vfs_bio.c revision 131729
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 */
14
15/*
16 * this file contains a new buffer I/O scheme implementing a coherent
17 * VM object and buffer cache scheme.  Pains have been taken to make
18 * sure that the performance degradation associated with schemes such
19 * as this is not realized.
20 *
21 * Author:  John S. Dyson
22 * Significant help during the development and debugging phases
23 * had been provided by David Greenman, also of the FreeBSD core team.
24 *
25 * see man buf(9) for more info.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 131729 2004-07-06 23:40:40Z peadar $");
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/bio.h>
34#include <sys/conf.h>
35#include <sys/buf.h>
36#include <sys/devicestat.h>
37#include <sys/eventhandler.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mount.h>
41#include <sys/mutex.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/proc.h>
45#include <sys/resourcevar.h>
46#include <sys/sysctl.h>
47#include <sys/vmmeter.h>
48#include <sys/vnode.h>
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/vm_kern.h>
52#include <vm/vm_pageout.h>
53#include <vm/vm_page.h>
54#include <vm/vm_object.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_map.h>
57#include "opt_directio.h"
58#include "opt_swap.h"
59
60static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
61
62struct	bio_ops bioops;		/* I/O operation notification */
63
64static int ibwrite(struct buf *);
65
66struct	buf_ops buf_ops_bio = {
67	"buf_ops_bio",
68	ibwrite
69};
70
71/*
72 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
73 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
74 */
75struct buf *buf;		/* buffer header pool */
76
77static struct proc *bufdaemonproc;
78
79static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
80		vm_offset_t to);
81static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
82		vm_offset_t to);
83static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
84			       int pageno, vm_page_t m);
85static void vfs_clean_pages(struct buf * bp);
86static void vfs_setdirty(struct buf *bp);
87static void vfs_vmio_release(struct buf *bp);
88static void vfs_backgroundwritedone(struct buf *bp);
89static int vfs_bio_clcheck(struct vnode *vp, int size,
90		daddr_t lblkno, daddr_t blkno);
91static int flushbufqueues(int flushdeps);
92static void buf_daemon(void);
93void bremfreel(struct buf * bp);
94
95int vmiodirenable = TRUE;
96SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
97    "Use the VM system for directory writes");
98int runningbufspace;
99SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
100    "Amount of presently outstanding async buffer io");
101static int bufspace;
102SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
103    "KVA memory used for bufs");
104static int maxbufspace;
105SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
106    "Maximum allowed value of bufspace (including buf_daemon)");
107static int bufmallocspace;
108SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
109    "Amount of malloced memory for buffers");
110static int maxbufmallocspace;
111SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
112    "Maximum amount of malloced memory for buffers");
113static int lobufspace;
114SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
115    "Minimum amount of buffers we want to have");
116static int hibufspace;
117SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
118    "Maximum allowed value of bufspace (excluding buf_daemon)");
119static int bufreusecnt;
120SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
121    "Number of times we have reused a buffer");
122static int buffreekvacnt;
123SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
124    "Number of times we have freed the KVA space from some buffer");
125static int bufdefragcnt;
126SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
127    "Number of times we have had to repeat buffer allocation to defragment");
128static int lorunningspace;
129SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
130    "Minimum preferred space used for in-progress I/O");
131static int hirunningspace;
132SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
133    "Maximum amount of space to use for in-progress I/O");
134static int dirtybufferflushes;
135SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
136    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
137static int altbufferflushes;
138SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
139    0, "Number of fsync flushes to limit dirty buffers");
140static int recursiveflushes;
141SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
142    0, "Number of flushes skipped due to being recursive");
143static int numdirtybuffers;
144SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
145    "Number of buffers that are dirty (has unwritten changes) at the moment");
146static int lodirtybuffers;
147SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
148    "How many buffers we want to have free before bufdaemon can sleep");
149static int hidirtybuffers;
150SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
151    "When the number of dirty buffers is considered severe");
152static int dirtybufthresh;
153SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
154    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
155static int numfreebuffers;
156SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
157    "Number of free buffers");
158static int lofreebuffers;
159SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
160   "XXX Unused");
161static int hifreebuffers;
162SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
163   "XXX Complicatedly unused");
164static int getnewbufcalls;
165SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
166   "Number of calls to getnewbuf");
167static int getnewbufrestarts;
168SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
169    "Number of times getnewbuf has had to restart a buffer aquisition");
170static int dobkgrdwrite = 1;
171SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
172    "Do background writes (honoring the BV_BKGRDWRITE flag)?");
173
174/*
175 * Wakeup point for bufdaemon, as well as indicator of whether it is already
176 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
177 * is idling.
178 */
179static int bd_request;
180
181/*
182 * This lock synchronizes access to bd_request.
183 */
184static struct mtx bdlock;
185
186/*
187 * bogus page -- for I/O to/from partially complete buffers
188 * this is a temporary solution to the problem, but it is not
189 * really that bad.  it would be better to split the buffer
190 * for input in the case of buffers partially already in memory,
191 * but the code is intricate enough already.
192 */
193vm_page_t bogus_page;
194
195/*
196 * Synchronization (sleep/wakeup) variable for active buffer space requests.
197 * Set when wait starts, cleared prior to wakeup().
198 * Used in runningbufwakeup() and waitrunningbufspace().
199 */
200static int runningbufreq;
201
202/*
203 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
204 * waitrunningbufspace().
205 */
206static struct mtx rbreqlock;
207
208/*
209 * Synchronization (sleep/wakeup) variable for buffer requests.
210 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
211 * by and/or.
212 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
213 * getnewbuf(), and getblk().
214 */
215static int needsbuffer;
216
217/*
218 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
219 */
220static struct mtx nblock;
221
222/*
223 * Lock that protects against bwait()/bdone()/B_DONE races.
224 */
225
226static struct mtx bdonelock;
227
228/*
229 * Definitions for the buffer free lists.
230 */
231#define BUFFER_QUEUES	5	/* number of free buffer queues */
232
233#define QUEUE_NONE	0	/* on no queue */
234#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
235#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
236#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
237#define QUEUE_EMPTY	4	/* empty buffer headers */
238
239/* Queues for free buffers with various properties */
240static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
241
242/* Lock for the bufqueues */
243static struct mtx bqlock;
244
245/*
246 * Single global constant for BUF_WMESG, to avoid getting multiple references.
247 * buf_wmesg is referred from macros.
248 */
249const char *buf_wmesg = BUF_WMESG;
250
251#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
252#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
253#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
254#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
255
256#ifdef DIRECTIO
257extern void ffs_rawread_setup(void);
258#endif /* DIRECTIO */
259/*
260 *	numdirtywakeup:
261 *
262 *	If someone is blocked due to there being too many dirty buffers,
263 *	and numdirtybuffers is now reasonable, wake them up.
264 */
265
266static __inline void
267numdirtywakeup(int level)
268{
269	if (numdirtybuffers <= level) {
270		mtx_lock(&nblock);
271		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
272			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
273			wakeup(&needsbuffer);
274		}
275		mtx_unlock(&nblock);
276	}
277}
278
279/*
280 *	bufspacewakeup:
281 *
282 *	Called when buffer space is potentially available for recovery.
283 *	getnewbuf() will block on this flag when it is unable to free
284 *	sufficient buffer space.  Buffer space becomes recoverable when
285 *	bp's get placed back in the queues.
286 */
287
288static __inline void
289bufspacewakeup(void)
290{
291	/*
292	 * If someone is waiting for BUF space, wake them up.  Even
293	 * though we haven't freed the kva space yet, the waiting
294	 * process will be able to now.
295	 */
296	mtx_lock(&nblock);
297	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
298		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
299		wakeup(&needsbuffer);
300	}
301	mtx_unlock(&nblock);
302}
303
304/*
305 * runningbufwakeup() - in-progress I/O accounting.
306 *
307 */
308static __inline void
309runningbufwakeup(struct buf *bp)
310{
311	if (bp->b_runningbufspace) {
312		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
313		bp->b_runningbufspace = 0;
314		mtx_lock(&rbreqlock);
315		if (runningbufreq && runningbufspace <= lorunningspace) {
316			runningbufreq = 0;
317			wakeup(&runningbufreq);
318		}
319		mtx_unlock(&rbreqlock);
320	}
321}
322
323/*
324 *	bufcountwakeup:
325 *
326 *	Called when a buffer has been added to one of the free queues to
327 *	account for the buffer and to wakeup anyone waiting for free buffers.
328 *	This typically occurs when large amounts of metadata are being handled
329 *	by the buffer cache ( else buffer space runs out first, usually ).
330 */
331
332static __inline void
333bufcountwakeup(void)
334{
335	atomic_add_int(&numfreebuffers, 1);
336	mtx_lock(&nblock);
337	if (needsbuffer) {
338		needsbuffer &= ~VFS_BIO_NEED_ANY;
339		if (numfreebuffers >= hifreebuffers)
340			needsbuffer &= ~VFS_BIO_NEED_FREE;
341		wakeup(&needsbuffer);
342	}
343	mtx_unlock(&nblock);
344}
345
346/*
347 *	waitrunningbufspace()
348 *
349 *	runningbufspace is a measure of the amount of I/O currently
350 *	running.  This routine is used in async-write situations to
351 *	prevent creating huge backups of pending writes to a device.
352 *	Only asynchronous writes are governed by this function.
353 *
354 *	Reads will adjust runningbufspace, but will not block based on it.
355 *	The read load has a side effect of reducing the allowed write load.
356 *
357 *	This does NOT turn an async write into a sync write.  It waits
358 *	for earlier writes to complete and generally returns before the
359 *	caller's write has reached the device.
360 */
361static __inline void
362waitrunningbufspace(void)
363{
364	mtx_lock(&rbreqlock);
365	while (runningbufspace > hirunningspace) {
366		++runningbufreq;
367		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
368	}
369	mtx_unlock(&rbreqlock);
370}
371
372
373/*
374 *	vfs_buf_test_cache:
375 *
376 *	Called when a buffer is extended.  This function clears the B_CACHE
377 *	bit if the newly extended portion of the buffer does not contain
378 *	valid data.
379 */
380static __inline
381void
382vfs_buf_test_cache(struct buf *bp,
383		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
384		  vm_page_t m)
385{
386	GIANT_REQUIRED;
387
388	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
389	if (bp->b_flags & B_CACHE) {
390		int base = (foff + off) & PAGE_MASK;
391		if (vm_page_is_valid(m, base, size) == 0)
392			bp->b_flags &= ~B_CACHE;
393	}
394}
395
396/* Wake up the buffer deamon if necessary */
397static __inline
398void
399bd_wakeup(int dirtybuflevel)
400{
401	mtx_lock(&bdlock);
402	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
403		bd_request = 1;
404		wakeup(&bd_request);
405	}
406	mtx_unlock(&bdlock);
407}
408
409/*
410 * bd_speedup - speedup the buffer cache flushing code
411 */
412
413static __inline
414void
415bd_speedup(void)
416{
417	bd_wakeup(1);
418}
419
420/*
421 * Calculating buffer cache scaling values and reserve space for buffer
422 * headers.  This is called during low level kernel initialization and
423 * may be called more then once.  We CANNOT write to the memory area
424 * being reserved at this time.
425 */
426caddr_t
427kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
428{
429	/*
430	 * physmem_est is in pages.  Convert it to kilobytes (assumes
431	 * PAGE_SIZE is >= 1K)
432	 */
433	physmem_est = physmem_est * (PAGE_SIZE / 1024);
434
435	/*
436	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
437	 * For the first 64MB of ram nominally allocate sufficient buffers to
438	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
439	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
440	 * the buffer cache we limit the eventual kva reservation to
441	 * maxbcache bytes.
442	 *
443	 * factor represents the 1/4 x ram conversion.
444	 */
445	if (nbuf == 0) {
446		int factor = 4 * BKVASIZE / 1024;
447
448		nbuf = 50;
449		if (physmem_est > 4096)
450			nbuf += min((physmem_est - 4096) / factor,
451			    65536 / factor);
452		if (physmem_est > 65536)
453			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
454
455		if (maxbcache && nbuf > maxbcache / BKVASIZE)
456			nbuf = maxbcache / BKVASIZE;
457	}
458
459#if 0
460	/*
461	 * Do not allow the buffer_map to be more then 1/2 the size of the
462	 * kernel_map.
463	 */
464	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
465	    (BKVASIZE * 2)) {
466		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
467		    (BKVASIZE * 2);
468		printf("Warning: nbufs capped at %d\n", nbuf);
469	}
470#endif
471
472	/*
473	 * swbufs are used as temporary holders for I/O, such as paging I/O.
474	 * We have no less then 16 and no more then 256.
475	 */
476	nswbuf = max(min(nbuf/4, 256), 16);
477#ifdef NSWBUF_MIN
478	if (nswbuf < NSWBUF_MIN)
479		nswbuf = NSWBUF_MIN;
480#endif
481#ifdef DIRECTIO
482	ffs_rawread_setup();
483#endif
484
485	/*
486	 * Reserve space for the buffer cache buffers
487	 */
488	swbuf = (void *)v;
489	v = (caddr_t)(swbuf + nswbuf);
490	buf = (void *)v;
491	v = (caddr_t)(buf + nbuf);
492
493	return(v);
494}
495
496/* Initialize the buffer subsystem.  Called before use of any buffers. */
497void
498bufinit(void)
499{
500	struct buf *bp;
501	int i;
502
503	GIANT_REQUIRED;
504
505	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
506	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
507	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
508	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
509	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
510
511	/* next, make a null set of free lists */
512	for (i = 0; i < BUFFER_QUEUES; i++)
513		TAILQ_INIT(&bufqueues[i]);
514
515	/* finally, initialize each buffer header and stick on empty q */
516	for (i = 0; i < nbuf; i++) {
517		bp = &buf[i];
518		bzero(bp, sizeof *bp);
519		bp->b_flags = B_INVAL;	/* we're just an empty header */
520		bp->b_dev = NULL;
521		bp->b_rcred = NOCRED;
522		bp->b_wcred = NOCRED;
523		bp->b_qindex = QUEUE_EMPTY;
524		bp->b_vflags = 0;
525		bp->b_xflags = 0;
526		LIST_INIT(&bp->b_dep);
527		BUF_LOCKINIT(bp);
528		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
529	}
530
531	/*
532	 * maxbufspace is the absolute maximum amount of buffer space we are
533	 * allowed to reserve in KVM and in real terms.  The absolute maximum
534	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
535	 * used by most other processes.  The differential is required to
536	 * ensure that buf_daemon is able to run when other processes might
537	 * be blocked waiting for buffer space.
538	 *
539	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
540	 * this may result in KVM fragmentation which is not handled optimally
541	 * by the system.
542	 */
543	maxbufspace = nbuf * BKVASIZE;
544	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
545	lobufspace = hibufspace - MAXBSIZE;
546
547	lorunningspace = 512 * 1024;
548	hirunningspace = 1024 * 1024;
549
550/*
551 * Limit the amount of malloc memory since it is wired permanently into
552 * the kernel space.  Even though this is accounted for in the buffer
553 * allocation, we don't want the malloced region to grow uncontrolled.
554 * The malloc scheme improves memory utilization significantly on average
555 * (small) directories.
556 */
557	maxbufmallocspace = hibufspace / 20;
558
559/*
560 * Reduce the chance of a deadlock occuring by limiting the number
561 * of delayed-write dirty buffers we allow to stack up.
562 */
563	hidirtybuffers = nbuf / 4 + 20;
564	dirtybufthresh = hidirtybuffers * 9 / 10;
565	numdirtybuffers = 0;
566/*
567 * To support extreme low-memory systems, make sure hidirtybuffers cannot
568 * eat up all available buffer space.  This occurs when our minimum cannot
569 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
570 * BKVASIZE'd (8K) buffers.
571 */
572	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
573		hidirtybuffers >>= 1;
574	}
575	lodirtybuffers = hidirtybuffers / 2;
576
577/*
578 * Try to keep the number of free buffers in the specified range,
579 * and give special processes (e.g. like buf_daemon) access to an
580 * emergency reserve.
581 */
582	lofreebuffers = nbuf / 18 + 5;
583	hifreebuffers = 2 * lofreebuffers;
584	numfreebuffers = nbuf;
585
586/*
587 * Maximum number of async ops initiated per buf_daemon loop.  This is
588 * somewhat of a hack at the moment, we really need to limit ourselves
589 * based on the number of bytes of I/O in-transit that were initiated
590 * from buf_daemon.
591 */
592
593	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
594	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
595}
596
597/*
598 * bfreekva() - free the kva allocation for a buffer.
599 *
600 *	Must be called at splbio() or higher as this is the only locking for
601 *	buffer_map.
602 *
603 *	Since this call frees up buffer space, we call bufspacewakeup().
604 */
605static void
606bfreekva(struct buf * bp)
607{
608	GIANT_REQUIRED;
609
610	if (bp->b_kvasize) {
611		atomic_add_int(&buffreekvacnt, 1);
612		atomic_subtract_int(&bufspace, bp->b_kvasize);
613		vm_map_delete(buffer_map,
614		    (vm_offset_t) bp->b_kvabase,
615		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
616		);
617		bp->b_kvasize = 0;
618		bufspacewakeup();
619	}
620}
621
622/*
623 *	bremfree:
624 *
625 *	Remove the buffer from the appropriate free list.
626 */
627void
628bremfree(struct buf * bp)
629{
630	mtx_lock(&bqlock);
631	bremfreel(bp);
632	mtx_unlock(&bqlock);
633}
634
635void
636bremfreel(struct buf * bp)
637{
638	int s = splbio();
639	int old_qindex = bp->b_qindex;
640
641	GIANT_REQUIRED;
642
643	if (bp->b_qindex != QUEUE_NONE) {
644		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
645		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
646		bp->b_qindex = QUEUE_NONE;
647	} else {
648		if (BUF_REFCNT(bp) <= 1)
649			panic("bremfree: removing a buffer not on a queue");
650	}
651
652	/*
653	 * Fixup numfreebuffers count.  If the buffer is invalid or not
654	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
655	 * the buffer was free and we must decrement numfreebuffers.
656	 */
657	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
658		switch(old_qindex) {
659		case QUEUE_DIRTY:
660		case QUEUE_CLEAN:
661		case QUEUE_EMPTY:
662		case QUEUE_EMPTYKVA:
663			atomic_subtract_int(&numfreebuffers, 1);
664			break;
665		default:
666			break;
667		}
668	}
669	splx(s);
670}
671
672
673/*
674 * Get a buffer with the specified data.  Look in the cache first.  We
675 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
676 * is set, the buffer is valid and we do not have to do anything ( see
677 * getblk() ).  This is really just a special case of breadn().
678 */
679int
680bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
681    struct buf ** bpp)
682{
683
684	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
685}
686
687/*
688 * Operates like bread, but also starts asynchronous I/O on
689 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
690 * to initiating I/O . If B_CACHE is set, the buffer is valid
691 * and we do not have to do anything.
692 */
693int
694breadn(struct vnode * vp, daddr_t blkno, int size,
695    daddr_t * rablkno, int *rabsize,
696    int cnt, struct ucred * cred, struct buf ** bpp)
697{
698	struct buf *bp, *rabp;
699	int i;
700	int rv = 0, readwait = 0;
701
702	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
703
704	/* if not found in cache, do some I/O */
705	if ((bp->b_flags & B_CACHE) == 0) {
706		if (curthread != PCPU_GET(idlethread))
707			curthread->td_proc->p_stats->p_ru.ru_inblock++;
708		bp->b_iocmd = BIO_READ;
709		bp->b_flags &= ~B_INVAL;
710		bp->b_ioflags &= ~BIO_ERROR;
711		if (bp->b_rcred == NOCRED && cred != NOCRED)
712			bp->b_rcred = crhold(cred);
713		vfs_busy_pages(bp, 0);
714		bp->b_iooffset = dbtob(bp->b_blkno);
715		if (vp->v_type == VCHR)
716			VOP_SPECSTRATEGY(vp, bp);
717		else
718			VOP_STRATEGY(vp, bp);
719		++readwait;
720	}
721
722	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
723		if (inmem(vp, *rablkno))
724			continue;
725		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
726
727		if ((rabp->b_flags & B_CACHE) == 0) {
728			if (curthread != PCPU_GET(idlethread))
729				curthread->td_proc->p_stats->p_ru.ru_inblock++;
730			rabp->b_flags |= B_ASYNC;
731			rabp->b_flags &= ~B_INVAL;
732			rabp->b_ioflags &= ~BIO_ERROR;
733			rabp->b_iocmd = BIO_READ;
734			if (rabp->b_rcred == NOCRED && cred != NOCRED)
735				rabp->b_rcred = crhold(cred);
736			vfs_busy_pages(rabp, 0);
737			BUF_KERNPROC(rabp);
738			rabp->b_iooffset = dbtob(rabp->b_blkno);
739			if (vp->v_type == VCHR)
740				VOP_SPECSTRATEGY(vp, rabp);
741			else
742				VOP_STRATEGY(vp, rabp);
743		} else {
744			brelse(rabp);
745		}
746	}
747
748	if (readwait) {
749		rv = bufwait(bp);
750	}
751	return (rv);
752}
753
754/*
755 * Write, release buffer on completion.  (Done by iodone
756 * if async).  Do not bother writing anything if the buffer
757 * is invalid.
758 *
759 * Note that we set B_CACHE here, indicating that buffer is
760 * fully valid and thus cacheable.  This is true even of NFS
761 * now so we set it generally.  This could be set either here
762 * or in biodone() since the I/O is synchronous.  We put it
763 * here.
764 */
765int
766bwrite(struct buf * bp)
767{
768
769	KASSERT(bp->b_op != NULL && bp->b_op->bop_write != NULL,
770	    ("Martian buffer %p in bwrite: nobody to write it.", bp));
771	return (bp->b_op->bop_write(bp));
772}
773
774static int
775ibwrite(struct buf * bp)
776{
777	int oldflags, s;
778	struct buf *newbp;
779
780	if (bp->b_flags & B_INVAL) {
781		brelse(bp);
782		return (0);
783	}
784
785	oldflags = bp->b_flags;
786
787	if (BUF_REFCNT(bp) == 0)
788		panic("ibwrite: buffer is not busy???");
789	s = splbio();
790	/*
791	 * If a background write is already in progress, delay
792	 * writing this block if it is asynchronous. Otherwise
793	 * wait for the background write to complete.
794	 */
795	VI_LOCK(bp->b_vp);
796	if (bp->b_vflags & BV_BKGRDINPROG) {
797		if (bp->b_flags & B_ASYNC) {
798			VI_UNLOCK(bp->b_vp);
799			splx(s);
800			bdwrite(bp);
801			return (0);
802		}
803		bp->b_vflags |= BV_BKGRDWAIT;
804		msleep(&bp->b_xflags, VI_MTX(bp->b_vp), PRIBIO, "bwrbg", 0);
805		if (bp->b_vflags & BV_BKGRDINPROG)
806			panic("ibwrite: still writing");
807	}
808	VI_UNLOCK(bp->b_vp);
809
810	/* Mark the buffer clean */
811	bundirty(bp);
812
813	/*
814	 * If this buffer is marked for background writing and we
815	 * do not have to wait for it, make a copy and write the
816	 * copy so as to leave this buffer ready for further use.
817	 *
818	 * This optimization eats a lot of memory.  If we have a page
819	 * or buffer shortfall we can't do it.
820	 */
821	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
822	    (bp->b_flags & B_ASYNC) &&
823	    !vm_page_count_severe() &&
824	    !buf_dirty_count_severe()) {
825		if (bp->b_iodone != NULL) {
826			printf("bp->b_iodone = %p\n", bp->b_iodone);
827			panic("ibwrite: need chained iodone");
828		}
829
830		/* get a new block */
831		newbp = geteblk(bp->b_bufsize);
832
833		/*
834		 * set it to be identical to the old block.  We have to
835		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
836		 * to avoid confusing the splay tree and gbincore().
837		 */
838		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
839		newbp->b_lblkno = bp->b_lblkno;
840		newbp->b_xflags |= BX_BKGRDMARKER;
841		VI_LOCK(bp->b_vp);
842		bp->b_vflags |= BV_BKGRDINPROG;
843		bgetvp(bp->b_vp, newbp);
844		VI_UNLOCK(bp->b_vp);
845		newbp->b_blkno = bp->b_blkno;
846		newbp->b_offset = bp->b_offset;
847		newbp->b_iodone = vfs_backgroundwritedone;
848		newbp->b_flags |= B_ASYNC;
849		newbp->b_flags &= ~B_INVAL;
850
851		/* move over the dependencies */
852		if (LIST_FIRST(&bp->b_dep) != NULL)
853			buf_movedeps(bp, newbp);
854
855		/*
856		 * Initiate write on the copy, release the original to
857		 * the B_LOCKED queue so that it cannot go away until
858		 * the background write completes. If not locked it could go
859		 * away and then be reconstituted while it was being written.
860		 * If the reconstituted buffer were written, we could end up
861		 * with two background copies being written at the same time.
862		 */
863		bqrelse(bp);
864		bp = newbp;
865	}
866
867	bp->b_flags &= ~B_DONE;
868	bp->b_ioflags &= ~BIO_ERROR;
869	bp->b_flags |= B_WRITEINPROG | B_CACHE;
870	bp->b_iocmd = BIO_WRITE;
871
872	VI_LOCK(bp->b_vp);
873	bp->b_vp->v_numoutput++;
874	VI_UNLOCK(bp->b_vp);
875	vfs_busy_pages(bp, 1);
876
877	/*
878	 * Normal bwrites pipeline writes
879	 */
880	bp->b_runningbufspace = bp->b_bufsize;
881	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
882
883	if (curthread != PCPU_GET(idlethread))
884		curthread->td_proc->p_stats->p_ru.ru_oublock++;
885	splx(s);
886	if (oldflags & B_ASYNC)
887		BUF_KERNPROC(bp);
888	bp->b_iooffset = dbtob(bp->b_blkno);
889	if (bp->b_vp->v_type == VCHR) {
890		if (!buf_prewrite(bp->b_vp, bp))
891			VOP_SPECSTRATEGY(bp->b_vp, bp);
892	} else {
893		VOP_STRATEGY(bp->b_vp, bp);
894	}
895
896	if ((oldflags & B_ASYNC) == 0) {
897		int rtval = bufwait(bp);
898		brelse(bp);
899		return (rtval);
900	} else {
901		/*
902		 * don't allow the async write to saturate the I/O
903		 * system.  We will not deadlock here because
904		 * we are blocking waiting for I/O that is already in-progress
905		 * to complete. We do not block here if it is the update
906		 * or syncer daemon trying to clean up as that can lead
907		 * to deadlock.
908		 */
909		if (curthread->td_proc != bufdaemonproc &&
910		    curthread->td_proc != updateproc)
911			waitrunningbufspace();
912	}
913
914	return (0);
915}
916
917/*
918 * Complete a background write started from bwrite.
919 */
920static void
921vfs_backgroundwritedone(bp)
922	struct buf *bp;
923{
924	struct buf *origbp;
925
926	/*
927	 * Find the original buffer that we are writing.
928	 */
929	VI_LOCK(bp->b_vp);
930	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
931		panic("backgroundwritedone: lost buffer");
932
933	/*
934	 * Clear the BV_BKGRDINPROG flag in the original buffer
935	 * and awaken it if it is waiting for the write to complete.
936	 * If BV_BKGRDINPROG is not set in the original buffer it must
937	 * have been released and re-instantiated - which is not legal.
938	 */
939	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
940	    ("backgroundwritedone: lost buffer2"));
941	origbp->b_vflags &= ~BV_BKGRDINPROG;
942	if (origbp->b_vflags & BV_BKGRDWAIT) {
943		origbp->b_vflags &= ~BV_BKGRDWAIT;
944		wakeup(&origbp->b_xflags);
945	}
946	VI_UNLOCK(bp->b_vp);
947	/*
948	 * Process dependencies then return any unfinished ones.
949	 */
950	if (LIST_FIRST(&bp->b_dep) != NULL)
951		buf_complete(bp);
952	if (LIST_FIRST(&bp->b_dep) != NULL)
953		buf_movedeps(bp, origbp);
954
955	/*
956	 * This buffer is marked B_NOCACHE, so when it is released
957	 * by biodone, it will be tossed. We mark it with BIO_READ
958	 * to avoid biodone doing a second vwakeup.
959	 */
960	bp->b_flags |= B_NOCACHE;
961	bp->b_iocmd = BIO_READ;
962	bp->b_flags &= ~(B_CACHE | B_DONE);
963	bp->b_iodone = 0;
964	bufdone(bp);
965}
966
967/*
968 * Delayed write. (Buffer is marked dirty).  Do not bother writing
969 * anything if the buffer is marked invalid.
970 *
971 * Note that since the buffer must be completely valid, we can safely
972 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
973 * biodone() in order to prevent getblk from writing the buffer
974 * out synchronously.
975 */
976void
977bdwrite(struct buf * bp)
978{
979	struct thread *td = curthread;
980	struct vnode *vp;
981	struct buf *nbp;
982
983	GIANT_REQUIRED;
984
985	if (BUF_REFCNT(bp) == 0)
986		panic("bdwrite: buffer is not busy");
987
988	if (bp->b_flags & B_INVAL) {
989		brelse(bp);
990		return;
991	}
992
993	/*
994	 * If we have too many dirty buffers, don't create any more.
995	 * If we are wildly over our limit, then force a complete
996	 * cleanup. Otherwise, just keep the situation from getting
997	 * out of control. Note that we have to avoid a recursive
998	 * disaster and not try to clean up after our own cleanup!
999	 */
1000	vp = bp->b_vp;
1001	VI_LOCK(vp);
1002	if (td->td_pflags & TDP_COWINPROGRESS) {
1003		recursiveflushes++;
1004	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
1005		VI_UNLOCK(vp);
1006		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
1007		VI_LOCK(vp);
1008		altbufferflushes++;
1009	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
1010		/*
1011		 * Try to find a buffer to flush.
1012		 */
1013		TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
1014			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1015			    buf_countdeps(nbp, 0) ||
1016			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1017				continue;
1018			if (bp == nbp)
1019				panic("bdwrite: found ourselves");
1020			VI_UNLOCK(vp);
1021			if (nbp->b_flags & B_CLUSTEROK) {
1022				vfs_bio_awrite(nbp);
1023			} else {
1024				bremfree(nbp);
1025				bawrite(nbp);
1026			}
1027			VI_LOCK(vp);
1028			dirtybufferflushes++;
1029			break;
1030		}
1031	}
1032	VI_UNLOCK(vp);
1033
1034	bdirty(bp);
1035	/*
1036	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1037	 * true even of NFS now.
1038	 */
1039	bp->b_flags |= B_CACHE;
1040
1041	/*
1042	 * This bmap keeps the system from needing to do the bmap later,
1043	 * perhaps when the system is attempting to do a sync.  Since it
1044	 * is likely that the indirect block -- or whatever other datastructure
1045	 * that the filesystem needs is still in memory now, it is a good
1046	 * thing to do this.  Note also, that if the pageout daemon is
1047	 * requesting a sync -- there might not be enough memory to do
1048	 * the bmap then...  So, this is important to do.
1049	 */
1050	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1051		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1052	}
1053
1054	/*
1055	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1056	 */
1057	vfs_setdirty(bp);
1058
1059	/*
1060	 * We need to do this here to satisfy the vnode_pager and the
1061	 * pageout daemon, so that it thinks that the pages have been
1062	 * "cleaned".  Note that since the pages are in a delayed write
1063	 * buffer -- the VFS layer "will" see that the pages get written
1064	 * out on the next sync, or perhaps the cluster will be completed.
1065	 */
1066	vfs_clean_pages(bp);
1067	bqrelse(bp);
1068
1069	/*
1070	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1071	 * buffers (midpoint between our recovery point and our stall
1072	 * point).
1073	 */
1074	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1075
1076	/*
1077	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1078	 * due to the softdep code.
1079	 */
1080}
1081
1082/*
1083 *	bdirty:
1084 *
1085 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1086 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1087 *	itself to properly update it in the dirty/clean lists.  We mark it
1088 *	B_DONE to ensure that any asynchronization of the buffer properly
1089 *	clears B_DONE ( else a panic will occur later ).
1090 *
1091 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1092 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1093 *	should only be called if the buffer is known-good.
1094 *
1095 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1096 *	count.
1097 *
1098 *	Must be called at splbio().
1099 *	The buffer must be on QUEUE_NONE.
1100 */
1101void
1102bdirty(bp)
1103	struct buf *bp;
1104{
1105	KASSERT(bp->b_qindex == QUEUE_NONE,
1106	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1107	bp->b_flags &= ~(B_RELBUF);
1108	bp->b_iocmd = BIO_WRITE;
1109
1110	if ((bp->b_flags & B_DELWRI) == 0) {
1111		bp->b_flags |= B_DONE | B_DELWRI;
1112		reassignbuf(bp, bp->b_vp);
1113		atomic_add_int(&numdirtybuffers, 1);
1114		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1115	}
1116}
1117
1118/*
1119 *	bundirty:
1120 *
1121 *	Clear B_DELWRI for buffer.
1122 *
1123 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1124 *	count.
1125 *
1126 *	Must be called at splbio().
1127 *	The buffer must be on QUEUE_NONE.
1128 */
1129
1130void
1131bundirty(bp)
1132	struct buf *bp;
1133{
1134	KASSERT(bp->b_qindex == QUEUE_NONE,
1135	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1136
1137	if (bp->b_flags & B_DELWRI) {
1138		bp->b_flags &= ~B_DELWRI;
1139		reassignbuf(bp, bp->b_vp);
1140		atomic_subtract_int(&numdirtybuffers, 1);
1141		numdirtywakeup(lodirtybuffers);
1142	}
1143	/*
1144	 * Since it is now being written, we can clear its deferred write flag.
1145	 */
1146	bp->b_flags &= ~B_DEFERRED;
1147}
1148
1149/*
1150 *	bawrite:
1151 *
1152 *	Asynchronous write.  Start output on a buffer, but do not wait for
1153 *	it to complete.  The buffer is released when the output completes.
1154 *
1155 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1156 *	B_INVAL buffers.  Not us.
1157 */
1158void
1159bawrite(struct buf * bp)
1160{
1161	bp->b_flags |= B_ASYNC;
1162	(void) bwrite(bp);
1163}
1164
1165/*
1166 *	bwillwrite:
1167 *
1168 *	Called prior to the locking of any vnodes when we are expecting to
1169 *	write.  We do not want to starve the buffer cache with too many
1170 *	dirty buffers so we block here.  By blocking prior to the locking
1171 *	of any vnodes we attempt to avoid the situation where a locked vnode
1172 *	prevents the various system daemons from flushing related buffers.
1173 */
1174
1175void
1176bwillwrite(void)
1177{
1178	if (numdirtybuffers >= hidirtybuffers) {
1179		int s;
1180
1181		mtx_lock(&Giant);
1182		s = splbio();
1183		mtx_lock(&nblock);
1184		while (numdirtybuffers >= hidirtybuffers) {
1185			bd_wakeup(1);
1186			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1187			msleep(&needsbuffer, &nblock,
1188			    (PRIBIO + 4), "flswai", 0);
1189		}
1190		splx(s);
1191		mtx_unlock(&nblock);
1192		mtx_unlock(&Giant);
1193	}
1194}
1195
1196/*
1197 * Return true if we have too many dirty buffers.
1198 */
1199int
1200buf_dirty_count_severe(void)
1201{
1202	return(numdirtybuffers >= hidirtybuffers);
1203}
1204
1205/*
1206 *	brelse:
1207 *
1208 *	Release a busy buffer and, if requested, free its resources.  The
1209 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1210 *	to be accessed later as a cache entity or reused for other purposes.
1211 */
1212void
1213brelse(struct buf * bp)
1214{
1215	int s;
1216
1217	GIANT_REQUIRED;
1218
1219	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1220	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1221
1222	s = splbio();
1223
1224	if (bp->b_iocmd == BIO_WRITE &&
1225	    (bp->b_ioflags & BIO_ERROR) &&
1226	    !(bp->b_flags & B_INVAL)) {
1227		/*
1228		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1229		 * pages from being scrapped.  If B_INVAL is set then
1230		 * this case is not run and the next case is run to
1231		 * destroy the buffer.  B_INVAL can occur if the buffer
1232		 * is outside the range supported by the underlying device.
1233		 */
1234		bp->b_ioflags &= ~BIO_ERROR;
1235		bdirty(bp);
1236	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1237	    (bp->b_ioflags & BIO_ERROR) ||
1238	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1239		/*
1240		 * Either a failed I/O or we were asked to free or not
1241		 * cache the buffer.
1242		 */
1243		bp->b_flags |= B_INVAL;
1244		if (LIST_FIRST(&bp->b_dep) != NULL)
1245			buf_deallocate(bp);
1246		if (bp->b_flags & B_DELWRI) {
1247			atomic_subtract_int(&numdirtybuffers, 1);
1248			numdirtywakeup(lodirtybuffers);
1249		}
1250		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1251		if ((bp->b_flags & B_VMIO) == 0) {
1252			if (bp->b_bufsize)
1253				allocbuf(bp, 0);
1254			if (bp->b_vp)
1255				brelvp(bp);
1256		}
1257	}
1258
1259	/*
1260	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1261	 * is called with B_DELWRI set, the underlying pages may wind up
1262	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1263	 * because pages associated with a B_DELWRI bp are marked clean.
1264	 *
1265	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1266	 * if B_DELWRI is set.
1267	 *
1268	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1269	 * on pages to return pages to the VM page queues.
1270	 */
1271	if (bp->b_flags & B_DELWRI)
1272		bp->b_flags &= ~B_RELBUF;
1273	else if (vm_page_count_severe()) {
1274		/*
1275		 * XXX This lock may not be necessary since BKGRDINPROG
1276		 * cannot be set while we hold the buf lock, it can only be
1277		 * cleared if it is already pending.
1278		 */
1279		if (bp->b_vp) {
1280			VI_LOCK(bp->b_vp);
1281			if (!(bp->b_vflags & BV_BKGRDINPROG))
1282				bp->b_flags |= B_RELBUF;
1283			VI_UNLOCK(bp->b_vp);
1284		} else
1285			bp->b_flags |= B_RELBUF;
1286	}
1287
1288	/*
1289	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1290	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1291	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1292	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1293	 *
1294	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1295	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1296	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1297	 *
1298	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1299	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1300	 * the commit state and we cannot afford to lose the buffer. If the
1301	 * buffer has a background write in progress, we need to keep it
1302	 * around to prevent it from being reconstituted and starting a second
1303	 * background write.
1304	 */
1305	if ((bp->b_flags & B_VMIO)
1306	    && !(bp->b_vp->v_mount != NULL &&
1307		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1308		 !vn_isdisk(bp->b_vp, NULL) &&
1309		 (bp->b_flags & B_DELWRI))
1310	    ) {
1311
1312		int i, j, resid;
1313		vm_page_t m;
1314		off_t foff;
1315		vm_pindex_t poff;
1316		vm_object_t obj;
1317
1318		obj = bp->b_object;
1319
1320		/*
1321		 * Get the base offset and length of the buffer.  Note that
1322		 * in the VMIO case if the buffer block size is not
1323		 * page-aligned then b_data pointer may not be page-aligned.
1324		 * But our b_pages[] array *IS* page aligned.
1325		 *
1326		 * block sizes less then DEV_BSIZE (usually 512) are not
1327		 * supported due to the page granularity bits (m->valid,
1328		 * m->dirty, etc...).
1329		 *
1330		 * See man buf(9) for more information
1331		 */
1332		resid = bp->b_bufsize;
1333		foff = bp->b_offset;
1334		VM_OBJECT_LOCK(obj);
1335		for (i = 0; i < bp->b_npages; i++) {
1336			int had_bogus = 0;
1337
1338			m = bp->b_pages[i];
1339
1340			/*
1341			 * If we hit a bogus page, fixup *all* the bogus pages
1342			 * now.
1343			 */
1344			if (m == bogus_page) {
1345				poff = OFF_TO_IDX(bp->b_offset);
1346				had_bogus = 1;
1347
1348				for (j = i; j < bp->b_npages; j++) {
1349					vm_page_t mtmp;
1350					mtmp = bp->b_pages[j];
1351					if (mtmp == bogus_page) {
1352						mtmp = vm_page_lookup(obj, poff + j);
1353						if (!mtmp) {
1354							panic("brelse: page missing\n");
1355						}
1356						bp->b_pages[j] = mtmp;
1357					}
1358				}
1359
1360				if ((bp->b_flags & B_INVAL) == 0) {
1361					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1362				}
1363				m = bp->b_pages[i];
1364			}
1365			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1366				int poffset = foff & PAGE_MASK;
1367				int presid = resid > (PAGE_SIZE - poffset) ?
1368					(PAGE_SIZE - poffset) : resid;
1369
1370				KASSERT(presid >= 0, ("brelse: extra page"));
1371				vm_page_lock_queues();
1372				vm_page_set_invalid(m, poffset, presid);
1373				vm_page_unlock_queues();
1374				if (had_bogus)
1375					printf("avoided corruption bug in bogus_page/brelse code\n");
1376			}
1377			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1378			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1379		}
1380		VM_OBJECT_UNLOCK(obj);
1381		if (bp->b_flags & (B_INVAL | B_RELBUF))
1382			vfs_vmio_release(bp);
1383
1384	} else if (bp->b_flags & B_VMIO) {
1385
1386		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1387			vfs_vmio_release(bp);
1388		}
1389
1390	}
1391
1392	if (bp->b_qindex != QUEUE_NONE)
1393		panic("brelse: free buffer onto another queue???");
1394	if (BUF_REFCNT(bp) > 1) {
1395		/* do not release to free list */
1396		BUF_UNLOCK(bp);
1397		splx(s);
1398		return;
1399	}
1400
1401	/* enqueue */
1402	mtx_lock(&bqlock);
1403
1404	/* buffers with no memory */
1405	if (bp->b_bufsize == 0) {
1406		bp->b_flags |= B_INVAL;
1407		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1408		if (bp->b_vflags & BV_BKGRDINPROG)
1409			panic("losing buffer 1");
1410		if (bp->b_kvasize) {
1411			bp->b_qindex = QUEUE_EMPTYKVA;
1412		} else {
1413			bp->b_qindex = QUEUE_EMPTY;
1414		}
1415		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1416		bp->b_dev = NULL;
1417	/* buffers with junk contents */
1418	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1419	    (bp->b_ioflags & BIO_ERROR)) {
1420		bp->b_flags |= B_INVAL;
1421		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1422		if (bp->b_vflags & BV_BKGRDINPROG)
1423			panic("losing buffer 2");
1424		bp->b_qindex = QUEUE_CLEAN;
1425		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1426		bp->b_dev = NULL;
1427	/* remaining buffers */
1428	} else {
1429		if (bp->b_flags & B_DELWRI)
1430			bp->b_qindex = QUEUE_DIRTY;
1431		else
1432			bp->b_qindex = QUEUE_CLEAN;
1433		if (bp->b_flags & B_AGE)
1434			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1435		else
1436			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1437	}
1438	mtx_unlock(&bqlock);
1439
1440	/*
1441	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1442	 * placed the buffer on the correct queue.  We must also disassociate
1443	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1444	 * find it.
1445	 */
1446	if (bp->b_flags & B_INVAL) {
1447		if (bp->b_flags & B_DELWRI)
1448			bundirty(bp);
1449		if (bp->b_vp)
1450			brelvp(bp);
1451	}
1452
1453	/*
1454	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1455	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1456	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1457	 * if B_INVAL is set ).
1458	 */
1459
1460	if (!(bp->b_flags & B_DELWRI))
1461		bufcountwakeup();
1462
1463	/*
1464	 * Something we can maybe free or reuse
1465	 */
1466	if (bp->b_bufsize || bp->b_kvasize)
1467		bufspacewakeup();
1468
1469	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1470	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1471		panic("brelse: not dirty");
1472	/* unlock */
1473	BUF_UNLOCK(bp);
1474	splx(s);
1475}
1476
1477/*
1478 * Release a buffer back to the appropriate queue but do not try to free
1479 * it.  The buffer is expected to be used again soon.
1480 *
1481 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1482 * biodone() to requeue an async I/O on completion.  It is also used when
1483 * known good buffers need to be requeued but we think we may need the data
1484 * again soon.
1485 *
1486 * XXX we should be able to leave the B_RELBUF hint set on completion.
1487 */
1488void
1489bqrelse(struct buf * bp)
1490{
1491	int s;
1492
1493	s = splbio();
1494
1495	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1496
1497	if (bp->b_qindex != QUEUE_NONE)
1498		panic("bqrelse: free buffer onto another queue???");
1499	if (BUF_REFCNT(bp) > 1) {
1500		/* do not release to free list */
1501		BUF_UNLOCK(bp);
1502		splx(s);
1503		return;
1504	}
1505	mtx_lock(&bqlock);
1506	/* buffers with stale but valid contents */
1507	if (bp->b_flags & B_DELWRI) {
1508		bp->b_qindex = QUEUE_DIRTY;
1509		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1510	} else {
1511		/*
1512		 * XXX This lock may not be necessary since BKGRDINPROG
1513		 * cannot be set while we hold the buf lock, it can only be
1514		 * cleared if it is already pending.
1515		 */
1516		VI_LOCK(bp->b_vp);
1517		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1518			VI_UNLOCK(bp->b_vp);
1519			bp->b_qindex = QUEUE_CLEAN;
1520			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1521			    b_freelist);
1522		} else {
1523			/*
1524			 * We are too low on memory, we have to try to free
1525			 * the buffer (most importantly: the wired pages
1526			 * making up its backing store) *now*.
1527			 */
1528			VI_UNLOCK(bp->b_vp);
1529			mtx_unlock(&bqlock);
1530			splx(s);
1531			brelse(bp);
1532			return;
1533		}
1534	}
1535	mtx_unlock(&bqlock);
1536
1537	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1538		bufcountwakeup();
1539
1540	/*
1541	 * Something we can maybe free or reuse.
1542	 */
1543	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1544		bufspacewakeup();
1545
1546	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1547	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1548		panic("bqrelse: not dirty");
1549	/* unlock */
1550	BUF_UNLOCK(bp);
1551	splx(s);
1552}
1553
1554/* Give pages used by the bp back to the VM system (where possible) */
1555static void
1556vfs_vmio_release(bp)
1557	struct buf *bp;
1558{
1559	int i;
1560	vm_page_t m;
1561
1562	GIANT_REQUIRED;
1563	VM_OBJECT_LOCK(bp->b_object);
1564	vm_page_lock_queues();
1565	for (i = 0; i < bp->b_npages; i++) {
1566		m = bp->b_pages[i];
1567		bp->b_pages[i] = NULL;
1568		/*
1569		 * In order to keep page LRU ordering consistent, put
1570		 * everything on the inactive queue.
1571		 */
1572		vm_page_unwire(m, 0);
1573		/*
1574		 * We don't mess with busy pages, it is
1575		 * the responsibility of the process that
1576		 * busied the pages to deal with them.
1577		 */
1578		if ((m->flags & PG_BUSY) || (m->busy != 0))
1579			continue;
1580
1581		if (m->wire_count == 0) {
1582			/*
1583			 * Might as well free the page if we can and it has
1584			 * no valid data.  We also free the page if the
1585			 * buffer was used for direct I/O
1586			 */
1587			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1588			    m->hold_count == 0) {
1589				vm_page_busy(m);
1590				pmap_remove_all(m);
1591				vm_page_free(m);
1592			} else if (bp->b_flags & B_DIRECT) {
1593				vm_page_try_to_free(m);
1594			} else if (vm_page_count_severe()) {
1595				vm_page_try_to_cache(m);
1596			}
1597		}
1598	}
1599	vm_page_unlock_queues();
1600	VM_OBJECT_UNLOCK(bp->b_object);
1601	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1602
1603	if (bp->b_bufsize) {
1604		bufspacewakeup();
1605		bp->b_bufsize = 0;
1606	}
1607	bp->b_npages = 0;
1608	bp->b_flags &= ~B_VMIO;
1609	if (bp->b_vp)
1610		brelvp(bp);
1611}
1612
1613/*
1614 * Check to see if a block at a particular lbn is available for a clustered
1615 * write.
1616 */
1617static int
1618vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1619{
1620	struct buf *bpa;
1621	int match;
1622
1623	match = 0;
1624
1625	/* If the buf isn't in core skip it */
1626	if ((bpa = gbincore(vp, lblkno)) == NULL)
1627		return (0);
1628
1629	/* If the buf is busy we don't want to wait for it */
1630	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1631		return (0);
1632
1633	/* Only cluster with valid clusterable delayed write buffers */
1634	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1635	    (B_DELWRI | B_CLUSTEROK))
1636		goto done;
1637
1638	if (bpa->b_bufsize != size)
1639		goto done;
1640
1641	/*
1642	 * Check to see if it is in the expected place on disk and that the
1643	 * block has been mapped.
1644	 */
1645	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1646		match = 1;
1647done:
1648	BUF_UNLOCK(bpa);
1649	return (match);
1650}
1651
1652/*
1653 *	vfs_bio_awrite:
1654 *
1655 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1656 *	This is much better then the old way of writing only one buffer at
1657 *	a time.  Note that we may not be presented with the buffers in the
1658 *	correct order, so we search for the cluster in both directions.
1659 */
1660int
1661vfs_bio_awrite(struct buf * bp)
1662{
1663	int i;
1664	int j;
1665	daddr_t lblkno = bp->b_lblkno;
1666	struct vnode *vp = bp->b_vp;
1667	int s;
1668	int ncl;
1669	int nwritten;
1670	int size;
1671	int maxcl;
1672
1673	s = splbio();
1674	/*
1675	 * right now we support clustered writing only to regular files.  If
1676	 * we find a clusterable block we could be in the middle of a cluster
1677	 * rather then at the beginning.
1678	 */
1679	if ((vp->v_type == VREG) &&
1680	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1681	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1682
1683		size = vp->v_mount->mnt_stat.f_iosize;
1684		maxcl = MAXPHYS / size;
1685
1686		VI_LOCK(vp);
1687		for (i = 1; i < maxcl; i++)
1688			if (vfs_bio_clcheck(vp, size, lblkno + i,
1689			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1690				break;
1691
1692		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1693			if (vfs_bio_clcheck(vp, size, lblkno - j,
1694			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1695				break;
1696
1697		VI_UNLOCK(vp);
1698		--j;
1699		ncl = i + j;
1700		/*
1701		 * this is a possible cluster write
1702		 */
1703		if (ncl != 1) {
1704			BUF_UNLOCK(bp);
1705			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1706			splx(s);
1707			return nwritten;
1708		}
1709	}
1710
1711	bremfree(bp);
1712	bp->b_flags |= B_ASYNC;
1713
1714	splx(s);
1715	/*
1716	 * default (old) behavior, writing out only one block
1717	 *
1718	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1719	 */
1720	nwritten = bp->b_bufsize;
1721	(void) bwrite(bp);
1722
1723	return nwritten;
1724}
1725
1726/*
1727 *	getnewbuf:
1728 *
1729 *	Find and initialize a new buffer header, freeing up existing buffers
1730 *	in the bufqueues as necessary.  The new buffer is returned locked.
1731 *
1732 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1733 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1734 *
1735 *	We block if:
1736 *		We have insufficient buffer headers
1737 *		We have insufficient buffer space
1738 *		buffer_map is too fragmented ( space reservation fails )
1739 *		If we have to flush dirty buffers ( but we try to avoid this )
1740 *
1741 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1742 *	Instead we ask the buf daemon to do it for us.  We attempt to
1743 *	avoid piecemeal wakeups of the pageout daemon.
1744 */
1745
1746static struct buf *
1747getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1748{
1749	struct buf *bp;
1750	struct buf *nbp;
1751	int defrag = 0;
1752	int nqindex;
1753	static int flushingbufs;
1754
1755	GIANT_REQUIRED;
1756
1757	/*
1758	 * We can't afford to block since we might be holding a vnode lock,
1759	 * which may prevent system daemons from running.  We deal with
1760	 * low-memory situations by proactively returning memory and running
1761	 * async I/O rather then sync I/O.
1762	 */
1763
1764	atomic_add_int(&getnewbufcalls, 1);
1765	atomic_subtract_int(&getnewbufrestarts, 1);
1766restart:
1767	atomic_add_int(&getnewbufrestarts, 1);
1768
1769	/*
1770	 * Setup for scan.  If we do not have enough free buffers,
1771	 * we setup a degenerate case that immediately fails.  Note
1772	 * that if we are specially marked process, we are allowed to
1773	 * dip into our reserves.
1774	 *
1775	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1776	 *
1777	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1778	 * However, there are a number of cases (defragging, reusing, ...)
1779	 * where we cannot backup.
1780	 */
1781	mtx_lock(&bqlock);
1782	nqindex = QUEUE_EMPTYKVA;
1783	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1784
1785	if (nbp == NULL) {
1786		/*
1787		 * If no EMPTYKVA buffers and we are either
1788		 * defragging or reusing, locate a CLEAN buffer
1789		 * to free or reuse.  If bufspace useage is low
1790		 * skip this step so we can allocate a new buffer.
1791		 */
1792		if (defrag || bufspace >= lobufspace) {
1793			nqindex = QUEUE_CLEAN;
1794			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1795		}
1796
1797		/*
1798		 * If we could not find or were not allowed to reuse a
1799		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1800		 * buffer.  We can only use an EMPTY buffer if allocating
1801		 * its KVA would not otherwise run us out of buffer space.
1802		 */
1803		if (nbp == NULL && defrag == 0 &&
1804		    bufspace + maxsize < hibufspace) {
1805			nqindex = QUEUE_EMPTY;
1806			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1807		}
1808	}
1809
1810	/*
1811	 * Run scan, possibly freeing data and/or kva mappings on the fly
1812	 * depending.
1813	 */
1814
1815	while ((bp = nbp) != NULL) {
1816		int qindex = nqindex;
1817
1818		/*
1819		 * Calculate next bp ( we can only use it if we do not block
1820		 * or do other fancy things ).
1821		 */
1822		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1823			switch(qindex) {
1824			case QUEUE_EMPTY:
1825				nqindex = QUEUE_EMPTYKVA;
1826				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1827					break;
1828				/* FALLTHROUGH */
1829			case QUEUE_EMPTYKVA:
1830				nqindex = QUEUE_CLEAN;
1831				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1832					break;
1833				/* FALLTHROUGH */
1834			case QUEUE_CLEAN:
1835				/*
1836				 * nbp is NULL.
1837				 */
1838				break;
1839			}
1840		}
1841		if (bp->b_vp) {
1842			VI_LOCK(bp->b_vp);
1843			if (bp->b_vflags & BV_BKGRDINPROG) {
1844				VI_UNLOCK(bp->b_vp);
1845				continue;
1846			}
1847			VI_UNLOCK(bp->b_vp);
1848		}
1849
1850		/*
1851		 * Sanity Checks
1852		 */
1853		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1854
1855		/*
1856		 * Note: we no longer distinguish between VMIO and non-VMIO
1857		 * buffers.
1858		 */
1859
1860		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1861
1862		/*
1863		 * If we are defragging then we need a buffer with
1864		 * b_kvasize != 0.  XXX this situation should no longer
1865		 * occur, if defrag is non-zero the buffer's b_kvasize
1866		 * should also be non-zero at this point.  XXX
1867		 */
1868		if (defrag && bp->b_kvasize == 0) {
1869			printf("Warning: defrag empty buffer %p\n", bp);
1870			continue;
1871		}
1872
1873		/*
1874		 * Start freeing the bp.  This is somewhat involved.  nbp
1875		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1876		 */
1877
1878		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1879			panic("getnewbuf: locked buf");
1880		bremfreel(bp);
1881		mtx_unlock(&bqlock);
1882
1883		if (qindex == QUEUE_CLEAN) {
1884			if (bp->b_flags & B_VMIO) {
1885				bp->b_flags &= ~B_ASYNC;
1886				vfs_vmio_release(bp);
1887			}
1888			if (bp->b_vp)
1889				brelvp(bp);
1890		}
1891
1892		/*
1893		 * NOTE:  nbp is now entirely invalid.  We can only restart
1894		 * the scan from this point on.
1895		 *
1896		 * Get the rest of the buffer freed up.  b_kva* is still
1897		 * valid after this operation.
1898		 */
1899
1900		if (bp->b_rcred != NOCRED) {
1901			crfree(bp->b_rcred);
1902			bp->b_rcred = NOCRED;
1903		}
1904		if (bp->b_wcred != NOCRED) {
1905			crfree(bp->b_wcred);
1906			bp->b_wcred = NOCRED;
1907		}
1908		if (LIST_FIRST(&bp->b_dep) != NULL)
1909			buf_deallocate(bp);
1910		if (bp->b_vflags & BV_BKGRDINPROG)
1911			panic("losing buffer 3");
1912
1913		if (bp->b_bufsize)
1914			allocbuf(bp, 0);
1915
1916		bp->b_flags = 0;
1917		bp->b_ioflags = 0;
1918		bp->b_xflags = 0;
1919		bp->b_vflags = 0;
1920		bp->b_dev = NULL;
1921		bp->b_vp = NULL;
1922		bp->b_blkno = bp->b_lblkno = 0;
1923		bp->b_offset = NOOFFSET;
1924		bp->b_iodone = 0;
1925		bp->b_error = 0;
1926		bp->b_resid = 0;
1927		bp->b_bcount = 0;
1928		bp->b_npages = 0;
1929		bp->b_dirtyoff = bp->b_dirtyend = 0;
1930		bp->b_magic = B_MAGIC_BIO;
1931		bp->b_op = &buf_ops_bio;
1932		bp->b_object = NULL;
1933
1934		LIST_INIT(&bp->b_dep);
1935
1936		/*
1937		 * If we are defragging then free the buffer.
1938		 */
1939		if (defrag) {
1940			bp->b_flags |= B_INVAL;
1941			bfreekva(bp);
1942			brelse(bp);
1943			defrag = 0;
1944			goto restart;
1945		}
1946
1947		/*
1948		 * If we are overcomitted then recover the buffer and its
1949		 * KVM space.  This occurs in rare situations when multiple
1950		 * processes are blocked in getnewbuf() or allocbuf().
1951		 */
1952		if (bufspace >= hibufspace)
1953			flushingbufs = 1;
1954		if (flushingbufs && bp->b_kvasize != 0) {
1955			bp->b_flags |= B_INVAL;
1956			bfreekva(bp);
1957			brelse(bp);
1958			goto restart;
1959		}
1960		if (bufspace < lobufspace)
1961			flushingbufs = 0;
1962		break;
1963	}
1964
1965	/*
1966	 * If we exhausted our list, sleep as appropriate.  We may have to
1967	 * wakeup various daemons and write out some dirty buffers.
1968	 *
1969	 * Generally we are sleeping due to insufficient buffer space.
1970	 */
1971
1972	if (bp == NULL) {
1973		int flags;
1974		char *waitmsg;
1975
1976		mtx_unlock(&bqlock);
1977		if (defrag) {
1978			flags = VFS_BIO_NEED_BUFSPACE;
1979			waitmsg = "nbufkv";
1980		} else if (bufspace >= hibufspace) {
1981			waitmsg = "nbufbs";
1982			flags = VFS_BIO_NEED_BUFSPACE;
1983		} else {
1984			waitmsg = "newbuf";
1985			flags = VFS_BIO_NEED_ANY;
1986		}
1987
1988		bd_speedup();	/* heeeelp */
1989
1990		mtx_lock(&nblock);
1991		needsbuffer |= flags;
1992		while (needsbuffer & flags) {
1993			if (msleep(&needsbuffer, &nblock,
1994			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1995				mtx_unlock(&nblock);
1996				return (NULL);
1997			}
1998		}
1999		mtx_unlock(&nblock);
2000	} else {
2001		/*
2002		 * We finally have a valid bp.  We aren't quite out of the
2003		 * woods, we still have to reserve kva space.  In order
2004		 * to keep fragmentation sane we only allocate kva in
2005		 * BKVASIZE chunks.
2006		 */
2007		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2008
2009		if (maxsize != bp->b_kvasize) {
2010			vm_offset_t addr = 0;
2011
2012			bfreekva(bp);
2013
2014			if (vm_map_findspace(buffer_map,
2015				vm_map_min(buffer_map), maxsize, &addr)) {
2016				/*
2017				 * Uh oh.  Buffer map is to fragmented.  We
2018				 * must defragment the map.
2019				 */
2020				atomic_add_int(&bufdefragcnt, 1);
2021				defrag = 1;
2022				bp->b_flags |= B_INVAL;
2023				brelse(bp);
2024				goto restart;
2025			}
2026			if (addr) {
2027				vm_map_insert(buffer_map, NULL, 0,
2028					addr, addr + maxsize,
2029					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2030
2031				bp->b_kvabase = (caddr_t) addr;
2032				bp->b_kvasize = maxsize;
2033				atomic_add_int(&bufspace, bp->b_kvasize);
2034				atomic_add_int(&bufreusecnt, 1);
2035			}
2036		}
2037		bp->b_saveaddr = bp->b_kvabase;
2038		bp->b_data = bp->b_saveaddr;
2039	}
2040	return(bp);
2041}
2042
2043/*
2044 *	buf_daemon:
2045 *
2046 *	buffer flushing daemon.  Buffers are normally flushed by the
2047 *	update daemon but if it cannot keep up this process starts to
2048 *	take the load in an attempt to prevent getnewbuf() from blocking.
2049 */
2050
2051static struct kproc_desc buf_kp = {
2052	"bufdaemon",
2053	buf_daemon,
2054	&bufdaemonproc
2055};
2056SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2057
2058static void
2059buf_daemon()
2060{
2061	int s;
2062
2063	mtx_lock(&Giant);
2064
2065	/*
2066	 * This process needs to be suspended prior to shutdown sync.
2067	 */
2068	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2069	    SHUTDOWN_PRI_LAST);
2070
2071	/*
2072	 * This process is allowed to take the buffer cache to the limit
2073	 */
2074	s = splbio();
2075	mtx_lock(&bdlock);
2076
2077	for (;;) {
2078		bd_request = 0;
2079		mtx_unlock(&bdlock);
2080
2081		kthread_suspend_check(bufdaemonproc);
2082
2083		/*
2084		 * Do the flush.  Limit the amount of in-transit I/O we
2085		 * allow to build up, otherwise we would completely saturate
2086		 * the I/O system.  Wakeup any waiting processes before we
2087		 * normally would so they can run in parallel with our drain.
2088		 */
2089		while (numdirtybuffers > lodirtybuffers) {
2090			if (flushbufqueues(0) == 0) {
2091				/*
2092				 * Could not find any buffers without rollback
2093				 * dependencies, so just write the first one
2094				 * in the hopes of eventually making progress.
2095				 */
2096				flushbufqueues(1);
2097				break;
2098			}
2099			waitrunningbufspace();
2100			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2101		}
2102
2103		/*
2104		 * Only clear bd_request if we have reached our low water
2105		 * mark.  The buf_daemon normally waits 1 second and
2106		 * then incrementally flushes any dirty buffers that have
2107		 * built up, within reason.
2108		 *
2109		 * If we were unable to hit our low water mark and couldn't
2110		 * find any flushable buffers, we sleep half a second.
2111		 * Otherwise we loop immediately.
2112		 */
2113		mtx_lock(&bdlock);
2114		if (numdirtybuffers <= lodirtybuffers) {
2115			/*
2116			 * We reached our low water mark, reset the
2117			 * request and sleep until we are needed again.
2118			 * The sleep is just so the suspend code works.
2119			 */
2120			bd_request = 0;
2121			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2122		} else {
2123			/*
2124			 * We couldn't find any flushable dirty buffers but
2125			 * still have too many dirty buffers, we
2126			 * have to sleep and try again.  (rare)
2127			 */
2128			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2129		}
2130	}
2131}
2132
2133/*
2134 *	flushbufqueues:
2135 *
2136 *	Try to flush a buffer in the dirty queue.  We must be careful to
2137 *	free up B_INVAL buffers instead of write them, which NFS is
2138 *	particularly sensitive to.
2139 */
2140int flushwithdeps = 0;
2141SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2142    0, "Number of buffers flushed with dependecies that require rollbacks");
2143static int
2144flushbufqueues(int flushdeps)
2145{
2146	struct thread *td = curthread;
2147	struct vnode *vp;
2148	struct mount *mp;
2149	struct buf *bp;
2150	int hasdeps;
2151
2152	mtx_lock(&bqlock);
2153	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2154		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2155			continue;
2156		KASSERT((bp->b_flags & B_DELWRI),
2157		    ("unexpected clean buffer %p", bp));
2158		VI_LOCK(bp->b_vp);
2159		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
2160			VI_UNLOCK(bp->b_vp);
2161			BUF_UNLOCK(bp);
2162			continue;
2163		}
2164		VI_UNLOCK(bp->b_vp);
2165		if (bp->b_flags & B_INVAL) {
2166			bremfreel(bp);
2167			mtx_unlock(&bqlock);
2168			brelse(bp);
2169			return (1);
2170		}
2171
2172		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2173			if (flushdeps == 0) {
2174				BUF_UNLOCK(bp);
2175				continue;
2176			}
2177			hasdeps = 1;
2178		} else
2179			hasdeps = 0;
2180		/*
2181		 * We must hold the lock on a vnode before writing
2182		 * one of its buffers. Otherwise we may confuse, or
2183		 * in the case of a snapshot vnode, deadlock the
2184		 * system.
2185		 *
2186		 * The lock order here is the reverse of the normal
2187		 * of vnode followed by buf lock.  This is ok because
2188		 * the NOWAIT will prevent deadlock.
2189		 */
2190		vp = bp->b_vp;
2191		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2192			BUF_UNLOCK(bp);
2193			continue;
2194		}
2195		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2196			mtx_unlock(&bqlock);
2197			vfs_bio_awrite(bp);
2198			vn_finished_write(mp);
2199			VOP_UNLOCK(vp, 0, td);
2200			flushwithdeps += hasdeps;
2201			return (1);
2202		}
2203		vn_finished_write(mp);
2204		BUF_UNLOCK(bp);
2205	}
2206	mtx_unlock(&bqlock);
2207	return (0);
2208}
2209
2210/*
2211 * Check to see if a block is currently memory resident.
2212 */
2213struct buf *
2214incore(struct vnode * vp, daddr_t blkno)
2215{
2216	struct buf *bp;
2217
2218	int s = splbio();
2219	VI_LOCK(vp);
2220	bp = gbincore(vp, blkno);
2221	VI_UNLOCK(vp);
2222	splx(s);
2223	return (bp);
2224}
2225
2226/*
2227 * Returns true if no I/O is needed to access the
2228 * associated VM object.  This is like incore except
2229 * it also hunts around in the VM system for the data.
2230 */
2231
2232int
2233inmem(struct vnode * vp, daddr_t blkno)
2234{
2235	vm_object_t obj;
2236	vm_offset_t toff, tinc, size;
2237	vm_page_t m;
2238	vm_ooffset_t off;
2239
2240	GIANT_REQUIRED;
2241	ASSERT_VOP_LOCKED(vp, "inmem");
2242
2243	if (incore(vp, blkno))
2244		return 1;
2245	if (vp->v_mount == NULL)
2246		return 0;
2247	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2248		return 0;
2249
2250	size = PAGE_SIZE;
2251	if (size > vp->v_mount->mnt_stat.f_iosize)
2252		size = vp->v_mount->mnt_stat.f_iosize;
2253	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2254
2255	VM_OBJECT_LOCK(obj);
2256	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2257		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2258		if (!m)
2259			goto notinmem;
2260		tinc = size;
2261		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2262			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2263		if (vm_page_is_valid(m,
2264		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2265			goto notinmem;
2266	}
2267	VM_OBJECT_UNLOCK(obj);
2268	return 1;
2269
2270notinmem:
2271	VM_OBJECT_UNLOCK(obj);
2272	return (0);
2273}
2274
2275/*
2276 *	vfs_setdirty:
2277 *
2278 *	Sets the dirty range for a buffer based on the status of the dirty
2279 *	bits in the pages comprising the buffer.
2280 *
2281 *	The range is limited to the size of the buffer.
2282 *
2283 *	This routine is primarily used by NFS, but is generalized for the
2284 *	B_VMIO case.
2285 */
2286static void
2287vfs_setdirty(struct buf *bp)
2288{
2289	int i;
2290	vm_object_t object;
2291
2292	GIANT_REQUIRED;
2293	/*
2294	 * Degenerate case - empty buffer
2295	 */
2296
2297	if (bp->b_bufsize == 0)
2298		return;
2299
2300	/*
2301	 * We qualify the scan for modified pages on whether the
2302	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2303	 * is not cleared simply by protecting pages off.
2304	 */
2305
2306	if ((bp->b_flags & B_VMIO) == 0)
2307		return;
2308
2309	object = bp->b_pages[0]->object;
2310	VM_OBJECT_LOCK(object);
2311	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2312		printf("Warning: object %p writeable but not mightbedirty\n", object);
2313	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2314		printf("Warning: object %p mightbedirty but not writeable\n", object);
2315
2316	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2317		vm_offset_t boffset;
2318		vm_offset_t eoffset;
2319
2320		vm_page_lock_queues();
2321		/*
2322		 * test the pages to see if they have been modified directly
2323		 * by users through the VM system.
2324		 */
2325		for (i = 0; i < bp->b_npages; i++)
2326			vm_page_test_dirty(bp->b_pages[i]);
2327
2328		/*
2329		 * Calculate the encompassing dirty range, boffset and eoffset,
2330		 * (eoffset - boffset) bytes.
2331		 */
2332
2333		for (i = 0; i < bp->b_npages; i++) {
2334			if (bp->b_pages[i]->dirty)
2335				break;
2336		}
2337		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2338
2339		for (i = bp->b_npages - 1; i >= 0; --i) {
2340			if (bp->b_pages[i]->dirty) {
2341				break;
2342			}
2343		}
2344		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2345
2346		vm_page_unlock_queues();
2347		/*
2348		 * Fit it to the buffer.
2349		 */
2350
2351		if (eoffset > bp->b_bcount)
2352			eoffset = bp->b_bcount;
2353
2354		/*
2355		 * If we have a good dirty range, merge with the existing
2356		 * dirty range.
2357		 */
2358
2359		if (boffset < eoffset) {
2360			if (bp->b_dirtyoff > boffset)
2361				bp->b_dirtyoff = boffset;
2362			if (bp->b_dirtyend < eoffset)
2363				bp->b_dirtyend = eoffset;
2364		}
2365	}
2366	VM_OBJECT_UNLOCK(object);
2367}
2368
2369/*
2370 *	getblk:
2371 *
2372 *	Get a block given a specified block and offset into a file/device.
2373 *	The buffers B_DONE bit will be cleared on return, making it almost
2374 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2375 *	return.  The caller should clear B_INVAL prior to initiating a
2376 *	READ.
2377 *
2378 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2379 *	an existing buffer.
2380 *
2381 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2382 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2383 *	and then cleared based on the backing VM.  If the previous buffer is
2384 *	non-0-sized but invalid, B_CACHE will be cleared.
2385 *
2386 *	If getblk() must create a new buffer, the new buffer is returned with
2387 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2388 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2389 *	backing VM.
2390 *
2391 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2392 *	B_CACHE bit is clear.
2393 *
2394 *	What this means, basically, is that the caller should use B_CACHE to
2395 *	determine whether the buffer is fully valid or not and should clear
2396 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2397 *	the buffer by loading its data area with something, the caller needs
2398 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2399 *	the caller should set B_CACHE ( as an optimization ), else the caller
2400 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2401 *	a write attempt or if it was a successfull read.  If the caller
2402 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2403 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2404 */
2405struct buf *
2406getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2407    int flags)
2408{
2409	struct buf *bp;
2410	int s;
2411	int error;
2412	ASSERT_VOP_LOCKED(vp, "getblk");
2413
2414	if (size > MAXBSIZE)
2415		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2416
2417	s = splbio();
2418loop:
2419	/*
2420	 * Block if we are low on buffers.   Certain processes are allowed
2421	 * to completely exhaust the buffer cache.
2422         *
2423         * If this check ever becomes a bottleneck it may be better to
2424         * move it into the else, when gbincore() fails.  At the moment
2425         * it isn't a problem.
2426	 *
2427	 * XXX remove if 0 sections (clean this up after its proven)
2428         */
2429	if (numfreebuffers == 0) {
2430		if (curthread == PCPU_GET(idlethread))
2431			return NULL;
2432		mtx_lock(&nblock);
2433		needsbuffer |= VFS_BIO_NEED_ANY;
2434		mtx_unlock(&nblock);
2435	}
2436
2437	VI_LOCK(vp);
2438	if ((bp = gbincore(vp, blkno))) {
2439		int lockflags;
2440		/*
2441		 * Buffer is in-core.  If the buffer is not busy, it must
2442		 * be on a queue.
2443		 */
2444		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2445
2446		if (flags & GB_LOCK_NOWAIT)
2447			lockflags |= LK_NOWAIT;
2448
2449		error = BUF_TIMELOCK(bp, lockflags,
2450		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2451
2452		/*
2453		 * If we slept and got the lock we have to restart in case
2454		 * the buffer changed identities.
2455		 */
2456		if (error == ENOLCK)
2457			goto loop;
2458		/* We timed out or were interrupted. */
2459		else if (error)
2460			return (NULL);
2461
2462		/*
2463		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2464		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2465		 * and for a VMIO buffer B_CACHE is adjusted according to the
2466		 * backing VM cache.
2467		 */
2468		if (bp->b_flags & B_INVAL)
2469			bp->b_flags &= ~B_CACHE;
2470		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2471			bp->b_flags |= B_CACHE;
2472		bremfree(bp);
2473
2474		/*
2475		 * check for size inconsistancies for non-VMIO case.
2476		 */
2477
2478		if (bp->b_bcount != size) {
2479			if ((bp->b_flags & B_VMIO) == 0 ||
2480			    (size > bp->b_kvasize)) {
2481				if (bp->b_flags & B_DELWRI) {
2482					bp->b_flags |= B_NOCACHE;
2483					bwrite(bp);
2484				} else {
2485					if ((bp->b_flags & B_VMIO) &&
2486					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2487						bp->b_flags |= B_RELBUF;
2488						brelse(bp);
2489					} else {
2490						bp->b_flags |= B_NOCACHE;
2491						bwrite(bp);
2492					}
2493				}
2494				goto loop;
2495			}
2496		}
2497
2498		/*
2499		 * If the size is inconsistant in the VMIO case, we can resize
2500		 * the buffer.  This might lead to B_CACHE getting set or
2501		 * cleared.  If the size has not changed, B_CACHE remains
2502		 * unchanged from its previous state.
2503		 */
2504
2505		if (bp->b_bcount != size)
2506			allocbuf(bp, size);
2507
2508		KASSERT(bp->b_offset != NOOFFSET,
2509		    ("getblk: no buffer offset"));
2510
2511		/*
2512		 * A buffer with B_DELWRI set and B_CACHE clear must
2513		 * be committed before we can return the buffer in
2514		 * order to prevent the caller from issuing a read
2515		 * ( due to B_CACHE not being set ) and overwriting
2516		 * it.
2517		 *
2518		 * Most callers, including NFS and FFS, need this to
2519		 * operate properly either because they assume they
2520		 * can issue a read if B_CACHE is not set, or because
2521		 * ( for example ) an uncached B_DELWRI might loop due
2522		 * to softupdates re-dirtying the buffer.  In the latter
2523		 * case, B_CACHE is set after the first write completes,
2524		 * preventing further loops.
2525		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2526		 * above while extending the buffer, we cannot allow the
2527		 * buffer to remain with B_CACHE set after the write
2528		 * completes or it will represent a corrupt state.  To
2529		 * deal with this we set B_NOCACHE to scrap the buffer
2530		 * after the write.
2531		 *
2532		 * We might be able to do something fancy, like setting
2533		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2534		 * so the below call doesn't set B_CACHE, but that gets real
2535		 * confusing.  This is much easier.
2536		 */
2537
2538		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2539			bp->b_flags |= B_NOCACHE;
2540			bwrite(bp);
2541			goto loop;
2542		}
2543
2544		splx(s);
2545		bp->b_flags &= ~B_DONE;
2546	} else {
2547		int bsize, maxsize, vmio;
2548		off_t offset;
2549
2550		/*
2551		 * Buffer is not in-core, create new buffer.  The buffer
2552		 * returned by getnewbuf() is locked.  Note that the returned
2553		 * buffer is also considered valid (not marked B_INVAL).
2554		 */
2555		VI_UNLOCK(vp);
2556		/*
2557		 * If the user does not want us to create the buffer, bail out
2558		 * here.
2559		 */
2560		if (flags & GB_NOCREAT) {
2561			splx(s);
2562			return NULL;
2563		}
2564		if (vn_isdisk(vp, NULL))
2565			bsize = DEV_BSIZE;
2566		else if (vp->v_mountedhere)
2567			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2568		else if (vp->v_mount)
2569			bsize = vp->v_mount->mnt_stat.f_iosize;
2570		else
2571			bsize = size;
2572
2573		if (vp->v_bsize != bsize) {
2574			printf("WARNING: Wrong block size on vnode: %d should be %d\n", vp->v_bsize, bsize);
2575			vprint("Please email phk@FreeBSD.org this info\n", vp);
2576			vp->v_bsize = bsize;
2577		}
2578
2579		offset = blkno * bsize;
2580		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2581		    (vp->v_vflag & VV_OBJBUF);
2582		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2583		maxsize = imax(maxsize, bsize);
2584
2585		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2586			if (slpflag || slptimeo) {
2587				splx(s);
2588				return NULL;
2589			}
2590			goto loop;
2591		}
2592
2593		/*
2594		 * This code is used to make sure that a buffer is not
2595		 * created while the getnewbuf routine is blocked.
2596		 * This can be a problem whether the vnode is locked or not.
2597		 * If the buffer is created out from under us, we have to
2598		 * throw away the one we just created.  There is now window
2599		 * race because we are safely running at splbio() from the
2600		 * point of the duplicate buffer creation through to here,
2601		 * and we've locked the buffer.
2602		 *
2603		 * Note: this must occur before we associate the buffer
2604		 * with the vp especially considering limitations in
2605		 * the splay tree implementation when dealing with duplicate
2606		 * lblkno's.
2607		 */
2608		VI_LOCK(vp);
2609		if (gbincore(vp, blkno)) {
2610			VI_UNLOCK(vp);
2611			bp->b_flags |= B_INVAL;
2612			brelse(bp);
2613			goto loop;
2614		}
2615
2616		/*
2617		 * Insert the buffer into the hash, so that it can
2618		 * be found by incore.
2619		 */
2620		bp->b_blkno = bp->b_lblkno = blkno;
2621		bp->b_offset = offset;
2622
2623		bgetvp(vp, bp);
2624		VI_UNLOCK(vp);
2625
2626		/*
2627		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2628		 * buffer size starts out as 0, B_CACHE will be set by
2629		 * allocbuf() for the VMIO case prior to it testing the
2630		 * backing store for validity.
2631		 */
2632
2633		if (vmio) {
2634			bp->b_flags |= B_VMIO;
2635#if defined(VFS_BIO_DEBUG)
2636			if (vn_canvmio(vp) != TRUE)
2637				printf("getblk: VMIO on vnode type %d\n",
2638					vp->v_type);
2639#endif
2640			VOP_GETVOBJECT(vp, &bp->b_object);
2641		} else {
2642			bp->b_flags &= ~B_VMIO;
2643			bp->b_object = NULL;
2644		}
2645
2646		allocbuf(bp, size);
2647
2648		splx(s);
2649		bp->b_flags &= ~B_DONE;
2650	}
2651	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2652	return (bp);
2653}
2654
2655/*
2656 * Get an empty, disassociated buffer of given size.  The buffer is initially
2657 * set to B_INVAL.
2658 */
2659struct buf *
2660geteblk(int size)
2661{
2662	struct buf *bp;
2663	int s;
2664	int maxsize;
2665
2666	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2667
2668	s = splbio();
2669	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2670		continue;
2671	splx(s);
2672	allocbuf(bp, size);
2673	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2674	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2675	return (bp);
2676}
2677
2678
2679/*
2680 * This code constitutes the buffer memory from either anonymous system
2681 * memory (in the case of non-VMIO operations) or from an associated
2682 * VM object (in the case of VMIO operations).  This code is able to
2683 * resize a buffer up or down.
2684 *
2685 * Note that this code is tricky, and has many complications to resolve
2686 * deadlock or inconsistant data situations.  Tread lightly!!!
2687 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2688 * the caller.  Calling this code willy nilly can result in the loss of data.
2689 *
2690 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2691 * B_CACHE for the non-VMIO case.
2692 */
2693
2694int
2695allocbuf(struct buf *bp, int size)
2696{
2697	int newbsize, mbsize;
2698	int i;
2699
2700	GIANT_REQUIRED;
2701
2702	if (BUF_REFCNT(bp) == 0)
2703		panic("allocbuf: buffer not busy");
2704
2705	if (bp->b_kvasize < size)
2706		panic("allocbuf: buffer too small");
2707
2708	if ((bp->b_flags & B_VMIO) == 0) {
2709		caddr_t origbuf;
2710		int origbufsize;
2711		/*
2712		 * Just get anonymous memory from the kernel.  Don't
2713		 * mess with B_CACHE.
2714		 */
2715		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2716		if (bp->b_flags & B_MALLOC)
2717			newbsize = mbsize;
2718		else
2719			newbsize = round_page(size);
2720
2721		if (newbsize < bp->b_bufsize) {
2722			/*
2723			 * malloced buffers are not shrunk
2724			 */
2725			if (bp->b_flags & B_MALLOC) {
2726				if (newbsize) {
2727					bp->b_bcount = size;
2728				} else {
2729					free(bp->b_data, M_BIOBUF);
2730					if (bp->b_bufsize) {
2731						atomic_subtract_int(
2732						    &bufmallocspace,
2733						    bp->b_bufsize);
2734						bufspacewakeup();
2735						bp->b_bufsize = 0;
2736					}
2737					bp->b_saveaddr = bp->b_kvabase;
2738					bp->b_data = bp->b_saveaddr;
2739					bp->b_bcount = 0;
2740					bp->b_flags &= ~B_MALLOC;
2741				}
2742				return 1;
2743			}
2744			vm_hold_free_pages(
2745			    bp,
2746			    (vm_offset_t) bp->b_data + newbsize,
2747			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2748		} else if (newbsize > bp->b_bufsize) {
2749			/*
2750			 * We only use malloced memory on the first allocation.
2751			 * and revert to page-allocated memory when the buffer
2752			 * grows.
2753			 */
2754			/*
2755			 * There is a potential smp race here that could lead
2756			 * to bufmallocspace slightly passing the max.  It
2757			 * is probably extremely rare and not worth worrying
2758			 * over.
2759			 */
2760			if ( (bufmallocspace < maxbufmallocspace) &&
2761				(bp->b_bufsize == 0) &&
2762				(mbsize <= PAGE_SIZE/2)) {
2763
2764				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2765				bp->b_bufsize = mbsize;
2766				bp->b_bcount = size;
2767				bp->b_flags |= B_MALLOC;
2768				atomic_add_int(&bufmallocspace, mbsize);
2769				return 1;
2770			}
2771			origbuf = NULL;
2772			origbufsize = 0;
2773			/*
2774			 * If the buffer is growing on its other-than-first allocation,
2775			 * then we revert to the page-allocation scheme.
2776			 */
2777			if (bp->b_flags & B_MALLOC) {
2778				origbuf = bp->b_data;
2779				origbufsize = bp->b_bufsize;
2780				bp->b_data = bp->b_kvabase;
2781				if (bp->b_bufsize) {
2782					atomic_subtract_int(&bufmallocspace,
2783					    bp->b_bufsize);
2784					bufspacewakeup();
2785					bp->b_bufsize = 0;
2786				}
2787				bp->b_flags &= ~B_MALLOC;
2788				newbsize = round_page(newbsize);
2789			}
2790			vm_hold_load_pages(
2791			    bp,
2792			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2793			    (vm_offset_t) bp->b_data + newbsize);
2794			if (origbuf) {
2795				bcopy(origbuf, bp->b_data, origbufsize);
2796				free(origbuf, M_BIOBUF);
2797			}
2798		}
2799	} else {
2800		int desiredpages;
2801
2802		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2803		desiredpages = (size == 0) ? 0 :
2804			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2805
2806		if (bp->b_flags & B_MALLOC)
2807			panic("allocbuf: VMIO buffer can't be malloced");
2808		/*
2809		 * Set B_CACHE initially if buffer is 0 length or will become
2810		 * 0-length.
2811		 */
2812		if (size == 0 || bp->b_bufsize == 0)
2813			bp->b_flags |= B_CACHE;
2814
2815		if (newbsize < bp->b_bufsize) {
2816			/*
2817			 * DEV_BSIZE aligned new buffer size is less then the
2818			 * DEV_BSIZE aligned existing buffer size.  Figure out
2819			 * if we have to remove any pages.
2820			 */
2821			if (desiredpages < bp->b_npages) {
2822				vm_page_t m;
2823
2824				vm_page_lock_queues();
2825				for (i = desiredpages; i < bp->b_npages; i++) {
2826					/*
2827					 * the page is not freed here -- it
2828					 * is the responsibility of
2829					 * vnode_pager_setsize
2830					 */
2831					m = bp->b_pages[i];
2832					KASSERT(m != bogus_page,
2833					    ("allocbuf: bogus page found"));
2834					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2835						vm_page_lock_queues();
2836
2837					bp->b_pages[i] = NULL;
2838					vm_page_unwire(m, 0);
2839				}
2840				vm_page_unlock_queues();
2841				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2842				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2843				bp->b_npages = desiredpages;
2844			}
2845		} else if (size > bp->b_bcount) {
2846			/*
2847			 * We are growing the buffer, possibly in a
2848			 * byte-granular fashion.
2849			 */
2850			struct vnode *vp;
2851			vm_object_t obj;
2852			vm_offset_t toff;
2853			vm_offset_t tinc;
2854
2855			/*
2856			 * Step 1, bring in the VM pages from the object,
2857			 * allocating them if necessary.  We must clear
2858			 * B_CACHE if these pages are not valid for the
2859			 * range covered by the buffer.
2860			 */
2861
2862			vp = bp->b_vp;
2863			obj = bp->b_object;
2864
2865			VM_OBJECT_LOCK(obj);
2866			while (bp->b_npages < desiredpages) {
2867				vm_page_t m;
2868				vm_pindex_t pi;
2869
2870				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2871				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2872					/*
2873					 * note: must allocate system pages
2874					 * since blocking here could intefere
2875					 * with paging I/O, no matter which
2876					 * process we are.
2877					 */
2878					m = vm_page_alloc(obj, pi,
2879					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2880					if (m == NULL) {
2881						atomic_add_int(&vm_pageout_deficit,
2882						    desiredpages - bp->b_npages);
2883						VM_OBJECT_UNLOCK(obj);
2884						VM_WAIT;
2885						VM_OBJECT_LOCK(obj);
2886					} else {
2887						vm_page_lock_queues();
2888						vm_page_wakeup(m);
2889						vm_page_unlock_queues();
2890						bp->b_flags &= ~B_CACHE;
2891						bp->b_pages[bp->b_npages] = m;
2892						++bp->b_npages;
2893					}
2894					continue;
2895				}
2896
2897				/*
2898				 * We found a page.  If we have to sleep on it,
2899				 * retry because it might have gotten freed out
2900				 * from under us.
2901				 *
2902				 * We can only test PG_BUSY here.  Blocking on
2903				 * m->busy might lead to a deadlock:
2904				 *
2905				 *  vm_fault->getpages->cluster_read->allocbuf
2906				 *
2907				 */
2908				vm_page_lock_queues();
2909				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2910					continue;
2911
2912				/*
2913				 * We have a good page.  Should we wakeup the
2914				 * page daemon?
2915				 */
2916				if ((curproc != pageproc) &&
2917				    ((m->queue - m->pc) == PQ_CACHE) &&
2918				    ((cnt.v_free_count + cnt.v_cache_count) <
2919					(cnt.v_free_min + cnt.v_cache_min))) {
2920					pagedaemon_wakeup();
2921				}
2922				vm_page_wire(m);
2923				vm_page_unlock_queues();
2924				bp->b_pages[bp->b_npages] = m;
2925				++bp->b_npages;
2926			}
2927
2928			/*
2929			 * Step 2.  We've loaded the pages into the buffer,
2930			 * we have to figure out if we can still have B_CACHE
2931			 * set.  Note that B_CACHE is set according to the
2932			 * byte-granular range ( bcount and size ), new the
2933			 * aligned range ( newbsize ).
2934			 *
2935			 * The VM test is against m->valid, which is DEV_BSIZE
2936			 * aligned.  Needless to say, the validity of the data
2937			 * needs to also be DEV_BSIZE aligned.  Note that this
2938			 * fails with NFS if the server or some other client
2939			 * extends the file's EOF.  If our buffer is resized,
2940			 * B_CACHE may remain set! XXX
2941			 */
2942
2943			toff = bp->b_bcount;
2944			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2945
2946			while ((bp->b_flags & B_CACHE) && toff < size) {
2947				vm_pindex_t pi;
2948
2949				if (tinc > (size - toff))
2950					tinc = size - toff;
2951
2952				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2953				    PAGE_SHIFT;
2954
2955				vfs_buf_test_cache(
2956				    bp,
2957				    bp->b_offset,
2958				    toff,
2959				    tinc,
2960				    bp->b_pages[pi]
2961				);
2962				toff += tinc;
2963				tinc = PAGE_SIZE;
2964			}
2965			VM_OBJECT_UNLOCK(obj);
2966
2967			/*
2968			 * Step 3, fixup the KVM pmap.  Remember that
2969			 * bp->b_data is relative to bp->b_offset, but
2970			 * bp->b_offset may be offset into the first page.
2971			 */
2972
2973			bp->b_data = (caddr_t)
2974			    trunc_page((vm_offset_t)bp->b_data);
2975			pmap_qenter(
2976			    (vm_offset_t)bp->b_data,
2977			    bp->b_pages,
2978			    bp->b_npages
2979			);
2980
2981			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2982			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2983		}
2984	}
2985	if (newbsize < bp->b_bufsize)
2986		bufspacewakeup();
2987	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2988	bp->b_bcount = size;		/* requested buffer size	*/
2989	return 1;
2990}
2991
2992void
2993biodone(struct bio *bp)
2994{
2995	mtx_lock(&bdonelock);
2996	bp->bio_flags |= BIO_DONE;
2997	if (bp->bio_done == NULL)
2998		wakeup(bp);
2999	mtx_unlock(&bdonelock);
3000	if (bp->bio_done != NULL)
3001		bp->bio_done(bp);
3002}
3003
3004/*
3005 * Wait for a BIO to finish.
3006 *
3007 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3008 * case is not yet clear.
3009 */
3010int
3011biowait(struct bio *bp, const char *wchan)
3012{
3013
3014	mtx_lock(&bdonelock);
3015	while ((bp->bio_flags & BIO_DONE) == 0)
3016		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3017	mtx_unlock(&bdonelock);
3018	if (bp->bio_error != 0)
3019		return (bp->bio_error);
3020	if (!(bp->bio_flags & BIO_ERROR))
3021		return (0);
3022	return (EIO);
3023}
3024
3025void
3026biofinish(struct bio *bp, struct devstat *stat, int error)
3027{
3028
3029	if (error) {
3030		bp->bio_error = error;
3031		bp->bio_flags |= BIO_ERROR;
3032	}
3033	if (stat != NULL)
3034		devstat_end_transaction_bio(stat, bp);
3035	biodone(bp);
3036}
3037
3038/*
3039 *	bufwait:
3040 *
3041 *	Wait for buffer I/O completion, returning error status.  The buffer
3042 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3043 *	error and cleared.
3044 */
3045int
3046bufwait(register struct buf * bp)
3047{
3048	int s;
3049
3050	s = splbio();
3051	if (bp->b_iocmd == BIO_READ)
3052		bwait(bp, PRIBIO, "biord");
3053	else
3054		bwait(bp, PRIBIO, "biowr");
3055	splx(s);
3056	if (bp->b_flags & B_EINTR) {
3057		bp->b_flags &= ~B_EINTR;
3058		return (EINTR);
3059	}
3060	if (bp->b_ioflags & BIO_ERROR) {
3061		return (bp->b_error ? bp->b_error : EIO);
3062	} else {
3063		return (0);
3064	}
3065}
3066
3067 /*
3068  * Call back function from struct bio back up to struct buf.
3069  */
3070static void
3071bufdonebio(struct bio *bp)
3072{
3073
3074	/* Device drivers may or may not hold giant, hold it here. */
3075	mtx_lock(&Giant);
3076	bufdone(bp->bio_caller2);
3077	mtx_unlock(&Giant);
3078}
3079
3080void
3081dev_strategy(struct buf *bp)
3082{
3083	struct cdevsw *csw;
3084
3085	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3086		panic("b_iocmd botch");
3087	bp->b_io.bio_done = bufdonebio;
3088	bp->b_io.bio_caller2 = bp;
3089	csw = devsw(bp->b_io.bio_dev);
3090	KASSERT(bp->b_io.bio_dev->si_refcount > 0,
3091	    ("dev_strategy on un-referenced struct cdev *(%s)",
3092	    devtoname(bp->b_io.bio_dev)));
3093	cdevsw_ref(csw);
3094	(*devsw(bp->b_io.bio_dev)->d_strategy)(&bp->b_io);
3095	cdevsw_rel(csw);
3096}
3097
3098/*
3099 *	bufdone:
3100 *
3101 *	Finish I/O on a buffer, optionally calling a completion function.
3102 *	This is usually called from an interrupt so process blocking is
3103 *	not allowed.
3104 *
3105 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3106 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3107 *	assuming B_INVAL is clear.
3108 *
3109 *	For the VMIO case, we set B_CACHE if the op was a read and no
3110 *	read error occured, or if the op was a write.  B_CACHE is never
3111 *	set if the buffer is invalid or otherwise uncacheable.
3112 *
3113 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3114 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3115 *	in the biodone routine.
3116 */
3117void
3118bufdone(struct buf *bp)
3119{
3120	int s;
3121	void    (*biodone)(struct buf *);
3122
3123
3124	s = splbio();
3125
3126	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3127	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3128
3129	bp->b_flags |= B_DONE;
3130	runningbufwakeup(bp);
3131
3132	if (bp->b_iocmd == BIO_DELETE) {
3133		brelse(bp);
3134		splx(s);
3135		return;
3136	}
3137
3138	if (bp->b_iocmd == BIO_WRITE) {
3139		vwakeup(bp);
3140	}
3141
3142	/* call optional completion function if requested */
3143	if (bp->b_iodone != NULL) {
3144		biodone = bp->b_iodone;
3145		bp->b_iodone = NULL;
3146		(*biodone) (bp);
3147		splx(s);
3148		return;
3149	}
3150	if (LIST_FIRST(&bp->b_dep) != NULL)
3151		buf_complete(bp);
3152
3153	if (bp->b_flags & B_VMIO) {
3154		int i;
3155		vm_ooffset_t foff;
3156		vm_page_t m;
3157		vm_object_t obj;
3158		int iosize;
3159		struct vnode *vp = bp->b_vp;
3160
3161		obj = bp->b_object;
3162
3163#if defined(VFS_BIO_DEBUG)
3164		mp_fixme("usecount and vflag accessed without locks.");
3165		if (vp->v_usecount == 0) {
3166			panic("biodone: zero vnode ref count");
3167		}
3168
3169		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3170			panic("biodone: vnode is not setup for merged cache");
3171		}
3172#endif
3173
3174		foff = bp->b_offset;
3175		KASSERT(bp->b_offset != NOOFFSET,
3176		    ("biodone: no buffer offset"));
3177
3178		VM_OBJECT_LOCK(obj);
3179#if defined(VFS_BIO_DEBUG)
3180		if (obj->paging_in_progress < bp->b_npages) {
3181			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3182			    obj->paging_in_progress, bp->b_npages);
3183		}
3184#endif
3185
3186		/*
3187		 * Set B_CACHE if the op was a normal read and no error
3188		 * occured.  B_CACHE is set for writes in the b*write()
3189		 * routines.
3190		 */
3191		iosize = bp->b_bcount - bp->b_resid;
3192		if (bp->b_iocmd == BIO_READ &&
3193		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3194		    !(bp->b_ioflags & BIO_ERROR)) {
3195			bp->b_flags |= B_CACHE;
3196		}
3197		vm_page_lock_queues();
3198		for (i = 0; i < bp->b_npages; i++) {
3199			int bogusflag = 0;
3200			int resid;
3201
3202			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3203			if (resid > iosize)
3204				resid = iosize;
3205
3206			/*
3207			 * cleanup bogus pages, restoring the originals
3208			 */
3209			m = bp->b_pages[i];
3210			if (m == bogus_page) {
3211				bogusflag = 1;
3212				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3213				if (m == NULL)
3214					panic("biodone: page disappeared!");
3215				bp->b_pages[i] = m;
3216				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3217			}
3218#if defined(VFS_BIO_DEBUG)
3219			if (OFF_TO_IDX(foff) != m->pindex) {
3220				printf(
3221"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3222				    (intmax_t)foff, (uintmax_t)m->pindex);
3223			}
3224#endif
3225
3226			/*
3227			 * In the write case, the valid and clean bits are
3228			 * already changed correctly ( see bdwrite() ), so we
3229			 * only need to do this here in the read case.
3230			 */
3231			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3232				vfs_page_set_valid(bp, foff, i, m);
3233			}
3234
3235			/*
3236			 * when debugging new filesystems or buffer I/O methods, this
3237			 * is the most common error that pops up.  if you see this, you
3238			 * have not set the page busy flag correctly!!!
3239			 */
3240			if (m->busy == 0) {
3241				printf("biodone: page busy < 0, "
3242				    "pindex: %d, foff: 0x(%x,%x), "
3243				    "resid: %d, index: %d\n",
3244				    (int) m->pindex, (int)(foff >> 32),
3245						(int) foff & 0xffffffff, resid, i);
3246				if (!vn_isdisk(vp, NULL))
3247					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3248					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3249					    (intmax_t) bp->b_lblkno,
3250					    bp->b_flags, bp->b_npages);
3251				else
3252					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3253					    (intmax_t) bp->b_lblkno,
3254					    bp->b_flags, bp->b_npages);
3255				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3256				    (u_long)m->valid, (u_long)m->dirty,
3257				    m->wire_count);
3258				panic("biodone: page busy < 0\n");
3259			}
3260			vm_page_io_finish(m);
3261			vm_object_pip_subtract(obj, 1);
3262			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3263			iosize -= resid;
3264		}
3265		vm_page_unlock_queues();
3266		vm_object_pip_wakeupn(obj, 0);
3267		VM_OBJECT_UNLOCK(obj);
3268	}
3269
3270	/*
3271	 * For asynchronous completions, release the buffer now. The brelse
3272	 * will do a wakeup there if necessary - so no need to do a wakeup
3273	 * here in the async case. The sync case always needs to do a wakeup.
3274	 */
3275
3276	if (bp->b_flags & B_ASYNC) {
3277		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3278			brelse(bp);
3279		else
3280			bqrelse(bp);
3281	} else {
3282		bdone(bp);
3283	}
3284	splx(s);
3285}
3286
3287/*
3288 * This routine is called in lieu of iodone in the case of
3289 * incomplete I/O.  This keeps the busy status for pages
3290 * consistant.
3291 */
3292void
3293vfs_unbusy_pages(struct buf * bp)
3294{
3295	int i;
3296
3297	runningbufwakeup(bp);
3298	if (bp->b_flags & B_VMIO) {
3299		vm_object_t obj;
3300
3301		obj = bp->b_object;
3302		VM_OBJECT_LOCK(obj);
3303		vm_page_lock_queues();
3304		for (i = 0; i < bp->b_npages; i++) {
3305			vm_page_t m = bp->b_pages[i];
3306
3307			if (m == bogus_page) {
3308				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3309				if (!m) {
3310					panic("vfs_unbusy_pages: page missing\n");
3311				}
3312				bp->b_pages[i] = m;
3313				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3314			}
3315			vm_object_pip_subtract(obj, 1);
3316			vm_page_io_finish(m);
3317		}
3318		vm_page_unlock_queues();
3319		vm_object_pip_wakeupn(obj, 0);
3320		VM_OBJECT_UNLOCK(obj);
3321	}
3322}
3323
3324/*
3325 * vfs_page_set_valid:
3326 *
3327 *	Set the valid bits in a page based on the supplied offset.   The
3328 *	range is restricted to the buffer's size.
3329 *
3330 *	This routine is typically called after a read completes.
3331 */
3332static void
3333vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3334{
3335	vm_ooffset_t soff, eoff;
3336
3337	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3338	/*
3339	 * Start and end offsets in buffer.  eoff - soff may not cross a
3340	 * page boundry or cross the end of the buffer.  The end of the
3341	 * buffer, in this case, is our file EOF, not the allocation size
3342	 * of the buffer.
3343	 */
3344	soff = off;
3345	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3346	if (eoff > bp->b_offset + bp->b_bcount)
3347		eoff = bp->b_offset + bp->b_bcount;
3348
3349	/*
3350	 * Set valid range.  This is typically the entire buffer and thus the
3351	 * entire page.
3352	 */
3353	if (eoff > soff) {
3354		vm_page_set_validclean(
3355		    m,
3356		   (vm_offset_t) (soff & PAGE_MASK),
3357		   (vm_offset_t) (eoff - soff)
3358		);
3359	}
3360}
3361
3362/*
3363 * This routine is called before a device strategy routine.
3364 * It is used to tell the VM system that paging I/O is in
3365 * progress, and treat the pages associated with the buffer
3366 * almost as being PG_BUSY.  Also the object paging_in_progress
3367 * flag is handled to make sure that the object doesn't become
3368 * inconsistant.
3369 *
3370 * Since I/O has not been initiated yet, certain buffer flags
3371 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3372 * and should be ignored.
3373 */
3374void
3375vfs_busy_pages(struct buf * bp, int clear_modify)
3376{
3377	int i, bogus;
3378
3379	if (bp->b_flags & B_VMIO) {
3380		vm_object_t obj;
3381		vm_ooffset_t foff;
3382
3383		obj = bp->b_object;
3384		foff = bp->b_offset;
3385		KASSERT(bp->b_offset != NOOFFSET,
3386		    ("vfs_busy_pages: no buffer offset"));
3387		vfs_setdirty(bp);
3388		VM_OBJECT_LOCK(obj);
3389retry:
3390		vm_page_lock_queues();
3391		for (i = 0; i < bp->b_npages; i++) {
3392			vm_page_t m = bp->b_pages[i];
3393
3394			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3395				goto retry;
3396		}
3397		bogus = 0;
3398		for (i = 0; i < bp->b_npages; i++) {
3399			vm_page_t m = bp->b_pages[i];
3400
3401			if ((bp->b_flags & B_CLUSTER) == 0) {
3402				vm_object_pip_add(obj, 1);
3403				vm_page_io_start(m);
3404			}
3405			/*
3406			 * When readying a buffer for a read ( i.e
3407			 * clear_modify == 0 ), it is important to do
3408			 * bogus_page replacement for valid pages in
3409			 * partially instantiated buffers.  Partially
3410			 * instantiated buffers can, in turn, occur when
3411			 * reconstituting a buffer from its VM backing store
3412			 * base.  We only have to do this if B_CACHE is
3413			 * clear ( which causes the I/O to occur in the
3414			 * first place ).  The replacement prevents the read
3415			 * I/O from overwriting potentially dirty VM-backed
3416			 * pages.  XXX bogus page replacement is, uh, bogus.
3417			 * It may not work properly with small-block devices.
3418			 * We need to find a better way.
3419			 */
3420			pmap_remove_all(m);
3421			if (clear_modify)
3422				vfs_page_set_valid(bp, foff, i, m);
3423			else if (m->valid == VM_PAGE_BITS_ALL &&
3424				(bp->b_flags & B_CACHE) == 0) {
3425				bp->b_pages[i] = bogus_page;
3426				bogus++;
3427			}
3428			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3429		}
3430		vm_page_unlock_queues();
3431		VM_OBJECT_UNLOCK(obj);
3432		if (bogus)
3433			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3434	}
3435}
3436
3437/*
3438 * Tell the VM system that the pages associated with this buffer
3439 * are clean.  This is used for delayed writes where the data is
3440 * going to go to disk eventually without additional VM intevention.
3441 *
3442 * Note that while we only really need to clean through to b_bcount, we
3443 * just go ahead and clean through to b_bufsize.
3444 */
3445static void
3446vfs_clean_pages(struct buf * bp)
3447{
3448	int i;
3449
3450	if (bp->b_flags & B_VMIO) {
3451		vm_ooffset_t foff;
3452
3453		foff = bp->b_offset;
3454		KASSERT(bp->b_offset != NOOFFSET,
3455		    ("vfs_clean_pages: no buffer offset"));
3456		VM_OBJECT_LOCK(bp->b_object);
3457		vm_page_lock_queues();
3458		for (i = 0; i < bp->b_npages; i++) {
3459			vm_page_t m = bp->b_pages[i];
3460			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3461			vm_ooffset_t eoff = noff;
3462
3463			if (eoff > bp->b_offset + bp->b_bufsize)
3464				eoff = bp->b_offset + bp->b_bufsize;
3465			vfs_page_set_valid(bp, foff, i, m);
3466			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3467			foff = noff;
3468		}
3469		vm_page_unlock_queues();
3470		VM_OBJECT_UNLOCK(bp->b_object);
3471	}
3472}
3473
3474/*
3475 *	vfs_bio_set_validclean:
3476 *
3477 *	Set the range within the buffer to valid and clean.  The range is
3478 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3479 *	itself may be offset from the beginning of the first page.
3480 *
3481 */
3482
3483void
3484vfs_bio_set_validclean(struct buf *bp, int base, int size)
3485{
3486	if (bp->b_flags & B_VMIO) {
3487		int i;
3488		int n;
3489
3490		/*
3491		 * Fixup base to be relative to beginning of first page.
3492		 * Set initial n to be the maximum number of bytes in the
3493		 * first page that can be validated.
3494		 */
3495
3496		base += (bp->b_offset & PAGE_MASK);
3497		n = PAGE_SIZE - (base & PAGE_MASK);
3498
3499		VM_OBJECT_LOCK(bp->b_object);
3500		vm_page_lock_queues();
3501		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3502			vm_page_t m = bp->b_pages[i];
3503
3504			if (n > size)
3505				n = size;
3506
3507			vm_page_set_validclean(m, base & PAGE_MASK, n);
3508			base += n;
3509			size -= n;
3510			n = PAGE_SIZE;
3511		}
3512		vm_page_unlock_queues();
3513		VM_OBJECT_UNLOCK(bp->b_object);
3514	}
3515}
3516
3517/*
3518 *	vfs_bio_clrbuf:
3519 *
3520 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3521 *	to clear BIO_ERROR and B_INVAL.
3522 *
3523 *	Note that while we only theoretically need to clear through b_bcount,
3524 *	we go ahead and clear through b_bufsize.
3525 */
3526
3527void
3528vfs_bio_clrbuf(struct buf *bp)
3529{
3530	int i, j, mask = 0;
3531	caddr_t sa, ea;
3532
3533	GIANT_REQUIRED;
3534
3535	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3536		bp->b_flags &= ~B_INVAL;
3537		bp->b_ioflags &= ~BIO_ERROR;
3538		VM_OBJECT_LOCK(bp->b_object);
3539		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3540		    (bp->b_offset & PAGE_MASK) == 0) {
3541			if (bp->b_pages[0] == bogus_page)
3542				goto unlock;
3543			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3544			VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3545			if ((bp->b_pages[0]->valid & mask) == mask)
3546				goto unlock;
3547			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3548			    ((bp->b_pages[0]->valid & mask) == 0)) {
3549				bzero(bp->b_data, bp->b_bufsize);
3550				bp->b_pages[0]->valid |= mask;
3551				goto unlock;
3552			}
3553		}
3554		ea = sa = bp->b_data;
3555		for(i=0;i<bp->b_npages;i++,sa=ea) {
3556			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3557			ea = (caddr_t)(vm_offset_t)ulmin(
3558			    (u_long)(vm_offset_t)ea,
3559			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3560			if (bp->b_pages[i] == bogus_page)
3561				continue;
3562			j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3563			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3564			VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3565			if ((bp->b_pages[i]->valid & mask) == mask)
3566				continue;
3567			if ((bp->b_pages[i]->valid & mask) == 0) {
3568				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3569					bzero(sa, ea - sa);
3570				}
3571			} else {
3572				for (; sa < ea; sa += DEV_BSIZE, j++) {
3573					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3574						(bp->b_pages[i]->valid & (1<<j)) == 0)
3575						bzero(sa, DEV_BSIZE);
3576				}
3577			}
3578			bp->b_pages[i]->valid |= mask;
3579		}
3580unlock:
3581		VM_OBJECT_UNLOCK(bp->b_object);
3582		bp->b_resid = 0;
3583	} else {
3584		clrbuf(bp);
3585	}
3586}
3587
3588/*
3589 * vm_hold_load_pages and vm_hold_free_pages get pages into
3590 * a buffers address space.  The pages are anonymous and are
3591 * not associated with a file object.
3592 */
3593static void
3594vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3595{
3596	vm_offset_t pg;
3597	vm_page_t p;
3598	int index;
3599
3600	to = round_page(to);
3601	from = round_page(from);
3602	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3603
3604	VM_OBJECT_LOCK(kernel_object);
3605	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3606tryagain:
3607		/*
3608		 * note: must allocate system pages since blocking here
3609		 * could intefere with paging I/O, no matter which
3610		 * process we are.
3611		 */
3612		p = vm_page_alloc(kernel_object,
3613			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3614		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3615		if (!p) {
3616			atomic_add_int(&vm_pageout_deficit,
3617			    (to - pg) >> PAGE_SHIFT);
3618			VM_OBJECT_UNLOCK(kernel_object);
3619			VM_WAIT;
3620			VM_OBJECT_LOCK(kernel_object);
3621			goto tryagain;
3622		}
3623		p->valid = VM_PAGE_BITS_ALL;
3624		pmap_qenter(pg, &p, 1);
3625		bp->b_pages[index] = p;
3626		vm_page_lock_queues();
3627		vm_page_wakeup(p);
3628		vm_page_unlock_queues();
3629	}
3630	VM_OBJECT_UNLOCK(kernel_object);
3631	bp->b_npages = index;
3632}
3633
3634/* Return pages associated with this buf to the vm system */
3635static void
3636vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3637{
3638	vm_offset_t pg;
3639	vm_page_t p;
3640	int index, newnpages;
3641
3642	GIANT_REQUIRED;
3643
3644	from = round_page(from);
3645	to = round_page(to);
3646	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3647
3648	VM_OBJECT_LOCK(kernel_object);
3649	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3650		p = bp->b_pages[index];
3651		if (p && (index < bp->b_npages)) {
3652			if (p->busy) {
3653				printf(
3654			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3655				    (intmax_t)bp->b_blkno,
3656				    (intmax_t)bp->b_lblkno);
3657			}
3658			bp->b_pages[index] = NULL;
3659			pmap_qremove(pg, 1);
3660			vm_page_lock_queues();
3661			vm_page_busy(p);
3662			vm_page_unwire(p, 0);
3663			vm_page_free(p);
3664			vm_page_unlock_queues();
3665		}
3666	}
3667	VM_OBJECT_UNLOCK(kernel_object);
3668	bp->b_npages = newnpages;
3669}
3670
3671/*
3672 * Map an IO request into kernel virtual address space.
3673 *
3674 * All requests are (re)mapped into kernel VA space.
3675 * Notice that we use b_bufsize for the size of the buffer
3676 * to be mapped.  b_bcount might be modified by the driver.
3677 *
3678 * Note that even if the caller determines that the address space should
3679 * be valid, a race or a smaller-file mapped into a larger space may
3680 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3681 * check the return value.
3682 */
3683int
3684vmapbuf(struct buf *bp)
3685{
3686	caddr_t addr, kva;
3687	vm_prot_t prot;
3688	int pidx, i;
3689	struct vm_page *m;
3690	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3691
3692	GIANT_REQUIRED;
3693
3694	if (bp->b_bufsize < 0)
3695		return (-1);
3696	prot = (bp->b_iocmd == BIO_READ) ? VM_PROT_READ | VM_PROT_WRITE :
3697	    VM_PROT_READ;
3698	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3699	     addr < bp->b_data + bp->b_bufsize;
3700	     addr += PAGE_SIZE, pidx++) {
3701		/*
3702		 * Do the vm_fault if needed; do the copy-on-write thing
3703		 * when reading stuff off device into memory.
3704		 *
3705		 * NOTE! Must use pmap_extract() because addr may be in
3706		 * the userland address space, and kextract is only guarenteed
3707		 * to work for the kernland address space (see: sparc64 port).
3708		 */
3709retry:
3710		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3711		    prot) < 0) {
3712			vm_page_lock_queues();
3713			for (i = 0; i < pidx; ++i) {
3714				vm_page_unhold(bp->b_pages[i]);
3715				bp->b_pages[i] = NULL;
3716			}
3717			vm_page_unlock_queues();
3718			return(-1);
3719		}
3720		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3721		if (m == NULL)
3722			goto retry;
3723		bp->b_pages[pidx] = m;
3724	}
3725	if (pidx > btoc(MAXPHYS))
3726		panic("vmapbuf: mapped more than MAXPHYS");
3727	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3728
3729	kva = bp->b_saveaddr;
3730	bp->b_npages = pidx;
3731	bp->b_saveaddr = bp->b_data;
3732	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3733	return(0);
3734}
3735
3736/*
3737 * Free the io map PTEs associated with this IO operation.
3738 * We also invalidate the TLB entries and restore the original b_addr.
3739 */
3740void
3741vunmapbuf(struct buf *bp)
3742{
3743	int pidx;
3744	int npages;
3745
3746	npages = bp->b_npages;
3747	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3748		     npages);
3749	vm_page_lock_queues();
3750	for (pidx = 0; pidx < npages; pidx++)
3751		vm_page_unhold(bp->b_pages[pidx]);
3752	vm_page_unlock_queues();
3753
3754	bp->b_data = bp->b_saveaddr;
3755}
3756
3757void
3758bdone(struct buf *bp)
3759{
3760	mtx_lock(&bdonelock);
3761	bp->b_flags |= B_DONE;
3762	wakeup(bp);
3763	mtx_unlock(&bdonelock);
3764}
3765
3766void
3767bwait(struct buf *bp, u_char pri, const char *wchan)
3768{
3769	mtx_lock(&bdonelock);
3770	while ((bp->b_flags & B_DONE) == 0)
3771		msleep(bp, &bdonelock, pri, wchan, 0);
3772	mtx_unlock(&bdonelock);
3773}
3774
3775#include "opt_ddb.h"
3776#ifdef DDB
3777#include <ddb/ddb.h>
3778
3779/* DDB command to show buffer data */
3780DB_SHOW_COMMAND(buffer, db_show_buffer)
3781{
3782	/* get args */
3783	struct buf *bp = (struct buf *)addr;
3784
3785	if (!have_addr) {
3786		db_printf("usage: show buffer <addr>\n");
3787		return;
3788	}
3789
3790	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3791	db_printf(
3792	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3793	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd\n",
3794	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3795	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3796	    (intmax_t)bp->b_blkno);
3797	if (bp->b_npages) {
3798		int i;
3799		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3800		for (i = 0; i < bp->b_npages; i++) {
3801			vm_page_t m;
3802			m = bp->b_pages[i];
3803			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3804			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3805			if ((i + 1) < bp->b_npages)
3806				db_printf(",");
3807		}
3808		db_printf("\n");
3809	}
3810}
3811#endif /* DDB */
3812