vfs_bio.c revision 126858
1/*
2 * Copyright (c) 1994,1997 John S. Dyson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice immediately at the beginning of the file, without modification,
10 *    this list of conditions, and the following disclaimer.
11 * 2. Absolutely no warranty of function or purpose is made by the author
12 *		John S. Dyson.
13 */
14
15/*
16 * this file contains a new buffer I/O scheme implementing a coherent
17 * VM object and buffer cache scheme.  Pains have been taken to make
18 * sure that the performance degradation associated with schemes such
19 * as this is not realized.
20 *
21 * Author:  John S. Dyson
22 * Significant help during the development and debugging phases
23 * had been provided by David Greenman, also of the FreeBSD core team.
24 *
25 * see man buf(9) for more info.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/kern/vfs_bio.c 126858 2004-03-11 18:50:33Z phk $");
30
31#include <sys/param.h>
32#include <sys/systm.h>
33#include <sys/bio.h>
34#include <sys/conf.h>
35#include <sys/buf.h>
36#include <sys/devicestat.h>
37#include <sys/eventhandler.h>
38#include <sys/lock.h>
39#include <sys/malloc.h>
40#include <sys/mount.h>
41#include <sys/mutex.h>
42#include <sys/kernel.h>
43#include <sys/kthread.h>
44#include <sys/proc.h>
45#include <sys/resourcevar.h>
46#include <sys/sysctl.h>
47#include <sys/vmmeter.h>
48#include <sys/vnode.h>
49#include <vm/vm.h>
50#include <vm/vm_param.h>
51#include <vm/vm_kern.h>
52#include <vm/vm_pageout.h>
53#include <vm/vm_page.h>
54#include <vm/vm_object.h>
55#include <vm/vm_extern.h>
56#include <vm/vm_map.h>
57#include "opt_directio.h"
58#include "opt_swap.h"
59
60static MALLOC_DEFINE(M_BIOBUF, "BIO buffer", "BIO buffer");
61
62struct	bio_ops bioops;		/* I/O operation notification */
63
64static int ibwrite(struct buf *);
65
66struct	buf_ops buf_ops_bio = {
67	"buf_ops_bio",
68	ibwrite
69};
70
71/*
72 * XXX buf is global because kern_shutdown.c and ffs_checkoverlap has
73 * carnal knowledge of buffers.  This knowledge should be moved to vfs_bio.c.
74 */
75struct buf *buf;		/* buffer header pool */
76
77static struct proc *bufdaemonproc;
78
79static void vm_hold_free_pages(struct buf * bp, vm_offset_t from,
80		vm_offset_t to);
81static void vm_hold_load_pages(struct buf * bp, vm_offset_t from,
82		vm_offset_t to);
83static void vfs_page_set_valid(struct buf *bp, vm_ooffset_t off,
84			       int pageno, vm_page_t m);
85static void vfs_clean_pages(struct buf * bp);
86static void vfs_setdirty(struct buf *bp);
87static void vfs_vmio_release(struct buf *bp);
88static void vfs_backgroundwritedone(struct buf *bp);
89static int vfs_bio_clcheck(struct vnode *vp, int size,
90		daddr_t lblkno, daddr_t blkno);
91static int flushbufqueues(int flushdeps);
92static void buf_daemon(void);
93void bremfreel(struct buf * bp);
94
95int vmiodirenable = TRUE;
96SYSCTL_INT(_vfs, OID_AUTO, vmiodirenable, CTLFLAG_RW, &vmiodirenable, 0,
97    "Use the VM system for directory writes");
98int runningbufspace;
99SYSCTL_INT(_vfs, OID_AUTO, runningbufspace, CTLFLAG_RD, &runningbufspace, 0,
100    "Amount of presently outstanding async buffer io");
101static int bufspace;
102SYSCTL_INT(_vfs, OID_AUTO, bufspace, CTLFLAG_RD, &bufspace, 0,
103    "KVA memory used for bufs");
104static int maxbufspace;
105SYSCTL_INT(_vfs, OID_AUTO, maxbufspace, CTLFLAG_RD, &maxbufspace, 0,
106    "Maximum allowed value of bufspace (including buf_daemon)");
107static int bufmallocspace;
108SYSCTL_INT(_vfs, OID_AUTO, bufmallocspace, CTLFLAG_RD, &bufmallocspace, 0,
109    "Amount of malloced memory for buffers");
110static int maxbufmallocspace;
111SYSCTL_INT(_vfs, OID_AUTO, maxmallocbufspace, CTLFLAG_RW, &maxbufmallocspace, 0,
112    "Maximum amount of malloced memory for buffers");
113static int lobufspace;
114SYSCTL_INT(_vfs, OID_AUTO, lobufspace, CTLFLAG_RD, &lobufspace, 0,
115    "Minimum amount of buffers we want to have");
116static int hibufspace;
117SYSCTL_INT(_vfs, OID_AUTO, hibufspace, CTLFLAG_RD, &hibufspace, 0,
118    "Maximum allowed value of bufspace (excluding buf_daemon)");
119static int bufreusecnt;
120SYSCTL_INT(_vfs, OID_AUTO, bufreusecnt, CTLFLAG_RW, &bufreusecnt, 0,
121    "Number of times we have reused a buffer");
122static int buffreekvacnt;
123SYSCTL_INT(_vfs, OID_AUTO, buffreekvacnt, CTLFLAG_RW, &buffreekvacnt, 0,
124    "Number of times we have freed the KVA space from some buffer");
125static int bufdefragcnt;
126SYSCTL_INT(_vfs, OID_AUTO, bufdefragcnt, CTLFLAG_RW, &bufdefragcnt, 0,
127    "Number of times we have had to repeat buffer allocation to defragment");
128static int lorunningspace;
129SYSCTL_INT(_vfs, OID_AUTO, lorunningspace, CTLFLAG_RW, &lorunningspace, 0,
130    "Minimum preferred space used for in-progress I/O");
131static int hirunningspace;
132SYSCTL_INT(_vfs, OID_AUTO, hirunningspace, CTLFLAG_RW, &hirunningspace, 0,
133    "Maximum amount of space to use for in-progress I/O");
134static int dirtybufferflushes;
135SYSCTL_INT(_vfs, OID_AUTO, dirtybufferflushes, CTLFLAG_RW, &dirtybufferflushes,
136    0, "Number of bdwrite to bawrite conversions to limit dirty buffers");
137static int altbufferflushes;
138SYSCTL_INT(_vfs, OID_AUTO, altbufferflushes, CTLFLAG_RW, &altbufferflushes,
139    0, "Number of fsync flushes to limit dirty buffers");
140static int recursiveflushes;
141SYSCTL_INT(_vfs, OID_AUTO, recursiveflushes, CTLFLAG_RW, &recursiveflushes,
142    0, "Number of flushes skipped due to being recursive");
143static int numdirtybuffers;
144SYSCTL_INT(_vfs, OID_AUTO, numdirtybuffers, CTLFLAG_RD, &numdirtybuffers, 0,
145    "Number of buffers that are dirty (has unwritten changes) at the moment");
146static int lodirtybuffers;
147SYSCTL_INT(_vfs, OID_AUTO, lodirtybuffers, CTLFLAG_RW, &lodirtybuffers, 0,
148    "How many buffers we want to have free before bufdaemon can sleep");
149static int hidirtybuffers;
150SYSCTL_INT(_vfs, OID_AUTO, hidirtybuffers, CTLFLAG_RW, &hidirtybuffers, 0,
151    "When the number of dirty buffers is considered severe");
152static int dirtybufthresh;
153SYSCTL_INT(_vfs, OID_AUTO, dirtybufthresh, CTLFLAG_RW, &dirtybufthresh,
154    0, "Number of bdwrite to bawrite conversions to clear dirty buffers");
155static int numfreebuffers;
156SYSCTL_INT(_vfs, OID_AUTO, numfreebuffers, CTLFLAG_RD, &numfreebuffers, 0,
157    "Number of free buffers");
158static int lofreebuffers;
159SYSCTL_INT(_vfs, OID_AUTO, lofreebuffers, CTLFLAG_RW, &lofreebuffers, 0,
160   "XXX Unused");
161static int hifreebuffers;
162SYSCTL_INT(_vfs, OID_AUTO, hifreebuffers, CTLFLAG_RW, &hifreebuffers, 0,
163   "XXX Complicatedly unused");
164static int getnewbufcalls;
165SYSCTL_INT(_vfs, OID_AUTO, getnewbufcalls, CTLFLAG_RW, &getnewbufcalls, 0,
166   "Number of calls to getnewbuf");
167static int getnewbufrestarts;
168SYSCTL_INT(_vfs, OID_AUTO, getnewbufrestarts, CTLFLAG_RW, &getnewbufrestarts, 0,
169    "Number of times getnewbuf has had to restart a buffer aquisition");
170static int dobkgrdwrite = 1;
171SYSCTL_INT(_debug, OID_AUTO, dobkgrdwrite, CTLFLAG_RW, &dobkgrdwrite, 0,
172    "Do background writes (honoring the BV_BKGRDWRITE flag)?");
173
174/*
175 * Wakeup point for bufdaemon, as well as indicator of whether it is already
176 * active.  Set to 1 when the bufdaemon is already "on" the queue, 0 when it
177 * is idling.
178 */
179static int bd_request;
180
181/*
182 * This lock synchronizes access to bd_request.
183 */
184static struct mtx bdlock;
185
186/*
187 * bogus page -- for I/O to/from partially complete buffers
188 * this is a temporary solution to the problem, but it is not
189 * really that bad.  it would be better to split the buffer
190 * for input in the case of buffers partially already in memory,
191 * but the code is intricate enough already.
192 */
193vm_page_t bogus_page;
194
195/*
196 * Synchronization (sleep/wakeup) variable for active buffer space requests.
197 * Set when wait starts, cleared prior to wakeup().
198 * Used in runningbufwakeup() and waitrunningbufspace().
199 */
200static int runningbufreq;
201
202/*
203 * This lock protects the runningbufreq and synchronizes runningbufwakeup and
204 * waitrunningbufspace().
205 */
206static struct mtx rbreqlock;
207
208/*
209 * Synchronization (sleep/wakeup) variable for buffer requests.
210 * Can contain the VFS_BIO_NEED flags defined below; setting/clearing is done
211 * by and/or.
212 * Used in numdirtywakeup(), bufspacewakeup(), bufcountwakeup(), bwillwrite(),
213 * getnewbuf(), and getblk().
214 */
215static int needsbuffer;
216
217/*
218 * Lock that protects needsbuffer and the sleeps/wakeups surrounding it.
219 */
220static struct mtx nblock;
221
222/*
223 * Lock that protects against bwait()/bdone()/B_DONE races.
224 */
225
226static struct mtx bdonelock;
227
228/*
229 * Definitions for the buffer free lists.
230 */
231#define BUFFER_QUEUES	5	/* number of free buffer queues */
232
233#define QUEUE_NONE	0	/* on no queue */
234#define QUEUE_CLEAN	1	/* non-B_DELWRI buffers */
235#define QUEUE_DIRTY	2	/* B_DELWRI buffers */
236#define QUEUE_EMPTYKVA	3	/* empty buffer headers w/KVA assignment */
237#define QUEUE_EMPTY	4	/* empty buffer headers */
238
239/* Queues for free buffers with various properties */
240static TAILQ_HEAD(bqueues, buf) bufqueues[BUFFER_QUEUES] = { { 0 } };
241
242/* Lock for the bufqueues */
243static struct mtx bqlock;
244
245/*
246 * Single global constant for BUF_WMESG, to avoid getting multiple references.
247 * buf_wmesg is referred from macros.
248 */
249const char *buf_wmesg = BUF_WMESG;
250
251#define VFS_BIO_NEED_ANY	0x01	/* any freeable buffer */
252#define VFS_BIO_NEED_DIRTYFLUSH	0x02	/* waiting for dirty buffer flush */
253#define VFS_BIO_NEED_FREE	0x04	/* wait for free bufs, hi hysteresis */
254#define VFS_BIO_NEED_BUFSPACE	0x08	/* wait for buf space, lo hysteresis */
255
256#ifdef DIRECTIO
257extern void ffs_rawread_setup(void);
258#endif /* DIRECTIO */
259/*
260 *	numdirtywakeup:
261 *
262 *	If someone is blocked due to there being too many dirty buffers,
263 *	and numdirtybuffers is now reasonable, wake them up.
264 */
265
266static __inline void
267numdirtywakeup(int level)
268{
269	if (numdirtybuffers <= level) {
270		mtx_lock(&nblock);
271		if (needsbuffer & VFS_BIO_NEED_DIRTYFLUSH) {
272			needsbuffer &= ~VFS_BIO_NEED_DIRTYFLUSH;
273			wakeup(&needsbuffer);
274		}
275		mtx_unlock(&nblock);
276	}
277}
278
279/*
280 *	bufspacewakeup:
281 *
282 *	Called when buffer space is potentially available for recovery.
283 *	getnewbuf() will block on this flag when it is unable to free
284 *	sufficient buffer space.  Buffer space becomes recoverable when
285 *	bp's get placed back in the queues.
286 */
287
288static __inline void
289bufspacewakeup(void)
290{
291	/*
292	 * If someone is waiting for BUF space, wake them up.  Even
293	 * though we haven't freed the kva space yet, the waiting
294	 * process will be able to now.
295	 */
296	mtx_lock(&nblock);
297	if (needsbuffer & VFS_BIO_NEED_BUFSPACE) {
298		needsbuffer &= ~VFS_BIO_NEED_BUFSPACE;
299		wakeup(&needsbuffer);
300	}
301	mtx_unlock(&nblock);
302}
303
304/*
305 * runningbufwakeup() - in-progress I/O accounting.
306 *
307 */
308static __inline void
309runningbufwakeup(struct buf *bp)
310{
311	if (bp->b_runningbufspace) {
312		atomic_subtract_int(&runningbufspace, bp->b_runningbufspace);
313		bp->b_runningbufspace = 0;
314		mtx_lock(&rbreqlock);
315		if (runningbufreq && runningbufspace <= lorunningspace) {
316			runningbufreq = 0;
317			wakeup(&runningbufreq);
318		}
319		mtx_unlock(&rbreqlock);
320	}
321}
322
323/*
324 *	bufcountwakeup:
325 *
326 *	Called when a buffer has been added to one of the free queues to
327 *	account for the buffer and to wakeup anyone waiting for free buffers.
328 *	This typically occurs when large amounts of metadata are being handled
329 *	by the buffer cache ( else buffer space runs out first, usually ).
330 */
331
332static __inline void
333bufcountwakeup(void)
334{
335	atomic_add_int(&numfreebuffers, 1);
336	mtx_lock(&nblock);
337	if (needsbuffer) {
338		needsbuffer &= ~VFS_BIO_NEED_ANY;
339		if (numfreebuffers >= hifreebuffers)
340			needsbuffer &= ~VFS_BIO_NEED_FREE;
341		wakeup(&needsbuffer);
342	}
343	mtx_unlock(&nblock);
344}
345
346/*
347 *	waitrunningbufspace()
348 *
349 *	runningbufspace is a measure of the amount of I/O currently
350 *	running.  This routine is used in async-write situations to
351 *	prevent creating huge backups of pending writes to a device.
352 *	Only asynchronous writes are governed by this function.
353 *
354 *	Reads will adjust runningbufspace, but will not block based on it.
355 *	The read load has a side effect of reducing the allowed write load.
356 *
357 *	This does NOT turn an async write into a sync write.  It waits
358 *	for earlier writes to complete and generally returns before the
359 *	caller's write has reached the device.
360 */
361static __inline void
362waitrunningbufspace(void)
363{
364	mtx_lock(&rbreqlock);
365	while (runningbufspace > hirunningspace) {
366		++runningbufreq;
367		msleep(&runningbufreq, &rbreqlock, PVM, "wdrain", 0);
368	}
369	mtx_unlock(&rbreqlock);
370}
371
372
373/*
374 *	vfs_buf_test_cache:
375 *
376 *	Called when a buffer is extended.  This function clears the B_CACHE
377 *	bit if the newly extended portion of the buffer does not contain
378 *	valid data.
379 */
380static __inline__
381void
382vfs_buf_test_cache(struct buf *bp,
383		  vm_ooffset_t foff, vm_offset_t off, vm_offset_t size,
384		  vm_page_t m)
385{
386	GIANT_REQUIRED;
387
388	VM_OBJECT_LOCK_ASSERT(m->object, MA_OWNED);
389	if (bp->b_flags & B_CACHE) {
390		int base = (foff + off) & PAGE_MASK;
391		if (vm_page_is_valid(m, base, size) == 0)
392			bp->b_flags &= ~B_CACHE;
393	}
394}
395
396/* Wake up the buffer deamon if necessary */
397static __inline__
398void
399bd_wakeup(int dirtybuflevel)
400{
401	mtx_lock(&bdlock);
402	if (bd_request == 0 && numdirtybuffers >= dirtybuflevel) {
403		bd_request = 1;
404		wakeup(&bd_request);
405	}
406	mtx_unlock(&bdlock);
407}
408
409/*
410 * bd_speedup - speedup the buffer cache flushing code
411 */
412
413static __inline__
414void
415bd_speedup(void)
416{
417	bd_wakeup(1);
418}
419
420/*
421 * Calculating buffer cache scaling values and reserve space for buffer
422 * headers.  This is called during low level kernel initialization and
423 * may be called more then once.  We CANNOT write to the memory area
424 * being reserved at this time.
425 */
426caddr_t
427kern_vfs_bio_buffer_alloc(caddr_t v, long physmem_est)
428{
429	/*
430	 * physmem_est is in pages.  Convert it to kilobytes (assumes
431	 * PAGE_SIZE is >= 1K)
432	 */
433	physmem_est = physmem_est * (PAGE_SIZE / 1024);
434
435	/*
436	 * The nominal buffer size (and minimum KVA allocation) is BKVASIZE.
437	 * For the first 64MB of ram nominally allocate sufficient buffers to
438	 * cover 1/4 of our ram.  Beyond the first 64MB allocate additional
439	 * buffers to cover 1/20 of our ram over 64MB.  When auto-sizing
440	 * the buffer cache we limit the eventual kva reservation to
441	 * maxbcache bytes.
442	 *
443	 * factor represents the 1/4 x ram conversion.
444	 */
445	if (nbuf == 0) {
446		int factor = 4 * BKVASIZE / 1024;
447
448		nbuf = 50;
449		if (physmem_est > 4096)
450			nbuf += min((physmem_est - 4096) / factor,
451			    65536 / factor);
452		if (physmem_est > 65536)
453			nbuf += (physmem_est - 65536) * 2 / (factor * 5);
454
455		if (maxbcache && nbuf > maxbcache / BKVASIZE)
456			nbuf = maxbcache / BKVASIZE;
457	}
458
459#if 0
460	/*
461	 * Do not allow the buffer_map to be more then 1/2 the size of the
462	 * kernel_map.
463	 */
464	if (nbuf > (kernel_map->max_offset - kernel_map->min_offset) /
465	    (BKVASIZE * 2)) {
466		nbuf = (kernel_map->max_offset - kernel_map->min_offset) /
467		    (BKVASIZE * 2);
468		printf("Warning: nbufs capped at %d\n", nbuf);
469	}
470#endif
471
472	/*
473	 * swbufs are used as temporary holders for I/O, such as paging I/O.
474	 * We have no less then 16 and no more then 256.
475	 */
476	nswbuf = max(min(nbuf/4, 256), 16);
477#ifdef NSWBUF_MIN
478	if (nswbuf < NSWBUF_MIN)
479		nswbuf = NSWBUF_MIN;
480#endif
481#ifdef DIRECTIO
482	ffs_rawread_setup();
483#endif
484
485	/*
486	 * Reserve space for the buffer cache buffers
487	 */
488	swbuf = (void *)v;
489	v = (caddr_t)(swbuf + nswbuf);
490	buf = (void *)v;
491	v = (caddr_t)(buf + nbuf);
492
493	return(v);
494}
495
496/* Initialize the buffer subsystem.  Called before use of any buffers. */
497void
498bufinit(void)
499{
500	struct buf *bp;
501	int i;
502
503	GIANT_REQUIRED;
504
505	mtx_init(&bqlock, "buf queue lock", NULL, MTX_DEF);
506	mtx_init(&rbreqlock, "runningbufspace lock", NULL, MTX_DEF);
507	mtx_init(&nblock, "needsbuffer lock", NULL, MTX_DEF);
508	mtx_init(&bdlock, "buffer daemon lock", NULL, MTX_DEF);
509	mtx_init(&bdonelock, "bdone lock", NULL, MTX_DEF);
510
511	/* next, make a null set of free lists */
512	for (i = 0; i < BUFFER_QUEUES; i++)
513		TAILQ_INIT(&bufqueues[i]);
514
515	/* finally, initialize each buffer header and stick on empty q */
516	for (i = 0; i < nbuf; i++) {
517		bp = &buf[i];
518		bzero(bp, sizeof *bp);
519		bp->b_flags = B_INVAL;	/* we're just an empty header */
520		bp->b_dev = NODEV;
521		bp->b_rcred = NOCRED;
522		bp->b_wcred = NOCRED;
523		bp->b_qindex = QUEUE_EMPTY;
524		bp->b_vflags = 0;
525		bp->b_xflags = 0;
526		LIST_INIT(&bp->b_dep);
527		BUF_LOCKINIT(bp);
528		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_EMPTY], bp, b_freelist);
529	}
530
531	/*
532	 * maxbufspace is the absolute maximum amount of buffer space we are
533	 * allowed to reserve in KVM and in real terms.  The absolute maximum
534	 * is nominally used by buf_daemon.  hibufspace is the nominal maximum
535	 * used by most other processes.  The differential is required to
536	 * ensure that buf_daemon is able to run when other processes might
537	 * be blocked waiting for buffer space.
538	 *
539	 * maxbufspace is based on BKVASIZE.  Allocating buffers larger then
540	 * this may result in KVM fragmentation which is not handled optimally
541	 * by the system.
542	 */
543	maxbufspace = nbuf * BKVASIZE;
544	hibufspace = imax(3 * maxbufspace / 4, maxbufspace - MAXBSIZE * 10);
545	lobufspace = hibufspace - MAXBSIZE;
546
547	lorunningspace = 512 * 1024;
548	hirunningspace = 1024 * 1024;
549
550/*
551 * Limit the amount of malloc memory since it is wired permanently into
552 * the kernel space.  Even though this is accounted for in the buffer
553 * allocation, we don't want the malloced region to grow uncontrolled.
554 * The malloc scheme improves memory utilization significantly on average
555 * (small) directories.
556 */
557	maxbufmallocspace = hibufspace / 20;
558
559/*
560 * Reduce the chance of a deadlock occuring by limiting the number
561 * of delayed-write dirty buffers we allow to stack up.
562 */
563	hidirtybuffers = nbuf / 4 + 20;
564	dirtybufthresh = hidirtybuffers * 9 / 10;
565	numdirtybuffers = 0;
566/*
567 * To support extreme low-memory systems, make sure hidirtybuffers cannot
568 * eat up all available buffer space.  This occurs when our minimum cannot
569 * be met.  We try to size hidirtybuffers to 3/4 our buffer space assuming
570 * BKVASIZE'd (8K) buffers.
571 */
572	while (hidirtybuffers * BKVASIZE > 3 * hibufspace / 4) {
573		hidirtybuffers >>= 1;
574	}
575	lodirtybuffers = hidirtybuffers / 2;
576
577/*
578 * Try to keep the number of free buffers in the specified range,
579 * and give special processes (e.g. like buf_daemon) access to an
580 * emergency reserve.
581 */
582	lofreebuffers = nbuf / 18 + 5;
583	hifreebuffers = 2 * lofreebuffers;
584	numfreebuffers = nbuf;
585
586/*
587 * Maximum number of async ops initiated per buf_daemon loop.  This is
588 * somewhat of a hack at the moment, we really need to limit ourselves
589 * based on the number of bytes of I/O in-transit that were initiated
590 * from buf_daemon.
591 */
592
593	bogus_page = vm_page_alloc(NULL, 0, VM_ALLOC_NOOBJ |
594	    VM_ALLOC_NORMAL | VM_ALLOC_WIRED);
595}
596
597/*
598 * bfreekva() - free the kva allocation for a buffer.
599 *
600 *	Must be called at splbio() or higher as this is the only locking for
601 *	buffer_map.
602 *
603 *	Since this call frees up buffer space, we call bufspacewakeup().
604 */
605static void
606bfreekva(struct buf * bp)
607{
608	GIANT_REQUIRED;
609
610	if (bp->b_kvasize) {
611		atomic_add_int(&buffreekvacnt, 1);
612		atomic_subtract_int(&bufspace, bp->b_kvasize);
613		vm_map_delete(buffer_map,
614		    (vm_offset_t) bp->b_kvabase,
615		    (vm_offset_t) bp->b_kvabase + bp->b_kvasize
616		);
617		bp->b_kvasize = 0;
618		bufspacewakeup();
619	}
620}
621
622/*
623 *	bremfree:
624 *
625 *	Remove the buffer from the appropriate free list.
626 */
627void
628bremfree(struct buf * bp)
629{
630	mtx_lock(&bqlock);
631	bremfreel(bp);
632	mtx_unlock(&bqlock);
633}
634
635void
636bremfreel(struct buf * bp)
637{
638	int s = splbio();
639	int old_qindex = bp->b_qindex;
640
641	GIANT_REQUIRED;
642
643	if (bp->b_qindex != QUEUE_NONE) {
644		KASSERT(BUF_REFCNT(bp) == 1, ("bremfree: bp %p not locked",bp));
645		TAILQ_REMOVE(&bufqueues[bp->b_qindex], bp, b_freelist);
646		bp->b_qindex = QUEUE_NONE;
647	} else {
648		if (BUF_REFCNT(bp) <= 1)
649			panic("bremfree: removing a buffer not on a queue");
650	}
651
652	/*
653	 * Fixup numfreebuffers count.  If the buffer is invalid or not
654	 * delayed-write, and it was on the EMPTY, LRU, or AGE queues,
655	 * the buffer was free and we must decrement numfreebuffers.
656	 */
657	if ((bp->b_flags & B_INVAL) || (bp->b_flags & B_DELWRI) == 0) {
658		switch(old_qindex) {
659		case QUEUE_DIRTY:
660		case QUEUE_CLEAN:
661		case QUEUE_EMPTY:
662		case QUEUE_EMPTYKVA:
663			atomic_subtract_int(&numfreebuffers, 1);
664			break;
665		default:
666			break;
667		}
668	}
669	splx(s);
670}
671
672
673/*
674 * Get a buffer with the specified data.  Look in the cache first.  We
675 * must clear BIO_ERROR and B_INVAL prior to initiating I/O.  If B_CACHE
676 * is set, the buffer is valid and we do not have to do anything ( see
677 * getblk() ).  This is really just a special case of breadn().
678 */
679int
680bread(struct vnode * vp, daddr_t blkno, int size, struct ucred * cred,
681    struct buf ** bpp)
682{
683
684	return (breadn(vp, blkno, size, 0, 0, 0, cred, bpp));
685}
686
687/*
688 * Operates like bread, but also starts asynchronous I/O on
689 * read-ahead blocks.  We must clear BIO_ERROR and B_INVAL prior
690 * to initiating I/O . If B_CACHE is set, the buffer is valid
691 * and we do not have to do anything.
692 */
693int
694breadn(struct vnode * vp, daddr_t blkno, int size,
695    daddr_t * rablkno, int *rabsize,
696    int cnt, struct ucred * cred, struct buf ** bpp)
697{
698	struct buf *bp, *rabp;
699	int i;
700	int rv = 0, readwait = 0;
701
702	*bpp = bp = getblk(vp, blkno, size, 0, 0, 0);
703
704	/* if not found in cache, do some I/O */
705	if ((bp->b_flags & B_CACHE) == 0) {
706		if (curthread != PCPU_GET(idlethread))
707			curthread->td_proc->p_stats->p_ru.ru_inblock++;
708		bp->b_iocmd = BIO_READ;
709		bp->b_flags &= ~B_INVAL;
710		bp->b_ioflags &= ~BIO_ERROR;
711		if (bp->b_rcred == NOCRED && cred != NOCRED)
712			bp->b_rcred = crhold(cred);
713		vfs_busy_pages(bp, 0);
714		bp->b_iooffset = dbtob(bp->b_blkno);
715		if (vp->v_type == VCHR)
716			VOP_SPECSTRATEGY(vp, bp);
717		else
718			VOP_STRATEGY(vp, bp);
719		++readwait;
720	}
721
722	for (i = 0; i < cnt; i++, rablkno++, rabsize++) {
723		if (inmem(vp, *rablkno))
724			continue;
725		rabp = getblk(vp, *rablkno, *rabsize, 0, 0, 0);
726
727		if ((rabp->b_flags & B_CACHE) == 0) {
728			if (curthread != PCPU_GET(idlethread))
729				curthread->td_proc->p_stats->p_ru.ru_inblock++;
730			rabp->b_flags |= B_ASYNC;
731			rabp->b_flags &= ~B_INVAL;
732			rabp->b_ioflags &= ~BIO_ERROR;
733			rabp->b_iocmd = BIO_READ;
734			if (rabp->b_rcred == NOCRED && cred != NOCRED)
735				rabp->b_rcred = crhold(cred);
736			vfs_busy_pages(rabp, 0);
737			BUF_KERNPROC(rabp);
738			rabp->b_iooffset = dbtob(rabp->b_blkno);
739			if (vp->v_type == VCHR)
740				VOP_SPECSTRATEGY(vp, rabp);
741			else
742				VOP_STRATEGY(vp, rabp);
743		} else {
744			brelse(rabp);
745		}
746	}
747
748	if (readwait) {
749		rv = bufwait(bp);
750	}
751	return (rv);
752}
753
754/*
755 * Write, release buffer on completion.  (Done by iodone
756 * if async).  Do not bother writing anything if the buffer
757 * is invalid.
758 *
759 * Note that we set B_CACHE here, indicating that buffer is
760 * fully valid and thus cacheable.  This is true even of NFS
761 * now so we set it generally.  This could be set either here
762 * or in biodone() since the I/O is synchronous.  We put it
763 * here.
764 */
765int
766bwrite(struct buf * bp)
767{
768
769	KASSERT(bp->b_op != NULL && bp->b_op->bop_write != NULL,
770	    ("Martian buffer %p in bwrite: nobody to write it.", bp));
771	return (bp->b_op->bop_write(bp));
772}
773
774static int
775ibwrite(struct buf * bp)
776{
777	int oldflags, s;
778	struct buf *newbp;
779
780	if (bp->b_flags & B_INVAL) {
781		brelse(bp);
782		return (0);
783	}
784
785	oldflags = bp->b_flags;
786
787	if (BUF_REFCNT(bp) == 0)
788		panic("ibwrite: buffer is not busy???");
789	s = splbio();
790	/*
791	 * If a background write is already in progress, delay
792	 * writing this block if it is asynchronous. Otherwise
793	 * wait for the background write to complete.
794	 */
795	VI_LOCK(bp->b_vp);
796	if (bp->b_vflags & BV_BKGRDINPROG) {
797		if (bp->b_flags & B_ASYNC) {
798			VI_UNLOCK(bp->b_vp);
799			splx(s);
800			bdwrite(bp);
801			return (0);
802		}
803		bp->b_vflags |= BV_BKGRDWAIT;
804		msleep(&bp->b_xflags, VI_MTX(bp->b_vp), PRIBIO, "bwrbg", 0);
805		if (bp->b_vflags & BV_BKGRDINPROG)
806			panic("ibwrite: still writing");
807	}
808	VI_UNLOCK(bp->b_vp);
809
810	/* Mark the buffer clean */
811	bundirty(bp);
812
813	/*
814	 * If this buffer is marked for background writing and we
815	 * do not have to wait for it, make a copy and write the
816	 * copy so as to leave this buffer ready for further use.
817	 *
818	 * This optimization eats a lot of memory.  If we have a page
819	 * or buffer shortfall we can't do it.
820	 */
821	if (dobkgrdwrite && (bp->b_xflags & BX_BKGRDWRITE) &&
822	    (bp->b_flags & B_ASYNC) &&
823	    !vm_page_count_severe() &&
824	    !buf_dirty_count_severe()) {
825		if (bp->b_iodone != NULL) {
826			printf("bp->b_iodone = %p\n", bp->b_iodone);
827			panic("ibwrite: need chained iodone");
828		}
829
830		/* get a new block */
831		newbp = geteblk(bp->b_bufsize);
832
833		/*
834		 * set it to be identical to the old block.  We have to
835		 * set b_lblkno and BKGRDMARKER before calling bgetvp()
836		 * to avoid confusing the splay tree and gbincore().
837		 */
838		memcpy(newbp->b_data, bp->b_data, bp->b_bufsize);
839		newbp->b_lblkno = bp->b_lblkno;
840		newbp->b_xflags |= BX_BKGRDMARKER;
841		VI_LOCK(bp->b_vp);
842		bp->b_vflags |= BV_BKGRDINPROG;
843		bgetvp(bp->b_vp, newbp);
844		VI_UNLOCK(bp->b_vp);
845		newbp->b_blkno = bp->b_blkno;
846		newbp->b_offset = bp->b_offset;
847		newbp->b_iodone = vfs_backgroundwritedone;
848		newbp->b_flags |= B_ASYNC;
849		newbp->b_flags &= ~B_INVAL;
850
851		/* move over the dependencies */
852		if (LIST_FIRST(&bp->b_dep) != NULL)
853			buf_movedeps(bp, newbp);
854
855		/*
856		 * Initiate write on the copy, release the original to
857		 * the B_LOCKED queue so that it cannot go away until
858		 * the background write completes. If not locked it could go
859		 * away and then be reconstituted while it was being written.
860		 * If the reconstituted buffer were written, we could end up
861		 * with two background copies being written at the same time.
862		 */
863		bqrelse(bp);
864		bp = newbp;
865	}
866
867	bp->b_flags &= ~B_DONE;
868	bp->b_ioflags &= ~BIO_ERROR;
869	bp->b_flags |= B_WRITEINPROG | B_CACHE;
870	bp->b_iocmd = BIO_WRITE;
871
872	VI_LOCK(bp->b_vp);
873	bp->b_vp->v_numoutput++;
874	VI_UNLOCK(bp->b_vp);
875	vfs_busy_pages(bp, 1);
876
877	/*
878	 * Normal bwrites pipeline writes
879	 */
880	bp->b_runningbufspace = bp->b_bufsize;
881	atomic_add_int(&runningbufspace, bp->b_runningbufspace);
882
883	if (curthread != PCPU_GET(idlethread))
884		curthread->td_proc->p_stats->p_ru.ru_oublock++;
885	splx(s);
886	if (oldflags & B_ASYNC)
887		BUF_KERNPROC(bp);
888	bp->b_iooffset = dbtob(bp->b_blkno);
889	if (bp->b_vp->v_type == VCHR) {
890		if (!buf_prewrite(bp->b_vp, bp))
891			VOP_SPECSTRATEGY(bp->b_vp, bp);
892	} else {
893		VOP_STRATEGY(bp->b_vp, bp);
894	}
895
896	if ((oldflags & B_ASYNC) == 0) {
897		int rtval = bufwait(bp);
898		brelse(bp);
899		return (rtval);
900	} else {
901		/*
902		 * don't allow the async write to saturate the I/O
903		 * system.  We will not deadlock here because
904		 * we are blocking waiting for I/O that is already in-progress
905		 * to complete. We do not block here if it is the update
906		 * or syncer daemon trying to clean up as that can lead
907		 * to deadlock.
908		 */
909		if (curthread->td_proc != bufdaemonproc &&
910		    curthread->td_proc != updateproc)
911			waitrunningbufspace();
912	}
913
914	return (0);
915}
916
917/*
918 * Complete a background write started from bwrite.
919 */
920static void
921vfs_backgroundwritedone(bp)
922	struct buf *bp;
923{
924	struct buf *origbp;
925
926	/*
927	 * Find the original buffer that we are writing.
928	 */
929	VI_LOCK(bp->b_vp);
930	if ((origbp = gbincore(bp->b_vp, bp->b_lblkno)) == NULL)
931		panic("backgroundwritedone: lost buffer");
932
933	/*
934	 * Clear the BV_BKGRDINPROG flag in the original buffer
935	 * and awaken it if it is waiting for the write to complete.
936	 * If BV_BKGRDINPROG is not set in the original buffer it must
937	 * have been released and re-instantiated - which is not legal.
938	 */
939	KASSERT((origbp->b_vflags & BV_BKGRDINPROG),
940	    ("backgroundwritedone: lost buffer2"));
941	origbp->b_vflags &= ~BV_BKGRDINPROG;
942	if (origbp->b_vflags & BV_BKGRDWAIT) {
943		origbp->b_vflags &= ~BV_BKGRDWAIT;
944		wakeup(&origbp->b_xflags);
945	}
946	VI_UNLOCK(bp->b_vp);
947	/*
948	 * Process dependencies then return any unfinished ones.
949	 */
950	if (LIST_FIRST(&bp->b_dep) != NULL)
951		buf_complete(bp);
952	if (LIST_FIRST(&bp->b_dep) != NULL)
953		buf_movedeps(bp, origbp);
954
955	/*
956	 * This buffer is marked B_NOCACHE, so when it is released
957	 * by biodone, it will be tossed. We mark it with BIO_READ
958	 * to avoid biodone doing a second vwakeup.
959	 */
960	bp->b_flags |= B_NOCACHE;
961	bp->b_iocmd = BIO_READ;
962	bp->b_flags &= ~(B_CACHE | B_DONE);
963	bp->b_iodone = 0;
964	bufdone(bp);
965}
966
967/*
968 * Delayed write. (Buffer is marked dirty).  Do not bother writing
969 * anything if the buffer is marked invalid.
970 *
971 * Note that since the buffer must be completely valid, we can safely
972 * set B_CACHE.  In fact, we have to set B_CACHE here rather then in
973 * biodone() in order to prevent getblk from writing the buffer
974 * out synchronously.
975 */
976void
977bdwrite(struct buf * bp)
978{
979	struct thread *td = curthread;
980	struct vnode *vp;
981	struct buf *nbp;
982
983	GIANT_REQUIRED;
984
985	if (BUF_REFCNT(bp) == 0)
986		panic("bdwrite: buffer is not busy");
987
988	if (bp->b_flags & B_INVAL) {
989		brelse(bp);
990		return;
991	}
992
993	/*
994	 * If we have too many dirty buffers, don't create any more.
995	 * If we are wildly over our limit, then force a complete
996	 * cleanup. Otherwise, just keep the situation from getting
997	 * out of control. Note that we have to avoid a recursive
998	 * disaster and not try to clean up after our own cleanup!
999	 */
1000	vp = bp->b_vp;
1001	VI_LOCK(vp);
1002	if (td->td_pflags & TDP_COWINPROGRESS) {
1003		recursiveflushes++;
1004	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh + 10) {
1005		VI_UNLOCK(vp);
1006		(void) VOP_FSYNC(vp, td->td_ucred, MNT_NOWAIT, td);
1007		VI_LOCK(vp);
1008		altbufferflushes++;
1009	} else if (vp != NULL && vp->v_dirtybufcnt > dirtybufthresh) {
1010		/*
1011		 * Try to find a buffer to flush.
1012		 */
1013		TAILQ_FOREACH(nbp, &vp->v_dirtyblkhd, b_vnbufs) {
1014			if ((nbp->b_vflags & BV_BKGRDINPROG) ||
1015			    buf_countdeps(nbp, 0) ||
1016			    BUF_LOCK(nbp, LK_EXCLUSIVE | LK_NOWAIT, NULL))
1017				continue;
1018			if (bp == nbp)
1019				panic("bdwrite: found ourselves");
1020			VI_UNLOCK(vp);
1021			if (nbp->b_flags & B_CLUSTEROK) {
1022				vfs_bio_awrite(nbp);
1023			} else {
1024				bremfree(nbp);
1025				bawrite(nbp);
1026			}
1027			VI_LOCK(vp);
1028			dirtybufferflushes++;
1029			break;
1030		}
1031	}
1032	VI_UNLOCK(vp);
1033
1034	bdirty(bp);
1035	/*
1036	 * Set B_CACHE, indicating that the buffer is fully valid.  This is
1037	 * true even of NFS now.
1038	 */
1039	bp->b_flags |= B_CACHE;
1040
1041	/*
1042	 * This bmap keeps the system from needing to do the bmap later,
1043	 * perhaps when the system is attempting to do a sync.  Since it
1044	 * is likely that the indirect block -- or whatever other datastructure
1045	 * that the filesystem needs is still in memory now, it is a good
1046	 * thing to do this.  Note also, that if the pageout daemon is
1047	 * requesting a sync -- there might not be enough memory to do
1048	 * the bmap then...  So, this is important to do.
1049	 */
1050	if (vp->v_type != VCHR && bp->b_lblkno == bp->b_blkno) {
1051		VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno, NULL, NULL);
1052	}
1053
1054	/*
1055	 * Set the *dirty* buffer range based upon the VM system dirty pages.
1056	 */
1057	vfs_setdirty(bp);
1058
1059	/*
1060	 * We need to do this here to satisfy the vnode_pager and the
1061	 * pageout daemon, so that it thinks that the pages have been
1062	 * "cleaned".  Note that since the pages are in a delayed write
1063	 * buffer -- the VFS layer "will" see that the pages get written
1064	 * out on the next sync, or perhaps the cluster will be completed.
1065	 */
1066	vfs_clean_pages(bp);
1067	bqrelse(bp);
1068
1069	/*
1070	 * Wakeup the buffer flushing daemon if we have a lot of dirty
1071	 * buffers (midpoint between our recovery point and our stall
1072	 * point).
1073	 */
1074	bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1075
1076	/*
1077	 * note: we cannot initiate I/O from a bdwrite even if we wanted to,
1078	 * due to the softdep code.
1079	 */
1080}
1081
1082/*
1083 *	bdirty:
1084 *
1085 *	Turn buffer into delayed write request.  We must clear BIO_READ and
1086 *	B_RELBUF, and we must set B_DELWRI.  We reassign the buffer to
1087 *	itself to properly update it in the dirty/clean lists.  We mark it
1088 *	B_DONE to ensure that any asynchronization of the buffer properly
1089 *	clears B_DONE ( else a panic will occur later ).
1090 *
1091 *	bdirty() is kinda like bdwrite() - we have to clear B_INVAL which
1092 *	might have been set pre-getblk().  Unlike bwrite/bdwrite, bdirty()
1093 *	should only be called if the buffer is known-good.
1094 *
1095 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1096 *	count.
1097 *
1098 *	Must be called at splbio().
1099 *	The buffer must be on QUEUE_NONE.
1100 */
1101void
1102bdirty(bp)
1103	struct buf *bp;
1104{
1105	KASSERT(bp->b_qindex == QUEUE_NONE,
1106	    ("bdirty: buffer %p still on queue %d", bp, bp->b_qindex));
1107	bp->b_flags &= ~(B_RELBUF);
1108	bp->b_iocmd = BIO_WRITE;
1109
1110	if ((bp->b_flags & B_DELWRI) == 0) {
1111		bp->b_flags |= B_DONE | B_DELWRI;
1112		reassignbuf(bp, bp->b_vp);
1113		atomic_add_int(&numdirtybuffers, 1);
1114		bd_wakeup((lodirtybuffers + hidirtybuffers) / 2);
1115	}
1116}
1117
1118/*
1119 *	bundirty:
1120 *
1121 *	Clear B_DELWRI for buffer.
1122 *
1123 *	Since the buffer is not on a queue, we do not update the numfreebuffers
1124 *	count.
1125 *
1126 *	Must be called at splbio().
1127 *	The buffer must be on QUEUE_NONE.
1128 */
1129
1130void
1131bundirty(bp)
1132	struct buf *bp;
1133{
1134	KASSERT(bp->b_qindex == QUEUE_NONE,
1135	    ("bundirty: buffer %p still on queue %d", bp, bp->b_qindex));
1136
1137	if (bp->b_flags & B_DELWRI) {
1138		bp->b_flags &= ~B_DELWRI;
1139		reassignbuf(bp, bp->b_vp);
1140		atomic_subtract_int(&numdirtybuffers, 1);
1141		numdirtywakeup(lodirtybuffers);
1142	}
1143	/*
1144	 * Since it is now being written, we can clear its deferred write flag.
1145	 */
1146	bp->b_flags &= ~B_DEFERRED;
1147}
1148
1149/*
1150 *	bawrite:
1151 *
1152 *	Asynchronous write.  Start output on a buffer, but do not wait for
1153 *	it to complete.  The buffer is released when the output completes.
1154 *
1155 *	bwrite() ( or the VOP routine anyway ) is responsible for handling
1156 *	B_INVAL buffers.  Not us.
1157 */
1158void
1159bawrite(struct buf * bp)
1160{
1161	bp->b_flags |= B_ASYNC;
1162	(void) bwrite(bp);
1163}
1164
1165/*
1166 *	bwillwrite:
1167 *
1168 *	Called prior to the locking of any vnodes when we are expecting to
1169 *	write.  We do not want to starve the buffer cache with too many
1170 *	dirty buffers so we block here.  By blocking prior to the locking
1171 *	of any vnodes we attempt to avoid the situation where a locked vnode
1172 *	prevents the various system daemons from flushing related buffers.
1173 */
1174
1175void
1176bwillwrite(void)
1177{
1178	if (numdirtybuffers >= hidirtybuffers) {
1179		int s;
1180
1181		mtx_lock(&Giant);
1182		s = splbio();
1183		mtx_lock(&nblock);
1184		while (numdirtybuffers >= hidirtybuffers) {
1185			bd_wakeup(1);
1186			needsbuffer |= VFS_BIO_NEED_DIRTYFLUSH;
1187			msleep(&needsbuffer, &nblock,
1188			    (PRIBIO + 4), "flswai", 0);
1189		}
1190		splx(s);
1191		mtx_unlock(&nblock);
1192		mtx_unlock(&Giant);
1193	}
1194}
1195
1196/*
1197 * Return true if we have too many dirty buffers.
1198 */
1199int
1200buf_dirty_count_severe(void)
1201{
1202	return(numdirtybuffers >= hidirtybuffers);
1203}
1204
1205/*
1206 *	brelse:
1207 *
1208 *	Release a busy buffer and, if requested, free its resources.  The
1209 *	buffer will be stashed in the appropriate bufqueue[] allowing it
1210 *	to be accessed later as a cache entity or reused for other purposes.
1211 */
1212void
1213brelse(struct buf * bp)
1214{
1215	int s;
1216
1217	GIANT_REQUIRED;
1218
1219	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)),
1220	    ("brelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1221
1222	s = splbio();
1223
1224	if (bp->b_iocmd == BIO_WRITE &&
1225	    (bp->b_ioflags & BIO_ERROR) &&
1226	    !(bp->b_flags & B_INVAL)) {
1227		/*
1228		 * Failed write, redirty.  Must clear BIO_ERROR to prevent
1229		 * pages from being scrapped.  If B_INVAL is set then
1230		 * this case is not run and the next case is run to
1231		 * destroy the buffer.  B_INVAL can occur if the buffer
1232		 * is outside the range supported by the underlying device.
1233		 */
1234		bp->b_ioflags &= ~BIO_ERROR;
1235		bdirty(bp);
1236	} else if ((bp->b_flags & (B_NOCACHE | B_INVAL)) ||
1237	    (bp->b_ioflags & BIO_ERROR) ||
1238	    bp->b_iocmd == BIO_DELETE || (bp->b_bufsize <= 0)) {
1239		/*
1240		 * Either a failed I/O or we were asked to free or not
1241		 * cache the buffer.
1242		 */
1243		bp->b_flags |= B_INVAL;
1244		if (LIST_FIRST(&bp->b_dep) != NULL)
1245			buf_deallocate(bp);
1246		if (bp->b_flags & B_DELWRI) {
1247			atomic_subtract_int(&numdirtybuffers, 1);
1248			numdirtywakeup(lodirtybuffers);
1249		}
1250		bp->b_flags &= ~(B_DELWRI | B_CACHE);
1251		if ((bp->b_flags & B_VMIO) == 0) {
1252			if (bp->b_bufsize)
1253				allocbuf(bp, 0);
1254			if (bp->b_vp)
1255				brelvp(bp);
1256		}
1257	}
1258
1259	/*
1260	 * We must clear B_RELBUF if B_DELWRI is set.  If vfs_vmio_release()
1261	 * is called with B_DELWRI set, the underlying pages may wind up
1262	 * getting freed causing a previous write (bdwrite()) to get 'lost'
1263	 * because pages associated with a B_DELWRI bp are marked clean.
1264	 *
1265	 * We still allow the B_INVAL case to call vfs_vmio_release(), even
1266	 * if B_DELWRI is set.
1267	 *
1268	 * If B_DELWRI is not set we may have to set B_RELBUF if we are low
1269	 * on pages to return pages to the VM page queues.
1270	 */
1271	if (bp->b_flags & B_DELWRI)
1272		bp->b_flags &= ~B_RELBUF;
1273	else if (vm_page_count_severe()) {
1274		/*
1275		 * XXX This lock may not be necessary since BKGRDINPROG
1276		 * cannot be set while we hold the buf lock, it can only be
1277		 * cleared if it is already pending.
1278		 */
1279		if (bp->b_vp) {
1280			VI_LOCK(bp->b_vp);
1281			if (!(bp->b_vflags & BV_BKGRDINPROG))
1282				bp->b_flags |= B_RELBUF;
1283			VI_UNLOCK(bp->b_vp);
1284		} else
1285			bp->b_flags |= B_RELBUF;
1286	}
1287
1288	/*
1289	 * VMIO buffer rundown.  It is not very necessary to keep a VMIO buffer
1290	 * constituted, not even NFS buffers now.  Two flags effect this.  If
1291	 * B_INVAL, the struct buf is invalidated but the VM object is kept
1292	 * around ( i.e. so it is trivial to reconstitute the buffer later ).
1293	 *
1294	 * If BIO_ERROR or B_NOCACHE is set, pages in the VM object will be
1295	 * invalidated.  BIO_ERROR cannot be set for a failed write unless the
1296	 * buffer is also B_INVAL because it hits the re-dirtying code above.
1297	 *
1298	 * Normally we can do this whether a buffer is B_DELWRI or not.  If
1299	 * the buffer is an NFS buffer, it is tracking piecemeal writes or
1300	 * the commit state and we cannot afford to lose the buffer. If the
1301	 * buffer has a background write in progress, we need to keep it
1302	 * around to prevent it from being reconstituted and starting a second
1303	 * background write.
1304	 */
1305	if ((bp->b_flags & B_VMIO)
1306	    && !(bp->b_vp->v_mount != NULL &&
1307		 (bp->b_vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
1308		 !vn_isdisk(bp->b_vp, NULL) &&
1309		 (bp->b_flags & B_DELWRI))
1310	    ) {
1311
1312		int i, j, resid;
1313		vm_page_t m;
1314		off_t foff;
1315		vm_pindex_t poff;
1316		vm_object_t obj;
1317
1318		obj = bp->b_object;
1319
1320		/*
1321		 * Get the base offset and length of the buffer.  Note that
1322		 * in the VMIO case if the buffer block size is not
1323		 * page-aligned then b_data pointer may not be page-aligned.
1324		 * But our b_pages[] array *IS* page aligned.
1325		 *
1326		 * block sizes less then DEV_BSIZE (usually 512) are not
1327		 * supported due to the page granularity bits (m->valid,
1328		 * m->dirty, etc...).
1329		 *
1330		 * See man buf(9) for more information
1331		 */
1332		resid = bp->b_bufsize;
1333		foff = bp->b_offset;
1334		VM_OBJECT_LOCK(obj);
1335		for (i = 0; i < bp->b_npages; i++) {
1336			int had_bogus = 0;
1337
1338			m = bp->b_pages[i];
1339			vm_page_lock_queues();
1340			vm_page_flag_clear(m, PG_ZERO);
1341			vm_page_unlock_queues();
1342
1343			/*
1344			 * If we hit a bogus page, fixup *all* the bogus pages
1345			 * now.
1346			 */
1347			if (m == bogus_page) {
1348				poff = OFF_TO_IDX(bp->b_offset);
1349				had_bogus = 1;
1350
1351				for (j = i; j < bp->b_npages; j++) {
1352					vm_page_t mtmp;
1353					mtmp = bp->b_pages[j];
1354					if (mtmp == bogus_page) {
1355						mtmp = vm_page_lookup(obj, poff + j);
1356						if (!mtmp) {
1357							panic("brelse: page missing\n");
1358						}
1359						bp->b_pages[j] = mtmp;
1360					}
1361				}
1362
1363				if ((bp->b_flags & B_INVAL) == 0) {
1364					pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
1365				}
1366				m = bp->b_pages[i];
1367			}
1368			if ((bp->b_flags & B_NOCACHE) || (bp->b_ioflags & BIO_ERROR)) {
1369				int poffset = foff & PAGE_MASK;
1370				int presid = resid > (PAGE_SIZE - poffset) ?
1371					(PAGE_SIZE - poffset) : resid;
1372
1373				KASSERT(presid >= 0, ("brelse: extra page"));
1374				vm_page_lock_queues();
1375				vm_page_set_invalid(m, poffset, presid);
1376				vm_page_unlock_queues();
1377				if (had_bogus)
1378					printf("avoided corruption bug in bogus_page/brelse code\n");
1379			}
1380			resid -= PAGE_SIZE - (foff & PAGE_MASK);
1381			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
1382		}
1383		VM_OBJECT_UNLOCK(obj);
1384		if (bp->b_flags & (B_INVAL | B_RELBUF))
1385			vfs_vmio_release(bp);
1386
1387	} else if (bp->b_flags & B_VMIO) {
1388
1389		if (bp->b_flags & (B_INVAL | B_RELBUF)) {
1390			vfs_vmio_release(bp);
1391		}
1392
1393	}
1394
1395	if (bp->b_qindex != QUEUE_NONE)
1396		panic("brelse: free buffer onto another queue???");
1397	if (BUF_REFCNT(bp) > 1) {
1398		/* do not release to free list */
1399		BUF_UNLOCK(bp);
1400		splx(s);
1401		return;
1402	}
1403
1404	/* enqueue */
1405	mtx_lock(&bqlock);
1406
1407	/* buffers with no memory */
1408	if (bp->b_bufsize == 0) {
1409		bp->b_flags |= B_INVAL;
1410		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1411		if (bp->b_vflags & BV_BKGRDINPROG)
1412			panic("losing buffer 1");
1413		if (bp->b_kvasize) {
1414			bp->b_qindex = QUEUE_EMPTYKVA;
1415		} else {
1416			bp->b_qindex = QUEUE_EMPTY;
1417		}
1418		TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1419		bp->b_dev = NODEV;
1420	/* buffers with junk contents */
1421	} else if (bp->b_flags & (B_INVAL | B_NOCACHE | B_RELBUF) ||
1422	    (bp->b_ioflags & BIO_ERROR)) {
1423		bp->b_flags |= B_INVAL;
1424		bp->b_xflags &= ~(BX_BKGRDWRITE | BX_ALTDATA);
1425		if (bp->b_vflags & BV_BKGRDINPROG)
1426			panic("losing buffer 2");
1427		bp->b_qindex = QUEUE_CLEAN;
1428		TAILQ_INSERT_HEAD(&bufqueues[QUEUE_CLEAN], bp, b_freelist);
1429		bp->b_dev = NODEV;
1430	/* remaining buffers */
1431	} else {
1432		if (bp->b_flags & B_DELWRI)
1433			bp->b_qindex = QUEUE_DIRTY;
1434		else
1435			bp->b_qindex = QUEUE_CLEAN;
1436		if (bp->b_flags & B_AGE)
1437			TAILQ_INSERT_HEAD(&bufqueues[bp->b_qindex], bp, b_freelist);
1438		else
1439			TAILQ_INSERT_TAIL(&bufqueues[bp->b_qindex], bp, b_freelist);
1440	}
1441	mtx_unlock(&bqlock);
1442
1443	/*
1444	 * If B_INVAL and B_DELWRI is set, clear B_DELWRI.  We have already
1445	 * placed the buffer on the correct queue.  We must also disassociate
1446	 * the device and vnode for a B_INVAL buffer so gbincore() doesn't
1447	 * find it.
1448	 */
1449	if (bp->b_flags & B_INVAL) {
1450		if (bp->b_flags & B_DELWRI)
1451			bundirty(bp);
1452		if (bp->b_vp)
1453			brelvp(bp);
1454	}
1455
1456	/*
1457	 * Fixup numfreebuffers count.  The bp is on an appropriate queue
1458	 * unless locked.  We then bump numfreebuffers if it is not B_DELWRI.
1459	 * We've already handled the B_INVAL case ( B_DELWRI will be clear
1460	 * if B_INVAL is set ).
1461	 */
1462
1463	if (!(bp->b_flags & B_DELWRI))
1464		bufcountwakeup();
1465
1466	/*
1467	 * Something we can maybe free or reuse
1468	 */
1469	if (bp->b_bufsize || bp->b_kvasize)
1470		bufspacewakeup();
1471
1472	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF | B_DIRECT);
1473	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1474		panic("brelse: not dirty");
1475	/* unlock */
1476	BUF_UNLOCK(bp);
1477	splx(s);
1478}
1479
1480/*
1481 * Release a buffer back to the appropriate queue but do not try to free
1482 * it.  The buffer is expected to be used again soon.
1483 *
1484 * bqrelse() is used by bdwrite() to requeue a delayed write, and used by
1485 * biodone() to requeue an async I/O on completion.  It is also used when
1486 * known good buffers need to be requeued but we think we may need the data
1487 * again soon.
1488 *
1489 * XXX we should be able to leave the B_RELBUF hint set on completion.
1490 */
1491void
1492bqrelse(struct buf * bp)
1493{
1494	int s;
1495
1496	s = splbio();
1497
1498	KASSERT(!(bp->b_flags & (B_CLUSTER|B_PAGING)), ("bqrelse: inappropriate B_PAGING or B_CLUSTER bp %p", bp));
1499
1500	if (bp->b_qindex != QUEUE_NONE)
1501		panic("bqrelse: free buffer onto another queue???");
1502	if (BUF_REFCNT(bp) > 1) {
1503		/* do not release to free list */
1504		BUF_UNLOCK(bp);
1505		splx(s);
1506		return;
1507	}
1508	mtx_lock(&bqlock);
1509	/* buffers with stale but valid contents */
1510	if (bp->b_flags & B_DELWRI) {
1511		bp->b_qindex = QUEUE_DIRTY;
1512		TAILQ_INSERT_TAIL(&bufqueues[QUEUE_DIRTY], bp, b_freelist);
1513	} else {
1514		/*
1515		 * XXX This lock may not be necessary since BKGRDINPROG
1516		 * cannot be set while we hold the buf lock, it can only be
1517		 * cleared if it is already pending.
1518		 */
1519		VI_LOCK(bp->b_vp);
1520		if (!vm_page_count_severe() || bp->b_vflags & BV_BKGRDINPROG) {
1521			VI_UNLOCK(bp->b_vp);
1522			bp->b_qindex = QUEUE_CLEAN;
1523			TAILQ_INSERT_TAIL(&bufqueues[QUEUE_CLEAN], bp,
1524			    b_freelist);
1525		} else {
1526			/*
1527			 * We are too low on memory, we have to try to free
1528			 * the buffer (most importantly: the wired pages
1529			 * making up its backing store) *now*.
1530			 */
1531			VI_UNLOCK(bp->b_vp);
1532			mtx_unlock(&bqlock);
1533			splx(s);
1534			brelse(bp);
1535			return;
1536		}
1537	}
1538	mtx_unlock(&bqlock);
1539
1540	if ((bp->b_flags & B_INVAL) || !(bp->b_flags & B_DELWRI))
1541		bufcountwakeup();
1542
1543	/*
1544	 * Something we can maybe free or reuse.
1545	 */
1546	if (bp->b_bufsize && !(bp->b_flags & B_DELWRI))
1547		bufspacewakeup();
1548
1549	bp->b_flags &= ~(B_ASYNC | B_NOCACHE | B_AGE | B_RELBUF);
1550	if ((bp->b_flags & B_DELWRI) == 0 && (bp->b_xflags & BX_VNDIRTY))
1551		panic("bqrelse: not dirty");
1552	/* unlock */
1553	BUF_UNLOCK(bp);
1554	splx(s);
1555}
1556
1557/* Give pages used by the bp back to the VM system (where possible) */
1558static void
1559vfs_vmio_release(bp)
1560	struct buf *bp;
1561{
1562	int i;
1563	vm_page_t m;
1564
1565	GIANT_REQUIRED;
1566	VM_OBJECT_LOCK(bp->b_object);
1567	vm_page_lock_queues();
1568	for (i = 0; i < bp->b_npages; i++) {
1569		m = bp->b_pages[i];
1570		bp->b_pages[i] = NULL;
1571		/*
1572		 * In order to keep page LRU ordering consistent, put
1573		 * everything on the inactive queue.
1574		 */
1575		vm_page_unwire(m, 0);
1576		/*
1577		 * We don't mess with busy pages, it is
1578		 * the responsibility of the process that
1579		 * busied the pages to deal with them.
1580		 */
1581		if ((m->flags & PG_BUSY) || (m->busy != 0))
1582			continue;
1583
1584		if (m->wire_count == 0) {
1585			vm_page_flag_clear(m, PG_ZERO);
1586			/*
1587			 * Might as well free the page if we can and it has
1588			 * no valid data.  We also free the page if the
1589			 * buffer was used for direct I/O
1590			 */
1591			if ((bp->b_flags & B_ASYNC) == 0 && !m->valid &&
1592			    m->hold_count == 0) {
1593				vm_page_busy(m);
1594				pmap_remove_all(m);
1595				vm_page_free(m);
1596			} else if (bp->b_flags & B_DIRECT) {
1597				vm_page_try_to_free(m);
1598			} else if (vm_page_count_severe()) {
1599				vm_page_try_to_cache(m);
1600			}
1601		}
1602	}
1603	vm_page_unlock_queues();
1604	VM_OBJECT_UNLOCK(bp->b_object);
1605	pmap_qremove(trunc_page((vm_offset_t) bp->b_data), bp->b_npages);
1606
1607	if (bp->b_bufsize) {
1608		bufspacewakeup();
1609		bp->b_bufsize = 0;
1610	}
1611	bp->b_npages = 0;
1612	bp->b_flags &= ~B_VMIO;
1613	if (bp->b_vp)
1614		brelvp(bp);
1615}
1616
1617/*
1618 * Check to see if a block at a particular lbn is available for a clustered
1619 * write.
1620 */
1621static int
1622vfs_bio_clcheck(struct vnode *vp, int size, daddr_t lblkno, daddr_t blkno)
1623{
1624	struct buf *bpa;
1625	int match;
1626
1627	match = 0;
1628
1629	/* If the buf isn't in core skip it */
1630	if ((bpa = gbincore(vp, lblkno)) == NULL)
1631		return (0);
1632
1633	/* If the buf is busy we don't want to wait for it */
1634	if (BUF_LOCK(bpa, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1635		return (0);
1636
1637	/* Only cluster with valid clusterable delayed write buffers */
1638	if ((bpa->b_flags & (B_DELWRI | B_CLUSTEROK | B_INVAL)) !=
1639	    (B_DELWRI | B_CLUSTEROK))
1640		goto done;
1641
1642	if (bpa->b_bufsize != size)
1643		goto done;
1644
1645	/*
1646	 * Check to see if it is in the expected place on disk and that the
1647	 * block has been mapped.
1648	 */
1649	if ((bpa->b_blkno != bpa->b_lblkno) && (bpa->b_blkno == blkno))
1650		match = 1;
1651done:
1652	BUF_UNLOCK(bpa);
1653	return (match);
1654}
1655
1656/*
1657 *	vfs_bio_awrite:
1658 *
1659 *	Implement clustered async writes for clearing out B_DELWRI buffers.
1660 *	This is much better then the old way of writing only one buffer at
1661 *	a time.  Note that we may not be presented with the buffers in the
1662 *	correct order, so we search for the cluster in both directions.
1663 */
1664int
1665vfs_bio_awrite(struct buf * bp)
1666{
1667	int i;
1668	int j;
1669	daddr_t lblkno = bp->b_lblkno;
1670	struct vnode *vp = bp->b_vp;
1671	int s;
1672	int ncl;
1673	int nwritten;
1674	int size;
1675	int maxcl;
1676
1677	s = splbio();
1678	/*
1679	 * right now we support clustered writing only to regular files.  If
1680	 * we find a clusterable block we could be in the middle of a cluster
1681	 * rather then at the beginning.
1682	 */
1683	if ((vp->v_type == VREG) &&
1684	    (vp->v_mount != 0) && /* Only on nodes that have the size info */
1685	    (bp->b_flags & (B_CLUSTEROK | B_INVAL)) == B_CLUSTEROK) {
1686
1687		size = vp->v_mount->mnt_stat.f_iosize;
1688		maxcl = MAXPHYS / size;
1689
1690		VI_LOCK(vp);
1691		for (i = 1; i < maxcl; i++)
1692			if (vfs_bio_clcheck(vp, size, lblkno + i,
1693			    bp->b_blkno + ((i * size) >> DEV_BSHIFT)) == 0)
1694				break;
1695
1696		for (j = 1; i + j <= maxcl && j <= lblkno; j++)
1697			if (vfs_bio_clcheck(vp, size, lblkno - j,
1698			    bp->b_blkno - ((j * size) >> DEV_BSHIFT)) == 0)
1699				break;
1700
1701		VI_UNLOCK(vp);
1702		--j;
1703		ncl = i + j;
1704		/*
1705		 * this is a possible cluster write
1706		 */
1707		if (ncl != 1) {
1708			BUF_UNLOCK(bp);
1709			nwritten = cluster_wbuild(vp, size, lblkno - j, ncl);
1710			splx(s);
1711			return nwritten;
1712		}
1713	}
1714
1715	bremfree(bp);
1716	bp->b_flags |= B_ASYNC;
1717
1718	splx(s);
1719	/*
1720	 * default (old) behavior, writing out only one block
1721	 *
1722	 * XXX returns b_bufsize instead of b_bcount for nwritten?
1723	 */
1724	nwritten = bp->b_bufsize;
1725	(void) bwrite(bp);
1726
1727	return nwritten;
1728}
1729
1730/*
1731 *	getnewbuf:
1732 *
1733 *	Find and initialize a new buffer header, freeing up existing buffers
1734 *	in the bufqueues as necessary.  The new buffer is returned locked.
1735 *
1736 *	Important:  B_INVAL is not set.  If the caller wishes to throw the
1737 *	buffer away, the caller must set B_INVAL prior to calling brelse().
1738 *
1739 *	We block if:
1740 *		We have insufficient buffer headers
1741 *		We have insufficient buffer space
1742 *		buffer_map is too fragmented ( space reservation fails )
1743 *		If we have to flush dirty buffers ( but we try to avoid this )
1744 *
1745 *	To avoid VFS layer recursion we do not flush dirty buffers ourselves.
1746 *	Instead we ask the buf daemon to do it for us.  We attempt to
1747 *	avoid piecemeal wakeups of the pageout daemon.
1748 */
1749
1750static struct buf *
1751getnewbuf(int slpflag, int slptimeo, int size, int maxsize)
1752{
1753	struct buf *bp;
1754	struct buf *nbp;
1755	int defrag = 0;
1756	int nqindex;
1757	static int flushingbufs;
1758
1759	GIANT_REQUIRED;
1760
1761	/*
1762	 * We can't afford to block since we might be holding a vnode lock,
1763	 * which may prevent system daemons from running.  We deal with
1764	 * low-memory situations by proactively returning memory and running
1765	 * async I/O rather then sync I/O.
1766	 */
1767
1768	atomic_add_int(&getnewbufcalls, 1);
1769	atomic_subtract_int(&getnewbufrestarts, 1);
1770restart:
1771	atomic_add_int(&getnewbufrestarts, 1);
1772
1773	/*
1774	 * Setup for scan.  If we do not have enough free buffers,
1775	 * we setup a degenerate case that immediately fails.  Note
1776	 * that if we are specially marked process, we are allowed to
1777	 * dip into our reserves.
1778	 *
1779	 * The scanning sequence is nominally:  EMPTY->EMPTYKVA->CLEAN
1780	 *
1781	 * We start with EMPTYKVA.  If the list is empty we backup to EMPTY.
1782	 * However, there are a number of cases (defragging, reusing, ...)
1783	 * where we cannot backup.
1784	 */
1785	mtx_lock(&bqlock);
1786	nqindex = QUEUE_EMPTYKVA;
1787	nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA]);
1788
1789	if (nbp == NULL) {
1790		/*
1791		 * If no EMPTYKVA buffers and we are either
1792		 * defragging or reusing, locate a CLEAN buffer
1793		 * to free or reuse.  If bufspace useage is low
1794		 * skip this step so we can allocate a new buffer.
1795		 */
1796		if (defrag || bufspace >= lobufspace) {
1797			nqindex = QUEUE_CLEAN;
1798			nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN]);
1799		}
1800
1801		/*
1802		 * If we could not find or were not allowed to reuse a
1803		 * CLEAN buffer, check to see if it is ok to use an EMPTY
1804		 * buffer.  We can only use an EMPTY buffer if allocating
1805		 * its KVA would not otherwise run us out of buffer space.
1806		 */
1807		if (nbp == NULL && defrag == 0 &&
1808		    bufspace + maxsize < hibufspace) {
1809			nqindex = QUEUE_EMPTY;
1810			nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTY]);
1811		}
1812	}
1813
1814	/*
1815	 * Run scan, possibly freeing data and/or kva mappings on the fly
1816	 * depending.
1817	 */
1818
1819	while ((bp = nbp) != NULL) {
1820		int qindex = nqindex;
1821
1822		/*
1823		 * Calculate next bp ( we can only use it if we do not block
1824		 * or do other fancy things ).
1825		 */
1826		if ((nbp = TAILQ_NEXT(bp, b_freelist)) == NULL) {
1827			switch(qindex) {
1828			case QUEUE_EMPTY:
1829				nqindex = QUEUE_EMPTYKVA;
1830				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_EMPTYKVA])))
1831					break;
1832				/* FALLTHROUGH */
1833			case QUEUE_EMPTYKVA:
1834				nqindex = QUEUE_CLEAN;
1835				if ((nbp = TAILQ_FIRST(&bufqueues[QUEUE_CLEAN])))
1836					break;
1837				/* FALLTHROUGH */
1838			case QUEUE_CLEAN:
1839				/*
1840				 * nbp is NULL.
1841				 */
1842				break;
1843			}
1844		}
1845		if (bp->b_vp) {
1846			VI_LOCK(bp->b_vp);
1847			if (bp->b_vflags & BV_BKGRDINPROG) {
1848				VI_UNLOCK(bp->b_vp);
1849				continue;
1850			}
1851			VI_UNLOCK(bp->b_vp);
1852		}
1853
1854		/*
1855		 * Sanity Checks
1856		 */
1857		KASSERT(bp->b_qindex == qindex, ("getnewbuf: inconsistant queue %d bp %p", qindex, bp));
1858
1859		/*
1860		 * Note: we no longer distinguish between VMIO and non-VMIO
1861		 * buffers.
1862		 */
1863
1864		KASSERT((bp->b_flags & B_DELWRI) == 0, ("delwri buffer %p found in queue %d", bp, qindex));
1865
1866		/*
1867		 * If we are defragging then we need a buffer with
1868		 * b_kvasize != 0.  XXX this situation should no longer
1869		 * occur, if defrag is non-zero the buffer's b_kvasize
1870		 * should also be non-zero at this point.  XXX
1871		 */
1872		if (defrag && bp->b_kvasize == 0) {
1873			printf("Warning: defrag empty buffer %p\n", bp);
1874			continue;
1875		}
1876
1877		/*
1878		 * Start freeing the bp.  This is somewhat involved.  nbp
1879		 * remains valid only for QUEUE_EMPTY[KVA] bp's.
1880		 */
1881
1882		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
1883			panic("getnewbuf: locked buf");
1884		bremfreel(bp);
1885		mtx_unlock(&bqlock);
1886
1887		if (qindex == QUEUE_CLEAN) {
1888			if (bp->b_flags & B_VMIO) {
1889				bp->b_flags &= ~B_ASYNC;
1890				vfs_vmio_release(bp);
1891			}
1892			if (bp->b_vp)
1893				brelvp(bp);
1894		}
1895
1896		/*
1897		 * NOTE:  nbp is now entirely invalid.  We can only restart
1898		 * the scan from this point on.
1899		 *
1900		 * Get the rest of the buffer freed up.  b_kva* is still
1901		 * valid after this operation.
1902		 */
1903
1904		if (bp->b_rcred != NOCRED) {
1905			crfree(bp->b_rcred);
1906			bp->b_rcred = NOCRED;
1907		}
1908		if (bp->b_wcred != NOCRED) {
1909			crfree(bp->b_wcred);
1910			bp->b_wcred = NOCRED;
1911		}
1912		if (LIST_FIRST(&bp->b_dep) != NULL)
1913			buf_deallocate(bp);
1914		if (bp->b_vflags & BV_BKGRDINPROG)
1915			panic("losing buffer 3");
1916
1917		if (bp->b_bufsize)
1918			allocbuf(bp, 0);
1919
1920		bp->b_flags = 0;
1921		bp->b_ioflags = 0;
1922		bp->b_xflags = 0;
1923		bp->b_vflags = 0;
1924		bp->b_dev = NODEV;
1925		bp->b_vp = NULL;
1926		bp->b_blkno = bp->b_lblkno = 0;
1927		bp->b_offset = NOOFFSET;
1928		bp->b_iodone = 0;
1929		bp->b_error = 0;
1930		bp->b_resid = 0;
1931		bp->b_bcount = 0;
1932		bp->b_npages = 0;
1933		bp->b_dirtyoff = bp->b_dirtyend = 0;
1934		bp->b_magic = B_MAGIC_BIO;
1935		bp->b_op = &buf_ops_bio;
1936		bp->b_object = NULL;
1937
1938		LIST_INIT(&bp->b_dep);
1939
1940		/*
1941		 * If we are defragging then free the buffer.
1942		 */
1943		if (defrag) {
1944			bp->b_flags |= B_INVAL;
1945			bfreekva(bp);
1946			brelse(bp);
1947			defrag = 0;
1948			goto restart;
1949		}
1950
1951		/*
1952		 * If we are overcomitted then recover the buffer and its
1953		 * KVM space.  This occurs in rare situations when multiple
1954		 * processes are blocked in getnewbuf() or allocbuf().
1955		 */
1956		if (bufspace >= hibufspace)
1957			flushingbufs = 1;
1958		if (flushingbufs && bp->b_kvasize != 0) {
1959			bp->b_flags |= B_INVAL;
1960			bfreekva(bp);
1961			brelse(bp);
1962			goto restart;
1963		}
1964		if (bufspace < lobufspace)
1965			flushingbufs = 0;
1966		break;
1967	}
1968
1969	/*
1970	 * If we exhausted our list, sleep as appropriate.  We may have to
1971	 * wakeup various daemons and write out some dirty buffers.
1972	 *
1973	 * Generally we are sleeping due to insufficient buffer space.
1974	 */
1975
1976	if (bp == NULL) {
1977		int flags;
1978		char *waitmsg;
1979
1980		mtx_unlock(&bqlock);
1981		if (defrag) {
1982			flags = VFS_BIO_NEED_BUFSPACE;
1983			waitmsg = "nbufkv";
1984		} else if (bufspace >= hibufspace) {
1985			waitmsg = "nbufbs";
1986			flags = VFS_BIO_NEED_BUFSPACE;
1987		} else {
1988			waitmsg = "newbuf";
1989			flags = VFS_BIO_NEED_ANY;
1990		}
1991
1992		bd_speedup();	/* heeeelp */
1993
1994		mtx_lock(&nblock);
1995		needsbuffer |= flags;
1996		while (needsbuffer & flags) {
1997			if (msleep(&needsbuffer, &nblock,
1998			    (PRIBIO + 4) | slpflag, waitmsg, slptimeo)) {
1999				mtx_unlock(&nblock);
2000				return (NULL);
2001			}
2002		}
2003		mtx_unlock(&nblock);
2004	} else {
2005		/*
2006		 * We finally have a valid bp.  We aren't quite out of the
2007		 * woods, we still have to reserve kva space.  In order
2008		 * to keep fragmentation sane we only allocate kva in
2009		 * BKVASIZE chunks.
2010		 */
2011		maxsize = (maxsize + BKVAMASK) & ~BKVAMASK;
2012
2013		if (maxsize != bp->b_kvasize) {
2014			vm_offset_t addr = 0;
2015
2016			bfreekva(bp);
2017
2018			if (vm_map_findspace(buffer_map,
2019				vm_map_min(buffer_map), maxsize, &addr)) {
2020				/*
2021				 * Uh oh.  Buffer map is to fragmented.  We
2022				 * must defragment the map.
2023				 */
2024				atomic_add_int(&bufdefragcnt, 1);
2025				defrag = 1;
2026				bp->b_flags |= B_INVAL;
2027				brelse(bp);
2028				goto restart;
2029			}
2030			if (addr) {
2031				vm_map_insert(buffer_map, NULL, 0,
2032					addr, addr + maxsize,
2033					VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
2034
2035				bp->b_kvabase = (caddr_t) addr;
2036				bp->b_kvasize = maxsize;
2037				atomic_add_int(&bufspace, bp->b_kvasize);
2038				atomic_add_int(&bufreusecnt, 1);
2039			}
2040		}
2041		bp->b_saveaddr = bp->b_kvabase;
2042		bp->b_data = bp->b_saveaddr;
2043	}
2044	return(bp);
2045}
2046
2047/*
2048 *	buf_daemon:
2049 *
2050 *	buffer flushing daemon.  Buffers are normally flushed by the
2051 *	update daemon but if it cannot keep up this process starts to
2052 *	take the load in an attempt to prevent getnewbuf() from blocking.
2053 */
2054
2055static struct kproc_desc buf_kp = {
2056	"bufdaemon",
2057	buf_daemon,
2058	&bufdaemonproc
2059};
2060SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start, &buf_kp)
2061
2062static void
2063buf_daemon()
2064{
2065	int s;
2066
2067	mtx_lock(&Giant);
2068
2069	/*
2070	 * This process needs to be suspended prior to shutdown sync.
2071	 */
2072	EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, bufdaemonproc,
2073	    SHUTDOWN_PRI_LAST);
2074
2075	/*
2076	 * This process is allowed to take the buffer cache to the limit
2077	 */
2078	s = splbio();
2079	mtx_lock(&bdlock);
2080
2081	for (;;) {
2082		bd_request = 0;
2083		mtx_unlock(&bdlock);
2084
2085		kthread_suspend_check(bufdaemonproc);
2086
2087		/*
2088		 * Do the flush.  Limit the amount of in-transit I/O we
2089		 * allow to build up, otherwise we would completely saturate
2090		 * the I/O system.  Wakeup any waiting processes before we
2091		 * normally would so they can run in parallel with our drain.
2092		 */
2093		while (numdirtybuffers > lodirtybuffers) {
2094			if (flushbufqueues(0) == 0) {
2095				/*
2096				 * Could not find any buffers without rollback
2097				 * dependencies, so just write the first one
2098				 * in the hopes of eventually making progress.
2099				 */
2100				flushbufqueues(1);
2101				break;
2102			}
2103			waitrunningbufspace();
2104			numdirtywakeup((lodirtybuffers + hidirtybuffers) / 2);
2105		}
2106
2107		/*
2108		 * Only clear bd_request if we have reached our low water
2109		 * mark.  The buf_daemon normally waits 1 second and
2110		 * then incrementally flushes any dirty buffers that have
2111		 * built up, within reason.
2112		 *
2113		 * If we were unable to hit our low water mark and couldn't
2114		 * find any flushable buffers, we sleep half a second.
2115		 * Otherwise we loop immediately.
2116		 */
2117		mtx_lock(&bdlock);
2118		if (numdirtybuffers <= lodirtybuffers) {
2119			/*
2120			 * We reached our low water mark, reset the
2121			 * request and sleep until we are needed again.
2122			 * The sleep is just so the suspend code works.
2123			 */
2124			bd_request = 0;
2125			msleep(&bd_request, &bdlock, PVM, "psleep", hz);
2126		} else {
2127			/*
2128			 * We couldn't find any flushable dirty buffers but
2129			 * still have too many dirty buffers, we
2130			 * have to sleep and try again.  (rare)
2131			 */
2132			msleep(&bd_request, &bdlock, PVM, "qsleep", hz / 10);
2133		}
2134	}
2135}
2136
2137/*
2138 *	flushbufqueues:
2139 *
2140 *	Try to flush a buffer in the dirty queue.  We must be careful to
2141 *	free up B_INVAL buffers instead of write them, which NFS is
2142 *	particularly sensitive to.
2143 */
2144int flushwithdeps = 0;
2145SYSCTL_INT(_vfs, OID_AUTO, flushwithdeps, CTLFLAG_RW, &flushwithdeps,
2146    0, "Number of buffers flushed with dependecies that require rollbacks");
2147static int
2148flushbufqueues(int flushdeps)
2149{
2150	struct thread *td = curthread;
2151	struct vnode *vp;
2152	struct mount *mp;
2153	struct buf *bp;
2154	int hasdeps;
2155
2156	mtx_lock(&bqlock);
2157	TAILQ_FOREACH(bp, &bufqueues[QUEUE_DIRTY], b_freelist) {
2158		if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0)
2159			continue;
2160		KASSERT((bp->b_flags & B_DELWRI),
2161		    ("unexpected clean buffer %p", bp));
2162		VI_LOCK(bp->b_vp);
2163		if ((bp->b_vflags & BV_BKGRDINPROG) != 0) {
2164			VI_UNLOCK(bp->b_vp);
2165			BUF_UNLOCK(bp);
2166			continue;
2167		}
2168		VI_UNLOCK(bp->b_vp);
2169		if (bp->b_flags & B_INVAL) {
2170			bremfreel(bp);
2171			mtx_unlock(&bqlock);
2172			brelse(bp);
2173			return (1);
2174		}
2175
2176		if (LIST_FIRST(&bp->b_dep) != NULL && buf_countdeps(bp, 0)) {
2177			if (flushdeps == 0) {
2178				BUF_UNLOCK(bp);
2179				continue;
2180			}
2181			hasdeps = 1;
2182		} else
2183			hasdeps = 0;
2184		/*
2185		 * We must hold the lock on a vnode before writing
2186		 * one of its buffers. Otherwise we may confuse, or
2187		 * in the case of a snapshot vnode, deadlock the
2188		 * system.
2189		 *
2190		 * The lock order here is the reverse of the normal
2191		 * of vnode followed by buf lock.  This is ok because
2192		 * the NOWAIT will prevent deadlock.
2193		 */
2194		vp = bp->b_vp;
2195		if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
2196			BUF_UNLOCK(bp);
2197			continue;
2198		}
2199		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT, td) == 0) {
2200			mtx_unlock(&bqlock);
2201			vfs_bio_awrite(bp);
2202			vn_finished_write(mp);
2203			VOP_UNLOCK(vp, 0, td);
2204			flushwithdeps += hasdeps;
2205			return (1);
2206		}
2207		vn_finished_write(mp);
2208		BUF_UNLOCK(bp);
2209	}
2210	mtx_unlock(&bqlock);
2211	return (0);
2212}
2213
2214/*
2215 * Check to see if a block is currently memory resident.
2216 */
2217struct buf *
2218incore(struct vnode * vp, daddr_t blkno)
2219{
2220	struct buf *bp;
2221
2222	int s = splbio();
2223	VI_LOCK(vp);
2224	bp = gbincore(vp, blkno);
2225	VI_UNLOCK(vp);
2226	splx(s);
2227	return (bp);
2228}
2229
2230/*
2231 * Returns true if no I/O is needed to access the
2232 * associated VM object.  This is like incore except
2233 * it also hunts around in the VM system for the data.
2234 */
2235
2236int
2237inmem(struct vnode * vp, daddr_t blkno)
2238{
2239	vm_object_t obj;
2240	vm_offset_t toff, tinc, size;
2241	vm_page_t m;
2242	vm_ooffset_t off;
2243
2244	GIANT_REQUIRED;
2245	ASSERT_VOP_LOCKED(vp, "inmem");
2246
2247	if (incore(vp, blkno))
2248		return 1;
2249	if (vp->v_mount == NULL)
2250		return 0;
2251	if (VOP_GETVOBJECT(vp, &obj) != 0 || (vp->v_vflag & VV_OBJBUF) == 0)
2252		return 0;
2253
2254	size = PAGE_SIZE;
2255	if (size > vp->v_mount->mnt_stat.f_iosize)
2256		size = vp->v_mount->mnt_stat.f_iosize;
2257	off = (vm_ooffset_t)blkno * (vm_ooffset_t)vp->v_mount->mnt_stat.f_iosize;
2258
2259	VM_OBJECT_LOCK(obj);
2260	for (toff = 0; toff < vp->v_mount->mnt_stat.f_iosize; toff += tinc) {
2261		m = vm_page_lookup(obj, OFF_TO_IDX(off + toff));
2262		if (!m)
2263			goto notinmem;
2264		tinc = size;
2265		if (tinc > PAGE_SIZE - ((toff + off) & PAGE_MASK))
2266			tinc = PAGE_SIZE - ((toff + off) & PAGE_MASK);
2267		if (vm_page_is_valid(m,
2268		    (vm_offset_t) ((toff + off) & PAGE_MASK), tinc) == 0)
2269			goto notinmem;
2270	}
2271	VM_OBJECT_UNLOCK(obj);
2272	return 1;
2273
2274notinmem:
2275	VM_OBJECT_UNLOCK(obj);
2276	return (0);
2277}
2278
2279/*
2280 *	vfs_setdirty:
2281 *
2282 *	Sets the dirty range for a buffer based on the status of the dirty
2283 *	bits in the pages comprising the buffer.
2284 *
2285 *	The range is limited to the size of the buffer.
2286 *
2287 *	This routine is primarily used by NFS, but is generalized for the
2288 *	B_VMIO case.
2289 */
2290static void
2291vfs_setdirty(struct buf *bp)
2292{
2293	int i;
2294	vm_object_t object;
2295
2296	GIANT_REQUIRED;
2297	/*
2298	 * Degenerate case - empty buffer
2299	 */
2300
2301	if (bp->b_bufsize == 0)
2302		return;
2303
2304	/*
2305	 * We qualify the scan for modified pages on whether the
2306	 * object has been flushed yet.  The OBJ_WRITEABLE flag
2307	 * is not cleared simply by protecting pages off.
2308	 */
2309
2310	if ((bp->b_flags & B_VMIO) == 0)
2311		return;
2312
2313	object = bp->b_pages[0]->object;
2314	VM_OBJECT_LOCK(object);
2315	if ((object->flags & OBJ_WRITEABLE) && !(object->flags & OBJ_MIGHTBEDIRTY))
2316		printf("Warning: object %p writeable but not mightbedirty\n", object);
2317	if (!(object->flags & OBJ_WRITEABLE) && (object->flags & OBJ_MIGHTBEDIRTY))
2318		printf("Warning: object %p mightbedirty but not writeable\n", object);
2319
2320	if (object->flags & (OBJ_MIGHTBEDIRTY|OBJ_CLEANING)) {
2321		vm_offset_t boffset;
2322		vm_offset_t eoffset;
2323
2324		vm_page_lock_queues();
2325		/*
2326		 * test the pages to see if they have been modified directly
2327		 * by users through the VM system.
2328		 */
2329		for (i = 0; i < bp->b_npages; i++) {
2330			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
2331			vm_page_test_dirty(bp->b_pages[i]);
2332		}
2333
2334		/*
2335		 * Calculate the encompassing dirty range, boffset and eoffset,
2336		 * (eoffset - boffset) bytes.
2337		 */
2338
2339		for (i = 0; i < bp->b_npages; i++) {
2340			if (bp->b_pages[i]->dirty)
2341				break;
2342		}
2343		boffset = (i << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2344
2345		for (i = bp->b_npages - 1; i >= 0; --i) {
2346			if (bp->b_pages[i]->dirty) {
2347				break;
2348			}
2349		}
2350		eoffset = ((i + 1) << PAGE_SHIFT) - (bp->b_offset & PAGE_MASK);
2351
2352		vm_page_unlock_queues();
2353		/*
2354		 * Fit it to the buffer.
2355		 */
2356
2357		if (eoffset > bp->b_bcount)
2358			eoffset = bp->b_bcount;
2359
2360		/*
2361		 * If we have a good dirty range, merge with the existing
2362		 * dirty range.
2363		 */
2364
2365		if (boffset < eoffset) {
2366			if (bp->b_dirtyoff > boffset)
2367				bp->b_dirtyoff = boffset;
2368			if (bp->b_dirtyend < eoffset)
2369				bp->b_dirtyend = eoffset;
2370		}
2371	}
2372	VM_OBJECT_UNLOCK(object);
2373}
2374
2375/*
2376 *	getblk:
2377 *
2378 *	Get a block given a specified block and offset into a file/device.
2379 *	The buffers B_DONE bit will be cleared on return, making it almost
2380 * 	ready for an I/O initiation.  B_INVAL may or may not be set on
2381 *	return.  The caller should clear B_INVAL prior to initiating a
2382 *	READ.
2383 *
2384 *	For a non-VMIO buffer, B_CACHE is set to the opposite of B_INVAL for
2385 *	an existing buffer.
2386 *
2387 *	For a VMIO buffer, B_CACHE is modified according to the backing VM.
2388 *	If getblk()ing a previously 0-sized invalid buffer, B_CACHE is set
2389 *	and then cleared based on the backing VM.  If the previous buffer is
2390 *	non-0-sized but invalid, B_CACHE will be cleared.
2391 *
2392 *	If getblk() must create a new buffer, the new buffer is returned with
2393 *	both B_INVAL and B_CACHE clear unless it is a VMIO buffer, in which
2394 *	case it is returned with B_INVAL clear and B_CACHE set based on the
2395 *	backing VM.
2396 *
2397 *	getblk() also forces a bwrite() for any B_DELWRI buffer whos
2398 *	B_CACHE bit is clear.
2399 *
2400 *	What this means, basically, is that the caller should use B_CACHE to
2401 *	determine whether the buffer is fully valid or not and should clear
2402 *	B_INVAL prior to issuing a read.  If the caller intends to validate
2403 *	the buffer by loading its data area with something, the caller needs
2404 *	to clear B_INVAL.  If the caller does this without issuing an I/O,
2405 *	the caller should set B_CACHE ( as an optimization ), else the caller
2406 *	should issue the I/O and biodone() will set B_CACHE if the I/O was
2407 *	a write attempt or if it was a successfull read.  If the caller
2408 *	intends to issue a READ, the caller must clear B_INVAL and BIO_ERROR
2409 *	prior to issuing the READ.  biodone() will *not* clear B_INVAL.
2410 */
2411struct buf *
2412getblk(struct vnode * vp, daddr_t blkno, int size, int slpflag, int slptimeo,
2413    int flags)
2414{
2415	struct buf *bp;
2416	int s;
2417	int error;
2418	ASSERT_VOP_LOCKED(vp, "getblk");
2419
2420	if (size > MAXBSIZE)
2421		panic("getblk: size(%d) > MAXBSIZE(%d)\n", size, MAXBSIZE);
2422
2423	s = splbio();
2424loop:
2425	/*
2426	 * Block if we are low on buffers.   Certain processes are allowed
2427	 * to completely exhaust the buffer cache.
2428         *
2429         * If this check ever becomes a bottleneck it may be better to
2430         * move it into the else, when gbincore() fails.  At the moment
2431         * it isn't a problem.
2432	 *
2433	 * XXX remove if 0 sections (clean this up after its proven)
2434         */
2435	if (numfreebuffers == 0) {
2436		if (curthread == PCPU_GET(idlethread))
2437			return NULL;
2438		mtx_lock(&nblock);
2439		needsbuffer |= VFS_BIO_NEED_ANY;
2440		mtx_unlock(&nblock);
2441	}
2442
2443	VI_LOCK(vp);
2444	if ((bp = gbincore(vp, blkno))) {
2445		int lockflags;
2446		/*
2447		 * Buffer is in-core.  If the buffer is not busy, it must
2448		 * be on a queue.
2449		 */
2450		lockflags = LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK;
2451
2452		if (flags & GB_LOCK_NOWAIT)
2453			lockflags |= LK_NOWAIT;
2454
2455		error = BUF_TIMELOCK(bp, lockflags,
2456		    VI_MTX(vp), "getblk", slpflag, slptimeo);
2457
2458		/*
2459		 * If we slept and got the lock we have to restart in case
2460		 * the buffer changed identities.
2461		 */
2462		if (error == ENOLCK)
2463			goto loop;
2464		/* We timed out or were interrupted. */
2465		else if (error)
2466			return (NULL);
2467
2468		/*
2469		 * The buffer is locked.  B_CACHE is cleared if the buffer is
2470		 * invalid.  Otherwise, for a non-VMIO buffer, B_CACHE is set
2471		 * and for a VMIO buffer B_CACHE is adjusted according to the
2472		 * backing VM cache.
2473		 */
2474		if (bp->b_flags & B_INVAL)
2475			bp->b_flags &= ~B_CACHE;
2476		else if ((bp->b_flags & (B_VMIO | B_INVAL)) == 0)
2477			bp->b_flags |= B_CACHE;
2478		bremfree(bp);
2479
2480		/*
2481		 * check for size inconsistancies for non-VMIO case.
2482		 */
2483
2484		if (bp->b_bcount != size) {
2485			if ((bp->b_flags & B_VMIO) == 0 ||
2486			    (size > bp->b_kvasize)) {
2487				if (bp->b_flags & B_DELWRI) {
2488					bp->b_flags |= B_NOCACHE;
2489					bwrite(bp);
2490				} else {
2491					if ((bp->b_flags & B_VMIO) &&
2492					   (LIST_FIRST(&bp->b_dep) == NULL)) {
2493						bp->b_flags |= B_RELBUF;
2494						brelse(bp);
2495					} else {
2496						bp->b_flags |= B_NOCACHE;
2497						bwrite(bp);
2498					}
2499				}
2500				goto loop;
2501			}
2502		}
2503
2504		/*
2505		 * If the size is inconsistant in the VMIO case, we can resize
2506		 * the buffer.  This might lead to B_CACHE getting set or
2507		 * cleared.  If the size has not changed, B_CACHE remains
2508		 * unchanged from its previous state.
2509		 */
2510
2511		if (bp->b_bcount != size)
2512			allocbuf(bp, size);
2513
2514		KASSERT(bp->b_offset != NOOFFSET,
2515		    ("getblk: no buffer offset"));
2516
2517		/*
2518		 * A buffer with B_DELWRI set and B_CACHE clear must
2519		 * be committed before we can return the buffer in
2520		 * order to prevent the caller from issuing a read
2521		 * ( due to B_CACHE not being set ) and overwriting
2522		 * it.
2523		 *
2524		 * Most callers, including NFS and FFS, need this to
2525		 * operate properly either because they assume they
2526		 * can issue a read if B_CACHE is not set, or because
2527		 * ( for example ) an uncached B_DELWRI might loop due
2528		 * to softupdates re-dirtying the buffer.  In the latter
2529		 * case, B_CACHE is set after the first write completes,
2530		 * preventing further loops.
2531		 * NOTE!  b*write() sets B_CACHE.  If we cleared B_CACHE
2532		 * above while extending the buffer, we cannot allow the
2533		 * buffer to remain with B_CACHE set after the write
2534		 * completes or it will represent a corrupt state.  To
2535		 * deal with this we set B_NOCACHE to scrap the buffer
2536		 * after the write.
2537		 *
2538		 * We might be able to do something fancy, like setting
2539		 * B_CACHE in bwrite() except if B_DELWRI is already set,
2540		 * so the below call doesn't set B_CACHE, but that gets real
2541		 * confusing.  This is much easier.
2542		 */
2543
2544		if ((bp->b_flags & (B_CACHE|B_DELWRI)) == B_DELWRI) {
2545			bp->b_flags |= B_NOCACHE;
2546			bwrite(bp);
2547			goto loop;
2548		}
2549
2550		splx(s);
2551		bp->b_flags &= ~B_DONE;
2552	} else {
2553		int bsize, maxsize, vmio;
2554		off_t offset;
2555
2556		/*
2557		 * Buffer is not in-core, create new buffer.  The buffer
2558		 * returned by getnewbuf() is locked.  Note that the returned
2559		 * buffer is also considered valid (not marked B_INVAL).
2560		 */
2561		VI_UNLOCK(vp);
2562		/*
2563		 * If the user does not want us to create the buffer, bail out
2564		 * here.
2565		 */
2566		if (flags & GB_NOCREAT) {
2567			splx(s);
2568			return NULL;
2569		}
2570		if (vn_isdisk(vp, NULL))
2571			bsize = DEV_BSIZE;
2572		else if (vp->v_mountedhere)
2573			bsize = vp->v_mountedhere->mnt_stat.f_iosize;
2574		else if (vp->v_mount)
2575			bsize = vp->v_mount->mnt_stat.f_iosize;
2576		else
2577			bsize = size;
2578
2579		offset = blkno * bsize;
2580		vmio = (VOP_GETVOBJECT(vp, NULL) == 0) &&
2581		    (vp->v_vflag & VV_OBJBUF);
2582		maxsize = vmio ? size + (offset & PAGE_MASK) : size;
2583		maxsize = imax(maxsize, bsize);
2584
2585		if ((bp = getnewbuf(slpflag, slptimeo, size, maxsize)) == NULL) {
2586			if (slpflag || slptimeo) {
2587				splx(s);
2588				return NULL;
2589			}
2590			goto loop;
2591		}
2592
2593		/*
2594		 * This code is used to make sure that a buffer is not
2595		 * created while the getnewbuf routine is blocked.
2596		 * This can be a problem whether the vnode is locked or not.
2597		 * If the buffer is created out from under us, we have to
2598		 * throw away the one we just created.  There is now window
2599		 * race because we are safely running at splbio() from the
2600		 * point of the duplicate buffer creation through to here,
2601		 * and we've locked the buffer.
2602		 *
2603		 * Note: this must occur before we associate the buffer
2604		 * with the vp especially considering limitations in
2605		 * the splay tree implementation when dealing with duplicate
2606		 * lblkno's.
2607		 */
2608		VI_LOCK(vp);
2609		if (gbincore(vp, blkno)) {
2610			VI_UNLOCK(vp);
2611			bp->b_flags |= B_INVAL;
2612			brelse(bp);
2613			goto loop;
2614		}
2615
2616		/*
2617		 * Insert the buffer into the hash, so that it can
2618		 * be found by incore.
2619		 */
2620		bp->b_blkno = bp->b_lblkno = blkno;
2621		bp->b_offset = offset;
2622
2623		bgetvp(vp, bp);
2624		VI_UNLOCK(vp);
2625
2626		/*
2627		 * set B_VMIO bit.  allocbuf() the buffer bigger.  Since the
2628		 * buffer size starts out as 0, B_CACHE will be set by
2629		 * allocbuf() for the VMIO case prior to it testing the
2630		 * backing store for validity.
2631		 */
2632
2633		if (vmio) {
2634			bp->b_flags |= B_VMIO;
2635#if defined(VFS_BIO_DEBUG)
2636			if (vp->v_type != VREG)
2637				printf("getblk: vmioing file type %d???\n", vp->v_type);
2638#endif
2639			VOP_GETVOBJECT(vp, &bp->b_object);
2640		} else {
2641			bp->b_flags &= ~B_VMIO;
2642			bp->b_object = NULL;
2643		}
2644
2645		allocbuf(bp, size);
2646
2647		splx(s);
2648		bp->b_flags &= ~B_DONE;
2649	}
2650	KASSERT(BUF_REFCNT(bp) == 1, ("getblk: bp %p not locked",bp));
2651	return (bp);
2652}
2653
2654/*
2655 * Get an empty, disassociated buffer of given size.  The buffer is initially
2656 * set to B_INVAL.
2657 */
2658struct buf *
2659geteblk(int size)
2660{
2661	struct buf *bp;
2662	int s;
2663	int maxsize;
2664
2665	maxsize = (size + BKVAMASK) & ~BKVAMASK;
2666
2667	s = splbio();
2668	while ((bp = getnewbuf(0, 0, size, maxsize)) == 0)
2669		continue;
2670	splx(s);
2671	allocbuf(bp, size);
2672	bp->b_flags |= B_INVAL;	/* b_dep cleared by getnewbuf() */
2673	KASSERT(BUF_REFCNT(bp) == 1, ("geteblk: bp %p not locked",bp));
2674	return (bp);
2675}
2676
2677
2678/*
2679 * This code constitutes the buffer memory from either anonymous system
2680 * memory (in the case of non-VMIO operations) or from an associated
2681 * VM object (in the case of VMIO operations).  This code is able to
2682 * resize a buffer up or down.
2683 *
2684 * Note that this code is tricky, and has many complications to resolve
2685 * deadlock or inconsistant data situations.  Tread lightly!!!
2686 * There are B_CACHE and B_DELWRI interactions that must be dealt with by
2687 * the caller.  Calling this code willy nilly can result in the loss of data.
2688 *
2689 * allocbuf() only adjusts B_CACHE for VMIO buffers.  getblk() deals with
2690 * B_CACHE for the non-VMIO case.
2691 */
2692
2693int
2694allocbuf(struct buf *bp, int size)
2695{
2696	int newbsize, mbsize;
2697	int i;
2698
2699	GIANT_REQUIRED;
2700
2701	if (BUF_REFCNT(bp) == 0)
2702		panic("allocbuf: buffer not busy");
2703
2704	if (bp->b_kvasize < size)
2705		panic("allocbuf: buffer too small");
2706
2707	if ((bp->b_flags & B_VMIO) == 0) {
2708		caddr_t origbuf;
2709		int origbufsize;
2710		/*
2711		 * Just get anonymous memory from the kernel.  Don't
2712		 * mess with B_CACHE.
2713		 */
2714		mbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2715		if (bp->b_flags & B_MALLOC)
2716			newbsize = mbsize;
2717		else
2718			newbsize = round_page(size);
2719
2720		if (newbsize < bp->b_bufsize) {
2721			/*
2722			 * malloced buffers are not shrunk
2723			 */
2724			if (bp->b_flags & B_MALLOC) {
2725				if (newbsize) {
2726					bp->b_bcount = size;
2727				} else {
2728					free(bp->b_data, M_BIOBUF);
2729					if (bp->b_bufsize) {
2730						atomic_subtract_int(
2731						    &bufmallocspace,
2732						    bp->b_bufsize);
2733						bufspacewakeup();
2734						bp->b_bufsize = 0;
2735					}
2736					bp->b_saveaddr = bp->b_kvabase;
2737					bp->b_data = bp->b_saveaddr;
2738					bp->b_bcount = 0;
2739					bp->b_flags &= ~B_MALLOC;
2740				}
2741				return 1;
2742			}
2743			vm_hold_free_pages(
2744			    bp,
2745			    (vm_offset_t) bp->b_data + newbsize,
2746			    (vm_offset_t) bp->b_data + bp->b_bufsize);
2747		} else if (newbsize > bp->b_bufsize) {
2748			/*
2749			 * We only use malloced memory on the first allocation.
2750			 * and revert to page-allocated memory when the buffer
2751			 * grows.
2752			 */
2753			/*
2754			 * There is a potential smp race here that could lead
2755			 * to bufmallocspace slightly passing the max.  It
2756			 * is probably extremely rare and not worth worrying
2757			 * over.
2758			 */
2759			if ( (bufmallocspace < maxbufmallocspace) &&
2760				(bp->b_bufsize == 0) &&
2761				(mbsize <= PAGE_SIZE/2)) {
2762
2763				bp->b_data = malloc(mbsize, M_BIOBUF, M_WAITOK);
2764				bp->b_bufsize = mbsize;
2765				bp->b_bcount = size;
2766				bp->b_flags |= B_MALLOC;
2767				atomic_add_int(&bufmallocspace, mbsize);
2768				return 1;
2769			}
2770			origbuf = NULL;
2771			origbufsize = 0;
2772			/*
2773			 * If the buffer is growing on its other-than-first allocation,
2774			 * then we revert to the page-allocation scheme.
2775			 */
2776			if (bp->b_flags & B_MALLOC) {
2777				origbuf = bp->b_data;
2778				origbufsize = bp->b_bufsize;
2779				bp->b_data = bp->b_kvabase;
2780				if (bp->b_bufsize) {
2781					atomic_subtract_int(&bufmallocspace,
2782					    bp->b_bufsize);
2783					bufspacewakeup();
2784					bp->b_bufsize = 0;
2785				}
2786				bp->b_flags &= ~B_MALLOC;
2787				newbsize = round_page(newbsize);
2788			}
2789			vm_hold_load_pages(
2790			    bp,
2791			    (vm_offset_t) bp->b_data + bp->b_bufsize,
2792			    (vm_offset_t) bp->b_data + newbsize);
2793			if (origbuf) {
2794				bcopy(origbuf, bp->b_data, origbufsize);
2795				free(origbuf, M_BIOBUF);
2796			}
2797		}
2798	} else {
2799		int desiredpages;
2800
2801		newbsize = (size + DEV_BSIZE - 1) & ~(DEV_BSIZE - 1);
2802		desiredpages = (size == 0) ? 0 :
2803			num_pages((bp->b_offset & PAGE_MASK) + newbsize);
2804
2805		if (bp->b_flags & B_MALLOC)
2806			panic("allocbuf: VMIO buffer can't be malloced");
2807		/*
2808		 * Set B_CACHE initially if buffer is 0 length or will become
2809		 * 0-length.
2810		 */
2811		if (size == 0 || bp->b_bufsize == 0)
2812			bp->b_flags |= B_CACHE;
2813
2814		if (newbsize < bp->b_bufsize) {
2815			/*
2816			 * DEV_BSIZE aligned new buffer size is less then the
2817			 * DEV_BSIZE aligned existing buffer size.  Figure out
2818			 * if we have to remove any pages.
2819			 */
2820			if (desiredpages < bp->b_npages) {
2821				vm_page_t m;
2822
2823				vm_page_lock_queues();
2824				for (i = desiredpages; i < bp->b_npages; i++) {
2825					/*
2826					 * the page is not freed here -- it
2827					 * is the responsibility of
2828					 * vnode_pager_setsize
2829					 */
2830					m = bp->b_pages[i];
2831					KASSERT(m != bogus_page,
2832					    ("allocbuf: bogus page found"));
2833					while (vm_page_sleep_if_busy(m, TRUE, "biodep"))
2834						vm_page_lock_queues();
2835
2836					bp->b_pages[i] = NULL;
2837					vm_page_unwire(m, 0);
2838				}
2839				vm_page_unlock_queues();
2840				pmap_qremove((vm_offset_t) trunc_page((vm_offset_t)bp->b_data) +
2841				    (desiredpages << PAGE_SHIFT), (bp->b_npages - desiredpages));
2842				bp->b_npages = desiredpages;
2843			}
2844		} else if (size > bp->b_bcount) {
2845			/*
2846			 * We are growing the buffer, possibly in a
2847			 * byte-granular fashion.
2848			 */
2849			struct vnode *vp;
2850			vm_object_t obj;
2851			vm_offset_t toff;
2852			vm_offset_t tinc;
2853
2854			/*
2855			 * Step 1, bring in the VM pages from the object,
2856			 * allocating them if necessary.  We must clear
2857			 * B_CACHE if these pages are not valid for the
2858			 * range covered by the buffer.
2859			 */
2860
2861			vp = bp->b_vp;
2862			obj = bp->b_object;
2863
2864			VM_OBJECT_LOCK(obj);
2865			while (bp->b_npages < desiredpages) {
2866				vm_page_t m;
2867				vm_pindex_t pi;
2868
2869				pi = OFF_TO_IDX(bp->b_offset) + bp->b_npages;
2870				if ((m = vm_page_lookup(obj, pi)) == NULL) {
2871					/*
2872					 * note: must allocate system pages
2873					 * since blocking here could intefere
2874					 * with paging I/O, no matter which
2875					 * process we are.
2876					 */
2877					m = vm_page_alloc(obj, pi,
2878					    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
2879					if (m == NULL) {
2880						atomic_add_int(&vm_pageout_deficit,
2881						    desiredpages - bp->b_npages);
2882						VM_OBJECT_UNLOCK(obj);
2883						VM_WAIT;
2884						VM_OBJECT_LOCK(obj);
2885					} else {
2886						vm_page_lock_queues();
2887						vm_page_wakeup(m);
2888						vm_page_unlock_queues();
2889						bp->b_flags &= ~B_CACHE;
2890						bp->b_pages[bp->b_npages] = m;
2891						++bp->b_npages;
2892					}
2893					continue;
2894				}
2895
2896				/*
2897				 * We found a page.  If we have to sleep on it,
2898				 * retry because it might have gotten freed out
2899				 * from under us.
2900				 *
2901				 * We can only test PG_BUSY here.  Blocking on
2902				 * m->busy might lead to a deadlock:
2903				 *
2904				 *  vm_fault->getpages->cluster_read->allocbuf
2905				 *
2906				 */
2907				vm_page_lock_queues();
2908				if (vm_page_sleep_if_busy(m, FALSE, "pgtblk"))
2909					continue;
2910
2911				/*
2912				 * We have a good page.  Should we wakeup the
2913				 * page daemon?
2914				 */
2915				if ((curproc != pageproc) &&
2916				    ((m->queue - m->pc) == PQ_CACHE) &&
2917				    ((cnt.v_free_count + cnt.v_cache_count) <
2918					(cnt.v_free_min + cnt.v_cache_min))) {
2919					pagedaemon_wakeup();
2920				}
2921				vm_page_flag_clear(m, PG_ZERO);
2922				vm_page_wire(m);
2923				vm_page_unlock_queues();
2924				bp->b_pages[bp->b_npages] = m;
2925				++bp->b_npages;
2926			}
2927
2928			/*
2929			 * Step 2.  We've loaded the pages into the buffer,
2930			 * we have to figure out if we can still have B_CACHE
2931			 * set.  Note that B_CACHE is set according to the
2932			 * byte-granular range ( bcount and size ), new the
2933			 * aligned range ( newbsize ).
2934			 *
2935			 * The VM test is against m->valid, which is DEV_BSIZE
2936			 * aligned.  Needless to say, the validity of the data
2937			 * needs to also be DEV_BSIZE aligned.  Note that this
2938			 * fails with NFS if the server or some other client
2939			 * extends the file's EOF.  If our buffer is resized,
2940			 * B_CACHE may remain set! XXX
2941			 */
2942
2943			toff = bp->b_bcount;
2944			tinc = PAGE_SIZE - ((bp->b_offset + toff) & PAGE_MASK);
2945
2946			while ((bp->b_flags & B_CACHE) && toff < size) {
2947				vm_pindex_t pi;
2948
2949				if (tinc > (size - toff))
2950					tinc = size - toff;
2951
2952				pi = ((bp->b_offset & PAGE_MASK) + toff) >>
2953				    PAGE_SHIFT;
2954
2955				vfs_buf_test_cache(
2956				    bp,
2957				    bp->b_offset,
2958				    toff,
2959				    tinc,
2960				    bp->b_pages[pi]
2961				);
2962				toff += tinc;
2963				tinc = PAGE_SIZE;
2964			}
2965			VM_OBJECT_UNLOCK(obj);
2966
2967			/*
2968			 * Step 3, fixup the KVM pmap.  Remember that
2969			 * bp->b_data is relative to bp->b_offset, but
2970			 * bp->b_offset may be offset into the first page.
2971			 */
2972
2973			bp->b_data = (caddr_t)
2974			    trunc_page((vm_offset_t)bp->b_data);
2975			pmap_qenter(
2976			    (vm_offset_t)bp->b_data,
2977			    bp->b_pages,
2978			    bp->b_npages
2979			);
2980
2981			bp->b_data = (caddr_t)((vm_offset_t)bp->b_data |
2982			    (vm_offset_t)(bp->b_offset & PAGE_MASK));
2983		}
2984	}
2985	if (newbsize < bp->b_bufsize)
2986		bufspacewakeup();
2987	bp->b_bufsize = newbsize;	/* actual buffer allocation	*/
2988	bp->b_bcount = size;		/* requested buffer size	*/
2989	return 1;
2990}
2991
2992void
2993biodone(struct bio *bp)
2994{
2995	mtx_lock(&bdonelock);
2996	bp->bio_flags |= BIO_DONE;
2997	if (bp->bio_done == NULL)
2998		wakeup(bp);
2999	mtx_unlock(&bdonelock);
3000	if (bp->bio_done != NULL)
3001		bp->bio_done(bp);
3002}
3003
3004/*
3005 * Wait for a BIO to finish.
3006 *
3007 * XXX: resort to a timeout for now.  The optimal locking (if any) for this
3008 * case is not yet clear.
3009 */
3010int
3011biowait(struct bio *bp, const char *wchan)
3012{
3013
3014	mtx_lock(&bdonelock);
3015	while ((bp->bio_flags & BIO_DONE) == 0)
3016		msleep(bp, &bdonelock, PRIBIO, wchan, hz / 10);
3017	mtx_unlock(&bdonelock);
3018	if (bp->bio_error != 0)
3019		return (bp->bio_error);
3020	if (!(bp->bio_flags & BIO_ERROR))
3021		return (0);
3022	return (EIO);
3023}
3024
3025void
3026biofinish(struct bio *bp, struct devstat *stat, int error)
3027{
3028
3029	if (error) {
3030		bp->bio_error = error;
3031		bp->bio_flags |= BIO_ERROR;
3032	}
3033	if (stat != NULL)
3034		devstat_end_transaction_bio(stat, bp);
3035	biodone(bp);
3036}
3037
3038/*
3039 *	bufwait:
3040 *
3041 *	Wait for buffer I/O completion, returning error status.  The buffer
3042 *	is left locked and B_DONE on return.  B_EINTR is converted into an EINTR
3043 *	error and cleared.
3044 */
3045int
3046bufwait(register struct buf * bp)
3047{
3048	int s;
3049
3050	s = splbio();
3051	if (bp->b_iocmd == BIO_READ)
3052		bwait(bp, PRIBIO, "biord");
3053	else
3054		bwait(bp, PRIBIO, "biowr");
3055	splx(s);
3056	if (bp->b_flags & B_EINTR) {
3057		bp->b_flags &= ~B_EINTR;
3058		return (EINTR);
3059	}
3060	if (bp->b_ioflags & BIO_ERROR) {
3061		return (bp->b_error ? bp->b_error : EIO);
3062	} else {
3063		return (0);
3064	}
3065}
3066
3067 /*
3068  * Call back function from struct bio back up to struct buf.
3069  * The corresponding initialization lives in sys/conf.h:DEV_STRATEGY().
3070  */
3071static void
3072bufdonebio(struct bio *bp)
3073{
3074
3075	/* Device drivers may or may not hold giant, hold it here. */
3076	mtx_lock(&Giant);
3077	bufdone(bp->bio_caller2);
3078	mtx_unlock(&Giant);
3079}
3080
3081void
3082dev_strategy(struct buf *bp)
3083{
3084	struct cdevsw *csw;
3085
3086	if ((!bp->b_iocmd) || (bp->b_iocmd & (bp->b_iocmd - 1)))
3087		panic("b_iocmd botch");
3088	bp->b_io.bio_done = bufdonebio;
3089	bp->b_io.bio_caller2 = bp;
3090	csw = devsw(bp->b_io.bio_dev);
3091	KASSERT(bp->b_io.bio_dev->si_refcount > 0,
3092	    ("dev_strategy on un-referenced dev_t (%s)",
3093	    devtoname(bp->b_io.bio_dev)));
3094	cdevsw_ref(csw);
3095	(*devsw(bp->b_io.bio_dev)->d_strategy)(&bp->b_io);
3096	cdevsw_rel(csw);
3097}
3098
3099/*
3100 *	bufdone:
3101 *
3102 *	Finish I/O on a buffer, optionally calling a completion function.
3103 *	This is usually called from an interrupt so process blocking is
3104 *	not allowed.
3105 *
3106 *	biodone is also responsible for setting B_CACHE in a B_VMIO bp.
3107 *	In a non-VMIO bp, B_CACHE will be set on the next getblk()
3108 *	assuming B_INVAL is clear.
3109 *
3110 *	For the VMIO case, we set B_CACHE if the op was a read and no
3111 *	read error occured, or if the op was a write.  B_CACHE is never
3112 *	set if the buffer is invalid or otherwise uncacheable.
3113 *
3114 *	biodone does not mess with B_INVAL, allowing the I/O routine or the
3115 *	initiator to leave B_INVAL set to brelse the buffer out of existance
3116 *	in the biodone routine.
3117 */
3118void
3119bufdone(struct buf *bp)
3120{
3121	int s;
3122	void    (*biodone)(struct buf *);
3123
3124
3125	s = splbio();
3126
3127	KASSERT(BUF_REFCNT(bp) > 0, ("biodone: bp %p not busy %d", bp, BUF_REFCNT(bp)));
3128	KASSERT(!(bp->b_flags & B_DONE), ("biodone: bp %p already done", bp));
3129
3130	bp->b_flags |= B_DONE;
3131	runningbufwakeup(bp);
3132
3133	if (bp->b_iocmd == BIO_DELETE) {
3134		brelse(bp);
3135		splx(s);
3136		return;
3137	}
3138
3139	if (bp->b_iocmd == BIO_WRITE) {
3140		vwakeup(bp);
3141	}
3142
3143	/* call optional completion function if requested */
3144	if (bp->b_iodone != NULL) {
3145		biodone = bp->b_iodone;
3146		bp->b_iodone = NULL;
3147		(*biodone) (bp);
3148		splx(s);
3149		return;
3150	}
3151	if (LIST_FIRST(&bp->b_dep) != NULL)
3152		buf_complete(bp);
3153
3154	if (bp->b_flags & B_VMIO) {
3155		int i;
3156		vm_ooffset_t foff;
3157		vm_page_t m;
3158		vm_object_t obj;
3159		int iosize;
3160		struct vnode *vp = bp->b_vp;
3161
3162		obj = bp->b_object;
3163
3164#if defined(VFS_BIO_DEBUG)
3165		mp_fixme("usecount and vflag accessed without locks.");
3166		if (vp->v_usecount == 0) {
3167			panic("biodone: zero vnode ref count");
3168		}
3169
3170		if ((vp->v_vflag & VV_OBJBUF) == 0) {
3171			panic("biodone: vnode is not setup for merged cache");
3172		}
3173#endif
3174
3175		foff = bp->b_offset;
3176		KASSERT(bp->b_offset != NOOFFSET,
3177		    ("biodone: no buffer offset"));
3178
3179		VM_OBJECT_LOCK(obj);
3180#if defined(VFS_BIO_DEBUG)
3181		if (obj->paging_in_progress < bp->b_npages) {
3182			printf("biodone: paging in progress(%d) < bp->b_npages(%d)\n",
3183			    obj->paging_in_progress, bp->b_npages);
3184		}
3185#endif
3186
3187		/*
3188		 * Set B_CACHE if the op was a normal read and no error
3189		 * occured.  B_CACHE is set for writes in the b*write()
3190		 * routines.
3191		 */
3192		iosize = bp->b_bcount - bp->b_resid;
3193		if (bp->b_iocmd == BIO_READ &&
3194		    !(bp->b_flags & (B_INVAL|B_NOCACHE)) &&
3195		    !(bp->b_ioflags & BIO_ERROR)) {
3196			bp->b_flags |= B_CACHE;
3197		}
3198		vm_page_lock_queues();
3199		for (i = 0; i < bp->b_npages; i++) {
3200			int bogusflag = 0;
3201			int resid;
3202
3203			resid = ((foff + PAGE_SIZE) & ~(off_t)PAGE_MASK) - foff;
3204			if (resid > iosize)
3205				resid = iosize;
3206
3207			/*
3208			 * cleanup bogus pages, restoring the originals
3209			 */
3210			m = bp->b_pages[i];
3211			if (m == bogus_page) {
3212				bogusflag = 1;
3213				m = vm_page_lookup(obj, OFF_TO_IDX(foff));
3214				if (m == NULL)
3215					panic("biodone: page disappeared!");
3216				bp->b_pages[i] = m;
3217				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3218			}
3219#if defined(VFS_BIO_DEBUG)
3220			if (OFF_TO_IDX(foff) != m->pindex) {
3221				printf(
3222"biodone: foff(%jd)/m->pindex(%ju) mismatch\n",
3223				    (intmax_t)foff, (uintmax_t)m->pindex);
3224			}
3225#endif
3226
3227			/*
3228			 * In the write case, the valid and clean bits are
3229			 * already changed correctly ( see bdwrite() ), so we
3230			 * only need to do this here in the read case.
3231			 */
3232			if ((bp->b_iocmd == BIO_READ) && !bogusflag && resid > 0) {
3233				vfs_page_set_valid(bp, foff, i, m);
3234			}
3235			vm_page_flag_clear(m, PG_ZERO);
3236
3237			/*
3238			 * when debugging new filesystems or buffer I/O methods, this
3239			 * is the most common error that pops up.  if you see this, you
3240			 * have not set the page busy flag correctly!!!
3241			 */
3242			if (m->busy == 0) {
3243				printf("biodone: page busy < 0, "
3244				    "pindex: %d, foff: 0x(%x,%x), "
3245				    "resid: %d, index: %d\n",
3246				    (int) m->pindex, (int)(foff >> 32),
3247						(int) foff & 0xffffffff, resid, i);
3248				if (!vn_isdisk(vp, NULL))
3249					printf(" iosize: %jd, lblkno: %jd, flags: 0x%x, npages: %d\n",
3250					    (intmax_t)bp->b_vp->v_mount->mnt_stat.f_iosize,
3251					    (intmax_t) bp->b_lblkno,
3252					    bp->b_flags, bp->b_npages);
3253				else
3254					printf(" VDEV, lblkno: %jd, flags: 0x%x, npages: %d\n",
3255					    (intmax_t) bp->b_lblkno,
3256					    bp->b_flags, bp->b_npages);
3257				printf(" valid: 0x%lx, dirty: 0x%lx, wired: %d\n",
3258				    (u_long)m->valid, (u_long)m->dirty,
3259				    m->wire_count);
3260				panic("biodone: page busy < 0\n");
3261			}
3262			vm_page_io_finish(m);
3263			vm_object_pip_subtract(obj, 1);
3264			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3265			iosize -= resid;
3266		}
3267		vm_page_unlock_queues();
3268		vm_object_pip_wakeupn(obj, 0);
3269		VM_OBJECT_UNLOCK(obj);
3270	}
3271
3272	/*
3273	 * For asynchronous completions, release the buffer now. The brelse
3274	 * will do a wakeup there if necessary - so no need to do a wakeup
3275	 * here in the async case. The sync case always needs to do a wakeup.
3276	 */
3277
3278	if (bp->b_flags & B_ASYNC) {
3279		if ((bp->b_flags & (B_NOCACHE | B_INVAL | B_RELBUF)) || (bp->b_ioflags & BIO_ERROR))
3280			brelse(bp);
3281		else
3282			bqrelse(bp);
3283	} else {
3284		bdone(bp);
3285	}
3286	splx(s);
3287}
3288
3289/*
3290 * This routine is called in lieu of iodone in the case of
3291 * incomplete I/O.  This keeps the busy status for pages
3292 * consistant.
3293 */
3294void
3295vfs_unbusy_pages(struct buf * bp)
3296{
3297	int i;
3298
3299	runningbufwakeup(bp);
3300	if (bp->b_flags & B_VMIO) {
3301		vm_object_t obj;
3302
3303		obj = bp->b_object;
3304		VM_OBJECT_LOCK(obj);
3305		vm_page_lock_queues();
3306		for (i = 0; i < bp->b_npages; i++) {
3307			vm_page_t m = bp->b_pages[i];
3308
3309			if (m == bogus_page) {
3310				m = vm_page_lookup(obj, OFF_TO_IDX(bp->b_offset) + i);
3311				if (!m) {
3312					panic("vfs_unbusy_pages: page missing\n");
3313				}
3314				bp->b_pages[i] = m;
3315				pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3316			}
3317			vm_object_pip_subtract(obj, 1);
3318			vm_page_flag_clear(m, PG_ZERO);
3319			vm_page_io_finish(m);
3320		}
3321		vm_page_unlock_queues();
3322		vm_object_pip_wakeupn(obj, 0);
3323		VM_OBJECT_UNLOCK(obj);
3324	}
3325}
3326
3327/*
3328 * vfs_page_set_valid:
3329 *
3330 *	Set the valid bits in a page based on the supplied offset.   The
3331 *	range is restricted to the buffer's size.
3332 *
3333 *	This routine is typically called after a read completes.
3334 */
3335static void
3336vfs_page_set_valid(struct buf *bp, vm_ooffset_t off, int pageno, vm_page_t m)
3337{
3338	vm_ooffset_t soff, eoff;
3339
3340	mtx_assert(&vm_page_queue_mtx, MA_OWNED);
3341	/*
3342	 * Start and end offsets in buffer.  eoff - soff may not cross a
3343	 * page boundry or cross the end of the buffer.  The end of the
3344	 * buffer, in this case, is our file EOF, not the allocation size
3345	 * of the buffer.
3346	 */
3347	soff = off;
3348	eoff = (off + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3349	if (eoff > bp->b_offset + bp->b_bcount)
3350		eoff = bp->b_offset + bp->b_bcount;
3351
3352	/*
3353	 * Set valid range.  This is typically the entire buffer and thus the
3354	 * entire page.
3355	 */
3356	if (eoff > soff) {
3357		vm_page_set_validclean(
3358		    m,
3359		   (vm_offset_t) (soff & PAGE_MASK),
3360		   (vm_offset_t) (eoff - soff)
3361		);
3362	}
3363}
3364
3365/*
3366 * This routine is called before a device strategy routine.
3367 * It is used to tell the VM system that paging I/O is in
3368 * progress, and treat the pages associated with the buffer
3369 * almost as being PG_BUSY.  Also the object paging_in_progress
3370 * flag is handled to make sure that the object doesn't become
3371 * inconsistant.
3372 *
3373 * Since I/O has not been initiated yet, certain buffer flags
3374 * such as BIO_ERROR or B_INVAL may be in an inconsistant state
3375 * and should be ignored.
3376 */
3377void
3378vfs_busy_pages(struct buf * bp, int clear_modify)
3379{
3380	int i, bogus;
3381
3382	if (bp->b_flags & B_VMIO) {
3383		vm_object_t obj;
3384		vm_ooffset_t foff;
3385
3386		obj = bp->b_object;
3387		foff = bp->b_offset;
3388		KASSERT(bp->b_offset != NOOFFSET,
3389		    ("vfs_busy_pages: no buffer offset"));
3390		vfs_setdirty(bp);
3391		VM_OBJECT_LOCK(obj);
3392retry:
3393		vm_page_lock_queues();
3394		for (i = 0; i < bp->b_npages; i++) {
3395			vm_page_t m = bp->b_pages[i];
3396
3397			if (vm_page_sleep_if_busy(m, FALSE, "vbpage"))
3398				goto retry;
3399		}
3400		bogus = 0;
3401		for (i = 0; i < bp->b_npages; i++) {
3402			vm_page_t m = bp->b_pages[i];
3403
3404			vm_page_flag_clear(m, PG_ZERO);
3405			if ((bp->b_flags & B_CLUSTER) == 0) {
3406				vm_object_pip_add(obj, 1);
3407				vm_page_io_start(m);
3408			}
3409			/*
3410			 * When readying a buffer for a read ( i.e
3411			 * clear_modify == 0 ), it is important to do
3412			 * bogus_page replacement for valid pages in
3413			 * partially instantiated buffers.  Partially
3414			 * instantiated buffers can, in turn, occur when
3415			 * reconstituting a buffer from its VM backing store
3416			 * base.  We only have to do this if B_CACHE is
3417			 * clear ( which causes the I/O to occur in the
3418			 * first place ).  The replacement prevents the read
3419			 * I/O from overwriting potentially dirty VM-backed
3420			 * pages.  XXX bogus page replacement is, uh, bogus.
3421			 * It may not work properly with small-block devices.
3422			 * We need to find a better way.
3423			 */
3424			pmap_remove_all(m);
3425			if (clear_modify)
3426				vfs_page_set_valid(bp, foff, i, m);
3427			else if (m->valid == VM_PAGE_BITS_ALL &&
3428				(bp->b_flags & B_CACHE) == 0) {
3429				bp->b_pages[i] = bogus_page;
3430				bogus++;
3431			}
3432			foff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3433		}
3434		vm_page_unlock_queues();
3435		VM_OBJECT_UNLOCK(obj);
3436		if (bogus)
3437			pmap_qenter(trunc_page((vm_offset_t)bp->b_data), bp->b_pages, bp->b_npages);
3438	}
3439}
3440
3441/*
3442 * Tell the VM system that the pages associated with this buffer
3443 * are clean.  This is used for delayed writes where the data is
3444 * going to go to disk eventually without additional VM intevention.
3445 *
3446 * Note that while we only really need to clean through to b_bcount, we
3447 * just go ahead and clean through to b_bufsize.
3448 */
3449static void
3450vfs_clean_pages(struct buf * bp)
3451{
3452	int i;
3453
3454	if (bp->b_flags & B_VMIO) {
3455		vm_ooffset_t foff;
3456
3457		foff = bp->b_offset;
3458		KASSERT(bp->b_offset != NOOFFSET,
3459		    ("vfs_clean_pages: no buffer offset"));
3460		VM_OBJECT_LOCK(bp->b_object);
3461		vm_page_lock_queues();
3462		for (i = 0; i < bp->b_npages; i++) {
3463			vm_page_t m = bp->b_pages[i];
3464			vm_ooffset_t noff = (foff + PAGE_SIZE) & ~(off_t)PAGE_MASK;
3465			vm_ooffset_t eoff = noff;
3466
3467			if (eoff > bp->b_offset + bp->b_bufsize)
3468				eoff = bp->b_offset + bp->b_bufsize;
3469			vfs_page_set_valid(bp, foff, i, m);
3470			/* vm_page_clear_dirty(m, foff & PAGE_MASK, eoff - foff); */
3471			foff = noff;
3472		}
3473		vm_page_unlock_queues();
3474		VM_OBJECT_UNLOCK(bp->b_object);
3475	}
3476}
3477
3478/*
3479 *	vfs_bio_set_validclean:
3480 *
3481 *	Set the range within the buffer to valid and clean.  The range is
3482 *	relative to the beginning of the buffer, b_offset.  Note that b_offset
3483 *	itself may be offset from the beginning of the first page.
3484 *
3485 */
3486
3487void
3488vfs_bio_set_validclean(struct buf *bp, int base, int size)
3489{
3490	if (bp->b_flags & B_VMIO) {
3491		int i;
3492		int n;
3493
3494		/*
3495		 * Fixup base to be relative to beginning of first page.
3496		 * Set initial n to be the maximum number of bytes in the
3497		 * first page that can be validated.
3498		 */
3499
3500		base += (bp->b_offset & PAGE_MASK);
3501		n = PAGE_SIZE - (base & PAGE_MASK);
3502
3503		VM_OBJECT_LOCK(bp->b_object);
3504		vm_page_lock_queues();
3505		for (i = base / PAGE_SIZE; size > 0 && i < bp->b_npages; ++i) {
3506			vm_page_t m = bp->b_pages[i];
3507
3508			if (n > size)
3509				n = size;
3510
3511			vm_page_set_validclean(m, base & PAGE_MASK, n);
3512			base += n;
3513			size -= n;
3514			n = PAGE_SIZE;
3515		}
3516		vm_page_unlock_queues();
3517		VM_OBJECT_UNLOCK(bp->b_object);
3518	}
3519}
3520
3521/*
3522 *	vfs_bio_clrbuf:
3523 *
3524 *	clear a buffer.  This routine essentially fakes an I/O, so we need
3525 *	to clear BIO_ERROR and B_INVAL.
3526 *
3527 *	Note that while we only theoretically need to clear through b_bcount,
3528 *	we go ahead and clear through b_bufsize.
3529 */
3530
3531void
3532vfs_bio_clrbuf(struct buf *bp)
3533{
3534	int i, mask = 0;
3535	caddr_t sa, ea;
3536
3537	GIANT_REQUIRED;
3538
3539	if ((bp->b_flags & (B_VMIO | B_MALLOC)) == B_VMIO) {
3540		bp->b_flags &= ~B_INVAL;
3541		bp->b_ioflags &= ~BIO_ERROR;
3542		VM_OBJECT_LOCK(bp->b_object);
3543		if( (bp->b_npages == 1) && (bp->b_bufsize < PAGE_SIZE) &&
3544		    (bp->b_offset & PAGE_MASK) == 0) {
3545			mask = (1 << (bp->b_bufsize / DEV_BSIZE)) - 1;
3546			if (bp->b_pages[0] != bogus_page)
3547				VM_OBJECT_LOCK_ASSERT(bp->b_pages[0]->object, MA_OWNED);
3548			if ((bp->b_pages[0]->valid & mask) == mask)
3549				goto unlock;
3550			if (((bp->b_pages[0]->flags & PG_ZERO) == 0) &&
3551			    ((bp->b_pages[0]->valid & mask) == 0)) {
3552				bzero(bp->b_data, bp->b_bufsize);
3553				bp->b_pages[0]->valid |= mask;
3554				goto unlock;
3555			}
3556		}
3557		ea = sa = bp->b_data;
3558		for(i=0;i<bp->b_npages;i++,sa=ea) {
3559			int j = ((vm_offset_t)sa & PAGE_MASK) / DEV_BSIZE;
3560			ea = (caddr_t)trunc_page((vm_offset_t)sa + PAGE_SIZE);
3561			ea = (caddr_t)(vm_offset_t)ulmin(
3562			    (u_long)(vm_offset_t)ea,
3563			    (u_long)(vm_offset_t)bp->b_data + bp->b_bufsize);
3564			mask = ((1 << ((ea - sa) / DEV_BSIZE)) - 1) << j;
3565			if (bp->b_pages[i] != bogus_page)
3566				VM_OBJECT_LOCK_ASSERT(bp->b_pages[i]->object, MA_OWNED);
3567			if ((bp->b_pages[i]->valid & mask) == mask)
3568				continue;
3569			if ((bp->b_pages[i]->valid & mask) == 0) {
3570				if ((bp->b_pages[i]->flags & PG_ZERO) == 0) {
3571					bzero(sa, ea - sa);
3572				}
3573			} else {
3574				for (; sa < ea; sa += DEV_BSIZE, j++) {
3575					if (((bp->b_pages[i]->flags & PG_ZERO) == 0) &&
3576						(bp->b_pages[i]->valid & (1<<j)) == 0)
3577						bzero(sa, DEV_BSIZE);
3578				}
3579			}
3580			bp->b_pages[i]->valid |= mask;
3581			vm_page_lock_queues();
3582			vm_page_flag_clear(bp->b_pages[i], PG_ZERO);
3583			vm_page_unlock_queues();
3584		}
3585unlock:
3586		VM_OBJECT_UNLOCK(bp->b_object);
3587		bp->b_resid = 0;
3588	} else {
3589		clrbuf(bp);
3590	}
3591}
3592
3593/*
3594 * vm_hold_load_pages and vm_hold_free_pages get pages into
3595 * a buffers address space.  The pages are anonymous and are
3596 * not associated with a file object.
3597 */
3598static void
3599vm_hold_load_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3600{
3601	vm_offset_t pg;
3602	vm_page_t p;
3603	int index;
3604
3605	to = round_page(to);
3606	from = round_page(from);
3607	index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3608
3609	VM_OBJECT_LOCK(kernel_object);
3610	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3611tryagain:
3612		/*
3613		 * note: must allocate system pages since blocking here
3614		 * could intefere with paging I/O, no matter which
3615		 * process we are.
3616		 */
3617		p = vm_page_alloc(kernel_object,
3618			((pg - VM_MIN_KERNEL_ADDRESS) >> PAGE_SHIFT),
3619		    VM_ALLOC_SYSTEM | VM_ALLOC_WIRED);
3620		if (!p) {
3621			atomic_add_int(&vm_pageout_deficit,
3622			    (to - pg) >> PAGE_SHIFT);
3623			VM_OBJECT_UNLOCK(kernel_object);
3624			VM_WAIT;
3625			VM_OBJECT_LOCK(kernel_object);
3626			goto tryagain;
3627		}
3628		p->valid = VM_PAGE_BITS_ALL;
3629		pmap_qenter(pg, &p, 1);
3630		bp->b_pages[index] = p;
3631		vm_page_lock_queues();
3632		vm_page_wakeup(p);
3633		vm_page_unlock_queues();
3634	}
3635	VM_OBJECT_UNLOCK(kernel_object);
3636	bp->b_npages = index;
3637}
3638
3639/* Return pages associated with this buf to the vm system */
3640static void
3641vm_hold_free_pages(struct buf * bp, vm_offset_t from, vm_offset_t to)
3642{
3643	vm_offset_t pg;
3644	vm_page_t p;
3645	int index, newnpages;
3646
3647	GIANT_REQUIRED;
3648
3649	from = round_page(from);
3650	to = round_page(to);
3651	newnpages = index = (from - trunc_page((vm_offset_t)bp->b_data)) >> PAGE_SHIFT;
3652
3653	VM_OBJECT_LOCK(kernel_object);
3654	for (pg = from; pg < to; pg += PAGE_SIZE, index++) {
3655		p = bp->b_pages[index];
3656		if (p && (index < bp->b_npages)) {
3657			if (p->busy) {
3658				printf(
3659			    "vm_hold_free_pages: blkno: %jd, lblkno: %jd\n",
3660				    (intmax_t)bp->b_blkno,
3661				    (intmax_t)bp->b_lblkno);
3662			}
3663			bp->b_pages[index] = NULL;
3664			pmap_qremove(pg, 1);
3665			vm_page_lock_queues();
3666			vm_page_busy(p);
3667			vm_page_unwire(p, 0);
3668			vm_page_free(p);
3669			vm_page_unlock_queues();
3670		}
3671	}
3672	VM_OBJECT_UNLOCK(kernel_object);
3673	bp->b_npages = newnpages;
3674}
3675
3676/*
3677 * Map an IO request into kernel virtual address space.
3678 *
3679 * All requests are (re)mapped into kernel VA space.
3680 * Notice that we use b_bufsize for the size of the buffer
3681 * to be mapped.  b_bcount might be modified by the driver.
3682 *
3683 * Note that even if the caller determines that the address space should
3684 * be valid, a race or a smaller-file mapped into a larger space may
3685 * actually cause vmapbuf() to fail, so all callers of vmapbuf() MUST
3686 * check the return value.
3687 */
3688int
3689vmapbuf(struct buf *bp)
3690{
3691	caddr_t addr, kva;
3692	vm_prot_t prot;
3693	int pidx, i;
3694	struct vm_page *m;
3695	struct pmap *pmap = &curproc->p_vmspace->vm_pmap;
3696
3697	GIANT_REQUIRED;
3698
3699	if (bp->b_bufsize < 0)
3700		return (-1);
3701	prot = (bp->b_iocmd == BIO_READ) ? VM_PROT_READ | VM_PROT_WRITE :
3702	    VM_PROT_READ;
3703	for (addr = (caddr_t)trunc_page((vm_offset_t)bp->b_data), pidx = 0;
3704	     addr < bp->b_data + bp->b_bufsize;
3705	     addr += PAGE_SIZE, pidx++) {
3706		/*
3707		 * Do the vm_fault if needed; do the copy-on-write thing
3708		 * when reading stuff off device into memory.
3709		 *
3710		 * NOTE! Must use pmap_extract() because addr may be in
3711		 * the userland address space, and kextract is only guarenteed
3712		 * to work for the kernland address space (see: sparc64 port).
3713		 */
3714retry:
3715		if (vm_fault_quick(addr >= bp->b_data ? addr : bp->b_data,
3716		    prot) < 0) {
3717			vm_page_lock_queues();
3718			for (i = 0; i < pidx; ++i) {
3719				vm_page_unhold(bp->b_pages[i]);
3720				bp->b_pages[i] = NULL;
3721			}
3722			vm_page_unlock_queues();
3723			return(-1);
3724		}
3725		m = pmap_extract_and_hold(pmap, (vm_offset_t)addr, prot);
3726		if (m == NULL)
3727			goto retry;
3728		bp->b_pages[pidx] = m;
3729	}
3730	if (pidx > btoc(MAXPHYS))
3731		panic("vmapbuf: mapped more than MAXPHYS");
3732	pmap_qenter((vm_offset_t)bp->b_saveaddr, bp->b_pages, pidx);
3733
3734	kva = bp->b_saveaddr;
3735	bp->b_npages = pidx;
3736	bp->b_saveaddr = bp->b_data;
3737	bp->b_data = kva + (((vm_offset_t) bp->b_data) & PAGE_MASK);
3738	return(0);
3739}
3740
3741/*
3742 * Free the io map PTEs associated with this IO operation.
3743 * We also invalidate the TLB entries and restore the original b_addr.
3744 */
3745void
3746vunmapbuf(struct buf *bp)
3747{
3748	int pidx;
3749	int npages;
3750
3751	npages = bp->b_npages;
3752	pmap_qremove(trunc_page((vm_offset_t)bp->b_data),
3753		     npages);
3754	vm_page_lock_queues();
3755	for (pidx = 0; pidx < npages; pidx++)
3756		vm_page_unhold(bp->b_pages[pidx]);
3757	vm_page_unlock_queues();
3758
3759	bp->b_data = bp->b_saveaddr;
3760}
3761
3762void
3763bdone(struct buf *bp)
3764{
3765	mtx_lock(&bdonelock);
3766	bp->b_flags |= B_DONE;
3767	wakeup(bp);
3768	mtx_unlock(&bdonelock);
3769}
3770
3771void
3772bwait(struct buf *bp, u_char pri, const char *wchan)
3773{
3774	mtx_lock(&bdonelock);
3775	while ((bp->b_flags & B_DONE) == 0)
3776		msleep(bp, &bdonelock, pri, wchan, 0);
3777	mtx_unlock(&bdonelock);
3778}
3779
3780#include "opt_ddb.h"
3781#ifdef DDB
3782#include <ddb/ddb.h>
3783
3784/* DDB command to show buffer data */
3785DB_SHOW_COMMAND(buffer, db_show_buffer)
3786{
3787	/* get args */
3788	struct buf *bp = (struct buf *)addr;
3789
3790	if (!have_addr) {
3791		db_printf("usage: show buffer <addr>\n");
3792		return;
3793	}
3794
3795	db_printf("b_flags = 0x%b\n", (u_int)bp->b_flags, PRINT_BUF_FLAGS);
3796	db_printf(
3797	    "b_error = %d, b_bufsize = %ld, b_bcount = %ld, b_resid = %ld\n"
3798	    "b_dev = (%d,%d), b_data = %p, b_blkno = %jd\n",
3799	    bp->b_error, bp->b_bufsize, bp->b_bcount, bp->b_resid,
3800	    major(bp->b_dev), minor(bp->b_dev), bp->b_data,
3801	    (intmax_t)bp->b_blkno);
3802	if (bp->b_npages) {
3803		int i;
3804		db_printf("b_npages = %d, pages(OBJ, IDX, PA): ", bp->b_npages);
3805		for (i = 0; i < bp->b_npages; i++) {
3806			vm_page_t m;
3807			m = bp->b_pages[i];
3808			db_printf("(%p, 0x%lx, 0x%lx)", (void *)m->object,
3809			    (u_long)m->pindex, (u_long)VM_PAGE_TO_PHYS(m));
3810			if ((i + 1) < bp->b_npages)
3811				db_printf(",");
3812		}
3813		db_printf("\n");
3814	}
3815}
3816#endif /* DDB */
3817