vfs_bio.c revision 13211
1/*
2 * Copyright (c) 1994 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 * 3. Absolutely no warranty of function or purpose is made by the author
15 *    John S. Dyson.
16 * 4. This work was done expressly for inclusion into FreeBSD.  Other use
17 *    is allowed if this notation is included.
18 * 5. Modifications may be freely made to this file if the above conditions
19 *    are met.
20 *
21 * $Id: vfs_bio.c,v 1.79 1995/12/14 08:32:09 phk Exp $
22 */
23
24/*
25 * this file contains a new buffer I/O scheme implementing a coherent
26 * VM object and buffer cache scheme.  Pains have been taken to make
27 * sure that the performance degradation associated with schemes such
28 * as this is not realized.
29 *
30 * Author:  John S. Dyson
31 * Significant help during the development and debugging phases
32 * had been provided by David Greenman, also of the FreeBSD core team.
33 */
34
35#define VMIO
36#include <sys/param.h>
37#include <sys/systm.h>
38#include <sys/sysproto.h>
39#include <sys/kernel.h>
40#include <sys/sysctl.h>
41#include <sys/proc.h>
42#include <sys/vnode.h>
43#include <sys/vmmeter.h>
44#include <vm/vm.h>
45#include <vm/vm_param.h>
46#include <vm/vm_prot.h>
47#include <vm/vm_kern.h>
48#include <vm/vm_pageout.h>
49#include <vm/vm_page.h>
50#include <vm/vm_object.h>
51#include <vm/vm_extern.h>
52#include <sys/buf.h>
53#include <sys/mount.h>
54#include <sys/malloc.h>
55#include <sys/resourcevar.h>
56#include <sys/proc.h>
57
58#include <miscfs/specfs/specdev.h>
59
60static void vfs_update __P((void));
61static struct	proc *updateproc;
62static struct kproc_desc up_kp = {
63	"update",
64	vfs_update,
65	&updateproc
66};
67SYSINIT_KT(update, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)
68
69struct buf *buf;		/* buffer header pool */
70struct swqueue bswlist;
71
72int count_lock_queue __P((void));
73static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
74		vm_offset_t to);
75static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
76		vm_offset_t to);
77static void vfs_clean_pages(struct buf * bp);
78static void vfs_setdirty(struct buf *bp);
79
80int needsbuffer;
81
82/*
83 * Internal update daemon, process 3
84 *	The variable vfs_update_wakeup allows for internal syncs.
85 */
86int vfs_update_wakeup;
87
88
89/*
90 * buffers base kva
91 */
92caddr_t buffers_kva;
93
94/*
95 * bogus page -- for I/O to/from partially complete buffers
96 * this is a temporary solution to the problem, but it is not
97 * really that bad.  it would be better to split the buffer
98 * for input in the case of buffers partially already in memory,
99 * but the code is intricate enough already.
100 */
101vm_page_t bogus_page;
102static vm_offset_t bogus_offset;
103
104static int bufspace, maxbufspace;
105
106static struct bufhashhdr bufhashtbl[BUFHSZ], invalhash;
107static struct bqueues bufqueues[BUFFER_QUEUES];
108
109#define BUF_MAXUSE 8
110
111/*
112 * Initialize buffer headers and related structures.
113 */
114void
115bufinit()
116{
117	struct buf *bp;
118	int i;
119
120	TAILQ_INIT(&bswlist);
121	LIST_INIT(&invalhash);
122
123	/* first, make a null hash table */
124	for (i = 0; i < BUFHSZ; i++)
125		LIST_INIT(&bufhashtbl[i]);
126
127	/* next, make a null set of free lists */
128	for (i = 0; i < BUFFER_QUEUES; i++)
129		TAILQ_INIT(&bufqueues[i]);
130
131	buffers_kva = (caddr_t) kmem_alloc_pageable(buffer_map, MAXBSIZE * nbuf);
132	/* finally, initialize each buffer header and stick on empty q */
133	for (i = 0; i < nbuf; i++) {
134		bp = &buf[i];
135		bzero(bp, sizeof *bp);
136		bp->b_flags = B_INVAL;	/* we're just an empty header */
137		bp->b_dev = NODEV;
138		bp->b_rcred = NOCRED;
139		bp->b_wcred = NOCRED;
140		bp->b_qindex = QUEUE_EMPTY;
141		bp->b_vnbufs.le_next = NOLIST;
142		bp->b_data = buffers_kva + i * MAXBSIZE;
143		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
144		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
145	}
146/*
147 * maxbufspace is currently calculated to support all filesystem blocks
148 * to be 8K.  If you happen to use a 16K filesystem, the size of the buffer
149 * cache is still the same as it would be for 8K filesystems.  This
150 * keeps the size of the buffer cache "in check" for big block filesystems.
151 */
152	maxbufspace = 2 * (nbuf + 8) * PAGE_SIZE;
153
154	bogus_offset = kmem_alloc_pageable(kernel_map, PAGE_SIZE);
155	bogus_page = vm_page_alloc(kernel_object,
156			((bogus_offset - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
157			VM_ALLOC_NORMAL);
158
159}
160
161/*
162 * remove the buffer from the appropriate free list
163 */
164void
165bremfree(struct buf * bp)
166{
167	int s = splbio();
168
169	if (bp->b_qindex != QUEUE_NONE) {
170		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
171		bp->b_qindex = QUEUE_NONE;
172	} else {
173		panic("bremfree: removing a buffer when not on a queue");
174	}
175	splx(s);
176}
177
178/*
179 * Get a buffer with the specified data.  Look in the cache first.
180 */
181int
182bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
183    struct buf ** bpp)
184{
185	struct buf *bp;
186
187	bp = getblk(vp, blkno, size, 0, 0);
188	*bpp = bp;
189
190	/* if not found in cache, do some I/O */
191	if ((bp->b_flags & B_CACHE) == 0) {
192		if (curproc != NULL)
193			curproc->p_stats->p_ru.ru_inblock++;
194		bp->b_flags |= B_READ;
195		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
196		if (bp->b_rcred == NOCRED) {
197			if (cred != NOCRED)
198				crhold(cred);
199			bp->b_rcred = cred;
200		}
201		vfs_busy_pages(bp, 0);
202		VOP_STRATEGY(bp);
203		return (biowait(bp));
204	}
205	return (0);
206}
207
208/*
209 * Operates like bread, but also starts asynchronous I/O on
210 * read-ahead blocks.
211 */
212int
213breadn(struct vnode * vp, daddr_t blkno, int size,
214    daddr_t * rablkno, int *rabsize,
215    int cnt, struct ucred * cred, struct buf ** bpp)
216{
217	struct buf *bp, *rabp;
218	int i;
219	int rv = 0, readwait = 0;
220
221	*bpp = bp = getblk(vp, blkno, size, 0, 0);
222
223	/* if not found in cache, do some I/O */
224	if ((bp->b_flags & B_CACHE) == 0) {
225		if (curproc != NULL)
226			curproc->p_stats->p_ru.ru_inblock++;
227		bp->b_flags |= B_READ;
228		bp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
229		if (bp->b_rcred == NOCRED) {
230			if (cred != NOCRED)
231				crhold(cred);
232			bp->b_rcred = cred;
233		}
234		vfs_busy_pages(bp, 0);
235		VOP_STRATEGY(bp);
236		++readwait;
237	}
238	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
239		if (inmem(vp, *rablkno))
240			continue;
241		rabp = getblk(vp, *rablkno, *rabsize, 0, 0);
242
243		if ((rabp->b_flags & B_CACHE) == 0) {
244			if (curproc != NULL)
245				curproc->p_stats->p_ru.ru_inblock++;
246			rabp->b_flags |= B_READ | B_ASYNC;
247			rabp->b_flags &= ~(B_DONE | B_ERROR | B_INVAL);
248			if (rabp->b_rcred == NOCRED) {
249				if (cred != NOCRED)
250					crhold(cred);
251				rabp->b_rcred = cred;
252			}
253			vfs_busy_pages(rabp, 0);
254			VOP_STRATEGY(rabp);
255		} else {
256			brelse(rabp);
257		}
258	}
259
260	if (readwait) {
261		rv = biowait(bp);
262	}
263	return (rv);
264}
265
266/*
267 * Write, release buffer on completion.  (Done by iodone
268 * if async.)
269 */
270int
271bwrite(struct buf * bp)
272{
273	int oldflags = bp->b_flags;
274
275	if (bp->b_flags & B_INVAL) {
276		brelse(bp);
277		return (0);
278	}
279	if (!(bp->b_flags & B_BUSY))
280		panic("bwrite: buffer is not busy???");
281
282	bp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
283	bp->b_flags |= B_WRITEINPROG;
284
285	if ((oldflags & (B_ASYNC|B_DELWRI)) == (B_ASYNC|B_DELWRI)) {
286		reassignbuf(bp, bp->b_vp);
287	}
288
289	bp->b_vp->v_numoutput++;
290	vfs_busy_pages(bp, 1);
291	if (curproc != NULL)
292		curproc->p_stats->p_ru.ru_oublock++;
293	VOP_STRATEGY(bp);
294
295	if ((oldflags & B_ASYNC) == 0) {
296		int rtval = biowait(bp);
297
298		if (oldflags & B_DELWRI) {
299			reassignbuf(bp, bp->b_vp);
300		}
301		brelse(bp);
302		return (rtval);
303	}
304	return (0);
305}
306
307int
308vn_bwrite(ap)
309	struct vop_bwrite_args *ap;
310{
311	return (bwrite(ap->a_bp));
312}
313
314/*
315 * Delayed write. (Buffer is marked dirty).
316 */
317void
318bdwrite(struct buf * bp)
319{
320
321	if ((bp->b_flags & B_BUSY) == 0) {
322		panic("bdwrite: buffer is not busy");
323	}
324	if (bp->b_flags & B_INVAL) {
325		brelse(bp);
326		return;
327	}
328	if (bp->b_flags & B_TAPE) {
329		bawrite(bp);
330		return;
331	}
332	bp->b_flags &= ~(B_READ|B_RELBUF);
333	if ((bp->b_flags & B_DELWRI) == 0) {
334		bp->b_flags |= B_DONE | B_DELWRI;
335		reassignbuf(bp, bp->b_vp);
336	}
337
338	/*
339	 * This bmap keeps the system from needing to do the bmap later,
340	 * perhaps when the system is attempting to do a sync.  Since it
341	 * is likely that the indirect block -- or whatever other datastructure
342	 * that the filesystem needs is still in memory now, it is a good
343	 * thing to do this.  Note also, that if the pageout daemon is
344	 * requesting a sync -- there might not be enough memory to do
345	 * the bmap then...  So, this is important to do.
346	 */
347	if( bp->b_lblkno == bp->b_blkno) {
348		VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
349	}
350
351	/*
352	 * Set the *dirty* buffer range based upon the VM system dirty pages.
353	 */
354	vfs_setdirty(bp);
355
356	/*
357	 * We need to do this here to satisfy the vnode_pager and the
358	 * pageout daemon, so that it thinks that the pages have been
359	 * "cleaned".  Note that since the pages are in a delayed write
360	 * buffer -- the VFS layer "will" see that the pages get written
361	 * out on the next sync, or perhaps the cluster will be completed.
362	 */
363	vfs_clean_pages(bp);
364	brelse(bp);
365	return;
366}
367
368/*
369 * Asynchronous write.
370 * Start output on a buffer, but do not wait for it to complete.
371 * The buffer is released when the output completes.
372 */
373void
374bawrite(struct buf * bp)
375{
376	bp->b_flags |= B_ASYNC;
377	(void) VOP_BWRITE(bp);
378}
379
380/*
381 * Release a buffer.
382 */
383void
384brelse(struct buf * bp)
385{
386	int s;
387
388	if (bp->b_flags & B_CLUSTER) {
389		relpbuf(bp);
390		return;
391	}
392	/* anyone need a "free" block? */
393	s = splbio();
394
395	if (needsbuffer) {
396		needsbuffer = 0;
397		wakeup(&needsbuffer);
398	}
399
400	/* anyone need this block? */
401	if (bp->b_flags & B_WANTED) {
402		bp->b_flags &= ~(B_WANTED | B_AGE);
403		wakeup(bp);
404	}
405
406	if (bp->b_flags & B_LOCKED)
407		bp->b_flags &= ~B_ERROR;
408
409	if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_ERROR)) ||
410	    (bp->b_bufsize <= 0)) {
411		bp->b_flags |= B_INVAL;
412		bp->b_flags &= ~(B_DELWRI | B_CACHE);
413		if (((bp->b_flags & B_VMIO) == 0) && bp->b_vp)
414			brelvp(bp);
415	}
416
417	/*
418	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
419	 * constituted, so the B_INVAL flag is used to *invalidate* the buffer,
420	 * but the VM object is kept around.  The B_NOCACHE flag is used to
421	 * invalidate the pages in the VM object.
422	 */
423	if (bp->b_flags & B_VMIO) {
424		vm_ooffset_t foff;
425		vm_object_t obj;
426		int i, resid;
427		vm_page_t m;
428		struct vnode *vp;
429		int iototal = bp->b_bufsize;
430
431		vp = bp->b_vp;
432		if (!vp)
433			panic("brelse: missing vp");
434
435		if (bp->b_npages) {
436			vm_pindex_t poff;
437			obj = (vm_object_t) vp->v_object;
438			if (vp->v_type == VBLK)
439				foff = ((vm_ooffset_t) bp->b_lblkno) << DEV_BSHIFT;
440			else
441				foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
442			poff = OFF_TO_IDX(foff);
443			for (i = 0; i < bp->b_npages; i++) {
444				m = bp->b_pages[i];
445				if (m == bogus_page) {
446					m = vm_page_lookup(obj, poff + i);
447					if (!m) {
448						panic("brelse: page missing\n");
449					}
450					bp->b_pages[i] = m;
451					pmap_qenter(trunc_page(bp->b_data),
452						bp->b_pages, bp->b_npages);
453				}
454				resid = IDX_TO_OFF(m->pindex+1) - foff;
455				if (resid > iototal)
456					resid = iototal;
457				if (resid > 0) {
458					/*
459					 * Don't invalidate the page if the local machine has already
460					 * modified it.  This is the lesser of two evils, and should
461					 * be fixed.
462					 */
463					if (bp->b_flags & (B_NOCACHE | B_ERROR)) {
464						vm_page_test_dirty(m);
465						if (m->dirty == 0) {
466							vm_page_set_invalid(m, (vm_offset_t) foff, resid);
467							if (m->valid == 0)
468								vm_page_protect(m, VM_PROT_NONE);
469						}
470					}
471				}
472				foff += resid;
473				iototal -= resid;
474			}
475		}
476
477		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
478			for(i = 0; i < bp->b_npages; i++) {
479				m = bp->b_pages[i];
480				--m->bmapped;
481				if (m->bmapped == 0) {
482					if (m->flags & PG_WANTED) {
483						m->flags &= ~PG_WANTED;
484						wakeup(m);
485					}
486					if ((m->busy == 0) && ((m->flags & PG_BUSY) == 0)) {
487						if (m->object->flags & OBJ_MIGHTBEDIRTY) {
488							vm_page_test_dirty(m);
489						}
490						/*
491						 * if page isn't valid, no sense in keeping it around
492						 */
493						if (m->valid == 0) {
494							vm_page_protect(m, VM_PROT_NONE);
495							vm_page_free(m);
496						/*
497						 * if page isn't dirty and hasn't been referenced by
498						 * a process, then cache it
499						 */
500						} else if ((m->dirty & m->valid) == 0 &&
501						    (m->flags & PG_REFERENCED) == 0 &&
502						    !pmap_is_referenced(VM_PAGE_TO_PHYS(m))) {
503							vm_page_cache(m);
504						/*
505						 * otherwise activate it
506						 */
507						} else if ((m->flags & PG_ACTIVE) == 0) {
508							vm_page_activate(m);
509							m->act_count = 0;
510						}
511					}
512				}
513			}
514			bufspace -= bp->b_bufsize;
515			pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
516			bp->b_npages = 0;
517			bp->b_bufsize = 0;
518			bp->b_flags &= ~B_VMIO;
519			if (bp->b_vp)
520				brelvp(bp);
521		}
522	}
523	if (bp->b_qindex != QUEUE_NONE)
524		panic("brelse: free buffer onto another queue???");
525
526	/* enqueue */
527	/* buffers with no memory */
528	if (bp->b_bufsize == 0) {
529		bp->b_qindex = QUEUE_EMPTY;
530		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
531		LIST_REMOVE(bp, b_hash);
532		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
533		bp->b_dev = NODEV;
534		/* buffers with junk contents */
535	} else if (bp->b_flags & (B_ERROR | B_INVAL | B_NOCACHE | B_RELBUF)) {
536		bp->b_qindex = QUEUE_AGE;
537		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_AGE], bp, b_freelist);
538		LIST_REMOVE(bp, b_hash);
539		LIST_INSERT_HEAD(&invalhash, bp, b_hash);
540		bp->b_dev = NODEV;
541		/* buffers that are locked */
542	} else if (bp->b_flags & B_LOCKED) {
543		bp->b_qindex = QUEUE_LOCKED;
544		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LOCKED], bp, b_freelist);
545		/* buffers with stale but valid contents */
546	} else if (bp->b_flags & B_AGE) {
547		bp->b_qindex = QUEUE_AGE;
548		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_AGE], bp, b_freelist);
549		/* buffers with valid and quite potentially reuseable contents */
550	} else {
551		bp->b_qindex = QUEUE_LRU;
552		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
553	}
554
555	/* unlock */
556	bp->b_flags &= ~(B_WANTED | B_BUSY | B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
557	splx(s);
558}
559
560/*
561 * Check to see if a block is currently memory resident.
562 */
563__inline struct buf *
564gbincore(struct vnode * vp, daddr_t blkno)
565{
566	struct buf *bp;
567	struct bufhashhdr *bh;
568
569	bh = BUFHASH(vp, blkno);
570	bp = bh->lh_first;
571
572	/* Search hash chain */
573	while (bp != NULL) {
574		/* hit */
575		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
576		    (bp->b_flags & B_INVAL) == 0) {
577			break;
578		}
579		bp = bp->b_hash.le_next;
580	}
581	return (bp);
582}
583
584/*
585 * this routine implements clustered async writes for
586 * clearing out B_DELWRI buffers...  This is much better
587 * than the old way of writing only one buffer at a time.
588 */
589int
590vfs_bio_awrite(struct buf * bp)
591{
592	int i;
593	daddr_t lblkno = bp->b_lblkno;
594	struct vnode *vp = bp->b_vp;
595	int s;
596	int ncl;
597	struct buf *bpa;
598	int nwritten;
599
600	s = splbio();
601	/*
602	 * right now we support clustered writing only to regular files
603	 */
604	if ((vp->v_type == VREG) &&
605	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
606	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
607		int size;
608		int maxcl;
609
610		size = vp->v_mount->mnt_stat.f_iosize;
611		maxcl = MAXPHYS / size;
612
613		for (i = 1; i < maxcl; i++) {
614			if ((bpa = gbincore(vp, lblkno + i)) &&
615			    ((bpa->b_flags & (B_BUSY | B_DELWRI | B_CLUSTEROK | B_INVAL)) ==
616			    (B_DELWRI | B_CLUSTEROK)) &&
617			    (bpa->b_bufsize == size)) {
618				if ((bpa->b_blkno == bpa->b_lblkno) ||
619				    (bpa->b_blkno != bp->b_blkno + ((i * size) >> DEV_BSHIFT)))
620					break;
621			} else {
622				break;
623			}
624		}
625		ncl = i;
626		/*
627		 * this is a possible cluster write
628		 */
629		if (ncl != 1) {
630			nwritten = cluster_wbuild(vp, size, lblkno, ncl);
631			splx(s);
632			return nwritten;
633		}
634	}
635	bremfree(bp);
636	splx(s);
637	/*
638	 * default (old) behavior, writing out only one block
639	 */
640	bp->b_flags |= B_BUSY | B_ASYNC;
641	nwritten = bp->b_bufsize;
642	(void) VOP_BWRITE(bp);
643	return nwritten;
644}
645
646
647/*
648 * Find a buffer header which is available for use.
649 */
650static struct buf *
651getnewbuf(int slpflag, int slptimeo, int doingvmio)
652{
653	struct buf *bp;
654	int s;
655	int nbyteswritten = 0;
656
657	s = splbio();
658start:
659	if (bufspace >= maxbufspace)
660		goto trytofreespace;
661
662	/* can we constitute a new buffer? */
663	if ((bp = bufqueues[QUEUE_EMPTY].tqh_first)) {
664		if (bp->b_qindex != QUEUE_EMPTY)
665			panic("getnewbuf: inconsistent EMPTY queue");
666		bremfree(bp);
667		goto fillbuf;
668	}
669trytofreespace:
670	/*
671	 * We keep the file I/O from hogging metadata I/O
672	 * This is desirable because file data is cached in the
673	 * VM/Buffer cache even if a buffer is freed.
674	 */
675	if ((bp = bufqueues[QUEUE_AGE].tqh_first)) {
676		if (bp->b_qindex != QUEUE_AGE)
677			panic("getnewbuf: inconsistent AGE queue");
678	} else if ((bp = bufqueues[QUEUE_LRU].tqh_first)) {
679		if (bp->b_qindex != QUEUE_LRU)
680			panic("getnewbuf: inconsistent LRU queue");
681	}
682	if (!bp) {
683		/* wait for a free buffer of any kind */
684		needsbuffer = 1;
685		tsleep(&needsbuffer,
686			(PRIBIO + 1) | slpflag, "newbuf", slptimeo);
687		splx(s);
688		return (0);
689	}
690
691	if ((bp->b_qindex == QUEUE_LRU) && (bp->b_usecount > 0)) {
692		--bp->b_usecount;
693		TAILQ_REMOVE(&bufqueues[QUEUE_LRU], bp, b_freelist);
694		if (bufqueues[QUEUE_LRU].tqh_first != NULL) {
695			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_LRU], bp, b_freelist);
696			goto start;
697		}
698	}
699
700	/* if we are a delayed write, convert to an async write */
701	if ((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) {
702		nbyteswritten += vfs_bio_awrite(bp);
703		if (!slpflag && !slptimeo) {
704			splx(s);
705			return (0);
706		}
707		goto start;
708	}
709
710	if (bp->b_flags & B_WANTED) {
711		bp->b_flags &= ~B_WANTED;
712		wakeup(bp);
713	}
714	bremfree(bp);
715
716	if (bp->b_flags & B_VMIO) {
717		bp->b_flags |= B_RELBUF | B_BUSY | B_DONE;
718		brelse(bp);
719		bremfree(bp);
720	}
721
722	if (bp->b_vp)
723		brelvp(bp);
724
725fillbuf:
726	/* we are not free, nor do we contain interesting data */
727	if (bp->b_rcred != NOCRED) {
728		crfree(bp->b_rcred);
729		bp->b_rcred = NOCRED;
730	}
731	if (bp->b_wcred != NOCRED) {
732		crfree(bp->b_wcred);
733		bp->b_wcred = NOCRED;
734	}
735	bp->b_flags |= B_BUSY;
736	LIST_REMOVE(bp, b_hash);
737	LIST_INSERT_HEAD(&invalhash, bp, b_hash);
738	splx(s);
739	if (bp->b_bufsize) {
740		allocbuf(bp, 0);
741	}
742	bp->b_flags = B_BUSY;
743	bp->b_dev = NODEV;
744	bp->b_vp = NULL;
745	bp->b_blkno = bp->b_lblkno = 0;
746	bp->b_iodone = 0;
747	bp->b_error = 0;
748	bp->b_resid = 0;
749	bp->b_bcount = 0;
750	bp->b_npages = 0;
751	bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
752	bp->b_dirtyoff = bp->b_dirtyend = 0;
753	bp->b_validoff = bp->b_validend = 0;
754	bp->b_usecount = 2;
755	if (bufspace >= maxbufspace + nbyteswritten) {
756		s = splbio();
757		bp->b_flags |= B_INVAL;
758		brelse(bp);
759		goto trytofreespace;
760	}
761	return (bp);
762}
763
764/*
765 * Check to see if a block is currently memory resident.
766 */
767struct buf *
768incore(struct vnode * vp, daddr_t blkno)
769{
770	struct buf *bp;
771	struct bufhashhdr *bh;
772
773	int s = splbio();
774
775	bh = BUFHASH(vp, blkno);
776	bp = bh->lh_first;
777
778	/* Search hash chain */
779	while (bp != NULL) {
780		/* hit */
781		if (bp->b_vp == vp && bp->b_lblkno == blkno &&
782		    (bp->b_flags & B_INVAL) == 0) {
783			break;
784		}
785		bp = bp->b_hash.le_next;
786	}
787	splx(s);
788	return (bp);
789}
790
791/*
792 * Returns true if no I/O is needed to access the
793 * associated VM object.  This is like incore except
794 * it also hunts around in the VM system for the data.
795 */
796
797int
798inmem(struct vnode * vp, daddr_t blkno)
799{
800	vm_object_t obj;
801	vm_offset_t toff, tinc;
802	vm_page_t m;
803	vm_ooffset_t off;
804
805	if (incore(vp, blkno))
806		return 1;
807	if (vp->v_mount == NULL)
808		return 0;
809	if ((vp->v_object == NULL) || (vp->v_flag & VVMIO) == 0)
810		return 0;
811
812	obj = vp->v_object;
813	tinc = PAGE_SIZE;
814	if (tinc > vp->v_mount->mnt_stat.f_iosize)
815		tinc = vp->v_mount->mnt_stat.f_iosize;
816	off = blkno * vp->v_mount->mnt_stat.f_iosize;
817
818	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
819
820		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
821		if (!m)
822			return 0;
823		if (vm_page_is_valid(m, (vm_offset_t) (toff + off), tinc) == 0)
824			return 0;
825	}
826	return 1;
827}
828
829/*
830 * now we set the dirty range for the buffer --
831 * for NFS -- if the file is mapped and pages have
832 * been written to, let it know.  We want the
833 * entire range of the buffer to be marked dirty if
834 * any of the pages have been written to for consistancy
835 * with the b_validoff, b_validend set in the nfs write
836 * code, and used by the nfs read code.
837 */
838static void
839vfs_setdirty(struct buf *bp) {
840	int i;
841	vm_object_t object;
842	vm_offset_t boffset, offset;
843	/*
844	 * We qualify the scan for modified pages on whether the
845	 * object has been flushed yet.  The OBJ_WRITEABLE flag
846	 * is not cleared simply by protecting pages off.
847	 */
848	if ((bp->b_flags & B_VMIO) &&
849		((object = bp->b_pages[0]->object)->flags & (OBJ_WRITEABLE|OBJ_CLEANING))) {
850		/*
851		 * test the pages to see if they have been modified directly
852		 * by users through the VM system.
853		 */
854		for (i = 0; i < bp->b_npages; i++)
855			vm_page_test_dirty(bp->b_pages[i]);
856
857		/*
858		 * scan forwards for the first page modified
859		 */
860		for (i = 0; i < bp->b_npages; i++) {
861			if (bp->b_pages[i]->dirty) {
862				break;
863			}
864		}
865		boffset = (i << PAGE_SHIFT);
866		if (boffset < bp->b_dirtyoff) {
867			bp->b_dirtyoff = boffset;
868		}
869
870		/*
871		 * scan backwards for the last page modified
872		 */
873		for (i = bp->b_npages - 1; i >= 0; --i) {
874			if (bp->b_pages[i]->dirty) {
875				break;
876			}
877		}
878		boffset = (i + 1);
879		offset = boffset + bp->b_pages[0]->pindex;
880		if (offset >= object->size)
881			boffset = object->size - bp->b_pages[0]->pindex;
882		if (bp->b_dirtyend < (boffset << PAGE_SHIFT))
883			bp->b_dirtyend = (boffset << PAGE_SHIFT);
884	}
885}
886
887/*
888 * Get a block given a specified block and offset into a file/device.
889 */
890struct buf *
891getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo)
892{
893	struct buf *bp;
894	int s;
895	struct bufhashhdr *bh;
896
897	s = splbio();
898loop:
899	if ((bp = gbincore(vp, blkno))) {
900		if (bp->b_flags & B_BUSY) {
901			bp->b_flags |= B_WANTED;
902			if (bp->b_usecount < BUF_MAXUSE)
903				++bp->b_usecount;
904			if (!tsleep(bp,
905				(PRIBIO + 1) | slpflag, "getblk", slptimeo))
906				goto loop;
907
908			splx(s);
909			return (struct buf *) NULL;
910		}
911		bp->b_flags |= B_BUSY | B_CACHE;
912		bremfree(bp);
913
914		/*
915		 * check for size inconsistancies (note that they shouldn't happen
916		 * but do when filesystems don't handle the size changes correctly.)
917		 * We are conservative on metadata and don't just extend the buffer
918		 * but write and re-constitute it.
919		 */
920
921		if (bp->b_bcount != size) {
922			if (bp->b_flags & B_VMIO) {
923				allocbuf(bp, size);
924			} else {
925				bp->b_flags |= B_NOCACHE;
926				VOP_BWRITE(bp);
927				goto loop;
928			}
929		}
930
931		/*
932		 * make sure that all pages in the buffer are valid, if they
933		 * aren't, clear the cache flag.
934		 * ASSUMPTION:
935		 *  if the buffer is greater than 1 page in size, it is assumed
936		 *  that the buffer address starts on a page boundary...
937		 */
938		if (bp->b_flags & B_VMIO) {
939			int szleft, i;
940			szleft = size;
941			for (i=0;i<bp->b_npages;i++) {
942				if (szleft > PAGE_SIZE) {
943					if ((bp->b_pages[i]->valid & VM_PAGE_BITS_ALL) !=
944						VM_PAGE_BITS_ALL) {
945						bp->b_flags &= ~(B_CACHE|B_DONE);
946						break;
947					}
948					szleft -= PAGE_SIZE;
949				} else {
950					if (!vm_page_is_valid(bp->b_pages[i],
951						(((vm_offset_t) bp->b_data) & PAGE_MASK),
952						szleft)) {
953						bp->b_flags &= ~(B_CACHE|B_DONE);
954						break;
955					}
956					szleft = 0;
957				}
958			}
959		}
960		if (bp->b_usecount < BUF_MAXUSE)
961			++bp->b_usecount;
962		splx(s);
963		return (bp);
964	} else {
965		vm_object_t obj;
966		int doingvmio;
967
968		if ((obj = vp->v_object) && (vp->v_flag & VVMIO)) {
969			doingvmio = 1;
970		} else {
971			doingvmio = 0;
972		}
973		if ((bp = getnewbuf(slpflag, slptimeo, doingvmio)) == 0) {
974			if (slpflag || slptimeo) {
975				splx(s);
976				return NULL;
977			}
978			goto loop;
979		}
980
981		/*
982		 * This code is used to make sure that a buffer is not
983		 * created while the getnewbuf routine is blocked.
984		 * Normally the vnode is locked so this isn't a problem.
985		 * VBLK type I/O requests, however, don't lock the vnode.
986		 */
987		if (!VOP_ISLOCKED(vp) && gbincore(vp, blkno)) {
988			bp->b_flags |= B_INVAL;
989			brelse(bp);
990			goto loop;
991		}
992
993		/*
994		 * Insert the buffer into the hash, so that it can
995		 * be found by incore.
996		 */
997		bp->b_blkno = bp->b_lblkno = blkno;
998		bgetvp(vp, bp);
999		LIST_REMOVE(bp, b_hash);
1000		bh = BUFHASH(vp, blkno);
1001		LIST_INSERT_HEAD(bh, bp, b_hash);
1002
1003		if (doingvmio) {
1004			bp->b_flags |= (B_VMIO | B_CACHE);
1005#if defined(VFS_BIO_DEBUG)
1006			if (vp->v_type != VREG)
1007				printf("getblk: vmioing file type %d???\n", vp->v_type);
1008#endif
1009		} else {
1010			bp->b_flags &= ~B_VMIO;
1011		}
1012		splx(s);
1013
1014		allocbuf(bp, size);
1015		return (bp);
1016	}
1017}
1018
1019/*
1020 * Get an empty, disassociated buffer of given size.
1021 */
1022struct buf *
1023geteblk(int size)
1024{
1025	struct buf *bp;
1026
1027	while ((bp = getnewbuf(0, 0, 0)) == 0);
1028	allocbuf(bp, size);
1029	bp->b_flags |= B_INVAL;
1030	return (bp);
1031}
1032
1033/*
1034 * This code constitutes the buffer memory from either anonymous system
1035 * memory (in the case of non-VMIO operations) or from an associated
1036 * VM object (in the case of VMIO operations).
1037 *
1038 * Note that this code is tricky, and has many complications to resolve
1039 * deadlock or inconsistant data situations.  Tread lightly!!!
1040 *
1041 * Modify the length of a buffer's underlying buffer storage without
1042 * destroying information (unless, of course the buffer is shrinking).
1043 */
1044int
1045allocbuf(struct buf * bp, int size)
1046{
1047
1048	int s;
1049	int newbsize, mbsize;
1050	int i;
1051
1052	if (!(bp->b_flags & B_BUSY))
1053		panic("allocbuf: buffer not busy");
1054
1055	if ((bp->b_flags & B_VMIO) == 0) {
1056		/*
1057		 * Just get anonymous memory from the kernel
1058		 */
1059		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1060		newbsize = round_page(size);
1061
1062		if (newbsize < bp->b_bufsize) {
1063			vm_hold_free_pages(
1064			    bp,
1065			    (vm_offset_t) bp->b_data + newbsize,
1066			    (vm_offset_t) bp->b_data + bp->b_bufsize);
1067		} else if (newbsize > bp->b_bufsize) {
1068			vm_hold_load_pages(
1069			    bp,
1070			    (vm_offset_t) bp->b_data + bp->b_bufsize,
1071			    (vm_offset_t) bp->b_data + newbsize);
1072		}
1073	} else {
1074		vm_page_t m;
1075		int desiredpages;
1076
1077		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
1078		desiredpages = (round_page(newbsize) >> PAGE_SHIFT);
1079
1080		if (newbsize < bp->b_bufsize) {
1081			if (desiredpages < bp->b_npages) {
1082				pmap_qremove((vm_offset_t) trunc_page(bp->b_data) +
1083				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
1084				for (i = desiredpages; i < bp->b_npages; i++) {
1085					m = bp->b_pages[i];
1086					s = splhigh();
1087					while ((m->flags & PG_BUSY) || (m->busy != 0)) {
1088						m->flags |= PG_WANTED;
1089						tsleep(m, PVM, "biodep", 0);
1090					}
1091					splx(s);
1092
1093					if (m->bmapped == 0) {
1094						printf("allocbuf: bmapped is zero for page %d\n", i);
1095						panic("allocbuf: error");
1096					}
1097					--m->bmapped;
1098					if (m->bmapped == 0) {
1099						vm_page_protect(m, VM_PROT_NONE);
1100						vm_page_free(m);
1101					}
1102					bp->b_pages[i] = NULL;
1103				}
1104				bp->b_npages = desiredpages;
1105			}
1106		} else if (newbsize > bp->b_bufsize) {
1107			vm_object_t obj;
1108			vm_offset_t tinc, toff;
1109			vm_ooffset_t off;
1110			vm_pindex_t objoff;
1111			int pageindex, curbpnpages;
1112			struct vnode *vp;
1113			int bsize;
1114
1115			vp = bp->b_vp;
1116
1117			if (vp->v_type == VBLK)
1118				bsize = DEV_BSIZE;
1119			else
1120				bsize = vp->v_mount->mnt_stat.f_iosize;
1121
1122			if (bp->b_npages < desiredpages) {
1123				obj = vp->v_object;
1124				tinc = PAGE_SIZE;
1125				if (tinc > bsize)
1126					tinc = bsize;
1127				off = (vm_ooffset_t) bp->b_lblkno * bsize;
1128		doretry:
1129				curbpnpages = bp->b_npages;
1130				bp->b_flags |= B_CACHE;
1131				for (toff = 0; toff < newbsize; toff += tinc) {
1132					int bytesinpage;
1133
1134					pageindex = toff >> PAGE_SHIFT;
1135					objoff = OFF_TO_IDX(off + toff);
1136					if (pageindex < curbpnpages) {
1137
1138						m = bp->b_pages[pageindex];
1139						if (m->pindex != objoff)
1140							panic("allocbuf: page changed offset??!!!?");
1141						bytesinpage = tinc;
1142						if (tinc > (newbsize - toff))
1143							bytesinpage = newbsize - toff;
1144						if (!vm_page_is_valid(m,
1145							(vm_offset_t) ((toff + off) & (PAGE_SIZE - 1)),
1146							bytesinpage)) {
1147							bp->b_flags &= ~B_CACHE;
1148						}
1149						if ((m->flags & PG_ACTIVE) == 0) {
1150							vm_page_activate(m);
1151							m->act_count = 0;
1152						}
1153						continue;
1154					}
1155					m = vm_page_lookup(obj, objoff);
1156					if (!m) {
1157						m = vm_page_alloc(obj, objoff, VM_ALLOC_NORMAL);
1158						if (!m) {
1159							int j;
1160
1161							for (j = bp->b_npages; j < pageindex; j++) {
1162								PAGE_WAKEUP(bp->b_pages[j]);
1163							}
1164							VM_WAIT;
1165							goto doretry;
1166						}
1167						vm_page_activate(m);
1168						m->act_count = 0;
1169						m->valid = 0;
1170						bp->b_flags &= ~B_CACHE;
1171					} else if (m->flags & PG_BUSY) {
1172						int j;
1173
1174						for (j = bp->b_npages; j < pageindex; j++) {
1175							PAGE_WAKEUP(bp->b_pages[j]);
1176						}
1177
1178						s = splbio();
1179						m->flags |= PG_WANTED;
1180						tsleep(m, PVM, "pgtblk", 0);
1181						splx(s);
1182
1183						goto doretry;
1184					} else {
1185						if ((curproc != pageproc) &&
1186							(m->flags & PG_CACHE) &&
1187						    (cnt.v_free_count + cnt.v_cache_count) < cnt.v_free_min) {
1188							pagedaemon_wakeup();
1189						}
1190						bytesinpage = tinc;
1191						if (tinc > (newbsize - toff))
1192							bytesinpage = newbsize - toff;
1193						if (!vm_page_is_valid(m,
1194							(vm_offset_t) ((toff + off) & (PAGE_SIZE - 1)),
1195							bytesinpage)) {
1196							bp->b_flags &= ~B_CACHE;
1197						}
1198						if ((m->flags & PG_ACTIVE) == 0) {
1199							vm_page_activate(m);
1200							m->act_count = 0;
1201						}
1202						m->flags |= PG_BUSY;
1203					}
1204					bp->b_pages[pageindex] = m;
1205					curbpnpages = pageindex + 1;
1206				}
1207				for (i = bp->b_npages; i < curbpnpages; i++) {
1208					m = bp->b_pages[i];
1209					m->bmapped++;
1210					PAGE_WAKEUP(m);
1211				}
1212				bp->b_npages = curbpnpages;
1213				bp->b_data = buffers_kva + (bp - buf) * MAXBSIZE;
1214				pmap_qenter((vm_offset_t) bp->b_data, bp->b_pages, bp->b_npages);
1215				bp->b_data += off & (PAGE_SIZE - 1);
1216			}
1217		}
1218	}
1219	bufspace += (newbsize - bp->b_bufsize);
1220	bp->b_bufsize = newbsize;
1221	bp->b_bcount = size;
1222	return 1;
1223}
1224
1225/*
1226 * Wait for buffer I/O completion, returning error status.
1227 */
1228int
1229biowait(register struct buf * bp)
1230{
1231	int s;
1232
1233	s = splbio();
1234	while ((bp->b_flags & B_DONE) == 0)
1235		tsleep(bp, PRIBIO, "biowait", 0);
1236	splx(s);
1237	if (bp->b_flags & B_EINTR) {
1238		bp->b_flags &= ~B_EINTR;
1239		return (EINTR);
1240	}
1241	if (bp->b_flags & B_ERROR) {
1242		return (bp->b_error ? bp->b_error : EIO);
1243	} else {
1244		return (0);
1245	}
1246}
1247
1248/*
1249 * Finish I/O on a buffer, calling an optional function.
1250 * This is usually called from interrupt level, so process blocking
1251 * is not *a good idea*.
1252 */
1253void
1254biodone(register struct buf * bp)
1255{
1256	int s;
1257
1258	s = splbio();
1259	if (!(bp->b_flags & B_BUSY))
1260		panic("biodone: buffer not busy");
1261
1262	if (bp->b_flags & B_DONE) {
1263		splx(s);
1264		printf("biodone: buffer already done\n");
1265		return;
1266	}
1267	bp->b_flags |= B_DONE;
1268
1269	if ((bp->b_flags & B_READ) == 0) {
1270		vwakeup(bp);
1271	}
1272#ifdef BOUNCE_BUFFERS
1273	if (bp->b_flags & B_BOUNCE)
1274		vm_bounce_free(bp);
1275#endif
1276
1277	/* call optional completion function if requested */
1278	if (bp->b_flags & B_CALL) {
1279		bp->b_flags &= ~B_CALL;
1280		(*bp->b_iodone) (bp);
1281		splx(s);
1282		return;
1283	}
1284	if (bp->b_flags & B_VMIO) {
1285		int i, resid;
1286		vm_ooffset_t foff;
1287		vm_page_t m;
1288		vm_object_t obj;
1289		int iosize;
1290		struct vnode *vp = bp->b_vp;
1291
1292		if (vp->v_type == VBLK)
1293			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1294		else
1295			foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1296		obj = vp->v_object;
1297		if (!obj) {
1298			panic("biodone: no object");
1299		}
1300#if defined(VFS_BIO_DEBUG)
1301		if (obj->paging_in_progress < bp->b_npages) {
1302			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
1303			    obj->paging_in_progress, bp->b_npages);
1304		}
1305#endif
1306		iosize = bp->b_bufsize;
1307		for (i = 0; i < bp->b_npages; i++) {
1308			int bogusflag = 0;
1309			m = bp->b_pages[i];
1310			if (m == bogus_page) {
1311				bogusflag = 1;
1312				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
1313				if (!m) {
1314#if defined(VFS_BIO_DEBUG)
1315					printf("biodone: page disappeared\n");
1316#endif
1317					--obj->paging_in_progress;
1318					continue;
1319				}
1320				bp->b_pages[i] = m;
1321				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1322			}
1323#if defined(VFS_BIO_DEBUG)
1324			if (OFF_TO_IDX(foff) != m->pindex) {
1325				printf("biodone: foff(%d)/m->pindex(%d) mismatch\n", foff, m->pindex);
1326			}
1327#endif
1328			resid = IDX_TO_OFF(m->pindex + 1) - foff;
1329			if (resid > iosize)
1330				resid = iosize;
1331			/*
1332			 * In the write case, the valid and clean bits are
1333			 * already changed correctly, so we only need to do this
1334			 * here in the read case.
1335			 */
1336			if ((bp->b_flags & B_READ) && !bogusflag && resid > 0) {
1337				vm_page_set_validclean(m,
1338					(vm_offset_t) (foff & (PAGE_SIZE-1)), resid);
1339			}
1340
1341			/*
1342			 * when debugging new filesystems or buffer I/O methods, this
1343			 * is the most common error that pops up.  if you see this, you
1344			 * have not set the page busy flag correctly!!!
1345			 */
1346			if (m->busy == 0) {
1347				printf("biodone: page busy < 0, "
1348				    "pindex: %d, foff: 0x(%x,%x), "
1349				    "resid: %d, index: %d\n",
1350				    (int) m->pindex, (int)(foff >> 32),
1351						(int) foff & 0xffffffff, resid, i);
1352				if (vp->v_type != VBLK)
1353					printf(" iosize: %d, lblkno: %d, flags: 0x%lx, npages: %d\n",
1354					    bp->b_vp->v_mount->mnt_stat.f_iosize,
1355					    (int) bp->b_lblkno,
1356					    bp->b_flags, bp->b_npages);
1357				else
1358					printf(" VDEV, lblkno: %d, flags: 0x%lx, npages: %d\n",
1359					    (int) bp->b_lblkno,
1360					    bp->b_flags, bp->b_npages);
1361				printf(" valid: 0x%x, dirty: 0x%x, mapped: %d\n",
1362				    m->valid, m->dirty, m->bmapped);
1363				panic("biodone: page busy < 0\n");
1364			}
1365			--m->busy;
1366			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1367				m->flags &= ~PG_WANTED;
1368				wakeup(m);
1369			}
1370			--obj->paging_in_progress;
1371			foff += resid;
1372			iosize -= resid;
1373		}
1374		if (obj && obj->paging_in_progress == 0 &&
1375		    (obj->flags & OBJ_PIPWNT)) {
1376			obj->flags &= ~OBJ_PIPWNT;
1377			wakeup(obj);
1378		}
1379	}
1380	/*
1381	 * For asynchronous completions, release the buffer now. The brelse
1382	 * checks for B_WANTED and will do the wakeup there if necessary - so
1383	 * no need to do a wakeup here in the async case.
1384	 */
1385
1386	if (bp->b_flags & B_ASYNC) {
1387		brelse(bp);
1388	} else {
1389		wakeup(bp);
1390	}
1391	splx(s);
1392}
1393
1394int
1395count_lock_queue()
1396{
1397	int count;
1398	struct buf *bp;
1399
1400	count = 0;
1401	for (bp = bufqueues[QUEUE_LOCKED].tqh_first;
1402	    bp != NULL;
1403	    bp = bp->b_freelist.tqe_next)
1404		count++;
1405	return (count);
1406}
1407
1408int vfs_update_interval = 30;
1409
1410static void
1411vfs_update()
1412{
1413	(void) spl0();		/* XXX redundant?  wrong place? */
1414	while (1) {
1415		tsleep(&vfs_update_wakeup, PUSER, "update",
1416		    hz * vfs_update_interval);
1417		vfs_update_wakeup = 0;
1418		sync(curproc, NULL, NULL);
1419	}
1420}
1421
1422static int
1423sysctl_kern_updateinterval SYSCTL_HANDLER_ARGS
1424{
1425	int error = sysctl_handle_int(oidp,
1426		oidp->oid_arg1, oidp->oid_arg2, req);
1427	if (!error)
1428		wakeup(&vfs_update_wakeup);
1429	return error;
1430}
1431
1432SYSCTL_PROC(_kern, KERN_UPDATEINTERVAL, update, CTLTYPE_INT|CTLFLAG_RW,
1433	&vfs_update_interval, 0, sysctl_kern_updateinterval, "I", "");
1434
1435
1436/*
1437 * This routine is called in lieu of iodone in the case of
1438 * incomplete I/O.  This keeps the busy status for pages
1439 * consistant.
1440 */
1441void
1442vfs_unbusy_pages(struct buf * bp)
1443{
1444	int i;
1445
1446	if (bp->b_flags & B_VMIO) {
1447		struct vnode *vp = bp->b_vp;
1448		vm_object_t obj = vp->v_object;
1449		vm_ooffset_t foff;
1450
1451		foff = (vm_ooffset_t) vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1452
1453		for (i = 0; i < bp->b_npages; i++) {
1454			vm_page_t m = bp->b_pages[i];
1455
1456			if (m == bogus_page) {
1457				m = vm_page_lookup(obj, OFF_TO_IDX(foff) + i);
1458				if (!m) {
1459					panic("vfs_unbusy_pages: page missing\n");
1460				}
1461				bp->b_pages[i] = m;
1462				pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1463			}
1464			--obj->paging_in_progress;
1465			--m->busy;
1466			if ((m->busy == 0) && (m->flags & PG_WANTED)) {
1467				m->flags &= ~PG_WANTED;
1468				wakeup(m);
1469			}
1470		}
1471		if (obj->paging_in_progress == 0 &&
1472		    (obj->flags & OBJ_PIPWNT)) {
1473			obj->flags &= ~OBJ_PIPWNT;
1474			wakeup(obj);
1475		}
1476	}
1477}
1478
1479/*
1480 * This routine is called before a device strategy routine.
1481 * It is used to tell the VM system that paging I/O is in
1482 * progress, and treat the pages associated with the buffer
1483 * almost as being PG_BUSY.  Also the object paging_in_progress
1484 * flag is handled to make sure that the object doesn't become
1485 * inconsistant.
1486 */
1487void
1488vfs_busy_pages(struct buf * bp, int clear_modify)
1489{
1490	int i;
1491
1492	if (bp->b_flags & B_VMIO) {
1493		vm_object_t obj = bp->b_vp->v_object;
1494		vm_ooffset_t foff;
1495		int iocount = bp->b_bufsize;
1496
1497		if (bp->b_vp->v_type == VBLK)
1498			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1499		else
1500			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1501		vfs_setdirty(bp);
1502		for (i = 0; i < bp->b_npages; i++) {
1503			vm_page_t m = bp->b_pages[i];
1504			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1505
1506			if (resid > iocount)
1507				resid = iocount;
1508			if ((bp->b_flags & B_CLUSTER) == 0) {
1509				obj->paging_in_progress++;
1510				m->busy++;
1511			}
1512			if (clear_modify) {
1513				vm_page_protect(m, VM_PROT_READ);
1514				vm_page_set_validclean(m,
1515					(vm_offset_t) (foff & (PAGE_SIZE-1)), resid);
1516			} else if (bp->b_bcount >= PAGE_SIZE) {
1517				if (m->valid && (bp->b_flags & B_CACHE) == 0) {
1518					bp->b_pages[i] = bogus_page;
1519					pmap_qenter(trunc_page(bp->b_data), bp->b_pages, bp->b_npages);
1520				}
1521			}
1522			foff += resid;
1523			iocount -= resid;
1524		}
1525	}
1526}
1527
1528/*
1529 * Tell the VM system that the pages associated with this buffer
1530 * are clean.  This is used for delayed writes where the data is
1531 * going to go to disk eventually without additional VM intevention.
1532 */
1533void
1534vfs_clean_pages(struct buf * bp)
1535{
1536	int i;
1537
1538	if (bp->b_flags & B_VMIO) {
1539		vm_ooffset_t foff;
1540		int iocount = bp->b_bufsize;
1541
1542		if (bp->b_vp->v_type == VBLK)
1543			foff = (vm_ooffset_t) DEV_BSIZE * bp->b_lblkno;
1544		else
1545			foff = (vm_ooffset_t) bp->b_vp->v_mount->mnt_stat.f_iosize * bp->b_lblkno;
1546
1547		for (i = 0; i < bp->b_npages; i++) {
1548			vm_page_t m = bp->b_pages[i];
1549			int resid = IDX_TO_OFF(m->pindex + 1) - foff;
1550
1551			if (resid > iocount)
1552				resid = iocount;
1553			if (resid > 0) {
1554				vm_page_set_validclean(m,
1555					((vm_offset_t) foff & (PAGE_SIZE-1)), resid);
1556			}
1557			foff += resid;
1558			iocount -= resid;
1559		}
1560	}
1561}
1562
1563void
1564vfs_bio_clrbuf(struct buf *bp) {
1565	int i;
1566	if( bp->b_flags & B_VMIO) {
1567		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE)) {
1568			int mask;
1569			mask = 0;
1570			for(i=0;i<bp->b_bufsize;i+=DEV_BSIZE)
1571				mask |= (1 << (i/DEV_BSIZE));
1572			if( bp->b_pages[0]->valid != mask) {
1573				bzero(bp->b_data, bp->b_bufsize);
1574			}
1575			bp->b_pages[0]->valid = mask;
1576			bp->b_resid = 0;
1577			return;
1578		}
1579		for(i=0;i<bp->b_npages;i++) {
1580			if( bp->b_pages[i]->valid == VM_PAGE_BITS_ALL)
1581				continue;
1582			if( bp->b_pages[i]->valid == 0) {
1583				if ((bp->b_pages[i]->flags & PG_ZERO) == 0)
1584					bzero(bp->b_data + (i << PAGE_SHIFT), PAGE_SIZE);
1585			} else {
1586				int j;
1587				for(j=0;j<PAGE_SIZE/DEV_BSIZE;j++) {
1588					if( (bp->b_pages[i]->valid & (1<<j)) == 0)
1589						bzero(bp->b_data + (i << PAGE_SHIFT) + j * DEV_BSIZE, DEV_BSIZE);
1590				}
1591			}
1592			bp->b_pages[i]->valid = VM_PAGE_BITS_ALL;
1593		}
1594		bp->b_resid = 0;
1595	} else {
1596		clrbuf(bp);
1597	}
1598}
1599
1600/*
1601 * vm_hold_load_pages and vm_hold_unload pages get pages into
1602 * a buffers address space.  The pages are anonymous and are
1603 * not associated with a file object.
1604 */
1605void
1606vm_hold_load_pages(struct buf * bp, vm_offset_t froma, vm_offset_t toa)
1607{
1608	vm_offset_t pg;
1609	vm_page_t p;
1610	vm_offset_t from = round_page(froma);
1611	vm_offset_t to = round_page(toa);
1612
1613	for (pg = from; pg < to; pg += PAGE_SIZE) {
1614
1615tryagain:
1616
1617		p = vm_page_alloc(kernel_object, ((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
1618		    VM_ALLOC_NORMAL);
1619		if (!p) {
1620			VM_WAIT;
1621			goto tryagain;
1622		}
1623		vm_page_wire(p);
1624		pmap_kenter(pg, VM_PAGE_TO_PHYS(p));
1625		bp->b_pages[((caddr_t) pg - bp->b_data) >> PAGE_SHIFT] = p;
1626		PAGE_WAKEUP(p);
1627		bp->b_npages++;
1628	}
1629}
1630
1631void
1632vm_hold_free_pages(struct buf * bp, vm_offset_t froma, vm_offset_t toa)
1633{
1634	vm_offset_t pg;
1635	vm_page_t p;
1636	vm_offset_t from = round_page(froma);
1637	vm_offset_t to = round_page(toa);
1638
1639	for (pg = from; pg < to; pg += PAGE_SIZE) {
1640		int index = ((caddr_t) pg - bp->b_data) >> PAGE_SHIFT;
1641		p = bp->b_pages[index];
1642		bp->b_pages[index] = 0;
1643		pmap_kremove(pg);
1644		vm_page_free(p);
1645		--bp->b_npages;
1646	}
1647}
1648