VMIO) == 0)
2325		return;
2326
2327	object = bp->b_pages[0]->object;
2328	VM_OBJECT_LOCK(object);
2329	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2330		printf("Warning: object %p writeable but not mightbedirty\n", object);
2331	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2332		printf("Warning: object %p mightbedirty but not writeable\n", object);
2333
2334	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2335		vm_offset_t boffset;
2336		vm_offset_t eoffset;
2337
2338		vm_page_lock_queues();
2339		/*
2340		 * test the pages to see if they have been modified directly
2341		 * by users through the VM system.
2342		 */
2343		for (i = 0; i < bp->b_npages; i++)
2344			vm_page_test_dirty(bp->b_pages[i]);
2345
2346		/*
2347		 * Calculate the encompassing dirty range, boffset and eoffset,
2348		 * (eoffset - boffset) bytes.
2349		 */
2350
2351		for (i = 0; i < bp->b_npages; i++) {
2352			if (bp->b_pages[i]->dirty)
2353				break;
2354		}
2355		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2356
2357		for (i = bp->b_npages - 1; i >= 0; --i) {
2358			if (bp->b_pages[i]->dirty) {
2359				break;
2360			}
2361		}
2362		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2363
2364		vm_page_unlock_queues();
2365		/*
2366		 * Fit it to the buffer.
2367		 */
2368
2369		if (eoffset > bp->b_bcount)
2370			eoffset = bp->b_bcount;
2371
2372		/*
2373		 * If we have a good dirty range, merge with the existing
2374		 * dirty range.
2375		 */
2376
2377		if (boffset < eoffset) {
2378			if (bp->b_dirtyoff > boffset)
2379				bp->b_dirtyoff = boffset;
2380			if (bp->b_dirtyend < eoffset)
2381				bp->b_dirtyend = eoffset;
2382		}
2383	}
2384	VM_OBJECT_UNLOCK(object);
2385}
2386
2387/*
2388 *	getblk:
2389 *
2390 *	Get a block given a specified block and offset into a file/device.
2391 *	The buffers B_DONE bit will be cleared on return, making it almost
2392 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2393 *	return.  The caller should clear B_INVAL prior to initiating a
2394 *	READ.
2395 *
2396 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2397 *	an existing buffer.
2398 *
2399 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2400 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2401 *	and then cleared based on the backing VM.  If the previous buffer is
2402 *	non-0-sized but invalid, B_CACHE will be cleared.
2403 *
2404 *	If getblk() must create a new buffer, the new buffer is returned with
2405 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2406 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2407 *	backing VM.
2408 *
2409 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2410 *	B_CACHE bit is clear.
2411 *
2412 *	What this means, basically, is that the caller should use B_CACHE to
2413 *	determine whether the buffer is fully valid or not and should clear
2414 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2415 *	the buffer by loading its data area with something, the caller needs
2416 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2417 *	the caller should set B_CACHE ( as an optimization ), else the caller
2418 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2419 *	a write attempt or if it was a successfull read.  If the caller
2420 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2421 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2422 */
2423struct buf *
2424getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2425    int flags)
2426{
2427	struct buf *bp;
2428	struct bufobj *bo;
2429	int s;
2430	int error;
2431	ASSERT_VOP_LOCKED(vp, "getblk");
2432
2433	if (size > MAXBSIZE)
2434		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2435
2436	bo = &vp->v_bufobj;
2437	s = splbio();
2438loop:
2439	/*
2440	 * Block if we are low on buffers.   Certain processes are allowed
2441	 * to completely exhaust the buffer cache.
2442         *
2443         * If this check ever becomes a bottleneck it may be better to
2444         * move it into the else, when gbincore() fails.  At the moment
2445         * it isn't a problem.
2446	 *
2447	 * XXX remove if 0 sections (clean this up after its proven)
2448         */
2449	if (numfreebuffers == 0) {
2450		if (curthread == PCPU_GET(idlethread))
2451			return NULL;
2452		mtx_lock(&nblock);
2453		needsbuffer |= VFS_BIO_NEED_ANY;
2454		mtx_unlock(&nblock);
2455	}
2456
2457	VI_LOCK(vp);
2458	bp = gbincore(bo, blkno);
2459	if (bp != NULL) {
2460		int lockflags;
2461		/*
2462		 * Buffer is in-core.  If the buffer is not busy, it must
2463		 * be on a queue.
2464		 */
2465		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2466
2467		if (flags & GB_LOCK_NOWAIT)
2468			lockflags |= LK_NOWAIT;
2469
2470		error = BUF_TIMELOCK(bp, lockflags,
2471		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2472
2473		/*
2474		 * If we slept and got the lock we have to restart in case
2475		 * the buffer changed identities.
2476		 */
2477		if (error == ENOLCK)
2478			goto loop;
2479		/* We timed out or were interrupted. */
2480		else if (error)
2481			return (NULL);
2482
2483		/*
2484		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2485		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2486		 * and for a VMIO buffer B_CACHE is adjusted according to the
2487		 * backing VM cache.
2488		 */
2489		if (bp->b_flags & B_INVAL)
2490			bp->b_flags &= ~B_CACHE;
2491		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2492			bp->b_flags |= B_CACHE;
2493		bremfree(bp);
2494
2495		/*
2496		 * check for size inconsistancies for non-VMIO case.
2497		 */
2498
2499		if (bp->b_bcount != size) {
2500			if ((bp->b_flags & B_VMIO) == 0 ||
2501			    (size > bp->b_kvasize)) {
2502				if (bp->b_flags & B_DELWRI) {
2503					bp->b_flags |= B_NOCACHE;
2504					bwrite(bp);
2505				} else {
2506					if ((bp->b_flags & B_VMIO) &&
2507					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2508						bp->b_flags |= B_RELBUF;
2509						brelse(bp);
2510					} else {
2511						bp->b_flags |= B_NOCACHE;
2512						bwrite(bp);
2513					}
2514				}
2515				goto loop;
2516			}
2517		}
2518
2519		/*
2520		 * If the size is inconsistant in the VMIO case, we can resize
2521		 * the buffer.  This might lead to B_CACHE getting set or
2522		 * cleared.  If the size has not changed, B_CACHE remains
2523		 * unchanged from its previous state.
2524		 */
2525
2526		if (bp->b_bcount != size)
2527			allocbuf(bp, size);
2528
2529		KASSERT(bp->b_offset != NOOFFSET,
2530		    ("getblk: no buffer offset"));
2531
2532		/*
2533		 * A buffer with B_DELWRI set and B_CACHE clear must
2534		 * be committed before we can return the buffer in
2535		 * order to prevent the caller from issuing a read
2536		 * ( due to B_CACHE not being set ) and overwriting
2537		 * it.
2538		 *
2539		 * Most callers, including NFS and FFS, need this to
2540		 * operate properly either because they assume they
2541		 * can issue a read if B_CACHE is not set, or because
2542		 * ( for example ) an uncached B_DELWRI might loop due
2543		 * to softupdates re-dirtying the buffer.  In the latter
2544		 * case, B_CACHE is set after the first write completes,
2545		 * preventing further loops.
2546		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2547		 * above while extending the buffer, we cannot allow the
2548		 * buffer to remain with B_CACHE set after the write
2549		 * completes or it will represent a corrupt state.  To
2550		 * deal with this we set B_NOCACHE to scrap the buffer
2551		 * after the write.
2552		 *
2553		 * We might be able to do something fancy, like setting
2554		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2555		 * so the below call doesn't set B_CACHE, but that gets real
2556		 * confusing.  This is much easier.
2557		 */
2558
2559		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2560			bp->b_flags |= B_NOCACHE;
2561			bwrite(bp);
2562			goto loop;
2563		}
2564
2565		splx(s);
2566		bp->b_flags &= ~B_DONE;
2567	} else {
2568		int bsize, maxsize, vmio;
2569		off_t offset;
2570
2571		/*
2572		 * Buffer is not in-core, create new buffer.  The buffer
2573		 * returned by getnewbuf() is locked.  Note that the returned
2574		 * buffer is also considered valid (not marked B_INVAL).
2575		 */
2576		VI_UNLOCK(vp);
2577		/*
2578		 * If the user does not want us to create the buffer, bail out
2579		 * here.
2580		 */
2581		if (flags & GB_NOCREAT) {
2582			splx(s);
2583			return NULL;
2584		}
2585		if (vn_isdisk(vp, NULL))
2586			bsize = DEV_BSIZE;
2587		else if (vp->v_mountedhere)
2588			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2589		else if (vp->v_mount)
2590			bsize = vp->v_mount->mnt_stat.f_iosize;
2591		else
2592			bsize = size;
2593
2594		if (vp->v_bsize != bsize) {
2595#if 0
2596			printf("WARNING: Wrong block size on vnode: %d should be %d\n", vp->v_bsize, bsize);
2597#endif
2598			vp->v_bsize = bsize;
2599		}
2600
2601		offset = blkno * bsize;
2602		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2603		    (vp->v_vflag & VV_OBJBUF);
2604		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2605		maxsize = imax(maxsize, bsize);
2606
2607		bp = getnewbuf(slpflag, slptimeo, size, maxsize);
2608		if (bp == NULL) {
2609			if (slpflag || slptimeo) {
2610				splx(s);
2611				return NULL;
2612			}
2613			goto loop;
2614		}
2615
2616		/*
2617		 * This code is used to make sure that a buffer is not
2618		 * created while the getnewbuf routine is blocked.
2619		 * This can be a problem whether the vnode is locked or not.
2620		 * If the buffer is created out from under us, we have to
2621		 * throw away the one we just created.  There is now window
2622		 * race because we are safely running at splbio() from the
2623		 * point of the duplicate buffer creation through to here,
2624		 * and we've locked the buffer.
2625		 *
2626		 * Note: this must occur before we associate the buffer
2627		 * with the vp especially considering limitations in
2628		 * the splay tree implementation when dealing with duplicate
2629		 * lblkno's.
2630		 */
2631		BO_LOCK(bo);
2632		if (gbincore(bo, blkno)) {
2633			BO_UNLOCK(bo);
2634			bp->b_flags |= B_INVAL;
2635			brelse(bp);
2636			goto loop;
2637		}
2638
2639		/*
2640		 * Insert the buffer into the hash, so that it can
2641		 * be found by incore.
2642		 */
2643		bp->b_blkno = bp->b_lblkno = blkno;
2644		bp->b_offset = offset;
2645
2646		bgetvp(vp, bp);
2647		BO_UNLOCK(bo);
2648
2649		/*
2650		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2651		 * buffer size starts out as 0, B_CACHE will be set by
2652		 * allocbuf() for the VMIO case prior to it testing the
2653		 * backing store for validity.
2654		 */
2655
2656		if (vmio) {
2657			bp->b_flags |= B_VMIO;
2658#if defined(VFS_BIO_DEBUG)
2659			if (vn_canvmio(vp) != TRUE)
2660				printf("getblk: VMIO on vnode type %d\n",
2661					vp->v_type);
2662#endif
2663			VOP_GETVOBJECT(vp, &bp->b_object);
2664		} else {
2665			bp->b_flags &= ~B_VMIO;
2666			bp->b_object = NULL;
2667		}
2668
2669		allocbuf(bp, size);
2670
2671		splx(s);
2672		bp->b_flags &= ~B_DONE;
2673	}
2674	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2675	KASSERT(bp->b_bufobj == bo,
2676	    ("wrong b_bufobj %p should be %p", bp->b_bufobj, bo));
2677	return (bp);
2678}
2679
2680/*
2681 * Get an empty, disassociated buffer of given size.  The buffer is initially
2682 * set to B_INVAL.
2683 */
2684struct buf *
2685geteblk(int size)
2686{
2687	struct buf *bp;
2688	int s;
2689	int maxsize;
2690
2691	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2692
2693	s = splbio();
2694	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2695		continue;
2696	splx(s);
2697	allocbuf(bp, size);
2698	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2699	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2700	return (bp);
2701}
2702
2703
2704/*
2705 * This code constitutes the buffer memory from either anonymous system
2706 * memory (in the case of non-VMIO operations) or from an associated
2707 * VM object (in the case of VMIO operations).  This code is able to
2708 * resize a buffer up or down.
2709 *
2710 * Note that this code is tricky, and has many complications to resolve
2711 * deadlock or inconsistant data situations.  Tread lightly!!!
2712 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2713 * the caller.  Calling this code willy nilly can result in the loss of data.
2714 *
2715 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2716 * B_CACHE for the non-VMIO case.
2717 */
2718
2719int
2720allocbuf(struct buf *bp, int size)
2721{
2722	int newbsize, mbsize;
2723	int i;
2724
2725	GIANT_REQUIRED;
2726
2727	if (BUF_REFCNT(bp) == 0)
2728		panic("allocbuf: buffer not busy");
2729
2730	if (bp->b_kvasize < size)
2731		panic("allocbuf: buffer too small");
2732
2733	if ((bp->b_flags & B_VMIO) == 0) {
2734		caddr_t origbuf;
2735		int origbufsize;
2736		/*
2737		 * Just get anonymous memory from the kernel.  Don't
2738		 * mess with B_CACHE.
2739		 */
2740		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2741		if (bp->b_flags & B_MALLOC)
2742			newbsize = mbsize;
2743		else
2744			newbsize = round_page(size);
2745
2746		if (newbsize < bp->b_bufsize) {
2747			/*
2748			 * malloced buffers are not shrunk
2749			 */
2750			if (bp->b_flags & B_MALLOC) {
2751				if (newbsize) {
2752					bp->b_bcount = size;
2753				} else {
2754					free(bp->b_data, M_BIOBUF);
2755					if (bp->b_bufsize) {
2756						atomic_subtract_int(
2757						    &bufmallocspace,
2758						    bp->b_bufsize);
2759						bufspacewakeup();
2760						bp->b_bufsize = 0;
2761					}
2762					bp->b_saveaddr = bp->b_kvabase;
2763					bp->b_data = bp->b_saveaddr;
2764					bp->b_bcount = 0;
2765					bp->b_flags &= ~B_MALLOC;
2766				}
2767				return 1;
2768			}
2769			vm_hold_free_pages(
2770			    bp,
2771			    (vm_offset_t) bp->b_data + newbsize,
2772			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2773		} else if (newbsize > bp->b_bufsize) {
2774			/*
2775			 * We only use malloced memory on the first allocation.
2776			 * and revert to page-allocated memory when the buffer
2777			 * grows.
2778			 */
2779			/*
2780			 * There is a potential smp race here that could lead
2781			 * to bufmallocspace slightly passing the max.  It
2782			 * is probably extremely rare and not worth worrying
2783			 * over.
2784			 */
2785			if ( (bufmallocspace < maxbufmallocspace) &&
2786				(bp->b_bufsize == 0) &&
2787				(mbsize <= PAGE_SIZE/2)) {
2788
2789				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2790				bp->b_bufsize = mbsize;
2791				bp->b_bcount = size;
2792				bp->b_flags |= B_MALLOC;
2793				atomic_add_int(&bufmallocspace, mbsize);
2794				return 1;
2795			}
2796			origbuf = NULL;
2797			origbufsize = 0;
2798			/*
2799			 * If the buffer is growing on its other-than-first allocation,
2800			 * then we revert to the page-allocation scheme.
2801			 */
2802			if (bp->b_flags & B_MALLOC) {
2803				origbuf = bp->b_data;
2804				origbufsize = bp->b_bufsize;
2805				bp->b_data = bp->b_kvabase;
2806				if (bp->b_bufsize) {
2807					atomic_subtract_int(&bufmallocspace,
2808					    bp->b_bufsize);
2809					bufspacewakeup();
2810					bp->b_bufsize = 0;
2811				}
2812				bp->b_flags &= ~B_MALLOC;
2813				newbsize = round_page(newbsize);
2814			}
2815			vm_hold_load_pages(
2816			    bp,
2817			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2818			    (vm_offset_t) bp->b_data + newbsize);
2819			if (origbuf) {
2820				bcopy(origbuf, bp->b_data, origbufsize);
2821				free(origbuf, M_BIOBUF);
2822			}
2823		}
2824	} else {
2825		int desiredpages;
2826
2827		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2828		desiredpages = (size == 0) ? 0 :
2829			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2830
2831		if (bp->b_flags & B_MALLOC)
2832			panic("allocbuf: VMIO buffer can't be malloced");
2833		/*
2834		 * Set B_CACHE initially if buffer is 0 length or will become
2835		 * 0-length.
2836		 */
2837		if (size == 0 || bp->b_bufsize == 0)
2838			bp->b_flags |= B_CACHE;
2839
2840		if (newbsize < bp->b_bufsize) {
2841			/*
2842			 * DEV_BSIZE aligned new buffer size is less then the
2843			 * DEV_BSIZE aligned existing buffer size.  Figure out
2844			 * if we have to remove any pages.
2845			 */
2846			if (desiredpages < bp->b_npages) {
2847				vm_page_t m;
2848
2849				vm_page_lock_queues();
2850				for (i = desiredpages; i < bp->b_npages; i++) {
2851					/*
2852					 * the page is not freed here -- it
2853					 * is the responsibility of
2854					 * vnode_pager_setsize
2855					 */
2856					m = bp->b_pages[i];
2857					KASSERT(m != bogus_page,
2858					    ("allocbuf: bogus page found"));
2859					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2860						vm_page_lock_queues();
2861
2862					bp->b_pages[i] = NULL;
2863					vm_page_unwire(m, 0);
2864				}
2865				vm_page_unlock_queues();
2866				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2867				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2868				bp->b_npages = desiredpages;
2869			}
2870		} else if (size > bp->b_bcount) {
2871			/*
2872			 * We are growing the buffer, possibly in a
2873			 * byte-granular fashion.
2874			 */
2875			struct vnode *vp;
2876			vm_object_t obj;
2877			vm_offset_t toff;
2878			vm_offset_t tinc;
2879
2880			/*
2881			 * Step 1, bring in the VM pages from the object,
2882			 * allocating them if necessary.  We must clear
2883			 * B_CACHE if these pages are not valid for the
2884			 * range covered by the buffer.
2885			 */
2886
2887			vp = bp->b_vp;
2888			obj = bp->b_object;
2889
2890			VM_OBJECT_LOCK(obj);
2891			while (bp->b_npages < desiredpages) {
2892				vm_page_t m;
2893				vm_pindex_t pi;
2894
2895				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2896				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2897					/*
2898					 * note: must allocate system pages
2899					 * since blocking here could intefere
2900					 * with paging I/O, no matter which
2901					 * process we are.
2902					 */
2903					m = vm_page_alloc(obj, pi,
2904					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2905					if (m == NULL) {
2906						atomic_add_int(&vm_pageout_deficit,
2907						    desiredpages - bp->b_npages);
2908						VM_OBJECT_UNLOCK(obj);
2909						VM_WAIT;
2910						VM_OBJECT_LOCK(obj);
2911					} else {
2912						vm_page_lock_queues();
2913						vm_page_wakeup(m);
2914						vm_page_unlock_queues();
2915						bp->b_flags &= ~B_CACHE;
2916						bp->b_pages[bp->b_npages] = m;
2917						++bp->b_npages;
2918					}
2919					continue;
2920				}
2921
2922				/*
2923				 * We found a page.  If we have to sleep on it,
2924				 * retry because it might have gotten freed out
2925				 * from under us.
2926				 *
2927				 * We can only test PG_BUSY here.  Blocking on
2928				 * m->busy might lead to a deadlock:
2929				 *
2930				 *  vm_fault->getpages->cluster_read->allocbuf
2931				 *
2932				 */
2933				vm_page_lock_queues();
2934				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2935					continue;
2936
2937				/*
2938				 * We have a good page.  Should we wakeup the
2939				 * page daemon?
2940				 */
2941				if ((curproc != pageproc) &&
2942				    ((m->queue - m->pc) == PQ_CACHE) &&
2943				    ((cnt.v_free_count + cnt.v_cache_count) <
2944					(cnt.v_free_min + cnt.v_cache_min))) {
2945					pagedaemon_wakeup();
2946				}
2947				vm_page_wire(m);
2948				vm_page_unlock_queues();
2949				bp->b_pages[bp->b_npages] = m;
2950				++bp->b_npages;
2951			}
2952
2953			/*
2954			 * Step 2.  We've loaded the pages into the buffer,
2955			 * we have to figure out if we can still have B_CACHE
2956			 * set.  Note that B_CACHE is set according to the
2957			 * byte-granular range ( bcount and size ), new the
2958			 * aligned range ( newbsize ).
2959			 *
2960			 * The VM test is against m->valid, which is DEV_BSIZE
2961			 * aligned.  Needless to say, the validity of the data
2962			 * needs to also be DEV_BSIZE aligned.  Note that this
2963			 * fails with NFS if the server or some other client
2964			 * extends the file's EOF.  If our buffer is resized,
2965			 * B_CACHE may remain set! XXX
2966			 */
2967
2968			toff = bp->b_bcount;
2969			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2970
2971			while ((bp->b_flags & B_CACHE) && toff < size) {
2972				vm_pindex_t pi;
2973
2974				if (tinc > (size - toff))
2975					tinc = size - toff;
2976
2977				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2978				    PAGE_SHIFT;
2979
2980				vfs_buf_test_cache(
2981				    bp,
2982				    bp->b_offset,
2983				    toff,
2984				    tinc,
2985				    bp->b_pages[pi]
2986				);
2987				toff += tinc;
2988				tinc = PAGE_SIZE;
2989			}
2990			VM_OBJECT_UNLOCK(obj);
2991
2992			/*
2993			 * Step 3, fixup the KVM pmap.  Remember that
2994			 * bp->b_data is relative to bp->b_offset, but
2995			 * bp->b_offset may be offset into the first page.
2996			 */
2997
2998			bp->b_data = (caddr_t)
2999			    trunc_page((vm_offset_t)bp->b_data);
3000			pmap_qenter(
3001			    (vm_offset_t)bp->b_data,
3002			    bp->b_pages,
3003			    bp->b_npages
3004			);
3005
3006			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
3007			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
3008		}
3009	}
3010	if (newbsize < bp->b_bufsize)
3011		bufspacewakeup();
3012	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
3013	bp->b_bcount = size;		/* requested buffer size	*/
3014	return 1;
3015}
3016
3017void
3018biodone(struct bio *bp)
3019{
3020
3021	mtx_lock(&bdonelock);
3022	bp->bio_flags |= BIO_DONE;
3023	if (bp->bio_done == NULL)
3024		wakeup(bp);
3025	mtx_unlock(&bdonelock);
3026	if (bp->bio_done != NULL)
3027		bp->bio_done(bp);
3028}
3029
3030/*
3031 * Wait for a BIO to finish.
3032 *
3033 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3034 * case is not yet clear.
3035 */
3036int
3037biowait(struct bio *bp, const char *wchan)
3038{
3039
3040	mtx_lock(&bdonelock);
3041	while ((bp->bio_flags & BIO_DONE) == 0)
3042		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3043	mtx_unlock(&bdonelock);
3044	if (bp->bio_error != 0)
3045		return (bp->bio_error);
3046	if (!(bp->bio_flags & BIO_ERROR))
3047		return (0);
3048	return (EIO);
3049}
3050
3051void
3052biofinish(struct bio *bp, struct devstat *stat, int error)
3053{
3054
3055	if (error) {
3056		bp->bio_error = error;
3057		bp->bio_flags |= BIO_ERROR;
3058	}
3059	if (stat != NULL)
3060		devstat_end_transaction_bio(stat, bp);
3061	biodone(bp);
3062}
3063
3064/*
3065 *	bufwait:
3066 *
3067 *	Wait for buffer I/O completion, returning error status.  The buffer
3068 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3069 *	error and cleared.
3070 */
3071int
3072bufwait(struct buf *bp)
3073{
3074	int s;
3075
3076	s = splbio();
3077	if (bp->b_iocmd == BIO_READ)
3078		bwait(bp, PRIBIO, "biord");
3079	else
3080		bwait(bp, PRIBIO, "biowr");
3081	splx(s);
3082	if (bp->b_flags & B_EINTR) {
3083		bp->b_flags &= ~B_EINTR;
3084		return (EINTR);
3085	}
3086	if (bp->b_ioflags & BIO_ERROR) {
3087		return (bp->b_error ? bp->b_error : EIO);
3088	} else {
3089		return (0);
3090	}
3091}
3092
3093 /*
3094  * Call back function from struct bio back up to struct buf.
3095  */
3096static void
3097bufdonebio(struct bio *bp)
3098{
3099
3100	/* Device drivers may or may not hold giant, hold it here. */
3101	mtx_lock(&Giant);
3102	bufdone(bp->bio_caller2);
3103	mtx_unlock(&Giant);
3104}
3105
3106void
3107dev_strategy(struct buf *bp)
3108{
3109	struct cdevsw *csw;
3110	struct cdev *dev;
3111
3112	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3113		panic("b_iocmd botch");
3114	bp->b_io.bio_done = bufdonebio;
3115	bp->b_io.bio_caller2 = bp;
3116	dev = bp->b_io.bio_dev;
3117	KASSERT(dev->si_refcount > 0,
3118	    ("dev_strategy on un-referenced struct cdev *(%s)",
3119	    devtoname(dev)));
3120	csw = dev_refthread(dev);
3121	if (csw == NULL) {
3122		bp->b_error = ENXIO;
3123		bp->b_ioflags = BIO_ERROR;
3124		mtx_lock(&Giant);	/* XXX: too defensive ? */
3125		bufdone(bp);
3126		mtx_unlock(&Giant);	/* XXX: too defensive ? */
3127		return;
3128	}
3129	(*csw->d_strategy)(&bp->b_io);
3130	dev_relthread(dev);
3131}
3132
3133/*
3134 *	bufdone:
3135 *
3136 *	Finish I/O on a buffer, optionally calling a completion function.
3137 *	This is usually called from an interrupt so process blocking is
3138 *	not allowed.
3139 *
3140 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3141 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3142 *	assuming B_INVAL is clear.
3143 *
3144 *	For the VMIO case, we set B_CACHE if the op was a read and no
3145 *	read error occured, or if the op was a write.  B_CACHE is never
3146 *	set if the buffer is invalid or otherwise uncacheable.
3147 *
3148 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3149 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3150 *	in the biodone routine.
3151 */
3152void
3153bufdone(struct buf *bp)
3154{
3155	int s;
3156	void    (*biodone)(struct buf *);
3157
3158
3159	s = splbio();
3160
3161	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3162	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3163
3164	bp->b_flags |= B_DONE;
3165	runningbufwakeup(bp);
3166
3167	if (bp->b_iocmd == BIO_WRITE && bp->b_bufobj != NULL)
3168		bufobj_wdrop(bp->b_bufobj);
3169
3170	/* call optional completion function if requested */
3171	if (bp->b_iodone != NULL) {
3172		biodone = bp->b_iodone;
3173		bp->b_iodone = NULL;
3174		(*biodone) (bp);
3175		splx(s);
3176		return;
3177	}
3178	if (LIST_FIRST(&bp->b_dep) != NULL)
3179		buf_complete(bp);
3180
3181	if (bp->b_flags & B_VMIO) {
3182		int i;
3183		vm_ooffset_t foff;
3184		vm_page_t m;
3185		vm_object_t obj;
3186		int iosize;
3187		struct vnode *vp = bp->b_vp;
3188
3189		obj = bp->b_object;
3190
3191#if defined(VFS_BIO_DEBUG)
3192		mp_fixme("usecount and vflag accessed without locks.");
3193		if (vp->v_usecount == 0) {
3194			panic("biodone: zero vnode ref count");
3195		}
3196
3197		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3198			panic("biodone: vnode is not setup for merged cache");
3199		}
3200#endif
3201
3202		foff = bp->b_offset;
3203		KASSERT(bp->b_offset != NOOFFSET,
3204		    ("biodone: no buffer offset"));
3205
3206		VM_OBJECT_LOCK(obj);
3207#if defined(VFS_BIO_DEBUG)
3208		if (obj->paging_in_progress < bp->b_npages) {
3209			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3210			    obj->paging_in_progress, bp->b_npages);
3211		}
3212#endif
3213
3214		/*
3215		 * Set B_CACHE if the op was a normal read and no error
3216		 * occured.  B_CACHE is set for writes in the b*write()
3217		 * routines.
3218		 */
3219		iosize = bp->b_bcount - bp->b_resid;
3220		if (bp->b_iocmd == BIO_READ &&
3221		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3222		    !(bp->b_ioflags & BIO_ERROR)) {
3223			bp->b_flags |= B_CACHE;
3224		}
3225		vm_page_lock_queues();
3226		for (i = 0; i < bp->b_npages; i++) {
3227			int bogusflag = 0;
3228			int resid;
3229
3230			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3231			if (resid > iosize)
3232				resid = iosize;
3233
3234			/*
3235			 * cleanup bogus pages, restoring the originals
3236			 */
3237			m = bp->b_pages[i];
3238			if (m == bogus_page) {
3239				bogusflag = 1;
3240				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3241				if (m == NULL)
3242					panic("biodone: page disappeared!");
3243				bp->b_pages[i] = m;
3244				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3245			}
3246#if defined(VFS_BIO_DEBUG)
3247			if (OFF_TO_IDX(foff) != m->pindex) {
3248				printf(
3249"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3250				    (intmax_t)foff, (uintmax_t)m->pindex);
3251			}
3252#endif
3253
3254			/*
3255			 * In the write case, the valid and clean bits are
3256			 * already changed correctly ( see bdwrite() ), so we
3257			 * only need to do this here in the read case.
3258			 */
3259			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3260				vfs_page_set_valid(bp, foff, i, m);
3261			}
3262
3263			/*
3264			 * when debugging new filesystems or buffer I/O methods, this
3265			 * is the most common error that pops up.  if you see this, you
3266			 * have not set the page busy flag correctly!!!
3267			 */
3268			if (m->busy == 0) {
3269				printf("biodone: page busy < 0, "
3270				    "pindex: %d, foff: 0x(%x,%x), "
3271				    "resid: %d, index: %d\n",
3272				    (int) m->pindex, (int)(foff >> 32),
3273						(int) foff & 0xffffffff, resid, i);
3274				if (!vn_isdisk(vp, NULL))
3275					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3276					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3277					    (intmax_t) bp->b_lblkno,
3278					    bp->b_flags, bp->b_npages);
3279				else
3280					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3281					    (intmax_t) bp->b_lblkno,
3282					    bp->b_flags, bp->b_npages);
3283				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3284				    (u_long)m->valid, (u_long)m->dirty,
3285				    m->wire_count);
3286				panic("biodone: page busy < 0\n");
3287			}
3288			vm_page_io_finish(m);
3289			vm_object_pip_subtract(obj, 1);
3290			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3291			iosize -= resid;
3292		}
3293		vm_page_unlock_queues();
3294		vm_object_pip_wakeupn(obj, 0);
3295		VM_OBJECT_UNLOCK(obj);
3296	}
3297
3298	/*
3299	 * For asynchronous completions, release the buffer now. The brelse
3300	 * will do a wakeup there if necessary - so no need to do a wakeup
3301	 * here in the async case. The sync case always needs to do a wakeup.
3302	 */
3303
3304	if (bp->b_flags & B_ASYNC) {
3305		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3306			brelse(bp);
3307		else
3308			bqrelse(bp);
3309	} else {
3310		bdone(bp);
3311	}
3312	splx(s);
3313}
3314
3315/*
3316 * This routine is called in lieu of iodone in the case of
3317 * incomplete I/O.  This keeps the busy status for pages
3318 * consistant.
3319 */
3320void
3321vfs_unbusy_pages(struct buf *bp)
3322{
3323	int i;
3324	vm_object_t obj;
3325	vm_page_t m;
3326
3327	runningbufwakeup(bp);
3328	if (!(bp->b_flags & B_VMIO))
3329		return;
3330
3331	obj = bp->b_object;
3332	VM_OBJECT_LOCK(obj);
3333	vm_page_lock_queues();
3334	for (i = 0; i < bp->b_npages; i++) {
3335		m = bp->b_pages[i];
3336		if (m == bogus_page) {
3337			m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3338			if (!m)
3339				panic("vfs_unbusy_pages: page missing\n");
3340			bp->b_pages[i] = m;
3341			pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3342			    bp->b_pages, bp->b_npages);
3343		}
3344		vm_object_pip_subtract(obj, 1);
3345		vm_page_io_finish(m);
3346	}
3347	vm_page_unlock_queues();
3348	vm_object_pip_wakeupn(obj, 0);
3349	VM_OBJECT_UNLOCK(obj);
3350}
3351
3352/*
3353 * vfs_page_set_valid:
3354 *
3355 *	Set the valid bits in a page based on the supplied offset.   The
3356 *	range is restricted to the buffer's size.
3357 *
3358 *	This routine is typically called after a read completes.
3359 */
3360static void
3361vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3362{
3363	vm_ooffset_t soff, eoff;
3364
3365	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3366	/*
3367	 * Start and end offsets in buffer.  eoff - soff may not cross a
3368	 * page boundry or cross the end of the buffer.  The end of the
3369	 * buffer, in this case, is our file EOF, not the allocation size
3370	 * of the buffer.
3371	 */
3372	soff = off;
3373	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3374	if (eoff > bp->b_offset + bp->b_bcount)
3375		eoff = bp->b_offset + bp->b_bcount;
3376
3377	/*
3378	 * Set valid range.  This is typically the entire buffer and thus the
3379	 * entire page.
3380	 */
3381	if (eoff > soff) {
3382		vm_page_set_validclean(
3383		    m,
3384		   (vm_offset_t) (soff & PAGE_MASK),
3385		   (vm_offset_t) (eoff - soff)
3386		);
3387	}
3388}
3389
3390/*
3391 * This routine is called before a device strategy routine.
3392 * It is used to tell the VM system that paging I/O is in
3393 * progress, and treat the pages associated with the buffer
3394 * almost as being PG_BUSY.  Also the object paging_in_progress
3395 * flag is handled to make sure that the object doesn't become
3396 * inconsistant.
3397 *
3398 * Since I/O has not been initiated yet, certain buffer flags
3399 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3400 * and should be ignored.
3401 */
3402void
3403vfs_busy_pages(struct buf *bp, int clear_modify)
3404{
3405	int i, bogus;
3406	vm_object_t obj;
3407	vm_ooffset_t foff;
3408	vm_page_t m;
3409
3410	if (!(bp->b_flags & B_VMIO))
3411		return;
3412
3413	obj = bp->b_object;
3414	foff = bp->b_offset;
3415	KASSERT(bp->b_offset != NOOFFSET,
3416	    ("vfs_busy_pages: no buffer offset"));
3417	vfs_setdirty(bp);
3418	VM_OBJECT_LOCK(obj);
3419retry:
3420	vm_page_lock_queues();
3421	for (i = 0; i < bp->b_npages; i++) {
3422		m = bp->b_pages[i];
3423
3424		if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3425			goto retry;
3426	}
3427	bogus = 0;
3428	for (i = 0; i < bp->b_npages; i++) {
3429		m = bp->b_pages[i];
3430
3431		if ((bp->b_flags & B_CLUSTER) == 0) {
3432			vm_object_pip_add(obj, 1);
3433			vm_page_io_start(m);
3434		}
3435		/*
3436		 * When readying a buffer for a read ( i.e
3437		 * clear_modify == 0 ), it is important to do
3438		 * bogus_page replacement for valid pages in
3439		 * partially instantiated buffers.  Partially
3440		 * instantiated buffers can, in turn, occur when
3441		 * reconstituting a buffer from its VM backing store
3442		 * base.  We only have to do this if B_CACHE is
3443		 * clear ( which causes the I/O to occur in the
3444		 * first place ).  The replacement prevents the read
3445		 * I/O from overwriting potentially dirty VM-backed
3446		 * pages.  XXX bogus page replacement is, uh, bogus.
3447		 * It may not work properly with small-block devices.
3448		 * We need to find a better way.
3449		 */
3450		pmap_remove_all(m);
3451		if (clear_modify)
3452			vfs_page_set_valid(bp, foff, i, m);
3453		else if (m->valid == VM_PAGE_BITS_ALL &&
3454			(bp->b_flags & B_CACHE) == 0) {
3455			bp->b_pages[i] = bogus_page;
3456			bogus++;
3457		}
3458		foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3459	}
3460	vm_page_unlock_queues();
3461	VM_OBJECT_UNLOCK(obj);
3462	if (bogus)
3463		pmap_qenter(trunc_page((vm_offset_t)bp->b_data),
3464		    bp->b_pages, bp->b_npages);
3465}
3466
3467/*
3468 * Tell the VM system that the pages associated with this buffer
3469 * are clean.  This is used for delayed writes where the data is
3470 * going to go to disk eventually without additional VM intevention.
3471 *
3472 * Note that while we only really need to clean through to b_bcount, we
3473 * just go ahead and clean through to b_bufsize.
3474 */
3475static void
3476vfs_clean_pages(struct buf *bp)
3477{
3478	int i;
3479	vm_ooffset_t foff, noff, eoff;
3480	vm_page_t m;
3481
3482	if (!(bp->b_flags & B_VMIO))
3483		return;
3484
3485	foff = bp->b_offset;
3486	KASSERT(bp->b_offset != NOOFFSET,
3487	    ("vfs_clean_pages: no buffer offset"));
3488	VM_OBJECT_LOCK(bp->b_object);
3489	vm_page_lock_queues();
3490	for (i = 0; i < bp->b_npages; i++) {
3491		m = bp->b_pages[i];
3492		noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3493		eoff = noff;
3494
3495		if (eoff > bp->b_offset + bp->b_bufsize)
3496			eoff = bp->b_offset + bp->b_bufsize;
3497		vfs_page_set_valid(bp, foff, i, m);
3498		/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3499		foff = noff;
3500	}
3501	vm_page_unlock_queues();
3502	VM_OBJECT_UNLOCK(bp->b_object);
3503}
3504
3505/*
3506 *	vfs_bio_set_validclean:
3507 *
3508 *	Set the range within the buffer to valid and clean.  The range is
3509 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3510 *	itself may be offset from the beginning of the first page.
3511 *
3512 */
3513
3514void
3515vfs_bio_set_validclean(struct buf *bp, int base, int size)
3516{
3517	int i, n;
3518	vm_page_t m;
3519
3520	if (!(bp->b_flags & B_VMIO))
3521		return;
3522
3523	/*
3524	 * Fixup base to be relative to beginning of first page.
3525	 * Set initial n to be the maximum number of bytes in the
3526	 * first page that can be validated.
3527	 */
3528
3529	base += (bp->b_offset & PAGE_MASK);
3530	n = PAGE_SIZE - (base & PAGE_MASK);
3531
3532	VM_OBJECT_LOCK(bp->b_object);
3533	vm_page_lock_queues();
3534	for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3535		m = bp->b_pages[i];
3536
3537		if (n > size)
3538			n = size;
3539
3540		vm_page_set_validclean(m, base & PAGE_MASK, n);
3541		base += n;
3542		size -= n;
3543		n = PAGE_SIZE;
3544	}
3545	vm_page_unlock_queues();
3546	VM_OBJECT_UNLOCK(bp->b_object);
3547}
3548
3549/*
3550 *	vfs_bio_clrbuf:
3551 *
3552 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3553 *	to clear BIO_ERROR and B_INVAL.
3554 *
3555 *	Note that while we only theoretically need to clear through b_bcount,
3556 *	we go ahead and clear through b_bufsize.
3557 */
3558
3559void
3560vfs_bio_clrbuf(struct buf *bp)
3561{
3562	int i, j, mask = 0;
3563	caddr_t sa, ea;
3564
3565	GIANT_REQUIRED;
3566
3567	if ((bp->b_flags & (B_VMIO | B_MALLOC)) != B_VMIO) {
3568		clrbuf(bp);
3569		return;
3570	}
3571	bp->b_flags &= ~B_INVAL;
3572	bp->b_ioflags &= ~BIO_ERROR;
3573	VM_OBJECT_LOCK(bp->b_object);
3574	if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3575	    (bp->b_offset & PAGE_MASK) == 0) {
3576		if (bp->b_pages[0] == bogus_page)
3577			goto unlock;
3578		mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3579		VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3580		if ((bp->b_pages[0]->valid & mask) == mask)
3581			goto unlock;
3582		if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3583		    ((bp->b_pages[0]->valid & mask) == 0)) {
3584			bzero(bp->b_data, bp->b_bufsize);
3585			bp->b_pages[0]->valid |= mask;
3586			goto unlock;
3587		}
3588	}
3589	ea = sa = bp->b_data;
3590	for(i = 0; i < bp->b_npages; i++, sa = ea) {
3591		ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3592		ea = (caddr_t)(vm_offset_t)ulmin(
3593		    (u_long)(vm_offset_t)ea,
3594		    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3595		if (bp->b_pages[i] == bogus_page)
3596			continue;
3597		j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3598		mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3599		VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3600		if ((bp->b_pages[i]->valid & mask) == mask)
3601			continue;
3602		if ((bp->b_pages[i]->valid & mask) == 0) {
3603			if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
3604				bzero(sa, ea - sa);
3605		} else {
3606			for (; sa < ea; sa += DEV_BSIZE, j++) {
3607				if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3608					(bp->b_pages[i]->valid & (1<<j)) == 0)
3609					bzero(sa, DEV_BSIZE);
3610			}
3611		}
3612		bp->b_pages[i]->valid |= mask;
3613	}
3614unlock:
3615	VM_OBJECT_UNLOCK(bp->b_object);
3616	bp->b_resid = 0;
3617}
3618
3619/*
3620 * vm_hold_load_pages and vm_hold_free_pages get pages into
3621 * a buffers address space.  The pages are anonymous and are
3622 * not associated with a file object.
3623 */
3624static void
3625vm_hold_load_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3626{
3627	vm_offset_t pg;
3628	vm_page_t p;
3629	int index;
3630
3631	to = round_page(to);
3632	from = round_page(from);
3633	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3634
3635	VM_OBJECT_LOCK(kernel_object);
3636	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3637tryagain:
3638		/*
3639		 * note: must allocate system pages since blocking here
3640		 * could intefere with paging I/O, no matter which
3641		 * process we are.
3642		 */
3643		p = vm_page_alloc(kernel_object,
3644			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3645		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3646		if (!p) {
3647			atomic_add_int(&vm_pageout_deficit,
3648			    (to - pg) >> PAGE_SHIFT);
3649			VM_OBJECT_UNLOCK(kernel_object);
3650			VM_WAIT;
3651			VM_OBJECT_LOCK(kernel_object);
3652			goto tryagain;
3653		}
3654		p->valid = VM_PAGE_BITS_ALL;
3655		pmap_qenter(pg, &p, 1);
3656		bp->b_pages[index] = p;
3657		vm_page_lock_queues();
3658		vm_page_wakeup(p);
3659		vm_page_unlock_queues();
3660	}
3661	VM_OBJECT_UNLOCK(kernel_object);
3662	bp->b_npages = index;
3663}
3664
3665/* Return pages associated with this buf to the vm system */
3666static void
3667vm_hold_free_pages(struct buf *bp, vm_offset_t from, vm_offset_t to)
3668{
3669	vm_offset_t pg;
3670	vm_page_t p;
3671	int index, newnpages;
3672
3673	GIANT_REQUIRED;
3674
3675	from = round_page(from);
3676	to = round_page(to);
3677	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3678
3679	VM_OBJECT_LOCK(kernel_object);
3680	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3681		p = bp->b_pages[index];
3682		if (p && (index < bp->b_npages)) {
3683			if (p->busy) {
3684				printf(
3685			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3686				    (intmax_t)bp->b_blkno,
3687				    (intmax_t)bp->b_lblkno);
3688			}
3689			bp->b_pages[index] = NULL;
3690			pmap_qremove(pg, 1);
3691			vm_page_lock_queues();
3692			vm_page_busy(p);
3693			vm_page_unwire(p, 0);
3694			vm_page_free(p);
3695			vm_page_unlock_queues();
3696		}
3697	}
3698	VM_OBJECT_UNLOCK(kernel_object);
3699	bp->b_npages = newnpages;
3700}
3701
3702/*
3703 * Map an IO request into kernel virtual address space.
3704 *
3705 * All requests are (re)mapped into kernel VA space.
3706 * Notice that we use b_bufsize for the size of the buffer
3707 * to be mapped.  b_bcount might be modified by the driver.
3708 *
3709 * Note that even if the caller determines that the address space should
3710 * be valid, a race or a smaller-file mapped into a larger space may
3711 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3712 * check the return value.
3713 */
3714int
3715vmapbuf(struct buf *bp)
3716{
3717	caddr_t addr, kva;
3718	vm_prot_t prot;
3719	int pidx, i;
3720	struct vm_page *m;
3721	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3722
3723	if (bp->b_bufsize < 0)
3724		return (-1);
3725	prot = VM_PROT_READ;
3726	if (bp->b_iocmd == BIO_READ)
3727		prot |= VM_PROT_WRITE;	/* Less backwards than it looks */
3728	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3729	     addr < bp->b_data + bp->b_bufsize;
3730	     addr += PAGE_SIZE, pidx++) {
3731		/*
3732		 * Do the vm_fault if needed; do the copy-on-write thing
3733		 * when reading stuff off device into memory.
3734		 *
3735		 * NOTE! Must use pmap_extract() because addr may be in
3736		 * the userland address space, and kextract is only guarenteed
3737		 * to work for the kernland address space (see: sparc64 port).
3738		 */
3739retry:
3740		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3741		    prot) < 0) {
3742			vm_page_lock_queues();
3743			for (i = 0; i < pidx; ++i) {
3744				vm_page_unhold(bp->b_pages[i]);
3745				bp->b_pages[i] = NULL;
3746			}
3747			vm_page_unlock_queues();
3748			return(-1);
3749		}
3750		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3751		if (m == NULL)
3752			goto retry;
3753		bp->b_pages[pidx] = m;
3754	}
3755	if (pidx > btoc(MAXPHYS))
3756		panic("vmapbuf: mapped more than MAXPHYS");
3757	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3758
3759	kva = bp->b_saveaddr;
3760	bp->b_npages = pidx;
3761	bp->b_saveaddr = bp->b_data;
3762	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3763	return(0);
3764}
3765
3766/*
3767 * Free the io map PTEs associated with this IO operation.
3768 * We also invalidate the TLB entries and restore the original b_addr.
3769 */
3770void
3771vunmapbuf(struct buf *bp)
3772{
3773	int pidx;
3774	int npages;
3775
3776	npages = bp->b_npages;
3777	pmap_qremove(trunc_page((vm_offset_t)bp->b_data), npages);
3778	vm_page_lock_queues();
3779	for (pidx = 0; pidx < npages; pidx++)
3780		vm_page_unhold(bp->b_pages[pidx]);
3781	vm_page_unlock_queues();
3782
3783	bp->b_data = bp->b_saveaddr;
3784}
3785
3786void
3787bdone(struct buf *bp)
3788{
3789
3790	mtx_lock(&bdonelock);
3791	bp->b_flags |= B_DONE;
3792	wakeup(bp);
3793	mtx_unlock(&bdonelock);
3794}
3795
3796void
3797bwait(struct buf *bp, u_char pri, const char *wchan)
3798{
3799
3800	mtx_lock(&bdonelock);
3801	while ((bp->b_flags & B_DONE) == 0)
3802		msleep(bp, &bdonelock, pri, wchan, 0);
3803	mtx_unlock(&bdonelock);
3804}
3805
3806#if 0	/* this is here to unconfuse p4 diff */
3807
3808void
3809bufstrategy(struct bufobj *bo, struct buf *bp)
3810{
3811	int i = 0;
3812	struct vnode *vp;
3813
3814	vp = bp->b_vp;
3815	KASSERT(vp == bo->bo_vnode, ("Inconsistent vnode bufstrategy"));
3816	KASSERT(vp->v_type != VCHR && vp->v_type != VBLK,
3817	    ("Wrong vnode in bufstrategy(bp=%p, vp=%p)", bp, vp));
3818	i = VOP_STRATEGY(vp, bp);
3819	KASSERT(i == 0, ("VOP_STRATEGY failed bp=%p vp=%p", bp, bp->b_vp));
3820}
3821
3822#endif
3823
3824void
3825bufobj_wref(struct bufobj *bo)
3826{
3827
3828	KASSERT(bo != NULL, ("NULL bo in bufobj_wref"));
3829	BO_LOCK(bo);
3830	bo->bo_numoutput++;
3831	BO_UNLOCK(bo);
3832}
3833
3834void
3835bufobj_wdrop(struct bufobj *bo)
3836{
3837
3838	KASSERT(bo != NULL, ("NULL bo in bufobj_wdrop"));
3839	BO_LOCK(bo);
3840	KASSERT(bo->bo_numoutput > 0, ("bufobj_wdrop non-positive count"));
3841	if ((--bo->bo_numoutput == 0) && (bo->bo_flag & BO_WWAIT)) {
3842		bo->bo_flag &= ~BO_WWAIT;
3843		wakeup(&bo->bo_numoutput);
3844	}
3845	BO_UNLOCK(bo);
3846}
3847
3848int
3849bufobj_wwait(struct bufobj *bo, int slpflag, int timeo)
3850{
3851	int error;
3852
3853	KASSERT(bo != NULL, ("NULL bo in bufobj_wwait"));
3854	ASSERT_BO_LOCKED(bo);
3855	error = 0;
3856	while (bo->bo_numoutput) {
3857		bo->bo_flag |= BO_WWAIT;
3858		error = msleep(&bo->bo_numoutput, BO_MTX(bo),
3859		    slpflag | (PRIBIO + 1), "bo_wwait", timeo);
3860		if (error)
3861			break;
3862	}
3863	return (error);
3864}
3865
3866#include "opt_ddb.h"
3867#ifdef DDB
3868#include <ddb/ddb.h>
3869
3870/* DDB command to show buffer data */
3871DB_SHOW_COMMAND(buffer, db_show_buffer)
3872{
3873	/* get args */
3874	struct buf *bp = (struct buf *)addr;
3875
3876	if (!have_addr) {
3877		db_printf("usage: show buffer <addr>\n");
3878		return;
3879	}
3880
3881	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3882	db_printf(
3883	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3884	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd\n",
3885	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3886	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3887	    (intmax_t)bp->b_blkno);
3888	if (bp->b_npages) {
3889		int i;
3890		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3891		for (i = 0; i < bp->b_npages; i++) {
3892			vm_page_t m;
3893			m = bp->b_pages[i];
3894			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3895			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3896			if ((i + 1) < bp->b_npages)
3897				db_printf(",");
3898		}
3899		db_printf("\n");
3900	}
3901}
3902#endif /* DDB */
3903